1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/InlineAsm.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/UseListOrder.h" 27 #include "llvm/IR/ValueSymbolTable.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/Program.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <cctype> 34 #include <map> 35 using namespace llvm; 36 37 /// These are manifest constants used by the bitcode writer. They do not need to 38 /// be kept in sync with the reader, but need to be consistent within this file. 39 enum { 40 // VALUE_SYMTAB_BLOCK abbrev id's. 41 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 VST_ENTRY_7_ABBREV, 43 VST_ENTRY_6_ABBREV, 44 VST_BBENTRY_6_ABBREV, 45 46 // CONSTANTS_BLOCK abbrev id's. 47 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 CONSTANTS_INTEGER_ABBREV, 49 CONSTANTS_CE_CAST_Abbrev, 50 CONSTANTS_NULL_Abbrev, 51 52 // FUNCTION_BLOCK abbrev id's. 53 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 FUNCTION_INST_BINOP_ABBREV, 55 FUNCTION_INST_BINOP_FLAGS_ABBREV, 56 FUNCTION_INST_CAST_ABBREV, 57 FUNCTION_INST_RET_VOID_ABBREV, 58 FUNCTION_INST_RET_VAL_ABBREV, 59 FUNCTION_INST_UNREACHABLE_ABBREV 60 }; 61 62 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 63 switch (Opcode) { 64 default: llvm_unreachable("Unknown cast instruction!"); 65 case Instruction::Trunc : return bitc::CAST_TRUNC; 66 case Instruction::ZExt : return bitc::CAST_ZEXT; 67 case Instruction::SExt : return bitc::CAST_SEXT; 68 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 69 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 70 case Instruction::UIToFP : return bitc::CAST_UITOFP; 71 case Instruction::SIToFP : return bitc::CAST_SITOFP; 72 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 73 case Instruction::FPExt : return bitc::CAST_FPEXT; 74 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 75 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 76 case Instruction::BitCast : return bitc::CAST_BITCAST; 77 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 78 } 79 } 80 81 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 82 switch (Opcode) { 83 default: llvm_unreachable("Unknown binary instruction!"); 84 case Instruction::Add: 85 case Instruction::FAdd: return bitc::BINOP_ADD; 86 case Instruction::Sub: 87 case Instruction::FSub: return bitc::BINOP_SUB; 88 case Instruction::Mul: 89 case Instruction::FMul: return bitc::BINOP_MUL; 90 case Instruction::UDiv: return bitc::BINOP_UDIV; 91 case Instruction::FDiv: 92 case Instruction::SDiv: return bitc::BINOP_SDIV; 93 case Instruction::URem: return bitc::BINOP_UREM; 94 case Instruction::FRem: 95 case Instruction::SRem: return bitc::BINOP_SREM; 96 case Instruction::Shl: return bitc::BINOP_SHL; 97 case Instruction::LShr: return bitc::BINOP_LSHR; 98 case Instruction::AShr: return bitc::BINOP_ASHR; 99 case Instruction::And: return bitc::BINOP_AND; 100 case Instruction::Or: return bitc::BINOP_OR; 101 case Instruction::Xor: return bitc::BINOP_XOR; 102 } 103 } 104 105 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 106 switch (Op) { 107 default: llvm_unreachable("Unknown RMW operation!"); 108 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 109 case AtomicRMWInst::Add: return bitc::RMW_ADD; 110 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 111 case AtomicRMWInst::And: return bitc::RMW_AND; 112 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 113 case AtomicRMWInst::Or: return bitc::RMW_OR; 114 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 115 case AtomicRMWInst::Max: return bitc::RMW_MAX; 116 case AtomicRMWInst::Min: return bitc::RMW_MIN; 117 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 118 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 119 } 120 } 121 122 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 123 switch (Ordering) { 124 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 125 case Unordered: return bitc::ORDERING_UNORDERED; 126 case Monotonic: return bitc::ORDERING_MONOTONIC; 127 case Acquire: return bitc::ORDERING_ACQUIRE; 128 case Release: return bitc::ORDERING_RELEASE; 129 case AcquireRelease: return bitc::ORDERING_ACQREL; 130 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 131 } 132 llvm_unreachable("Invalid ordering"); 133 } 134 135 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 136 switch (SynchScope) { 137 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 138 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 139 } 140 llvm_unreachable("Invalid synch scope"); 141 } 142 143 static void WriteStringRecord(unsigned Code, StringRef Str, 144 unsigned AbbrevToUse, BitstreamWriter &Stream) { 145 SmallVector<unsigned, 64> Vals; 146 147 // Code: [strchar x N] 148 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 149 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 150 AbbrevToUse = 0; 151 Vals.push_back(Str[i]); 152 } 153 154 // Emit the finished record. 155 Stream.EmitRecord(Code, Vals, AbbrevToUse); 156 } 157 158 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 159 switch (Kind) { 160 case Attribute::Alignment: 161 return bitc::ATTR_KIND_ALIGNMENT; 162 case Attribute::AlwaysInline: 163 return bitc::ATTR_KIND_ALWAYS_INLINE; 164 case Attribute::Builtin: 165 return bitc::ATTR_KIND_BUILTIN; 166 case Attribute::ByVal: 167 return bitc::ATTR_KIND_BY_VAL; 168 case Attribute::InAlloca: 169 return bitc::ATTR_KIND_IN_ALLOCA; 170 case Attribute::Cold: 171 return bitc::ATTR_KIND_COLD; 172 case Attribute::InlineHint: 173 return bitc::ATTR_KIND_INLINE_HINT; 174 case Attribute::InReg: 175 return bitc::ATTR_KIND_IN_REG; 176 case Attribute::JumpTable: 177 return bitc::ATTR_KIND_JUMP_TABLE; 178 case Attribute::MinSize: 179 return bitc::ATTR_KIND_MIN_SIZE; 180 case Attribute::Naked: 181 return bitc::ATTR_KIND_NAKED; 182 case Attribute::Nest: 183 return bitc::ATTR_KIND_NEST; 184 case Attribute::NoAlias: 185 return bitc::ATTR_KIND_NO_ALIAS; 186 case Attribute::NoBuiltin: 187 return bitc::ATTR_KIND_NO_BUILTIN; 188 case Attribute::NoCapture: 189 return bitc::ATTR_KIND_NO_CAPTURE; 190 case Attribute::NoDuplicate: 191 return bitc::ATTR_KIND_NO_DUPLICATE; 192 case Attribute::NoImplicitFloat: 193 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 194 case Attribute::NoInline: 195 return bitc::ATTR_KIND_NO_INLINE; 196 case Attribute::NonLazyBind: 197 return bitc::ATTR_KIND_NON_LAZY_BIND; 198 case Attribute::NonNull: 199 return bitc::ATTR_KIND_NON_NULL; 200 case Attribute::Dereferenceable: 201 return bitc::ATTR_KIND_DEREFERENCEABLE; 202 case Attribute::NoRedZone: 203 return bitc::ATTR_KIND_NO_RED_ZONE; 204 case Attribute::NoReturn: 205 return bitc::ATTR_KIND_NO_RETURN; 206 case Attribute::NoUnwind: 207 return bitc::ATTR_KIND_NO_UNWIND; 208 case Attribute::OptimizeForSize: 209 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 210 case Attribute::OptimizeNone: 211 return bitc::ATTR_KIND_OPTIMIZE_NONE; 212 case Attribute::ReadNone: 213 return bitc::ATTR_KIND_READ_NONE; 214 case Attribute::ReadOnly: 215 return bitc::ATTR_KIND_READ_ONLY; 216 case Attribute::Returned: 217 return bitc::ATTR_KIND_RETURNED; 218 case Attribute::ReturnsTwice: 219 return bitc::ATTR_KIND_RETURNS_TWICE; 220 case Attribute::SExt: 221 return bitc::ATTR_KIND_S_EXT; 222 case Attribute::StackAlignment: 223 return bitc::ATTR_KIND_STACK_ALIGNMENT; 224 case Attribute::StackProtect: 225 return bitc::ATTR_KIND_STACK_PROTECT; 226 case Attribute::StackProtectReq: 227 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 228 case Attribute::StackProtectStrong: 229 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 230 case Attribute::StructRet: 231 return bitc::ATTR_KIND_STRUCT_RET; 232 case Attribute::SanitizeAddress: 233 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 234 case Attribute::SanitizeThread: 235 return bitc::ATTR_KIND_SANITIZE_THREAD; 236 case Attribute::SanitizeMemory: 237 return bitc::ATTR_KIND_SANITIZE_MEMORY; 238 case Attribute::UWTable: 239 return bitc::ATTR_KIND_UW_TABLE; 240 case Attribute::ZExt: 241 return bitc::ATTR_KIND_Z_EXT; 242 case Attribute::EndAttrKinds: 243 llvm_unreachable("Can not encode end-attribute kinds marker."); 244 case Attribute::None: 245 llvm_unreachable("Can not encode none-attribute."); 246 } 247 248 llvm_unreachable("Trying to encode unknown attribute"); 249 } 250 251 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 252 BitstreamWriter &Stream) { 253 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 254 if (AttrGrps.empty()) return; 255 256 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 257 258 SmallVector<uint64_t, 64> Record; 259 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 260 AttributeSet AS = AttrGrps[i]; 261 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 262 AttributeSet A = AS.getSlotAttributes(i); 263 264 Record.push_back(VE.getAttributeGroupID(A)); 265 Record.push_back(AS.getSlotIndex(i)); 266 267 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 268 I != E; ++I) { 269 Attribute Attr = *I; 270 if (Attr.isEnumAttribute()) { 271 Record.push_back(0); 272 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 273 } else if (Attr.isIntAttribute()) { 274 Record.push_back(1); 275 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 276 Record.push_back(Attr.getValueAsInt()); 277 } else { 278 StringRef Kind = Attr.getKindAsString(); 279 StringRef Val = Attr.getValueAsString(); 280 281 Record.push_back(Val.empty() ? 3 : 4); 282 Record.append(Kind.begin(), Kind.end()); 283 Record.push_back(0); 284 if (!Val.empty()) { 285 Record.append(Val.begin(), Val.end()); 286 Record.push_back(0); 287 } 288 } 289 } 290 291 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 292 Record.clear(); 293 } 294 } 295 296 Stream.ExitBlock(); 297 } 298 299 static void WriteAttributeTable(const ValueEnumerator &VE, 300 BitstreamWriter &Stream) { 301 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 302 if (Attrs.empty()) return; 303 304 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 305 306 SmallVector<uint64_t, 64> Record; 307 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 308 const AttributeSet &A = Attrs[i]; 309 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 310 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 311 312 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 313 Record.clear(); 314 } 315 316 Stream.ExitBlock(); 317 } 318 319 /// WriteTypeTable - Write out the type table for a module. 320 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 321 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 322 323 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 324 SmallVector<uint64_t, 64> TypeVals; 325 326 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 327 328 // Abbrev for TYPE_CODE_POINTER. 329 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 330 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 332 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 333 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 334 335 // Abbrev for TYPE_CODE_FUNCTION. 336 Abbv = new BitCodeAbbrev(); 337 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 341 342 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 343 344 // Abbrev for TYPE_CODE_STRUCT_ANON. 345 Abbv = new BitCodeAbbrev(); 346 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 350 351 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 352 353 // Abbrev for TYPE_CODE_STRUCT_NAME. 354 Abbv = new BitCodeAbbrev(); 355 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 358 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 359 360 // Abbrev for TYPE_CODE_STRUCT_NAMED. 361 Abbv = new BitCodeAbbrev(); 362 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 366 367 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 368 369 // Abbrev for TYPE_CODE_ARRAY. 370 Abbv = new BitCodeAbbrev(); 371 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 374 375 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 376 377 // Emit an entry count so the reader can reserve space. 378 TypeVals.push_back(TypeList.size()); 379 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 380 TypeVals.clear(); 381 382 // Loop over all of the types, emitting each in turn. 383 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 384 Type *T = TypeList[i]; 385 int AbbrevToUse = 0; 386 unsigned Code = 0; 387 388 switch (T->getTypeID()) { 389 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 390 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 391 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 392 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 393 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 394 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 395 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 396 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 397 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 398 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 399 case Type::IntegerTyID: 400 // INTEGER: [width] 401 Code = bitc::TYPE_CODE_INTEGER; 402 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 403 break; 404 case Type::PointerTyID: { 405 PointerType *PTy = cast<PointerType>(T); 406 // POINTER: [pointee type, address space] 407 Code = bitc::TYPE_CODE_POINTER; 408 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 409 unsigned AddressSpace = PTy->getAddressSpace(); 410 TypeVals.push_back(AddressSpace); 411 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 412 break; 413 } 414 case Type::FunctionTyID: { 415 FunctionType *FT = cast<FunctionType>(T); 416 // FUNCTION: [isvararg, retty, paramty x N] 417 Code = bitc::TYPE_CODE_FUNCTION; 418 TypeVals.push_back(FT->isVarArg()); 419 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 420 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 421 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 422 AbbrevToUse = FunctionAbbrev; 423 break; 424 } 425 case Type::StructTyID: { 426 StructType *ST = cast<StructType>(T); 427 // STRUCT: [ispacked, eltty x N] 428 TypeVals.push_back(ST->isPacked()); 429 // Output all of the element types. 430 for (StructType::element_iterator I = ST->element_begin(), 431 E = ST->element_end(); I != E; ++I) 432 TypeVals.push_back(VE.getTypeID(*I)); 433 434 if (ST->isLiteral()) { 435 Code = bitc::TYPE_CODE_STRUCT_ANON; 436 AbbrevToUse = StructAnonAbbrev; 437 } else { 438 if (ST->isOpaque()) { 439 Code = bitc::TYPE_CODE_OPAQUE; 440 } else { 441 Code = bitc::TYPE_CODE_STRUCT_NAMED; 442 AbbrevToUse = StructNamedAbbrev; 443 } 444 445 // Emit the name if it is present. 446 if (!ST->getName().empty()) 447 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 448 StructNameAbbrev, Stream); 449 } 450 break; 451 } 452 case Type::ArrayTyID: { 453 ArrayType *AT = cast<ArrayType>(T); 454 // ARRAY: [numelts, eltty] 455 Code = bitc::TYPE_CODE_ARRAY; 456 TypeVals.push_back(AT->getNumElements()); 457 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 458 AbbrevToUse = ArrayAbbrev; 459 break; 460 } 461 case Type::VectorTyID: { 462 VectorType *VT = cast<VectorType>(T); 463 // VECTOR [numelts, eltty] 464 Code = bitc::TYPE_CODE_VECTOR; 465 TypeVals.push_back(VT->getNumElements()); 466 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 467 break; 468 } 469 } 470 471 // Emit the finished record. 472 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 473 TypeVals.clear(); 474 } 475 476 Stream.ExitBlock(); 477 } 478 479 static unsigned getEncodedLinkage(const GlobalValue &GV) { 480 switch (GV.getLinkage()) { 481 case GlobalValue::ExternalLinkage: 482 return 0; 483 case GlobalValue::WeakAnyLinkage: 484 return 16; 485 case GlobalValue::AppendingLinkage: 486 return 2; 487 case GlobalValue::InternalLinkage: 488 return 3; 489 case GlobalValue::LinkOnceAnyLinkage: 490 return 18; 491 case GlobalValue::ExternalWeakLinkage: 492 return 7; 493 case GlobalValue::CommonLinkage: 494 return 8; 495 case GlobalValue::PrivateLinkage: 496 return 9; 497 case GlobalValue::WeakODRLinkage: 498 return 17; 499 case GlobalValue::LinkOnceODRLinkage: 500 return 19; 501 case GlobalValue::AvailableExternallyLinkage: 502 return 12; 503 } 504 llvm_unreachable("Invalid linkage"); 505 } 506 507 static unsigned getEncodedVisibility(const GlobalValue &GV) { 508 switch (GV.getVisibility()) { 509 case GlobalValue::DefaultVisibility: return 0; 510 case GlobalValue::HiddenVisibility: return 1; 511 case GlobalValue::ProtectedVisibility: return 2; 512 } 513 llvm_unreachable("Invalid visibility"); 514 } 515 516 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 517 switch (GV.getDLLStorageClass()) { 518 case GlobalValue::DefaultStorageClass: return 0; 519 case GlobalValue::DLLImportStorageClass: return 1; 520 case GlobalValue::DLLExportStorageClass: return 2; 521 } 522 llvm_unreachable("Invalid DLL storage class"); 523 } 524 525 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 526 switch (GV.getThreadLocalMode()) { 527 case GlobalVariable::NotThreadLocal: return 0; 528 case GlobalVariable::GeneralDynamicTLSModel: return 1; 529 case GlobalVariable::LocalDynamicTLSModel: return 2; 530 case GlobalVariable::InitialExecTLSModel: return 3; 531 case GlobalVariable::LocalExecTLSModel: return 4; 532 } 533 llvm_unreachable("Invalid TLS model"); 534 } 535 536 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 537 switch (C.getSelectionKind()) { 538 case Comdat::Any: 539 return bitc::COMDAT_SELECTION_KIND_ANY; 540 case Comdat::ExactMatch: 541 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 542 case Comdat::Largest: 543 return bitc::COMDAT_SELECTION_KIND_LARGEST; 544 case Comdat::NoDuplicates: 545 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 546 case Comdat::SameSize: 547 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 548 } 549 llvm_unreachable("Invalid selection kind"); 550 } 551 552 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 553 SmallVector<uint16_t, 64> Vals; 554 for (const Comdat *C : VE.getComdats()) { 555 // COMDAT: [selection_kind, name] 556 Vals.push_back(getEncodedComdatSelectionKind(*C)); 557 size_t Size = C->getName().size(); 558 assert(isUInt<16>(Size)); 559 Vals.push_back(Size); 560 for (char Chr : C->getName()) 561 Vals.push_back((unsigned char)Chr); 562 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 563 Vals.clear(); 564 } 565 } 566 567 // Emit top-level description of module, including target triple, inline asm, 568 // descriptors for global variables, and function prototype info. 569 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 570 BitstreamWriter &Stream) { 571 // Emit various pieces of data attached to a module. 572 if (!M->getTargetTriple().empty()) 573 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 574 0/*TODO*/, Stream); 575 const std::string &DL = M->getDataLayoutStr(); 576 if (!DL.empty()) 577 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 578 if (!M->getModuleInlineAsm().empty()) 579 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 580 0/*TODO*/, Stream); 581 582 // Emit information about sections and GC, computing how many there are. Also 583 // compute the maximum alignment value. 584 std::map<std::string, unsigned> SectionMap; 585 std::map<std::string, unsigned> GCMap; 586 unsigned MaxAlignment = 0; 587 unsigned MaxGlobalType = 0; 588 for (const GlobalValue &GV : M->globals()) { 589 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 590 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType())); 591 if (GV.hasSection()) { 592 // Give section names unique ID's. 593 unsigned &Entry = SectionMap[GV.getSection()]; 594 if (!Entry) { 595 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 596 0/*TODO*/, Stream); 597 Entry = SectionMap.size(); 598 } 599 } 600 } 601 for (const Function &F : *M) { 602 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 603 if (F.hasSection()) { 604 // Give section names unique ID's. 605 unsigned &Entry = SectionMap[F.getSection()]; 606 if (!Entry) { 607 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 608 0/*TODO*/, Stream); 609 Entry = SectionMap.size(); 610 } 611 } 612 if (F.hasGC()) { 613 // Same for GC names. 614 unsigned &Entry = GCMap[F.getGC()]; 615 if (!Entry) { 616 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 617 0/*TODO*/, Stream); 618 Entry = GCMap.size(); 619 } 620 } 621 } 622 623 // Emit abbrev for globals, now that we know # sections and max alignment. 624 unsigned SimpleGVarAbbrev = 0; 625 if (!M->global_empty()) { 626 // Add an abbrev for common globals with no visibility or thread localness. 627 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 628 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 630 Log2_32_Ceil(MaxGlobalType+1))); 631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 634 if (MaxAlignment == 0) // Alignment. 635 Abbv->Add(BitCodeAbbrevOp(0)); 636 else { 637 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 639 Log2_32_Ceil(MaxEncAlignment+1))); 640 } 641 if (SectionMap.empty()) // Section. 642 Abbv->Add(BitCodeAbbrevOp(0)); 643 else 644 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 645 Log2_32_Ceil(SectionMap.size()+1))); 646 // Don't bother emitting vis + thread local. 647 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 648 } 649 650 // Emit the global variable information. 651 SmallVector<unsigned, 64> Vals; 652 for (const GlobalVariable &GV : M->globals()) { 653 unsigned AbbrevToUse = 0; 654 655 // GLOBALVAR: [type, isconst, initid, 656 // linkage, alignment, section, visibility, threadlocal, 657 // unnamed_addr, externally_initialized, dllstorageclass] 658 Vals.push_back(VE.getTypeID(GV.getType())); 659 Vals.push_back(GV.isConstant()); 660 Vals.push_back(GV.isDeclaration() ? 0 : 661 (VE.getValueID(GV.getInitializer()) + 1)); 662 Vals.push_back(getEncodedLinkage(GV)); 663 Vals.push_back(Log2_32(GV.getAlignment())+1); 664 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 665 if (GV.isThreadLocal() || 666 GV.getVisibility() != GlobalValue::DefaultVisibility || 667 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 668 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 669 GV.hasComdat()) { 670 Vals.push_back(getEncodedVisibility(GV)); 671 Vals.push_back(getEncodedThreadLocalMode(GV)); 672 Vals.push_back(GV.hasUnnamedAddr()); 673 Vals.push_back(GV.isExternallyInitialized()); 674 Vals.push_back(getEncodedDLLStorageClass(GV)); 675 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 676 } else { 677 AbbrevToUse = SimpleGVarAbbrev; 678 } 679 680 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 681 Vals.clear(); 682 } 683 684 // Emit the function proto information. 685 for (const Function &F : *M) { 686 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 687 // section, visibility, gc, unnamed_addr, prologuedata, 688 // dllstorageclass, comdat, prefixdata] 689 Vals.push_back(VE.getTypeID(F.getType())); 690 Vals.push_back(F.getCallingConv()); 691 Vals.push_back(F.isDeclaration()); 692 Vals.push_back(getEncodedLinkage(F)); 693 Vals.push_back(VE.getAttributeID(F.getAttributes())); 694 Vals.push_back(Log2_32(F.getAlignment())+1); 695 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 696 Vals.push_back(getEncodedVisibility(F)); 697 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 698 Vals.push_back(F.hasUnnamedAddr()); 699 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 700 : 0); 701 Vals.push_back(getEncodedDLLStorageClass(F)); 702 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 703 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 704 : 0); 705 706 unsigned AbbrevToUse = 0; 707 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 708 Vals.clear(); 709 } 710 711 // Emit the alias information. 712 for (const GlobalAlias &A : M->aliases()) { 713 // ALIAS: [alias type, aliasee val#, linkage, visibility] 714 Vals.push_back(VE.getTypeID(A.getType())); 715 Vals.push_back(VE.getValueID(A.getAliasee())); 716 Vals.push_back(getEncodedLinkage(A)); 717 Vals.push_back(getEncodedVisibility(A)); 718 Vals.push_back(getEncodedDLLStorageClass(A)); 719 Vals.push_back(getEncodedThreadLocalMode(A)); 720 Vals.push_back(A.hasUnnamedAddr()); 721 unsigned AbbrevToUse = 0; 722 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 723 Vals.clear(); 724 } 725 } 726 727 static uint64_t GetOptimizationFlags(const Value *V) { 728 uint64_t Flags = 0; 729 730 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 731 if (OBO->hasNoSignedWrap()) 732 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 733 if (OBO->hasNoUnsignedWrap()) 734 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 735 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 736 if (PEO->isExact()) 737 Flags |= 1 << bitc::PEO_EXACT; 738 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 739 if (FPMO->hasUnsafeAlgebra()) 740 Flags |= FastMathFlags::UnsafeAlgebra; 741 if (FPMO->hasNoNaNs()) 742 Flags |= FastMathFlags::NoNaNs; 743 if (FPMO->hasNoInfs()) 744 Flags |= FastMathFlags::NoInfs; 745 if (FPMO->hasNoSignedZeros()) 746 Flags |= FastMathFlags::NoSignedZeros; 747 if (FPMO->hasAllowReciprocal()) 748 Flags |= FastMathFlags::AllowReciprocal; 749 } 750 751 return Flags; 752 } 753 754 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 755 const ValueEnumerator &VE, 756 BitstreamWriter &Stream, 757 SmallVectorImpl<uint64_t> &Record) { 758 // Mimic an MDNode with a value as one operand. 759 Value *V = MD->getValue(); 760 Record.push_back(VE.getTypeID(V->getType())); 761 Record.push_back(VE.getValueID(V)); 762 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 763 Record.clear(); 764 } 765 766 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE, 767 BitstreamWriter &Stream, 768 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 769 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 770 Metadata *MD = N->getOperand(i); 771 assert(!(MD && isa<LocalAsMetadata>(MD)) && 772 "Unexpected function-local metadata"); 773 Record.push_back(VE.getMetadataOrNullID(MD)); 774 } 775 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 776 : bitc::METADATA_NODE, 777 Record, Abbrev); 778 Record.clear(); 779 } 780 781 static void WriteMDLocation(const MDLocation *N, const ValueEnumerator &VE, 782 BitstreamWriter &Stream, 783 SmallVectorImpl<uint64_t> &Record, 784 unsigned Abbrev) { 785 Record.push_back(N->isDistinct()); 786 Record.push_back(N->getLine()); 787 Record.push_back(N->getColumn()); 788 Record.push_back(VE.getMetadataID(N->getScope())); 789 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 790 791 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 792 Record.clear(); 793 } 794 795 static void WriteGenericDebugNode(const GenericDebugNode *, 796 const ValueEnumerator &, BitstreamWriter &, 797 SmallVectorImpl<uint64_t> &, unsigned) { 798 llvm_unreachable("unimplemented"); 799 } 800 801 static void WriteModuleMetadata(const Module *M, 802 const ValueEnumerator &VE, 803 BitstreamWriter &Stream) { 804 const auto &MDs = VE.getMDs(); 805 if (MDs.empty() && M->named_metadata_empty()) 806 return; 807 808 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 809 810 unsigned MDSAbbrev = 0; 811 if (VE.hasMDString()) { 812 // Abbrev for METADATA_STRING. 813 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 814 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 817 MDSAbbrev = Stream.EmitAbbrev(Abbv); 818 } 819 820 unsigned MDLocationAbbrev = 0; 821 if (VE.hasMDLocation()) { 822 // Abbrev for METADATA_LOCATION. 823 // 824 // Assume the column is usually under 128, and always output the inlined-at 825 // location (it's never more expensive than building an array size 1). 826 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 827 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 833 MDLocationAbbrev = Stream.EmitAbbrev(Abbv); 834 } 835 836 unsigned NameAbbrev = 0; 837 if (!M->named_metadata_empty()) { 838 // Abbrev for METADATA_NAME. 839 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 840 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 841 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 843 NameAbbrev = Stream.EmitAbbrev(Abbv); 844 } 845 846 unsigned MDTupleAbbrev = 0; 847 unsigned GenericDebugNodeAbbrev = 0; 848 SmallVector<uint64_t, 64> Record; 849 for (const Metadata *MD : MDs) { 850 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 851 switch (N->getMetadataID()) { 852 default: 853 llvm_unreachable("Invalid MDNode subclass"); 854 #define HANDLE_MDNODE_LEAF(CLASS) \ 855 case Metadata::CLASS##Kind: \ 856 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 857 continue; 858 #include "llvm/IR/Metadata.def" 859 } 860 } 861 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 862 WriteValueAsMetadata(MDC, VE, Stream, Record); 863 continue; 864 } 865 const MDString *MDS = cast<MDString>(MD); 866 // Code: [strchar x N] 867 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 868 869 // Emit the finished record. 870 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 871 Record.clear(); 872 } 873 874 // Write named metadata. 875 for (const NamedMDNode &NMD : M->named_metadata()) { 876 // Write name. 877 StringRef Str = NMD.getName(); 878 Record.append(Str.bytes_begin(), Str.bytes_end()); 879 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 880 Record.clear(); 881 882 // Write named metadata operands. 883 for (const MDNode *N : NMD.operands()) 884 Record.push_back(VE.getMetadataID(N)); 885 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 886 Record.clear(); 887 } 888 889 Stream.ExitBlock(); 890 } 891 892 static void WriteFunctionLocalMetadata(const Function &F, 893 const ValueEnumerator &VE, 894 BitstreamWriter &Stream) { 895 bool StartedMetadataBlock = false; 896 SmallVector<uint64_t, 64> Record; 897 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 898 VE.getFunctionLocalMDs(); 899 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 900 assert(MDs[i] && "Expected valid function-local metadata"); 901 if (!StartedMetadataBlock) { 902 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 903 StartedMetadataBlock = true; 904 } 905 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 906 } 907 908 if (StartedMetadataBlock) 909 Stream.ExitBlock(); 910 } 911 912 static void WriteMetadataAttachment(const Function &F, 913 const ValueEnumerator &VE, 914 BitstreamWriter &Stream) { 915 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 916 917 SmallVector<uint64_t, 64> Record; 918 919 // Write metadata attachments 920 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 921 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 922 923 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 924 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 925 I != E; ++I) { 926 MDs.clear(); 927 I->getAllMetadataOtherThanDebugLoc(MDs); 928 929 // If no metadata, ignore instruction. 930 if (MDs.empty()) continue; 931 932 Record.push_back(VE.getInstructionID(I)); 933 934 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 935 Record.push_back(MDs[i].first); 936 Record.push_back(VE.getMetadataID(MDs[i].second)); 937 } 938 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 939 Record.clear(); 940 } 941 942 Stream.ExitBlock(); 943 } 944 945 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 946 SmallVector<uint64_t, 64> Record; 947 948 // Write metadata kinds 949 // METADATA_KIND - [n x [id, name]] 950 SmallVector<StringRef, 8> Names; 951 M->getMDKindNames(Names); 952 953 if (Names.empty()) return; 954 955 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 956 957 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 958 Record.push_back(MDKindID); 959 StringRef KName = Names[MDKindID]; 960 Record.append(KName.begin(), KName.end()); 961 962 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 963 Record.clear(); 964 } 965 966 Stream.ExitBlock(); 967 } 968 969 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 970 if ((int64_t)V >= 0) 971 Vals.push_back(V << 1); 972 else 973 Vals.push_back((-V << 1) | 1); 974 } 975 976 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 977 const ValueEnumerator &VE, 978 BitstreamWriter &Stream, bool isGlobal) { 979 if (FirstVal == LastVal) return; 980 981 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 982 983 unsigned AggregateAbbrev = 0; 984 unsigned String8Abbrev = 0; 985 unsigned CString7Abbrev = 0; 986 unsigned CString6Abbrev = 0; 987 // If this is a constant pool for the module, emit module-specific abbrevs. 988 if (isGlobal) { 989 // Abbrev for CST_CODE_AGGREGATE. 990 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 991 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 992 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 993 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 994 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 995 996 // Abbrev for CST_CODE_STRING. 997 Abbv = new BitCodeAbbrev(); 998 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1001 String8Abbrev = Stream.EmitAbbrev(Abbv); 1002 // Abbrev for CST_CODE_CSTRING. 1003 Abbv = new BitCodeAbbrev(); 1004 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1006 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1007 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1008 // Abbrev for CST_CODE_CSTRING. 1009 Abbv = new BitCodeAbbrev(); 1010 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1011 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1012 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1013 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1014 } 1015 1016 SmallVector<uint64_t, 64> Record; 1017 1018 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1019 Type *LastTy = nullptr; 1020 for (unsigned i = FirstVal; i != LastVal; ++i) { 1021 const Value *V = Vals[i].first; 1022 // If we need to switch types, do so now. 1023 if (V->getType() != LastTy) { 1024 LastTy = V->getType(); 1025 Record.push_back(VE.getTypeID(LastTy)); 1026 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1027 CONSTANTS_SETTYPE_ABBREV); 1028 Record.clear(); 1029 } 1030 1031 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1032 Record.push_back(unsigned(IA->hasSideEffects()) | 1033 unsigned(IA->isAlignStack()) << 1 | 1034 unsigned(IA->getDialect()&1) << 2); 1035 1036 // Add the asm string. 1037 const std::string &AsmStr = IA->getAsmString(); 1038 Record.push_back(AsmStr.size()); 1039 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 1040 Record.push_back(AsmStr[i]); 1041 1042 // Add the constraint string. 1043 const std::string &ConstraintStr = IA->getConstraintString(); 1044 Record.push_back(ConstraintStr.size()); 1045 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 1046 Record.push_back(ConstraintStr[i]); 1047 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1048 Record.clear(); 1049 continue; 1050 } 1051 const Constant *C = cast<Constant>(V); 1052 unsigned Code = -1U; 1053 unsigned AbbrevToUse = 0; 1054 if (C->isNullValue()) { 1055 Code = bitc::CST_CODE_NULL; 1056 } else if (isa<UndefValue>(C)) { 1057 Code = bitc::CST_CODE_UNDEF; 1058 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1059 if (IV->getBitWidth() <= 64) { 1060 uint64_t V = IV->getSExtValue(); 1061 emitSignedInt64(Record, V); 1062 Code = bitc::CST_CODE_INTEGER; 1063 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1064 } else { // Wide integers, > 64 bits in size. 1065 // We have an arbitrary precision integer value to write whose 1066 // bit width is > 64. However, in canonical unsigned integer 1067 // format it is likely that the high bits are going to be zero. 1068 // So, we only write the number of active words. 1069 unsigned NWords = IV->getValue().getActiveWords(); 1070 const uint64_t *RawWords = IV->getValue().getRawData(); 1071 for (unsigned i = 0; i != NWords; ++i) { 1072 emitSignedInt64(Record, RawWords[i]); 1073 } 1074 Code = bitc::CST_CODE_WIDE_INTEGER; 1075 } 1076 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1077 Code = bitc::CST_CODE_FLOAT; 1078 Type *Ty = CFP->getType(); 1079 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1080 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1081 } else if (Ty->isX86_FP80Ty()) { 1082 // api needed to prevent premature destruction 1083 // bits are not in the same order as a normal i80 APInt, compensate. 1084 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1085 const uint64_t *p = api.getRawData(); 1086 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1087 Record.push_back(p[0] & 0xffffLL); 1088 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1089 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1090 const uint64_t *p = api.getRawData(); 1091 Record.push_back(p[0]); 1092 Record.push_back(p[1]); 1093 } else { 1094 assert (0 && "Unknown FP type!"); 1095 } 1096 } else if (isa<ConstantDataSequential>(C) && 1097 cast<ConstantDataSequential>(C)->isString()) { 1098 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1099 // Emit constant strings specially. 1100 unsigned NumElts = Str->getNumElements(); 1101 // If this is a null-terminated string, use the denser CSTRING encoding. 1102 if (Str->isCString()) { 1103 Code = bitc::CST_CODE_CSTRING; 1104 --NumElts; // Don't encode the null, which isn't allowed by char6. 1105 } else { 1106 Code = bitc::CST_CODE_STRING; 1107 AbbrevToUse = String8Abbrev; 1108 } 1109 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1110 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1111 for (unsigned i = 0; i != NumElts; ++i) { 1112 unsigned char V = Str->getElementAsInteger(i); 1113 Record.push_back(V); 1114 isCStr7 &= (V & 128) == 0; 1115 if (isCStrChar6) 1116 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1117 } 1118 1119 if (isCStrChar6) 1120 AbbrevToUse = CString6Abbrev; 1121 else if (isCStr7) 1122 AbbrevToUse = CString7Abbrev; 1123 } else if (const ConstantDataSequential *CDS = 1124 dyn_cast<ConstantDataSequential>(C)) { 1125 Code = bitc::CST_CODE_DATA; 1126 Type *EltTy = CDS->getType()->getElementType(); 1127 if (isa<IntegerType>(EltTy)) { 1128 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1129 Record.push_back(CDS->getElementAsInteger(i)); 1130 } else if (EltTy->isFloatTy()) { 1131 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1132 union { float F; uint32_t I; }; 1133 F = CDS->getElementAsFloat(i); 1134 Record.push_back(I); 1135 } 1136 } else { 1137 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1138 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1139 union { double F; uint64_t I; }; 1140 F = CDS->getElementAsDouble(i); 1141 Record.push_back(I); 1142 } 1143 } 1144 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1145 isa<ConstantVector>(C)) { 1146 Code = bitc::CST_CODE_AGGREGATE; 1147 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1148 Record.push_back(VE.getValueID(C->getOperand(i))); 1149 AbbrevToUse = AggregateAbbrev; 1150 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1151 switch (CE->getOpcode()) { 1152 default: 1153 if (Instruction::isCast(CE->getOpcode())) { 1154 Code = bitc::CST_CODE_CE_CAST; 1155 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1156 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1157 Record.push_back(VE.getValueID(C->getOperand(0))); 1158 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1159 } else { 1160 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1161 Code = bitc::CST_CODE_CE_BINOP; 1162 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1163 Record.push_back(VE.getValueID(C->getOperand(0))); 1164 Record.push_back(VE.getValueID(C->getOperand(1))); 1165 uint64_t Flags = GetOptimizationFlags(CE); 1166 if (Flags != 0) 1167 Record.push_back(Flags); 1168 } 1169 break; 1170 case Instruction::GetElementPtr: 1171 Code = bitc::CST_CODE_CE_GEP; 1172 if (cast<GEPOperator>(C)->isInBounds()) 1173 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1174 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1175 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1176 Record.push_back(VE.getValueID(C->getOperand(i))); 1177 } 1178 break; 1179 case Instruction::Select: 1180 Code = bitc::CST_CODE_CE_SELECT; 1181 Record.push_back(VE.getValueID(C->getOperand(0))); 1182 Record.push_back(VE.getValueID(C->getOperand(1))); 1183 Record.push_back(VE.getValueID(C->getOperand(2))); 1184 break; 1185 case Instruction::ExtractElement: 1186 Code = bitc::CST_CODE_CE_EXTRACTELT; 1187 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1188 Record.push_back(VE.getValueID(C->getOperand(0))); 1189 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1190 Record.push_back(VE.getValueID(C->getOperand(1))); 1191 break; 1192 case Instruction::InsertElement: 1193 Code = bitc::CST_CODE_CE_INSERTELT; 1194 Record.push_back(VE.getValueID(C->getOperand(0))); 1195 Record.push_back(VE.getValueID(C->getOperand(1))); 1196 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1197 Record.push_back(VE.getValueID(C->getOperand(2))); 1198 break; 1199 case Instruction::ShuffleVector: 1200 // If the return type and argument types are the same, this is a 1201 // standard shufflevector instruction. If the types are different, 1202 // then the shuffle is widening or truncating the input vectors, and 1203 // the argument type must also be encoded. 1204 if (C->getType() == C->getOperand(0)->getType()) { 1205 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1206 } else { 1207 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1208 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1209 } 1210 Record.push_back(VE.getValueID(C->getOperand(0))); 1211 Record.push_back(VE.getValueID(C->getOperand(1))); 1212 Record.push_back(VE.getValueID(C->getOperand(2))); 1213 break; 1214 case Instruction::ICmp: 1215 case Instruction::FCmp: 1216 Code = bitc::CST_CODE_CE_CMP; 1217 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1218 Record.push_back(VE.getValueID(C->getOperand(0))); 1219 Record.push_back(VE.getValueID(C->getOperand(1))); 1220 Record.push_back(CE->getPredicate()); 1221 break; 1222 } 1223 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1224 Code = bitc::CST_CODE_BLOCKADDRESS; 1225 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1226 Record.push_back(VE.getValueID(BA->getFunction())); 1227 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1228 } else { 1229 #ifndef NDEBUG 1230 C->dump(); 1231 #endif 1232 llvm_unreachable("Unknown constant!"); 1233 } 1234 Stream.EmitRecord(Code, Record, AbbrevToUse); 1235 Record.clear(); 1236 } 1237 1238 Stream.ExitBlock(); 1239 } 1240 1241 static void WriteModuleConstants(const ValueEnumerator &VE, 1242 BitstreamWriter &Stream) { 1243 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1244 1245 // Find the first constant to emit, which is the first non-globalvalue value. 1246 // We know globalvalues have been emitted by WriteModuleInfo. 1247 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1248 if (!isa<GlobalValue>(Vals[i].first)) { 1249 WriteConstants(i, Vals.size(), VE, Stream, true); 1250 return; 1251 } 1252 } 1253 } 1254 1255 /// PushValueAndType - The file has to encode both the value and type id for 1256 /// many values, because we need to know what type to create for forward 1257 /// references. However, most operands are not forward references, so this type 1258 /// field is not needed. 1259 /// 1260 /// This function adds V's value ID to Vals. If the value ID is higher than the 1261 /// instruction ID, then it is a forward reference, and it also includes the 1262 /// type ID. The value ID that is written is encoded relative to the InstID. 1263 static bool PushValueAndType(const Value *V, unsigned InstID, 1264 SmallVectorImpl<unsigned> &Vals, 1265 ValueEnumerator &VE) { 1266 unsigned ValID = VE.getValueID(V); 1267 // Make encoding relative to the InstID. 1268 Vals.push_back(InstID - ValID); 1269 if (ValID >= InstID) { 1270 Vals.push_back(VE.getTypeID(V->getType())); 1271 return true; 1272 } 1273 return false; 1274 } 1275 1276 /// pushValue - Like PushValueAndType, but where the type of the value is 1277 /// omitted (perhaps it was already encoded in an earlier operand). 1278 static void pushValue(const Value *V, unsigned InstID, 1279 SmallVectorImpl<unsigned> &Vals, 1280 ValueEnumerator &VE) { 1281 unsigned ValID = VE.getValueID(V); 1282 Vals.push_back(InstID - ValID); 1283 } 1284 1285 static void pushValueSigned(const Value *V, unsigned InstID, 1286 SmallVectorImpl<uint64_t> &Vals, 1287 ValueEnumerator &VE) { 1288 unsigned ValID = VE.getValueID(V); 1289 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1290 emitSignedInt64(Vals, diff); 1291 } 1292 1293 /// WriteInstruction - Emit an instruction to the specified stream. 1294 static void WriteInstruction(const Instruction &I, unsigned InstID, 1295 ValueEnumerator &VE, BitstreamWriter &Stream, 1296 SmallVectorImpl<unsigned> &Vals) { 1297 unsigned Code = 0; 1298 unsigned AbbrevToUse = 0; 1299 VE.setInstructionID(&I); 1300 switch (I.getOpcode()) { 1301 default: 1302 if (Instruction::isCast(I.getOpcode())) { 1303 Code = bitc::FUNC_CODE_INST_CAST; 1304 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1305 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1306 Vals.push_back(VE.getTypeID(I.getType())); 1307 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1308 } else { 1309 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1310 Code = bitc::FUNC_CODE_INST_BINOP; 1311 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1312 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1313 pushValue(I.getOperand(1), InstID, Vals, VE); 1314 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1315 uint64_t Flags = GetOptimizationFlags(&I); 1316 if (Flags != 0) { 1317 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1318 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1319 Vals.push_back(Flags); 1320 } 1321 } 1322 break; 1323 1324 case Instruction::GetElementPtr: 1325 Code = bitc::FUNC_CODE_INST_GEP; 1326 if (cast<GEPOperator>(&I)->isInBounds()) 1327 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1328 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1329 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1330 break; 1331 case Instruction::ExtractValue: { 1332 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1333 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1334 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1335 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1336 Vals.push_back(*i); 1337 break; 1338 } 1339 case Instruction::InsertValue: { 1340 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1341 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1342 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1343 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1344 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1345 Vals.push_back(*i); 1346 break; 1347 } 1348 case Instruction::Select: 1349 Code = bitc::FUNC_CODE_INST_VSELECT; 1350 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1351 pushValue(I.getOperand(2), InstID, Vals, VE); 1352 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1353 break; 1354 case Instruction::ExtractElement: 1355 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1356 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1357 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1358 break; 1359 case Instruction::InsertElement: 1360 Code = bitc::FUNC_CODE_INST_INSERTELT; 1361 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1362 pushValue(I.getOperand(1), InstID, Vals, VE); 1363 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1364 break; 1365 case Instruction::ShuffleVector: 1366 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1367 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1368 pushValue(I.getOperand(1), InstID, Vals, VE); 1369 pushValue(I.getOperand(2), InstID, Vals, VE); 1370 break; 1371 case Instruction::ICmp: 1372 case Instruction::FCmp: 1373 // compare returning Int1Ty or vector of Int1Ty 1374 Code = bitc::FUNC_CODE_INST_CMP2; 1375 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1376 pushValue(I.getOperand(1), InstID, Vals, VE); 1377 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1378 break; 1379 1380 case Instruction::Ret: 1381 { 1382 Code = bitc::FUNC_CODE_INST_RET; 1383 unsigned NumOperands = I.getNumOperands(); 1384 if (NumOperands == 0) 1385 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1386 else if (NumOperands == 1) { 1387 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1388 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1389 } else { 1390 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1391 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1392 } 1393 } 1394 break; 1395 case Instruction::Br: 1396 { 1397 Code = bitc::FUNC_CODE_INST_BR; 1398 const BranchInst &II = cast<BranchInst>(I); 1399 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1400 if (II.isConditional()) { 1401 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1402 pushValue(II.getCondition(), InstID, Vals, VE); 1403 } 1404 } 1405 break; 1406 case Instruction::Switch: 1407 { 1408 Code = bitc::FUNC_CODE_INST_SWITCH; 1409 const SwitchInst &SI = cast<SwitchInst>(I); 1410 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1411 pushValue(SI.getCondition(), InstID, Vals, VE); 1412 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1413 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1414 i != e; ++i) { 1415 Vals.push_back(VE.getValueID(i.getCaseValue())); 1416 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1417 } 1418 } 1419 break; 1420 case Instruction::IndirectBr: 1421 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1422 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1423 // Encode the address operand as relative, but not the basic blocks. 1424 pushValue(I.getOperand(0), InstID, Vals, VE); 1425 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1426 Vals.push_back(VE.getValueID(I.getOperand(i))); 1427 break; 1428 1429 case Instruction::Invoke: { 1430 const InvokeInst *II = cast<InvokeInst>(&I); 1431 const Value *Callee(II->getCalledValue()); 1432 PointerType *PTy = cast<PointerType>(Callee->getType()); 1433 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1434 Code = bitc::FUNC_CODE_INST_INVOKE; 1435 1436 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1437 Vals.push_back(II->getCallingConv()); 1438 Vals.push_back(VE.getValueID(II->getNormalDest())); 1439 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1440 PushValueAndType(Callee, InstID, Vals, VE); 1441 1442 // Emit value #'s for the fixed parameters. 1443 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1444 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1445 1446 // Emit type/value pairs for varargs params. 1447 if (FTy->isVarArg()) { 1448 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1449 i != e; ++i) 1450 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1451 } 1452 break; 1453 } 1454 case Instruction::Resume: 1455 Code = bitc::FUNC_CODE_INST_RESUME; 1456 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1457 break; 1458 case Instruction::Unreachable: 1459 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1460 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1461 break; 1462 1463 case Instruction::PHI: { 1464 const PHINode &PN = cast<PHINode>(I); 1465 Code = bitc::FUNC_CODE_INST_PHI; 1466 // With the newer instruction encoding, forward references could give 1467 // negative valued IDs. This is most common for PHIs, so we use 1468 // signed VBRs. 1469 SmallVector<uint64_t, 128> Vals64; 1470 Vals64.push_back(VE.getTypeID(PN.getType())); 1471 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1472 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1473 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1474 } 1475 // Emit a Vals64 vector and exit. 1476 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1477 Vals64.clear(); 1478 return; 1479 } 1480 1481 case Instruction::LandingPad: { 1482 const LandingPadInst &LP = cast<LandingPadInst>(I); 1483 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1484 Vals.push_back(VE.getTypeID(LP.getType())); 1485 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1486 Vals.push_back(LP.isCleanup()); 1487 Vals.push_back(LP.getNumClauses()); 1488 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1489 if (LP.isCatch(I)) 1490 Vals.push_back(LandingPadInst::Catch); 1491 else 1492 Vals.push_back(LandingPadInst::Filter); 1493 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1494 } 1495 break; 1496 } 1497 1498 case Instruction::Alloca: { 1499 Code = bitc::FUNC_CODE_INST_ALLOCA; 1500 Vals.push_back(VE.getTypeID(I.getType())); 1501 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1502 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1503 const AllocaInst &AI = cast<AllocaInst>(I); 1504 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 1505 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 1506 "not enough bits for maximum alignment"); 1507 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 1508 AlignRecord |= AI.isUsedWithInAlloca() << 5; 1509 Vals.push_back(AlignRecord); 1510 break; 1511 } 1512 1513 case Instruction::Load: 1514 if (cast<LoadInst>(I).isAtomic()) { 1515 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1516 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1517 } else { 1518 Code = bitc::FUNC_CODE_INST_LOAD; 1519 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1520 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1521 } 1522 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1523 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1524 if (cast<LoadInst>(I).isAtomic()) { 1525 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1526 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1527 } 1528 break; 1529 case Instruction::Store: 1530 if (cast<StoreInst>(I).isAtomic()) 1531 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1532 else 1533 Code = bitc::FUNC_CODE_INST_STORE; 1534 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1535 pushValue(I.getOperand(0), InstID, Vals, VE); // val. 1536 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1537 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1538 if (cast<StoreInst>(I).isAtomic()) { 1539 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1540 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1541 } 1542 break; 1543 case Instruction::AtomicCmpXchg: 1544 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1545 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1546 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1547 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1548 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1549 Vals.push_back(GetEncodedOrdering( 1550 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1551 Vals.push_back(GetEncodedSynchScope( 1552 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1553 Vals.push_back(GetEncodedOrdering( 1554 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1555 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 1556 break; 1557 case Instruction::AtomicRMW: 1558 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1559 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1560 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1561 Vals.push_back(GetEncodedRMWOperation( 1562 cast<AtomicRMWInst>(I).getOperation())); 1563 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1564 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1565 Vals.push_back(GetEncodedSynchScope( 1566 cast<AtomicRMWInst>(I).getSynchScope())); 1567 break; 1568 case Instruction::Fence: 1569 Code = bitc::FUNC_CODE_INST_FENCE; 1570 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1571 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1572 break; 1573 case Instruction::Call: { 1574 const CallInst &CI = cast<CallInst>(I); 1575 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1576 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1577 1578 Code = bitc::FUNC_CODE_INST_CALL; 1579 1580 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1581 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1582 unsigned(CI.isMustTailCall()) << 14); 1583 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1584 1585 // Emit value #'s for the fixed parameters. 1586 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1587 // Check for labels (can happen with asm labels). 1588 if (FTy->getParamType(i)->isLabelTy()) 1589 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1590 else 1591 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1592 } 1593 1594 // Emit type/value pairs for varargs params. 1595 if (FTy->isVarArg()) { 1596 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1597 i != e; ++i) 1598 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1599 } 1600 break; 1601 } 1602 case Instruction::VAArg: 1603 Code = bitc::FUNC_CODE_INST_VAARG; 1604 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1605 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1606 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1607 break; 1608 } 1609 1610 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1611 Vals.clear(); 1612 } 1613 1614 // Emit names for globals/functions etc. 1615 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1616 const ValueEnumerator &VE, 1617 BitstreamWriter &Stream) { 1618 if (VST.empty()) return; 1619 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1620 1621 // FIXME: Set up the abbrev, we know how many values there are! 1622 // FIXME: We know if the type names can use 7-bit ascii. 1623 SmallVector<unsigned, 64> NameVals; 1624 1625 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1626 SI != SE; ++SI) { 1627 1628 const ValueName &Name = *SI; 1629 1630 // Figure out the encoding to use for the name. 1631 bool is7Bit = true; 1632 bool isChar6 = true; 1633 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1634 C != E; ++C) { 1635 if (isChar6) 1636 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1637 if ((unsigned char)*C & 128) { 1638 is7Bit = false; 1639 break; // don't bother scanning the rest. 1640 } 1641 } 1642 1643 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1644 1645 // VST_ENTRY: [valueid, namechar x N] 1646 // VST_BBENTRY: [bbid, namechar x N] 1647 unsigned Code; 1648 if (isa<BasicBlock>(SI->getValue())) { 1649 Code = bitc::VST_CODE_BBENTRY; 1650 if (isChar6) 1651 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1652 } else { 1653 Code = bitc::VST_CODE_ENTRY; 1654 if (isChar6) 1655 AbbrevToUse = VST_ENTRY_6_ABBREV; 1656 else if (is7Bit) 1657 AbbrevToUse = VST_ENTRY_7_ABBREV; 1658 } 1659 1660 NameVals.push_back(VE.getValueID(SI->getValue())); 1661 for (const char *P = Name.getKeyData(), 1662 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1663 NameVals.push_back((unsigned char)*P); 1664 1665 // Emit the finished record. 1666 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1667 NameVals.clear(); 1668 } 1669 Stream.ExitBlock(); 1670 } 1671 1672 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 1673 BitstreamWriter &Stream) { 1674 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 1675 unsigned Code; 1676 if (isa<BasicBlock>(Order.V)) 1677 Code = bitc::USELIST_CODE_BB; 1678 else 1679 Code = bitc::USELIST_CODE_DEFAULT; 1680 1681 SmallVector<uint64_t, 64> Record; 1682 for (unsigned I : Order.Shuffle) 1683 Record.push_back(I); 1684 Record.push_back(VE.getValueID(Order.V)); 1685 Stream.EmitRecord(Code, Record); 1686 } 1687 1688 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 1689 BitstreamWriter &Stream) { 1690 auto hasMore = [&]() { 1691 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 1692 }; 1693 if (!hasMore()) 1694 // Nothing to do. 1695 return; 1696 1697 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1698 while (hasMore()) { 1699 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 1700 VE.UseListOrders.pop_back(); 1701 } 1702 Stream.ExitBlock(); 1703 } 1704 1705 /// WriteFunction - Emit a function body to the module stream. 1706 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1707 BitstreamWriter &Stream) { 1708 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1709 VE.incorporateFunction(F); 1710 1711 SmallVector<unsigned, 64> Vals; 1712 1713 // Emit the number of basic blocks, so the reader can create them ahead of 1714 // time. 1715 Vals.push_back(VE.getBasicBlocks().size()); 1716 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1717 Vals.clear(); 1718 1719 // If there are function-local constants, emit them now. 1720 unsigned CstStart, CstEnd; 1721 VE.getFunctionConstantRange(CstStart, CstEnd); 1722 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1723 1724 // If there is function-local metadata, emit it now. 1725 WriteFunctionLocalMetadata(F, VE, Stream); 1726 1727 // Keep a running idea of what the instruction ID is. 1728 unsigned InstID = CstEnd; 1729 1730 bool NeedsMetadataAttachment = false; 1731 1732 DebugLoc LastDL; 1733 1734 // Finally, emit all the instructions, in order. 1735 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1736 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1737 I != E; ++I) { 1738 WriteInstruction(*I, InstID, VE, Stream, Vals); 1739 1740 if (!I->getType()->isVoidTy()) 1741 ++InstID; 1742 1743 // If the instruction has metadata, write a metadata attachment later. 1744 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1745 1746 // If the instruction has a debug location, emit it. 1747 DebugLoc DL = I->getDebugLoc(); 1748 if (DL.isUnknown()) { 1749 // nothing todo. 1750 } else if (DL == LastDL) { 1751 // Just repeat the same debug loc as last time. 1752 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1753 } else { 1754 MDNode *Scope, *IA; 1755 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1756 assert(Scope && "Expected valid scope"); 1757 1758 Vals.push_back(DL.getLine()); 1759 Vals.push_back(DL.getCol()); 1760 Vals.push_back(VE.getMetadataOrNullID(Scope)); 1761 Vals.push_back(VE.getMetadataOrNullID(IA)); 1762 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1763 Vals.clear(); 1764 1765 LastDL = DL; 1766 } 1767 } 1768 1769 // Emit names for all the instructions etc. 1770 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1771 1772 if (NeedsMetadataAttachment) 1773 WriteMetadataAttachment(F, VE, Stream); 1774 if (shouldPreserveBitcodeUseListOrder()) 1775 WriteUseListBlock(&F, VE, Stream); 1776 VE.purgeFunction(); 1777 Stream.ExitBlock(); 1778 } 1779 1780 // Emit blockinfo, which defines the standard abbreviations etc. 1781 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1782 // We only want to emit block info records for blocks that have multiple 1783 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 1784 // Other blocks can define their abbrevs inline. 1785 Stream.EnterBlockInfoBlock(2); 1786 1787 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1788 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1793 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1794 Abbv) != VST_ENTRY_8_ABBREV) 1795 llvm_unreachable("Unexpected abbrev ordering!"); 1796 } 1797 1798 { // 7-bit fixed width VST_ENTRY strings. 1799 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1800 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1804 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1805 Abbv) != VST_ENTRY_7_ABBREV) 1806 llvm_unreachable("Unexpected abbrev ordering!"); 1807 } 1808 { // 6-bit char6 VST_ENTRY strings. 1809 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1810 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1811 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1814 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1815 Abbv) != VST_ENTRY_6_ABBREV) 1816 llvm_unreachable("Unexpected abbrev ordering!"); 1817 } 1818 { // 6-bit char6 VST_BBENTRY strings. 1819 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1820 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1824 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1825 Abbv) != VST_BBENTRY_6_ABBREV) 1826 llvm_unreachable("Unexpected abbrev ordering!"); 1827 } 1828 1829 1830 1831 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1832 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1833 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1834 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1835 Log2_32_Ceil(VE.getTypes().size()+1))); 1836 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1837 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1838 llvm_unreachable("Unexpected abbrev ordering!"); 1839 } 1840 1841 { // INTEGER abbrev for CONSTANTS_BLOCK. 1842 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1843 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1845 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1846 Abbv) != CONSTANTS_INTEGER_ABBREV) 1847 llvm_unreachable("Unexpected abbrev ordering!"); 1848 } 1849 1850 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1851 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1852 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1855 Log2_32_Ceil(VE.getTypes().size()+1))); 1856 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1857 1858 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1859 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1860 llvm_unreachable("Unexpected abbrev ordering!"); 1861 } 1862 { // NULL abbrev for CONSTANTS_BLOCK. 1863 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1864 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1865 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1866 Abbv) != CONSTANTS_NULL_Abbrev) 1867 llvm_unreachable("Unexpected abbrev ordering!"); 1868 } 1869 1870 // FIXME: This should only use space for first class types! 1871 1872 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1873 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1874 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1875 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1876 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1877 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1878 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1879 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1880 llvm_unreachable("Unexpected abbrev ordering!"); 1881 } 1882 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1883 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1884 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1885 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1886 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1887 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1888 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1889 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1890 llvm_unreachable("Unexpected abbrev ordering!"); 1891 } 1892 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1893 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1894 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1895 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1896 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1897 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1898 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1899 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1900 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1901 llvm_unreachable("Unexpected abbrev ordering!"); 1902 } 1903 { // INST_CAST abbrev for FUNCTION_BLOCK. 1904 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1905 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1906 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1907 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1908 Log2_32_Ceil(VE.getTypes().size()+1))); 1909 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1910 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1911 Abbv) != FUNCTION_INST_CAST_ABBREV) 1912 llvm_unreachable("Unexpected abbrev ordering!"); 1913 } 1914 1915 { // INST_RET abbrev for FUNCTION_BLOCK. 1916 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1917 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1918 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1919 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1920 llvm_unreachable("Unexpected abbrev ordering!"); 1921 } 1922 { // INST_RET abbrev for FUNCTION_BLOCK. 1923 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1924 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1925 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1926 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1927 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1928 llvm_unreachable("Unexpected abbrev ordering!"); 1929 } 1930 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1931 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1932 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1933 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1934 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1935 llvm_unreachable("Unexpected abbrev ordering!"); 1936 } 1937 1938 Stream.ExitBlock(); 1939 } 1940 1941 /// WriteModule - Emit the specified module to the bitstream. 1942 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1943 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1944 1945 SmallVector<unsigned, 1> Vals; 1946 unsigned CurVersion = 1; 1947 Vals.push_back(CurVersion); 1948 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1949 1950 // Analyze the module, enumerating globals, functions, etc. 1951 ValueEnumerator VE(*M); 1952 1953 // Emit blockinfo, which defines the standard abbreviations etc. 1954 WriteBlockInfo(VE, Stream); 1955 1956 // Emit information about attribute groups. 1957 WriteAttributeGroupTable(VE, Stream); 1958 1959 // Emit information about parameter attributes. 1960 WriteAttributeTable(VE, Stream); 1961 1962 // Emit information describing all of the types in the module. 1963 WriteTypeTable(VE, Stream); 1964 1965 writeComdats(VE, Stream); 1966 1967 // Emit top-level description of module, including target triple, inline asm, 1968 // descriptors for global variables, and function prototype info. 1969 WriteModuleInfo(M, VE, Stream); 1970 1971 // Emit constants. 1972 WriteModuleConstants(VE, Stream); 1973 1974 // Emit metadata. 1975 WriteModuleMetadata(M, VE, Stream); 1976 1977 // Emit metadata. 1978 WriteModuleMetadataStore(M, Stream); 1979 1980 // Emit names for globals/functions etc. 1981 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1982 1983 // Emit module-level use-lists. 1984 if (shouldPreserveBitcodeUseListOrder()) 1985 WriteUseListBlock(nullptr, VE, Stream); 1986 1987 // Emit function bodies. 1988 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1989 if (!F->isDeclaration()) 1990 WriteFunction(*F, VE, Stream); 1991 1992 Stream.ExitBlock(); 1993 } 1994 1995 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1996 /// header and trailer to make it compatible with the system archiver. To do 1997 /// this we emit the following header, and then emit a trailer that pads the 1998 /// file out to be a multiple of 16 bytes. 1999 /// 2000 /// struct bc_header { 2001 /// uint32_t Magic; // 0x0B17C0DE 2002 /// uint32_t Version; // Version, currently always 0. 2003 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 2004 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 2005 /// uint32_t CPUType; // CPU specifier. 2006 /// ... potentially more later ... 2007 /// }; 2008 enum { 2009 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 2010 DarwinBCHeaderSize = 5*4 2011 }; 2012 2013 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 2014 uint32_t &Position) { 2015 Buffer[Position + 0] = (unsigned char) (Value >> 0); 2016 Buffer[Position + 1] = (unsigned char) (Value >> 8); 2017 Buffer[Position + 2] = (unsigned char) (Value >> 16); 2018 Buffer[Position + 3] = (unsigned char) (Value >> 24); 2019 Position += 4; 2020 } 2021 2022 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 2023 const Triple &TT) { 2024 unsigned CPUType = ~0U; 2025 2026 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 2027 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 2028 // number from /usr/include/mach/machine.h. It is ok to reproduce the 2029 // specific constants here because they are implicitly part of the Darwin ABI. 2030 enum { 2031 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 2032 DARWIN_CPU_TYPE_X86 = 7, 2033 DARWIN_CPU_TYPE_ARM = 12, 2034 DARWIN_CPU_TYPE_POWERPC = 18 2035 }; 2036 2037 Triple::ArchType Arch = TT.getArch(); 2038 if (Arch == Triple::x86_64) 2039 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 2040 else if (Arch == Triple::x86) 2041 CPUType = DARWIN_CPU_TYPE_X86; 2042 else if (Arch == Triple::ppc) 2043 CPUType = DARWIN_CPU_TYPE_POWERPC; 2044 else if (Arch == Triple::ppc64) 2045 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 2046 else if (Arch == Triple::arm || Arch == Triple::thumb) 2047 CPUType = DARWIN_CPU_TYPE_ARM; 2048 2049 // Traditional Bitcode starts after header. 2050 assert(Buffer.size() >= DarwinBCHeaderSize && 2051 "Expected header size to be reserved"); 2052 unsigned BCOffset = DarwinBCHeaderSize; 2053 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2054 2055 // Write the magic and version. 2056 unsigned Position = 0; 2057 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2058 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2059 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2060 WriteInt32ToBuffer(BCSize , Buffer, Position); 2061 WriteInt32ToBuffer(CPUType , Buffer, Position); 2062 2063 // If the file is not a multiple of 16 bytes, insert dummy padding. 2064 while (Buffer.size() & 15) 2065 Buffer.push_back(0); 2066 } 2067 2068 /// WriteBitcodeToFile - Write the specified module to the specified output 2069 /// stream. 2070 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 2071 SmallVector<char, 0> Buffer; 2072 Buffer.reserve(256*1024); 2073 2074 // If this is darwin or another generic macho target, reserve space for the 2075 // header. 2076 Triple TT(M->getTargetTriple()); 2077 if (TT.isOSDarwin()) 2078 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2079 2080 // Emit the module into the buffer. 2081 { 2082 BitstreamWriter Stream(Buffer); 2083 2084 // Emit the file header. 2085 Stream.Emit((unsigned)'B', 8); 2086 Stream.Emit((unsigned)'C', 8); 2087 Stream.Emit(0x0, 4); 2088 Stream.Emit(0xC, 4); 2089 Stream.Emit(0xE, 4); 2090 Stream.Emit(0xD, 4); 2091 2092 // Emit the module. 2093 WriteModule(M, Stream); 2094 } 2095 2096 if (TT.isOSDarwin()) 2097 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2098 2099 // Write the generated bitstream to "Out". 2100 Out.write((char*)&Buffer.front(), Buffer.size()); 2101 } 2102