1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Bitcode/BitcodeCommon.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/MC/TargetRegistry.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/TargetParser/Triple.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <optional> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 static cl::opt<unsigned> 87 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 88 cl::desc("Number of metadatas above which we emit an index " 89 "to enable lazy-loading")); 90 static cl::opt<uint32_t> FlushThreshold( 91 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 92 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 93 94 static cl::opt<bool> WriteRelBFToSummary( 95 "write-relbf-to-summary", cl::Hidden, cl::init(false), 96 cl::desc("Write relative block frequency to function summary ")); 97 98 namespace llvm { 99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 100 } 101 102 namespace { 103 104 /// These are manifest constants used by the bitcode writer. They do not need to 105 /// be kept in sync with the reader, but need to be consistent within this file. 106 enum { 107 // VALUE_SYMTAB_BLOCK abbrev id's. 108 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 109 VST_ENTRY_7_ABBREV, 110 VST_ENTRY_6_ABBREV, 111 VST_BBENTRY_6_ABBREV, 112 113 // CONSTANTS_BLOCK abbrev id's. 114 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 115 CONSTANTS_INTEGER_ABBREV, 116 CONSTANTS_CE_CAST_Abbrev, 117 CONSTANTS_NULL_Abbrev, 118 119 // FUNCTION_BLOCK abbrev id's. 120 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 121 FUNCTION_INST_UNOP_ABBREV, 122 FUNCTION_INST_UNOP_FLAGS_ABBREV, 123 FUNCTION_INST_BINOP_ABBREV, 124 FUNCTION_INST_BINOP_FLAGS_ABBREV, 125 FUNCTION_INST_CAST_ABBREV, 126 FUNCTION_INST_CAST_FLAGS_ABBREV, 127 FUNCTION_INST_RET_VOID_ABBREV, 128 FUNCTION_INST_RET_VAL_ABBREV, 129 FUNCTION_INST_UNREACHABLE_ABBREV, 130 FUNCTION_INST_GEP_ABBREV, 131 }; 132 133 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 134 /// file type. 135 class BitcodeWriterBase { 136 protected: 137 /// The stream created and owned by the client. 138 BitstreamWriter &Stream; 139 140 StringTableBuilder &StrtabBuilder; 141 142 public: 143 /// Constructs a BitcodeWriterBase object that writes to the provided 144 /// \p Stream. 145 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 146 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 147 148 protected: 149 void writeModuleVersion(); 150 }; 151 152 void BitcodeWriterBase::writeModuleVersion() { 153 // VERSION: [version#] 154 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 155 } 156 157 /// Base class to manage the module bitcode writing, currently subclassed for 158 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 159 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 160 protected: 161 /// The Module to write to bitcode. 162 const Module &M; 163 164 /// Enumerates ids for all values in the module. 165 ValueEnumerator VE; 166 167 /// Optional per-module index to write for ThinLTO. 168 const ModuleSummaryIndex *Index; 169 170 /// Map that holds the correspondence between GUIDs in the summary index, 171 /// that came from indirect call profiles, and a value id generated by this 172 /// class to use in the VST and summary block records. 173 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 174 175 /// Tracks the last value id recorded in the GUIDToValueMap. 176 unsigned GlobalValueId; 177 178 /// Saves the offset of the VSTOffset record that must eventually be 179 /// backpatched with the offset of the actual VST. 180 uint64_t VSTOffsetPlaceholder = 0; 181 182 public: 183 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 184 /// writing to the provided \p Buffer. 185 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 186 BitstreamWriter &Stream, 187 bool ShouldPreserveUseListOrder, 188 const ModuleSummaryIndex *Index) 189 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 190 VE(M, ShouldPreserveUseListOrder), Index(Index) { 191 // Assign ValueIds to any callee values in the index that came from 192 // indirect call profiles and were recorded as a GUID not a Value* 193 // (which would have been assigned an ID by the ValueEnumerator). 194 // The starting ValueId is just after the number of values in the 195 // ValueEnumerator, so that they can be emitted in the VST. 196 GlobalValueId = VE.getValues().size(); 197 if (!Index) 198 return; 199 for (const auto &GUIDSummaryLists : *Index) 200 // Examine all summaries for this GUID. 201 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 202 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 203 // For each call in the function summary, see if the call 204 // is to a GUID (which means it is for an indirect call, 205 // otherwise we would have a Value for it). If so, synthesize 206 // a value id. 207 for (auto &CallEdge : FS->calls()) 208 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 209 assignValueId(CallEdge.first.getGUID()); 210 } 211 212 protected: 213 void writePerModuleGlobalValueSummary(); 214 215 private: 216 void writePerModuleFunctionSummaryRecord( 217 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 218 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 219 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F); 220 void writeModuleLevelReferences(const GlobalVariable &V, 221 SmallVector<uint64_t, 64> &NameVals, 222 unsigned FSModRefsAbbrev, 223 unsigned FSModVTableRefsAbbrev); 224 225 void assignValueId(GlobalValue::GUID ValGUID) { 226 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 227 } 228 229 unsigned getValueId(GlobalValue::GUID ValGUID) { 230 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 231 // Expect that any GUID value had a value Id assigned by an 232 // earlier call to assignValueId. 233 assert(VMI != GUIDToValueIdMap.end() && 234 "GUID does not have assigned value Id"); 235 return VMI->second; 236 } 237 238 // Helper to get the valueId for the type of value recorded in VI. 239 unsigned getValueId(ValueInfo VI) { 240 if (!VI.haveGVs() || !VI.getValue()) 241 return getValueId(VI.getGUID()); 242 return VE.getValueID(VI.getValue()); 243 } 244 245 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 246 }; 247 248 /// Class to manage the bitcode writing for a module. 249 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 250 /// Pointer to the buffer allocated by caller for bitcode writing. 251 const SmallVectorImpl<char> &Buffer; 252 253 /// True if a module hash record should be written. 254 bool GenerateHash; 255 256 /// If non-null, when GenerateHash is true, the resulting hash is written 257 /// into ModHash. 258 ModuleHash *ModHash; 259 260 SHA1 Hasher; 261 262 /// The start bit of the identification block. 263 uint64_t BitcodeStartBit; 264 265 public: 266 /// Constructs a ModuleBitcodeWriter object for the given Module, 267 /// writing to the provided \p Buffer. 268 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 269 StringTableBuilder &StrtabBuilder, 270 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 271 const ModuleSummaryIndex *Index, bool GenerateHash, 272 ModuleHash *ModHash = nullptr) 273 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 274 ShouldPreserveUseListOrder, Index), 275 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 276 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 277 278 /// Emit the current module to the bitstream. 279 void write(); 280 281 private: 282 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 283 284 size_t addToStrtab(StringRef Str); 285 286 void writeAttributeGroupTable(); 287 void writeAttributeTable(); 288 void writeTypeTable(); 289 void writeComdats(); 290 void writeValueSymbolTableForwardDecl(); 291 void writeModuleInfo(); 292 void writeValueAsMetadata(const ValueAsMetadata *MD, 293 SmallVectorImpl<uint64_t> &Record); 294 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 295 unsigned Abbrev); 296 unsigned createDILocationAbbrev(); 297 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 298 unsigned &Abbrev); 299 unsigned createGenericDINodeAbbrev(); 300 void writeGenericDINode(const GenericDINode *N, 301 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 302 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 303 unsigned Abbrev); 304 void writeDIGenericSubrange(const DIGenericSubrange *N, 305 SmallVectorImpl<uint64_t> &Record, 306 unsigned Abbrev); 307 void writeDIEnumerator(const DIEnumerator *N, 308 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 309 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 310 unsigned Abbrev); 311 void writeDIStringType(const DIStringType *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDIDerivedType(const DIDerivedType *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDICompositeType(const DICompositeType *N, 316 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 317 void writeDISubroutineType(const DISubroutineType *N, 318 SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 321 unsigned Abbrev); 322 void writeDICompileUnit(const DICompileUnit *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDISubprogram(const DISubprogram *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDILexicalBlock(const DILexicalBlock *N, 327 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 328 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 329 SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDICommonBlock(const DICommonBlock *N, 332 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 333 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record); 340 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 341 unsigned Abbrev); 342 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 343 unsigned Abbrev); 344 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 345 SmallVectorImpl<uint64_t> &Record, 346 unsigned Abbrev); 347 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 348 SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 void writeDIGlobalVariable(const DIGlobalVariable *N, 351 SmallVectorImpl<uint64_t> &Record, 352 unsigned Abbrev); 353 void writeDILocalVariable(const DILocalVariable *N, 354 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 355 void writeDILabel(const DILabel *N, 356 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 357 void writeDIExpression(const DIExpression *N, 358 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 359 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 360 SmallVectorImpl<uint64_t> &Record, 361 unsigned Abbrev); 362 void writeDIObjCProperty(const DIObjCProperty *N, 363 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 364 void writeDIImportedEntity(const DIImportedEntity *N, 365 SmallVectorImpl<uint64_t> &Record, 366 unsigned Abbrev); 367 unsigned createNamedMetadataAbbrev(); 368 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 369 unsigned createMetadataStringsAbbrev(); 370 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 371 SmallVectorImpl<uint64_t> &Record); 372 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 373 SmallVectorImpl<uint64_t> &Record, 374 std::vector<unsigned> *MDAbbrevs = nullptr, 375 std::vector<uint64_t> *IndexPos = nullptr); 376 void writeModuleMetadata(); 377 void writeFunctionMetadata(const Function &F); 378 void writeFunctionMetadataAttachment(const Function &F); 379 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 380 const GlobalObject &GO); 381 void writeModuleMetadataKinds(); 382 void writeOperandBundleTags(); 383 void writeSyncScopeNames(); 384 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 385 void writeModuleConstants(); 386 bool pushValueAndType(const Value *V, unsigned InstID, 387 SmallVectorImpl<unsigned> &Vals); 388 void writeOperandBundles(const CallBase &CB, unsigned InstID); 389 void pushValue(const Value *V, unsigned InstID, 390 SmallVectorImpl<unsigned> &Vals); 391 void pushValueSigned(const Value *V, unsigned InstID, 392 SmallVectorImpl<uint64_t> &Vals); 393 void writeInstruction(const Instruction &I, unsigned InstID, 394 SmallVectorImpl<unsigned> &Vals); 395 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 396 void writeGlobalValueSymbolTable( 397 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 398 void writeUseList(UseListOrder &&Order); 399 void writeUseListBlock(const Function *F); 400 void 401 writeFunction(const Function &F, 402 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 403 void writeBlockInfo(); 404 void writeModuleHash(size_t BlockStartPos); 405 406 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 407 return unsigned(SSID); 408 } 409 410 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 411 }; 412 413 /// Class to manage the bitcode writing for a combined index. 414 class IndexBitcodeWriter : public BitcodeWriterBase { 415 /// The combined index to write to bitcode. 416 const ModuleSummaryIndex &Index; 417 418 /// When writing a subset of the index for distributed backends, client 419 /// provides a map of modules to the corresponding GUIDs/summaries to write. 420 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 421 422 /// Map that holds the correspondence between the GUID used in the combined 423 /// index and a value id generated by this class to use in references. 424 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 425 426 // The sorted stack id indices actually used in the summary entries being 427 // written, which will be a subset of those in the full index in the case of 428 // distributed indexes. 429 std::vector<unsigned> StackIdIndices; 430 431 /// Tracks the last value id recorded in the GUIDToValueMap. 432 unsigned GlobalValueId = 0; 433 434 /// Tracks the assignment of module paths in the module path string table to 435 /// an id assigned for use in summary references to the module path. 436 DenseMap<StringRef, uint64_t> ModuleIdMap; 437 438 public: 439 /// Constructs a IndexBitcodeWriter object for the given combined index, 440 /// writing to the provided \p Buffer. When writing a subset of the index 441 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 442 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 443 const ModuleSummaryIndex &Index, 444 const std::map<std::string, GVSummaryMapTy> 445 *ModuleToSummariesForIndex = nullptr) 446 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 447 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 448 // Assign unique value ids to all summaries to be written, for use 449 // in writing out the call graph edges. Save the mapping from GUID 450 // to the new global value id to use when writing those edges, which 451 // are currently saved in the index in terms of GUID. 452 forEachSummary([&](GVInfo I, bool IsAliasee) { 453 GUIDToValueIdMap[I.first] = ++GlobalValueId; 454 if (IsAliasee) 455 return; 456 auto *FS = dyn_cast<FunctionSummary>(I.second); 457 if (!FS) 458 return; 459 // Record all stack id indices actually used in the summary entries being 460 // written, so that we can compact them in the case of distributed ThinLTO 461 // indexes. 462 for (auto &CI : FS->callsites()) 463 for (auto Idx : CI.StackIdIndices) 464 StackIdIndices.push_back(Idx); 465 for (auto &AI : FS->allocs()) 466 for (auto &MIB : AI.MIBs) 467 for (auto Idx : MIB.StackIdIndices) 468 StackIdIndices.push_back(Idx); 469 }); 470 llvm::sort(StackIdIndices); 471 StackIdIndices.erase( 472 std::unique(StackIdIndices.begin(), StackIdIndices.end()), 473 StackIdIndices.end()); 474 } 475 476 /// The below iterator returns the GUID and associated summary. 477 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 478 479 /// Calls the callback for each value GUID and summary to be written to 480 /// bitcode. This hides the details of whether they are being pulled from the 481 /// entire index or just those in a provided ModuleToSummariesForIndex map. 482 template<typename Functor> 483 void forEachSummary(Functor Callback) { 484 if (ModuleToSummariesForIndex) { 485 for (auto &M : *ModuleToSummariesForIndex) 486 for (auto &Summary : M.second) { 487 Callback(Summary, false); 488 // Ensure aliasee is handled, e.g. for assigning a valueId, 489 // even if we are not importing the aliasee directly (the 490 // imported alias will contain a copy of aliasee). 491 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 492 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 493 } 494 } else { 495 for (auto &Summaries : Index) 496 for (auto &Summary : Summaries.second.SummaryList) 497 Callback({Summaries.first, Summary.get()}, false); 498 } 499 } 500 501 /// Calls the callback for each entry in the modulePaths StringMap that 502 /// should be written to the module path string table. This hides the details 503 /// of whether they are being pulled from the entire index or just those in a 504 /// provided ModuleToSummariesForIndex map. 505 template <typename Functor> void forEachModule(Functor Callback) { 506 if (ModuleToSummariesForIndex) { 507 for (const auto &M : *ModuleToSummariesForIndex) { 508 const auto &MPI = Index.modulePaths().find(M.first); 509 if (MPI == Index.modulePaths().end()) { 510 // This should only happen if the bitcode file was empty, in which 511 // case we shouldn't be importing (the ModuleToSummariesForIndex 512 // would only include the module we are writing and index for). 513 assert(ModuleToSummariesForIndex->size() == 1); 514 continue; 515 } 516 Callback(*MPI); 517 } 518 } else { 519 // Since StringMap iteration order isn't guaranteed, order by path string 520 // first. 521 // FIXME: Make this a vector of StringMapEntry instead to avoid the later 522 // map lookup. 523 std::vector<StringRef> ModulePaths; 524 for (auto &[ModPath, _] : Index.modulePaths()) 525 ModulePaths.push_back(ModPath); 526 llvm::sort(ModulePaths.begin(), ModulePaths.end()); 527 for (auto &ModPath : ModulePaths) 528 Callback(*Index.modulePaths().find(ModPath)); 529 } 530 } 531 532 /// Main entry point for writing a combined index to bitcode. 533 void write(); 534 535 private: 536 void writeModStrings(); 537 void writeCombinedGlobalValueSummary(); 538 539 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 540 auto VMI = GUIDToValueIdMap.find(ValGUID); 541 if (VMI == GUIDToValueIdMap.end()) 542 return std::nullopt; 543 return VMI->second; 544 } 545 546 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 547 }; 548 549 } // end anonymous namespace 550 551 static unsigned getEncodedCastOpcode(unsigned Opcode) { 552 switch (Opcode) { 553 default: llvm_unreachable("Unknown cast instruction!"); 554 case Instruction::Trunc : return bitc::CAST_TRUNC; 555 case Instruction::ZExt : return bitc::CAST_ZEXT; 556 case Instruction::SExt : return bitc::CAST_SEXT; 557 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 558 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 559 case Instruction::UIToFP : return bitc::CAST_UITOFP; 560 case Instruction::SIToFP : return bitc::CAST_SITOFP; 561 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 562 case Instruction::FPExt : return bitc::CAST_FPEXT; 563 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 564 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 565 case Instruction::BitCast : return bitc::CAST_BITCAST; 566 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 567 } 568 } 569 570 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 571 switch (Opcode) { 572 default: llvm_unreachable("Unknown binary instruction!"); 573 case Instruction::FNeg: return bitc::UNOP_FNEG; 574 } 575 } 576 577 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 578 switch (Opcode) { 579 default: llvm_unreachable("Unknown binary instruction!"); 580 case Instruction::Add: 581 case Instruction::FAdd: return bitc::BINOP_ADD; 582 case Instruction::Sub: 583 case Instruction::FSub: return bitc::BINOP_SUB; 584 case Instruction::Mul: 585 case Instruction::FMul: return bitc::BINOP_MUL; 586 case Instruction::UDiv: return bitc::BINOP_UDIV; 587 case Instruction::FDiv: 588 case Instruction::SDiv: return bitc::BINOP_SDIV; 589 case Instruction::URem: return bitc::BINOP_UREM; 590 case Instruction::FRem: 591 case Instruction::SRem: return bitc::BINOP_SREM; 592 case Instruction::Shl: return bitc::BINOP_SHL; 593 case Instruction::LShr: return bitc::BINOP_LSHR; 594 case Instruction::AShr: return bitc::BINOP_ASHR; 595 case Instruction::And: return bitc::BINOP_AND; 596 case Instruction::Or: return bitc::BINOP_OR; 597 case Instruction::Xor: return bitc::BINOP_XOR; 598 } 599 } 600 601 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 602 switch (Op) { 603 default: llvm_unreachable("Unknown RMW operation!"); 604 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 605 case AtomicRMWInst::Add: return bitc::RMW_ADD; 606 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 607 case AtomicRMWInst::And: return bitc::RMW_AND; 608 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 609 case AtomicRMWInst::Or: return bitc::RMW_OR; 610 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 611 case AtomicRMWInst::Max: return bitc::RMW_MAX; 612 case AtomicRMWInst::Min: return bitc::RMW_MIN; 613 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 614 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 615 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 616 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 617 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 618 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 619 case AtomicRMWInst::UIncWrap: 620 return bitc::RMW_UINC_WRAP; 621 case AtomicRMWInst::UDecWrap: 622 return bitc::RMW_UDEC_WRAP; 623 } 624 } 625 626 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 627 switch (Ordering) { 628 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 629 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 630 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 631 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 632 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 633 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 634 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 635 } 636 llvm_unreachable("Invalid ordering"); 637 } 638 639 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 640 StringRef Str, unsigned AbbrevToUse) { 641 SmallVector<unsigned, 64> Vals; 642 643 // Code: [strchar x N] 644 for (char C : Str) { 645 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 646 AbbrevToUse = 0; 647 Vals.push_back(C); 648 } 649 650 // Emit the finished record. 651 Stream.EmitRecord(Code, Vals, AbbrevToUse); 652 } 653 654 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 655 switch (Kind) { 656 case Attribute::Alignment: 657 return bitc::ATTR_KIND_ALIGNMENT; 658 case Attribute::AllocAlign: 659 return bitc::ATTR_KIND_ALLOC_ALIGN; 660 case Attribute::AllocSize: 661 return bitc::ATTR_KIND_ALLOC_SIZE; 662 case Attribute::AlwaysInline: 663 return bitc::ATTR_KIND_ALWAYS_INLINE; 664 case Attribute::Builtin: 665 return bitc::ATTR_KIND_BUILTIN; 666 case Attribute::ByVal: 667 return bitc::ATTR_KIND_BY_VAL; 668 case Attribute::Convergent: 669 return bitc::ATTR_KIND_CONVERGENT; 670 case Attribute::InAlloca: 671 return bitc::ATTR_KIND_IN_ALLOCA; 672 case Attribute::Cold: 673 return bitc::ATTR_KIND_COLD; 674 case Attribute::DisableSanitizerInstrumentation: 675 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 676 case Attribute::FnRetThunkExtern: 677 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 678 case Attribute::Hot: 679 return bitc::ATTR_KIND_HOT; 680 case Attribute::ElementType: 681 return bitc::ATTR_KIND_ELEMENTTYPE; 682 case Attribute::InlineHint: 683 return bitc::ATTR_KIND_INLINE_HINT; 684 case Attribute::InReg: 685 return bitc::ATTR_KIND_IN_REG; 686 case Attribute::JumpTable: 687 return bitc::ATTR_KIND_JUMP_TABLE; 688 case Attribute::MinSize: 689 return bitc::ATTR_KIND_MIN_SIZE; 690 case Attribute::AllocatedPointer: 691 return bitc::ATTR_KIND_ALLOCATED_POINTER; 692 case Attribute::AllocKind: 693 return bitc::ATTR_KIND_ALLOC_KIND; 694 case Attribute::Memory: 695 return bitc::ATTR_KIND_MEMORY; 696 case Attribute::NoFPClass: 697 return bitc::ATTR_KIND_NOFPCLASS; 698 case Attribute::Naked: 699 return bitc::ATTR_KIND_NAKED; 700 case Attribute::Nest: 701 return bitc::ATTR_KIND_NEST; 702 case Attribute::NoAlias: 703 return bitc::ATTR_KIND_NO_ALIAS; 704 case Attribute::NoBuiltin: 705 return bitc::ATTR_KIND_NO_BUILTIN; 706 case Attribute::NoCallback: 707 return bitc::ATTR_KIND_NO_CALLBACK; 708 case Attribute::NoCapture: 709 return bitc::ATTR_KIND_NO_CAPTURE; 710 case Attribute::NoDuplicate: 711 return bitc::ATTR_KIND_NO_DUPLICATE; 712 case Attribute::NoFree: 713 return bitc::ATTR_KIND_NOFREE; 714 case Attribute::NoImplicitFloat: 715 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 716 case Attribute::NoInline: 717 return bitc::ATTR_KIND_NO_INLINE; 718 case Attribute::NoRecurse: 719 return bitc::ATTR_KIND_NO_RECURSE; 720 case Attribute::NoMerge: 721 return bitc::ATTR_KIND_NO_MERGE; 722 case Attribute::NonLazyBind: 723 return bitc::ATTR_KIND_NON_LAZY_BIND; 724 case Attribute::NonNull: 725 return bitc::ATTR_KIND_NON_NULL; 726 case Attribute::Dereferenceable: 727 return bitc::ATTR_KIND_DEREFERENCEABLE; 728 case Attribute::DereferenceableOrNull: 729 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 730 case Attribute::NoRedZone: 731 return bitc::ATTR_KIND_NO_RED_ZONE; 732 case Attribute::NoReturn: 733 return bitc::ATTR_KIND_NO_RETURN; 734 case Attribute::NoSync: 735 return bitc::ATTR_KIND_NOSYNC; 736 case Attribute::NoCfCheck: 737 return bitc::ATTR_KIND_NOCF_CHECK; 738 case Attribute::NoProfile: 739 return bitc::ATTR_KIND_NO_PROFILE; 740 case Attribute::SkipProfile: 741 return bitc::ATTR_KIND_SKIP_PROFILE; 742 case Attribute::NoUnwind: 743 return bitc::ATTR_KIND_NO_UNWIND; 744 case Attribute::NoSanitizeBounds: 745 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 746 case Attribute::NoSanitizeCoverage: 747 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 748 case Attribute::NullPointerIsValid: 749 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 750 case Attribute::OptimizeForDebugging: 751 return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING; 752 case Attribute::OptForFuzzing: 753 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 754 case Attribute::OptimizeForSize: 755 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 756 case Attribute::OptimizeNone: 757 return bitc::ATTR_KIND_OPTIMIZE_NONE; 758 case Attribute::ReadNone: 759 return bitc::ATTR_KIND_READ_NONE; 760 case Attribute::ReadOnly: 761 return bitc::ATTR_KIND_READ_ONLY; 762 case Attribute::Returned: 763 return bitc::ATTR_KIND_RETURNED; 764 case Attribute::ReturnsTwice: 765 return bitc::ATTR_KIND_RETURNS_TWICE; 766 case Attribute::SExt: 767 return bitc::ATTR_KIND_S_EXT; 768 case Attribute::Speculatable: 769 return bitc::ATTR_KIND_SPECULATABLE; 770 case Attribute::StackAlignment: 771 return bitc::ATTR_KIND_STACK_ALIGNMENT; 772 case Attribute::StackProtect: 773 return bitc::ATTR_KIND_STACK_PROTECT; 774 case Attribute::StackProtectReq: 775 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 776 case Attribute::StackProtectStrong: 777 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 778 case Attribute::SafeStack: 779 return bitc::ATTR_KIND_SAFESTACK; 780 case Attribute::ShadowCallStack: 781 return bitc::ATTR_KIND_SHADOWCALLSTACK; 782 case Attribute::StrictFP: 783 return bitc::ATTR_KIND_STRICT_FP; 784 case Attribute::StructRet: 785 return bitc::ATTR_KIND_STRUCT_RET; 786 case Attribute::SanitizeAddress: 787 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 788 case Attribute::SanitizeHWAddress: 789 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 790 case Attribute::SanitizeThread: 791 return bitc::ATTR_KIND_SANITIZE_THREAD; 792 case Attribute::SanitizeMemory: 793 return bitc::ATTR_KIND_SANITIZE_MEMORY; 794 case Attribute::SpeculativeLoadHardening: 795 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 796 case Attribute::SwiftError: 797 return bitc::ATTR_KIND_SWIFT_ERROR; 798 case Attribute::SwiftSelf: 799 return bitc::ATTR_KIND_SWIFT_SELF; 800 case Attribute::SwiftAsync: 801 return bitc::ATTR_KIND_SWIFT_ASYNC; 802 case Attribute::UWTable: 803 return bitc::ATTR_KIND_UW_TABLE; 804 case Attribute::VScaleRange: 805 return bitc::ATTR_KIND_VSCALE_RANGE; 806 case Attribute::WillReturn: 807 return bitc::ATTR_KIND_WILLRETURN; 808 case Attribute::WriteOnly: 809 return bitc::ATTR_KIND_WRITEONLY; 810 case Attribute::ZExt: 811 return bitc::ATTR_KIND_Z_EXT; 812 case Attribute::ImmArg: 813 return bitc::ATTR_KIND_IMMARG; 814 case Attribute::SanitizeMemTag: 815 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 816 case Attribute::Preallocated: 817 return bitc::ATTR_KIND_PREALLOCATED; 818 case Attribute::NoUndef: 819 return bitc::ATTR_KIND_NOUNDEF; 820 case Attribute::ByRef: 821 return bitc::ATTR_KIND_BYREF; 822 case Attribute::MustProgress: 823 return bitc::ATTR_KIND_MUSTPROGRESS; 824 case Attribute::PresplitCoroutine: 825 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 826 case Attribute::Writable: 827 return bitc::ATTR_KIND_WRITABLE; 828 case Attribute::CoroDestroyOnlyWhenComplete: 829 return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE; 830 case Attribute::EndAttrKinds: 831 llvm_unreachable("Can not encode end-attribute kinds marker."); 832 case Attribute::None: 833 llvm_unreachable("Can not encode none-attribute."); 834 case Attribute::EmptyKey: 835 case Attribute::TombstoneKey: 836 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 837 } 838 839 llvm_unreachable("Trying to encode unknown attribute"); 840 } 841 842 void ModuleBitcodeWriter::writeAttributeGroupTable() { 843 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 844 VE.getAttributeGroups(); 845 if (AttrGrps.empty()) return; 846 847 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 848 849 SmallVector<uint64_t, 64> Record; 850 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 851 unsigned AttrListIndex = Pair.first; 852 AttributeSet AS = Pair.second; 853 Record.push_back(VE.getAttributeGroupID(Pair)); 854 Record.push_back(AttrListIndex); 855 856 for (Attribute Attr : AS) { 857 if (Attr.isEnumAttribute()) { 858 Record.push_back(0); 859 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 860 } else if (Attr.isIntAttribute()) { 861 Record.push_back(1); 862 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 863 Record.push_back(Attr.getValueAsInt()); 864 } else if (Attr.isStringAttribute()) { 865 StringRef Kind = Attr.getKindAsString(); 866 StringRef Val = Attr.getValueAsString(); 867 868 Record.push_back(Val.empty() ? 3 : 4); 869 Record.append(Kind.begin(), Kind.end()); 870 Record.push_back(0); 871 if (!Val.empty()) { 872 Record.append(Val.begin(), Val.end()); 873 Record.push_back(0); 874 } 875 } else { 876 assert(Attr.isTypeAttribute()); 877 Type *Ty = Attr.getValueAsType(); 878 Record.push_back(Ty ? 6 : 5); 879 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 880 if (Ty) 881 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 882 } 883 } 884 885 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 886 Record.clear(); 887 } 888 889 Stream.ExitBlock(); 890 } 891 892 void ModuleBitcodeWriter::writeAttributeTable() { 893 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 894 if (Attrs.empty()) return; 895 896 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 897 898 SmallVector<uint64_t, 64> Record; 899 for (const AttributeList &AL : Attrs) { 900 for (unsigned i : AL.indexes()) { 901 AttributeSet AS = AL.getAttributes(i); 902 if (AS.hasAttributes()) 903 Record.push_back(VE.getAttributeGroupID({i, AS})); 904 } 905 906 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 907 Record.clear(); 908 } 909 910 Stream.ExitBlock(); 911 } 912 913 /// WriteTypeTable - Write out the type table for a module. 914 void ModuleBitcodeWriter::writeTypeTable() { 915 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 916 917 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 918 SmallVector<uint64_t, 64> TypeVals; 919 920 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 921 922 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 923 auto Abbv = std::make_shared<BitCodeAbbrev>(); 924 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 925 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 926 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 927 928 // Abbrev for TYPE_CODE_FUNCTION. 929 Abbv = std::make_shared<BitCodeAbbrev>(); 930 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 932 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 934 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 935 936 // Abbrev for TYPE_CODE_STRUCT_ANON. 937 Abbv = std::make_shared<BitCodeAbbrev>(); 938 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 942 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 943 944 // Abbrev for TYPE_CODE_STRUCT_NAME. 945 Abbv = std::make_shared<BitCodeAbbrev>(); 946 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 949 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 950 951 // Abbrev for TYPE_CODE_STRUCT_NAMED. 952 Abbv = std::make_shared<BitCodeAbbrev>(); 953 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 957 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 958 959 // Abbrev for TYPE_CODE_ARRAY. 960 Abbv = std::make_shared<BitCodeAbbrev>(); 961 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 964 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 965 966 // Emit an entry count so the reader can reserve space. 967 TypeVals.push_back(TypeList.size()); 968 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 969 TypeVals.clear(); 970 971 // Loop over all of the types, emitting each in turn. 972 for (Type *T : TypeList) { 973 int AbbrevToUse = 0; 974 unsigned Code = 0; 975 976 switch (T->getTypeID()) { 977 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 978 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 979 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 980 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 981 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 982 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 983 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 984 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 985 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 986 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 987 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 988 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 989 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 990 case Type::IntegerTyID: 991 // INTEGER: [width] 992 Code = bitc::TYPE_CODE_INTEGER; 993 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 994 break; 995 case Type::PointerTyID: { 996 PointerType *PTy = cast<PointerType>(T); 997 unsigned AddressSpace = PTy->getAddressSpace(); 998 // OPAQUE_POINTER: [address space] 999 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 1000 TypeVals.push_back(AddressSpace); 1001 if (AddressSpace == 0) 1002 AbbrevToUse = OpaquePtrAbbrev; 1003 break; 1004 } 1005 case Type::FunctionTyID: { 1006 FunctionType *FT = cast<FunctionType>(T); 1007 // FUNCTION: [isvararg, retty, paramty x N] 1008 Code = bitc::TYPE_CODE_FUNCTION; 1009 TypeVals.push_back(FT->isVarArg()); 1010 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 1011 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 1012 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 1013 AbbrevToUse = FunctionAbbrev; 1014 break; 1015 } 1016 case Type::StructTyID: { 1017 StructType *ST = cast<StructType>(T); 1018 // STRUCT: [ispacked, eltty x N] 1019 TypeVals.push_back(ST->isPacked()); 1020 // Output all of the element types. 1021 for (Type *ET : ST->elements()) 1022 TypeVals.push_back(VE.getTypeID(ET)); 1023 1024 if (ST->isLiteral()) { 1025 Code = bitc::TYPE_CODE_STRUCT_ANON; 1026 AbbrevToUse = StructAnonAbbrev; 1027 } else { 1028 if (ST->isOpaque()) { 1029 Code = bitc::TYPE_CODE_OPAQUE; 1030 } else { 1031 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1032 AbbrevToUse = StructNamedAbbrev; 1033 } 1034 1035 // Emit the name if it is present. 1036 if (!ST->getName().empty()) 1037 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1038 StructNameAbbrev); 1039 } 1040 break; 1041 } 1042 case Type::ArrayTyID: { 1043 ArrayType *AT = cast<ArrayType>(T); 1044 // ARRAY: [numelts, eltty] 1045 Code = bitc::TYPE_CODE_ARRAY; 1046 TypeVals.push_back(AT->getNumElements()); 1047 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1048 AbbrevToUse = ArrayAbbrev; 1049 break; 1050 } 1051 case Type::FixedVectorTyID: 1052 case Type::ScalableVectorTyID: { 1053 VectorType *VT = cast<VectorType>(T); 1054 // VECTOR [numelts, eltty] or 1055 // [numelts, eltty, scalable] 1056 Code = bitc::TYPE_CODE_VECTOR; 1057 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1058 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1059 if (isa<ScalableVectorType>(VT)) 1060 TypeVals.push_back(true); 1061 break; 1062 } 1063 case Type::TargetExtTyID: { 1064 TargetExtType *TET = cast<TargetExtType>(T); 1065 Code = bitc::TYPE_CODE_TARGET_TYPE; 1066 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), 1067 StructNameAbbrev); 1068 TypeVals.push_back(TET->getNumTypeParameters()); 1069 for (Type *InnerTy : TET->type_params()) 1070 TypeVals.push_back(VE.getTypeID(InnerTy)); 1071 for (unsigned IntParam : TET->int_params()) 1072 TypeVals.push_back(IntParam); 1073 break; 1074 } 1075 case Type::TypedPointerTyID: 1076 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1077 } 1078 1079 // Emit the finished record. 1080 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1081 TypeVals.clear(); 1082 } 1083 1084 Stream.ExitBlock(); 1085 } 1086 1087 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1088 switch (Linkage) { 1089 case GlobalValue::ExternalLinkage: 1090 return 0; 1091 case GlobalValue::WeakAnyLinkage: 1092 return 16; 1093 case GlobalValue::AppendingLinkage: 1094 return 2; 1095 case GlobalValue::InternalLinkage: 1096 return 3; 1097 case GlobalValue::LinkOnceAnyLinkage: 1098 return 18; 1099 case GlobalValue::ExternalWeakLinkage: 1100 return 7; 1101 case GlobalValue::CommonLinkage: 1102 return 8; 1103 case GlobalValue::PrivateLinkage: 1104 return 9; 1105 case GlobalValue::WeakODRLinkage: 1106 return 17; 1107 case GlobalValue::LinkOnceODRLinkage: 1108 return 19; 1109 case GlobalValue::AvailableExternallyLinkage: 1110 return 12; 1111 } 1112 llvm_unreachable("Invalid linkage"); 1113 } 1114 1115 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1116 return getEncodedLinkage(GV.getLinkage()); 1117 } 1118 1119 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1120 uint64_t RawFlags = 0; 1121 RawFlags |= Flags.ReadNone; 1122 RawFlags |= (Flags.ReadOnly << 1); 1123 RawFlags |= (Flags.NoRecurse << 2); 1124 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1125 RawFlags |= (Flags.NoInline << 4); 1126 RawFlags |= (Flags.AlwaysInline << 5); 1127 RawFlags |= (Flags.NoUnwind << 6); 1128 RawFlags |= (Flags.MayThrow << 7); 1129 RawFlags |= (Flags.HasUnknownCall << 8); 1130 RawFlags |= (Flags.MustBeUnreachable << 9); 1131 return RawFlags; 1132 } 1133 1134 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1135 // in BitcodeReader.cpp. 1136 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1137 uint64_t RawFlags = 0; 1138 1139 RawFlags |= Flags.NotEligibleToImport; // bool 1140 RawFlags |= (Flags.Live << 1); 1141 RawFlags |= (Flags.DSOLocal << 2); 1142 RawFlags |= (Flags.CanAutoHide << 3); 1143 1144 // Linkage don't need to be remapped at that time for the summary. Any future 1145 // change to the getEncodedLinkage() function will need to be taken into 1146 // account here as well. 1147 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1148 1149 RawFlags |= (Flags.Visibility << 8); // 2 bits 1150 1151 return RawFlags; 1152 } 1153 1154 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1155 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1156 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1157 return RawFlags; 1158 } 1159 1160 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1161 switch (GV.getVisibility()) { 1162 case GlobalValue::DefaultVisibility: return 0; 1163 case GlobalValue::HiddenVisibility: return 1; 1164 case GlobalValue::ProtectedVisibility: return 2; 1165 } 1166 llvm_unreachable("Invalid visibility"); 1167 } 1168 1169 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1170 switch (GV.getDLLStorageClass()) { 1171 case GlobalValue::DefaultStorageClass: return 0; 1172 case GlobalValue::DLLImportStorageClass: return 1; 1173 case GlobalValue::DLLExportStorageClass: return 2; 1174 } 1175 llvm_unreachable("Invalid DLL storage class"); 1176 } 1177 1178 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1179 switch (GV.getThreadLocalMode()) { 1180 case GlobalVariable::NotThreadLocal: return 0; 1181 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1182 case GlobalVariable::LocalDynamicTLSModel: return 2; 1183 case GlobalVariable::InitialExecTLSModel: return 3; 1184 case GlobalVariable::LocalExecTLSModel: return 4; 1185 } 1186 llvm_unreachable("Invalid TLS model"); 1187 } 1188 1189 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1190 switch (C.getSelectionKind()) { 1191 case Comdat::Any: 1192 return bitc::COMDAT_SELECTION_KIND_ANY; 1193 case Comdat::ExactMatch: 1194 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1195 case Comdat::Largest: 1196 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1197 case Comdat::NoDeduplicate: 1198 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1199 case Comdat::SameSize: 1200 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1201 } 1202 llvm_unreachable("Invalid selection kind"); 1203 } 1204 1205 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1206 switch (GV.getUnnamedAddr()) { 1207 case GlobalValue::UnnamedAddr::None: return 0; 1208 case GlobalValue::UnnamedAddr::Local: return 2; 1209 case GlobalValue::UnnamedAddr::Global: return 1; 1210 } 1211 llvm_unreachable("Invalid unnamed_addr"); 1212 } 1213 1214 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1215 if (GenerateHash) 1216 Hasher.update(Str); 1217 return StrtabBuilder.add(Str); 1218 } 1219 1220 void ModuleBitcodeWriter::writeComdats() { 1221 SmallVector<unsigned, 64> Vals; 1222 for (const Comdat *C : VE.getComdats()) { 1223 // COMDAT: [strtab offset, strtab size, selection_kind] 1224 Vals.push_back(addToStrtab(C->getName())); 1225 Vals.push_back(C->getName().size()); 1226 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1227 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1228 Vals.clear(); 1229 } 1230 } 1231 1232 /// Write a record that will eventually hold the word offset of the 1233 /// module-level VST. For now the offset is 0, which will be backpatched 1234 /// after the real VST is written. Saves the bit offset to backpatch. 1235 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1236 // Write a placeholder value in for the offset of the real VST, 1237 // which is written after the function blocks so that it can include 1238 // the offset of each function. The placeholder offset will be 1239 // updated when the real VST is written. 1240 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1241 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1242 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1243 // hold the real VST offset. Must use fixed instead of VBR as we don't 1244 // know how many VBR chunks to reserve ahead of time. 1245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1246 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1247 1248 // Emit the placeholder 1249 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1250 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1251 1252 // Compute and save the bit offset to the placeholder, which will be 1253 // patched when the real VST is written. We can simply subtract the 32-bit 1254 // fixed size from the current bit number to get the location to backpatch. 1255 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1256 } 1257 1258 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1259 1260 /// Determine the encoding to use for the given string name and length. 1261 static StringEncoding getStringEncoding(StringRef Str) { 1262 bool isChar6 = true; 1263 for (char C : Str) { 1264 if (isChar6) 1265 isChar6 = BitCodeAbbrevOp::isChar6(C); 1266 if ((unsigned char)C & 128) 1267 // don't bother scanning the rest. 1268 return SE_Fixed8; 1269 } 1270 if (isChar6) 1271 return SE_Char6; 1272 return SE_Fixed7; 1273 } 1274 1275 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1276 "Sanitizer Metadata is too large for naive serialization."); 1277 static unsigned 1278 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1279 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1280 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1281 } 1282 1283 /// Emit top-level description of module, including target triple, inline asm, 1284 /// descriptors for global variables, and function prototype info. 1285 /// Returns the bit offset to backpatch with the location of the real VST. 1286 void ModuleBitcodeWriter::writeModuleInfo() { 1287 // Emit various pieces of data attached to a module. 1288 if (!M.getTargetTriple().empty()) 1289 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1290 0 /*TODO*/); 1291 const std::string &DL = M.getDataLayoutStr(); 1292 if (!DL.empty()) 1293 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1294 if (!M.getModuleInlineAsm().empty()) 1295 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1296 0 /*TODO*/); 1297 1298 // Emit information about sections and GC, computing how many there are. Also 1299 // compute the maximum alignment value. 1300 std::map<std::string, unsigned> SectionMap; 1301 std::map<std::string, unsigned> GCMap; 1302 MaybeAlign MaxAlignment; 1303 unsigned MaxGlobalType = 0; 1304 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1305 if (A) 1306 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1307 }; 1308 for (const GlobalVariable &GV : M.globals()) { 1309 UpdateMaxAlignment(GV.getAlign()); 1310 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1311 if (GV.hasSection()) { 1312 // Give section names unique ID's. 1313 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1314 if (!Entry) { 1315 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1316 0 /*TODO*/); 1317 Entry = SectionMap.size(); 1318 } 1319 } 1320 } 1321 for (const Function &F : M) { 1322 UpdateMaxAlignment(F.getAlign()); 1323 if (F.hasSection()) { 1324 // Give section names unique ID's. 1325 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1326 if (!Entry) { 1327 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1328 0 /*TODO*/); 1329 Entry = SectionMap.size(); 1330 } 1331 } 1332 if (F.hasGC()) { 1333 // Same for GC names. 1334 unsigned &Entry = GCMap[F.getGC()]; 1335 if (!Entry) { 1336 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1337 0 /*TODO*/); 1338 Entry = GCMap.size(); 1339 } 1340 } 1341 } 1342 1343 // Emit abbrev for globals, now that we know # sections and max alignment. 1344 unsigned SimpleGVarAbbrev = 0; 1345 if (!M.global_empty()) { 1346 // Add an abbrev for common globals with no visibility or thread localness. 1347 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1348 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1352 Log2_32_Ceil(MaxGlobalType+1))); 1353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1354 //| explicitType << 1 1355 //| constant 1356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1358 if (!MaxAlignment) // Alignment. 1359 Abbv->Add(BitCodeAbbrevOp(0)); 1360 else { 1361 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1363 Log2_32_Ceil(MaxEncAlignment+1))); 1364 } 1365 if (SectionMap.empty()) // Section. 1366 Abbv->Add(BitCodeAbbrevOp(0)); 1367 else 1368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1369 Log2_32_Ceil(SectionMap.size()+1))); 1370 // Don't bother emitting vis + thread local. 1371 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1372 } 1373 1374 SmallVector<unsigned, 64> Vals; 1375 // Emit the module's source file name. 1376 { 1377 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1378 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1379 if (Bits == SE_Char6) 1380 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1381 else if (Bits == SE_Fixed7) 1382 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1383 1384 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1385 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1386 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1388 Abbv->Add(AbbrevOpToUse); 1389 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1390 1391 for (const auto P : M.getSourceFileName()) 1392 Vals.push_back((unsigned char)P); 1393 1394 // Emit the finished record. 1395 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1396 Vals.clear(); 1397 } 1398 1399 // Emit the global variable information. 1400 for (const GlobalVariable &GV : M.globals()) { 1401 unsigned AbbrevToUse = 0; 1402 1403 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1404 // linkage, alignment, section, visibility, threadlocal, 1405 // unnamed_addr, externally_initialized, dllstorageclass, 1406 // comdat, attributes, DSO_Local, GlobalSanitizer] 1407 Vals.push_back(addToStrtab(GV.getName())); 1408 Vals.push_back(GV.getName().size()); 1409 Vals.push_back(VE.getTypeID(GV.getValueType())); 1410 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1411 Vals.push_back(GV.isDeclaration() ? 0 : 1412 (VE.getValueID(GV.getInitializer()) + 1)); 1413 Vals.push_back(getEncodedLinkage(GV)); 1414 Vals.push_back(getEncodedAlign(GV.getAlign())); 1415 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1416 : 0); 1417 if (GV.isThreadLocal() || 1418 GV.getVisibility() != GlobalValue::DefaultVisibility || 1419 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1420 GV.isExternallyInitialized() || 1421 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1422 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1423 GV.hasPartition() || GV.hasSanitizerMetadata()) { 1424 Vals.push_back(getEncodedVisibility(GV)); 1425 Vals.push_back(getEncodedThreadLocalMode(GV)); 1426 Vals.push_back(getEncodedUnnamedAddr(GV)); 1427 Vals.push_back(GV.isExternallyInitialized()); 1428 Vals.push_back(getEncodedDLLStorageClass(GV)); 1429 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1430 1431 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1432 Vals.push_back(VE.getAttributeListID(AL)); 1433 1434 Vals.push_back(GV.isDSOLocal()); 1435 Vals.push_back(addToStrtab(GV.getPartition())); 1436 Vals.push_back(GV.getPartition().size()); 1437 1438 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1439 GV.getSanitizerMetadata()) 1440 : 0)); 1441 } else { 1442 AbbrevToUse = SimpleGVarAbbrev; 1443 } 1444 1445 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1446 Vals.clear(); 1447 } 1448 1449 // Emit the function proto information. 1450 for (const Function &F : M) { 1451 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1452 // linkage, paramattrs, alignment, section, visibility, gc, 1453 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1454 // prefixdata, personalityfn, DSO_Local, addrspace] 1455 Vals.push_back(addToStrtab(F.getName())); 1456 Vals.push_back(F.getName().size()); 1457 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1458 Vals.push_back(F.getCallingConv()); 1459 Vals.push_back(F.isDeclaration()); 1460 Vals.push_back(getEncodedLinkage(F)); 1461 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1462 Vals.push_back(getEncodedAlign(F.getAlign())); 1463 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1464 : 0); 1465 Vals.push_back(getEncodedVisibility(F)); 1466 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1467 Vals.push_back(getEncodedUnnamedAddr(F)); 1468 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1469 : 0); 1470 Vals.push_back(getEncodedDLLStorageClass(F)); 1471 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1472 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1473 : 0); 1474 Vals.push_back( 1475 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1476 1477 Vals.push_back(F.isDSOLocal()); 1478 Vals.push_back(F.getAddressSpace()); 1479 Vals.push_back(addToStrtab(F.getPartition())); 1480 Vals.push_back(F.getPartition().size()); 1481 1482 unsigned AbbrevToUse = 0; 1483 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1484 Vals.clear(); 1485 } 1486 1487 // Emit the alias information. 1488 for (const GlobalAlias &A : M.aliases()) { 1489 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1490 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1491 // DSO_Local] 1492 Vals.push_back(addToStrtab(A.getName())); 1493 Vals.push_back(A.getName().size()); 1494 Vals.push_back(VE.getTypeID(A.getValueType())); 1495 Vals.push_back(A.getType()->getAddressSpace()); 1496 Vals.push_back(VE.getValueID(A.getAliasee())); 1497 Vals.push_back(getEncodedLinkage(A)); 1498 Vals.push_back(getEncodedVisibility(A)); 1499 Vals.push_back(getEncodedDLLStorageClass(A)); 1500 Vals.push_back(getEncodedThreadLocalMode(A)); 1501 Vals.push_back(getEncodedUnnamedAddr(A)); 1502 Vals.push_back(A.isDSOLocal()); 1503 Vals.push_back(addToStrtab(A.getPartition())); 1504 Vals.push_back(A.getPartition().size()); 1505 1506 unsigned AbbrevToUse = 0; 1507 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1508 Vals.clear(); 1509 } 1510 1511 // Emit the ifunc information. 1512 for (const GlobalIFunc &I : M.ifuncs()) { 1513 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1514 // val#, linkage, visibility, DSO_Local] 1515 Vals.push_back(addToStrtab(I.getName())); 1516 Vals.push_back(I.getName().size()); 1517 Vals.push_back(VE.getTypeID(I.getValueType())); 1518 Vals.push_back(I.getType()->getAddressSpace()); 1519 Vals.push_back(VE.getValueID(I.getResolver())); 1520 Vals.push_back(getEncodedLinkage(I)); 1521 Vals.push_back(getEncodedVisibility(I)); 1522 Vals.push_back(I.isDSOLocal()); 1523 Vals.push_back(addToStrtab(I.getPartition())); 1524 Vals.push_back(I.getPartition().size()); 1525 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1526 Vals.clear(); 1527 } 1528 1529 writeValueSymbolTableForwardDecl(); 1530 } 1531 1532 static uint64_t getOptimizationFlags(const Value *V) { 1533 uint64_t Flags = 0; 1534 1535 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1536 if (OBO->hasNoSignedWrap()) 1537 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1538 if (OBO->hasNoUnsignedWrap()) 1539 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1540 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1541 if (PEO->isExact()) 1542 Flags |= 1 << bitc::PEO_EXACT; 1543 } else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) { 1544 if (PDI->isDisjoint()) 1545 Flags |= 1 << bitc::PDI_DISJOINT; 1546 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1547 if (FPMO->hasAllowReassoc()) 1548 Flags |= bitc::AllowReassoc; 1549 if (FPMO->hasNoNaNs()) 1550 Flags |= bitc::NoNaNs; 1551 if (FPMO->hasNoInfs()) 1552 Flags |= bitc::NoInfs; 1553 if (FPMO->hasNoSignedZeros()) 1554 Flags |= bitc::NoSignedZeros; 1555 if (FPMO->hasAllowReciprocal()) 1556 Flags |= bitc::AllowReciprocal; 1557 if (FPMO->hasAllowContract()) 1558 Flags |= bitc::AllowContract; 1559 if (FPMO->hasApproxFunc()) 1560 Flags |= bitc::ApproxFunc; 1561 } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) { 1562 if (NNI->hasNonNeg()) 1563 Flags |= 1 << bitc::PNNI_NON_NEG; 1564 } 1565 1566 return Flags; 1567 } 1568 1569 void ModuleBitcodeWriter::writeValueAsMetadata( 1570 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1571 // Mimic an MDNode with a value as one operand. 1572 Value *V = MD->getValue(); 1573 Record.push_back(VE.getTypeID(V->getType())); 1574 Record.push_back(VE.getValueID(V)); 1575 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1576 Record.clear(); 1577 } 1578 1579 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1580 SmallVectorImpl<uint64_t> &Record, 1581 unsigned Abbrev) { 1582 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1583 Metadata *MD = N->getOperand(i); 1584 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1585 "Unexpected function-local metadata"); 1586 Record.push_back(VE.getMetadataOrNullID(MD)); 1587 } 1588 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1589 : bitc::METADATA_NODE, 1590 Record, Abbrev); 1591 Record.clear(); 1592 } 1593 1594 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1595 // Assume the column is usually under 128, and always output the inlined-at 1596 // location (it's never more expensive than building an array size 1). 1597 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1598 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1599 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1603 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1604 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1605 return Stream.EmitAbbrev(std::move(Abbv)); 1606 } 1607 1608 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1609 SmallVectorImpl<uint64_t> &Record, 1610 unsigned &Abbrev) { 1611 if (!Abbrev) 1612 Abbrev = createDILocationAbbrev(); 1613 1614 Record.push_back(N->isDistinct()); 1615 Record.push_back(N->getLine()); 1616 Record.push_back(N->getColumn()); 1617 Record.push_back(VE.getMetadataID(N->getScope())); 1618 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1619 Record.push_back(N->isImplicitCode()); 1620 1621 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1622 Record.clear(); 1623 } 1624 1625 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1626 // Assume the column is usually under 128, and always output the inlined-at 1627 // location (it's never more expensive than building an array size 1). 1628 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1629 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1630 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1635 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1636 return Stream.EmitAbbrev(std::move(Abbv)); 1637 } 1638 1639 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1640 SmallVectorImpl<uint64_t> &Record, 1641 unsigned &Abbrev) { 1642 if (!Abbrev) 1643 Abbrev = createGenericDINodeAbbrev(); 1644 1645 Record.push_back(N->isDistinct()); 1646 Record.push_back(N->getTag()); 1647 Record.push_back(0); // Per-tag version field; unused for now. 1648 1649 for (auto &I : N->operands()) 1650 Record.push_back(VE.getMetadataOrNullID(I)); 1651 1652 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1653 Record.clear(); 1654 } 1655 1656 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1657 SmallVectorImpl<uint64_t> &Record, 1658 unsigned Abbrev) { 1659 const uint64_t Version = 2 << 1; 1660 Record.push_back((uint64_t)N->isDistinct() | Version); 1661 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1662 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1663 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1664 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1665 1666 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1667 Record.clear(); 1668 } 1669 1670 void ModuleBitcodeWriter::writeDIGenericSubrange( 1671 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1672 unsigned Abbrev) { 1673 Record.push_back((uint64_t)N->isDistinct()); 1674 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1675 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1676 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1677 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1678 1679 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1680 Record.clear(); 1681 } 1682 1683 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1684 if ((int64_t)V >= 0) 1685 Vals.push_back(V << 1); 1686 else 1687 Vals.push_back((-V << 1) | 1); 1688 } 1689 1690 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1691 // We have an arbitrary precision integer value to write whose 1692 // bit width is > 64. However, in canonical unsigned integer 1693 // format it is likely that the high bits are going to be zero. 1694 // So, we only write the number of active words. 1695 unsigned NumWords = A.getActiveWords(); 1696 const uint64_t *RawData = A.getRawData(); 1697 for (unsigned i = 0; i < NumWords; i++) 1698 emitSignedInt64(Vals, RawData[i]); 1699 } 1700 1701 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1702 SmallVectorImpl<uint64_t> &Record, 1703 unsigned Abbrev) { 1704 const uint64_t IsBigInt = 1 << 2; 1705 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1706 Record.push_back(N->getValue().getBitWidth()); 1707 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1708 emitWideAPInt(Record, N->getValue()); 1709 1710 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1711 Record.clear(); 1712 } 1713 1714 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1715 SmallVectorImpl<uint64_t> &Record, 1716 unsigned Abbrev) { 1717 Record.push_back(N->isDistinct()); 1718 Record.push_back(N->getTag()); 1719 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1720 Record.push_back(N->getSizeInBits()); 1721 Record.push_back(N->getAlignInBits()); 1722 Record.push_back(N->getEncoding()); 1723 Record.push_back(N->getFlags()); 1724 1725 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1726 Record.clear(); 1727 } 1728 1729 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1730 SmallVectorImpl<uint64_t> &Record, 1731 unsigned Abbrev) { 1732 Record.push_back(N->isDistinct()); 1733 Record.push_back(N->getTag()); 1734 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1735 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1736 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1737 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1738 Record.push_back(N->getSizeInBits()); 1739 Record.push_back(N->getAlignInBits()); 1740 Record.push_back(N->getEncoding()); 1741 1742 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1743 Record.clear(); 1744 } 1745 1746 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1747 SmallVectorImpl<uint64_t> &Record, 1748 unsigned Abbrev) { 1749 Record.push_back(N->isDistinct()); 1750 Record.push_back(N->getTag()); 1751 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1752 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1753 Record.push_back(N->getLine()); 1754 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1755 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1756 Record.push_back(N->getSizeInBits()); 1757 Record.push_back(N->getAlignInBits()); 1758 Record.push_back(N->getOffsetInBits()); 1759 Record.push_back(N->getFlags()); 1760 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1761 1762 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1763 // that there is no DWARF address space associated with DIDerivedType. 1764 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1765 Record.push_back(*DWARFAddressSpace + 1); 1766 else 1767 Record.push_back(0); 1768 1769 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1770 1771 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1772 Record.clear(); 1773 } 1774 1775 void ModuleBitcodeWriter::writeDICompositeType( 1776 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1777 unsigned Abbrev) { 1778 const unsigned IsNotUsedInOldTypeRef = 0x2; 1779 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1780 Record.push_back(N->getTag()); 1781 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1782 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1783 Record.push_back(N->getLine()); 1784 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1785 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1786 Record.push_back(N->getSizeInBits()); 1787 Record.push_back(N->getAlignInBits()); 1788 Record.push_back(N->getOffsetInBits()); 1789 Record.push_back(N->getFlags()); 1790 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1791 Record.push_back(N->getRuntimeLang()); 1792 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1793 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1794 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1795 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1796 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1797 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1798 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1799 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1800 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1801 1802 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1803 Record.clear(); 1804 } 1805 1806 void ModuleBitcodeWriter::writeDISubroutineType( 1807 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1808 unsigned Abbrev) { 1809 const unsigned HasNoOldTypeRefs = 0x2; 1810 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1811 Record.push_back(N->getFlags()); 1812 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1813 Record.push_back(N->getCC()); 1814 1815 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1816 Record.clear(); 1817 } 1818 1819 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1820 SmallVectorImpl<uint64_t> &Record, 1821 unsigned Abbrev) { 1822 Record.push_back(N->isDistinct()); 1823 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1824 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1825 if (N->getRawChecksum()) { 1826 Record.push_back(N->getRawChecksum()->Kind); 1827 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1828 } else { 1829 // Maintain backwards compatibility with the old internal representation of 1830 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1831 Record.push_back(0); 1832 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1833 } 1834 auto Source = N->getRawSource(); 1835 if (Source) 1836 Record.push_back(VE.getMetadataOrNullID(Source)); 1837 1838 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1839 Record.clear(); 1840 } 1841 1842 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1843 SmallVectorImpl<uint64_t> &Record, 1844 unsigned Abbrev) { 1845 assert(N->isDistinct() && "Expected distinct compile units"); 1846 Record.push_back(/* IsDistinct */ true); 1847 Record.push_back(N->getSourceLanguage()); 1848 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1849 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1850 Record.push_back(N->isOptimized()); 1851 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1852 Record.push_back(N->getRuntimeVersion()); 1853 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1854 Record.push_back(N->getEmissionKind()); 1855 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1856 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1857 Record.push_back(/* subprograms */ 0); 1858 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1859 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1860 Record.push_back(N->getDWOId()); 1861 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1862 Record.push_back(N->getSplitDebugInlining()); 1863 Record.push_back(N->getDebugInfoForProfiling()); 1864 Record.push_back((unsigned)N->getNameTableKind()); 1865 Record.push_back(N->getRangesBaseAddress()); 1866 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1867 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1868 1869 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1870 Record.clear(); 1871 } 1872 1873 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1874 SmallVectorImpl<uint64_t> &Record, 1875 unsigned Abbrev) { 1876 const uint64_t HasUnitFlag = 1 << 1; 1877 const uint64_t HasSPFlagsFlag = 1 << 2; 1878 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1879 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1880 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1881 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1882 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1883 Record.push_back(N->getLine()); 1884 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1885 Record.push_back(N->getScopeLine()); 1886 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1887 Record.push_back(N->getSPFlags()); 1888 Record.push_back(N->getVirtualIndex()); 1889 Record.push_back(N->getFlags()); 1890 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1891 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1892 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1893 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1894 Record.push_back(N->getThisAdjustment()); 1895 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1896 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1897 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 1898 1899 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1900 Record.clear(); 1901 } 1902 1903 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1904 SmallVectorImpl<uint64_t> &Record, 1905 unsigned Abbrev) { 1906 Record.push_back(N->isDistinct()); 1907 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1908 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1909 Record.push_back(N->getLine()); 1910 Record.push_back(N->getColumn()); 1911 1912 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1913 Record.clear(); 1914 } 1915 1916 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1917 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1918 unsigned Abbrev) { 1919 Record.push_back(N->isDistinct()); 1920 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1921 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1922 Record.push_back(N->getDiscriminator()); 1923 1924 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1925 Record.clear(); 1926 } 1927 1928 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1929 SmallVectorImpl<uint64_t> &Record, 1930 unsigned Abbrev) { 1931 Record.push_back(N->isDistinct()); 1932 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1933 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1934 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1935 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1936 Record.push_back(N->getLineNo()); 1937 1938 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1939 Record.clear(); 1940 } 1941 1942 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1943 SmallVectorImpl<uint64_t> &Record, 1944 unsigned Abbrev) { 1945 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1946 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1947 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1948 1949 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1950 Record.clear(); 1951 } 1952 1953 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1954 SmallVectorImpl<uint64_t> &Record, 1955 unsigned Abbrev) { 1956 Record.push_back(N->isDistinct()); 1957 Record.push_back(N->getMacinfoType()); 1958 Record.push_back(N->getLine()); 1959 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1960 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1961 1962 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1963 Record.clear(); 1964 } 1965 1966 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1967 SmallVectorImpl<uint64_t> &Record, 1968 unsigned Abbrev) { 1969 Record.push_back(N->isDistinct()); 1970 Record.push_back(N->getMacinfoType()); 1971 Record.push_back(N->getLine()); 1972 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1973 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1974 1975 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1976 Record.clear(); 1977 } 1978 1979 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1980 SmallVectorImpl<uint64_t> &Record) { 1981 Record.reserve(N->getArgs().size()); 1982 for (ValueAsMetadata *MD : N->getArgs()) 1983 Record.push_back(VE.getMetadataID(MD)); 1984 1985 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record); 1986 Record.clear(); 1987 } 1988 1989 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1990 SmallVectorImpl<uint64_t> &Record, 1991 unsigned Abbrev) { 1992 Record.push_back(N->isDistinct()); 1993 for (auto &I : N->operands()) 1994 Record.push_back(VE.getMetadataOrNullID(I)); 1995 Record.push_back(N->getLineNo()); 1996 Record.push_back(N->getIsDecl()); 1997 1998 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1999 Record.clear(); 2000 } 2001 2002 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 2003 SmallVectorImpl<uint64_t> &Record, 2004 unsigned Abbrev) { 2005 // There are no arguments for this metadata type. 2006 Record.push_back(N->isDistinct()); 2007 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 2008 Record.clear(); 2009 } 2010 2011 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 2012 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 2013 unsigned Abbrev) { 2014 Record.push_back(N->isDistinct()); 2015 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2016 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2017 Record.push_back(N->isDefault()); 2018 2019 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 2020 Record.clear(); 2021 } 2022 2023 void ModuleBitcodeWriter::writeDITemplateValueParameter( 2024 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 2025 unsigned Abbrev) { 2026 Record.push_back(N->isDistinct()); 2027 Record.push_back(N->getTag()); 2028 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2029 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2030 Record.push_back(N->isDefault()); 2031 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 2032 2033 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 2034 Record.clear(); 2035 } 2036 2037 void ModuleBitcodeWriter::writeDIGlobalVariable( 2038 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 2039 unsigned Abbrev) { 2040 const uint64_t Version = 2 << 1; 2041 Record.push_back((uint64_t)N->isDistinct() | Version); 2042 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2043 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2044 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2045 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2046 Record.push_back(N->getLine()); 2047 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2048 Record.push_back(N->isLocalToUnit()); 2049 Record.push_back(N->isDefinition()); 2050 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2051 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2052 Record.push_back(N->getAlignInBits()); 2053 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2054 2055 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2056 Record.clear(); 2057 } 2058 2059 void ModuleBitcodeWriter::writeDILocalVariable( 2060 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2061 unsigned Abbrev) { 2062 // In order to support all possible bitcode formats in BitcodeReader we need 2063 // to distinguish the following cases: 2064 // 1) Record has no artificial tag (Record[1]), 2065 // has no obsolete inlinedAt field (Record[9]). 2066 // In this case Record size will be 8, HasAlignment flag is false. 2067 // 2) Record has artificial tag (Record[1]), 2068 // has no obsolete inlignedAt field (Record[9]). 2069 // In this case Record size will be 9, HasAlignment flag is false. 2070 // 3) Record has both artificial tag (Record[1]) and 2071 // obsolete inlignedAt field (Record[9]). 2072 // In this case Record size will be 10, HasAlignment flag is false. 2073 // 4) Record has neither artificial tag, nor inlignedAt field, but 2074 // HasAlignment flag is true and Record[8] contains alignment value. 2075 const uint64_t HasAlignmentFlag = 1 << 1; 2076 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2077 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2078 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2079 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2080 Record.push_back(N->getLine()); 2081 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2082 Record.push_back(N->getArg()); 2083 Record.push_back(N->getFlags()); 2084 Record.push_back(N->getAlignInBits()); 2085 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2086 2087 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2088 Record.clear(); 2089 } 2090 2091 void ModuleBitcodeWriter::writeDILabel( 2092 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2093 unsigned Abbrev) { 2094 Record.push_back((uint64_t)N->isDistinct()); 2095 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2096 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2097 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2098 Record.push_back(N->getLine()); 2099 2100 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2101 Record.clear(); 2102 } 2103 2104 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2105 SmallVectorImpl<uint64_t> &Record, 2106 unsigned Abbrev) { 2107 Record.reserve(N->getElements().size() + 1); 2108 const uint64_t Version = 3 << 1; 2109 Record.push_back((uint64_t)N->isDistinct() | Version); 2110 Record.append(N->elements_begin(), N->elements_end()); 2111 2112 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2113 Record.clear(); 2114 } 2115 2116 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2117 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2118 unsigned Abbrev) { 2119 Record.push_back(N->isDistinct()); 2120 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2121 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2122 2123 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2124 Record.clear(); 2125 } 2126 2127 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2128 SmallVectorImpl<uint64_t> &Record, 2129 unsigned Abbrev) { 2130 Record.push_back(N->isDistinct()); 2131 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2132 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2133 Record.push_back(N->getLine()); 2134 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2135 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2136 Record.push_back(N->getAttributes()); 2137 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2138 2139 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2140 Record.clear(); 2141 } 2142 2143 void ModuleBitcodeWriter::writeDIImportedEntity( 2144 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2145 unsigned Abbrev) { 2146 Record.push_back(N->isDistinct()); 2147 Record.push_back(N->getTag()); 2148 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2149 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2150 Record.push_back(N->getLine()); 2151 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2152 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2153 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2154 2155 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2156 Record.clear(); 2157 } 2158 2159 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2160 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2161 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2164 return Stream.EmitAbbrev(std::move(Abbv)); 2165 } 2166 2167 void ModuleBitcodeWriter::writeNamedMetadata( 2168 SmallVectorImpl<uint64_t> &Record) { 2169 if (M.named_metadata_empty()) 2170 return; 2171 2172 unsigned Abbrev = createNamedMetadataAbbrev(); 2173 for (const NamedMDNode &NMD : M.named_metadata()) { 2174 // Write name. 2175 StringRef Str = NMD.getName(); 2176 Record.append(Str.bytes_begin(), Str.bytes_end()); 2177 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2178 Record.clear(); 2179 2180 // Write named metadata operands. 2181 for (const MDNode *N : NMD.operands()) 2182 Record.push_back(VE.getMetadataID(N)); 2183 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2184 Record.clear(); 2185 } 2186 } 2187 2188 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2189 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2190 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2194 return Stream.EmitAbbrev(std::move(Abbv)); 2195 } 2196 2197 /// Write out a record for MDString. 2198 /// 2199 /// All the metadata strings in a metadata block are emitted in a single 2200 /// record. The sizes and strings themselves are shoved into a blob. 2201 void ModuleBitcodeWriter::writeMetadataStrings( 2202 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2203 if (Strings.empty()) 2204 return; 2205 2206 // Start the record with the number of strings. 2207 Record.push_back(bitc::METADATA_STRINGS); 2208 Record.push_back(Strings.size()); 2209 2210 // Emit the sizes of the strings in the blob. 2211 SmallString<256> Blob; 2212 { 2213 BitstreamWriter W(Blob); 2214 for (const Metadata *MD : Strings) 2215 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2216 W.FlushToWord(); 2217 } 2218 2219 // Add the offset to the strings to the record. 2220 Record.push_back(Blob.size()); 2221 2222 // Add the strings to the blob. 2223 for (const Metadata *MD : Strings) 2224 Blob.append(cast<MDString>(MD)->getString()); 2225 2226 // Emit the final record. 2227 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2228 Record.clear(); 2229 } 2230 2231 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2232 enum MetadataAbbrev : unsigned { 2233 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2234 #include "llvm/IR/Metadata.def" 2235 LastPlusOne 2236 }; 2237 2238 void ModuleBitcodeWriter::writeMetadataRecords( 2239 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2240 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2241 if (MDs.empty()) 2242 return; 2243 2244 // Initialize MDNode abbreviations. 2245 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2246 #include "llvm/IR/Metadata.def" 2247 2248 for (const Metadata *MD : MDs) { 2249 if (IndexPos) 2250 IndexPos->push_back(Stream.GetCurrentBitNo()); 2251 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2252 assert(N->isResolved() && "Expected forward references to be resolved"); 2253 2254 switch (N->getMetadataID()) { 2255 default: 2256 llvm_unreachable("Invalid MDNode subclass"); 2257 #define HANDLE_MDNODE_LEAF(CLASS) \ 2258 case Metadata::CLASS##Kind: \ 2259 if (MDAbbrevs) \ 2260 write##CLASS(cast<CLASS>(N), Record, \ 2261 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2262 else \ 2263 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2264 continue; 2265 #include "llvm/IR/Metadata.def" 2266 } 2267 } 2268 if (auto *AL = dyn_cast<DIArgList>(MD)) { 2269 writeDIArgList(AL, Record); 2270 continue; 2271 } 2272 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2273 } 2274 } 2275 2276 void ModuleBitcodeWriter::writeModuleMetadata() { 2277 if (!VE.hasMDs() && M.named_metadata_empty()) 2278 return; 2279 2280 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2281 SmallVector<uint64_t, 64> Record; 2282 2283 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2284 // block and load any metadata. 2285 std::vector<unsigned> MDAbbrevs; 2286 2287 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2288 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2289 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2290 createGenericDINodeAbbrev(); 2291 2292 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2293 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2296 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2297 2298 Abbv = std::make_shared<BitCodeAbbrev>(); 2299 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2302 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2303 2304 // Emit MDStrings together upfront. 2305 writeMetadataStrings(VE.getMDStrings(), Record); 2306 2307 // We only emit an index for the metadata record if we have more than a given 2308 // (naive) threshold of metadatas, otherwise it is not worth it. 2309 if (VE.getNonMDStrings().size() > IndexThreshold) { 2310 // Write a placeholder value in for the offset of the metadata index, 2311 // which is written after the records, so that it can include 2312 // the offset of each entry. The placeholder offset will be 2313 // updated after all records are emitted. 2314 uint64_t Vals[] = {0, 0}; 2315 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2316 } 2317 2318 // Compute and save the bit offset to the current position, which will be 2319 // patched when we emit the index later. We can simply subtract the 64-bit 2320 // fixed size from the current bit number to get the location to backpatch. 2321 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2322 2323 // This index will contain the bitpos for each individual record. 2324 std::vector<uint64_t> IndexPos; 2325 IndexPos.reserve(VE.getNonMDStrings().size()); 2326 2327 // Write all the records 2328 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2329 2330 if (VE.getNonMDStrings().size() > IndexThreshold) { 2331 // Now that we have emitted all the records we will emit the index. But 2332 // first 2333 // backpatch the forward reference so that the reader can skip the records 2334 // efficiently. 2335 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2336 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2337 2338 // Delta encode the index. 2339 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2340 for (auto &Elt : IndexPos) { 2341 auto EltDelta = Elt - PreviousValue; 2342 PreviousValue = Elt; 2343 Elt = EltDelta; 2344 } 2345 // Emit the index record. 2346 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2347 IndexPos.clear(); 2348 } 2349 2350 // Write the named metadata now. 2351 writeNamedMetadata(Record); 2352 2353 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2354 SmallVector<uint64_t, 4> Record; 2355 Record.push_back(VE.getValueID(&GO)); 2356 pushGlobalMetadataAttachment(Record, GO); 2357 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2358 }; 2359 for (const Function &F : M) 2360 if (F.isDeclaration() && F.hasMetadata()) 2361 AddDeclAttachedMetadata(F); 2362 // FIXME: Only store metadata for declarations here, and move data for global 2363 // variable definitions to a separate block (PR28134). 2364 for (const GlobalVariable &GV : M.globals()) 2365 if (GV.hasMetadata()) 2366 AddDeclAttachedMetadata(GV); 2367 2368 Stream.ExitBlock(); 2369 } 2370 2371 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2372 if (!VE.hasMDs()) 2373 return; 2374 2375 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2376 SmallVector<uint64_t, 64> Record; 2377 writeMetadataStrings(VE.getMDStrings(), Record); 2378 writeMetadataRecords(VE.getNonMDStrings(), Record); 2379 Stream.ExitBlock(); 2380 } 2381 2382 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2383 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2384 // [n x [id, mdnode]] 2385 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2386 GO.getAllMetadata(MDs); 2387 for (const auto &I : MDs) { 2388 Record.push_back(I.first); 2389 Record.push_back(VE.getMetadataID(I.second)); 2390 } 2391 } 2392 2393 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2394 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2395 2396 SmallVector<uint64_t, 64> Record; 2397 2398 if (F.hasMetadata()) { 2399 pushGlobalMetadataAttachment(Record, F); 2400 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2401 Record.clear(); 2402 } 2403 2404 // Write metadata attachments 2405 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2406 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2407 for (const BasicBlock &BB : F) 2408 for (const Instruction &I : BB) { 2409 MDs.clear(); 2410 I.getAllMetadataOtherThanDebugLoc(MDs); 2411 2412 // If no metadata, ignore instruction. 2413 if (MDs.empty()) continue; 2414 2415 Record.push_back(VE.getInstructionID(&I)); 2416 2417 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2418 Record.push_back(MDs[i].first); 2419 Record.push_back(VE.getMetadataID(MDs[i].second)); 2420 } 2421 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2422 Record.clear(); 2423 } 2424 2425 Stream.ExitBlock(); 2426 } 2427 2428 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2429 SmallVector<uint64_t, 64> Record; 2430 2431 // Write metadata kinds 2432 // METADATA_KIND - [n x [id, name]] 2433 SmallVector<StringRef, 8> Names; 2434 M.getMDKindNames(Names); 2435 2436 if (Names.empty()) return; 2437 2438 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2439 2440 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2441 Record.push_back(MDKindID); 2442 StringRef KName = Names[MDKindID]; 2443 Record.append(KName.begin(), KName.end()); 2444 2445 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2446 Record.clear(); 2447 } 2448 2449 Stream.ExitBlock(); 2450 } 2451 2452 void ModuleBitcodeWriter::writeOperandBundleTags() { 2453 // Write metadata kinds 2454 // 2455 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2456 // 2457 // OPERAND_BUNDLE_TAG - [strchr x N] 2458 2459 SmallVector<StringRef, 8> Tags; 2460 M.getOperandBundleTags(Tags); 2461 2462 if (Tags.empty()) 2463 return; 2464 2465 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2466 2467 SmallVector<uint64_t, 64> Record; 2468 2469 for (auto Tag : Tags) { 2470 Record.append(Tag.begin(), Tag.end()); 2471 2472 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2473 Record.clear(); 2474 } 2475 2476 Stream.ExitBlock(); 2477 } 2478 2479 void ModuleBitcodeWriter::writeSyncScopeNames() { 2480 SmallVector<StringRef, 8> SSNs; 2481 M.getContext().getSyncScopeNames(SSNs); 2482 if (SSNs.empty()) 2483 return; 2484 2485 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2486 2487 SmallVector<uint64_t, 64> Record; 2488 for (auto SSN : SSNs) { 2489 Record.append(SSN.begin(), SSN.end()); 2490 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2491 Record.clear(); 2492 } 2493 2494 Stream.ExitBlock(); 2495 } 2496 2497 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2498 bool isGlobal) { 2499 if (FirstVal == LastVal) return; 2500 2501 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2502 2503 unsigned AggregateAbbrev = 0; 2504 unsigned String8Abbrev = 0; 2505 unsigned CString7Abbrev = 0; 2506 unsigned CString6Abbrev = 0; 2507 // If this is a constant pool for the module, emit module-specific abbrevs. 2508 if (isGlobal) { 2509 // Abbrev for CST_CODE_AGGREGATE. 2510 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2511 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2514 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2515 2516 // Abbrev for CST_CODE_STRING. 2517 Abbv = std::make_shared<BitCodeAbbrev>(); 2518 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2519 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2521 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2522 // Abbrev for CST_CODE_CSTRING. 2523 Abbv = std::make_shared<BitCodeAbbrev>(); 2524 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2527 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2528 // Abbrev for CST_CODE_CSTRING. 2529 Abbv = std::make_shared<BitCodeAbbrev>(); 2530 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2533 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2534 } 2535 2536 SmallVector<uint64_t, 64> Record; 2537 2538 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2539 Type *LastTy = nullptr; 2540 for (unsigned i = FirstVal; i != LastVal; ++i) { 2541 const Value *V = Vals[i].first; 2542 // If we need to switch types, do so now. 2543 if (V->getType() != LastTy) { 2544 LastTy = V->getType(); 2545 Record.push_back(VE.getTypeID(LastTy)); 2546 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2547 CONSTANTS_SETTYPE_ABBREV); 2548 Record.clear(); 2549 } 2550 2551 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2552 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2553 Record.push_back( 2554 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2555 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2556 2557 // Add the asm string. 2558 const std::string &AsmStr = IA->getAsmString(); 2559 Record.push_back(AsmStr.size()); 2560 Record.append(AsmStr.begin(), AsmStr.end()); 2561 2562 // Add the constraint string. 2563 const std::string &ConstraintStr = IA->getConstraintString(); 2564 Record.push_back(ConstraintStr.size()); 2565 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2566 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2567 Record.clear(); 2568 continue; 2569 } 2570 const Constant *C = cast<Constant>(V); 2571 unsigned Code = -1U; 2572 unsigned AbbrevToUse = 0; 2573 if (C->isNullValue()) { 2574 Code = bitc::CST_CODE_NULL; 2575 } else if (isa<PoisonValue>(C)) { 2576 Code = bitc::CST_CODE_POISON; 2577 } else if (isa<UndefValue>(C)) { 2578 Code = bitc::CST_CODE_UNDEF; 2579 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2580 if (IV->getBitWidth() <= 64) { 2581 uint64_t V = IV->getSExtValue(); 2582 emitSignedInt64(Record, V); 2583 Code = bitc::CST_CODE_INTEGER; 2584 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2585 } else { // Wide integers, > 64 bits in size. 2586 emitWideAPInt(Record, IV->getValue()); 2587 Code = bitc::CST_CODE_WIDE_INTEGER; 2588 } 2589 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2590 Code = bitc::CST_CODE_FLOAT; 2591 Type *Ty = CFP->getType(); 2592 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2593 Ty->isDoubleTy()) { 2594 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2595 } else if (Ty->isX86_FP80Ty()) { 2596 // api needed to prevent premature destruction 2597 // bits are not in the same order as a normal i80 APInt, compensate. 2598 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2599 const uint64_t *p = api.getRawData(); 2600 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2601 Record.push_back(p[0] & 0xffffLL); 2602 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2603 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2604 const uint64_t *p = api.getRawData(); 2605 Record.push_back(p[0]); 2606 Record.push_back(p[1]); 2607 } else { 2608 assert(0 && "Unknown FP type!"); 2609 } 2610 } else if (isa<ConstantDataSequential>(C) && 2611 cast<ConstantDataSequential>(C)->isString()) { 2612 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2613 // Emit constant strings specially. 2614 unsigned NumElts = Str->getNumElements(); 2615 // If this is a null-terminated string, use the denser CSTRING encoding. 2616 if (Str->isCString()) { 2617 Code = bitc::CST_CODE_CSTRING; 2618 --NumElts; // Don't encode the null, which isn't allowed by char6. 2619 } else { 2620 Code = bitc::CST_CODE_STRING; 2621 AbbrevToUse = String8Abbrev; 2622 } 2623 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2624 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2625 for (unsigned i = 0; i != NumElts; ++i) { 2626 unsigned char V = Str->getElementAsInteger(i); 2627 Record.push_back(V); 2628 isCStr7 &= (V & 128) == 0; 2629 if (isCStrChar6) 2630 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2631 } 2632 2633 if (isCStrChar6) 2634 AbbrevToUse = CString6Abbrev; 2635 else if (isCStr7) 2636 AbbrevToUse = CString7Abbrev; 2637 } else if (const ConstantDataSequential *CDS = 2638 dyn_cast<ConstantDataSequential>(C)) { 2639 Code = bitc::CST_CODE_DATA; 2640 Type *EltTy = CDS->getElementType(); 2641 if (isa<IntegerType>(EltTy)) { 2642 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2643 Record.push_back(CDS->getElementAsInteger(i)); 2644 } else { 2645 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2646 Record.push_back( 2647 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2648 } 2649 } else if (isa<ConstantAggregate>(C)) { 2650 Code = bitc::CST_CODE_AGGREGATE; 2651 for (const Value *Op : C->operands()) 2652 Record.push_back(VE.getValueID(Op)); 2653 AbbrevToUse = AggregateAbbrev; 2654 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2655 switch (CE->getOpcode()) { 2656 default: 2657 if (Instruction::isCast(CE->getOpcode())) { 2658 Code = bitc::CST_CODE_CE_CAST; 2659 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2660 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2661 Record.push_back(VE.getValueID(C->getOperand(0))); 2662 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2663 } else { 2664 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2665 Code = bitc::CST_CODE_CE_BINOP; 2666 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2667 Record.push_back(VE.getValueID(C->getOperand(0))); 2668 Record.push_back(VE.getValueID(C->getOperand(1))); 2669 uint64_t Flags = getOptimizationFlags(CE); 2670 if (Flags != 0) 2671 Record.push_back(Flags); 2672 } 2673 break; 2674 case Instruction::FNeg: { 2675 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2676 Code = bitc::CST_CODE_CE_UNOP; 2677 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2678 Record.push_back(VE.getValueID(C->getOperand(0))); 2679 uint64_t Flags = getOptimizationFlags(CE); 2680 if (Flags != 0) 2681 Record.push_back(Flags); 2682 break; 2683 } 2684 case Instruction::GetElementPtr: { 2685 Code = bitc::CST_CODE_CE_GEP; 2686 const auto *GO = cast<GEPOperator>(C); 2687 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2688 if (std::optional<unsigned> Idx = GO->getInRangeIndex()) { 2689 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2690 Record.push_back((*Idx << 1) | GO->isInBounds()); 2691 } else if (GO->isInBounds()) 2692 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2693 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2694 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2695 Record.push_back(VE.getValueID(C->getOperand(i))); 2696 } 2697 break; 2698 } 2699 case Instruction::ExtractElement: 2700 Code = bitc::CST_CODE_CE_EXTRACTELT; 2701 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2702 Record.push_back(VE.getValueID(C->getOperand(0))); 2703 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2704 Record.push_back(VE.getValueID(C->getOperand(1))); 2705 break; 2706 case Instruction::InsertElement: 2707 Code = bitc::CST_CODE_CE_INSERTELT; 2708 Record.push_back(VE.getValueID(C->getOperand(0))); 2709 Record.push_back(VE.getValueID(C->getOperand(1))); 2710 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2711 Record.push_back(VE.getValueID(C->getOperand(2))); 2712 break; 2713 case Instruction::ShuffleVector: 2714 // If the return type and argument types are the same, this is a 2715 // standard shufflevector instruction. If the types are different, 2716 // then the shuffle is widening or truncating the input vectors, and 2717 // the argument type must also be encoded. 2718 if (C->getType() == C->getOperand(0)->getType()) { 2719 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2720 } else { 2721 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2722 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2723 } 2724 Record.push_back(VE.getValueID(C->getOperand(0))); 2725 Record.push_back(VE.getValueID(C->getOperand(1))); 2726 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2727 break; 2728 case Instruction::ICmp: 2729 case Instruction::FCmp: 2730 Code = bitc::CST_CODE_CE_CMP; 2731 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2732 Record.push_back(VE.getValueID(C->getOperand(0))); 2733 Record.push_back(VE.getValueID(C->getOperand(1))); 2734 Record.push_back(CE->getPredicate()); 2735 break; 2736 } 2737 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2738 Code = bitc::CST_CODE_BLOCKADDRESS; 2739 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2740 Record.push_back(VE.getValueID(BA->getFunction())); 2741 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2742 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2743 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2744 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2745 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2746 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2747 Code = bitc::CST_CODE_NO_CFI_VALUE; 2748 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2749 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2750 } else { 2751 #ifndef NDEBUG 2752 C->dump(); 2753 #endif 2754 llvm_unreachable("Unknown constant!"); 2755 } 2756 Stream.EmitRecord(Code, Record, AbbrevToUse); 2757 Record.clear(); 2758 } 2759 2760 Stream.ExitBlock(); 2761 } 2762 2763 void ModuleBitcodeWriter::writeModuleConstants() { 2764 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2765 2766 // Find the first constant to emit, which is the first non-globalvalue value. 2767 // We know globalvalues have been emitted by WriteModuleInfo. 2768 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2769 if (!isa<GlobalValue>(Vals[i].first)) { 2770 writeConstants(i, Vals.size(), true); 2771 return; 2772 } 2773 } 2774 } 2775 2776 /// pushValueAndType - The file has to encode both the value and type id for 2777 /// many values, because we need to know what type to create for forward 2778 /// references. However, most operands are not forward references, so this type 2779 /// field is not needed. 2780 /// 2781 /// This function adds V's value ID to Vals. If the value ID is higher than the 2782 /// instruction ID, then it is a forward reference, and it also includes the 2783 /// type ID. The value ID that is written is encoded relative to the InstID. 2784 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2785 SmallVectorImpl<unsigned> &Vals) { 2786 unsigned ValID = VE.getValueID(V); 2787 // Make encoding relative to the InstID. 2788 Vals.push_back(InstID - ValID); 2789 if (ValID >= InstID) { 2790 Vals.push_back(VE.getTypeID(V->getType())); 2791 return true; 2792 } 2793 return false; 2794 } 2795 2796 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2797 unsigned InstID) { 2798 SmallVector<unsigned, 64> Record; 2799 LLVMContext &C = CS.getContext(); 2800 2801 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2802 const auto &Bundle = CS.getOperandBundleAt(i); 2803 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2804 2805 for (auto &Input : Bundle.Inputs) 2806 pushValueAndType(Input, InstID, Record); 2807 2808 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2809 Record.clear(); 2810 } 2811 } 2812 2813 /// pushValue - Like pushValueAndType, but where the type of the value is 2814 /// omitted (perhaps it was already encoded in an earlier operand). 2815 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2816 SmallVectorImpl<unsigned> &Vals) { 2817 unsigned ValID = VE.getValueID(V); 2818 Vals.push_back(InstID - ValID); 2819 } 2820 2821 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2822 SmallVectorImpl<uint64_t> &Vals) { 2823 unsigned ValID = VE.getValueID(V); 2824 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2825 emitSignedInt64(Vals, diff); 2826 } 2827 2828 /// WriteInstruction - Emit an instruction to the specified stream. 2829 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2830 unsigned InstID, 2831 SmallVectorImpl<unsigned> &Vals) { 2832 unsigned Code = 0; 2833 unsigned AbbrevToUse = 0; 2834 VE.setInstructionID(&I); 2835 switch (I.getOpcode()) { 2836 default: 2837 if (Instruction::isCast(I.getOpcode())) { 2838 Code = bitc::FUNC_CODE_INST_CAST; 2839 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2840 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2841 Vals.push_back(VE.getTypeID(I.getType())); 2842 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2843 uint64_t Flags = getOptimizationFlags(&I); 2844 if (Flags != 0) { 2845 if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV) 2846 AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV; 2847 Vals.push_back(Flags); 2848 } 2849 } else { 2850 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2851 Code = bitc::FUNC_CODE_INST_BINOP; 2852 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2853 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2854 pushValue(I.getOperand(1), InstID, Vals); 2855 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2856 uint64_t Flags = getOptimizationFlags(&I); 2857 if (Flags != 0) { 2858 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2859 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2860 Vals.push_back(Flags); 2861 } 2862 } 2863 break; 2864 case Instruction::FNeg: { 2865 Code = bitc::FUNC_CODE_INST_UNOP; 2866 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2867 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2868 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2869 uint64_t Flags = getOptimizationFlags(&I); 2870 if (Flags != 0) { 2871 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2872 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2873 Vals.push_back(Flags); 2874 } 2875 break; 2876 } 2877 case Instruction::GetElementPtr: { 2878 Code = bitc::FUNC_CODE_INST_GEP; 2879 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2880 auto &GEPInst = cast<GetElementPtrInst>(I); 2881 Vals.push_back(GEPInst.isInBounds()); 2882 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2883 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2884 pushValueAndType(I.getOperand(i), InstID, Vals); 2885 break; 2886 } 2887 case Instruction::ExtractValue: { 2888 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2889 pushValueAndType(I.getOperand(0), InstID, Vals); 2890 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2891 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2892 break; 2893 } 2894 case Instruction::InsertValue: { 2895 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2896 pushValueAndType(I.getOperand(0), InstID, Vals); 2897 pushValueAndType(I.getOperand(1), InstID, Vals); 2898 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2899 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2900 break; 2901 } 2902 case Instruction::Select: { 2903 Code = bitc::FUNC_CODE_INST_VSELECT; 2904 pushValueAndType(I.getOperand(1), InstID, Vals); 2905 pushValue(I.getOperand(2), InstID, Vals); 2906 pushValueAndType(I.getOperand(0), InstID, Vals); 2907 uint64_t Flags = getOptimizationFlags(&I); 2908 if (Flags != 0) 2909 Vals.push_back(Flags); 2910 break; 2911 } 2912 case Instruction::ExtractElement: 2913 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2914 pushValueAndType(I.getOperand(0), InstID, Vals); 2915 pushValueAndType(I.getOperand(1), InstID, Vals); 2916 break; 2917 case Instruction::InsertElement: 2918 Code = bitc::FUNC_CODE_INST_INSERTELT; 2919 pushValueAndType(I.getOperand(0), InstID, Vals); 2920 pushValue(I.getOperand(1), InstID, Vals); 2921 pushValueAndType(I.getOperand(2), InstID, Vals); 2922 break; 2923 case Instruction::ShuffleVector: 2924 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2925 pushValueAndType(I.getOperand(0), InstID, Vals); 2926 pushValue(I.getOperand(1), InstID, Vals); 2927 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2928 Vals); 2929 break; 2930 case Instruction::ICmp: 2931 case Instruction::FCmp: { 2932 // compare returning Int1Ty or vector of Int1Ty 2933 Code = bitc::FUNC_CODE_INST_CMP2; 2934 pushValueAndType(I.getOperand(0), InstID, Vals); 2935 pushValue(I.getOperand(1), InstID, Vals); 2936 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2937 uint64_t Flags = getOptimizationFlags(&I); 2938 if (Flags != 0) 2939 Vals.push_back(Flags); 2940 break; 2941 } 2942 2943 case Instruction::Ret: 2944 { 2945 Code = bitc::FUNC_CODE_INST_RET; 2946 unsigned NumOperands = I.getNumOperands(); 2947 if (NumOperands == 0) 2948 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2949 else if (NumOperands == 1) { 2950 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2951 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2952 } else { 2953 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2954 pushValueAndType(I.getOperand(i), InstID, Vals); 2955 } 2956 } 2957 break; 2958 case Instruction::Br: 2959 { 2960 Code = bitc::FUNC_CODE_INST_BR; 2961 const BranchInst &II = cast<BranchInst>(I); 2962 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2963 if (II.isConditional()) { 2964 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2965 pushValue(II.getCondition(), InstID, Vals); 2966 } 2967 } 2968 break; 2969 case Instruction::Switch: 2970 { 2971 Code = bitc::FUNC_CODE_INST_SWITCH; 2972 const SwitchInst &SI = cast<SwitchInst>(I); 2973 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2974 pushValue(SI.getCondition(), InstID, Vals); 2975 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2976 for (auto Case : SI.cases()) { 2977 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2978 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2979 } 2980 } 2981 break; 2982 case Instruction::IndirectBr: 2983 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2984 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2985 // Encode the address operand as relative, but not the basic blocks. 2986 pushValue(I.getOperand(0), InstID, Vals); 2987 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2988 Vals.push_back(VE.getValueID(I.getOperand(i))); 2989 break; 2990 2991 case Instruction::Invoke: { 2992 const InvokeInst *II = cast<InvokeInst>(&I); 2993 const Value *Callee = II->getCalledOperand(); 2994 FunctionType *FTy = II->getFunctionType(); 2995 2996 if (II->hasOperandBundles()) 2997 writeOperandBundles(*II, InstID); 2998 2999 Code = bitc::FUNC_CODE_INST_INVOKE; 3000 3001 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 3002 Vals.push_back(II->getCallingConv() | 1 << 13); 3003 Vals.push_back(VE.getValueID(II->getNormalDest())); 3004 Vals.push_back(VE.getValueID(II->getUnwindDest())); 3005 Vals.push_back(VE.getTypeID(FTy)); 3006 pushValueAndType(Callee, InstID, Vals); 3007 3008 // Emit value #'s for the fixed parameters. 3009 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3010 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3011 3012 // Emit type/value pairs for varargs params. 3013 if (FTy->isVarArg()) { 3014 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 3015 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3016 } 3017 break; 3018 } 3019 case Instruction::Resume: 3020 Code = bitc::FUNC_CODE_INST_RESUME; 3021 pushValueAndType(I.getOperand(0), InstID, Vals); 3022 break; 3023 case Instruction::CleanupRet: { 3024 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 3025 const auto &CRI = cast<CleanupReturnInst>(I); 3026 pushValue(CRI.getCleanupPad(), InstID, Vals); 3027 if (CRI.hasUnwindDest()) 3028 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 3029 break; 3030 } 3031 case Instruction::CatchRet: { 3032 Code = bitc::FUNC_CODE_INST_CATCHRET; 3033 const auto &CRI = cast<CatchReturnInst>(I); 3034 pushValue(CRI.getCatchPad(), InstID, Vals); 3035 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 3036 break; 3037 } 3038 case Instruction::CleanupPad: 3039 case Instruction::CatchPad: { 3040 const auto &FuncletPad = cast<FuncletPadInst>(I); 3041 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 3042 : bitc::FUNC_CODE_INST_CLEANUPPAD; 3043 pushValue(FuncletPad.getParentPad(), InstID, Vals); 3044 3045 unsigned NumArgOperands = FuncletPad.arg_size(); 3046 Vals.push_back(NumArgOperands); 3047 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 3048 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 3049 break; 3050 } 3051 case Instruction::CatchSwitch: { 3052 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3053 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3054 3055 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3056 3057 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3058 Vals.push_back(NumHandlers); 3059 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3060 Vals.push_back(VE.getValueID(CatchPadBB)); 3061 3062 if (CatchSwitch.hasUnwindDest()) 3063 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3064 break; 3065 } 3066 case Instruction::CallBr: { 3067 const CallBrInst *CBI = cast<CallBrInst>(&I); 3068 const Value *Callee = CBI->getCalledOperand(); 3069 FunctionType *FTy = CBI->getFunctionType(); 3070 3071 if (CBI->hasOperandBundles()) 3072 writeOperandBundles(*CBI, InstID); 3073 3074 Code = bitc::FUNC_CODE_INST_CALLBR; 3075 3076 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3077 3078 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3079 1 << bitc::CALL_EXPLICIT_TYPE); 3080 3081 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3082 Vals.push_back(CBI->getNumIndirectDests()); 3083 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3084 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3085 3086 Vals.push_back(VE.getTypeID(FTy)); 3087 pushValueAndType(Callee, InstID, Vals); 3088 3089 // Emit value #'s for the fixed parameters. 3090 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3091 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3092 3093 // Emit type/value pairs for varargs params. 3094 if (FTy->isVarArg()) { 3095 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3096 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3097 } 3098 break; 3099 } 3100 case Instruction::Unreachable: 3101 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3102 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3103 break; 3104 3105 case Instruction::PHI: { 3106 const PHINode &PN = cast<PHINode>(I); 3107 Code = bitc::FUNC_CODE_INST_PHI; 3108 // With the newer instruction encoding, forward references could give 3109 // negative valued IDs. This is most common for PHIs, so we use 3110 // signed VBRs. 3111 SmallVector<uint64_t, 128> Vals64; 3112 Vals64.push_back(VE.getTypeID(PN.getType())); 3113 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3114 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3115 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3116 } 3117 3118 uint64_t Flags = getOptimizationFlags(&I); 3119 if (Flags != 0) 3120 Vals64.push_back(Flags); 3121 3122 // Emit a Vals64 vector and exit. 3123 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3124 Vals64.clear(); 3125 return; 3126 } 3127 3128 case Instruction::LandingPad: { 3129 const LandingPadInst &LP = cast<LandingPadInst>(I); 3130 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3131 Vals.push_back(VE.getTypeID(LP.getType())); 3132 Vals.push_back(LP.isCleanup()); 3133 Vals.push_back(LP.getNumClauses()); 3134 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3135 if (LP.isCatch(I)) 3136 Vals.push_back(LandingPadInst::Catch); 3137 else 3138 Vals.push_back(LandingPadInst::Filter); 3139 pushValueAndType(LP.getClause(I), InstID, Vals); 3140 } 3141 break; 3142 } 3143 3144 case Instruction::Alloca: { 3145 Code = bitc::FUNC_CODE_INST_ALLOCA; 3146 const AllocaInst &AI = cast<AllocaInst>(I); 3147 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3148 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3149 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3150 using APV = AllocaPackedValues; 3151 unsigned Record = 0; 3152 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3153 Bitfield::set<APV::AlignLower>( 3154 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3155 Bitfield::set<APV::AlignUpper>(Record, 3156 EncodedAlign >> APV::AlignLower::Bits); 3157 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3158 Bitfield::set<APV::ExplicitType>(Record, true); 3159 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3160 Vals.push_back(Record); 3161 3162 unsigned AS = AI.getAddressSpace(); 3163 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3164 Vals.push_back(AS); 3165 break; 3166 } 3167 3168 case Instruction::Load: 3169 if (cast<LoadInst>(I).isAtomic()) { 3170 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3171 pushValueAndType(I.getOperand(0), InstID, Vals); 3172 } else { 3173 Code = bitc::FUNC_CODE_INST_LOAD; 3174 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3175 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3176 } 3177 Vals.push_back(VE.getTypeID(I.getType())); 3178 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3179 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3180 if (cast<LoadInst>(I).isAtomic()) { 3181 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3182 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3183 } 3184 break; 3185 case Instruction::Store: 3186 if (cast<StoreInst>(I).isAtomic()) 3187 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3188 else 3189 Code = bitc::FUNC_CODE_INST_STORE; 3190 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3191 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3192 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3193 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3194 if (cast<StoreInst>(I).isAtomic()) { 3195 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3196 Vals.push_back( 3197 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3198 } 3199 break; 3200 case Instruction::AtomicCmpXchg: 3201 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3202 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3203 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3204 pushValue(I.getOperand(2), InstID, Vals); // newval. 3205 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3206 Vals.push_back( 3207 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3208 Vals.push_back( 3209 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3210 Vals.push_back( 3211 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3212 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3213 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3214 break; 3215 case Instruction::AtomicRMW: 3216 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3217 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3218 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3219 Vals.push_back( 3220 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3221 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3222 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3223 Vals.push_back( 3224 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3225 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3226 break; 3227 case Instruction::Fence: 3228 Code = bitc::FUNC_CODE_INST_FENCE; 3229 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3230 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3231 break; 3232 case Instruction::Call: { 3233 const CallInst &CI = cast<CallInst>(I); 3234 FunctionType *FTy = CI.getFunctionType(); 3235 3236 if (CI.hasOperandBundles()) 3237 writeOperandBundles(CI, InstID); 3238 3239 Code = bitc::FUNC_CODE_INST_CALL; 3240 3241 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3242 3243 unsigned Flags = getOptimizationFlags(&I); 3244 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3245 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3246 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3247 1 << bitc::CALL_EXPLICIT_TYPE | 3248 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3249 unsigned(Flags != 0) << bitc::CALL_FMF); 3250 if (Flags != 0) 3251 Vals.push_back(Flags); 3252 3253 Vals.push_back(VE.getTypeID(FTy)); 3254 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3255 3256 // Emit value #'s for the fixed parameters. 3257 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3258 // Check for labels (can happen with asm labels). 3259 if (FTy->getParamType(i)->isLabelTy()) 3260 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3261 else 3262 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3263 } 3264 3265 // Emit type/value pairs for varargs params. 3266 if (FTy->isVarArg()) { 3267 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3268 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3269 } 3270 break; 3271 } 3272 case Instruction::VAArg: 3273 Code = bitc::FUNC_CODE_INST_VAARG; 3274 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3275 pushValue(I.getOperand(0), InstID, Vals); // valist. 3276 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3277 break; 3278 case Instruction::Freeze: 3279 Code = bitc::FUNC_CODE_INST_FREEZE; 3280 pushValueAndType(I.getOperand(0), InstID, Vals); 3281 break; 3282 } 3283 3284 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3285 Vals.clear(); 3286 } 3287 3288 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3289 /// to allow clients to efficiently find the function body. 3290 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3291 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3292 // Get the offset of the VST we are writing, and backpatch it into 3293 // the VST forward declaration record. 3294 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3295 // The BitcodeStartBit was the stream offset of the identification block. 3296 VSTOffset -= bitcodeStartBit(); 3297 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3298 // Note that we add 1 here because the offset is relative to one word 3299 // before the start of the identification block, which was historically 3300 // always the start of the regular bitcode header. 3301 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3302 3303 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3304 3305 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3306 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3307 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3309 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3310 3311 for (const Function &F : M) { 3312 uint64_t Record[2]; 3313 3314 if (F.isDeclaration()) 3315 continue; 3316 3317 Record[0] = VE.getValueID(&F); 3318 3319 // Save the word offset of the function (from the start of the 3320 // actual bitcode written to the stream). 3321 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3322 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3323 // Note that we add 1 here because the offset is relative to one word 3324 // before the start of the identification block, which was historically 3325 // always the start of the regular bitcode header. 3326 Record[1] = BitcodeIndex / 32 + 1; 3327 3328 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3329 } 3330 3331 Stream.ExitBlock(); 3332 } 3333 3334 /// Emit names for arguments, instructions and basic blocks in a function. 3335 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3336 const ValueSymbolTable &VST) { 3337 if (VST.empty()) 3338 return; 3339 3340 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3341 3342 // FIXME: Set up the abbrev, we know how many values there are! 3343 // FIXME: We know if the type names can use 7-bit ascii. 3344 SmallVector<uint64_t, 64> NameVals; 3345 3346 for (const ValueName &Name : VST) { 3347 // Figure out the encoding to use for the name. 3348 StringEncoding Bits = getStringEncoding(Name.getKey()); 3349 3350 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3351 NameVals.push_back(VE.getValueID(Name.getValue())); 3352 3353 // VST_CODE_ENTRY: [valueid, namechar x N] 3354 // VST_CODE_BBENTRY: [bbid, namechar x N] 3355 unsigned Code; 3356 if (isa<BasicBlock>(Name.getValue())) { 3357 Code = bitc::VST_CODE_BBENTRY; 3358 if (Bits == SE_Char6) 3359 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3360 } else { 3361 Code = bitc::VST_CODE_ENTRY; 3362 if (Bits == SE_Char6) 3363 AbbrevToUse = VST_ENTRY_6_ABBREV; 3364 else if (Bits == SE_Fixed7) 3365 AbbrevToUse = VST_ENTRY_7_ABBREV; 3366 } 3367 3368 for (const auto P : Name.getKey()) 3369 NameVals.push_back((unsigned char)P); 3370 3371 // Emit the finished record. 3372 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3373 NameVals.clear(); 3374 } 3375 3376 Stream.ExitBlock(); 3377 } 3378 3379 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3380 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3381 unsigned Code; 3382 if (isa<BasicBlock>(Order.V)) 3383 Code = bitc::USELIST_CODE_BB; 3384 else 3385 Code = bitc::USELIST_CODE_DEFAULT; 3386 3387 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3388 Record.push_back(VE.getValueID(Order.V)); 3389 Stream.EmitRecord(Code, Record); 3390 } 3391 3392 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3393 assert(VE.shouldPreserveUseListOrder() && 3394 "Expected to be preserving use-list order"); 3395 3396 auto hasMore = [&]() { 3397 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3398 }; 3399 if (!hasMore()) 3400 // Nothing to do. 3401 return; 3402 3403 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3404 while (hasMore()) { 3405 writeUseList(std::move(VE.UseListOrders.back())); 3406 VE.UseListOrders.pop_back(); 3407 } 3408 Stream.ExitBlock(); 3409 } 3410 3411 /// Emit a function body to the module stream. 3412 void ModuleBitcodeWriter::writeFunction( 3413 const Function &F, 3414 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3415 // Save the bitcode index of the start of this function block for recording 3416 // in the VST. 3417 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3418 3419 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3420 VE.incorporateFunction(F); 3421 3422 SmallVector<unsigned, 64> Vals; 3423 3424 // Emit the number of basic blocks, so the reader can create them ahead of 3425 // time. 3426 Vals.push_back(VE.getBasicBlocks().size()); 3427 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3428 Vals.clear(); 3429 3430 // If there are function-local constants, emit them now. 3431 unsigned CstStart, CstEnd; 3432 VE.getFunctionConstantRange(CstStart, CstEnd); 3433 writeConstants(CstStart, CstEnd, false); 3434 3435 // If there is function-local metadata, emit it now. 3436 writeFunctionMetadata(F); 3437 3438 // Keep a running idea of what the instruction ID is. 3439 unsigned InstID = CstEnd; 3440 3441 bool NeedsMetadataAttachment = F.hasMetadata(); 3442 3443 DILocation *LastDL = nullptr; 3444 SmallSetVector<Function *, 4> BlockAddressUsers; 3445 3446 // Finally, emit all the instructions, in order. 3447 for (const BasicBlock &BB : F) { 3448 for (const Instruction &I : BB) { 3449 writeInstruction(I, InstID, Vals); 3450 3451 if (!I.getType()->isVoidTy()) 3452 ++InstID; 3453 3454 // If the instruction has metadata, write a metadata attachment later. 3455 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3456 3457 // If the instruction has a debug location, emit it. 3458 DILocation *DL = I.getDebugLoc(); 3459 if (!DL) 3460 continue; 3461 3462 if (DL == LastDL) { 3463 // Just repeat the same debug loc as last time. 3464 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3465 continue; 3466 } 3467 3468 Vals.push_back(DL->getLine()); 3469 Vals.push_back(DL->getColumn()); 3470 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3471 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3472 Vals.push_back(DL->isImplicitCode()); 3473 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3474 Vals.clear(); 3475 3476 LastDL = DL; 3477 } 3478 3479 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3480 SmallVector<Value *> Worklist{BA}; 3481 SmallPtrSet<Value *, 8> Visited{BA}; 3482 while (!Worklist.empty()) { 3483 Value *V = Worklist.pop_back_val(); 3484 for (User *U : V->users()) { 3485 if (auto *I = dyn_cast<Instruction>(U)) { 3486 Function *P = I->getFunction(); 3487 if (P != &F) 3488 BlockAddressUsers.insert(P); 3489 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3490 Visited.insert(U).second) 3491 Worklist.push_back(U); 3492 } 3493 } 3494 } 3495 } 3496 3497 if (!BlockAddressUsers.empty()) { 3498 Vals.resize(BlockAddressUsers.size()); 3499 for (auto I : llvm::enumerate(BlockAddressUsers)) 3500 Vals[I.index()] = VE.getValueID(I.value()); 3501 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3502 Vals.clear(); 3503 } 3504 3505 // Emit names for all the instructions etc. 3506 if (auto *Symtab = F.getValueSymbolTable()) 3507 writeFunctionLevelValueSymbolTable(*Symtab); 3508 3509 if (NeedsMetadataAttachment) 3510 writeFunctionMetadataAttachment(F); 3511 if (VE.shouldPreserveUseListOrder()) 3512 writeUseListBlock(&F); 3513 VE.purgeFunction(); 3514 Stream.ExitBlock(); 3515 } 3516 3517 // Emit blockinfo, which defines the standard abbreviations etc. 3518 void ModuleBitcodeWriter::writeBlockInfo() { 3519 // We only want to emit block info records for blocks that have multiple 3520 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3521 // Other blocks can define their abbrevs inline. 3522 Stream.EnterBlockInfoBlock(); 3523 3524 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3525 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3530 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3531 VST_ENTRY_8_ABBREV) 3532 llvm_unreachable("Unexpected abbrev ordering!"); 3533 } 3534 3535 { // 7-bit fixed width VST_CODE_ENTRY strings. 3536 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3537 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3538 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3539 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3540 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3541 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3542 VST_ENTRY_7_ABBREV) 3543 llvm_unreachable("Unexpected abbrev ordering!"); 3544 } 3545 { // 6-bit char6 VST_CODE_ENTRY strings. 3546 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3547 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3548 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3550 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3551 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3552 VST_ENTRY_6_ABBREV) 3553 llvm_unreachable("Unexpected abbrev ordering!"); 3554 } 3555 { // 6-bit char6 VST_CODE_BBENTRY strings. 3556 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3557 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3561 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3562 VST_BBENTRY_6_ABBREV) 3563 llvm_unreachable("Unexpected abbrev ordering!"); 3564 } 3565 3566 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3567 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3568 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3570 VE.computeBitsRequiredForTypeIndicies())); 3571 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3572 CONSTANTS_SETTYPE_ABBREV) 3573 llvm_unreachable("Unexpected abbrev ordering!"); 3574 } 3575 3576 { // INTEGER abbrev for CONSTANTS_BLOCK. 3577 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3578 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3580 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3581 CONSTANTS_INTEGER_ABBREV) 3582 llvm_unreachable("Unexpected abbrev ordering!"); 3583 } 3584 3585 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3586 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3587 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3588 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3590 VE.computeBitsRequiredForTypeIndicies())); 3591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3592 3593 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3594 CONSTANTS_CE_CAST_Abbrev) 3595 llvm_unreachable("Unexpected abbrev ordering!"); 3596 } 3597 { // NULL abbrev for CONSTANTS_BLOCK. 3598 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3599 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3600 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3601 CONSTANTS_NULL_Abbrev) 3602 llvm_unreachable("Unexpected abbrev ordering!"); 3603 } 3604 3605 // FIXME: This should only use space for first class types! 3606 3607 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3608 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3609 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3610 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3611 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3612 VE.computeBitsRequiredForTypeIndicies())); 3613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3614 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3615 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3616 FUNCTION_INST_LOAD_ABBREV) 3617 llvm_unreachable("Unexpected abbrev ordering!"); 3618 } 3619 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3620 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3621 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3622 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3623 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3624 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3625 FUNCTION_INST_UNOP_ABBREV) 3626 llvm_unreachable("Unexpected abbrev ordering!"); 3627 } 3628 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3629 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3630 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3634 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3635 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3636 llvm_unreachable("Unexpected abbrev ordering!"); 3637 } 3638 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3639 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3640 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3641 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3642 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3643 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3644 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3645 FUNCTION_INST_BINOP_ABBREV) 3646 llvm_unreachable("Unexpected abbrev ordering!"); 3647 } 3648 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3649 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3650 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3651 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3652 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3653 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3654 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3655 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3656 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3657 llvm_unreachable("Unexpected abbrev ordering!"); 3658 } 3659 { // INST_CAST abbrev for FUNCTION_BLOCK. 3660 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3661 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3662 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3663 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3664 VE.computeBitsRequiredForTypeIndicies())); 3665 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3666 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3667 FUNCTION_INST_CAST_ABBREV) 3668 llvm_unreachable("Unexpected abbrev ordering!"); 3669 } 3670 { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK. 3671 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3672 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3674 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3675 VE.computeBitsRequiredForTypeIndicies())); 3676 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3677 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3678 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3679 FUNCTION_INST_CAST_FLAGS_ABBREV) 3680 llvm_unreachable("Unexpected abbrev ordering!"); 3681 } 3682 3683 { // INST_RET abbrev for FUNCTION_BLOCK. 3684 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3685 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3686 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3687 FUNCTION_INST_RET_VOID_ABBREV) 3688 llvm_unreachable("Unexpected abbrev ordering!"); 3689 } 3690 { // INST_RET abbrev for FUNCTION_BLOCK. 3691 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3692 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3693 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3694 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3695 FUNCTION_INST_RET_VAL_ABBREV) 3696 llvm_unreachable("Unexpected abbrev ordering!"); 3697 } 3698 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3699 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3700 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3701 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3702 FUNCTION_INST_UNREACHABLE_ABBREV) 3703 llvm_unreachable("Unexpected abbrev ordering!"); 3704 } 3705 { 3706 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3707 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3708 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3710 Log2_32_Ceil(VE.getTypes().size() + 1))); 3711 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3713 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3714 FUNCTION_INST_GEP_ABBREV) 3715 llvm_unreachable("Unexpected abbrev ordering!"); 3716 } 3717 3718 Stream.ExitBlock(); 3719 } 3720 3721 /// Write the module path strings, currently only used when generating 3722 /// a combined index file. 3723 void IndexBitcodeWriter::writeModStrings() { 3724 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3725 3726 // TODO: See which abbrev sizes we actually need to emit 3727 3728 // 8-bit fixed-width MST_ENTRY strings. 3729 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3730 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3732 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3734 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3735 3736 // 7-bit fixed width MST_ENTRY strings. 3737 Abbv = std::make_shared<BitCodeAbbrev>(); 3738 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3739 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3740 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3741 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3742 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3743 3744 // 6-bit char6 MST_ENTRY strings. 3745 Abbv = std::make_shared<BitCodeAbbrev>(); 3746 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3747 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3748 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3749 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3750 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3751 3752 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3753 Abbv = std::make_shared<BitCodeAbbrev>(); 3754 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3755 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3756 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3760 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3761 3762 SmallVector<unsigned, 64> Vals; 3763 forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) { 3764 StringRef Key = MPSE.getKey(); 3765 const auto &Hash = MPSE.getValue(); 3766 StringEncoding Bits = getStringEncoding(Key); 3767 unsigned AbbrevToUse = Abbrev8Bit; 3768 if (Bits == SE_Char6) 3769 AbbrevToUse = Abbrev6Bit; 3770 else if (Bits == SE_Fixed7) 3771 AbbrevToUse = Abbrev7Bit; 3772 3773 auto ModuleId = ModuleIdMap.size(); 3774 ModuleIdMap[Key] = ModuleId; 3775 Vals.push_back(ModuleId); 3776 Vals.append(Key.begin(), Key.end()); 3777 3778 // Emit the finished record. 3779 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3780 3781 // Emit an optional hash for the module now 3782 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3783 Vals.assign(Hash.begin(), Hash.end()); 3784 // Emit the hash record. 3785 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3786 } 3787 3788 Vals.clear(); 3789 }); 3790 Stream.ExitBlock(); 3791 } 3792 3793 /// Write the function type metadata related records that need to appear before 3794 /// a function summary entry (whether per-module or combined). 3795 template <typename Fn> 3796 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3797 FunctionSummary *FS, 3798 Fn GetValueID) { 3799 if (!FS->type_tests().empty()) 3800 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3801 3802 SmallVector<uint64_t, 64> Record; 3803 3804 auto WriteVFuncIdVec = [&](uint64_t Ty, 3805 ArrayRef<FunctionSummary::VFuncId> VFs) { 3806 if (VFs.empty()) 3807 return; 3808 Record.clear(); 3809 for (auto &VF : VFs) { 3810 Record.push_back(VF.GUID); 3811 Record.push_back(VF.Offset); 3812 } 3813 Stream.EmitRecord(Ty, Record); 3814 }; 3815 3816 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3817 FS->type_test_assume_vcalls()); 3818 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3819 FS->type_checked_load_vcalls()); 3820 3821 auto WriteConstVCallVec = [&](uint64_t Ty, 3822 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3823 for (auto &VC : VCs) { 3824 Record.clear(); 3825 Record.push_back(VC.VFunc.GUID); 3826 Record.push_back(VC.VFunc.Offset); 3827 llvm::append_range(Record, VC.Args); 3828 Stream.EmitRecord(Ty, Record); 3829 } 3830 }; 3831 3832 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3833 FS->type_test_assume_const_vcalls()); 3834 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3835 FS->type_checked_load_const_vcalls()); 3836 3837 auto WriteRange = [&](ConstantRange Range) { 3838 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3839 assert(Range.getLower().getNumWords() == 1); 3840 assert(Range.getUpper().getNumWords() == 1); 3841 emitSignedInt64(Record, *Range.getLower().getRawData()); 3842 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3843 }; 3844 3845 if (!FS->paramAccesses().empty()) { 3846 Record.clear(); 3847 for (auto &Arg : FS->paramAccesses()) { 3848 size_t UndoSize = Record.size(); 3849 Record.push_back(Arg.ParamNo); 3850 WriteRange(Arg.Use); 3851 Record.push_back(Arg.Calls.size()); 3852 for (auto &Call : Arg.Calls) { 3853 Record.push_back(Call.ParamNo); 3854 std::optional<unsigned> ValueID = GetValueID(Call.Callee); 3855 if (!ValueID) { 3856 // If ValueID is unknown we can't drop just this call, we must drop 3857 // entire parameter. 3858 Record.resize(UndoSize); 3859 break; 3860 } 3861 Record.push_back(*ValueID); 3862 WriteRange(Call.Offsets); 3863 } 3864 } 3865 if (!Record.empty()) 3866 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3867 } 3868 } 3869 3870 /// Collect type IDs from type tests used by function. 3871 static void 3872 getReferencedTypeIds(FunctionSummary *FS, 3873 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3874 if (!FS->type_tests().empty()) 3875 for (auto &TT : FS->type_tests()) 3876 ReferencedTypeIds.insert(TT); 3877 3878 auto GetReferencedTypesFromVFuncIdVec = 3879 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3880 for (auto &VF : VFs) 3881 ReferencedTypeIds.insert(VF.GUID); 3882 }; 3883 3884 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3885 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3886 3887 auto GetReferencedTypesFromConstVCallVec = 3888 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3889 for (auto &VC : VCs) 3890 ReferencedTypeIds.insert(VC.VFunc.GUID); 3891 }; 3892 3893 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3894 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3895 } 3896 3897 static void writeWholeProgramDevirtResolutionByArg( 3898 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3899 const WholeProgramDevirtResolution::ByArg &ByArg) { 3900 NameVals.push_back(args.size()); 3901 llvm::append_range(NameVals, args); 3902 3903 NameVals.push_back(ByArg.TheKind); 3904 NameVals.push_back(ByArg.Info); 3905 NameVals.push_back(ByArg.Byte); 3906 NameVals.push_back(ByArg.Bit); 3907 } 3908 3909 static void writeWholeProgramDevirtResolution( 3910 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3911 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3912 NameVals.push_back(Id); 3913 3914 NameVals.push_back(Wpd.TheKind); 3915 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3916 NameVals.push_back(Wpd.SingleImplName.size()); 3917 3918 NameVals.push_back(Wpd.ResByArg.size()); 3919 for (auto &A : Wpd.ResByArg) 3920 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3921 } 3922 3923 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3924 StringTableBuilder &StrtabBuilder, 3925 const std::string &Id, 3926 const TypeIdSummary &Summary) { 3927 NameVals.push_back(StrtabBuilder.add(Id)); 3928 NameVals.push_back(Id.size()); 3929 3930 NameVals.push_back(Summary.TTRes.TheKind); 3931 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3932 NameVals.push_back(Summary.TTRes.AlignLog2); 3933 NameVals.push_back(Summary.TTRes.SizeM1); 3934 NameVals.push_back(Summary.TTRes.BitMask); 3935 NameVals.push_back(Summary.TTRes.InlineBits); 3936 3937 for (auto &W : Summary.WPDRes) 3938 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3939 W.second); 3940 } 3941 3942 static void writeTypeIdCompatibleVtableSummaryRecord( 3943 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3944 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3945 ValueEnumerator &VE) { 3946 NameVals.push_back(StrtabBuilder.add(Id)); 3947 NameVals.push_back(Id.size()); 3948 3949 for (auto &P : Summary) { 3950 NameVals.push_back(P.AddressPointOffset); 3951 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3952 } 3953 } 3954 3955 static void writeFunctionHeapProfileRecords( 3956 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, 3957 unsigned AllocAbbrev, bool PerModule, 3958 std::function<unsigned(const ValueInfo &VI)> GetValueID, 3959 std::function<unsigned(unsigned)> GetStackIndex) { 3960 SmallVector<uint64_t> Record; 3961 3962 for (auto &CI : FS->callsites()) { 3963 Record.clear(); 3964 // Per module callsite clones should always have a single entry of 3965 // value 0. 3966 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); 3967 Record.push_back(GetValueID(CI.Callee)); 3968 if (!PerModule) { 3969 Record.push_back(CI.StackIdIndices.size()); 3970 Record.push_back(CI.Clones.size()); 3971 } 3972 for (auto Id : CI.StackIdIndices) 3973 Record.push_back(GetStackIndex(Id)); 3974 if (!PerModule) { 3975 for (auto V : CI.Clones) 3976 Record.push_back(V); 3977 } 3978 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO 3979 : bitc::FS_COMBINED_CALLSITE_INFO, 3980 Record, CallsiteAbbrev); 3981 } 3982 3983 for (auto &AI : FS->allocs()) { 3984 Record.clear(); 3985 // Per module alloc versions should always have a single entry of 3986 // value 0. 3987 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); 3988 if (!PerModule) { 3989 Record.push_back(AI.MIBs.size()); 3990 Record.push_back(AI.Versions.size()); 3991 } 3992 for (auto &MIB : AI.MIBs) { 3993 Record.push_back((uint8_t)MIB.AllocType); 3994 Record.push_back(MIB.StackIdIndices.size()); 3995 for (auto Id : MIB.StackIdIndices) 3996 Record.push_back(GetStackIndex(Id)); 3997 } 3998 if (!PerModule) { 3999 for (auto V : AI.Versions) 4000 Record.push_back(V); 4001 } 4002 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO 4003 : bitc::FS_COMBINED_ALLOC_INFO, 4004 Record, AllocAbbrev); 4005 } 4006 } 4007 4008 // Helper to emit a single function summary record. 4009 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 4010 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 4011 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 4012 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F) { 4013 NameVals.push_back(ValueID); 4014 4015 FunctionSummary *FS = cast<FunctionSummary>(Summary); 4016 4017 writeFunctionTypeMetadataRecords( 4018 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> { 4019 return {VE.getValueID(VI.getValue())}; 4020 }); 4021 4022 writeFunctionHeapProfileRecords( 4023 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4024 /*PerModule*/ true, 4025 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, 4026 /*GetStackIndex*/ [&](unsigned I) { return I; }); 4027 4028 auto SpecialRefCnts = FS->specialRefCounts(); 4029 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4030 NameVals.push_back(FS->instCount()); 4031 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4032 NameVals.push_back(FS->refs().size()); 4033 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 4034 NameVals.push_back(SpecialRefCnts.second); // worefcnt 4035 4036 for (auto &RI : FS->refs()) 4037 NameVals.push_back(VE.getValueID(RI.getValue())); 4038 4039 bool HasProfileData = 4040 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 4041 for (auto &ECI : FS->calls()) { 4042 NameVals.push_back(getValueId(ECI.first)); 4043 if (HasProfileData) 4044 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 4045 else if (WriteRelBFToSummary) 4046 NameVals.push_back(ECI.second.RelBlockFreq); 4047 } 4048 4049 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4050 unsigned Code = 4051 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 4052 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 4053 : bitc::FS_PERMODULE)); 4054 4055 // Emit the finished record. 4056 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4057 NameVals.clear(); 4058 } 4059 4060 // Collect the global value references in the given variable's initializer, 4061 // and emit them in a summary record. 4062 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 4063 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 4064 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 4065 auto VI = Index->getValueInfo(V.getGUID()); 4066 if (!VI || VI.getSummaryList().empty()) { 4067 // Only declarations should not have a summary (a declaration might however 4068 // have a summary if the def was in module level asm). 4069 assert(V.isDeclaration()); 4070 return; 4071 } 4072 auto *Summary = VI.getSummaryList()[0].get(); 4073 NameVals.push_back(VE.getValueID(&V)); 4074 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 4075 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4076 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4077 4078 auto VTableFuncs = VS->vTableFuncs(); 4079 if (!VTableFuncs.empty()) 4080 NameVals.push_back(VS->refs().size()); 4081 4082 unsigned SizeBeforeRefs = NameVals.size(); 4083 for (auto &RI : VS->refs()) 4084 NameVals.push_back(VE.getValueID(RI.getValue())); 4085 // Sort the refs for determinism output, the vector returned by FS->refs() has 4086 // been initialized from a DenseSet. 4087 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 4088 4089 if (VTableFuncs.empty()) 4090 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 4091 FSModRefsAbbrev); 4092 else { 4093 // VTableFuncs pairs should already be sorted by offset. 4094 for (auto &P : VTableFuncs) { 4095 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 4096 NameVals.push_back(P.VTableOffset); 4097 } 4098 4099 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 4100 FSModVTableRefsAbbrev); 4101 } 4102 NameVals.clear(); 4103 } 4104 4105 /// Emit the per-module summary section alongside the rest of 4106 /// the module's bitcode. 4107 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 4108 // By default we compile with ThinLTO if the module has a summary, but the 4109 // client can request full LTO with a module flag. 4110 bool IsThinLTO = true; 4111 if (auto *MD = 4112 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 4113 IsThinLTO = MD->getZExtValue(); 4114 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 4115 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 4116 4); 4117 4118 Stream.EmitRecord( 4119 bitc::FS_VERSION, 4120 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4121 4122 // Write the index flags. 4123 uint64_t Flags = 0; 4124 // Bits 1-3 are set only in the combined index, skip them. 4125 if (Index->enableSplitLTOUnit()) 4126 Flags |= 0x8; 4127 if (Index->hasUnifiedLTO()) 4128 Flags |= 0x200; 4129 4130 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4131 4132 if (Index->begin() == Index->end()) { 4133 Stream.ExitBlock(); 4134 return; 4135 } 4136 4137 for (const auto &GVI : valueIds()) { 4138 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4139 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4140 } 4141 4142 if (!Index->stackIds().empty()) { 4143 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4144 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4145 // numids x stackid 4146 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4147 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4148 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4149 Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId); 4150 } 4151 4152 // Abbrev for FS_PERMODULE_PROFILE. 4153 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4154 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags 4157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4162 // numrefs x valueid, n x (valueid, hotness) 4163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4165 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4166 4167 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 4168 Abbv = std::make_shared<BitCodeAbbrev>(); 4169 if (WriteRelBFToSummary) 4170 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4171 else 4172 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 4173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4180 // numrefs x valueid, n x (valueid [, rel_block_freq]) 4181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4183 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4184 4185 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4186 Abbv = std::make_shared<BitCodeAbbrev>(); 4187 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4192 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4193 4194 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4195 Abbv = std::make_shared<BitCodeAbbrev>(); 4196 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4199 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4200 // numrefs x valueid, n x (valueid , offset) 4201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4203 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4204 4205 // Abbrev for FS_ALIAS. 4206 Abbv = std::make_shared<BitCodeAbbrev>(); 4207 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4208 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4211 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4212 4213 // Abbrev for FS_TYPE_ID_METADATA 4214 Abbv = std::make_shared<BitCodeAbbrev>(); 4215 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4217 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4218 // n x (valueid , offset) 4219 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4221 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4222 4223 Abbv = std::make_shared<BitCodeAbbrev>(); 4224 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); 4225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4226 // n x stackidindex 4227 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4228 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4229 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4230 4231 Abbv = std::make_shared<BitCodeAbbrev>(); 4232 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); 4233 // n x (alloc type, numstackids, numstackids x stackidindex) 4234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4236 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4237 4238 SmallVector<uint64_t, 64> NameVals; 4239 // Iterate over the list of functions instead of the Index to 4240 // ensure the ordering is stable. 4241 for (const Function &F : M) { 4242 // Summary emission does not support anonymous functions, they have to 4243 // renamed using the anonymous function renaming pass. 4244 if (!F.hasName()) 4245 report_fatal_error("Unexpected anonymous function when writing summary"); 4246 4247 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4248 if (!VI || VI.getSummaryList().empty()) { 4249 // Only declarations should not have a summary (a declaration might 4250 // however have a summary if the def was in module level asm). 4251 assert(F.isDeclaration()); 4252 continue; 4253 } 4254 auto *Summary = VI.getSummaryList()[0].get(); 4255 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4256 FSCallsAbbrev, FSCallsProfileAbbrev, 4257 CallsiteAbbrev, AllocAbbrev, F); 4258 } 4259 4260 // Capture references from GlobalVariable initializers, which are outside 4261 // of a function scope. 4262 for (const GlobalVariable &G : M.globals()) 4263 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4264 FSModVTableRefsAbbrev); 4265 4266 for (const GlobalAlias &A : M.aliases()) { 4267 auto *Aliasee = A.getAliaseeObject(); 4268 // Skip ifunc and nameless functions which don't have an entry in the 4269 // summary. 4270 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4271 continue; 4272 auto AliasId = VE.getValueID(&A); 4273 auto AliaseeId = VE.getValueID(Aliasee); 4274 NameVals.push_back(AliasId); 4275 auto *Summary = Index->getGlobalValueSummary(A); 4276 AliasSummary *AS = cast<AliasSummary>(Summary); 4277 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4278 NameVals.push_back(AliaseeId); 4279 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4280 NameVals.clear(); 4281 } 4282 4283 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4284 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4285 S.second, VE); 4286 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4287 TypeIdCompatibleVtableAbbrev); 4288 NameVals.clear(); 4289 } 4290 4291 if (Index->getBlockCount()) 4292 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4293 ArrayRef<uint64_t>{Index->getBlockCount()}); 4294 4295 Stream.ExitBlock(); 4296 } 4297 4298 /// Emit the combined summary section into the combined index file. 4299 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4300 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 4301 Stream.EmitRecord( 4302 bitc::FS_VERSION, 4303 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4304 4305 // Write the index flags. 4306 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4307 4308 for (const auto &GVI : valueIds()) { 4309 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4310 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4311 } 4312 4313 if (!StackIdIndices.empty()) { 4314 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4315 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4316 // numids x stackid 4317 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4318 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4319 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4320 // Write the stack ids used by this index, which will be a subset of those in 4321 // the full index in the case of distributed indexes. 4322 std::vector<uint64_t> StackIds; 4323 for (auto &I : StackIdIndices) 4324 StackIds.push_back(Index.getStackIdAtIndex(I)); 4325 Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId); 4326 } 4327 4328 // Abbrev for FS_COMBINED. 4329 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4330 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4340 // numrefs x valueid, n x (valueid) 4341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4343 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4344 4345 // Abbrev for FS_COMBINED_PROFILE. 4346 Abbv = std::make_shared<BitCodeAbbrev>(); 4347 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4357 // numrefs x valueid, n x (valueid, hotness) 4358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4360 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4361 4362 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4363 Abbv = std::make_shared<BitCodeAbbrev>(); 4364 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4370 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4371 4372 // Abbrev for FS_COMBINED_ALIAS. 4373 Abbv = std::make_shared<BitCodeAbbrev>(); 4374 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4379 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4380 4381 Abbv = std::make_shared<BitCodeAbbrev>(); 4382 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); 4383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices 4385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4386 // numstackindices x stackidindex, numver x version 4387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4389 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4390 4391 Abbv = std::make_shared<BitCodeAbbrev>(); 4392 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); 4393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4395 // nummib x (alloc type, numstackids, numstackids x stackidindex), 4396 // numver x version 4397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4398 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4399 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4400 4401 // The aliases are emitted as a post-pass, and will point to the value 4402 // id of the aliasee. Save them in a vector for post-processing. 4403 SmallVector<AliasSummary *, 64> Aliases; 4404 4405 // Save the value id for each summary for alias emission. 4406 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4407 4408 SmallVector<uint64_t, 64> NameVals; 4409 4410 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4411 // with the type ids referenced by this index file. 4412 std::set<GlobalValue::GUID> ReferencedTypeIds; 4413 4414 // For local linkage, we also emit the original name separately 4415 // immediately after the record. 4416 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4417 // We don't need to emit the original name if we are writing the index for 4418 // distributed backends (in which case ModuleToSummariesForIndex is 4419 // non-null). The original name is only needed during the thin link, since 4420 // for SamplePGO the indirect call targets for local functions have 4421 // have the original name annotated in profile. 4422 // Continue to emit it when writing out the entire combined index, which is 4423 // used in testing the thin link via llvm-lto. 4424 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4425 return; 4426 NameVals.push_back(S.getOriginalName()); 4427 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4428 NameVals.clear(); 4429 }; 4430 4431 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4432 forEachSummary([&](GVInfo I, bool IsAliasee) { 4433 GlobalValueSummary *S = I.second; 4434 assert(S); 4435 DefOrUseGUIDs.insert(I.first); 4436 for (const ValueInfo &VI : S->refs()) 4437 DefOrUseGUIDs.insert(VI.getGUID()); 4438 4439 auto ValueId = getValueId(I.first); 4440 assert(ValueId); 4441 SummaryToValueIdMap[S] = *ValueId; 4442 4443 // If this is invoked for an aliasee, we want to record the above 4444 // mapping, but then not emit a summary entry (if the aliasee is 4445 // to be imported, we will invoke this separately with IsAliasee=false). 4446 if (IsAliasee) 4447 return; 4448 4449 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4450 // Will process aliases as a post-pass because the reader wants all 4451 // global to be loaded first. 4452 Aliases.push_back(AS); 4453 return; 4454 } 4455 4456 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4457 NameVals.push_back(*ValueId); 4458 assert(ModuleIdMap.count(VS->modulePath())); 4459 NameVals.push_back(ModuleIdMap[VS->modulePath()]); 4460 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4461 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4462 for (auto &RI : VS->refs()) { 4463 auto RefValueId = getValueId(RI.getGUID()); 4464 if (!RefValueId) 4465 continue; 4466 NameVals.push_back(*RefValueId); 4467 } 4468 4469 // Emit the finished record. 4470 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4471 FSModRefsAbbrev); 4472 NameVals.clear(); 4473 MaybeEmitOriginalName(*S); 4474 return; 4475 } 4476 4477 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { 4478 if (!VI) 4479 return std::nullopt; 4480 return getValueId(VI.getGUID()); 4481 }; 4482 4483 auto *FS = cast<FunctionSummary>(S); 4484 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4485 getReferencedTypeIds(FS, ReferencedTypeIds); 4486 4487 writeFunctionHeapProfileRecords( 4488 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4489 /*PerModule*/ false, 4490 /*GetValueId*/ [&](const ValueInfo &VI) -> unsigned { 4491 std::optional<unsigned> ValueID = GetValueId(VI); 4492 // This can happen in shared index files for distributed ThinLTO if 4493 // the callee function summary is not included. Record 0 which we 4494 // will have to deal with conservatively when doing any kind of 4495 // validation in the ThinLTO backends. 4496 if (!ValueID) 4497 return 0; 4498 return *ValueID; 4499 }, 4500 /*GetStackIndex*/ [&](unsigned I) { 4501 // Get the corresponding index into the list of StackIdIndices 4502 // actually being written for this combined index (which may be a 4503 // subset in the case of distributed indexes). 4504 auto Lower = llvm::lower_bound(StackIdIndices, I); 4505 return std::distance(StackIdIndices.begin(), Lower); 4506 }); 4507 4508 NameVals.push_back(*ValueId); 4509 assert(ModuleIdMap.count(FS->modulePath())); 4510 NameVals.push_back(ModuleIdMap[FS->modulePath()]); 4511 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4512 NameVals.push_back(FS->instCount()); 4513 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4514 NameVals.push_back(FS->entryCount()); 4515 4516 // Fill in below 4517 NameVals.push_back(0); // numrefs 4518 NameVals.push_back(0); // rorefcnt 4519 NameVals.push_back(0); // worefcnt 4520 4521 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4522 for (auto &RI : FS->refs()) { 4523 auto RefValueId = getValueId(RI.getGUID()); 4524 if (!RefValueId) 4525 continue; 4526 NameVals.push_back(*RefValueId); 4527 if (RI.isReadOnly()) 4528 RORefCnt++; 4529 else if (RI.isWriteOnly()) 4530 WORefCnt++; 4531 Count++; 4532 } 4533 NameVals[6] = Count; 4534 NameVals[7] = RORefCnt; 4535 NameVals[8] = WORefCnt; 4536 4537 bool HasProfileData = false; 4538 for (auto &EI : FS->calls()) { 4539 HasProfileData |= 4540 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4541 if (HasProfileData) 4542 break; 4543 } 4544 4545 for (auto &EI : FS->calls()) { 4546 // If this GUID doesn't have a value id, it doesn't have a function 4547 // summary and we don't need to record any calls to it. 4548 std::optional<unsigned> CallValueId = GetValueId(EI.first); 4549 if (!CallValueId) 4550 continue; 4551 NameVals.push_back(*CallValueId); 4552 if (HasProfileData) 4553 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4554 } 4555 4556 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4557 unsigned Code = 4558 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4559 4560 // Emit the finished record. 4561 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4562 NameVals.clear(); 4563 MaybeEmitOriginalName(*S); 4564 }); 4565 4566 for (auto *AS : Aliases) { 4567 auto AliasValueId = SummaryToValueIdMap[AS]; 4568 assert(AliasValueId); 4569 NameVals.push_back(AliasValueId); 4570 assert(ModuleIdMap.count(AS->modulePath())); 4571 NameVals.push_back(ModuleIdMap[AS->modulePath()]); 4572 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4573 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4574 assert(AliaseeValueId); 4575 NameVals.push_back(AliaseeValueId); 4576 4577 // Emit the finished record. 4578 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4579 NameVals.clear(); 4580 MaybeEmitOriginalName(*AS); 4581 4582 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4583 getReferencedTypeIds(FS, ReferencedTypeIds); 4584 } 4585 4586 if (!Index.cfiFunctionDefs().empty()) { 4587 for (auto &S : Index.cfiFunctionDefs()) { 4588 if (DefOrUseGUIDs.count( 4589 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4590 NameVals.push_back(StrtabBuilder.add(S)); 4591 NameVals.push_back(S.size()); 4592 } 4593 } 4594 if (!NameVals.empty()) { 4595 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4596 NameVals.clear(); 4597 } 4598 } 4599 4600 if (!Index.cfiFunctionDecls().empty()) { 4601 for (auto &S : Index.cfiFunctionDecls()) { 4602 if (DefOrUseGUIDs.count( 4603 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4604 NameVals.push_back(StrtabBuilder.add(S)); 4605 NameVals.push_back(S.size()); 4606 } 4607 } 4608 if (!NameVals.empty()) { 4609 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4610 NameVals.clear(); 4611 } 4612 } 4613 4614 // Walk the GUIDs that were referenced, and write the 4615 // corresponding type id records. 4616 for (auto &T : ReferencedTypeIds) { 4617 auto TidIter = Index.typeIds().equal_range(T); 4618 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4619 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4620 It->second.second); 4621 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4622 NameVals.clear(); 4623 } 4624 } 4625 4626 if (Index.getBlockCount()) 4627 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4628 ArrayRef<uint64_t>{Index.getBlockCount()}); 4629 4630 Stream.ExitBlock(); 4631 } 4632 4633 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4634 /// current llvm version, and a record for the epoch number. 4635 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4636 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4637 4638 // Write the "user readable" string identifying the bitcode producer 4639 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4640 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4641 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4642 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4643 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4644 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4645 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4646 4647 // Write the epoch version 4648 Abbv = std::make_shared<BitCodeAbbrev>(); 4649 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4650 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4651 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4652 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4653 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4654 Stream.ExitBlock(); 4655 } 4656 4657 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4658 // Emit the module's hash. 4659 // MODULE_CODE_HASH: [5*i32] 4660 if (GenerateHash) { 4661 uint32_t Vals[5]; 4662 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4663 Buffer.size() - BlockStartPos)); 4664 std::array<uint8_t, 20> Hash = Hasher.result(); 4665 for (int Pos = 0; Pos < 20; Pos += 4) { 4666 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4667 } 4668 4669 // Emit the finished record. 4670 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4671 4672 if (ModHash) 4673 // Save the written hash value. 4674 llvm::copy(Vals, std::begin(*ModHash)); 4675 } 4676 } 4677 4678 void ModuleBitcodeWriter::write() { 4679 writeIdentificationBlock(Stream); 4680 4681 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4682 size_t BlockStartPos = Buffer.size(); 4683 4684 writeModuleVersion(); 4685 4686 // Emit blockinfo, which defines the standard abbreviations etc. 4687 writeBlockInfo(); 4688 4689 // Emit information describing all of the types in the module. 4690 writeTypeTable(); 4691 4692 // Emit information about attribute groups. 4693 writeAttributeGroupTable(); 4694 4695 // Emit information about parameter attributes. 4696 writeAttributeTable(); 4697 4698 writeComdats(); 4699 4700 // Emit top-level description of module, including target triple, inline asm, 4701 // descriptors for global variables, and function prototype info. 4702 writeModuleInfo(); 4703 4704 // Emit constants. 4705 writeModuleConstants(); 4706 4707 // Emit metadata kind names. 4708 writeModuleMetadataKinds(); 4709 4710 // Emit metadata. 4711 writeModuleMetadata(); 4712 4713 // Emit module-level use-lists. 4714 if (VE.shouldPreserveUseListOrder()) 4715 writeUseListBlock(nullptr); 4716 4717 writeOperandBundleTags(); 4718 writeSyncScopeNames(); 4719 4720 // Emit function bodies. 4721 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4722 for (const Function &F : M) 4723 if (!F.isDeclaration()) 4724 writeFunction(F, FunctionToBitcodeIndex); 4725 4726 // Need to write after the above call to WriteFunction which populates 4727 // the summary information in the index. 4728 if (Index) 4729 writePerModuleGlobalValueSummary(); 4730 4731 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4732 4733 writeModuleHash(BlockStartPos); 4734 4735 Stream.ExitBlock(); 4736 } 4737 4738 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4739 uint32_t &Position) { 4740 support::endian::write32le(&Buffer[Position], Value); 4741 Position += 4; 4742 } 4743 4744 /// If generating a bc file on darwin, we have to emit a 4745 /// header and trailer to make it compatible with the system archiver. To do 4746 /// this we emit the following header, and then emit a trailer that pads the 4747 /// file out to be a multiple of 16 bytes. 4748 /// 4749 /// struct bc_header { 4750 /// uint32_t Magic; // 0x0B17C0DE 4751 /// uint32_t Version; // Version, currently always 0. 4752 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4753 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4754 /// uint32_t CPUType; // CPU specifier. 4755 /// ... potentially more later ... 4756 /// }; 4757 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4758 const Triple &TT) { 4759 unsigned CPUType = ~0U; 4760 4761 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4762 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4763 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4764 // specific constants here because they are implicitly part of the Darwin ABI. 4765 enum { 4766 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4767 DARWIN_CPU_TYPE_X86 = 7, 4768 DARWIN_CPU_TYPE_ARM = 12, 4769 DARWIN_CPU_TYPE_POWERPC = 18 4770 }; 4771 4772 Triple::ArchType Arch = TT.getArch(); 4773 if (Arch == Triple::x86_64) 4774 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4775 else if (Arch == Triple::x86) 4776 CPUType = DARWIN_CPU_TYPE_X86; 4777 else if (Arch == Triple::ppc) 4778 CPUType = DARWIN_CPU_TYPE_POWERPC; 4779 else if (Arch == Triple::ppc64) 4780 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4781 else if (Arch == Triple::arm || Arch == Triple::thumb) 4782 CPUType = DARWIN_CPU_TYPE_ARM; 4783 4784 // Traditional Bitcode starts after header. 4785 assert(Buffer.size() >= BWH_HeaderSize && 4786 "Expected header size to be reserved"); 4787 unsigned BCOffset = BWH_HeaderSize; 4788 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4789 4790 // Write the magic and version. 4791 unsigned Position = 0; 4792 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4793 writeInt32ToBuffer(0, Buffer, Position); // Version. 4794 writeInt32ToBuffer(BCOffset, Buffer, Position); 4795 writeInt32ToBuffer(BCSize, Buffer, Position); 4796 writeInt32ToBuffer(CPUType, Buffer, Position); 4797 4798 // If the file is not a multiple of 16 bytes, insert dummy padding. 4799 while (Buffer.size() & 15) 4800 Buffer.push_back(0); 4801 } 4802 4803 /// Helper to write the header common to all bitcode files. 4804 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4805 // Emit the file header. 4806 Stream.Emit((unsigned)'B', 8); 4807 Stream.Emit((unsigned)'C', 8); 4808 Stream.Emit(0x0, 4); 4809 Stream.Emit(0xC, 4); 4810 Stream.Emit(0xE, 4); 4811 Stream.Emit(0xD, 4); 4812 } 4813 4814 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4815 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4816 writeBitcodeHeader(*Stream); 4817 } 4818 4819 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4820 4821 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4822 Stream->EnterSubblock(Block, 3); 4823 4824 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4825 Abbv->Add(BitCodeAbbrevOp(Record)); 4826 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4827 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4828 4829 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4830 4831 Stream->ExitBlock(); 4832 } 4833 4834 void BitcodeWriter::writeSymtab() { 4835 assert(!WroteStrtab && !WroteSymtab); 4836 4837 // If any module has module-level inline asm, we will require a registered asm 4838 // parser for the target so that we can create an accurate symbol table for 4839 // the module. 4840 for (Module *M : Mods) { 4841 if (M->getModuleInlineAsm().empty()) 4842 continue; 4843 4844 std::string Err; 4845 const Triple TT(M->getTargetTriple()); 4846 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4847 if (!T || !T->hasMCAsmParser()) 4848 return; 4849 } 4850 4851 WroteSymtab = true; 4852 SmallVector<char, 0> Symtab; 4853 // The irsymtab::build function may be unable to create a symbol table if the 4854 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4855 // table is not required for correctness, but we still want to be able to 4856 // write malformed modules to bitcode files, so swallow the error. 4857 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4858 consumeError(std::move(E)); 4859 return; 4860 } 4861 4862 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4863 {Symtab.data(), Symtab.size()}); 4864 } 4865 4866 void BitcodeWriter::writeStrtab() { 4867 assert(!WroteStrtab); 4868 4869 std::vector<char> Strtab; 4870 StrtabBuilder.finalizeInOrder(); 4871 Strtab.resize(StrtabBuilder.getSize()); 4872 StrtabBuilder.write((uint8_t *)Strtab.data()); 4873 4874 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4875 {Strtab.data(), Strtab.size()}); 4876 4877 WroteStrtab = true; 4878 } 4879 4880 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4881 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4882 WroteStrtab = true; 4883 } 4884 4885 void BitcodeWriter::writeModule(const Module &M, 4886 bool ShouldPreserveUseListOrder, 4887 const ModuleSummaryIndex *Index, 4888 bool GenerateHash, ModuleHash *ModHash) { 4889 assert(!WroteStrtab); 4890 4891 // The Mods vector is used by irsymtab::build, which requires non-const 4892 // Modules in case it needs to materialize metadata. But the bitcode writer 4893 // requires that the module is materialized, so we can cast to non-const here, 4894 // after checking that it is in fact materialized. 4895 assert(M.isMaterialized()); 4896 Mods.push_back(const_cast<Module *>(&M)); 4897 4898 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4899 ShouldPreserveUseListOrder, Index, 4900 GenerateHash, ModHash); 4901 ModuleWriter.write(); 4902 } 4903 4904 void BitcodeWriter::writeIndex( 4905 const ModuleSummaryIndex *Index, 4906 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4907 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4908 ModuleToSummariesForIndex); 4909 IndexWriter.write(); 4910 } 4911 4912 /// Write the specified module to the specified output stream. 4913 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4914 bool ShouldPreserveUseListOrder, 4915 const ModuleSummaryIndex *Index, 4916 bool GenerateHash, ModuleHash *ModHash) { 4917 SmallVector<char, 0> Buffer; 4918 Buffer.reserve(256*1024); 4919 4920 // If this is darwin or another generic macho target, reserve space for the 4921 // header. 4922 Triple TT(M.getTargetTriple()); 4923 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4924 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4925 4926 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4927 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4928 ModHash); 4929 Writer.writeSymtab(); 4930 Writer.writeStrtab(); 4931 4932 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4933 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4934 4935 // Write the generated bitstream to "Out". 4936 if (!Buffer.empty()) 4937 Out.write((char *)&Buffer.front(), Buffer.size()); 4938 } 4939 4940 void IndexBitcodeWriter::write() { 4941 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4942 4943 writeModuleVersion(); 4944 4945 // Write the module paths in the combined index. 4946 writeModStrings(); 4947 4948 // Write the summary combined index records. 4949 writeCombinedGlobalValueSummary(); 4950 4951 Stream.ExitBlock(); 4952 } 4953 4954 // Write the specified module summary index to the given raw output stream, 4955 // where it will be written in a new bitcode block. This is used when 4956 // writing the combined index file for ThinLTO. When writing a subset of the 4957 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4958 void llvm::writeIndexToFile( 4959 const ModuleSummaryIndex &Index, raw_ostream &Out, 4960 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4961 SmallVector<char, 0> Buffer; 4962 Buffer.reserve(256 * 1024); 4963 4964 BitcodeWriter Writer(Buffer); 4965 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4966 Writer.writeStrtab(); 4967 4968 Out.write((char *)&Buffer.front(), Buffer.size()); 4969 } 4970 4971 namespace { 4972 4973 /// Class to manage the bitcode writing for a thin link bitcode file. 4974 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4975 /// ModHash is for use in ThinLTO incremental build, generated while writing 4976 /// the module bitcode file. 4977 const ModuleHash *ModHash; 4978 4979 public: 4980 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4981 BitstreamWriter &Stream, 4982 const ModuleSummaryIndex &Index, 4983 const ModuleHash &ModHash) 4984 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4985 /*ShouldPreserveUseListOrder=*/false, &Index), 4986 ModHash(&ModHash) {} 4987 4988 void write(); 4989 4990 private: 4991 void writeSimplifiedModuleInfo(); 4992 }; 4993 4994 } // end anonymous namespace 4995 4996 // This function writes a simpilified module info for thin link bitcode file. 4997 // It only contains the source file name along with the name(the offset and 4998 // size in strtab) and linkage for global values. For the global value info 4999 // entry, in order to keep linkage at offset 5, there are three zeros used 5000 // as padding. 5001 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 5002 SmallVector<unsigned, 64> Vals; 5003 // Emit the module's source file name. 5004 { 5005 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 5006 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 5007 if (Bits == SE_Char6) 5008 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 5009 else if (Bits == SE_Fixed7) 5010 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 5011 5012 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5013 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5014 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 5015 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 5016 Abbv->Add(AbbrevOpToUse); 5017 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5018 5019 for (const auto P : M.getSourceFileName()) 5020 Vals.push_back((unsigned char)P); 5021 5022 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 5023 Vals.clear(); 5024 } 5025 5026 // Emit the global variable information. 5027 for (const GlobalVariable &GV : M.globals()) { 5028 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 5029 Vals.push_back(StrtabBuilder.add(GV.getName())); 5030 Vals.push_back(GV.getName().size()); 5031 Vals.push_back(0); 5032 Vals.push_back(0); 5033 Vals.push_back(0); 5034 Vals.push_back(getEncodedLinkage(GV)); 5035 5036 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 5037 Vals.clear(); 5038 } 5039 5040 // Emit the function proto information. 5041 for (const Function &F : M) { 5042 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 5043 Vals.push_back(StrtabBuilder.add(F.getName())); 5044 Vals.push_back(F.getName().size()); 5045 Vals.push_back(0); 5046 Vals.push_back(0); 5047 Vals.push_back(0); 5048 Vals.push_back(getEncodedLinkage(F)); 5049 5050 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 5051 Vals.clear(); 5052 } 5053 5054 // Emit the alias information. 5055 for (const GlobalAlias &A : M.aliases()) { 5056 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 5057 Vals.push_back(StrtabBuilder.add(A.getName())); 5058 Vals.push_back(A.getName().size()); 5059 Vals.push_back(0); 5060 Vals.push_back(0); 5061 Vals.push_back(0); 5062 Vals.push_back(getEncodedLinkage(A)); 5063 5064 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 5065 Vals.clear(); 5066 } 5067 5068 // Emit the ifunc information. 5069 for (const GlobalIFunc &I : M.ifuncs()) { 5070 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 5071 Vals.push_back(StrtabBuilder.add(I.getName())); 5072 Vals.push_back(I.getName().size()); 5073 Vals.push_back(0); 5074 Vals.push_back(0); 5075 Vals.push_back(0); 5076 Vals.push_back(getEncodedLinkage(I)); 5077 5078 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 5079 Vals.clear(); 5080 } 5081 } 5082 5083 void ThinLinkBitcodeWriter::write() { 5084 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5085 5086 writeModuleVersion(); 5087 5088 writeSimplifiedModuleInfo(); 5089 5090 writePerModuleGlobalValueSummary(); 5091 5092 // Write module hash. 5093 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 5094 5095 Stream.ExitBlock(); 5096 } 5097 5098 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 5099 const ModuleSummaryIndex &Index, 5100 const ModuleHash &ModHash) { 5101 assert(!WroteStrtab); 5102 5103 // The Mods vector is used by irsymtab::build, which requires non-const 5104 // Modules in case it needs to materialize metadata. But the bitcode writer 5105 // requires that the module is materialized, so we can cast to non-const here, 5106 // after checking that it is in fact materialized. 5107 assert(M.isMaterialized()); 5108 Mods.push_back(const_cast<Module *>(&M)); 5109 5110 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 5111 ModHash); 5112 ThinLinkWriter.write(); 5113 } 5114 5115 // Write the specified thin link bitcode file to the given raw output stream, 5116 // where it will be written in a new bitcode block. This is used when 5117 // writing the per-module index file for ThinLTO. 5118 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 5119 const ModuleSummaryIndex &Index, 5120 const ModuleHash &ModHash) { 5121 SmallVector<char, 0> Buffer; 5122 Buffer.reserve(256 * 1024); 5123 5124 BitcodeWriter Writer(Buffer); 5125 Writer.writeThinLinkBitcode(M, Index, ModHash); 5126 Writer.writeSymtab(); 5127 Writer.writeStrtab(); 5128 5129 Out.write((char *)&Buffer.front(), Buffer.size()); 5130 } 5131 5132 static const char *getSectionNameForBitcode(const Triple &T) { 5133 switch (T.getObjectFormat()) { 5134 case Triple::MachO: 5135 return "__LLVM,__bitcode"; 5136 case Triple::COFF: 5137 case Triple::ELF: 5138 case Triple::Wasm: 5139 case Triple::UnknownObjectFormat: 5140 return ".llvmbc"; 5141 case Triple::GOFF: 5142 llvm_unreachable("GOFF is not yet implemented"); 5143 break; 5144 case Triple::SPIRV: 5145 llvm_unreachable("SPIRV is not yet implemented"); 5146 break; 5147 case Triple::XCOFF: 5148 llvm_unreachable("XCOFF is not yet implemented"); 5149 break; 5150 case Triple::DXContainer: 5151 llvm_unreachable("DXContainer is not yet implemented"); 5152 break; 5153 } 5154 llvm_unreachable("Unimplemented ObjectFormatType"); 5155 } 5156 5157 static const char *getSectionNameForCommandline(const Triple &T) { 5158 switch (T.getObjectFormat()) { 5159 case Triple::MachO: 5160 return "__LLVM,__cmdline"; 5161 case Triple::COFF: 5162 case Triple::ELF: 5163 case Triple::Wasm: 5164 case Triple::UnknownObjectFormat: 5165 return ".llvmcmd"; 5166 case Triple::GOFF: 5167 llvm_unreachable("GOFF is not yet implemented"); 5168 break; 5169 case Triple::SPIRV: 5170 llvm_unreachable("SPIRV is not yet implemented"); 5171 break; 5172 case Triple::XCOFF: 5173 llvm_unreachable("XCOFF is not yet implemented"); 5174 break; 5175 case Triple::DXContainer: 5176 llvm_unreachable("DXC is not yet implemented"); 5177 break; 5178 } 5179 llvm_unreachable("Unimplemented ObjectFormatType"); 5180 } 5181 5182 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 5183 bool EmbedBitcode, bool EmbedCmdline, 5184 const std::vector<uint8_t> &CmdArgs) { 5185 // Save llvm.compiler.used and remove it. 5186 SmallVector<Constant *, 2> UsedArray; 5187 SmallVector<GlobalValue *, 4> UsedGlobals; 5188 Type *UsedElementType = PointerType::getUnqual(M.getContext()); 5189 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 5190 for (auto *GV : UsedGlobals) { 5191 if (GV->getName() != "llvm.embedded.module" && 5192 GV->getName() != "llvm.cmdline") 5193 UsedArray.push_back( 5194 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5195 } 5196 if (Used) 5197 Used->eraseFromParent(); 5198 5199 // Embed the bitcode for the llvm module. 5200 std::string Data; 5201 ArrayRef<uint8_t> ModuleData; 5202 Triple T(M.getTargetTriple()); 5203 5204 if (EmbedBitcode) { 5205 if (Buf.getBufferSize() == 0 || 5206 !isBitcode((const unsigned char *)Buf.getBufferStart(), 5207 (const unsigned char *)Buf.getBufferEnd())) { 5208 // If the input is LLVM Assembly, bitcode is produced by serializing 5209 // the module. Use-lists order need to be preserved in this case. 5210 llvm::raw_string_ostream OS(Data); 5211 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 5212 ModuleData = 5213 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 5214 } else 5215 // If the input is LLVM bitcode, write the input byte stream directly. 5216 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5217 Buf.getBufferSize()); 5218 } 5219 llvm::Constant *ModuleConstant = 5220 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5221 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5222 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5223 ModuleConstant); 5224 GV->setSection(getSectionNameForBitcode(T)); 5225 // Set alignment to 1 to prevent padding between two contributions from input 5226 // sections after linking. 5227 GV->setAlignment(Align(1)); 5228 UsedArray.push_back( 5229 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5230 if (llvm::GlobalVariable *Old = 5231 M.getGlobalVariable("llvm.embedded.module", true)) { 5232 assert(Old->hasZeroLiveUses() && 5233 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5234 GV->takeName(Old); 5235 Old->eraseFromParent(); 5236 } else { 5237 GV->setName("llvm.embedded.module"); 5238 } 5239 5240 // Skip if only bitcode needs to be embedded. 5241 if (EmbedCmdline) { 5242 // Embed command-line options. 5243 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5244 CmdArgs.size()); 5245 llvm::Constant *CmdConstant = 5246 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5247 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5248 llvm::GlobalValue::PrivateLinkage, 5249 CmdConstant); 5250 GV->setSection(getSectionNameForCommandline(T)); 5251 GV->setAlignment(Align(1)); 5252 UsedArray.push_back( 5253 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5254 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5255 assert(Old->hasZeroLiveUses() && 5256 "llvm.cmdline can only be used once in llvm.compiler.used"); 5257 GV->takeName(Old); 5258 Old->eraseFromParent(); 5259 } else { 5260 GV->setName("llvm.cmdline"); 5261 } 5262 } 5263 5264 if (UsedArray.empty()) 5265 return; 5266 5267 // Recreate llvm.compiler.used. 5268 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5269 auto *NewUsed = new GlobalVariable( 5270 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5271 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5272 NewUsed->setSection("llvm.metadata"); 5273 } 5274