1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/StringExtras.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Analysis/BlockFrequencyInfo.h" 19 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Bitcode/BitstreamWriter.h" 23 #include "llvm/Bitcode/LLVMBitCodes.h" 24 #include "llvm/Bitcode/ReaderWriter.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/InlineAsm.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/Operator.h" 36 #include "llvm/IR/UseListOrder.h" 37 #include "llvm/IR/ValueSymbolTable.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/Program.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Support/SHA1.h" 44 #include <cctype> 45 #include <map> 46 using namespace llvm; 47 48 /// These are manifest constants used by the bitcode writer. They do not need to 49 /// be kept in sync with the reader, but need to be consistent within this file. 50 enum { 51 // VALUE_SYMTAB_BLOCK abbrev id's. 52 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 53 VST_ENTRY_7_ABBREV, 54 VST_ENTRY_6_ABBREV, 55 VST_BBENTRY_6_ABBREV, 56 57 // CONSTANTS_BLOCK abbrev id's. 58 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 59 CONSTANTS_INTEGER_ABBREV, 60 CONSTANTS_CE_CAST_Abbrev, 61 CONSTANTS_NULL_Abbrev, 62 63 // FUNCTION_BLOCK abbrev id's. 64 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 65 FUNCTION_INST_BINOP_ABBREV, 66 FUNCTION_INST_BINOP_FLAGS_ABBREV, 67 FUNCTION_INST_CAST_ABBREV, 68 FUNCTION_INST_RET_VOID_ABBREV, 69 FUNCTION_INST_RET_VAL_ABBREV, 70 FUNCTION_INST_UNREACHABLE_ABBREV, 71 FUNCTION_INST_GEP_ABBREV, 72 }; 73 74 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 75 switch (Opcode) { 76 default: llvm_unreachable("Unknown cast instruction!"); 77 case Instruction::Trunc : return bitc::CAST_TRUNC; 78 case Instruction::ZExt : return bitc::CAST_ZEXT; 79 case Instruction::SExt : return bitc::CAST_SEXT; 80 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 81 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 82 case Instruction::UIToFP : return bitc::CAST_UITOFP; 83 case Instruction::SIToFP : return bitc::CAST_SITOFP; 84 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 85 case Instruction::FPExt : return bitc::CAST_FPEXT; 86 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 87 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 88 case Instruction::BitCast : return bitc::CAST_BITCAST; 89 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 90 } 91 } 92 93 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 94 switch (Opcode) { 95 default: llvm_unreachable("Unknown binary instruction!"); 96 case Instruction::Add: 97 case Instruction::FAdd: return bitc::BINOP_ADD; 98 case Instruction::Sub: 99 case Instruction::FSub: return bitc::BINOP_SUB; 100 case Instruction::Mul: 101 case Instruction::FMul: return bitc::BINOP_MUL; 102 case Instruction::UDiv: return bitc::BINOP_UDIV; 103 case Instruction::FDiv: 104 case Instruction::SDiv: return bitc::BINOP_SDIV; 105 case Instruction::URem: return bitc::BINOP_UREM; 106 case Instruction::FRem: 107 case Instruction::SRem: return bitc::BINOP_SREM; 108 case Instruction::Shl: return bitc::BINOP_SHL; 109 case Instruction::LShr: return bitc::BINOP_LSHR; 110 case Instruction::AShr: return bitc::BINOP_ASHR; 111 case Instruction::And: return bitc::BINOP_AND; 112 case Instruction::Or: return bitc::BINOP_OR; 113 case Instruction::Xor: return bitc::BINOP_XOR; 114 } 115 } 116 117 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 118 switch (Op) { 119 default: llvm_unreachable("Unknown RMW operation!"); 120 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 121 case AtomicRMWInst::Add: return bitc::RMW_ADD; 122 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 123 case AtomicRMWInst::And: return bitc::RMW_AND; 124 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 125 case AtomicRMWInst::Or: return bitc::RMW_OR; 126 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 127 case AtomicRMWInst::Max: return bitc::RMW_MAX; 128 case AtomicRMWInst::Min: return bitc::RMW_MIN; 129 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 130 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 131 } 132 } 133 134 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 135 switch (Ordering) { 136 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 137 case Unordered: return bitc::ORDERING_UNORDERED; 138 case Monotonic: return bitc::ORDERING_MONOTONIC; 139 case Acquire: return bitc::ORDERING_ACQUIRE; 140 case Release: return bitc::ORDERING_RELEASE; 141 case AcquireRelease: return bitc::ORDERING_ACQREL; 142 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 143 } 144 llvm_unreachable("Invalid ordering"); 145 } 146 147 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 148 switch (SynchScope) { 149 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 150 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 151 } 152 llvm_unreachable("Invalid synch scope"); 153 } 154 155 static void WriteStringRecord(unsigned Code, StringRef Str, 156 unsigned AbbrevToUse, BitstreamWriter &Stream) { 157 SmallVector<unsigned, 64> Vals; 158 159 // Code: [strchar x N] 160 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 161 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 162 AbbrevToUse = 0; 163 Vals.push_back(Str[i]); 164 } 165 166 // Emit the finished record. 167 Stream.EmitRecord(Code, Vals, AbbrevToUse); 168 } 169 170 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 171 switch (Kind) { 172 case Attribute::Alignment: 173 return bitc::ATTR_KIND_ALIGNMENT; 174 case Attribute::AlwaysInline: 175 return bitc::ATTR_KIND_ALWAYS_INLINE; 176 case Attribute::ArgMemOnly: 177 return bitc::ATTR_KIND_ARGMEMONLY; 178 case Attribute::Builtin: 179 return bitc::ATTR_KIND_BUILTIN; 180 case Attribute::ByVal: 181 return bitc::ATTR_KIND_BY_VAL; 182 case Attribute::Convergent: 183 return bitc::ATTR_KIND_CONVERGENT; 184 case Attribute::InAlloca: 185 return bitc::ATTR_KIND_IN_ALLOCA; 186 case Attribute::Cold: 187 return bitc::ATTR_KIND_COLD; 188 case Attribute::InaccessibleMemOnly: 189 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 190 case Attribute::InaccessibleMemOrArgMemOnly: 191 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 192 case Attribute::InlineHint: 193 return bitc::ATTR_KIND_INLINE_HINT; 194 case Attribute::InReg: 195 return bitc::ATTR_KIND_IN_REG; 196 case Attribute::JumpTable: 197 return bitc::ATTR_KIND_JUMP_TABLE; 198 case Attribute::MinSize: 199 return bitc::ATTR_KIND_MIN_SIZE; 200 case Attribute::Naked: 201 return bitc::ATTR_KIND_NAKED; 202 case Attribute::Nest: 203 return bitc::ATTR_KIND_NEST; 204 case Attribute::NoAlias: 205 return bitc::ATTR_KIND_NO_ALIAS; 206 case Attribute::NoBuiltin: 207 return bitc::ATTR_KIND_NO_BUILTIN; 208 case Attribute::NoCapture: 209 return bitc::ATTR_KIND_NO_CAPTURE; 210 case Attribute::NoDuplicate: 211 return bitc::ATTR_KIND_NO_DUPLICATE; 212 case Attribute::NoImplicitFloat: 213 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 214 case Attribute::NoInline: 215 return bitc::ATTR_KIND_NO_INLINE; 216 case Attribute::NoRecurse: 217 return bitc::ATTR_KIND_NO_RECURSE; 218 case Attribute::NonLazyBind: 219 return bitc::ATTR_KIND_NON_LAZY_BIND; 220 case Attribute::NonNull: 221 return bitc::ATTR_KIND_NON_NULL; 222 case Attribute::Dereferenceable: 223 return bitc::ATTR_KIND_DEREFERENCEABLE; 224 case Attribute::DereferenceableOrNull: 225 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 226 case Attribute::NoRedZone: 227 return bitc::ATTR_KIND_NO_RED_ZONE; 228 case Attribute::NoReturn: 229 return bitc::ATTR_KIND_NO_RETURN; 230 case Attribute::NoUnwind: 231 return bitc::ATTR_KIND_NO_UNWIND; 232 case Attribute::OptimizeForSize: 233 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 234 case Attribute::OptimizeNone: 235 return bitc::ATTR_KIND_OPTIMIZE_NONE; 236 case Attribute::ReadNone: 237 return bitc::ATTR_KIND_READ_NONE; 238 case Attribute::ReadOnly: 239 return bitc::ATTR_KIND_READ_ONLY; 240 case Attribute::Returned: 241 return bitc::ATTR_KIND_RETURNED; 242 case Attribute::ReturnsTwice: 243 return bitc::ATTR_KIND_RETURNS_TWICE; 244 case Attribute::SExt: 245 return bitc::ATTR_KIND_S_EXT; 246 case Attribute::StackAlignment: 247 return bitc::ATTR_KIND_STACK_ALIGNMENT; 248 case Attribute::StackProtect: 249 return bitc::ATTR_KIND_STACK_PROTECT; 250 case Attribute::StackProtectReq: 251 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 252 case Attribute::StackProtectStrong: 253 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 254 case Attribute::SafeStack: 255 return bitc::ATTR_KIND_SAFESTACK; 256 case Attribute::StructRet: 257 return bitc::ATTR_KIND_STRUCT_RET; 258 case Attribute::SanitizeAddress: 259 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 260 case Attribute::SanitizeThread: 261 return bitc::ATTR_KIND_SANITIZE_THREAD; 262 case Attribute::SanitizeMemory: 263 return bitc::ATTR_KIND_SANITIZE_MEMORY; 264 case Attribute::SwiftSelf: 265 return bitc::ATTR_KIND_SWIFT_SELF; 266 case Attribute::UWTable: 267 return bitc::ATTR_KIND_UW_TABLE; 268 case Attribute::ZExt: 269 return bitc::ATTR_KIND_Z_EXT; 270 case Attribute::EndAttrKinds: 271 llvm_unreachable("Can not encode end-attribute kinds marker."); 272 case Attribute::None: 273 llvm_unreachable("Can not encode none-attribute."); 274 } 275 276 llvm_unreachable("Trying to encode unknown attribute"); 277 } 278 279 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 280 BitstreamWriter &Stream) { 281 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 282 if (AttrGrps.empty()) return; 283 284 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 285 286 SmallVector<uint64_t, 64> Record; 287 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 288 AttributeSet AS = AttrGrps[i]; 289 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 290 AttributeSet A = AS.getSlotAttributes(i); 291 292 Record.push_back(VE.getAttributeGroupID(A)); 293 Record.push_back(AS.getSlotIndex(i)); 294 295 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 296 I != E; ++I) { 297 Attribute Attr = *I; 298 if (Attr.isEnumAttribute()) { 299 Record.push_back(0); 300 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 301 } else if (Attr.isIntAttribute()) { 302 Record.push_back(1); 303 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 304 Record.push_back(Attr.getValueAsInt()); 305 } else { 306 StringRef Kind = Attr.getKindAsString(); 307 StringRef Val = Attr.getValueAsString(); 308 309 Record.push_back(Val.empty() ? 3 : 4); 310 Record.append(Kind.begin(), Kind.end()); 311 Record.push_back(0); 312 if (!Val.empty()) { 313 Record.append(Val.begin(), Val.end()); 314 Record.push_back(0); 315 } 316 } 317 } 318 319 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 320 Record.clear(); 321 } 322 } 323 324 Stream.ExitBlock(); 325 } 326 327 static void WriteAttributeTable(const ValueEnumerator &VE, 328 BitstreamWriter &Stream) { 329 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 330 if (Attrs.empty()) return; 331 332 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 333 334 SmallVector<uint64_t, 64> Record; 335 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 336 const AttributeSet &A = Attrs[i]; 337 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 338 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 339 340 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 341 Record.clear(); 342 } 343 344 Stream.ExitBlock(); 345 } 346 347 /// WriteTypeTable - Write out the type table for a module. 348 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 349 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 350 351 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 352 SmallVector<uint64_t, 64> TypeVals; 353 354 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 355 356 // Abbrev for TYPE_CODE_POINTER. 357 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 358 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 360 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 361 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 362 363 // Abbrev for TYPE_CODE_FUNCTION. 364 Abbv = new BitCodeAbbrev(); 365 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 369 370 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 371 372 // Abbrev for TYPE_CODE_STRUCT_ANON. 373 Abbv = new BitCodeAbbrev(); 374 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 378 379 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 380 381 // Abbrev for TYPE_CODE_STRUCT_NAME. 382 Abbv = new BitCodeAbbrev(); 383 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 386 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 387 388 // Abbrev for TYPE_CODE_STRUCT_NAMED. 389 Abbv = new BitCodeAbbrev(); 390 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 394 395 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 396 397 // Abbrev for TYPE_CODE_ARRAY. 398 Abbv = new BitCodeAbbrev(); 399 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 400 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 401 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 402 403 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 404 405 // Emit an entry count so the reader can reserve space. 406 TypeVals.push_back(TypeList.size()); 407 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 408 TypeVals.clear(); 409 410 // Loop over all of the types, emitting each in turn. 411 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 412 Type *T = TypeList[i]; 413 int AbbrevToUse = 0; 414 unsigned Code = 0; 415 416 switch (T->getTypeID()) { 417 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 418 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 419 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 420 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 421 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 422 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 423 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 424 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 425 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 426 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 427 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 428 case Type::IntegerTyID: 429 // INTEGER: [width] 430 Code = bitc::TYPE_CODE_INTEGER; 431 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 432 break; 433 case Type::PointerTyID: { 434 PointerType *PTy = cast<PointerType>(T); 435 // POINTER: [pointee type, address space] 436 Code = bitc::TYPE_CODE_POINTER; 437 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 438 unsigned AddressSpace = PTy->getAddressSpace(); 439 TypeVals.push_back(AddressSpace); 440 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 441 break; 442 } 443 case Type::FunctionTyID: { 444 FunctionType *FT = cast<FunctionType>(T); 445 // FUNCTION: [isvararg, retty, paramty x N] 446 Code = bitc::TYPE_CODE_FUNCTION; 447 TypeVals.push_back(FT->isVarArg()); 448 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 449 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 450 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 451 AbbrevToUse = FunctionAbbrev; 452 break; 453 } 454 case Type::StructTyID: { 455 StructType *ST = cast<StructType>(T); 456 // STRUCT: [ispacked, eltty x N] 457 TypeVals.push_back(ST->isPacked()); 458 // Output all of the element types. 459 for (StructType::element_iterator I = ST->element_begin(), 460 E = ST->element_end(); I != E; ++I) 461 TypeVals.push_back(VE.getTypeID(*I)); 462 463 if (ST->isLiteral()) { 464 Code = bitc::TYPE_CODE_STRUCT_ANON; 465 AbbrevToUse = StructAnonAbbrev; 466 } else { 467 if (ST->isOpaque()) { 468 Code = bitc::TYPE_CODE_OPAQUE; 469 } else { 470 Code = bitc::TYPE_CODE_STRUCT_NAMED; 471 AbbrevToUse = StructNamedAbbrev; 472 } 473 474 // Emit the name if it is present. 475 if (!ST->getName().empty()) 476 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 477 StructNameAbbrev, Stream); 478 } 479 break; 480 } 481 case Type::ArrayTyID: { 482 ArrayType *AT = cast<ArrayType>(T); 483 // ARRAY: [numelts, eltty] 484 Code = bitc::TYPE_CODE_ARRAY; 485 TypeVals.push_back(AT->getNumElements()); 486 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 487 AbbrevToUse = ArrayAbbrev; 488 break; 489 } 490 case Type::VectorTyID: { 491 VectorType *VT = cast<VectorType>(T); 492 // VECTOR [numelts, eltty] 493 Code = bitc::TYPE_CODE_VECTOR; 494 TypeVals.push_back(VT->getNumElements()); 495 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 496 break; 497 } 498 } 499 500 // Emit the finished record. 501 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 502 TypeVals.clear(); 503 } 504 505 Stream.ExitBlock(); 506 } 507 508 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 509 switch (Linkage) { 510 case GlobalValue::ExternalLinkage: 511 return 0; 512 case GlobalValue::WeakAnyLinkage: 513 return 16; 514 case GlobalValue::AppendingLinkage: 515 return 2; 516 case GlobalValue::InternalLinkage: 517 return 3; 518 case GlobalValue::LinkOnceAnyLinkage: 519 return 18; 520 case GlobalValue::ExternalWeakLinkage: 521 return 7; 522 case GlobalValue::CommonLinkage: 523 return 8; 524 case GlobalValue::PrivateLinkage: 525 return 9; 526 case GlobalValue::WeakODRLinkage: 527 return 17; 528 case GlobalValue::LinkOnceODRLinkage: 529 return 19; 530 case GlobalValue::AvailableExternallyLinkage: 531 return 12; 532 } 533 llvm_unreachable("Invalid linkage"); 534 } 535 536 static unsigned getEncodedLinkage(const GlobalValue &GV) { 537 return getEncodedLinkage(GV.getLinkage()); 538 } 539 540 static unsigned getEncodedVisibility(const GlobalValue &GV) { 541 switch (GV.getVisibility()) { 542 case GlobalValue::DefaultVisibility: return 0; 543 case GlobalValue::HiddenVisibility: return 1; 544 case GlobalValue::ProtectedVisibility: return 2; 545 } 546 llvm_unreachable("Invalid visibility"); 547 } 548 549 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 550 switch (GV.getDLLStorageClass()) { 551 case GlobalValue::DefaultStorageClass: return 0; 552 case GlobalValue::DLLImportStorageClass: return 1; 553 case GlobalValue::DLLExportStorageClass: return 2; 554 } 555 llvm_unreachable("Invalid DLL storage class"); 556 } 557 558 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 559 switch (GV.getThreadLocalMode()) { 560 case GlobalVariable::NotThreadLocal: return 0; 561 case GlobalVariable::GeneralDynamicTLSModel: return 1; 562 case GlobalVariable::LocalDynamicTLSModel: return 2; 563 case GlobalVariable::InitialExecTLSModel: return 3; 564 case GlobalVariable::LocalExecTLSModel: return 4; 565 } 566 llvm_unreachable("Invalid TLS model"); 567 } 568 569 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 570 switch (C.getSelectionKind()) { 571 case Comdat::Any: 572 return bitc::COMDAT_SELECTION_KIND_ANY; 573 case Comdat::ExactMatch: 574 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 575 case Comdat::Largest: 576 return bitc::COMDAT_SELECTION_KIND_LARGEST; 577 case Comdat::NoDuplicates: 578 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 579 case Comdat::SameSize: 580 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 581 } 582 llvm_unreachable("Invalid selection kind"); 583 } 584 585 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 586 SmallVector<unsigned, 64> Vals; 587 for (const Comdat *C : VE.getComdats()) { 588 // COMDAT: [selection_kind, name] 589 Vals.push_back(getEncodedComdatSelectionKind(*C)); 590 size_t Size = C->getName().size(); 591 assert(isUInt<32>(Size)); 592 Vals.push_back(Size); 593 for (char Chr : C->getName()) 594 Vals.push_back((unsigned char)Chr); 595 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 596 Vals.clear(); 597 } 598 } 599 600 /// Write a record that will eventually hold the word offset of the 601 /// module-level VST. For now the offset is 0, which will be backpatched 602 /// after the real VST is written. Returns the bit offset to backpatch. 603 static uint64_t WriteValueSymbolTableForwardDecl(BitstreamWriter &Stream) { 604 // Write a placeholder value in for the offset of the real VST, 605 // which is written after the function blocks so that it can include 606 // the offset of each function. The placeholder offset will be 607 // updated when the real VST is written. 608 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 609 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 610 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 611 // hold the real VST offset. Must use fixed instead of VBR as we don't 612 // know how many VBR chunks to reserve ahead of time. 613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 614 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv); 615 616 // Emit the placeholder 617 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 618 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 619 620 // Compute and return the bit offset to the placeholder, which will be 621 // patched when the real VST is written. We can simply subtract the 32-bit 622 // fixed size from the current bit number to get the location to backpatch. 623 return Stream.GetCurrentBitNo() - 32; 624 } 625 626 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 627 628 /// Determine the encoding to use for the given string name and length. 629 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 630 bool isChar6 = true; 631 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 632 if (isChar6) 633 isChar6 = BitCodeAbbrevOp::isChar6(*C); 634 if ((unsigned char)*C & 128) 635 // don't bother scanning the rest. 636 return SE_Fixed8; 637 } 638 if (isChar6) 639 return SE_Char6; 640 else 641 return SE_Fixed7; 642 } 643 644 /// Emit top-level description of module, including target triple, inline asm, 645 /// descriptors for global variables, and function prototype info. 646 /// Returns the bit offset to backpatch with the location of the real VST. 647 static uint64_t WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 648 BitstreamWriter &Stream) { 649 // Emit various pieces of data attached to a module. 650 if (!M->getTargetTriple().empty()) 651 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 652 0/*TODO*/, Stream); 653 const std::string &DL = M->getDataLayoutStr(); 654 if (!DL.empty()) 655 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 656 if (!M->getModuleInlineAsm().empty()) 657 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 658 0/*TODO*/, Stream); 659 660 // Emit information about sections and GC, computing how many there are. Also 661 // compute the maximum alignment value. 662 std::map<std::string, unsigned> SectionMap; 663 std::map<std::string, unsigned> GCMap; 664 unsigned MaxAlignment = 0; 665 unsigned MaxGlobalType = 0; 666 for (const GlobalValue &GV : M->globals()) { 667 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 668 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 669 if (GV.hasSection()) { 670 // Give section names unique ID's. 671 unsigned &Entry = SectionMap[GV.getSection()]; 672 if (!Entry) { 673 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 674 0/*TODO*/, Stream); 675 Entry = SectionMap.size(); 676 } 677 } 678 } 679 for (const Function &F : *M) { 680 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 681 if (F.hasSection()) { 682 // Give section names unique ID's. 683 unsigned &Entry = SectionMap[F.getSection()]; 684 if (!Entry) { 685 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 686 0/*TODO*/, Stream); 687 Entry = SectionMap.size(); 688 } 689 } 690 if (F.hasGC()) { 691 // Same for GC names. 692 unsigned &Entry = GCMap[F.getGC()]; 693 if (!Entry) { 694 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 695 0/*TODO*/, Stream); 696 Entry = GCMap.size(); 697 } 698 } 699 } 700 701 // Emit abbrev for globals, now that we know # sections and max alignment. 702 unsigned SimpleGVarAbbrev = 0; 703 if (!M->global_empty()) { 704 // Add an abbrev for common globals with no visibility or thread localness. 705 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 706 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 707 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 708 Log2_32_Ceil(MaxGlobalType+1))); 709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 710 //| explicitType << 1 711 //| constant 712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 714 if (MaxAlignment == 0) // Alignment. 715 Abbv->Add(BitCodeAbbrevOp(0)); 716 else { 717 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 718 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 719 Log2_32_Ceil(MaxEncAlignment+1))); 720 } 721 if (SectionMap.empty()) // Section. 722 Abbv->Add(BitCodeAbbrevOp(0)); 723 else 724 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 725 Log2_32_Ceil(SectionMap.size()+1))); 726 // Don't bother emitting vis + thread local. 727 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 728 } 729 730 // Emit the global variable information. 731 SmallVector<unsigned, 64> Vals; 732 for (const GlobalVariable &GV : M->globals()) { 733 unsigned AbbrevToUse = 0; 734 735 // GLOBALVAR: [type, isconst, initid, 736 // linkage, alignment, section, visibility, threadlocal, 737 // unnamed_addr, externally_initialized, dllstorageclass, 738 // comdat] 739 Vals.push_back(VE.getTypeID(GV.getValueType())); 740 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 741 Vals.push_back(GV.isDeclaration() ? 0 : 742 (VE.getValueID(GV.getInitializer()) + 1)); 743 Vals.push_back(getEncodedLinkage(GV)); 744 Vals.push_back(Log2_32(GV.getAlignment())+1); 745 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 746 if (GV.isThreadLocal() || 747 GV.getVisibility() != GlobalValue::DefaultVisibility || 748 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 749 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 750 GV.hasComdat()) { 751 Vals.push_back(getEncodedVisibility(GV)); 752 Vals.push_back(getEncodedThreadLocalMode(GV)); 753 Vals.push_back(GV.hasUnnamedAddr()); 754 Vals.push_back(GV.isExternallyInitialized()); 755 Vals.push_back(getEncodedDLLStorageClass(GV)); 756 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 757 } else { 758 AbbrevToUse = SimpleGVarAbbrev; 759 } 760 761 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 762 Vals.clear(); 763 } 764 765 // Emit the function proto information. 766 for (const Function &F : *M) { 767 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 768 // section, visibility, gc, unnamed_addr, prologuedata, 769 // dllstorageclass, comdat, prefixdata, personalityfn] 770 Vals.push_back(VE.getTypeID(F.getFunctionType())); 771 Vals.push_back(F.getCallingConv()); 772 Vals.push_back(F.isDeclaration()); 773 Vals.push_back(getEncodedLinkage(F)); 774 Vals.push_back(VE.getAttributeID(F.getAttributes())); 775 Vals.push_back(Log2_32(F.getAlignment())+1); 776 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 777 Vals.push_back(getEncodedVisibility(F)); 778 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 779 Vals.push_back(F.hasUnnamedAddr()); 780 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 781 : 0); 782 Vals.push_back(getEncodedDLLStorageClass(F)); 783 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 784 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 785 : 0); 786 Vals.push_back( 787 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 788 789 unsigned AbbrevToUse = 0; 790 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 791 Vals.clear(); 792 } 793 794 // Emit the alias information. 795 for (const GlobalAlias &A : M->aliases()) { 796 // ALIAS: [alias type, aliasee val#, linkage, visibility] 797 Vals.push_back(VE.getTypeID(A.getValueType())); 798 Vals.push_back(A.getType()->getAddressSpace()); 799 Vals.push_back(VE.getValueID(A.getAliasee())); 800 Vals.push_back(getEncodedLinkage(A)); 801 Vals.push_back(getEncodedVisibility(A)); 802 Vals.push_back(getEncodedDLLStorageClass(A)); 803 Vals.push_back(getEncodedThreadLocalMode(A)); 804 Vals.push_back(A.hasUnnamedAddr()); 805 unsigned AbbrevToUse = 0; 806 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 807 Vals.clear(); 808 } 809 810 // Emit the module's source file name. 811 { 812 StringEncoding Bits = getStringEncoding(M->getSourceFileName().data(), 813 M->getSourceFileName().size()); 814 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 815 if (Bits == SE_Char6) 816 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 817 else if (Bits == SE_Fixed7) 818 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 819 820 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 821 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 822 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 824 Abbv->Add(AbbrevOpToUse); 825 unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv); 826 827 for (const auto P : M->getSourceFileName()) 828 Vals.push_back((unsigned char)P); 829 830 // Emit the finished record. 831 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 832 Vals.clear(); 833 } 834 835 // If we have a VST, write the VSTOFFSET record placeholder and return 836 // its offset. 837 if (M->getValueSymbolTable().empty()) 838 return 0; 839 return WriteValueSymbolTableForwardDecl(Stream); 840 } 841 842 static uint64_t GetOptimizationFlags(const Value *V) { 843 uint64_t Flags = 0; 844 845 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 846 if (OBO->hasNoSignedWrap()) 847 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 848 if (OBO->hasNoUnsignedWrap()) 849 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 850 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 851 if (PEO->isExact()) 852 Flags |= 1 << bitc::PEO_EXACT; 853 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 854 if (FPMO->hasUnsafeAlgebra()) 855 Flags |= FastMathFlags::UnsafeAlgebra; 856 if (FPMO->hasNoNaNs()) 857 Flags |= FastMathFlags::NoNaNs; 858 if (FPMO->hasNoInfs()) 859 Flags |= FastMathFlags::NoInfs; 860 if (FPMO->hasNoSignedZeros()) 861 Flags |= FastMathFlags::NoSignedZeros; 862 if (FPMO->hasAllowReciprocal()) 863 Flags |= FastMathFlags::AllowReciprocal; 864 } 865 866 return Flags; 867 } 868 869 static void writeValueAsMetadata(const ValueAsMetadata *MD, 870 const ValueEnumerator &VE, 871 BitstreamWriter &Stream, 872 SmallVectorImpl<uint64_t> &Record) { 873 // Mimic an MDNode with a value as one operand. 874 Value *V = MD->getValue(); 875 Record.push_back(VE.getTypeID(V->getType())); 876 Record.push_back(VE.getValueID(V)); 877 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 878 Record.clear(); 879 } 880 881 static void writeMDTuple(const MDTuple *N, const ValueEnumerator &VE, 882 BitstreamWriter &Stream, 883 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 884 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 885 Metadata *MD = N->getOperand(i); 886 assert(!(MD && isa<LocalAsMetadata>(MD)) && 887 "Unexpected function-local metadata"); 888 Record.push_back(VE.getMetadataOrNullID(MD)); 889 } 890 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 891 : bitc::METADATA_NODE, 892 Record, Abbrev); 893 Record.clear(); 894 } 895 896 static unsigned createDILocationAbbrev(BitstreamWriter &Stream) { 897 // Assume the column is usually under 128, and always output the inlined-at 898 // location (it's never more expensive than building an array size 1). 899 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 900 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 902 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 903 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 904 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 905 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 906 return Stream.EmitAbbrev(Abbv); 907 } 908 909 static void writeDILocation(const DILocation *N, const ValueEnumerator &VE, 910 BitstreamWriter &Stream, 911 SmallVectorImpl<uint64_t> &Record, 912 unsigned &Abbrev) { 913 if (!Abbrev) 914 Abbrev = createDILocationAbbrev(Stream); 915 916 Record.push_back(N->isDistinct()); 917 Record.push_back(N->getLine()); 918 Record.push_back(N->getColumn()); 919 Record.push_back(VE.getMetadataID(N->getScope())); 920 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 921 922 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 923 Record.clear(); 924 } 925 926 static unsigned createGenericDINodeAbbrev(BitstreamWriter &Stream) { 927 // Assume the column is usually under 128, and always output the inlined-at 928 // location (it's never more expensive than building an array size 1). 929 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 930 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 932 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 934 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 935 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 937 return Stream.EmitAbbrev(Abbv); 938 } 939 940 static void writeGenericDINode(const GenericDINode *N, 941 const ValueEnumerator &VE, 942 BitstreamWriter &Stream, 943 SmallVectorImpl<uint64_t> &Record, 944 unsigned &Abbrev) { 945 if (!Abbrev) 946 Abbrev = createGenericDINodeAbbrev(Stream); 947 948 Record.push_back(N->isDistinct()); 949 Record.push_back(N->getTag()); 950 Record.push_back(0); // Per-tag version field; unused for now. 951 952 for (auto &I : N->operands()) 953 Record.push_back(VE.getMetadataOrNullID(I)); 954 955 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 956 Record.clear(); 957 } 958 959 static uint64_t rotateSign(int64_t I) { 960 uint64_t U = I; 961 return I < 0 ? ~(U << 1) : U << 1; 962 } 963 964 static void writeDISubrange(const DISubrange *N, const ValueEnumerator &, 965 BitstreamWriter &Stream, 966 SmallVectorImpl<uint64_t> &Record, 967 unsigned Abbrev) { 968 Record.push_back(N->isDistinct()); 969 Record.push_back(N->getCount()); 970 Record.push_back(rotateSign(N->getLowerBound())); 971 972 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 973 Record.clear(); 974 } 975 976 static void writeDIEnumerator(const DIEnumerator *N, const ValueEnumerator &VE, 977 BitstreamWriter &Stream, 978 SmallVectorImpl<uint64_t> &Record, 979 unsigned Abbrev) { 980 Record.push_back(N->isDistinct()); 981 Record.push_back(rotateSign(N->getValue())); 982 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 983 984 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 985 Record.clear(); 986 } 987 988 static void writeDIBasicType(const DIBasicType *N, const ValueEnumerator &VE, 989 BitstreamWriter &Stream, 990 SmallVectorImpl<uint64_t> &Record, 991 unsigned Abbrev) { 992 Record.push_back(N->isDistinct()); 993 Record.push_back(N->getTag()); 994 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 995 Record.push_back(N->getSizeInBits()); 996 Record.push_back(N->getAlignInBits()); 997 Record.push_back(N->getEncoding()); 998 999 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1000 Record.clear(); 1001 } 1002 1003 static void writeDIDerivedType(const DIDerivedType *N, 1004 const ValueEnumerator &VE, 1005 BitstreamWriter &Stream, 1006 SmallVectorImpl<uint64_t> &Record, 1007 unsigned Abbrev) { 1008 Record.push_back(N->isDistinct()); 1009 Record.push_back(N->getTag()); 1010 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1011 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1012 Record.push_back(N->getLine()); 1013 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1014 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1015 Record.push_back(N->getSizeInBits()); 1016 Record.push_back(N->getAlignInBits()); 1017 Record.push_back(N->getOffsetInBits()); 1018 Record.push_back(N->getFlags()); 1019 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1020 1021 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1022 Record.clear(); 1023 } 1024 1025 static void writeDICompositeType(const DICompositeType *N, 1026 const ValueEnumerator &VE, 1027 BitstreamWriter &Stream, 1028 SmallVectorImpl<uint64_t> &Record, 1029 unsigned Abbrev) { 1030 Record.push_back(N->isDistinct()); 1031 Record.push_back(N->getTag()); 1032 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1033 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1034 Record.push_back(N->getLine()); 1035 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1036 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1037 Record.push_back(N->getSizeInBits()); 1038 Record.push_back(N->getAlignInBits()); 1039 Record.push_back(N->getOffsetInBits()); 1040 Record.push_back(N->getFlags()); 1041 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1042 Record.push_back(N->getRuntimeLang()); 1043 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1044 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1045 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1046 1047 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1048 Record.clear(); 1049 } 1050 1051 static void writeDISubroutineType(const DISubroutineType *N, 1052 const ValueEnumerator &VE, 1053 BitstreamWriter &Stream, 1054 SmallVectorImpl<uint64_t> &Record, 1055 unsigned Abbrev) { 1056 Record.push_back(N->isDistinct()); 1057 Record.push_back(N->getFlags()); 1058 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1059 1060 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1061 Record.clear(); 1062 } 1063 1064 static void writeDIFile(const DIFile *N, const ValueEnumerator &VE, 1065 BitstreamWriter &Stream, 1066 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1067 Record.push_back(N->isDistinct()); 1068 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1069 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1070 1071 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1072 Record.clear(); 1073 } 1074 1075 static void writeDICompileUnit(const DICompileUnit *N, 1076 const ValueEnumerator &VE, 1077 BitstreamWriter &Stream, 1078 SmallVectorImpl<uint64_t> &Record, 1079 unsigned Abbrev) { 1080 assert(N->isDistinct() && "Expected distinct compile units"); 1081 Record.push_back(/* IsDistinct */ true); 1082 Record.push_back(N->getSourceLanguage()); 1083 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1084 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1085 Record.push_back(N->isOptimized()); 1086 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1087 Record.push_back(N->getRuntimeVersion()); 1088 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1089 Record.push_back(N->getEmissionKind()); 1090 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1091 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1092 Record.push_back(VE.getMetadataOrNullID(N->getSubprograms().get())); 1093 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1094 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1095 Record.push_back(N->getDWOId()); 1096 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1097 1098 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1099 Record.clear(); 1100 } 1101 1102 static void writeDISubprogram(const DISubprogram *N, const ValueEnumerator &VE, 1103 BitstreamWriter &Stream, 1104 SmallVectorImpl<uint64_t> &Record, 1105 unsigned Abbrev) { 1106 Record.push_back(N->isDistinct()); 1107 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1108 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1109 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1110 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1111 Record.push_back(N->getLine()); 1112 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1113 Record.push_back(N->isLocalToUnit()); 1114 Record.push_back(N->isDefinition()); 1115 Record.push_back(N->getScopeLine()); 1116 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1117 Record.push_back(N->getVirtuality()); 1118 Record.push_back(N->getVirtualIndex()); 1119 Record.push_back(N->getFlags()); 1120 Record.push_back(N->isOptimized()); 1121 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1122 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1123 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1124 1125 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1126 Record.clear(); 1127 } 1128 1129 static void writeDILexicalBlock(const DILexicalBlock *N, 1130 const ValueEnumerator &VE, 1131 BitstreamWriter &Stream, 1132 SmallVectorImpl<uint64_t> &Record, 1133 unsigned Abbrev) { 1134 Record.push_back(N->isDistinct()); 1135 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1136 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1137 Record.push_back(N->getLine()); 1138 Record.push_back(N->getColumn()); 1139 1140 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1141 Record.clear(); 1142 } 1143 1144 static void writeDILexicalBlockFile(const DILexicalBlockFile *N, 1145 const ValueEnumerator &VE, 1146 BitstreamWriter &Stream, 1147 SmallVectorImpl<uint64_t> &Record, 1148 unsigned Abbrev) { 1149 Record.push_back(N->isDistinct()); 1150 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1151 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1152 Record.push_back(N->getDiscriminator()); 1153 1154 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1155 Record.clear(); 1156 } 1157 1158 static void writeDINamespace(const DINamespace *N, const ValueEnumerator &VE, 1159 BitstreamWriter &Stream, 1160 SmallVectorImpl<uint64_t> &Record, 1161 unsigned Abbrev) { 1162 Record.push_back(N->isDistinct()); 1163 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1164 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1165 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1166 Record.push_back(N->getLine()); 1167 1168 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1169 Record.clear(); 1170 } 1171 1172 static void writeDIMacro(const DIMacro *N, const ValueEnumerator &VE, 1173 BitstreamWriter &Stream, 1174 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1175 Record.push_back(N->isDistinct()); 1176 Record.push_back(N->getMacinfoType()); 1177 Record.push_back(N->getLine()); 1178 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1179 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1180 1181 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1182 Record.clear(); 1183 } 1184 1185 static void writeDIMacroFile(const DIMacroFile *N, const ValueEnumerator &VE, 1186 BitstreamWriter &Stream, 1187 SmallVectorImpl<uint64_t> &Record, 1188 unsigned Abbrev) { 1189 Record.push_back(N->isDistinct()); 1190 Record.push_back(N->getMacinfoType()); 1191 Record.push_back(N->getLine()); 1192 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1193 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1194 1195 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1196 Record.clear(); 1197 } 1198 1199 static void writeDIModule(const DIModule *N, const ValueEnumerator &VE, 1200 BitstreamWriter &Stream, 1201 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1202 Record.push_back(N->isDistinct()); 1203 for (auto &I : N->operands()) 1204 Record.push_back(VE.getMetadataOrNullID(I)); 1205 1206 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1207 Record.clear(); 1208 } 1209 1210 static void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 1211 const ValueEnumerator &VE, 1212 BitstreamWriter &Stream, 1213 SmallVectorImpl<uint64_t> &Record, 1214 unsigned Abbrev) { 1215 Record.push_back(N->isDistinct()); 1216 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1217 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1218 1219 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1220 Record.clear(); 1221 } 1222 1223 static void writeDITemplateValueParameter(const DITemplateValueParameter *N, 1224 const ValueEnumerator &VE, 1225 BitstreamWriter &Stream, 1226 SmallVectorImpl<uint64_t> &Record, 1227 unsigned Abbrev) { 1228 Record.push_back(N->isDistinct()); 1229 Record.push_back(N->getTag()); 1230 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1231 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1232 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1233 1234 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1235 Record.clear(); 1236 } 1237 1238 static void writeDIGlobalVariable(const DIGlobalVariable *N, 1239 const ValueEnumerator &VE, 1240 BitstreamWriter &Stream, 1241 SmallVectorImpl<uint64_t> &Record, 1242 unsigned Abbrev) { 1243 Record.push_back(N->isDistinct()); 1244 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1245 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1246 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1247 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1248 Record.push_back(N->getLine()); 1249 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1250 Record.push_back(N->isLocalToUnit()); 1251 Record.push_back(N->isDefinition()); 1252 Record.push_back(VE.getMetadataOrNullID(N->getRawVariable())); 1253 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1254 1255 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1256 Record.clear(); 1257 } 1258 1259 static void writeDILocalVariable(const DILocalVariable *N, 1260 const ValueEnumerator &VE, 1261 BitstreamWriter &Stream, 1262 SmallVectorImpl<uint64_t> &Record, 1263 unsigned Abbrev) { 1264 Record.push_back(N->isDistinct()); 1265 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1266 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1267 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1268 Record.push_back(N->getLine()); 1269 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1270 Record.push_back(N->getArg()); 1271 Record.push_back(N->getFlags()); 1272 1273 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1274 Record.clear(); 1275 } 1276 1277 static void writeDIExpression(const DIExpression *N, const ValueEnumerator &, 1278 BitstreamWriter &Stream, 1279 SmallVectorImpl<uint64_t> &Record, 1280 unsigned Abbrev) { 1281 Record.reserve(N->getElements().size() + 1); 1282 1283 Record.push_back(N->isDistinct()); 1284 Record.append(N->elements_begin(), N->elements_end()); 1285 1286 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1287 Record.clear(); 1288 } 1289 1290 static void writeDIObjCProperty(const DIObjCProperty *N, 1291 const ValueEnumerator &VE, 1292 BitstreamWriter &Stream, 1293 SmallVectorImpl<uint64_t> &Record, 1294 unsigned Abbrev) { 1295 Record.push_back(N->isDistinct()); 1296 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1297 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1298 Record.push_back(N->getLine()); 1299 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1300 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1301 Record.push_back(N->getAttributes()); 1302 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1303 1304 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1305 Record.clear(); 1306 } 1307 1308 static void writeDIImportedEntity(const DIImportedEntity *N, 1309 const ValueEnumerator &VE, 1310 BitstreamWriter &Stream, 1311 SmallVectorImpl<uint64_t> &Record, 1312 unsigned Abbrev) { 1313 Record.push_back(N->isDistinct()); 1314 Record.push_back(N->getTag()); 1315 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1316 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1317 Record.push_back(N->getLine()); 1318 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1319 1320 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1321 Record.clear(); 1322 } 1323 1324 static unsigned createNamedMetadataAbbrev(BitstreamWriter &Stream) { 1325 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1326 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1329 return Stream.EmitAbbrev(Abbv); 1330 } 1331 1332 static void writeNamedMetadata(const Module &M, const ValueEnumerator &VE, 1333 BitstreamWriter &Stream, 1334 SmallVectorImpl<uint64_t> &Record) { 1335 if (M.named_metadata_empty()) 1336 return; 1337 1338 unsigned Abbrev = createNamedMetadataAbbrev(Stream); 1339 for (const NamedMDNode &NMD : M.named_metadata()) { 1340 // Write name. 1341 StringRef Str = NMD.getName(); 1342 Record.append(Str.bytes_begin(), Str.bytes_end()); 1343 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1344 Record.clear(); 1345 1346 // Write named metadata operands. 1347 for (const MDNode *N : NMD.operands()) 1348 Record.push_back(VE.getMetadataID(N)); 1349 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1350 Record.clear(); 1351 } 1352 } 1353 1354 static unsigned createMetadataStringsAbbrev(BitstreamWriter &Stream) { 1355 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1356 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1360 return Stream.EmitAbbrev(Abbv); 1361 } 1362 1363 /// Write out a record for MDString. 1364 /// 1365 /// All the metadata strings in a metadata block are emitted in a single 1366 /// record. The sizes and strings themselves are shoved into a blob. 1367 static void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 1368 BitstreamWriter &Stream, 1369 SmallVectorImpl<uint64_t> &Record) { 1370 if (Strings.empty()) 1371 return; 1372 1373 // Start the record with the number of strings. 1374 Record.push_back(bitc::METADATA_STRINGS); 1375 Record.push_back(Strings.size()); 1376 1377 // Emit the sizes of the strings in the blob. 1378 SmallString<256> Blob; 1379 { 1380 BitstreamWriter W(Blob); 1381 for (const Metadata *MD : Strings) 1382 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1383 W.FlushToWord(); 1384 } 1385 1386 // Add the offset to the strings to the record. 1387 Record.push_back(Blob.size()); 1388 1389 // Add the strings to the blob. 1390 for (const Metadata *MD : Strings) 1391 Blob.append(cast<MDString>(MD)->getString()); 1392 1393 // Emit the final record. 1394 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(Stream), Record, Blob); 1395 Record.clear(); 1396 } 1397 1398 static void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 1399 const ValueEnumerator &VE, 1400 BitstreamWriter &Stream, 1401 SmallVectorImpl<uint64_t> &Record) { 1402 if (MDs.empty()) 1403 return; 1404 1405 // Initialize MDNode abbreviations. 1406 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1407 #include "llvm/IR/Metadata.def" 1408 1409 for (const Metadata *MD : MDs) { 1410 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1411 assert(N->isResolved() && "Expected forward references to be resolved"); 1412 1413 switch (N->getMetadataID()) { 1414 default: 1415 llvm_unreachable("Invalid MDNode subclass"); 1416 #define HANDLE_MDNODE_LEAF(CLASS) \ 1417 case Metadata::CLASS##Kind: \ 1418 write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 1419 continue; 1420 #include "llvm/IR/Metadata.def" 1421 } 1422 } 1423 writeValueAsMetadata(cast<ValueAsMetadata>(MD), VE, Stream, Record); 1424 } 1425 } 1426 1427 static void writeModuleMetadata(const Module &M, 1428 const ValueEnumerator &VE, 1429 BitstreamWriter &Stream) { 1430 if (VE.getMDs().empty() && M.named_metadata_empty()) 1431 return; 1432 1433 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1434 SmallVector<uint64_t, 64> Record; 1435 writeMetadataStrings(VE.getMDStrings(), Stream, Record); 1436 writeMetadataRecords(VE.getNonMDStrings(), VE, Stream, Record); 1437 writeNamedMetadata(M, VE, Stream, Record); 1438 Stream.ExitBlock(); 1439 } 1440 1441 static void writeFunctionMetadata(const Function &F, const ValueEnumerator &VE, 1442 BitstreamWriter &Stream) { 1443 ArrayRef<const Metadata *> MDs = VE.getFunctionMDs(); 1444 if (MDs.empty()) 1445 return; 1446 1447 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1448 SmallVector<uint64_t, 64> Record; 1449 writeMetadataRecords(MDs, VE, Stream, Record); 1450 Stream.ExitBlock(); 1451 } 1452 1453 static void WriteMetadataAttachment(const Function &F, 1454 const ValueEnumerator &VE, 1455 BitstreamWriter &Stream) { 1456 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1457 1458 SmallVector<uint64_t, 64> Record; 1459 1460 // Write metadata attachments 1461 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1462 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1463 F.getAllMetadata(MDs); 1464 if (!MDs.empty()) { 1465 for (const auto &I : MDs) { 1466 Record.push_back(I.first); 1467 Record.push_back(VE.getMetadataID(I.second)); 1468 } 1469 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1470 Record.clear(); 1471 } 1472 1473 for (const BasicBlock &BB : F) 1474 for (const Instruction &I : BB) { 1475 MDs.clear(); 1476 I.getAllMetadataOtherThanDebugLoc(MDs); 1477 1478 // If no metadata, ignore instruction. 1479 if (MDs.empty()) continue; 1480 1481 Record.push_back(VE.getInstructionID(&I)); 1482 1483 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1484 Record.push_back(MDs[i].first); 1485 Record.push_back(VE.getMetadataID(MDs[i].second)); 1486 } 1487 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1488 Record.clear(); 1489 } 1490 1491 Stream.ExitBlock(); 1492 } 1493 1494 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 1495 SmallVector<uint64_t, 64> Record; 1496 1497 // Write metadata kinds 1498 // METADATA_KIND - [n x [id, name]] 1499 SmallVector<StringRef, 8> Names; 1500 M->getMDKindNames(Names); 1501 1502 if (Names.empty()) return; 1503 1504 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 1505 1506 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1507 Record.push_back(MDKindID); 1508 StringRef KName = Names[MDKindID]; 1509 Record.append(KName.begin(), KName.end()); 1510 1511 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1512 Record.clear(); 1513 } 1514 1515 Stream.ExitBlock(); 1516 } 1517 1518 static void WriteOperandBundleTags(const Module *M, BitstreamWriter &Stream) { 1519 // Write metadata kinds 1520 // 1521 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 1522 // 1523 // OPERAND_BUNDLE_TAG - [strchr x N] 1524 1525 SmallVector<StringRef, 8> Tags; 1526 M->getOperandBundleTags(Tags); 1527 1528 if (Tags.empty()) 1529 return; 1530 1531 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 1532 1533 SmallVector<uint64_t, 64> Record; 1534 1535 for (auto Tag : Tags) { 1536 Record.append(Tag.begin(), Tag.end()); 1537 1538 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 1539 Record.clear(); 1540 } 1541 1542 Stream.ExitBlock(); 1543 } 1544 1545 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1546 if ((int64_t)V >= 0) 1547 Vals.push_back(V << 1); 1548 else 1549 Vals.push_back((-V << 1) | 1); 1550 } 1551 1552 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1553 const ValueEnumerator &VE, 1554 BitstreamWriter &Stream, bool isGlobal) { 1555 if (FirstVal == LastVal) return; 1556 1557 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1558 1559 unsigned AggregateAbbrev = 0; 1560 unsigned String8Abbrev = 0; 1561 unsigned CString7Abbrev = 0; 1562 unsigned CString6Abbrev = 0; 1563 // If this is a constant pool for the module, emit module-specific abbrevs. 1564 if (isGlobal) { 1565 // Abbrev for CST_CODE_AGGREGATE. 1566 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1567 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1568 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1570 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1571 1572 // Abbrev for CST_CODE_STRING. 1573 Abbv = new BitCodeAbbrev(); 1574 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1575 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1576 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1577 String8Abbrev = Stream.EmitAbbrev(Abbv); 1578 // Abbrev for CST_CODE_CSTRING. 1579 Abbv = new BitCodeAbbrev(); 1580 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1583 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1584 // Abbrev for CST_CODE_CSTRING. 1585 Abbv = new BitCodeAbbrev(); 1586 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1587 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1588 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1589 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1590 } 1591 1592 SmallVector<uint64_t, 64> Record; 1593 1594 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1595 Type *LastTy = nullptr; 1596 for (unsigned i = FirstVal; i != LastVal; ++i) { 1597 const Value *V = Vals[i].first; 1598 // If we need to switch types, do so now. 1599 if (V->getType() != LastTy) { 1600 LastTy = V->getType(); 1601 Record.push_back(VE.getTypeID(LastTy)); 1602 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1603 CONSTANTS_SETTYPE_ABBREV); 1604 Record.clear(); 1605 } 1606 1607 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1608 Record.push_back(unsigned(IA->hasSideEffects()) | 1609 unsigned(IA->isAlignStack()) << 1 | 1610 unsigned(IA->getDialect()&1) << 2); 1611 1612 // Add the asm string. 1613 const std::string &AsmStr = IA->getAsmString(); 1614 Record.push_back(AsmStr.size()); 1615 Record.append(AsmStr.begin(), AsmStr.end()); 1616 1617 // Add the constraint string. 1618 const std::string &ConstraintStr = IA->getConstraintString(); 1619 Record.push_back(ConstraintStr.size()); 1620 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1621 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1622 Record.clear(); 1623 continue; 1624 } 1625 const Constant *C = cast<Constant>(V); 1626 unsigned Code = -1U; 1627 unsigned AbbrevToUse = 0; 1628 if (C->isNullValue()) { 1629 Code = bitc::CST_CODE_NULL; 1630 } else if (isa<UndefValue>(C)) { 1631 Code = bitc::CST_CODE_UNDEF; 1632 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1633 if (IV->getBitWidth() <= 64) { 1634 uint64_t V = IV->getSExtValue(); 1635 emitSignedInt64(Record, V); 1636 Code = bitc::CST_CODE_INTEGER; 1637 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1638 } else { // Wide integers, > 64 bits in size. 1639 // We have an arbitrary precision integer value to write whose 1640 // bit width is > 64. However, in canonical unsigned integer 1641 // format it is likely that the high bits are going to be zero. 1642 // So, we only write the number of active words. 1643 unsigned NWords = IV->getValue().getActiveWords(); 1644 const uint64_t *RawWords = IV->getValue().getRawData(); 1645 for (unsigned i = 0; i != NWords; ++i) { 1646 emitSignedInt64(Record, RawWords[i]); 1647 } 1648 Code = bitc::CST_CODE_WIDE_INTEGER; 1649 } 1650 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1651 Code = bitc::CST_CODE_FLOAT; 1652 Type *Ty = CFP->getType(); 1653 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1654 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1655 } else if (Ty->isX86_FP80Ty()) { 1656 // api needed to prevent premature destruction 1657 // bits are not in the same order as a normal i80 APInt, compensate. 1658 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1659 const uint64_t *p = api.getRawData(); 1660 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1661 Record.push_back(p[0] & 0xffffLL); 1662 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1663 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1664 const uint64_t *p = api.getRawData(); 1665 Record.push_back(p[0]); 1666 Record.push_back(p[1]); 1667 } else { 1668 assert (0 && "Unknown FP type!"); 1669 } 1670 } else if (isa<ConstantDataSequential>(C) && 1671 cast<ConstantDataSequential>(C)->isString()) { 1672 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1673 // Emit constant strings specially. 1674 unsigned NumElts = Str->getNumElements(); 1675 // If this is a null-terminated string, use the denser CSTRING encoding. 1676 if (Str->isCString()) { 1677 Code = bitc::CST_CODE_CSTRING; 1678 --NumElts; // Don't encode the null, which isn't allowed by char6. 1679 } else { 1680 Code = bitc::CST_CODE_STRING; 1681 AbbrevToUse = String8Abbrev; 1682 } 1683 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1684 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1685 for (unsigned i = 0; i != NumElts; ++i) { 1686 unsigned char V = Str->getElementAsInteger(i); 1687 Record.push_back(V); 1688 isCStr7 &= (V & 128) == 0; 1689 if (isCStrChar6) 1690 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1691 } 1692 1693 if (isCStrChar6) 1694 AbbrevToUse = CString6Abbrev; 1695 else if (isCStr7) 1696 AbbrevToUse = CString7Abbrev; 1697 } else if (const ConstantDataSequential *CDS = 1698 dyn_cast<ConstantDataSequential>(C)) { 1699 Code = bitc::CST_CODE_DATA; 1700 Type *EltTy = CDS->getType()->getElementType(); 1701 if (isa<IntegerType>(EltTy)) { 1702 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1703 Record.push_back(CDS->getElementAsInteger(i)); 1704 } else { 1705 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1706 Record.push_back( 1707 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 1708 } 1709 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1710 isa<ConstantVector>(C)) { 1711 Code = bitc::CST_CODE_AGGREGATE; 1712 for (const Value *Op : C->operands()) 1713 Record.push_back(VE.getValueID(Op)); 1714 AbbrevToUse = AggregateAbbrev; 1715 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1716 switch (CE->getOpcode()) { 1717 default: 1718 if (Instruction::isCast(CE->getOpcode())) { 1719 Code = bitc::CST_CODE_CE_CAST; 1720 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1721 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1722 Record.push_back(VE.getValueID(C->getOperand(0))); 1723 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1724 } else { 1725 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1726 Code = bitc::CST_CODE_CE_BINOP; 1727 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1728 Record.push_back(VE.getValueID(C->getOperand(0))); 1729 Record.push_back(VE.getValueID(C->getOperand(1))); 1730 uint64_t Flags = GetOptimizationFlags(CE); 1731 if (Flags != 0) 1732 Record.push_back(Flags); 1733 } 1734 break; 1735 case Instruction::GetElementPtr: { 1736 Code = bitc::CST_CODE_CE_GEP; 1737 const auto *GO = cast<GEPOperator>(C); 1738 if (GO->isInBounds()) 1739 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1740 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 1741 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1742 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1743 Record.push_back(VE.getValueID(C->getOperand(i))); 1744 } 1745 break; 1746 } 1747 case Instruction::Select: 1748 Code = bitc::CST_CODE_CE_SELECT; 1749 Record.push_back(VE.getValueID(C->getOperand(0))); 1750 Record.push_back(VE.getValueID(C->getOperand(1))); 1751 Record.push_back(VE.getValueID(C->getOperand(2))); 1752 break; 1753 case Instruction::ExtractElement: 1754 Code = bitc::CST_CODE_CE_EXTRACTELT; 1755 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1756 Record.push_back(VE.getValueID(C->getOperand(0))); 1757 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1758 Record.push_back(VE.getValueID(C->getOperand(1))); 1759 break; 1760 case Instruction::InsertElement: 1761 Code = bitc::CST_CODE_CE_INSERTELT; 1762 Record.push_back(VE.getValueID(C->getOperand(0))); 1763 Record.push_back(VE.getValueID(C->getOperand(1))); 1764 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1765 Record.push_back(VE.getValueID(C->getOperand(2))); 1766 break; 1767 case Instruction::ShuffleVector: 1768 // If the return type and argument types are the same, this is a 1769 // standard shufflevector instruction. If the types are different, 1770 // then the shuffle is widening or truncating the input vectors, and 1771 // the argument type must also be encoded. 1772 if (C->getType() == C->getOperand(0)->getType()) { 1773 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1774 } else { 1775 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1776 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1777 } 1778 Record.push_back(VE.getValueID(C->getOperand(0))); 1779 Record.push_back(VE.getValueID(C->getOperand(1))); 1780 Record.push_back(VE.getValueID(C->getOperand(2))); 1781 break; 1782 case Instruction::ICmp: 1783 case Instruction::FCmp: 1784 Code = bitc::CST_CODE_CE_CMP; 1785 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1786 Record.push_back(VE.getValueID(C->getOperand(0))); 1787 Record.push_back(VE.getValueID(C->getOperand(1))); 1788 Record.push_back(CE->getPredicate()); 1789 break; 1790 } 1791 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1792 Code = bitc::CST_CODE_BLOCKADDRESS; 1793 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1794 Record.push_back(VE.getValueID(BA->getFunction())); 1795 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1796 } else { 1797 #ifndef NDEBUG 1798 C->dump(); 1799 #endif 1800 llvm_unreachable("Unknown constant!"); 1801 } 1802 Stream.EmitRecord(Code, Record, AbbrevToUse); 1803 Record.clear(); 1804 } 1805 1806 Stream.ExitBlock(); 1807 } 1808 1809 static void WriteModuleConstants(const ValueEnumerator &VE, 1810 BitstreamWriter &Stream) { 1811 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1812 1813 // Find the first constant to emit, which is the first non-globalvalue value. 1814 // We know globalvalues have been emitted by WriteModuleInfo. 1815 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1816 if (!isa<GlobalValue>(Vals[i].first)) { 1817 WriteConstants(i, Vals.size(), VE, Stream, true); 1818 return; 1819 } 1820 } 1821 } 1822 1823 /// PushValueAndType - The file has to encode both the value and type id for 1824 /// many values, because we need to know what type to create for forward 1825 /// references. However, most operands are not forward references, so this type 1826 /// field is not needed. 1827 /// 1828 /// This function adds V's value ID to Vals. If the value ID is higher than the 1829 /// instruction ID, then it is a forward reference, and it also includes the 1830 /// type ID. The value ID that is written is encoded relative to the InstID. 1831 static bool PushValueAndType(const Value *V, unsigned InstID, 1832 SmallVectorImpl<unsigned> &Vals, 1833 ValueEnumerator &VE) { 1834 unsigned ValID = VE.getValueID(V); 1835 // Make encoding relative to the InstID. 1836 Vals.push_back(InstID - ValID); 1837 if (ValID >= InstID) { 1838 Vals.push_back(VE.getTypeID(V->getType())); 1839 return true; 1840 } 1841 return false; 1842 } 1843 1844 static void WriteOperandBundles(BitstreamWriter &Stream, ImmutableCallSite CS, 1845 unsigned InstID, ValueEnumerator &VE) { 1846 SmallVector<unsigned, 64> Record; 1847 LLVMContext &C = CS.getInstruction()->getContext(); 1848 1849 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 1850 const auto &Bundle = CS.getOperandBundleAt(i); 1851 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 1852 1853 for (auto &Input : Bundle.Inputs) 1854 PushValueAndType(Input, InstID, Record, VE); 1855 1856 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 1857 Record.clear(); 1858 } 1859 } 1860 1861 /// pushValue - Like PushValueAndType, but where the type of the value is 1862 /// omitted (perhaps it was already encoded in an earlier operand). 1863 static void pushValue(const Value *V, unsigned InstID, 1864 SmallVectorImpl<unsigned> &Vals, 1865 ValueEnumerator &VE) { 1866 unsigned ValID = VE.getValueID(V); 1867 Vals.push_back(InstID - ValID); 1868 } 1869 1870 static void pushValueSigned(const Value *V, unsigned InstID, 1871 SmallVectorImpl<uint64_t> &Vals, 1872 ValueEnumerator &VE) { 1873 unsigned ValID = VE.getValueID(V); 1874 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1875 emitSignedInt64(Vals, diff); 1876 } 1877 1878 /// WriteInstruction - Emit an instruction to the specified stream. 1879 static void WriteInstruction(const Instruction &I, unsigned InstID, 1880 ValueEnumerator &VE, BitstreamWriter &Stream, 1881 SmallVectorImpl<unsigned> &Vals) { 1882 unsigned Code = 0; 1883 unsigned AbbrevToUse = 0; 1884 VE.setInstructionID(&I); 1885 switch (I.getOpcode()) { 1886 default: 1887 if (Instruction::isCast(I.getOpcode())) { 1888 Code = bitc::FUNC_CODE_INST_CAST; 1889 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1890 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1891 Vals.push_back(VE.getTypeID(I.getType())); 1892 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1893 } else { 1894 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1895 Code = bitc::FUNC_CODE_INST_BINOP; 1896 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1897 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1898 pushValue(I.getOperand(1), InstID, Vals, VE); 1899 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1900 uint64_t Flags = GetOptimizationFlags(&I); 1901 if (Flags != 0) { 1902 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1903 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1904 Vals.push_back(Flags); 1905 } 1906 } 1907 break; 1908 1909 case Instruction::GetElementPtr: { 1910 Code = bitc::FUNC_CODE_INST_GEP; 1911 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 1912 auto &GEPInst = cast<GetElementPtrInst>(I); 1913 Vals.push_back(GEPInst.isInBounds()); 1914 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 1915 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1916 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1917 break; 1918 } 1919 case Instruction::ExtractValue: { 1920 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1921 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1922 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1923 Vals.append(EVI->idx_begin(), EVI->idx_end()); 1924 break; 1925 } 1926 case Instruction::InsertValue: { 1927 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1928 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1929 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1930 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1931 Vals.append(IVI->idx_begin(), IVI->idx_end()); 1932 break; 1933 } 1934 case Instruction::Select: 1935 Code = bitc::FUNC_CODE_INST_VSELECT; 1936 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1937 pushValue(I.getOperand(2), InstID, Vals, VE); 1938 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1939 break; 1940 case Instruction::ExtractElement: 1941 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1942 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1943 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1944 break; 1945 case Instruction::InsertElement: 1946 Code = bitc::FUNC_CODE_INST_INSERTELT; 1947 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1948 pushValue(I.getOperand(1), InstID, Vals, VE); 1949 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1950 break; 1951 case Instruction::ShuffleVector: 1952 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1953 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1954 pushValue(I.getOperand(1), InstID, Vals, VE); 1955 pushValue(I.getOperand(2), InstID, Vals, VE); 1956 break; 1957 case Instruction::ICmp: 1958 case Instruction::FCmp: { 1959 // compare returning Int1Ty or vector of Int1Ty 1960 Code = bitc::FUNC_CODE_INST_CMP2; 1961 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1962 pushValue(I.getOperand(1), InstID, Vals, VE); 1963 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1964 uint64_t Flags = GetOptimizationFlags(&I); 1965 if (Flags != 0) 1966 Vals.push_back(Flags); 1967 break; 1968 } 1969 1970 case Instruction::Ret: 1971 { 1972 Code = bitc::FUNC_CODE_INST_RET; 1973 unsigned NumOperands = I.getNumOperands(); 1974 if (NumOperands == 0) 1975 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1976 else if (NumOperands == 1) { 1977 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1978 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1979 } else { 1980 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1981 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1982 } 1983 } 1984 break; 1985 case Instruction::Br: 1986 { 1987 Code = bitc::FUNC_CODE_INST_BR; 1988 const BranchInst &II = cast<BranchInst>(I); 1989 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1990 if (II.isConditional()) { 1991 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1992 pushValue(II.getCondition(), InstID, Vals, VE); 1993 } 1994 } 1995 break; 1996 case Instruction::Switch: 1997 { 1998 Code = bitc::FUNC_CODE_INST_SWITCH; 1999 const SwitchInst &SI = cast<SwitchInst>(I); 2000 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2001 pushValue(SI.getCondition(), InstID, Vals, VE); 2002 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2003 for (SwitchInst::ConstCaseIt Case : SI.cases()) { 2004 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2005 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2006 } 2007 } 2008 break; 2009 case Instruction::IndirectBr: 2010 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2011 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2012 // Encode the address operand as relative, but not the basic blocks. 2013 pushValue(I.getOperand(0), InstID, Vals, VE); 2014 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2015 Vals.push_back(VE.getValueID(I.getOperand(i))); 2016 break; 2017 2018 case Instruction::Invoke: { 2019 const InvokeInst *II = cast<InvokeInst>(&I); 2020 const Value *Callee = II->getCalledValue(); 2021 FunctionType *FTy = II->getFunctionType(); 2022 2023 if (II->hasOperandBundles()) 2024 WriteOperandBundles(Stream, II, InstID, VE); 2025 2026 Code = bitc::FUNC_CODE_INST_INVOKE; 2027 2028 Vals.push_back(VE.getAttributeID(II->getAttributes())); 2029 Vals.push_back(II->getCallingConv() | 1 << 13); 2030 Vals.push_back(VE.getValueID(II->getNormalDest())); 2031 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2032 Vals.push_back(VE.getTypeID(FTy)); 2033 PushValueAndType(Callee, InstID, Vals, VE); 2034 2035 // Emit value #'s for the fixed parameters. 2036 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2037 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 2038 2039 // Emit type/value pairs for varargs params. 2040 if (FTy->isVarArg()) { 2041 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 2042 i != e; ++i) 2043 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 2044 } 2045 break; 2046 } 2047 case Instruction::Resume: 2048 Code = bitc::FUNC_CODE_INST_RESUME; 2049 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 2050 break; 2051 case Instruction::CleanupRet: { 2052 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2053 const auto &CRI = cast<CleanupReturnInst>(I); 2054 pushValue(CRI.getCleanupPad(), InstID, Vals, VE); 2055 if (CRI.hasUnwindDest()) 2056 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2057 break; 2058 } 2059 case Instruction::CatchRet: { 2060 Code = bitc::FUNC_CODE_INST_CATCHRET; 2061 const auto &CRI = cast<CatchReturnInst>(I); 2062 pushValue(CRI.getCatchPad(), InstID, Vals, VE); 2063 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2064 break; 2065 } 2066 case Instruction::CleanupPad: 2067 case Instruction::CatchPad: { 2068 const auto &FuncletPad = cast<FuncletPadInst>(I); 2069 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2070 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2071 pushValue(FuncletPad.getParentPad(), InstID, Vals, VE); 2072 2073 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2074 Vals.push_back(NumArgOperands); 2075 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2076 PushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals, VE); 2077 break; 2078 } 2079 case Instruction::CatchSwitch: { 2080 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2081 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2082 2083 pushValue(CatchSwitch.getParentPad(), InstID, Vals, VE); 2084 2085 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2086 Vals.push_back(NumHandlers); 2087 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2088 Vals.push_back(VE.getValueID(CatchPadBB)); 2089 2090 if (CatchSwitch.hasUnwindDest()) 2091 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2092 break; 2093 } 2094 case Instruction::Unreachable: 2095 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2096 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2097 break; 2098 2099 case Instruction::PHI: { 2100 const PHINode &PN = cast<PHINode>(I); 2101 Code = bitc::FUNC_CODE_INST_PHI; 2102 // With the newer instruction encoding, forward references could give 2103 // negative valued IDs. This is most common for PHIs, so we use 2104 // signed VBRs. 2105 SmallVector<uint64_t, 128> Vals64; 2106 Vals64.push_back(VE.getTypeID(PN.getType())); 2107 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2108 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 2109 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2110 } 2111 // Emit a Vals64 vector and exit. 2112 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2113 Vals64.clear(); 2114 return; 2115 } 2116 2117 case Instruction::LandingPad: { 2118 const LandingPadInst &LP = cast<LandingPadInst>(I); 2119 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2120 Vals.push_back(VE.getTypeID(LP.getType())); 2121 Vals.push_back(LP.isCleanup()); 2122 Vals.push_back(LP.getNumClauses()); 2123 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2124 if (LP.isCatch(I)) 2125 Vals.push_back(LandingPadInst::Catch); 2126 else 2127 Vals.push_back(LandingPadInst::Filter); 2128 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 2129 } 2130 break; 2131 } 2132 2133 case Instruction::Alloca: { 2134 Code = bitc::FUNC_CODE_INST_ALLOCA; 2135 const AllocaInst &AI = cast<AllocaInst>(I); 2136 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2137 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2138 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2139 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2140 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2141 "not enough bits for maximum alignment"); 2142 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2143 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2144 AlignRecord |= 1 << 6; 2145 // Reserve bit 7 for SwiftError flag. 2146 // AlignRecord |= AI.isSwiftError() << 7; 2147 Vals.push_back(AlignRecord); 2148 break; 2149 } 2150 2151 case Instruction::Load: 2152 if (cast<LoadInst>(I).isAtomic()) { 2153 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2154 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 2155 } else { 2156 Code = bitc::FUNC_CODE_INST_LOAD; 2157 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 2158 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2159 } 2160 Vals.push_back(VE.getTypeID(I.getType())); 2161 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2162 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2163 if (cast<LoadInst>(I).isAtomic()) { 2164 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2165 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2166 } 2167 break; 2168 case Instruction::Store: 2169 if (cast<StoreInst>(I).isAtomic()) 2170 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2171 else 2172 Code = bitc::FUNC_CODE_INST_STORE; 2173 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 2174 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // valty + val 2175 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2176 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2177 if (cast<StoreInst>(I).isAtomic()) { 2178 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2179 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2180 } 2181 break; 2182 case Instruction::AtomicCmpXchg: 2183 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2184 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 2185 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // cmp. 2186 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 2187 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2188 Vals.push_back(GetEncodedOrdering( 2189 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2190 Vals.push_back(GetEncodedSynchScope( 2191 cast<AtomicCmpXchgInst>(I).getSynchScope())); 2192 Vals.push_back(GetEncodedOrdering( 2193 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2194 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2195 break; 2196 case Instruction::AtomicRMW: 2197 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2198 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 2199 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 2200 Vals.push_back(GetEncodedRMWOperation( 2201 cast<AtomicRMWInst>(I).getOperation())); 2202 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2203 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2204 Vals.push_back(GetEncodedSynchScope( 2205 cast<AtomicRMWInst>(I).getSynchScope())); 2206 break; 2207 case Instruction::Fence: 2208 Code = bitc::FUNC_CODE_INST_FENCE; 2209 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2210 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2211 break; 2212 case Instruction::Call: { 2213 const CallInst &CI = cast<CallInst>(I); 2214 FunctionType *FTy = CI.getFunctionType(); 2215 2216 if (CI.hasOperandBundles()) 2217 WriteOperandBundles(Stream, &CI, InstID, VE); 2218 2219 Code = bitc::FUNC_CODE_INST_CALL; 2220 2221 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 2222 2223 unsigned Flags = GetOptimizationFlags(&I); 2224 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2225 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2226 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2227 1 << bitc::CALL_EXPLICIT_TYPE | 2228 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2229 unsigned(Flags != 0) << bitc::CALL_FMF); 2230 if (Flags != 0) 2231 Vals.push_back(Flags); 2232 2233 Vals.push_back(VE.getTypeID(FTy)); 2234 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 2235 2236 // Emit value #'s for the fixed parameters. 2237 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2238 // Check for labels (can happen with asm labels). 2239 if (FTy->getParamType(i)->isLabelTy()) 2240 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2241 else 2242 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 2243 } 2244 2245 // Emit type/value pairs for varargs params. 2246 if (FTy->isVarArg()) { 2247 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2248 i != e; ++i) 2249 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 2250 } 2251 break; 2252 } 2253 case Instruction::VAArg: 2254 Code = bitc::FUNC_CODE_INST_VAARG; 2255 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2256 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 2257 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2258 break; 2259 } 2260 2261 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2262 Vals.clear(); 2263 } 2264 2265 /// Emit names for globals/functions etc. The VSTOffsetPlaceholder, 2266 /// BitcodeStartBit and ModuleSummaryIndex are only passed for the module-level 2267 /// VST, where we are including a function bitcode index and need to 2268 /// backpatch the VST forward declaration record. 2269 static void WriteValueSymbolTable( 2270 const ValueSymbolTable &VST, const ValueEnumerator &VE, 2271 BitstreamWriter &Stream, uint64_t VSTOffsetPlaceholder = 0, 2272 uint64_t BitcodeStartBit = 0, 2273 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> 2274 *FunctionIndex = nullptr) { 2275 if (VST.empty()) { 2276 // WriteValueSymbolTableForwardDecl should have returned early as 2277 // well. Ensure this handling remains in sync by asserting that 2278 // the placeholder offset is not set. 2279 assert(VSTOffsetPlaceholder == 0); 2280 return; 2281 } 2282 2283 if (VSTOffsetPlaceholder > 0) { 2284 // Get the offset of the VST we are writing, and backpatch it into 2285 // the VST forward declaration record. 2286 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2287 // The BitcodeStartBit was the stream offset of the actual bitcode 2288 // (e.g. excluding any initial darwin header). 2289 VSTOffset -= BitcodeStartBit; 2290 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2291 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2292 } 2293 2294 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2295 2296 // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY 2297 // records, which are not used in the per-function VSTs. 2298 unsigned FnEntry8BitAbbrev; 2299 unsigned FnEntry7BitAbbrev; 2300 unsigned FnEntry6BitAbbrev; 2301 if (VSTOffsetPlaceholder > 0) { 2302 // 8-bit fixed-width VST_CODE_FNENTRY function strings. 2303 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2304 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2305 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2307 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2309 FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv); 2310 2311 // 7-bit fixed width VST_CODE_FNENTRY function strings. 2312 Abbv = new BitCodeAbbrev(); 2313 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2318 FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv); 2319 2320 // 6-bit char6 VST_CODE_FNENTRY function strings. 2321 Abbv = new BitCodeAbbrev(); 2322 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2327 FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv); 2328 } 2329 2330 // FIXME: Set up the abbrev, we know how many values there are! 2331 // FIXME: We know if the type names can use 7-bit ascii. 2332 SmallVector<unsigned, 64> NameVals; 2333 2334 for (const ValueName &Name : VST) { 2335 // Figure out the encoding to use for the name. 2336 StringEncoding Bits = 2337 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2338 2339 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2340 NameVals.push_back(VE.getValueID(Name.getValue())); 2341 2342 Function *F = dyn_cast<Function>(Name.getValue()); 2343 if (!F) { 2344 // If value is an alias, need to get the aliased base object to 2345 // see if it is a function. 2346 auto *GA = dyn_cast<GlobalAlias>(Name.getValue()); 2347 if (GA && GA->getBaseObject()) 2348 F = dyn_cast<Function>(GA->getBaseObject()); 2349 } 2350 2351 // VST_CODE_ENTRY: [valueid, namechar x N] 2352 // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N] 2353 // VST_CODE_BBENTRY: [bbid, namechar x N] 2354 unsigned Code; 2355 if (isa<BasicBlock>(Name.getValue())) { 2356 Code = bitc::VST_CODE_BBENTRY; 2357 if (Bits == SE_Char6) 2358 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2359 } else if (F && !F->isDeclaration()) { 2360 // Must be the module-level VST, where we pass in the Index and 2361 // have a VSTOffsetPlaceholder. The function-level VST should not 2362 // contain any Function symbols. 2363 assert(FunctionIndex); 2364 assert(VSTOffsetPlaceholder > 0); 2365 2366 // Save the word offset of the function (from the start of the 2367 // actual bitcode written to the stream). 2368 uint64_t BitcodeIndex = 2369 (*FunctionIndex)[F]->bitcodeIndex() - BitcodeStartBit; 2370 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2371 NameVals.push_back(BitcodeIndex / 32); 2372 2373 Code = bitc::VST_CODE_FNENTRY; 2374 AbbrevToUse = FnEntry8BitAbbrev; 2375 if (Bits == SE_Char6) 2376 AbbrevToUse = FnEntry6BitAbbrev; 2377 else if (Bits == SE_Fixed7) 2378 AbbrevToUse = FnEntry7BitAbbrev; 2379 } else { 2380 Code = bitc::VST_CODE_ENTRY; 2381 if (Bits == SE_Char6) 2382 AbbrevToUse = VST_ENTRY_6_ABBREV; 2383 else if (Bits == SE_Fixed7) 2384 AbbrevToUse = VST_ENTRY_7_ABBREV; 2385 } 2386 2387 for (const auto P : Name.getKey()) 2388 NameVals.push_back((unsigned char)P); 2389 2390 // Emit the finished record. 2391 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2392 NameVals.clear(); 2393 } 2394 Stream.ExitBlock(); 2395 } 2396 2397 /// Emit function names and summary offsets for the combined index 2398 /// used by ThinLTO. 2399 static void 2400 WriteCombinedValueSymbolTable(const ModuleSummaryIndex &Index, 2401 BitstreamWriter &Stream, 2402 std::map<uint64_t, unsigned> &GUIDToValueIdMap, 2403 uint64_t VSTOffsetPlaceholder) { 2404 assert(VSTOffsetPlaceholder > 0 && "Expected non-zero VSTOffsetPlaceholder"); 2405 // Get the offset of the VST we are writing, and backpatch it into 2406 // the VST forward declaration record. 2407 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2408 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2409 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2410 2411 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2412 2413 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2414 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_GVDEFENTRY)); 2415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // sumoffset 2417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // guid 2418 unsigned DefEntryAbbrev = Stream.EmitAbbrev(Abbv); 2419 2420 Abbv = new BitCodeAbbrev(); 2421 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 2422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2423 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 2424 unsigned EntryAbbrev = Stream.EmitAbbrev(Abbv); 2425 2426 SmallVector<uint64_t, 64> NameVals; 2427 2428 for (const auto &FII : Index) { 2429 uint64_t FuncGUID = FII.first; 2430 const auto &VMI = GUIDToValueIdMap.find(FuncGUID); 2431 assert(VMI != GUIDToValueIdMap.end()); 2432 2433 for (const auto &FI : FII.second) { 2434 // VST_CODE_COMBINED_GVDEFENTRY: [valueid, sumoffset, guid] 2435 NameVals.push_back(VMI->second); 2436 NameVals.push_back(FI->bitcodeIndex()); 2437 NameVals.push_back(FuncGUID); 2438 2439 // Emit the finished record. 2440 Stream.EmitRecord(bitc::VST_CODE_COMBINED_GVDEFENTRY, NameVals, 2441 DefEntryAbbrev); 2442 NameVals.clear(); 2443 } 2444 GUIDToValueIdMap.erase(VMI); 2445 } 2446 for (const auto &GVI : GUIDToValueIdMap) { 2447 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 2448 NameVals.push_back(GVI.second); 2449 NameVals.push_back(GVI.first); 2450 2451 // Emit the finished record. 2452 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev); 2453 NameVals.clear(); 2454 } 2455 Stream.ExitBlock(); 2456 } 2457 2458 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 2459 BitstreamWriter &Stream) { 2460 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2461 unsigned Code; 2462 if (isa<BasicBlock>(Order.V)) 2463 Code = bitc::USELIST_CODE_BB; 2464 else 2465 Code = bitc::USELIST_CODE_DEFAULT; 2466 2467 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2468 Record.push_back(VE.getValueID(Order.V)); 2469 Stream.EmitRecord(Code, Record); 2470 } 2471 2472 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 2473 BitstreamWriter &Stream) { 2474 assert(VE.shouldPreserveUseListOrder() && 2475 "Expected to be preserving use-list order"); 2476 2477 auto hasMore = [&]() { 2478 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2479 }; 2480 if (!hasMore()) 2481 // Nothing to do. 2482 return; 2483 2484 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2485 while (hasMore()) { 2486 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 2487 VE.UseListOrders.pop_back(); 2488 } 2489 Stream.ExitBlock(); 2490 } 2491 2492 // Walk through the operands of a given User via worklist iteration and populate 2493 // the set of GlobalValue references encountered. Invoked either on an 2494 // Instruction or a GlobalVariable (which walks its initializer). 2495 static void findRefEdges(const User *CurUser, const ValueEnumerator &VE, 2496 DenseSet<unsigned> &RefEdges, 2497 SmallPtrSet<const User *, 8> &Visited) { 2498 SmallVector<const User *, 32> Worklist; 2499 Worklist.push_back(CurUser); 2500 2501 while (!Worklist.empty()) { 2502 const User *U = Worklist.pop_back_val(); 2503 2504 if (!Visited.insert(U).second) 2505 continue; 2506 2507 ImmutableCallSite CS(U); 2508 2509 for (const auto &OI : U->operands()) { 2510 const User *Operand = dyn_cast<User>(OI); 2511 if (!Operand) 2512 continue; 2513 if (isa<BlockAddress>(Operand)) 2514 continue; 2515 if (isa<GlobalValue>(Operand)) { 2516 // We have a reference to a global value. This should be added to 2517 // the reference set unless it is a callee. Callees are handled 2518 // specially by WriteFunction and are added to a separate list. 2519 if (!(CS && CS.isCallee(&OI))) 2520 RefEdges.insert(VE.getValueID(Operand)); 2521 continue; 2522 } 2523 Worklist.push_back(Operand); 2524 } 2525 } 2526 } 2527 2528 /// Emit a function body to the module stream. 2529 static void WriteFunction( 2530 const Function &F, const Module *M, ValueEnumerator &VE, 2531 BitstreamWriter &Stream, 2532 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> &FunctionIndex, 2533 bool EmitSummaryIndex) { 2534 // Save the bitcode index of the start of this function block for recording 2535 // in the VST. 2536 uint64_t BitcodeIndex = Stream.GetCurrentBitNo(); 2537 2538 bool HasProfileData = F.getEntryCount().hasValue(); 2539 std::unique_ptr<BlockFrequencyInfo> BFI; 2540 if (EmitSummaryIndex && HasProfileData) { 2541 Function &Func = const_cast<Function &>(F); 2542 LoopInfo LI{DominatorTree(Func)}; 2543 BranchProbabilityInfo BPI{Func, LI}; 2544 BFI = llvm::make_unique<BlockFrequencyInfo>(Func, BPI, LI); 2545 } 2546 2547 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2548 VE.incorporateFunction(F); 2549 2550 SmallVector<unsigned, 64> Vals; 2551 2552 // Emit the number of basic blocks, so the reader can create them ahead of 2553 // time. 2554 Vals.push_back(VE.getBasicBlocks().size()); 2555 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2556 Vals.clear(); 2557 2558 // If there are function-local constants, emit them now. 2559 unsigned CstStart, CstEnd; 2560 VE.getFunctionConstantRange(CstStart, CstEnd); 2561 WriteConstants(CstStart, CstEnd, VE, Stream, false); 2562 2563 // If there is function-local metadata, emit it now. 2564 writeFunctionMetadata(F, VE, Stream); 2565 2566 // Keep a running idea of what the instruction ID is. 2567 unsigned InstID = CstEnd; 2568 2569 bool NeedsMetadataAttachment = F.hasMetadata(); 2570 2571 DILocation *LastDL = nullptr; 2572 unsigned NumInsts = 0; 2573 // Map from callee ValueId to profile count. Used to accumulate profile 2574 // counts for all static calls to a given callee. 2575 DenseMap<unsigned, CalleeInfo> CallGraphEdges; 2576 DenseSet<unsigned> RefEdges; 2577 2578 SmallPtrSet<const User *, 8> Visited; 2579 // Finally, emit all the instructions, in order. 2580 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2581 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2582 I != E; ++I) { 2583 WriteInstruction(*I, InstID, VE, Stream, Vals); 2584 2585 if (!isa<DbgInfoIntrinsic>(I)) 2586 ++NumInsts; 2587 2588 if (!I->getType()->isVoidTy()) 2589 ++InstID; 2590 2591 if (EmitSummaryIndex) { 2592 if (auto CS = ImmutableCallSite(&*I)) { 2593 auto *CalledFunction = CS.getCalledFunction(); 2594 if (CalledFunction && CalledFunction->hasName() && 2595 !CalledFunction->isIntrinsic()) { 2596 auto ScaledCount = BFI ? BFI->getBlockProfileCount(&*BB) : None; 2597 unsigned CalleeId = VE.getValueID( 2598 M->getValueSymbolTable().lookup(CalledFunction->getName())); 2599 CallGraphEdges[CalleeId] += 2600 (ScaledCount ? ScaledCount.getValue() : 0); 2601 } 2602 } 2603 findRefEdges(&*I, VE, RefEdges, Visited); 2604 } 2605 2606 // If the instruction has metadata, write a metadata attachment later. 2607 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2608 2609 // If the instruction has a debug location, emit it. 2610 DILocation *DL = I->getDebugLoc(); 2611 if (!DL) 2612 continue; 2613 2614 if (DL == LastDL) { 2615 // Just repeat the same debug loc as last time. 2616 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2617 continue; 2618 } 2619 2620 Vals.push_back(DL->getLine()); 2621 Vals.push_back(DL->getColumn()); 2622 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2623 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2624 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2625 Vals.clear(); 2626 2627 LastDL = DL; 2628 } 2629 2630 std::unique_ptr<FunctionSummary> FuncSummary; 2631 if (EmitSummaryIndex) { 2632 FuncSummary = llvm::make_unique<FunctionSummary>(F.getLinkage(), NumInsts); 2633 FuncSummary->addCallGraphEdges(CallGraphEdges); 2634 FuncSummary->addRefEdges(RefEdges); 2635 } 2636 FunctionIndex[&F] = 2637 llvm::make_unique<GlobalValueInfo>(BitcodeIndex, std::move(FuncSummary)); 2638 2639 // Emit names for all the instructions etc. 2640 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 2641 2642 if (NeedsMetadataAttachment) 2643 WriteMetadataAttachment(F, VE, Stream); 2644 if (VE.shouldPreserveUseListOrder()) 2645 WriteUseListBlock(&F, VE, Stream); 2646 VE.purgeFunction(); 2647 Stream.ExitBlock(); 2648 } 2649 2650 // Emit blockinfo, which defines the standard abbreviations etc. 2651 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 2652 // We only want to emit block info records for blocks that have multiple 2653 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2654 // Other blocks can define their abbrevs inline. 2655 Stream.EnterBlockInfoBlock(2); 2656 2657 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 2658 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2659 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2660 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2661 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2662 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2663 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2664 Abbv) != VST_ENTRY_8_ABBREV) 2665 llvm_unreachable("Unexpected abbrev ordering!"); 2666 } 2667 2668 { // 7-bit fixed width VST_CODE_ENTRY strings. 2669 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2670 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2671 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2672 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2674 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2675 Abbv) != VST_ENTRY_7_ABBREV) 2676 llvm_unreachable("Unexpected abbrev ordering!"); 2677 } 2678 { // 6-bit char6 VST_CODE_ENTRY strings. 2679 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2680 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2681 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2682 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2683 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2684 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2685 Abbv) != VST_ENTRY_6_ABBREV) 2686 llvm_unreachable("Unexpected abbrev ordering!"); 2687 } 2688 { // 6-bit char6 VST_CODE_BBENTRY strings. 2689 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2690 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2691 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2692 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2693 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2694 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2695 Abbv) != VST_BBENTRY_6_ABBREV) 2696 llvm_unreachable("Unexpected abbrev ordering!"); 2697 } 2698 2699 2700 2701 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2702 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2703 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2704 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2705 VE.computeBitsRequiredForTypeIndicies())); 2706 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2707 Abbv) != CONSTANTS_SETTYPE_ABBREV) 2708 llvm_unreachable("Unexpected abbrev ordering!"); 2709 } 2710 2711 { // INTEGER abbrev for CONSTANTS_BLOCK. 2712 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2713 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2715 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2716 Abbv) != CONSTANTS_INTEGER_ABBREV) 2717 llvm_unreachable("Unexpected abbrev ordering!"); 2718 } 2719 2720 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2721 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2722 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2723 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2724 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2725 VE.computeBitsRequiredForTypeIndicies())); 2726 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2727 2728 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2729 Abbv) != CONSTANTS_CE_CAST_Abbrev) 2730 llvm_unreachable("Unexpected abbrev ordering!"); 2731 } 2732 { // NULL abbrev for CONSTANTS_BLOCK. 2733 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2734 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2735 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2736 Abbv) != CONSTANTS_NULL_Abbrev) 2737 llvm_unreachable("Unexpected abbrev ordering!"); 2738 } 2739 2740 // FIXME: This should only use space for first class types! 2741 2742 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2743 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2744 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2745 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2746 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2747 VE.computeBitsRequiredForTypeIndicies())); 2748 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2749 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2750 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2751 Abbv) != FUNCTION_INST_LOAD_ABBREV) 2752 llvm_unreachable("Unexpected abbrev ordering!"); 2753 } 2754 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2755 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2756 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2760 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2761 Abbv) != FUNCTION_INST_BINOP_ABBREV) 2762 llvm_unreachable("Unexpected abbrev ordering!"); 2763 } 2764 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2765 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2766 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2771 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2772 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 2773 llvm_unreachable("Unexpected abbrev ordering!"); 2774 } 2775 { // INST_CAST abbrev for FUNCTION_BLOCK. 2776 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2777 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2780 VE.computeBitsRequiredForTypeIndicies())); 2781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2782 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2783 Abbv) != FUNCTION_INST_CAST_ABBREV) 2784 llvm_unreachable("Unexpected abbrev ordering!"); 2785 } 2786 2787 { // INST_RET abbrev for FUNCTION_BLOCK. 2788 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2789 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2790 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2791 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 2792 llvm_unreachable("Unexpected abbrev ordering!"); 2793 } 2794 { // INST_RET abbrev for FUNCTION_BLOCK. 2795 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2796 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2798 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2799 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 2800 llvm_unreachable("Unexpected abbrev ordering!"); 2801 } 2802 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2803 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2804 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2805 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2806 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 2807 llvm_unreachable("Unexpected abbrev ordering!"); 2808 } 2809 { 2810 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2811 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2814 Log2_32_Ceil(VE.getTypes().size() + 1))); 2815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2817 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 2818 FUNCTION_INST_GEP_ABBREV) 2819 llvm_unreachable("Unexpected abbrev ordering!"); 2820 } 2821 2822 Stream.ExitBlock(); 2823 } 2824 2825 /// Write the module path strings, currently only used when generating 2826 /// a combined index file. 2827 static void WriteModStrings(const ModuleSummaryIndex &I, 2828 BitstreamWriter &Stream) { 2829 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 2830 2831 // TODO: See which abbrev sizes we actually need to emit 2832 2833 // 8-bit fixed-width MST_ENTRY strings. 2834 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2835 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2836 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2839 unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv); 2840 2841 // 7-bit fixed width MST_ENTRY strings. 2842 Abbv = new BitCodeAbbrev(); 2843 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2846 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2847 unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv); 2848 2849 // 6-bit char6 MST_ENTRY strings. 2850 Abbv = new BitCodeAbbrev(); 2851 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2852 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2855 unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv); 2856 2857 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 2858 Abbv = new BitCodeAbbrev(); 2859 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 2860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2862 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2864 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2865 unsigned AbbrevHash = Stream.EmitAbbrev(Abbv); 2866 2867 SmallVector<unsigned, 64> Vals; 2868 for (const auto &MPSE : I.modulePaths()) { 2869 StringEncoding Bits = 2870 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 2871 unsigned AbbrevToUse = Abbrev8Bit; 2872 if (Bits == SE_Char6) 2873 AbbrevToUse = Abbrev6Bit; 2874 else if (Bits == SE_Fixed7) 2875 AbbrevToUse = Abbrev7Bit; 2876 2877 Vals.push_back(MPSE.getValue().first); 2878 2879 for (const auto P : MPSE.getKey()) 2880 Vals.push_back((unsigned char)P); 2881 2882 // Emit the finished record. 2883 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 2884 2885 Vals.clear(); 2886 // Emit an optional hash for the module now 2887 auto &Hash = MPSE.getValue().second; 2888 bool AllZero = true; // Detect if the hash is empty, and do not generate it 2889 for (auto Val : Hash) { 2890 if (Val) 2891 AllZero = false; 2892 Vals.push_back(Val); 2893 } 2894 if (!AllZero) { 2895 // Emit the hash record. 2896 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 2897 } 2898 2899 Vals.clear(); 2900 } 2901 Stream.ExitBlock(); 2902 } 2903 2904 // Helper to emit a single function summary record. 2905 static void WritePerModuleFunctionSummaryRecord( 2906 SmallVector<uint64_t, 64> &NameVals, FunctionSummary *FS, unsigned ValueID, 2907 unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 2908 BitstreamWriter &Stream, const Function &F) { 2909 assert(FS); 2910 NameVals.push_back(ValueID); 2911 NameVals.push_back(getEncodedLinkage(FS->linkage())); 2912 NameVals.push_back(FS->instCount()); 2913 NameVals.push_back(FS->refs().size()); 2914 2915 for (auto &RI : FS->refs()) 2916 NameVals.push_back(RI); 2917 2918 bool HasProfileData = F.getEntryCount().hasValue(); 2919 for (auto &ECI : FS->calls()) { 2920 NameVals.push_back(ECI.first); 2921 assert(ECI.second.CallsiteCount > 0 && "Expected at least one callsite"); 2922 NameVals.push_back(ECI.second.CallsiteCount); 2923 if (HasProfileData) 2924 NameVals.push_back(ECI.second.ProfileCount); 2925 } 2926 2927 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 2928 unsigned Code = 2929 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 2930 2931 // Emit the finished record. 2932 Stream.EmitRecord(Code, NameVals, FSAbbrev); 2933 NameVals.clear(); 2934 } 2935 2936 // Collect the global value references in the given variable's initializer, 2937 // and emit them in a summary record. 2938 static void WriteModuleLevelReferences(const GlobalVariable &V, 2939 const ValueEnumerator &VE, 2940 SmallVector<uint64_t, 64> &NameVals, 2941 unsigned FSModRefsAbbrev, 2942 BitstreamWriter &Stream) { 2943 // Only interested in recording variable defs in the summary. 2944 if (V.isDeclaration()) 2945 return; 2946 DenseSet<unsigned> RefEdges; 2947 SmallPtrSet<const User *, 8> Visited; 2948 findRefEdges(&V, VE, RefEdges, Visited); 2949 NameVals.push_back(VE.getValueID(&V)); 2950 NameVals.push_back(getEncodedLinkage(V.getLinkage())); 2951 for (auto RefId : RefEdges) { 2952 NameVals.push_back(RefId); 2953 } 2954 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 2955 FSModRefsAbbrev); 2956 NameVals.clear(); 2957 } 2958 2959 /// Emit the per-module summary section alongside the rest of 2960 /// the module's bitcode. 2961 static void WritePerModuleGlobalValueSummary( 2962 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> &FunctionIndex, 2963 const Module *M, const ValueEnumerator &VE, BitstreamWriter &Stream) { 2964 if (M->empty()) 2965 return; 2966 2967 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 2968 2969 // Abbrev for FS_PERMODULE. 2970 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2971 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 2972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 2975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 2976 // numrefs x valueid, n x (valueid, callsitecount) 2977 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2978 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2979 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 2980 2981 // Abbrev for FS_PERMODULE_PROFILE. 2982 Abbv = new BitCodeAbbrev(); 2983 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 2984 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2985 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2986 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 2987 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 2988 // numrefs x valueid, n x (valueid, callsitecount, profilecount) 2989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2990 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2991 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 2992 2993 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 2994 Abbv = new BitCodeAbbrev(); 2995 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 2996 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2997 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2998 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 2999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3000 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 3001 3002 SmallVector<uint64_t, 64> NameVals; 3003 // Iterate over the list of functions instead of the FunctionIndex map to 3004 // ensure the ordering is stable. 3005 for (const Function &F : *M) { 3006 if (F.isDeclaration()) 3007 continue; 3008 // Skip anonymous functions. We will emit a function summary for 3009 // any aliases below. 3010 if (!F.hasName()) 3011 continue; 3012 3013 assert(FunctionIndex.count(&F) == 1); 3014 3015 WritePerModuleFunctionSummaryRecord( 3016 NameVals, cast<FunctionSummary>(FunctionIndex[&F]->summary()), 3017 VE.getValueID(M->getValueSymbolTable().lookup(F.getName())), 3018 FSCallsAbbrev, FSCallsProfileAbbrev, Stream, F); 3019 } 3020 3021 for (const GlobalAlias &A : M->aliases()) { 3022 if (!A.getBaseObject()) 3023 continue; 3024 const Function *F = dyn_cast<Function>(A.getBaseObject()); 3025 if (!F || F->isDeclaration()) 3026 continue; 3027 3028 assert(FunctionIndex.count(F) == 1); 3029 FunctionSummary *FS = 3030 cast<FunctionSummary>(FunctionIndex[F]->summary()); 3031 // Add the alias to the reference list of aliasee function. 3032 FS->addRefEdge( 3033 VE.getValueID(M->getValueSymbolTable().lookup(A.getName()))); 3034 WritePerModuleFunctionSummaryRecord( 3035 NameVals, FS, 3036 VE.getValueID(M->getValueSymbolTable().lookup(A.getName())), 3037 FSCallsAbbrev, FSCallsProfileAbbrev, Stream, *F); 3038 } 3039 3040 // Capture references from GlobalVariable initializers, which are outside 3041 // of a function scope. 3042 for (const GlobalVariable &G : M->globals()) 3043 WriteModuleLevelReferences(G, VE, NameVals, FSModRefsAbbrev, Stream); 3044 for (const GlobalAlias &A : M->aliases()) 3045 if (auto *GV = dyn_cast<GlobalVariable>(A.getBaseObject())) 3046 WriteModuleLevelReferences(*GV, VE, NameVals, FSModRefsAbbrev, Stream); 3047 3048 Stream.ExitBlock(); 3049 } 3050 3051 /// Emit the combined summary section into the combined index file. 3052 static void WriteCombinedGlobalValueSummary( 3053 const ModuleSummaryIndex &I, BitstreamWriter &Stream, 3054 std::map<uint64_t, unsigned> &GUIDToValueIdMap, unsigned GlobalValueId) { 3055 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3056 3057 // Abbrev for FS_COMBINED. 3058 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3059 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 3062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3064 // numrefs x valueid, n x (valueid, callsitecount) 3065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3067 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 3068 3069 // Abbrev for FS_COMBINED_PROFILE. 3070 Abbv = new BitCodeAbbrev(); 3071 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3072 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 3074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3076 // numrefs x valueid, n x (valueid, callsitecount, profilecount) 3077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3079 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 3080 3081 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3082 Abbv = new BitCodeAbbrev(); 3083 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3085 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 3086 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3087 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3088 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 3089 3090 SmallVector<uint64_t, 64> NameVals; 3091 for (const auto &FII : I) { 3092 for (auto &FI : FII.second) { 3093 GlobalValueSummary *S = FI->summary(); 3094 assert(S); 3095 3096 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3097 NameVals.push_back(I.getModuleId(VS->modulePath())); 3098 NameVals.push_back(getEncodedLinkage(VS->linkage())); 3099 for (auto &RI : VS->refs()) { 3100 const auto &VMI = GUIDToValueIdMap.find(RI); 3101 unsigned RefId; 3102 // If this GUID doesn't have an entry, assign one. 3103 if (VMI == GUIDToValueIdMap.end()) { 3104 GUIDToValueIdMap[RI] = ++GlobalValueId; 3105 RefId = GlobalValueId; 3106 } else { 3107 RefId = VMI->second; 3108 } 3109 NameVals.push_back(RefId); 3110 } 3111 3112 // Record the starting offset of this summary entry for use 3113 // in the VST entry. Add the current code size since the 3114 // reader will invoke readRecord after the abbrev id read. 3115 FI->setBitcodeIndex(Stream.GetCurrentBitNo() + 3116 Stream.GetAbbrevIDWidth()); 3117 3118 // Emit the finished record. 3119 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3120 FSModRefsAbbrev); 3121 NameVals.clear(); 3122 continue; 3123 } 3124 3125 auto *FS = cast<FunctionSummary>(S); 3126 NameVals.push_back(I.getModuleId(FS->modulePath())); 3127 NameVals.push_back(getEncodedLinkage(FS->linkage())); 3128 NameVals.push_back(FS->instCount()); 3129 NameVals.push_back(FS->refs().size()); 3130 3131 for (auto &RI : FS->refs()) { 3132 const auto &VMI = GUIDToValueIdMap.find(RI); 3133 unsigned RefId; 3134 // If this GUID doesn't have an entry, assign one. 3135 if (VMI == GUIDToValueIdMap.end()) { 3136 GUIDToValueIdMap[RI] = ++GlobalValueId; 3137 RefId = GlobalValueId; 3138 } else { 3139 RefId = VMI->second; 3140 } 3141 NameVals.push_back(RefId); 3142 } 3143 3144 bool HasProfileData = false; 3145 for (auto &EI : FS->calls()) { 3146 HasProfileData |= EI.second.ProfileCount != 0; 3147 if (HasProfileData) 3148 break; 3149 } 3150 3151 for (auto &EI : FS->calls()) { 3152 const auto &VMI = GUIDToValueIdMap.find(EI.first); 3153 // If this GUID doesn't have an entry, it doesn't have a function 3154 // summary and we don't need to record any calls to it. 3155 if (VMI == GUIDToValueIdMap.end()) 3156 continue; 3157 NameVals.push_back(VMI->second); 3158 assert(EI.second.CallsiteCount > 0 && "Expected at least one callsite"); 3159 NameVals.push_back(EI.second.CallsiteCount); 3160 if (HasProfileData) 3161 NameVals.push_back(EI.second.ProfileCount); 3162 } 3163 3164 // Record the starting offset of this summary entry for use 3165 // in the VST entry. Add the current code size since the 3166 // reader will invoke readRecord after the abbrev id read. 3167 FI->setBitcodeIndex(Stream.GetCurrentBitNo() + Stream.GetAbbrevIDWidth()); 3168 3169 unsigned FSAbbrev = 3170 (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3171 unsigned Code = 3172 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3173 3174 // Emit the finished record. 3175 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3176 NameVals.clear(); 3177 } 3178 } 3179 3180 Stream.ExitBlock(); 3181 } 3182 3183 // Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3184 // current llvm version, and a record for the epoch number. 3185 static void WriteIdentificationBlock(const Module *M, BitstreamWriter &Stream) { 3186 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3187 3188 // Write the "user readable" string identifying the bitcode producer 3189 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3190 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3193 auto StringAbbrev = Stream.EmitAbbrev(Abbv); 3194 WriteStringRecord(bitc::IDENTIFICATION_CODE_STRING, 3195 "LLVM" LLVM_VERSION_STRING, StringAbbrev, Stream); 3196 3197 // Write the epoch version 3198 Abbv = new BitCodeAbbrev(); 3199 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3200 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3201 auto EpochAbbrev = Stream.EmitAbbrev(Abbv); 3202 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3203 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3204 Stream.ExitBlock(); 3205 } 3206 3207 static void writeModuleHash(BitstreamWriter &Stream, 3208 SmallVectorImpl<char> &Buffer, 3209 size_t BlockStartPos) { 3210 // Emit the module's hash. 3211 // MODULE_CODE_HASH: [5*i32] 3212 SHA1 Hasher; 3213 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&Buffer[BlockStartPos], 3214 Buffer.size() - BlockStartPos)); 3215 auto Hash = Hasher.result(); 3216 SmallVector<uint64_t, 20> Vals; 3217 auto LShift = [&](unsigned char Val, unsigned Amount) 3218 -> uint64_t { return ((uint64_t)Val) << Amount; }; 3219 for (int Pos = 0; Pos < 20; Pos += 4) { 3220 uint32_t SubHash = LShift(Hash[Pos + 0], 24); 3221 SubHash |= LShift(Hash[Pos + 1], 16) | LShift(Hash[Pos + 2], 8) | 3222 (unsigned)(unsigned char)Hash[Pos + 3]; 3223 Vals.push_back(SubHash); 3224 } 3225 3226 // Emit the finished record. 3227 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3228 } 3229 3230 /// WriteModule - Emit the specified module to the bitstream. 3231 static void WriteModule(const Module *M, BitstreamWriter &Stream, 3232 bool ShouldPreserveUseListOrder, 3233 uint64_t BitcodeStartBit, bool EmitSummaryIndex, 3234 bool GenerateHash, SmallVectorImpl<char> &Buffer) { 3235 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3236 size_t BlockStartPos = Buffer.size(); 3237 3238 SmallVector<unsigned, 1> Vals; 3239 unsigned CurVersion = 1; 3240 Vals.push_back(CurVersion); 3241 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3242 3243 // Analyze the module, enumerating globals, functions, etc. 3244 ValueEnumerator VE(*M, ShouldPreserveUseListOrder); 3245 3246 // Emit blockinfo, which defines the standard abbreviations etc. 3247 WriteBlockInfo(VE, Stream); 3248 3249 // Emit information about attribute groups. 3250 WriteAttributeGroupTable(VE, Stream); 3251 3252 // Emit information about parameter attributes. 3253 WriteAttributeTable(VE, Stream); 3254 3255 // Emit information describing all of the types in the module. 3256 WriteTypeTable(VE, Stream); 3257 3258 writeComdats(VE, Stream); 3259 3260 // Emit top-level description of module, including target triple, inline asm, 3261 // descriptors for global variables, and function prototype info. 3262 uint64_t VSTOffsetPlaceholder = WriteModuleInfo(M, VE, Stream); 3263 3264 // Emit constants. 3265 WriteModuleConstants(VE, Stream); 3266 3267 // Emit metadata. 3268 writeModuleMetadata(*M, VE, Stream); 3269 3270 // Emit metadata. 3271 WriteModuleMetadataStore(M, Stream); 3272 3273 // Emit module-level use-lists. 3274 if (VE.shouldPreserveUseListOrder()) 3275 WriteUseListBlock(nullptr, VE, Stream); 3276 3277 WriteOperandBundleTags(M, Stream); 3278 3279 // Emit function bodies. 3280 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> FunctionIndex; 3281 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 3282 if (!F->isDeclaration()) 3283 WriteFunction(*F, M, VE, Stream, FunctionIndex, EmitSummaryIndex); 3284 3285 // Need to write after the above call to WriteFunction which populates 3286 // the summary information in the index. 3287 if (EmitSummaryIndex) 3288 WritePerModuleGlobalValueSummary(FunctionIndex, M, VE, Stream); 3289 3290 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream, 3291 VSTOffsetPlaceholder, BitcodeStartBit, &FunctionIndex); 3292 3293 if (GenerateHash) { 3294 writeModuleHash(Stream, Buffer, BlockStartPos); 3295 } 3296 3297 Stream.ExitBlock(); 3298 } 3299 3300 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 3301 /// header and trailer to make it compatible with the system archiver. To do 3302 /// this we emit the following header, and then emit a trailer that pads the 3303 /// file out to be a multiple of 16 bytes. 3304 /// 3305 /// struct bc_header { 3306 /// uint32_t Magic; // 0x0B17C0DE 3307 /// uint32_t Version; // Version, currently always 0. 3308 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3309 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3310 /// uint32_t CPUType; // CPU specifier. 3311 /// ... potentially more later ... 3312 /// }; 3313 3314 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3315 uint32_t &Position) { 3316 support::endian::write32le(&Buffer[Position], Value); 3317 Position += 4; 3318 } 3319 3320 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3321 const Triple &TT) { 3322 unsigned CPUType = ~0U; 3323 3324 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3325 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3326 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3327 // specific constants here because they are implicitly part of the Darwin ABI. 3328 enum { 3329 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3330 DARWIN_CPU_TYPE_X86 = 7, 3331 DARWIN_CPU_TYPE_ARM = 12, 3332 DARWIN_CPU_TYPE_POWERPC = 18 3333 }; 3334 3335 Triple::ArchType Arch = TT.getArch(); 3336 if (Arch == Triple::x86_64) 3337 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3338 else if (Arch == Triple::x86) 3339 CPUType = DARWIN_CPU_TYPE_X86; 3340 else if (Arch == Triple::ppc) 3341 CPUType = DARWIN_CPU_TYPE_POWERPC; 3342 else if (Arch == Triple::ppc64) 3343 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3344 else if (Arch == Triple::arm || Arch == Triple::thumb) 3345 CPUType = DARWIN_CPU_TYPE_ARM; 3346 3347 // Traditional Bitcode starts after header. 3348 assert(Buffer.size() >= BWH_HeaderSize && 3349 "Expected header size to be reserved"); 3350 unsigned BCOffset = BWH_HeaderSize; 3351 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3352 3353 // Write the magic and version. 3354 unsigned Position = 0; 3355 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 3356 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 3357 WriteInt32ToBuffer(BCOffset , Buffer, Position); 3358 WriteInt32ToBuffer(BCSize , Buffer, Position); 3359 WriteInt32ToBuffer(CPUType , Buffer, Position); 3360 3361 // If the file is not a multiple of 16 bytes, insert dummy padding. 3362 while (Buffer.size() & 15) 3363 Buffer.push_back(0); 3364 } 3365 3366 /// Helper to write the header common to all bitcode files. 3367 static void WriteBitcodeHeader(BitstreamWriter &Stream) { 3368 // Emit the file header. 3369 Stream.Emit((unsigned)'B', 8); 3370 Stream.Emit((unsigned)'C', 8); 3371 Stream.Emit(0x0, 4); 3372 Stream.Emit(0xC, 4); 3373 Stream.Emit(0xE, 4); 3374 Stream.Emit(0xD, 4); 3375 } 3376 3377 /// WriteBitcodeToFile - Write the specified module to the specified output 3378 /// stream. 3379 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3380 bool ShouldPreserveUseListOrder, 3381 bool EmitSummaryIndex, bool GenerateHash) { 3382 SmallVector<char, 0> Buffer; 3383 Buffer.reserve(256*1024); 3384 3385 // If this is darwin or another generic macho target, reserve space for the 3386 // header. 3387 Triple TT(M->getTargetTriple()); 3388 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3389 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3390 3391 // Emit the module into the buffer. 3392 { 3393 BitstreamWriter Stream(Buffer); 3394 // Save the start bit of the actual bitcode, in case there is space 3395 // saved at the start for the darwin header above. The reader stream 3396 // will start at the bitcode, and we need the offset of the VST 3397 // to line up. 3398 uint64_t BitcodeStartBit = Stream.GetCurrentBitNo(); 3399 3400 // Emit the file header. 3401 WriteBitcodeHeader(Stream); 3402 3403 WriteIdentificationBlock(M, Stream); 3404 3405 // Emit the module. 3406 WriteModule(M, Stream, ShouldPreserveUseListOrder, BitcodeStartBit, 3407 EmitSummaryIndex, GenerateHash, Buffer); 3408 } 3409 3410 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3411 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 3412 3413 // Write the generated bitstream to "Out". 3414 Out.write((char*)&Buffer.front(), Buffer.size()); 3415 } 3416 3417 // Write the specified module summary index to the given raw output stream, 3418 // where it will be written in a new bitcode block. This is used when 3419 // writing the combined index file for ThinLTO. 3420 void llvm::WriteIndexToFile(const ModuleSummaryIndex &Index, raw_ostream &Out) { 3421 SmallVector<char, 0> Buffer; 3422 Buffer.reserve(256 * 1024); 3423 3424 BitstreamWriter Stream(Buffer); 3425 3426 // Emit the bitcode header. 3427 WriteBitcodeHeader(Stream); 3428 3429 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3430 3431 SmallVector<unsigned, 1> Vals; 3432 unsigned CurVersion = 1; 3433 Vals.push_back(CurVersion); 3434 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3435 3436 // If we have a VST, write the VSTOFFSET record placeholder and record 3437 // its offset. 3438 uint64_t VSTOffsetPlaceholder = WriteValueSymbolTableForwardDecl(Stream); 3439 3440 // Write the module paths in the combined index. 3441 WriteModStrings(Index, Stream); 3442 3443 // Assign unique value ids to all functions in the index for use 3444 // in writing out the call graph edges. Save the mapping from GUID 3445 // to the new global value id to use when writing those edges, which 3446 // are currently saved in the index in terms of GUID. 3447 std::map<uint64_t, unsigned> GUIDToValueIdMap; 3448 unsigned GlobalValueId = 0; 3449 for (auto &II : Index) 3450 GUIDToValueIdMap[II.first] = ++GlobalValueId; 3451 3452 // Write the summary combined index records. 3453 WriteCombinedGlobalValueSummary(Index, Stream, GUIDToValueIdMap, 3454 GlobalValueId); 3455 3456 // Need a special VST writer for the combined index (we don't have a 3457 // real VST and real values when this is invoked). 3458 WriteCombinedValueSymbolTable(Index, Stream, GUIDToValueIdMap, 3459 VSTOffsetPlaceholder); 3460 3461 Stream.ExitBlock(); 3462 3463 Out.write((char *)&Buffer.front(), Buffer.size()); 3464 } 3465