xref: /llvm-project/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp (revision d6d3d96b654012d72ad170d272cb2fe2c8def90d)
1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Bitcode writer implementation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Bitcode/BitcodeWriter.h"
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Bitcode/BitcodeCommon.h"
27 #include "llvm/Bitcode/BitcodeReader.h"
28 #include "llvm/Bitcode/LLVMBitCodes.h"
29 #include "llvm/Bitstream/BitCodes.h"
30 #include "llvm/Bitstream/BitstreamWriter.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/Comdat.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalIFunc.h"
43 #include "llvm/IR/GlobalObject.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSummaryIndex.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/UseListOrder.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/MC/StringTableBuilder.h"
60 #include "llvm/MC/TargetRegistry.h"
61 #include "llvm/Object/IRSymtab.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Endian.h"
66 #include "llvm/Support/Error.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/SHA1.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/TargetParser/Triple.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstddef>
75 #include <cstdint>
76 #include <iterator>
77 #include <map>
78 #include <memory>
79 #include <optional>
80 #include <string>
81 #include <utility>
82 #include <vector>
83 
84 using namespace llvm;
85 
86 static cl::opt<unsigned>
87     IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
88                    cl::desc("Number of metadatas above which we emit an index "
89                             "to enable lazy-loading"));
90 static cl::opt<uint32_t> FlushThreshold(
91     "bitcode-flush-threshold", cl::Hidden, cl::init(512),
92     cl::desc("The threshold (unit M) for flushing LLVM bitcode."));
93 
94 static cl::opt<bool> WriteRelBFToSummary(
95     "write-relbf-to-summary", cl::Hidden, cl::init(false),
96     cl::desc("Write relative block frequency to function summary "));
97 
98 namespace llvm {
99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
100 }
101 
102 extern bool WriteNewDbgInfoFormatToBitcode;
103 extern llvm::cl::opt<bool> UseNewDbgInfoFormat;
104 
105 namespace {
106 
107 /// These are manifest constants used by the bitcode writer. They do not need to
108 /// be kept in sync with the reader, but need to be consistent within this file.
109 enum {
110   // VALUE_SYMTAB_BLOCK abbrev id's.
111   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
112   VST_ENTRY_7_ABBREV,
113   VST_ENTRY_6_ABBREV,
114   VST_BBENTRY_6_ABBREV,
115 
116   // CONSTANTS_BLOCK abbrev id's.
117   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
118   CONSTANTS_INTEGER_ABBREV,
119   CONSTANTS_CE_CAST_Abbrev,
120   CONSTANTS_NULL_Abbrev,
121 
122   // FUNCTION_BLOCK abbrev id's.
123   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
124   FUNCTION_INST_UNOP_ABBREV,
125   FUNCTION_INST_UNOP_FLAGS_ABBREV,
126   FUNCTION_INST_BINOP_ABBREV,
127   FUNCTION_INST_BINOP_FLAGS_ABBREV,
128   FUNCTION_INST_CAST_ABBREV,
129   FUNCTION_INST_CAST_FLAGS_ABBREV,
130   FUNCTION_INST_RET_VOID_ABBREV,
131   FUNCTION_INST_RET_VAL_ABBREV,
132   FUNCTION_INST_UNREACHABLE_ABBREV,
133   FUNCTION_INST_GEP_ABBREV,
134   FUNCTION_DEBUG_RECORD_VALUE_ABBREV,
135 };
136 
137 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
138 /// file type.
139 class BitcodeWriterBase {
140 protected:
141   /// The stream created and owned by the client.
142   BitstreamWriter &Stream;
143 
144   StringTableBuilder &StrtabBuilder;
145 
146 public:
147   /// Constructs a BitcodeWriterBase object that writes to the provided
148   /// \p Stream.
149   BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
150       : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
151 
152 protected:
153   void writeModuleVersion();
154 };
155 
156 void BitcodeWriterBase::writeModuleVersion() {
157   // VERSION: [version#]
158   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
159 }
160 
161 /// Base class to manage the module bitcode writing, currently subclassed for
162 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
163 class ModuleBitcodeWriterBase : public BitcodeWriterBase {
164 protected:
165   /// The Module to write to bitcode.
166   const Module &M;
167 
168   /// Enumerates ids for all values in the module.
169   ValueEnumerator VE;
170 
171   /// Optional per-module index to write for ThinLTO.
172   const ModuleSummaryIndex *Index;
173 
174   /// Map that holds the correspondence between GUIDs in the summary index,
175   /// that came from indirect call profiles, and a value id generated by this
176   /// class to use in the VST and summary block records.
177   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
178 
179   /// Tracks the last value id recorded in the GUIDToValueMap.
180   unsigned GlobalValueId;
181 
182   /// Saves the offset of the VSTOffset record that must eventually be
183   /// backpatched with the offset of the actual VST.
184   uint64_t VSTOffsetPlaceholder = 0;
185 
186 public:
187   /// Constructs a ModuleBitcodeWriterBase object for the given Module,
188   /// writing to the provided \p Buffer.
189   ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
190                           BitstreamWriter &Stream,
191                           bool ShouldPreserveUseListOrder,
192                           const ModuleSummaryIndex *Index)
193       : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
194         VE(M, ShouldPreserveUseListOrder), Index(Index) {
195     // Assign ValueIds to any callee values in the index that came from
196     // indirect call profiles and were recorded as a GUID not a Value*
197     // (which would have been assigned an ID by the ValueEnumerator).
198     // The starting ValueId is just after the number of values in the
199     // ValueEnumerator, so that they can be emitted in the VST.
200     GlobalValueId = VE.getValues().size();
201     if (!Index)
202       return;
203     for (const auto &GUIDSummaryLists : *Index)
204       // Examine all summaries for this GUID.
205       for (auto &Summary : GUIDSummaryLists.second.SummaryList)
206         if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
207           // For each call in the function summary, see if the call
208           // is to a GUID (which means it is for an indirect call,
209           // otherwise we would have a Value for it). If so, synthesize
210           // a value id.
211           for (auto &CallEdge : FS->calls())
212             if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
213               assignValueId(CallEdge.first.getGUID());
214   }
215 
216 protected:
217   void writePerModuleGlobalValueSummary();
218 
219 private:
220   void writePerModuleFunctionSummaryRecord(
221       SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
222       unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
223       unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F);
224   void writeModuleLevelReferences(const GlobalVariable &V,
225                                   SmallVector<uint64_t, 64> &NameVals,
226                                   unsigned FSModRefsAbbrev,
227                                   unsigned FSModVTableRefsAbbrev);
228 
229   void assignValueId(GlobalValue::GUID ValGUID) {
230     GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
231   }
232 
233   unsigned getValueId(GlobalValue::GUID ValGUID) {
234     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
235     // Expect that any GUID value had a value Id assigned by an
236     // earlier call to assignValueId.
237     assert(VMI != GUIDToValueIdMap.end() &&
238            "GUID does not have assigned value Id");
239     return VMI->second;
240   }
241 
242   // Helper to get the valueId for the type of value recorded in VI.
243   unsigned getValueId(ValueInfo VI) {
244     if (!VI.haveGVs() || !VI.getValue())
245       return getValueId(VI.getGUID());
246     return VE.getValueID(VI.getValue());
247   }
248 
249   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
250 };
251 
252 /// Class to manage the bitcode writing for a module.
253 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
254   /// Pointer to the buffer allocated by caller for bitcode writing.
255   const SmallVectorImpl<char> &Buffer;
256 
257   /// True if a module hash record should be written.
258   bool GenerateHash;
259 
260   /// If non-null, when GenerateHash is true, the resulting hash is written
261   /// into ModHash.
262   ModuleHash *ModHash;
263 
264   SHA1 Hasher;
265 
266   /// The start bit of the identification block.
267   uint64_t BitcodeStartBit;
268 
269 public:
270   /// Constructs a ModuleBitcodeWriter object for the given Module,
271   /// writing to the provided \p Buffer.
272   ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
273                       StringTableBuilder &StrtabBuilder,
274                       BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
275                       const ModuleSummaryIndex *Index, bool GenerateHash,
276                       ModuleHash *ModHash = nullptr)
277       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
278                                 ShouldPreserveUseListOrder, Index),
279         Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
280         BitcodeStartBit(Stream.GetCurrentBitNo()) {}
281 
282   /// Emit the current module to the bitstream.
283   void write();
284 
285 private:
286   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
287 
288   size_t addToStrtab(StringRef Str);
289 
290   void writeAttributeGroupTable();
291   void writeAttributeTable();
292   void writeTypeTable();
293   void writeComdats();
294   void writeValueSymbolTableForwardDecl();
295   void writeModuleInfo();
296   void writeValueAsMetadata(const ValueAsMetadata *MD,
297                             SmallVectorImpl<uint64_t> &Record);
298   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
299                     unsigned Abbrev);
300   unsigned createDILocationAbbrev();
301   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
302                        unsigned &Abbrev);
303   unsigned createGenericDINodeAbbrev();
304   void writeGenericDINode(const GenericDINode *N,
305                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
306   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
307                        unsigned Abbrev);
308   void writeDIGenericSubrange(const DIGenericSubrange *N,
309                               SmallVectorImpl<uint64_t> &Record,
310                               unsigned Abbrev);
311   void writeDIEnumerator(const DIEnumerator *N,
312                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
313   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
314                         unsigned Abbrev);
315   void writeDIStringType(const DIStringType *N,
316                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
317   void writeDIDerivedType(const DIDerivedType *N,
318                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
319   void writeDICompositeType(const DICompositeType *N,
320                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
321   void writeDISubroutineType(const DISubroutineType *N,
322                              SmallVectorImpl<uint64_t> &Record,
323                              unsigned Abbrev);
324   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
325                    unsigned Abbrev);
326   void writeDICompileUnit(const DICompileUnit *N,
327                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
328   void writeDISubprogram(const DISubprogram *N,
329                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
330   void writeDILexicalBlock(const DILexicalBlock *N,
331                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
332   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
333                                SmallVectorImpl<uint64_t> &Record,
334                                unsigned Abbrev);
335   void writeDICommonBlock(const DICommonBlock *N,
336                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
337   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
338                         unsigned Abbrev);
339   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
340                     unsigned Abbrev);
341   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
342                         unsigned Abbrev);
343   void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record);
344   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
345                      unsigned Abbrev);
346   void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record,
347                        unsigned Abbrev);
348   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
349                                     SmallVectorImpl<uint64_t> &Record,
350                                     unsigned Abbrev);
351   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
352                                      SmallVectorImpl<uint64_t> &Record,
353                                      unsigned Abbrev);
354   void writeDIGlobalVariable(const DIGlobalVariable *N,
355                              SmallVectorImpl<uint64_t> &Record,
356                              unsigned Abbrev);
357   void writeDILocalVariable(const DILocalVariable *N,
358                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
359   void writeDILabel(const DILabel *N,
360                     SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
361   void writeDIExpression(const DIExpression *N,
362                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
363   void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
364                                        SmallVectorImpl<uint64_t> &Record,
365                                        unsigned Abbrev);
366   void writeDIObjCProperty(const DIObjCProperty *N,
367                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
368   void writeDIImportedEntity(const DIImportedEntity *N,
369                              SmallVectorImpl<uint64_t> &Record,
370                              unsigned Abbrev);
371   unsigned createNamedMetadataAbbrev();
372   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
373   unsigned createMetadataStringsAbbrev();
374   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
375                             SmallVectorImpl<uint64_t> &Record);
376   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
377                             SmallVectorImpl<uint64_t> &Record,
378                             std::vector<unsigned> *MDAbbrevs = nullptr,
379                             std::vector<uint64_t> *IndexPos = nullptr);
380   void writeModuleMetadata();
381   void writeFunctionMetadata(const Function &F);
382   void writeFunctionMetadataAttachment(const Function &F);
383   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
384                                     const GlobalObject &GO);
385   void writeModuleMetadataKinds();
386   void writeOperandBundleTags();
387   void writeSyncScopeNames();
388   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
389   void writeModuleConstants();
390   bool pushValueAndType(const Value *V, unsigned InstID,
391                         SmallVectorImpl<unsigned> &Vals);
392   void writeOperandBundles(const CallBase &CB, unsigned InstID);
393   void pushValue(const Value *V, unsigned InstID,
394                  SmallVectorImpl<unsigned> &Vals);
395   void pushValueSigned(const Value *V, unsigned InstID,
396                        SmallVectorImpl<uint64_t> &Vals);
397   void writeInstruction(const Instruction &I, unsigned InstID,
398                         SmallVectorImpl<unsigned> &Vals);
399   void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
400   void writeGlobalValueSymbolTable(
401       DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
402   void writeUseList(UseListOrder &&Order);
403   void writeUseListBlock(const Function *F);
404   void
405   writeFunction(const Function &F,
406                 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
407   void writeBlockInfo();
408   void writeModuleHash(size_t BlockStartPos);
409 
410   unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
411     return unsigned(SSID);
412   }
413 
414   unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
415 };
416 
417 /// Class to manage the bitcode writing for a combined index.
418 class IndexBitcodeWriter : public BitcodeWriterBase {
419   /// The combined index to write to bitcode.
420   const ModuleSummaryIndex &Index;
421 
422   /// When writing a subset of the index for distributed backends, client
423   /// provides a map of modules to the corresponding GUIDs/summaries to write.
424   const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
425 
426   /// Map that holds the correspondence between the GUID used in the combined
427   /// index and a value id generated by this class to use in references.
428   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
429 
430   // The sorted stack id indices actually used in the summary entries being
431   // written, which will be a subset of those in the full index in the case of
432   // distributed indexes.
433   std::vector<unsigned> StackIdIndices;
434 
435   /// Tracks the last value id recorded in the GUIDToValueMap.
436   unsigned GlobalValueId = 0;
437 
438   /// Tracks the assignment of module paths in the module path string table to
439   /// an id assigned for use in summary references to the module path.
440   DenseMap<StringRef, uint64_t> ModuleIdMap;
441 
442 public:
443   /// Constructs a IndexBitcodeWriter object for the given combined index,
444   /// writing to the provided \p Buffer. When writing a subset of the index
445   /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
446   IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
447                      const ModuleSummaryIndex &Index,
448                      const std::map<std::string, GVSummaryMapTy>
449                          *ModuleToSummariesForIndex = nullptr)
450       : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
451         ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
452     // Assign unique value ids to all summaries to be written, for use
453     // in writing out the call graph edges. Save the mapping from GUID
454     // to the new global value id to use when writing those edges, which
455     // are currently saved in the index in terms of GUID.
456     forEachSummary([&](GVInfo I, bool IsAliasee) {
457       GUIDToValueIdMap[I.first] = ++GlobalValueId;
458       if (IsAliasee)
459         return;
460       auto *FS = dyn_cast<FunctionSummary>(I.second);
461       if (!FS)
462         return;
463       // Record all stack id indices actually used in the summary entries being
464       // written, so that we can compact them in the case of distributed ThinLTO
465       // indexes.
466       for (auto &CI : FS->callsites()) {
467         // If the stack id list is empty, this callsite info was synthesized for
468         // a missing tail call frame. Ensure that the callee's GUID gets a value
469         // id. Normally we only generate these for defined summaries, which in
470         // the case of distributed ThinLTO is only the functions already defined
471         // in the module or that we want to import. We don't bother to include
472         // all the callee symbols as they aren't normally needed in the backend.
473         // However, for the synthesized callsite infos we do need the callee
474         // GUID in the backend so that we can correlate the identified callee
475         // with this callsite info (which for non-tail calls is done by the
476         // ordering of the callsite infos and verified via stack ids).
477         if (CI.StackIdIndices.empty()) {
478           GUIDToValueIdMap[CI.Callee.getGUID()] = ++GlobalValueId;
479           continue;
480         }
481         for (auto Idx : CI.StackIdIndices)
482           StackIdIndices.push_back(Idx);
483       }
484       for (auto &AI : FS->allocs())
485         for (auto &MIB : AI.MIBs)
486           for (auto Idx : MIB.StackIdIndices)
487             StackIdIndices.push_back(Idx);
488     });
489     llvm::sort(StackIdIndices);
490     StackIdIndices.erase(
491         std::unique(StackIdIndices.begin(), StackIdIndices.end()),
492         StackIdIndices.end());
493   }
494 
495   /// The below iterator returns the GUID and associated summary.
496   using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
497 
498   /// Calls the callback for each value GUID and summary to be written to
499   /// bitcode. This hides the details of whether they are being pulled from the
500   /// entire index or just those in a provided ModuleToSummariesForIndex map.
501   template<typename Functor>
502   void forEachSummary(Functor Callback) {
503     if (ModuleToSummariesForIndex) {
504       for (auto &M : *ModuleToSummariesForIndex)
505         for (auto &Summary : M.second) {
506           Callback(Summary, false);
507           // Ensure aliasee is handled, e.g. for assigning a valueId,
508           // even if we are not importing the aliasee directly (the
509           // imported alias will contain a copy of aliasee).
510           if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
511             Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
512         }
513     } else {
514       for (auto &Summaries : Index)
515         for (auto &Summary : Summaries.second.SummaryList)
516           Callback({Summaries.first, Summary.get()}, false);
517     }
518   }
519 
520   /// Calls the callback for each entry in the modulePaths StringMap that
521   /// should be written to the module path string table. This hides the details
522   /// of whether they are being pulled from the entire index or just those in a
523   /// provided ModuleToSummariesForIndex map.
524   template <typename Functor> void forEachModule(Functor Callback) {
525     if (ModuleToSummariesForIndex) {
526       for (const auto &M : *ModuleToSummariesForIndex) {
527         const auto &MPI = Index.modulePaths().find(M.first);
528         if (MPI == Index.modulePaths().end()) {
529           // This should only happen if the bitcode file was empty, in which
530           // case we shouldn't be importing (the ModuleToSummariesForIndex
531           // would only include the module we are writing and index for).
532           assert(ModuleToSummariesForIndex->size() == 1);
533           continue;
534         }
535         Callback(*MPI);
536       }
537     } else {
538       // Since StringMap iteration order isn't guaranteed, order by path string
539       // first.
540       // FIXME: Make this a vector of StringMapEntry instead to avoid the later
541       // map lookup.
542       std::vector<StringRef> ModulePaths;
543       for (auto &[ModPath, _] : Index.modulePaths())
544         ModulePaths.push_back(ModPath);
545       llvm::sort(ModulePaths.begin(), ModulePaths.end());
546       for (auto &ModPath : ModulePaths)
547         Callback(*Index.modulePaths().find(ModPath));
548     }
549   }
550 
551   /// Main entry point for writing a combined index to bitcode.
552   void write();
553 
554 private:
555   void writeModStrings();
556   void writeCombinedGlobalValueSummary();
557 
558   std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
559     auto VMI = GUIDToValueIdMap.find(ValGUID);
560     if (VMI == GUIDToValueIdMap.end())
561       return std::nullopt;
562     return VMI->second;
563   }
564 
565   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
566 };
567 
568 } // end anonymous namespace
569 
570 static unsigned getEncodedCastOpcode(unsigned Opcode) {
571   switch (Opcode) {
572   default: llvm_unreachable("Unknown cast instruction!");
573   case Instruction::Trunc   : return bitc::CAST_TRUNC;
574   case Instruction::ZExt    : return bitc::CAST_ZEXT;
575   case Instruction::SExt    : return bitc::CAST_SEXT;
576   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
577   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
578   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
579   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
580   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
581   case Instruction::FPExt   : return bitc::CAST_FPEXT;
582   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
583   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
584   case Instruction::BitCast : return bitc::CAST_BITCAST;
585   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
586   }
587 }
588 
589 static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
590   switch (Opcode) {
591   default: llvm_unreachable("Unknown binary instruction!");
592   case Instruction::FNeg: return bitc::UNOP_FNEG;
593   }
594 }
595 
596 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
597   switch (Opcode) {
598   default: llvm_unreachable("Unknown binary instruction!");
599   case Instruction::Add:
600   case Instruction::FAdd: return bitc::BINOP_ADD;
601   case Instruction::Sub:
602   case Instruction::FSub: return bitc::BINOP_SUB;
603   case Instruction::Mul:
604   case Instruction::FMul: return bitc::BINOP_MUL;
605   case Instruction::UDiv: return bitc::BINOP_UDIV;
606   case Instruction::FDiv:
607   case Instruction::SDiv: return bitc::BINOP_SDIV;
608   case Instruction::URem: return bitc::BINOP_UREM;
609   case Instruction::FRem:
610   case Instruction::SRem: return bitc::BINOP_SREM;
611   case Instruction::Shl:  return bitc::BINOP_SHL;
612   case Instruction::LShr: return bitc::BINOP_LSHR;
613   case Instruction::AShr: return bitc::BINOP_ASHR;
614   case Instruction::And:  return bitc::BINOP_AND;
615   case Instruction::Or:   return bitc::BINOP_OR;
616   case Instruction::Xor:  return bitc::BINOP_XOR;
617   }
618 }
619 
620 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
621   switch (Op) {
622   default: llvm_unreachable("Unknown RMW operation!");
623   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
624   case AtomicRMWInst::Add: return bitc::RMW_ADD;
625   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
626   case AtomicRMWInst::And: return bitc::RMW_AND;
627   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
628   case AtomicRMWInst::Or: return bitc::RMW_OR;
629   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
630   case AtomicRMWInst::Max: return bitc::RMW_MAX;
631   case AtomicRMWInst::Min: return bitc::RMW_MIN;
632   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
633   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
634   case AtomicRMWInst::FAdd: return bitc::RMW_FADD;
635   case AtomicRMWInst::FSub: return bitc::RMW_FSUB;
636   case AtomicRMWInst::FMax: return bitc::RMW_FMAX;
637   case AtomicRMWInst::FMin: return bitc::RMW_FMIN;
638   case AtomicRMWInst::UIncWrap:
639     return bitc::RMW_UINC_WRAP;
640   case AtomicRMWInst::UDecWrap:
641     return bitc::RMW_UDEC_WRAP;
642   }
643 }
644 
645 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
646   switch (Ordering) {
647   case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
648   case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
649   case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
650   case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
651   case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
652   case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
653   case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
654   }
655   llvm_unreachable("Invalid ordering");
656 }
657 
658 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
659                               StringRef Str, unsigned AbbrevToUse) {
660   SmallVector<unsigned, 64> Vals;
661 
662   // Code: [strchar x N]
663   for (char C : Str) {
664     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C))
665       AbbrevToUse = 0;
666     Vals.push_back(C);
667   }
668 
669   // Emit the finished record.
670   Stream.EmitRecord(Code, Vals, AbbrevToUse);
671 }
672 
673 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
674   switch (Kind) {
675   case Attribute::Alignment:
676     return bitc::ATTR_KIND_ALIGNMENT;
677   case Attribute::AllocAlign:
678     return bitc::ATTR_KIND_ALLOC_ALIGN;
679   case Attribute::AllocSize:
680     return bitc::ATTR_KIND_ALLOC_SIZE;
681   case Attribute::AlwaysInline:
682     return bitc::ATTR_KIND_ALWAYS_INLINE;
683   case Attribute::Builtin:
684     return bitc::ATTR_KIND_BUILTIN;
685   case Attribute::ByVal:
686     return bitc::ATTR_KIND_BY_VAL;
687   case Attribute::Convergent:
688     return bitc::ATTR_KIND_CONVERGENT;
689   case Attribute::InAlloca:
690     return bitc::ATTR_KIND_IN_ALLOCA;
691   case Attribute::Cold:
692     return bitc::ATTR_KIND_COLD;
693   case Attribute::DisableSanitizerInstrumentation:
694     return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION;
695   case Attribute::FnRetThunkExtern:
696     return bitc::ATTR_KIND_FNRETTHUNK_EXTERN;
697   case Attribute::Hot:
698     return bitc::ATTR_KIND_HOT;
699   case Attribute::ElementType:
700     return bitc::ATTR_KIND_ELEMENTTYPE;
701   case Attribute::InlineHint:
702     return bitc::ATTR_KIND_INLINE_HINT;
703   case Attribute::InReg:
704     return bitc::ATTR_KIND_IN_REG;
705   case Attribute::JumpTable:
706     return bitc::ATTR_KIND_JUMP_TABLE;
707   case Attribute::MinSize:
708     return bitc::ATTR_KIND_MIN_SIZE;
709   case Attribute::AllocatedPointer:
710     return bitc::ATTR_KIND_ALLOCATED_POINTER;
711   case Attribute::AllocKind:
712     return bitc::ATTR_KIND_ALLOC_KIND;
713   case Attribute::Memory:
714     return bitc::ATTR_KIND_MEMORY;
715   case Attribute::NoFPClass:
716     return bitc::ATTR_KIND_NOFPCLASS;
717   case Attribute::Naked:
718     return bitc::ATTR_KIND_NAKED;
719   case Attribute::Nest:
720     return bitc::ATTR_KIND_NEST;
721   case Attribute::NoAlias:
722     return bitc::ATTR_KIND_NO_ALIAS;
723   case Attribute::NoBuiltin:
724     return bitc::ATTR_KIND_NO_BUILTIN;
725   case Attribute::NoCallback:
726     return bitc::ATTR_KIND_NO_CALLBACK;
727   case Attribute::NoCapture:
728     return bitc::ATTR_KIND_NO_CAPTURE;
729   case Attribute::NoDuplicate:
730     return bitc::ATTR_KIND_NO_DUPLICATE;
731   case Attribute::NoFree:
732     return bitc::ATTR_KIND_NOFREE;
733   case Attribute::NoImplicitFloat:
734     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
735   case Attribute::NoInline:
736     return bitc::ATTR_KIND_NO_INLINE;
737   case Attribute::NoRecurse:
738     return bitc::ATTR_KIND_NO_RECURSE;
739   case Attribute::NoMerge:
740     return bitc::ATTR_KIND_NO_MERGE;
741   case Attribute::NonLazyBind:
742     return bitc::ATTR_KIND_NON_LAZY_BIND;
743   case Attribute::NonNull:
744     return bitc::ATTR_KIND_NON_NULL;
745   case Attribute::Dereferenceable:
746     return bitc::ATTR_KIND_DEREFERENCEABLE;
747   case Attribute::DereferenceableOrNull:
748     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
749   case Attribute::NoRedZone:
750     return bitc::ATTR_KIND_NO_RED_ZONE;
751   case Attribute::NoReturn:
752     return bitc::ATTR_KIND_NO_RETURN;
753   case Attribute::NoSync:
754     return bitc::ATTR_KIND_NOSYNC;
755   case Attribute::NoCfCheck:
756     return bitc::ATTR_KIND_NOCF_CHECK;
757   case Attribute::NoProfile:
758     return bitc::ATTR_KIND_NO_PROFILE;
759   case Attribute::SkipProfile:
760     return bitc::ATTR_KIND_SKIP_PROFILE;
761   case Attribute::NoUnwind:
762     return bitc::ATTR_KIND_NO_UNWIND;
763   case Attribute::NoSanitizeBounds:
764     return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS;
765   case Attribute::NoSanitizeCoverage:
766     return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE;
767   case Attribute::NullPointerIsValid:
768     return bitc::ATTR_KIND_NULL_POINTER_IS_VALID;
769   case Attribute::OptimizeForDebugging:
770     return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING;
771   case Attribute::OptForFuzzing:
772     return bitc::ATTR_KIND_OPT_FOR_FUZZING;
773   case Attribute::OptimizeForSize:
774     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
775   case Attribute::OptimizeNone:
776     return bitc::ATTR_KIND_OPTIMIZE_NONE;
777   case Attribute::ReadNone:
778     return bitc::ATTR_KIND_READ_NONE;
779   case Attribute::ReadOnly:
780     return bitc::ATTR_KIND_READ_ONLY;
781   case Attribute::Returned:
782     return bitc::ATTR_KIND_RETURNED;
783   case Attribute::ReturnsTwice:
784     return bitc::ATTR_KIND_RETURNS_TWICE;
785   case Attribute::SExt:
786     return bitc::ATTR_KIND_S_EXT;
787   case Attribute::Speculatable:
788     return bitc::ATTR_KIND_SPECULATABLE;
789   case Attribute::StackAlignment:
790     return bitc::ATTR_KIND_STACK_ALIGNMENT;
791   case Attribute::StackProtect:
792     return bitc::ATTR_KIND_STACK_PROTECT;
793   case Attribute::StackProtectReq:
794     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
795   case Attribute::StackProtectStrong:
796     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
797   case Attribute::SafeStack:
798     return bitc::ATTR_KIND_SAFESTACK;
799   case Attribute::ShadowCallStack:
800     return bitc::ATTR_KIND_SHADOWCALLSTACK;
801   case Attribute::StrictFP:
802     return bitc::ATTR_KIND_STRICT_FP;
803   case Attribute::StructRet:
804     return bitc::ATTR_KIND_STRUCT_RET;
805   case Attribute::SanitizeAddress:
806     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
807   case Attribute::SanitizeHWAddress:
808     return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
809   case Attribute::SanitizeThread:
810     return bitc::ATTR_KIND_SANITIZE_THREAD;
811   case Attribute::SanitizeMemory:
812     return bitc::ATTR_KIND_SANITIZE_MEMORY;
813   case Attribute::SpeculativeLoadHardening:
814     return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
815   case Attribute::SwiftError:
816     return bitc::ATTR_KIND_SWIFT_ERROR;
817   case Attribute::SwiftSelf:
818     return bitc::ATTR_KIND_SWIFT_SELF;
819   case Attribute::SwiftAsync:
820     return bitc::ATTR_KIND_SWIFT_ASYNC;
821   case Attribute::UWTable:
822     return bitc::ATTR_KIND_UW_TABLE;
823   case Attribute::VScaleRange:
824     return bitc::ATTR_KIND_VSCALE_RANGE;
825   case Attribute::WillReturn:
826     return bitc::ATTR_KIND_WILLRETURN;
827   case Attribute::WriteOnly:
828     return bitc::ATTR_KIND_WRITEONLY;
829   case Attribute::ZExt:
830     return bitc::ATTR_KIND_Z_EXT;
831   case Attribute::ImmArg:
832     return bitc::ATTR_KIND_IMMARG;
833   case Attribute::SanitizeMemTag:
834     return bitc::ATTR_KIND_SANITIZE_MEMTAG;
835   case Attribute::Preallocated:
836     return bitc::ATTR_KIND_PREALLOCATED;
837   case Attribute::NoUndef:
838     return bitc::ATTR_KIND_NOUNDEF;
839   case Attribute::ByRef:
840     return bitc::ATTR_KIND_BYREF;
841   case Attribute::MustProgress:
842     return bitc::ATTR_KIND_MUSTPROGRESS;
843   case Attribute::PresplitCoroutine:
844     return bitc::ATTR_KIND_PRESPLIT_COROUTINE;
845   case Attribute::Writable:
846     return bitc::ATTR_KIND_WRITABLE;
847   case Attribute::CoroDestroyOnlyWhenComplete:
848     return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE;
849   case Attribute::DeadOnUnwind:
850     return bitc::ATTR_KIND_DEAD_ON_UNWIND;
851   case Attribute::Range:
852     return bitc::ATTR_KIND_RANGE;
853   case Attribute::EndAttrKinds:
854     llvm_unreachable("Can not encode end-attribute kinds marker.");
855   case Attribute::None:
856     llvm_unreachable("Can not encode none-attribute.");
857   case Attribute::EmptyKey:
858   case Attribute::TombstoneKey:
859     llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
860   }
861 
862   llvm_unreachable("Trying to encode unknown attribute");
863 }
864 
865 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
866   if ((int64_t)V >= 0)
867     Vals.push_back(V << 1);
868   else
869     Vals.push_back((-V << 1) | 1);
870 }
871 
872 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) {
873   // We have an arbitrary precision integer value to write whose
874   // bit width is > 64. However, in canonical unsigned integer
875   // format it is likely that the high bits are going to be zero.
876   // So, we only write the number of active words.
877   unsigned NumWords = A.getActiveWords();
878   const uint64_t *RawData = A.getRawData();
879   for (unsigned i = 0; i < NumWords; i++)
880     emitSignedInt64(Vals, RawData[i]);
881 }
882 
883 static void emitConstantRange(SmallVectorImpl<uint64_t> &Record,
884                               const ConstantRange &CR) {
885   unsigned BitWidth = CR.getBitWidth();
886   Record.push_back(BitWidth);
887   if (BitWidth > 64) {
888     Record.push_back(CR.getLower().getActiveWords() |
889                      (uint64_t(CR.getUpper().getActiveWords()) << 32));
890     emitWideAPInt(Record, CR.getLower());
891     emitWideAPInt(Record, CR.getUpper());
892   } else {
893     emitSignedInt64(Record, CR.getLower().getSExtValue());
894     emitSignedInt64(Record, CR.getUpper().getSExtValue());
895   }
896 }
897 
898 void ModuleBitcodeWriter::writeAttributeGroupTable() {
899   const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
900       VE.getAttributeGroups();
901   if (AttrGrps.empty()) return;
902 
903   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
904 
905   SmallVector<uint64_t, 64> Record;
906   for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
907     unsigned AttrListIndex = Pair.first;
908     AttributeSet AS = Pair.second;
909     Record.push_back(VE.getAttributeGroupID(Pair));
910     Record.push_back(AttrListIndex);
911 
912     for (Attribute Attr : AS) {
913       if (Attr.isEnumAttribute()) {
914         Record.push_back(0);
915         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
916       } else if (Attr.isIntAttribute()) {
917         Record.push_back(1);
918         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
919         Record.push_back(Attr.getValueAsInt());
920       } else if (Attr.isStringAttribute()) {
921         StringRef Kind = Attr.getKindAsString();
922         StringRef Val = Attr.getValueAsString();
923 
924         Record.push_back(Val.empty() ? 3 : 4);
925         Record.append(Kind.begin(), Kind.end());
926         Record.push_back(0);
927         if (!Val.empty()) {
928           Record.append(Val.begin(), Val.end());
929           Record.push_back(0);
930         }
931       } else if (Attr.isTypeAttribute()) {
932         Type *Ty = Attr.getValueAsType();
933         Record.push_back(Ty ? 6 : 5);
934         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
935         if (Ty)
936           Record.push_back(VE.getTypeID(Attr.getValueAsType()));
937       } else {
938         assert(Attr.isConstantRangeAttribute());
939         Record.push_back(7);
940         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
941         emitConstantRange(Record, Attr.getValueAsConstantRange());
942       }
943     }
944 
945     Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
946     Record.clear();
947   }
948 
949   Stream.ExitBlock();
950 }
951 
952 void ModuleBitcodeWriter::writeAttributeTable() {
953   const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
954   if (Attrs.empty()) return;
955 
956   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
957 
958   SmallVector<uint64_t, 64> Record;
959   for (const AttributeList &AL : Attrs) {
960     for (unsigned i : AL.indexes()) {
961       AttributeSet AS = AL.getAttributes(i);
962       if (AS.hasAttributes())
963         Record.push_back(VE.getAttributeGroupID({i, AS}));
964     }
965 
966     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
967     Record.clear();
968   }
969 
970   Stream.ExitBlock();
971 }
972 
973 /// WriteTypeTable - Write out the type table for a module.
974 void ModuleBitcodeWriter::writeTypeTable() {
975   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
976 
977   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
978   SmallVector<uint64_t, 64> TypeVals;
979 
980   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
981 
982   // Abbrev for TYPE_CODE_OPAQUE_POINTER.
983   auto Abbv = std::make_shared<BitCodeAbbrev>();
984   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER));
985   Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
986   unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
987 
988   // Abbrev for TYPE_CODE_FUNCTION.
989   Abbv = std::make_shared<BitCodeAbbrev>();
990   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
991   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
992   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
993   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
994   unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
995 
996   // Abbrev for TYPE_CODE_STRUCT_ANON.
997   Abbv = std::make_shared<BitCodeAbbrev>();
998   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
999   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
1000   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1001   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1002   unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1003 
1004   // Abbrev for TYPE_CODE_STRUCT_NAME.
1005   Abbv = std::make_shared<BitCodeAbbrev>();
1006   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
1007   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1008   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1009   unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1010 
1011   // Abbrev for TYPE_CODE_STRUCT_NAMED.
1012   Abbv = std::make_shared<BitCodeAbbrev>();
1013   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
1014   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
1015   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1016   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1017   unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1018 
1019   // Abbrev for TYPE_CODE_ARRAY.
1020   Abbv = std::make_shared<BitCodeAbbrev>();
1021   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
1022   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
1023   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1024   unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1025 
1026   // Emit an entry count so the reader can reserve space.
1027   TypeVals.push_back(TypeList.size());
1028   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
1029   TypeVals.clear();
1030 
1031   // Loop over all of the types, emitting each in turn.
1032   for (Type *T : TypeList) {
1033     int AbbrevToUse = 0;
1034     unsigned Code = 0;
1035 
1036     switch (T->getTypeID()) {
1037     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
1038     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
1039     case Type::BFloatTyID:    Code = bitc::TYPE_CODE_BFLOAT;    break;
1040     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
1041     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
1042     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
1043     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
1044     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
1045     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
1046     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
1047     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
1048     case Type::X86_AMXTyID:   Code = bitc::TYPE_CODE_X86_AMX;   break;
1049     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
1050     case Type::IntegerTyID:
1051       // INTEGER: [width]
1052       Code = bitc::TYPE_CODE_INTEGER;
1053       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
1054       break;
1055     case Type::PointerTyID: {
1056       PointerType *PTy = cast<PointerType>(T);
1057       unsigned AddressSpace = PTy->getAddressSpace();
1058       // OPAQUE_POINTER: [address space]
1059       Code = bitc::TYPE_CODE_OPAQUE_POINTER;
1060       TypeVals.push_back(AddressSpace);
1061       if (AddressSpace == 0)
1062         AbbrevToUse = OpaquePtrAbbrev;
1063       break;
1064     }
1065     case Type::FunctionTyID: {
1066       FunctionType *FT = cast<FunctionType>(T);
1067       // FUNCTION: [isvararg, retty, paramty x N]
1068       Code = bitc::TYPE_CODE_FUNCTION;
1069       TypeVals.push_back(FT->isVarArg());
1070       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
1071       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
1072         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
1073       AbbrevToUse = FunctionAbbrev;
1074       break;
1075     }
1076     case Type::StructTyID: {
1077       StructType *ST = cast<StructType>(T);
1078       // STRUCT: [ispacked, eltty x N]
1079       TypeVals.push_back(ST->isPacked());
1080       // Output all of the element types.
1081       for (Type *ET : ST->elements())
1082         TypeVals.push_back(VE.getTypeID(ET));
1083 
1084       if (ST->isLiteral()) {
1085         Code = bitc::TYPE_CODE_STRUCT_ANON;
1086         AbbrevToUse = StructAnonAbbrev;
1087       } else {
1088         if (ST->isOpaque()) {
1089           Code = bitc::TYPE_CODE_OPAQUE;
1090         } else {
1091           Code = bitc::TYPE_CODE_STRUCT_NAMED;
1092           AbbrevToUse = StructNamedAbbrev;
1093         }
1094 
1095         // Emit the name if it is present.
1096         if (!ST->getName().empty())
1097           writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
1098                             StructNameAbbrev);
1099       }
1100       break;
1101     }
1102     case Type::ArrayTyID: {
1103       ArrayType *AT = cast<ArrayType>(T);
1104       // ARRAY: [numelts, eltty]
1105       Code = bitc::TYPE_CODE_ARRAY;
1106       TypeVals.push_back(AT->getNumElements());
1107       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
1108       AbbrevToUse = ArrayAbbrev;
1109       break;
1110     }
1111     case Type::FixedVectorTyID:
1112     case Type::ScalableVectorTyID: {
1113       VectorType *VT = cast<VectorType>(T);
1114       // VECTOR [numelts, eltty] or
1115       //        [numelts, eltty, scalable]
1116       Code = bitc::TYPE_CODE_VECTOR;
1117       TypeVals.push_back(VT->getElementCount().getKnownMinValue());
1118       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
1119       if (isa<ScalableVectorType>(VT))
1120         TypeVals.push_back(true);
1121       break;
1122     }
1123     case Type::TargetExtTyID: {
1124       TargetExtType *TET = cast<TargetExtType>(T);
1125       Code = bitc::TYPE_CODE_TARGET_TYPE;
1126       writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(),
1127                         StructNameAbbrev);
1128       TypeVals.push_back(TET->getNumTypeParameters());
1129       for (Type *InnerTy : TET->type_params())
1130         TypeVals.push_back(VE.getTypeID(InnerTy));
1131       for (unsigned IntParam : TET->int_params())
1132         TypeVals.push_back(IntParam);
1133       break;
1134     }
1135     case Type::TypedPointerTyID:
1136       llvm_unreachable("Typed pointers cannot be added to IR modules");
1137     }
1138 
1139     // Emit the finished record.
1140     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
1141     TypeVals.clear();
1142   }
1143 
1144   Stream.ExitBlock();
1145 }
1146 
1147 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
1148   switch (Linkage) {
1149   case GlobalValue::ExternalLinkage:
1150     return 0;
1151   case GlobalValue::WeakAnyLinkage:
1152     return 16;
1153   case GlobalValue::AppendingLinkage:
1154     return 2;
1155   case GlobalValue::InternalLinkage:
1156     return 3;
1157   case GlobalValue::LinkOnceAnyLinkage:
1158     return 18;
1159   case GlobalValue::ExternalWeakLinkage:
1160     return 7;
1161   case GlobalValue::CommonLinkage:
1162     return 8;
1163   case GlobalValue::PrivateLinkage:
1164     return 9;
1165   case GlobalValue::WeakODRLinkage:
1166     return 17;
1167   case GlobalValue::LinkOnceODRLinkage:
1168     return 19;
1169   case GlobalValue::AvailableExternallyLinkage:
1170     return 12;
1171   }
1172   llvm_unreachable("Invalid linkage");
1173 }
1174 
1175 static unsigned getEncodedLinkage(const GlobalValue &GV) {
1176   return getEncodedLinkage(GV.getLinkage());
1177 }
1178 
1179 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
1180   uint64_t RawFlags = 0;
1181   RawFlags |= Flags.ReadNone;
1182   RawFlags |= (Flags.ReadOnly << 1);
1183   RawFlags |= (Flags.NoRecurse << 2);
1184   RawFlags |= (Flags.ReturnDoesNotAlias << 3);
1185   RawFlags |= (Flags.NoInline << 4);
1186   RawFlags |= (Flags.AlwaysInline << 5);
1187   RawFlags |= (Flags.NoUnwind << 6);
1188   RawFlags |= (Flags.MayThrow << 7);
1189   RawFlags |= (Flags.HasUnknownCall << 8);
1190   RawFlags |= (Flags.MustBeUnreachable << 9);
1191   return RawFlags;
1192 }
1193 
1194 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags
1195 // in BitcodeReader.cpp.
1196 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
1197   uint64_t RawFlags = 0;
1198 
1199   RawFlags |= Flags.NotEligibleToImport; // bool
1200   RawFlags |= (Flags.Live << 1);
1201   RawFlags |= (Flags.DSOLocal << 2);
1202   RawFlags |= (Flags.CanAutoHide << 3);
1203 
1204   // Linkage don't need to be remapped at that time for the summary. Any future
1205   // change to the getEncodedLinkage() function will need to be taken into
1206   // account here as well.
1207   RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
1208 
1209   RawFlags |= (Flags.Visibility << 8); // 2 bits
1210 
1211   return RawFlags;
1212 }
1213 
1214 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
1215   uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) |
1216                       (Flags.Constant << 2) | Flags.VCallVisibility << 3;
1217   return RawFlags;
1218 }
1219 
1220 static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo &CI) {
1221   uint64_t RawFlags = 0;
1222 
1223   RawFlags |= CI.Hotness;            // 3 bits
1224   RawFlags |= (CI.HasTailCall << 3); // 1 bit
1225 
1226   return RawFlags;
1227 }
1228 
1229 static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo &CI) {
1230   uint64_t RawFlags = 0;
1231 
1232   RawFlags |= CI.RelBlockFreq; // CalleeInfo::RelBlockFreqBits bits
1233   RawFlags |= (CI.HasTailCall << CalleeInfo::RelBlockFreqBits); // 1 bit
1234 
1235   return RawFlags;
1236 }
1237 
1238 static unsigned getEncodedVisibility(const GlobalValue &GV) {
1239   switch (GV.getVisibility()) {
1240   case GlobalValue::DefaultVisibility:   return 0;
1241   case GlobalValue::HiddenVisibility:    return 1;
1242   case GlobalValue::ProtectedVisibility: return 2;
1243   }
1244   llvm_unreachable("Invalid visibility");
1245 }
1246 
1247 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1248   switch (GV.getDLLStorageClass()) {
1249   case GlobalValue::DefaultStorageClass:   return 0;
1250   case GlobalValue::DLLImportStorageClass: return 1;
1251   case GlobalValue::DLLExportStorageClass: return 2;
1252   }
1253   llvm_unreachable("Invalid DLL storage class");
1254 }
1255 
1256 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1257   switch (GV.getThreadLocalMode()) {
1258     case GlobalVariable::NotThreadLocal:         return 0;
1259     case GlobalVariable::GeneralDynamicTLSModel: return 1;
1260     case GlobalVariable::LocalDynamicTLSModel:   return 2;
1261     case GlobalVariable::InitialExecTLSModel:    return 3;
1262     case GlobalVariable::LocalExecTLSModel:      return 4;
1263   }
1264   llvm_unreachable("Invalid TLS model");
1265 }
1266 
1267 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1268   switch (C.getSelectionKind()) {
1269   case Comdat::Any:
1270     return bitc::COMDAT_SELECTION_KIND_ANY;
1271   case Comdat::ExactMatch:
1272     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1273   case Comdat::Largest:
1274     return bitc::COMDAT_SELECTION_KIND_LARGEST;
1275   case Comdat::NoDeduplicate:
1276     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1277   case Comdat::SameSize:
1278     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1279   }
1280   llvm_unreachable("Invalid selection kind");
1281 }
1282 
1283 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1284   switch (GV.getUnnamedAddr()) {
1285   case GlobalValue::UnnamedAddr::None:   return 0;
1286   case GlobalValue::UnnamedAddr::Local:  return 2;
1287   case GlobalValue::UnnamedAddr::Global: return 1;
1288   }
1289   llvm_unreachable("Invalid unnamed_addr");
1290 }
1291 
1292 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1293   if (GenerateHash)
1294     Hasher.update(Str);
1295   return StrtabBuilder.add(Str);
1296 }
1297 
1298 void ModuleBitcodeWriter::writeComdats() {
1299   SmallVector<unsigned, 64> Vals;
1300   for (const Comdat *C : VE.getComdats()) {
1301     // COMDAT: [strtab offset, strtab size, selection_kind]
1302     Vals.push_back(addToStrtab(C->getName()));
1303     Vals.push_back(C->getName().size());
1304     Vals.push_back(getEncodedComdatSelectionKind(*C));
1305     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1306     Vals.clear();
1307   }
1308 }
1309 
1310 /// Write a record that will eventually hold the word offset of the
1311 /// module-level VST. For now the offset is 0, which will be backpatched
1312 /// after the real VST is written. Saves the bit offset to backpatch.
1313 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1314   // Write a placeholder value in for the offset of the real VST,
1315   // which is written after the function blocks so that it can include
1316   // the offset of each function. The placeholder offset will be
1317   // updated when the real VST is written.
1318   auto Abbv = std::make_shared<BitCodeAbbrev>();
1319   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1320   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1321   // hold the real VST offset. Must use fixed instead of VBR as we don't
1322   // know how many VBR chunks to reserve ahead of time.
1323   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1324   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1325 
1326   // Emit the placeholder
1327   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1328   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1329 
1330   // Compute and save the bit offset to the placeholder, which will be
1331   // patched when the real VST is written. We can simply subtract the 32-bit
1332   // fixed size from the current bit number to get the location to backpatch.
1333   VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1334 }
1335 
1336 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1337 
1338 /// Determine the encoding to use for the given string name and length.
1339 static StringEncoding getStringEncoding(StringRef Str) {
1340   bool isChar6 = true;
1341   for (char C : Str) {
1342     if (isChar6)
1343       isChar6 = BitCodeAbbrevOp::isChar6(C);
1344     if ((unsigned char)C & 128)
1345       // don't bother scanning the rest.
1346       return SE_Fixed8;
1347   }
1348   if (isChar6)
1349     return SE_Char6;
1350   return SE_Fixed7;
1351 }
1352 
1353 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned),
1354               "Sanitizer Metadata is too large for naive serialization.");
1355 static unsigned
1356 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) {
1357   return Meta.NoAddress | (Meta.NoHWAddress << 1) |
1358          (Meta.Memtag << 2) | (Meta.IsDynInit << 3);
1359 }
1360 
1361 /// Emit top-level description of module, including target triple, inline asm,
1362 /// descriptors for global variables, and function prototype info.
1363 /// Returns the bit offset to backpatch with the location of the real VST.
1364 void ModuleBitcodeWriter::writeModuleInfo() {
1365   // Emit various pieces of data attached to a module.
1366   if (!M.getTargetTriple().empty())
1367     writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1368                       0 /*TODO*/);
1369   const std::string &DL = M.getDataLayoutStr();
1370   if (!DL.empty())
1371     writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1372   if (!M.getModuleInlineAsm().empty())
1373     writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1374                       0 /*TODO*/);
1375 
1376   // Emit information about sections and GC, computing how many there are. Also
1377   // compute the maximum alignment value.
1378   std::map<std::string, unsigned> SectionMap;
1379   std::map<std::string, unsigned> GCMap;
1380   MaybeAlign MaxAlignment;
1381   unsigned MaxGlobalType = 0;
1382   const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
1383     if (A)
1384       MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
1385   };
1386   for (const GlobalVariable &GV : M.globals()) {
1387     UpdateMaxAlignment(GV.getAlign());
1388     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1389     if (GV.hasSection()) {
1390       // Give section names unique ID's.
1391       unsigned &Entry = SectionMap[std::string(GV.getSection())];
1392       if (!Entry) {
1393         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1394                           0 /*TODO*/);
1395         Entry = SectionMap.size();
1396       }
1397     }
1398   }
1399   for (const Function &F : M) {
1400     UpdateMaxAlignment(F.getAlign());
1401     if (F.hasSection()) {
1402       // Give section names unique ID's.
1403       unsigned &Entry = SectionMap[std::string(F.getSection())];
1404       if (!Entry) {
1405         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1406                           0 /*TODO*/);
1407         Entry = SectionMap.size();
1408       }
1409     }
1410     if (F.hasGC()) {
1411       // Same for GC names.
1412       unsigned &Entry = GCMap[F.getGC()];
1413       if (!Entry) {
1414         writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1415                           0 /*TODO*/);
1416         Entry = GCMap.size();
1417       }
1418     }
1419   }
1420 
1421   // Emit abbrev for globals, now that we know # sections and max alignment.
1422   unsigned SimpleGVarAbbrev = 0;
1423   if (!M.global_empty()) {
1424     // Add an abbrev for common globals with no visibility or thread localness.
1425     auto Abbv = std::make_shared<BitCodeAbbrev>();
1426     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1427     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1428     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1429     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1430                               Log2_32_Ceil(MaxGlobalType+1)));
1431     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1432                                                            //| explicitType << 1
1433                                                            //| constant
1434     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1435     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1436     if (!MaxAlignment)                                     // Alignment.
1437       Abbv->Add(BitCodeAbbrevOp(0));
1438     else {
1439       unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
1440       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1441                                Log2_32_Ceil(MaxEncAlignment+1)));
1442     }
1443     if (SectionMap.empty())                                    // Section.
1444       Abbv->Add(BitCodeAbbrevOp(0));
1445     else
1446       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1447                                Log2_32_Ceil(SectionMap.size()+1)));
1448     // Don't bother emitting vis + thread local.
1449     SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1450   }
1451 
1452   SmallVector<unsigned, 64> Vals;
1453   // Emit the module's source file name.
1454   {
1455     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1456     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1457     if (Bits == SE_Char6)
1458       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1459     else if (Bits == SE_Fixed7)
1460       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1461 
1462     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1463     auto Abbv = std::make_shared<BitCodeAbbrev>();
1464     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1465     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1466     Abbv->Add(AbbrevOpToUse);
1467     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1468 
1469     for (const auto P : M.getSourceFileName())
1470       Vals.push_back((unsigned char)P);
1471 
1472     // Emit the finished record.
1473     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1474     Vals.clear();
1475   }
1476 
1477   // Emit the global variable information.
1478   for (const GlobalVariable &GV : M.globals()) {
1479     unsigned AbbrevToUse = 0;
1480 
1481     // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1482     //             linkage, alignment, section, visibility, threadlocal,
1483     //             unnamed_addr, externally_initialized, dllstorageclass,
1484     //             comdat, attributes, DSO_Local, GlobalSanitizer, code_model]
1485     Vals.push_back(addToStrtab(GV.getName()));
1486     Vals.push_back(GV.getName().size());
1487     Vals.push_back(VE.getTypeID(GV.getValueType()));
1488     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1489     Vals.push_back(GV.isDeclaration() ? 0 :
1490                    (VE.getValueID(GV.getInitializer()) + 1));
1491     Vals.push_back(getEncodedLinkage(GV));
1492     Vals.push_back(getEncodedAlign(GV.getAlign()));
1493     Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
1494                                    : 0);
1495     if (GV.isThreadLocal() ||
1496         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1497         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1498         GV.isExternallyInitialized() ||
1499         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1500         GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() ||
1501         GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) {
1502       Vals.push_back(getEncodedVisibility(GV));
1503       Vals.push_back(getEncodedThreadLocalMode(GV));
1504       Vals.push_back(getEncodedUnnamedAddr(GV));
1505       Vals.push_back(GV.isExternallyInitialized());
1506       Vals.push_back(getEncodedDLLStorageClass(GV));
1507       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1508 
1509       auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1510       Vals.push_back(VE.getAttributeListID(AL));
1511 
1512       Vals.push_back(GV.isDSOLocal());
1513       Vals.push_back(addToStrtab(GV.getPartition()));
1514       Vals.push_back(GV.getPartition().size());
1515 
1516       Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata(
1517                                                       GV.getSanitizerMetadata())
1518                                                 : 0));
1519       Vals.push_back(GV.getCodeModelRaw());
1520     } else {
1521       AbbrevToUse = SimpleGVarAbbrev;
1522     }
1523 
1524     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1525     Vals.clear();
1526   }
1527 
1528   // Emit the function proto information.
1529   for (const Function &F : M) {
1530     // FUNCTION:  [strtab offset, strtab size, type, callingconv, isproto,
1531     //             linkage, paramattrs, alignment, section, visibility, gc,
1532     //             unnamed_addr, prologuedata, dllstorageclass, comdat,
1533     //             prefixdata, personalityfn, DSO_Local, addrspace]
1534     Vals.push_back(addToStrtab(F.getName()));
1535     Vals.push_back(F.getName().size());
1536     Vals.push_back(VE.getTypeID(F.getFunctionType()));
1537     Vals.push_back(F.getCallingConv());
1538     Vals.push_back(F.isDeclaration());
1539     Vals.push_back(getEncodedLinkage(F));
1540     Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1541     Vals.push_back(getEncodedAlign(F.getAlign()));
1542     Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
1543                                   : 0);
1544     Vals.push_back(getEncodedVisibility(F));
1545     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1546     Vals.push_back(getEncodedUnnamedAddr(F));
1547     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1548                                        : 0);
1549     Vals.push_back(getEncodedDLLStorageClass(F));
1550     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1551     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1552                                      : 0);
1553     Vals.push_back(
1554         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1555 
1556     Vals.push_back(F.isDSOLocal());
1557     Vals.push_back(F.getAddressSpace());
1558     Vals.push_back(addToStrtab(F.getPartition()));
1559     Vals.push_back(F.getPartition().size());
1560 
1561     unsigned AbbrevToUse = 0;
1562     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1563     Vals.clear();
1564   }
1565 
1566   // Emit the alias information.
1567   for (const GlobalAlias &A : M.aliases()) {
1568     // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1569     //         visibility, dllstorageclass, threadlocal, unnamed_addr,
1570     //         DSO_Local]
1571     Vals.push_back(addToStrtab(A.getName()));
1572     Vals.push_back(A.getName().size());
1573     Vals.push_back(VE.getTypeID(A.getValueType()));
1574     Vals.push_back(A.getType()->getAddressSpace());
1575     Vals.push_back(VE.getValueID(A.getAliasee()));
1576     Vals.push_back(getEncodedLinkage(A));
1577     Vals.push_back(getEncodedVisibility(A));
1578     Vals.push_back(getEncodedDLLStorageClass(A));
1579     Vals.push_back(getEncodedThreadLocalMode(A));
1580     Vals.push_back(getEncodedUnnamedAddr(A));
1581     Vals.push_back(A.isDSOLocal());
1582     Vals.push_back(addToStrtab(A.getPartition()));
1583     Vals.push_back(A.getPartition().size());
1584 
1585     unsigned AbbrevToUse = 0;
1586     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1587     Vals.clear();
1588   }
1589 
1590   // Emit the ifunc information.
1591   for (const GlobalIFunc &I : M.ifuncs()) {
1592     // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1593     //         val#, linkage, visibility, DSO_Local]
1594     Vals.push_back(addToStrtab(I.getName()));
1595     Vals.push_back(I.getName().size());
1596     Vals.push_back(VE.getTypeID(I.getValueType()));
1597     Vals.push_back(I.getType()->getAddressSpace());
1598     Vals.push_back(VE.getValueID(I.getResolver()));
1599     Vals.push_back(getEncodedLinkage(I));
1600     Vals.push_back(getEncodedVisibility(I));
1601     Vals.push_back(I.isDSOLocal());
1602     Vals.push_back(addToStrtab(I.getPartition()));
1603     Vals.push_back(I.getPartition().size());
1604     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1605     Vals.clear();
1606   }
1607 
1608   writeValueSymbolTableForwardDecl();
1609 }
1610 
1611 static uint64_t getOptimizationFlags(const Value *V) {
1612   uint64_t Flags = 0;
1613 
1614   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1615     if (OBO->hasNoSignedWrap())
1616       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1617     if (OBO->hasNoUnsignedWrap())
1618       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1619   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1620     if (PEO->isExact())
1621       Flags |= 1 << bitc::PEO_EXACT;
1622   } else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) {
1623     if (PDI->isDisjoint())
1624       Flags |= 1 << bitc::PDI_DISJOINT;
1625   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1626     if (FPMO->hasAllowReassoc())
1627       Flags |= bitc::AllowReassoc;
1628     if (FPMO->hasNoNaNs())
1629       Flags |= bitc::NoNaNs;
1630     if (FPMO->hasNoInfs())
1631       Flags |= bitc::NoInfs;
1632     if (FPMO->hasNoSignedZeros())
1633       Flags |= bitc::NoSignedZeros;
1634     if (FPMO->hasAllowReciprocal())
1635       Flags |= bitc::AllowReciprocal;
1636     if (FPMO->hasAllowContract())
1637       Flags |= bitc::AllowContract;
1638     if (FPMO->hasApproxFunc())
1639       Flags |= bitc::ApproxFunc;
1640   } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) {
1641     if (NNI->hasNonNeg())
1642       Flags |= 1 << bitc::PNNI_NON_NEG;
1643   }
1644 
1645   return Flags;
1646 }
1647 
1648 void ModuleBitcodeWriter::writeValueAsMetadata(
1649     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1650   // Mimic an MDNode with a value as one operand.
1651   Value *V = MD->getValue();
1652   Record.push_back(VE.getTypeID(V->getType()));
1653   Record.push_back(VE.getValueID(V));
1654   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1655   Record.clear();
1656 }
1657 
1658 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1659                                        SmallVectorImpl<uint64_t> &Record,
1660                                        unsigned Abbrev) {
1661   for (const MDOperand &MDO : N->operands()) {
1662     Metadata *MD = MDO;
1663     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1664            "Unexpected function-local metadata");
1665     Record.push_back(VE.getMetadataOrNullID(MD));
1666   }
1667   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1668                                     : bitc::METADATA_NODE,
1669                     Record, Abbrev);
1670   Record.clear();
1671 }
1672 
1673 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1674   // Assume the column is usually under 128, and always output the inlined-at
1675   // location (it's never more expensive than building an array size 1).
1676   auto Abbv = std::make_shared<BitCodeAbbrev>();
1677   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1678   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1679   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1680   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1681   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1682   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1683   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1684   return Stream.EmitAbbrev(std::move(Abbv));
1685 }
1686 
1687 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1688                                           SmallVectorImpl<uint64_t> &Record,
1689                                           unsigned &Abbrev) {
1690   if (!Abbrev)
1691     Abbrev = createDILocationAbbrev();
1692 
1693   Record.push_back(N->isDistinct());
1694   Record.push_back(N->getLine());
1695   Record.push_back(N->getColumn());
1696   Record.push_back(VE.getMetadataID(N->getScope()));
1697   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1698   Record.push_back(N->isImplicitCode());
1699 
1700   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1701   Record.clear();
1702 }
1703 
1704 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1705   // Assume the column is usually under 128, and always output the inlined-at
1706   // location (it's never more expensive than building an array size 1).
1707   auto Abbv = std::make_shared<BitCodeAbbrev>();
1708   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1709   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1710   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1711   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1712   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1713   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1714   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1715   return Stream.EmitAbbrev(std::move(Abbv));
1716 }
1717 
1718 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1719                                              SmallVectorImpl<uint64_t> &Record,
1720                                              unsigned &Abbrev) {
1721   if (!Abbrev)
1722     Abbrev = createGenericDINodeAbbrev();
1723 
1724   Record.push_back(N->isDistinct());
1725   Record.push_back(N->getTag());
1726   Record.push_back(0); // Per-tag version field; unused for now.
1727 
1728   for (auto &I : N->operands())
1729     Record.push_back(VE.getMetadataOrNullID(I));
1730 
1731   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1732   Record.clear();
1733 }
1734 
1735 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1736                                           SmallVectorImpl<uint64_t> &Record,
1737                                           unsigned Abbrev) {
1738   const uint64_t Version = 2 << 1;
1739   Record.push_back((uint64_t)N->isDistinct() | Version);
1740   Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1741   Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1742   Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1743   Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1744 
1745   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1746   Record.clear();
1747 }
1748 
1749 void ModuleBitcodeWriter::writeDIGenericSubrange(
1750     const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record,
1751     unsigned Abbrev) {
1752   Record.push_back((uint64_t)N->isDistinct());
1753   Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1754   Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1755   Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1756   Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1757 
1758   Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev);
1759   Record.clear();
1760 }
1761 
1762 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1763                                             SmallVectorImpl<uint64_t> &Record,
1764                                             unsigned Abbrev) {
1765   const uint64_t IsBigInt = 1 << 2;
1766   Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct());
1767   Record.push_back(N->getValue().getBitWidth());
1768   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1769   emitWideAPInt(Record, N->getValue());
1770 
1771   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1772   Record.clear();
1773 }
1774 
1775 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1776                                            SmallVectorImpl<uint64_t> &Record,
1777                                            unsigned Abbrev) {
1778   Record.push_back(N->isDistinct());
1779   Record.push_back(N->getTag());
1780   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1781   Record.push_back(N->getSizeInBits());
1782   Record.push_back(N->getAlignInBits());
1783   Record.push_back(N->getEncoding());
1784   Record.push_back(N->getFlags());
1785 
1786   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1787   Record.clear();
1788 }
1789 
1790 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N,
1791                                             SmallVectorImpl<uint64_t> &Record,
1792                                             unsigned Abbrev) {
1793   Record.push_back(N->isDistinct());
1794   Record.push_back(N->getTag());
1795   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1796   Record.push_back(VE.getMetadataOrNullID(N->getStringLength()));
1797   Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp()));
1798   Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp()));
1799   Record.push_back(N->getSizeInBits());
1800   Record.push_back(N->getAlignInBits());
1801   Record.push_back(N->getEncoding());
1802 
1803   Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev);
1804   Record.clear();
1805 }
1806 
1807 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1808                                              SmallVectorImpl<uint64_t> &Record,
1809                                              unsigned Abbrev) {
1810   Record.push_back(N->isDistinct());
1811   Record.push_back(N->getTag());
1812   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1813   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1814   Record.push_back(N->getLine());
1815   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1816   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1817   Record.push_back(N->getSizeInBits());
1818   Record.push_back(N->getAlignInBits());
1819   Record.push_back(N->getOffsetInBits());
1820   Record.push_back(N->getFlags());
1821   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1822 
1823   // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1824   // that there is no DWARF address space associated with DIDerivedType.
1825   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1826     Record.push_back(*DWARFAddressSpace + 1);
1827   else
1828     Record.push_back(0);
1829 
1830   Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1831 
1832   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1833   Record.clear();
1834 }
1835 
1836 void ModuleBitcodeWriter::writeDICompositeType(
1837     const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1838     unsigned Abbrev) {
1839   const unsigned IsNotUsedInOldTypeRef = 0x2;
1840   Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1841   Record.push_back(N->getTag());
1842   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1843   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1844   Record.push_back(N->getLine());
1845   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1846   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1847   Record.push_back(N->getSizeInBits());
1848   Record.push_back(N->getAlignInBits());
1849   Record.push_back(N->getOffsetInBits());
1850   Record.push_back(N->getFlags());
1851   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1852   Record.push_back(N->getRuntimeLang());
1853   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1854   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1855   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1856   Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1857   Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation()));
1858   Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated()));
1859   Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated()));
1860   Record.push_back(VE.getMetadataOrNullID(N->getRawRank()));
1861   Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1862 
1863   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1864   Record.clear();
1865 }
1866 
1867 void ModuleBitcodeWriter::writeDISubroutineType(
1868     const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1869     unsigned Abbrev) {
1870   const unsigned HasNoOldTypeRefs = 0x2;
1871   Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1872   Record.push_back(N->getFlags());
1873   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1874   Record.push_back(N->getCC());
1875 
1876   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1877   Record.clear();
1878 }
1879 
1880 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1881                                       SmallVectorImpl<uint64_t> &Record,
1882                                       unsigned Abbrev) {
1883   Record.push_back(N->isDistinct());
1884   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1885   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1886   if (N->getRawChecksum()) {
1887     Record.push_back(N->getRawChecksum()->Kind);
1888     Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1889   } else {
1890     // Maintain backwards compatibility with the old internal representation of
1891     // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1892     Record.push_back(0);
1893     Record.push_back(VE.getMetadataOrNullID(nullptr));
1894   }
1895   auto Source = N->getRawSource();
1896   if (Source)
1897     Record.push_back(VE.getMetadataOrNullID(Source));
1898 
1899   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1900   Record.clear();
1901 }
1902 
1903 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1904                                              SmallVectorImpl<uint64_t> &Record,
1905                                              unsigned Abbrev) {
1906   assert(N->isDistinct() && "Expected distinct compile units");
1907   Record.push_back(/* IsDistinct */ true);
1908   Record.push_back(N->getSourceLanguage());
1909   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1910   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1911   Record.push_back(N->isOptimized());
1912   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1913   Record.push_back(N->getRuntimeVersion());
1914   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1915   Record.push_back(N->getEmissionKind());
1916   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1917   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1918   Record.push_back(/* subprograms */ 0);
1919   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1920   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1921   Record.push_back(N->getDWOId());
1922   Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1923   Record.push_back(N->getSplitDebugInlining());
1924   Record.push_back(N->getDebugInfoForProfiling());
1925   Record.push_back((unsigned)N->getNameTableKind());
1926   Record.push_back(N->getRangesBaseAddress());
1927   Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot()));
1928   Record.push_back(VE.getMetadataOrNullID(N->getRawSDK()));
1929 
1930   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1931   Record.clear();
1932 }
1933 
1934 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1935                                             SmallVectorImpl<uint64_t> &Record,
1936                                             unsigned Abbrev) {
1937   const uint64_t HasUnitFlag = 1 << 1;
1938   const uint64_t HasSPFlagsFlag = 1 << 2;
1939   Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
1940   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1941   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1942   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1943   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1944   Record.push_back(N->getLine());
1945   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1946   Record.push_back(N->getScopeLine());
1947   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1948   Record.push_back(N->getSPFlags());
1949   Record.push_back(N->getVirtualIndex());
1950   Record.push_back(N->getFlags());
1951   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1952   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1953   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1954   Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1955   Record.push_back(N->getThisAdjustment());
1956   Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1957   Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1958   Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName()));
1959 
1960   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1961   Record.clear();
1962 }
1963 
1964 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1965                                               SmallVectorImpl<uint64_t> &Record,
1966                                               unsigned Abbrev) {
1967   Record.push_back(N->isDistinct());
1968   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1969   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1970   Record.push_back(N->getLine());
1971   Record.push_back(N->getColumn());
1972 
1973   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1974   Record.clear();
1975 }
1976 
1977 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1978     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1979     unsigned Abbrev) {
1980   Record.push_back(N->isDistinct());
1981   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1982   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1983   Record.push_back(N->getDiscriminator());
1984 
1985   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1986   Record.clear();
1987 }
1988 
1989 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N,
1990                                              SmallVectorImpl<uint64_t> &Record,
1991                                              unsigned Abbrev) {
1992   Record.push_back(N->isDistinct());
1993   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1994   Record.push_back(VE.getMetadataOrNullID(N->getDecl()));
1995   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1996   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1997   Record.push_back(N->getLineNo());
1998 
1999   Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev);
2000   Record.clear();
2001 }
2002 
2003 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
2004                                            SmallVectorImpl<uint64_t> &Record,
2005                                            unsigned Abbrev) {
2006   Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
2007   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2008   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2009 
2010   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
2011   Record.clear();
2012 }
2013 
2014 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
2015                                        SmallVectorImpl<uint64_t> &Record,
2016                                        unsigned Abbrev) {
2017   Record.push_back(N->isDistinct());
2018   Record.push_back(N->getMacinfoType());
2019   Record.push_back(N->getLine());
2020   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2021   Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
2022 
2023   Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
2024   Record.clear();
2025 }
2026 
2027 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
2028                                            SmallVectorImpl<uint64_t> &Record,
2029                                            unsigned Abbrev) {
2030   Record.push_back(N->isDistinct());
2031   Record.push_back(N->getMacinfoType());
2032   Record.push_back(N->getLine());
2033   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2034   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
2035 
2036   Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
2037   Record.clear();
2038 }
2039 
2040 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N,
2041                                          SmallVectorImpl<uint64_t> &Record) {
2042   Record.reserve(N->getArgs().size());
2043   for (ValueAsMetadata *MD : N->getArgs())
2044     Record.push_back(VE.getMetadataID(MD));
2045 
2046   Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record);
2047   Record.clear();
2048 }
2049 
2050 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
2051                                         SmallVectorImpl<uint64_t> &Record,
2052                                         unsigned Abbrev) {
2053   Record.push_back(N->isDistinct());
2054   for (auto &I : N->operands())
2055     Record.push_back(VE.getMetadataOrNullID(I));
2056   Record.push_back(N->getLineNo());
2057   Record.push_back(N->getIsDecl());
2058 
2059   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
2060   Record.clear();
2061 }
2062 
2063 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N,
2064                                           SmallVectorImpl<uint64_t> &Record,
2065                                           unsigned Abbrev) {
2066   // There are no arguments for this metadata type.
2067   Record.push_back(N->isDistinct());
2068   Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev);
2069   Record.clear();
2070 }
2071 
2072 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
2073     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
2074     unsigned Abbrev) {
2075   Record.push_back(N->isDistinct());
2076   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2077   Record.push_back(VE.getMetadataOrNullID(N->getType()));
2078   Record.push_back(N->isDefault());
2079 
2080   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
2081   Record.clear();
2082 }
2083 
2084 void ModuleBitcodeWriter::writeDITemplateValueParameter(
2085     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
2086     unsigned Abbrev) {
2087   Record.push_back(N->isDistinct());
2088   Record.push_back(N->getTag());
2089   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2090   Record.push_back(VE.getMetadataOrNullID(N->getType()));
2091   Record.push_back(N->isDefault());
2092   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
2093 
2094   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
2095   Record.clear();
2096 }
2097 
2098 void ModuleBitcodeWriter::writeDIGlobalVariable(
2099     const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
2100     unsigned Abbrev) {
2101   const uint64_t Version = 2 << 1;
2102   Record.push_back((uint64_t)N->isDistinct() | Version);
2103   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2104   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2105   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
2106   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2107   Record.push_back(N->getLine());
2108   Record.push_back(VE.getMetadataOrNullID(N->getType()));
2109   Record.push_back(N->isLocalToUnit());
2110   Record.push_back(N->isDefinition());
2111   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
2112   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
2113   Record.push_back(N->getAlignInBits());
2114   Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
2115 
2116   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
2117   Record.clear();
2118 }
2119 
2120 void ModuleBitcodeWriter::writeDILocalVariable(
2121     const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
2122     unsigned Abbrev) {
2123   // In order to support all possible bitcode formats in BitcodeReader we need
2124   // to distinguish the following cases:
2125   // 1) Record has no artificial tag (Record[1]),
2126   //   has no obsolete inlinedAt field (Record[9]).
2127   //   In this case Record size will be 8, HasAlignment flag is false.
2128   // 2) Record has artificial tag (Record[1]),
2129   //   has no obsolete inlignedAt field (Record[9]).
2130   //   In this case Record size will be 9, HasAlignment flag is false.
2131   // 3) Record has both artificial tag (Record[1]) and
2132   //   obsolete inlignedAt field (Record[9]).
2133   //   In this case Record size will be 10, HasAlignment flag is false.
2134   // 4) Record has neither artificial tag, nor inlignedAt field, but
2135   //   HasAlignment flag is true and Record[8] contains alignment value.
2136   const uint64_t HasAlignmentFlag = 1 << 1;
2137   Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
2138   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2139   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2140   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2141   Record.push_back(N->getLine());
2142   Record.push_back(VE.getMetadataOrNullID(N->getType()));
2143   Record.push_back(N->getArg());
2144   Record.push_back(N->getFlags());
2145   Record.push_back(N->getAlignInBits());
2146   Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
2147 
2148   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
2149   Record.clear();
2150 }
2151 
2152 void ModuleBitcodeWriter::writeDILabel(
2153     const DILabel *N, SmallVectorImpl<uint64_t> &Record,
2154     unsigned Abbrev) {
2155   Record.push_back((uint64_t)N->isDistinct());
2156   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2157   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2158   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2159   Record.push_back(N->getLine());
2160 
2161   Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
2162   Record.clear();
2163 }
2164 
2165 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
2166                                             SmallVectorImpl<uint64_t> &Record,
2167                                             unsigned Abbrev) {
2168   Record.reserve(N->getElements().size() + 1);
2169   const uint64_t Version = 3 << 1;
2170   Record.push_back((uint64_t)N->isDistinct() | Version);
2171   Record.append(N->elements_begin(), N->elements_end());
2172 
2173   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
2174   Record.clear();
2175 }
2176 
2177 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
2178     const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
2179     unsigned Abbrev) {
2180   Record.push_back(N->isDistinct());
2181   Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
2182   Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
2183 
2184   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
2185   Record.clear();
2186 }
2187 
2188 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
2189                                               SmallVectorImpl<uint64_t> &Record,
2190                                               unsigned Abbrev) {
2191   Record.push_back(N->isDistinct());
2192   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2193   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2194   Record.push_back(N->getLine());
2195   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
2196   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
2197   Record.push_back(N->getAttributes());
2198   Record.push_back(VE.getMetadataOrNullID(N->getType()));
2199 
2200   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
2201   Record.clear();
2202 }
2203 
2204 void ModuleBitcodeWriter::writeDIImportedEntity(
2205     const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
2206     unsigned Abbrev) {
2207   Record.push_back(N->isDistinct());
2208   Record.push_back(N->getTag());
2209   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2210   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
2211   Record.push_back(N->getLine());
2212   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2213   Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
2214   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
2215 
2216   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
2217   Record.clear();
2218 }
2219 
2220 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
2221   auto Abbv = std::make_shared<BitCodeAbbrev>();
2222   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
2223   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2224   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2225   return Stream.EmitAbbrev(std::move(Abbv));
2226 }
2227 
2228 void ModuleBitcodeWriter::writeNamedMetadata(
2229     SmallVectorImpl<uint64_t> &Record) {
2230   if (M.named_metadata_empty())
2231     return;
2232 
2233   unsigned Abbrev = createNamedMetadataAbbrev();
2234   for (const NamedMDNode &NMD : M.named_metadata()) {
2235     // Write name.
2236     StringRef Str = NMD.getName();
2237     Record.append(Str.bytes_begin(), Str.bytes_end());
2238     Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
2239     Record.clear();
2240 
2241     // Write named metadata operands.
2242     for (const MDNode *N : NMD.operands())
2243       Record.push_back(VE.getMetadataID(N));
2244     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
2245     Record.clear();
2246   }
2247 }
2248 
2249 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
2250   auto Abbv = std::make_shared<BitCodeAbbrev>();
2251   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
2252   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
2253   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
2254   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
2255   return Stream.EmitAbbrev(std::move(Abbv));
2256 }
2257 
2258 /// Write out a record for MDString.
2259 ///
2260 /// All the metadata strings in a metadata block are emitted in a single
2261 /// record.  The sizes and strings themselves are shoved into a blob.
2262 void ModuleBitcodeWriter::writeMetadataStrings(
2263     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
2264   if (Strings.empty())
2265     return;
2266 
2267   // Start the record with the number of strings.
2268   Record.push_back(bitc::METADATA_STRINGS);
2269   Record.push_back(Strings.size());
2270 
2271   // Emit the sizes of the strings in the blob.
2272   SmallString<256> Blob;
2273   {
2274     BitstreamWriter W(Blob);
2275     for (const Metadata *MD : Strings)
2276       W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
2277     W.FlushToWord();
2278   }
2279 
2280   // Add the offset to the strings to the record.
2281   Record.push_back(Blob.size());
2282 
2283   // Add the strings to the blob.
2284   for (const Metadata *MD : Strings)
2285     Blob.append(cast<MDString>(MD)->getString());
2286 
2287   // Emit the final record.
2288   Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
2289   Record.clear();
2290 }
2291 
2292 // Generates an enum to use as an index in the Abbrev array of Metadata record.
2293 enum MetadataAbbrev : unsigned {
2294 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
2295 #include "llvm/IR/Metadata.def"
2296   LastPlusOne
2297 };
2298 
2299 void ModuleBitcodeWriter::writeMetadataRecords(
2300     ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
2301     std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
2302   if (MDs.empty())
2303     return;
2304 
2305   // Initialize MDNode abbreviations.
2306 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
2307 #include "llvm/IR/Metadata.def"
2308 
2309   for (const Metadata *MD : MDs) {
2310     if (IndexPos)
2311       IndexPos->push_back(Stream.GetCurrentBitNo());
2312     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2313       assert(N->isResolved() && "Expected forward references to be resolved");
2314 
2315       switch (N->getMetadataID()) {
2316       default:
2317         llvm_unreachable("Invalid MDNode subclass");
2318 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
2319   case Metadata::CLASS##Kind:                                                  \
2320     if (MDAbbrevs)                                                             \
2321       write##CLASS(cast<CLASS>(N), Record,                                     \
2322                    (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
2323     else                                                                       \
2324       write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
2325     continue;
2326 #include "llvm/IR/Metadata.def"
2327       }
2328     }
2329     if (auto *AL = dyn_cast<DIArgList>(MD)) {
2330       writeDIArgList(AL, Record);
2331       continue;
2332     }
2333     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
2334   }
2335 }
2336 
2337 void ModuleBitcodeWriter::writeModuleMetadata() {
2338   if (!VE.hasMDs() && M.named_metadata_empty())
2339     return;
2340 
2341   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
2342   SmallVector<uint64_t, 64> Record;
2343 
2344   // Emit all abbrevs upfront, so that the reader can jump in the middle of the
2345   // block and load any metadata.
2346   std::vector<unsigned> MDAbbrevs;
2347 
2348   MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
2349   MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
2350   MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
2351       createGenericDINodeAbbrev();
2352 
2353   auto Abbv = std::make_shared<BitCodeAbbrev>();
2354   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
2355   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2356   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2357   unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2358 
2359   Abbv = std::make_shared<BitCodeAbbrev>();
2360   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
2361   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2362   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2363   unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2364 
2365   // Emit MDStrings together upfront.
2366   writeMetadataStrings(VE.getMDStrings(), Record);
2367 
2368   // We only emit an index for the metadata record if we have more than a given
2369   // (naive) threshold of metadatas, otherwise it is not worth it.
2370   if (VE.getNonMDStrings().size() > IndexThreshold) {
2371     // Write a placeholder value in for the offset of the metadata index,
2372     // which is written after the records, so that it can include
2373     // the offset of each entry. The placeholder offset will be
2374     // updated after all records are emitted.
2375     uint64_t Vals[] = {0, 0};
2376     Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2377   }
2378 
2379   // Compute and save the bit offset to the current position, which will be
2380   // patched when we emit the index later. We can simply subtract the 64-bit
2381   // fixed size from the current bit number to get the location to backpatch.
2382   uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2383 
2384   // This index will contain the bitpos for each individual record.
2385   std::vector<uint64_t> IndexPos;
2386   IndexPos.reserve(VE.getNonMDStrings().size());
2387 
2388   // Write all the records
2389   writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2390 
2391   if (VE.getNonMDStrings().size() > IndexThreshold) {
2392     // Now that we have emitted all the records we will emit the index. But
2393     // first
2394     // backpatch the forward reference so that the reader can skip the records
2395     // efficiently.
2396     Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2397                            Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2398 
2399     // Delta encode the index.
2400     uint64_t PreviousValue = IndexOffsetRecordBitPos;
2401     for (auto &Elt : IndexPos) {
2402       auto EltDelta = Elt - PreviousValue;
2403       PreviousValue = Elt;
2404       Elt = EltDelta;
2405     }
2406     // Emit the index record.
2407     Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2408     IndexPos.clear();
2409   }
2410 
2411   // Write the named metadata now.
2412   writeNamedMetadata(Record);
2413 
2414   auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2415     SmallVector<uint64_t, 4> Record;
2416     Record.push_back(VE.getValueID(&GO));
2417     pushGlobalMetadataAttachment(Record, GO);
2418     Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2419   };
2420   for (const Function &F : M)
2421     if (F.isDeclaration() && F.hasMetadata())
2422       AddDeclAttachedMetadata(F);
2423   // FIXME: Only store metadata for declarations here, and move data for global
2424   // variable definitions to a separate block (PR28134).
2425   for (const GlobalVariable &GV : M.globals())
2426     if (GV.hasMetadata())
2427       AddDeclAttachedMetadata(GV);
2428 
2429   Stream.ExitBlock();
2430 }
2431 
2432 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2433   if (!VE.hasMDs())
2434     return;
2435 
2436   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2437   SmallVector<uint64_t, 64> Record;
2438   writeMetadataStrings(VE.getMDStrings(), Record);
2439   writeMetadataRecords(VE.getNonMDStrings(), Record);
2440   Stream.ExitBlock();
2441 }
2442 
2443 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2444     SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2445   // [n x [id, mdnode]]
2446   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2447   GO.getAllMetadata(MDs);
2448   for (const auto &I : MDs) {
2449     Record.push_back(I.first);
2450     Record.push_back(VE.getMetadataID(I.second));
2451   }
2452 }
2453 
2454 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2455   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2456 
2457   SmallVector<uint64_t, 64> Record;
2458 
2459   if (F.hasMetadata()) {
2460     pushGlobalMetadataAttachment(Record, F);
2461     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2462     Record.clear();
2463   }
2464 
2465   // Write metadata attachments
2466   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2467   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2468   for (const BasicBlock &BB : F)
2469     for (const Instruction &I : BB) {
2470       MDs.clear();
2471       I.getAllMetadataOtherThanDebugLoc(MDs);
2472 
2473       // If no metadata, ignore instruction.
2474       if (MDs.empty()) continue;
2475 
2476       Record.push_back(VE.getInstructionID(&I));
2477 
2478       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2479         Record.push_back(MDs[i].first);
2480         Record.push_back(VE.getMetadataID(MDs[i].second));
2481       }
2482       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2483       Record.clear();
2484     }
2485 
2486   Stream.ExitBlock();
2487 }
2488 
2489 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2490   SmallVector<uint64_t, 64> Record;
2491 
2492   // Write metadata kinds
2493   // METADATA_KIND - [n x [id, name]]
2494   SmallVector<StringRef, 8> Names;
2495   M.getMDKindNames(Names);
2496 
2497   if (Names.empty()) return;
2498 
2499   Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2500 
2501   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2502     Record.push_back(MDKindID);
2503     StringRef KName = Names[MDKindID];
2504     Record.append(KName.begin(), KName.end());
2505 
2506     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2507     Record.clear();
2508   }
2509 
2510   Stream.ExitBlock();
2511 }
2512 
2513 void ModuleBitcodeWriter::writeOperandBundleTags() {
2514   // Write metadata kinds
2515   //
2516   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2517   //
2518   // OPERAND_BUNDLE_TAG - [strchr x N]
2519 
2520   SmallVector<StringRef, 8> Tags;
2521   M.getOperandBundleTags(Tags);
2522 
2523   if (Tags.empty())
2524     return;
2525 
2526   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2527 
2528   SmallVector<uint64_t, 64> Record;
2529 
2530   for (auto Tag : Tags) {
2531     Record.append(Tag.begin(), Tag.end());
2532 
2533     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2534     Record.clear();
2535   }
2536 
2537   Stream.ExitBlock();
2538 }
2539 
2540 void ModuleBitcodeWriter::writeSyncScopeNames() {
2541   SmallVector<StringRef, 8> SSNs;
2542   M.getContext().getSyncScopeNames(SSNs);
2543   if (SSNs.empty())
2544     return;
2545 
2546   Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2547 
2548   SmallVector<uint64_t, 64> Record;
2549   for (auto SSN : SSNs) {
2550     Record.append(SSN.begin(), SSN.end());
2551     Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2552     Record.clear();
2553   }
2554 
2555   Stream.ExitBlock();
2556 }
2557 
2558 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2559                                          bool isGlobal) {
2560   if (FirstVal == LastVal) return;
2561 
2562   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2563 
2564   unsigned AggregateAbbrev = 0;
2565   unsigned String8Abbrev = 0;
2566   unsigned CString7Abbrev = 0;
2567   unsigned CString6Abbrev = 0;
2568   // If this is a constant pool for the module, emit module-specific abbrevs.
2569   if (isGlobal) {
2570     // Abbrev for CST_CODE_AGGREGATE.
2571     auto Abbv = std::make_shared<BitCodeAbbrev>();
2572     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2573     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2574     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2575     AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2576 
2577     // Abbrev for CST_CODE_STRING.
2578     Abbv = std::make_shared<BitCodeAbbrev>();
2579     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2580     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2581     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2582     String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2583     // Abbrev for CST_CODE_CSTRING.
2584     Abbv = std::make_shared<BitCodeAbbrev>();
2585     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2586     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2587     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2588     CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2589     // Abbrev for CST_CODE_CSTRING.
2590     Abbv = std::make_shared<BitCodeAbbrev>();
2591     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2592     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2593     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2594     CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2595   }
2596 
2597   SmallVector<uint64_t, 64> Record;
2598 
2599   const ValueEnumerator::ValueList &Vals = VE.getValues();
2600   Type *LastTy = nullptr;
2601   for (unsigned i = FirstVal; i != LastVal; ++i) {
2602     const Value *V = Vals[i].first;
2603     // If we need to switch types, do so now.
2604     if (V->getType() != LastTy) {
2605       LastTy = V->getType();
2606       Record.push_back(VE.getTypeID(LastTy));
2607       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2608                         CONSTANTS_SETTYPE_ABBREV);
2609       Record.clear();
2610     }
2611 
2612     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2613       Record.push_back(VE.getTypeID(IA->getFunctionType()));
2614       Record.push_back(
2615           unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 |
2616           unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3);
2617 
2618       // Add the asm string.
2619       const std::string &AsmStr = IA->getAsmString();
2620       Record.push_back(AsmStr.size());
2621       Record.append(AsmStr.begin(), AsmStr.end());
2622 
2623       // Add the constraint string.
2624       const std::string &ConstraintStr = IA->getConstraintString();
2625       Record.push_back(ConstraintStr.size());
2626       Record.append(ConstraintStr.begin(), ConstraintStr.end());
2627       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2628       Record.clear();
2629       continue;
2630     }
2631     const Constant *C = cast<Constant>(V);
2632     unsigned Code = -1U;
2633     unsigned AbbrevToUse = 0;
2634     if (C->isNullValue()) {
2635       Code = bitc::CST_CODE_NULL;
2636     } else if (isa<PoisonValue>(C)) {
2637       Code = bitc::CST_CODE_POISON;
2638     } else if (isa<UndefValue>(C)) {
2639       Code = bitc::CST_CODE_UNDEF;
2640     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2641       if (IV->getBitWidth() <= 64) {
2642         uint64_t V = IV->getSExtValue();
2643         emitSignedInt64(Record, V);
2644         Code = bitc::CST_CODE_INTEGER;
2645         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2646       } else {                             // Wide integers, > 64 bits in size.
2647         emitWideAPInt(Record, IV->getValue());
2648         Code = bitc::CST_CODE_WIDE_INTEGER;
2649       }
2650     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2651       Code = bitc::CST_CODE_FLOAT;
2652       Type *Ty = CFP->getType()->getScalarType();
2653       if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() ||
2654           Ty->isDoubleTy()) {
2655         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2656       } else if (Ty->isX86_FP80Ty()) {
2657         // api needed to prevent premature destruction
2658         // bits are not in the same order as a normal i80 APInt, compensate.
2659         APInt api = CFP->getValueAPF().bitcastToAPInt();
2660         const uint64_t *p = api.getRawData();
2661         Record.push_back((p[1] << 48) | (p[0] >> 16));
2662         Record.push_back(p[0] & 0xffffLL);
2663       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2664         APInt api = CFP->getValueAPF().bitcastToAPInt();
2665         const uint64_t *p = api.getRawData();
2666         Record.push_back(p[0]);
2667         Record.push_back(p[1]);
2668       } else {
2669         assert(0 && "Unknown FP type!");
2670       }
2671     } else if (isa<ConstantDataSequential>(C) &&
2672                cast<ConstantDataSequential>(C)->isString()) {
2673       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2674       // Emit constant strings specially.
2675       unsigned NumElts = Str->getNumElements();
2676       // If this is a null-terminated string, use the denser CSTRING encoding.
2677       if (Str->isCString()) {
2678         Code = bitc::CST_CODE_CSTRING;
2679         --NumElts;  // Don't encode the null, which isn't allowed by char6.
2680       } else {
2681         Code = bitc::CST_CODE_STRING;
2682         AbbrevToUse = String8Abbrev;
2683       }
2684       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2685       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2686       for (unsigned i = 0; i != NumElts; ++i) {
2687         unsigned char V = Str->getElementAsInteger(i);
2688         Record.push_back(V);
2689         isCStr7 &= (V & 128) == 0;
2690         if (isCStrChar6)
2691           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2692       }
2693 
2694       if (isCStrChar6)
2695         AbbrevToUse = CString6Abbrev;
2696       else if (isCStr7)
2697         AbbrevToUse = CString7Abbrev;
2698     } else if (const ConstantDataSequential *CDS =
2699                   dyn_cast<ConstantDataSequential>(C)) {
2700       Code = bitc::CST_CODE_DATA;
2701       Type *EltTy = CDS->getElementType();
2702       if (isa<IntegerType>(EltTy)) {
2703         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2704           Record.push_back(CDS->getElementAsInteger(i));
2705       } else {
2706         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2707           Record.push_back(
2708               CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2709       }
2710     } else if (isa<ConstantAggregate>(C)) {
2711       Code = bitc::CST_CODE_AGGREGATE;
2712       for (const Value *Op : C->operands())
2713         Record.push_back(VE.getValueID(Op));
2714       AbbrevToUse = AggregateAbbrev;
2715     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2716       switch (CE->getOpcode()) {
2717       default:
2718         if (Instruction::isCast(CE->getOpcode())) {
2719           Code = bitc::CST_CODE_CE_CAST;
2720           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2721           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2722           Record.push_back(VE.getValueID(C->getOperand(0)));
2723           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2724         } else {
2725           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2726           Code = bitc::CST_CODE_CE_BINOP;
2727           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2728           Record.push_back(VE.getValueID(C->getOperand(0)));
2729           Record.push_back(VE.getValueID(C->getOperand(1)));
2730           uint64_t Flags = getOptimizationFlags(CE);
2731           if (Flags != 0)
2732             Record.push_back(Flags);
2733         }
2734         break;
2735       case Instruction::FNeg: {
2736         assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
2737         Code = bitc::CST_CODE_CE_UNOP;
2738         Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
2739         Record.push_back(VE.getValueID(C->getOperand(0)));
2740         uint64_t Flags = getOptimizationFlags(CE);
2741         if (Flags != 0)
2742           Record.push_back(Flags);
2743         break;
2744       }
2745       case Instruction::GetElementPtr: {
2746         Code = bitc::CST_CODE_CE_GEP;
2747         const auto *GO = cast<GEPOperator>(C);
2748         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2749         if (std::optional<unsigned> Idx = GO->getInRangeIndex()) {
2750           Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2751           Record.push_back((*Idx << 1) | GO->isInBounds());
2752         } else if (GO->isInBounds())
2753           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2754         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2755           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2756           Record.push_back(VE.getValueID(C->getOperand(i)));
2757         }
2758         break;
2759       }
2760       case Instruction::ExtractElement:
2761         Code = bitc::CST_CODE_CE_EXTRACTELT;
2762         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2763         Record.push_back(VE.getValueID(C->getOperand(0)));
2764         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2765         Record.push_back(VE.getValueID(C->getOperand(1)));
2766         break;
2767       case Instruction::InsertElement:
2768         Code = bitc::CST_CODE_CE_INSERTELT;
2769         Record.push_back(VE.getValueID(C->getOperand(0)));
2770         Record.push_back(VE.getValueID(C->getOperand(1)));
2771         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2772         Record.push_back(VE.getValueID(C->getOperand(2)));
2773         break;
2774       case Instruction::ShuffleVector:
2775         // If the return type and argument types are the same, this is a
2776         // standard shufflevector instruction.  If the types are different,
2777         // then the shuffle is widening or truncating the input vectors, and
2778         // the argument type must also be encoded.
2779         if (C->getType() == C->getOperand(0)->getType()) {
2780           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2781         } else {
2782           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2783           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2784         }
2785         Record.push_back(VE.getValueID(C->getOperand(0)));
2786         Record.push_back(VE.getValueID(C->getOperand(1)));
2787         Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode()));
2788         break;
2789       case Instruction::ICmp:
2790       case Instruction::FCmp:
2791         Code = bitc::CST_CODE_CE_CMP;
2792         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2793         Record.push_back(VE.getValueID(C->getOperand(0)));
2794         Record.push_back(VE.getValueID(C->getOperand(1)));
2795         Record.push_back(CE->getPredicate());
2796         break;
2797       }
2798     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2799       Code = bitc::CST_CODE_BLOCKADDRESS;
2800       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2801       Record.push_back(VE.getValueID(BA->getFunction()));
2802       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2803     } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) {
2804       Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT;
2805       Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType()));
2806       Record.push_back(VE.getValueID(Equiv->getGlobalValue()));
2807     } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) {
2808       Code = bitc::CST_CODE_NO_CFI_VALUE;
2809       Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType()));
2810       Record.push_back(VE.getValueID(NC->getGlobalValue()));
2811     } else {
2812 #ifndef NDEBUG
2813       C->dump();
2814 #endif
2815       llvm_unreachable("Unknown constant!");
2816     }
2817     Stream.EmitRecord(Code, Record, AbbrevToUse);
2818     Record.clear();
2819   }
2820 
2821   Stream.ExitBlock();
2822 }
2823 
2824 void ModuleBitcodeWriter::writeModuleConstants() {
2825   const ValueEnumerator::ValueList &Vals = VE.getValues();
2826 
2827   // Find the first constant to emit, which is the first non-globalvalue value.
2828   // We know globalvalues have been emitted by WriteModuleInfo.
2829   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2830     if (!isa<GlobalValue>(Vals[i].first)) {
2831       writeConstants(i, Vals.size(), true);
2832       return;
2833     }
2834   }
2835 }
2836 
2837 /// pushValueAndType - The file has to encode both the value and type id for
2838 /// many values, because we need to know what type to create for forward
2839 /// references.  However, most operands are not forward references, so this type
2840 /// field is not needed.
2841 ///
2842 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2843 /// instruction ID, then it is a forward reference, and it also includes the
2844 /// type ID.  The value ID that is written is encoded relative to the InstID.
2845 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2846                                            SmallVectorImpl<unsigned> &Vals) {
2847   unsigned ValID = VE.getValueID(V);
2848   // Make encoding relative to the InstID.
2849   Vals.push_back(InstID - ValID);
2850   if (ValID >= InstID) {
2851     Vals.push_back(VE.getTypeID(V->getType()));
2852     return true;
2853   }
2854   return false;
2855 }
2856 
2857 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS,
2858                                               unsigned InstID) {
2859   SmallVector<unsigned, 64> Record;
2860   LLVMContext &C = CS.getContext();
2861 
2862   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2863     const auto &Bundle = CS.getOperandBundleAt(i);
2864     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2865 
2866     for (auto &Input : Bundle.Inputs)
2867       pushValueAndType(Input, InstID, Record);
2868 
2869     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2870     Record.clear();
2871   }
2872 }
2873 
2874 /// pushValue - Like pushValueAndType, but where the type of the value is
2875 /// omitted (perhaps it was already encoded in an earlier operand).
2876 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2877                                     SmallVectorImpl<unsigned> &Vals) {
2878   unsigned ValID = VE.getValueID(V);
2879   Vals.push_back(InstID - ValID);
2880 }
2881 
2882 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2883                                           SmallVectorImpl<uint64_t> &Vals) {
2884   unsigned ValID = VE.getValueID(V);
2885   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2886   emitSignedInt64(Vals, diff);
2887 }
2888 
2889 /// WriteInstruction - Emit an instruction to the specified stream.
2890 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2891                                            unsigned InstID,
2892                                            SmallVectorImpl<unsigned> &Vals) {
2893   unsigned Code = 0;
2894   unsigned AbbrevToUse = 0;
2895   VE.setInstructionID(&I);
2896   switch (I.getOpcode()) {
2897   default:
2898     if (Instruction::isCast(I.getOpcode())) {
2899       Code = bitc::FUNC_CODE_INST_CAST;
2900       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2901         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2902       Vals.push_back(VE.getTypeID(I.getType()));
2903       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2904       uint64_t Flags = getOptimizationFlags(&I);
2905       if (Flags != 0) {
2906         if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV)
2907           AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV;
2908         Vals.push_back(Flags);
2909       }
2910     } else {
2911       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2912       Code = bitc::FUNC_CODE_INST_BINOP;
2913       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2914         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2915       pushValue(I.getOperand(1), InstID, Vals);
2916       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2917       uint64_t Flags = getOptimizationFlags(&I);
2918       if (Flags != 0) {
2919         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2920           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2921         Vals.push_back(Flags);
2922       }
2923     }
2924     break;
2925   case Instruction::FNeg: {
2926     Code = bitc::FUNC_CODE_INST_UNOP;
2927     if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2928       AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
2929     Vals.push_back(getEncodedUnaryOpcode(I.getOpcode()));
2930     uint64_t Flags = getOptimizationFlags(&I);
2931     if (Flags != 0) {
2932       if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
2933         AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
2934       Vals.push_back(Flags);
2935     }
2936     break;
2937   }
2938   case Instruction::GetElementPtr: {
2939     Code = bitc::FUNC_CODE_INST_GEP;
2940     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2941     auto &GEPInst = cast<GetElementPtrInst>(I);
2942     Vals.push_back(GEPInst.isInBounds());
2943     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2944     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2945       pushValueAndType(I.getOperand(i), InstID, Vals);
2946     break;
2947   }
2948   case Instruction::ExtractValue: {
2949     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2950     pushValueAndType(I.getOperand(0), InstID, Vals);
2951     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2952     Vals.append(EVI->idx_begin(), EVI->idx_end());
2953     break;
2954   }
2955   case Instruction::InsertValue: {
2956     Code = bitc::FUNC_CODE_INST_INSERTVAL;
2957     pushValueAndType(I.getOperand(0), InstID, Vals);
2958     pushValueAndType(I.getOperand(1), InstID, Vals);
2959     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2960     Vals.append(IVI->idx_begin(), IVI->idx_end());
2961     break;
2962   }
2963   case Instruction::Select: {
2964     Code = bitc::FUNC_CODE_INST_VSELECT;
2965     pushValueAndType(I.getOperand(1), InstID, Vals);
2966     pushValue(I.getOperand(2), InstID, Vals);
2967     pushValueAndType(I.getOperand(0), InstID, Vals);
2968     uint64_t Flags = getOptimizationFlags(&I);
2969     if (Flags != 0)
2970       Vals.push_back(Flags);
2971     break;
2972   }
2973   case Instruction::ExtractElement:
2974     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2975     pushValueAndType(I.getOperand(0), InstID, Vals);
2976     pushValueAndType(I.getOperand(1), InstID, Vals);
2977     break;
2978   case Instruction::InsertElement:
2979     Code = bitc::FUNC_CODE_INST_INSERTELT;
2980     pushValueAndType(I.getOperand(0), InstID, Vals);
2981     pushValue(I.getOperand(1), InstID, Vals);
2982     pushValueAndType(I.getOperand(2), InstID, Vals);
2983     break;
2984   case Instruction::ShuffleVector:
2985     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2986     pushValueAndType(I.getOperand(0), InstID, Vals);
2987     pushValue(I.getOperand(1), InstID, Vals);
2988     pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID,
2989               Vals);
2990     break;
2991   case Instruction::ICmp:
2992   case Instruction::FCmp: {
2993     // compare returning Int1Ty or vector of Int1Ty
2994     Code = bitc::FUNC_CODE_INST_CMP2;
2995     pushValueAndType(I.getOperand(0), InstID, Vals);
2996     pushValue(I.getOperand(1), InstID, Vals);
2997     Vals.push_back(cast<CmpInst>(I).getPredicate());
2998     uint64_t Flags = getOptimizationFlags(&I);
2999     if (Flags != 0)
3000       Vals.push_back(Flags);
3001     break;
3002   }
3003 
3004   case Instruction::Ret:
3005     {
3006       Code = bitc::FUNC_CODE_INST_RET;
3007       unsigned NumOperands = I.getNumOperands();
3008       if (NumOperands == 0)
3009         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
3010       else if (NumOperands == 1) {
3011         if (!pushValueAndType(I.getOperand(0), InstID, Vals))
3012           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
3013       } else {
3014         for (unsigned i = 0, e = NumOperands; i != e; ++i)
3015           pushValueAndType(I.getOperand(i), InstID, Vals);
3016       }
3017     }
3018     break;
3019   case Instruction::Br:
3020     {
3021       Code = bitc::FUNC_CODE_INST_BR;
3022       const BranchInst &II = cast<BranchInst>(I);
3023       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
3024       if (II.isConditional()) {
3025         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
3026         pushValue(II.getCondition(), InstID, Vals);
3027       }
3028     }
3029     break;
3030   case Instruction::Switch:
3031     {
3032       Code = bitc::FUNC_CODE_INST_SWITCH;
3033       const SwitchInst &SI = cast<SwitchInst>(I);
3034       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
3035       pushValue(SI.getCondition(), InstID, Vals);
3036       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
3037       for (auto Case : SI.cases()) {
3038         Vals.push_back(VE.getValueID(Case.getCaseValue()));
3039         Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
3040       }
3041     }
3042     break;
3043   case Instruction::IndirectBr:
3044     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
3045     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
3046     // Encode the address operand as relative, but not the basic blocks.
3047     pushValue(I.getOperand(0), InstID, Vals);
3048     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
3049       Vals.push_back(VE.getValueID(I.getOperand(i)));
3050     break;
3051 
3052   case Instruction::Invoke: {
3053     const InvokeInst *II = cast<InvokeInst>(&I);
3054     const Value *Callee = II->getCalledOperand();
3055     FunctionType *FTy = II->getFunctionType();
3056 
3057     if (II->hasOperandBundles())
3058       writeOperandBundles(*II, InstID);
3059 
3060     Code = bitc::FUNC_CODE_INST_INVOKE;
3061 
3062     Vals.push_back(VE.getAttributeListID(II->getAttributes()));
3063     Vals.push_back(II->getCallingConv() | 1 << 13);
3064     Vals.push_back(VE.getValueID(II->getNormalDest()));
3065     Vals.push_back(VE.getValueID(II->getUnwindDest()));
3066     Vals.push_back(VE.getTypeID(FTy));
3067     pushValueAndType(Callee, InstID, Vals);
3068 
3069     // Emit value #'s for the fixed parameters.
3070     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3071       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
3072 
3073     // Emit type/value pairs for varargs params.
3074     if (FTy->isVarArg()) {
3075       for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i)
3076         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
3077     }
3078     break;
3079   }
3080   case Instruction::Resume:
3081     Code = bitc::FUNC_CODE_INST_RESUME;
3082     pushValueAndType(I.getOperand(0), InstID, Vals);
3083     break;
3084   case Instruction::CleanupRet: {
3085     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
3086     const auto &CRI = cast<CleanupReturnInst>(I);
3087     pushValue(CRI.getCleanupPad(), InstID, Vals);
3088     if (CRI.hasUnwindDest())
3089       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
3090     break;
3091   }
3092   case Instruction::CatchRet: {
3093     Code = bitc::FUNC_CODE_INST_CATCHRET;
3094     const auto &CRI = cast<CatchReturnInst>(I);
3095     pushValue(CRI.getCatchPad(), InstID, Vals);
3096     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
3097     break;
3098   }
3099   case Instruction::CleanupPad:
3100   case Instruction::CatchPad: {
3101     const auto &FuncletPad = cast<FuncletPadInst>(I);
3102     Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
3103                                          : bitc::FUNC_CODE_INST_CLEANUPPAD;
3104     pushValue(FuncletPad.getParentPad(), InstID, Vals);
3105 
3106     unsigned NumArgOperands = FuncletPad.arg_size();
3107     Vals.push_back(NumArgOperands);
3108     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
3109       pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
3110     break;
3111   }
3112   case Instruction::CatchSwitch: {
3113     Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
3114     const auto &CatchSwitch = cast<CatchSwitchInst>(I);
3115 
3116     pushValue(CatchSwitch.getParentPad(), InstID, Vals);
3117 
3118     unsigned NumHandlers = CatchSwitch.getNumHandlers();
3119     Vals.push_back(NumHandlers);
3120     for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
3121       Vals.push_back(VE.getValueID(CatchPadBB));
3122 
3123     if (CatchSwitch.hasUnwindDest())
3124       Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
3125     break;
3126   }
3127   case Instruction::CallBr: {
3128     const CallBrInst *CBI = cast<CallBrInst>(&I);
3129     const Value *Callee = CBI->getCalledOperand();
3130     FunctionType *FTy = CBI->getFunctionType();
3131 
3132     if (CBI->hasOperandBundles())
3133       writeOperandBundles(*CBI, InstID);
3134 
3135     Code = bitc::FUNC_CODE_INST_CALLBR;
3136 
3137     Vals.push_back(VE.getAttributeListID(CBI->getAttributes()));
3138 
3139     Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV |
3140                    1 << bitc::CALL_EXPLICIT_TYPE);
3141 
3142     Vals.push_back(VE.getValueID(CBI->getDefaultDest()));
3143     Vals.push_back(CBI->getNumIndirectDests());
3144     for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
3145       Vals.push_back(VE.getValueID(CBI->getIndirectDest(i)));
3146 
3147     Vals.push_back(VE.getTypeID(FTy));
3148     pushValueAndType(Callee, InstID, Vals);
3149 
3150     // Emit value #'s for the fixed parameters.
3151     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3152       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
3153 
3154     // Emit type/value pairs for varargs params.
3155     if (FTy->isVarArg()) {
3156       for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i)
3157         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
3158     }
3159     break;
3160   }
3161   case Instruction::Unreachable:
3162     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
3163     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
3164     break;
3165 
3166   case Instruction::PHI: {
3167     const PHINode &PN = cast<PHINode>(I);
3168     Code = bitc::FUNC_CODE_INST_PHI;
3169     // With the newer instruction encoding, forward references could give
3170     // negative valued IDs.  This is most common for PHIs, so we use
3171     // signed VBRs.
3172     SmallVector<uint64_t, 128> Vals64;
3173     Vals64.push_back(VE.getTypeID(PN.getType()));
3174     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
3175       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
3176       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
3177     }
3178 
3179     uint64_t Flags = getOptimizationFlags(&I);
3180     if (Flags != 0)
3181       Vals64.push_back(Flags);
3182 
3183     // Emit a Vals64 vector and exit.
3184     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
3185     Vals64.clear();
3186     return;
3187   }
3188 
3189   case Instruction::LandingPad: {
3190     const LandingPadInst &LP = cast<LandingPadInst>(I);
3191     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
3192     Vals.push_back(VE.getTypeID(LP.getType()));
3193     Vals.push_back(LP.isCleanup());
3194     Vals.push_back(LP.getNumClauses());
3195     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
3196       if (LP.isCatch(I))
3197         Vals.push_back(LandingPadInst::Catch);
3198       else
3199         Vals.push_back(LandingPadInst::Filter);
3200       pushValueAndType(LP.getClause(I), InstID, Vals);
3201     }
3202     break;
3203   }
3204 
3205   case Instruction::Alloca: {
3206     Code = bitc::FUNC_CODE_INST_ALLOCA;
3207     const AllocaInst &AI = cast<AllocaInst>(I);
3208     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
3209     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
3210     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
3211     using APV = AllocaPackedValues;
3212     unsigned Record = 0;
3213     unsigned EncodedAlign = getEncodedAlign(AI.getAlign());
3214     Bitfield::set<APV::AlignLower>(
3215         Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1));
3216     Bitfield::set<APV::AlignUpper>(Record,
3217                                    EncodedAlign >> APV::AlignLower::Bits);
3218     Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca());
3219     Bitfield::set<APV::ExplicitType>(Record, true);
3220     Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError());
3221     Vals.push_back(Record);
3222 
3223     unsigned AS = AI.getAddressSpace();
3224     if (AS != M.getDataLayout().getAllocaAddrSpace())
3225       Vals.push_back(AS);
3226     break;
3227   }
3228 
3229   case Instruction::Load:
3230     if (cast<LoadInst>(I).isAtomic()) {
3231       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
3232       pushValueAndType(I.getOperand(0), InstID, Vals);
3233     } else {
3234       Code = bitc::FUNC_CODE_INST_LOAD;
3235       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
3236         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
3237     }
3238     Vals.push_back(VE.getTypeID(I.getType()));
3239     Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign()));
3240     Vals.push_back(cast<LoadInst>(I).isVolatile());
3241     if (cast<LoadInst>(I).isAtomic()) {
3242       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
3243       Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
3244     }
3245     break;
3246   case Instruction::Store:
3247     if (cast<StoreInst>(I).isAtomic())
3248       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
3249     else
3250       Code = bitc::FUNC_CODE_INST_STORE;
3251     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
3252     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
3253     Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign()));
3254     Vals.push_back(cast<StoreInst>(I).isVolatile());
3255     if (cast<StoreInst>(I).isAtomic()) {
3256       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
3257       Vals.push_back(
3258           getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
3259     }
3260     break;
3261   case Instruction::AtomicCmpXchg:
3262     Code = bitc::FUNC_CODE_INST_CMPXCHG;
3263     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3264     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
3265     pushValue(I.getOperand(2), InstID, Vals);        // newval.
3266     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
3267     Vals.push_back(
3268         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
3269     Vals.push_back(
3270         getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
3271     Vals.push_back(
3272         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
3273     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
3274     Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign()));
3275     break;
3276   case Instruction::AtomicRMW:
3277     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
3278     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3279     pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val
3280     Vals.push_back(
3281         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
3282     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
3283     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
3284     Vals.push_back(
3285         getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
3286     Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign()));
3287     break;
3288   case Instruction::Fence:
3289     Code = bitc::FUNC_CODE_INST_FENCE;
3290     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
3291     Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
3292     break;
3293   case Instruction::Call: {
3294     const CallInst &CI = cast<CallInst>(I);
3295     FunctionType *FTy = CI.getFunctionType();
3296 
3297     if (CI.hasOperandBundles())
3298       writeOperandBundles(CI, InstID);
3299 
3300     Code = bitc::FUNC_CODE_INST_CALL;
3301 
3302     Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
3303 
3304     unsigned Flags = getOptimizationFlags(&I);
3305     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
3306                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
3307                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
3308                    1 << bitc::CALL_EXPLICIT_TYPE |
3309                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
3310                    unsigned(Flags != 0) << bitc::CALL_FMF);
3311     if (Flags != 0)
3312       Vals.push_back(Flags);
3313 
3314     Vals.push_back(VE.getTypeID(FTy));
3315     pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
3316 
3317     // Emit value #'s for the fixed parameters.
3318     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3319       // Check for labels (can happen with asm labels).
3320       if (FTy->getParamType(i)->isLabelTy())
3321         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
3322       else
3323         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
3324     }
3325 
3326     // Emit type/value pairs for varargs params.
3327     if (FTy->isVarArg()) {
3328       for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i)
3329         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
3330     }
3331     break;
3332   }
3333   case Instruction::VAArg:
3334     Code = bitc::FUNC_CODE_INST_VAARG;
3335     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
3336     pushValue(I.getOperand(0), InstID, Vals);                   // valist.
3337     Vals.push_back(VE.getTypeID(I.getType())); // restype.
3338     break;
3339   case Instruction::Freeze:
3340     Code = bitc::FUNC_CODE_INST_FREEZE;
3341     pushValueAndType(I.getOperand(0), InstID, Vals);
3342     break;
3343   }
3344 
3345   Stream.EmitRecord(Code, Vals, AbbrevToUse);
3346   Vals.clear();
3347 }
3348 
3349 /// Write a GlobalValue VST to the module. The purpose of this data structure is
3350 /// to allow clients to efficiently find the function body.
3351 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
3352   DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3353   // Get the offset of the VST we are writing, and backpatch it into
3354   // the VST forward declaration record.
3355   uint64_t VSTOffset = Stream.GetCurrentBitNo();
3356   // The BitcodeStartBit was the stream offset of the identification block.
3357   VSTOffset -= bitcodeStartBit();
3358   assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
3359   // Note that we add 1 here because the offset is relative to one word
3360   // before the start of the identification block, which was historically
3361   // always the start of the regular bitcode header.
3362   Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
3363 
3364   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3365 
3366   auto Abbv = std::make_shared<BitCodeAbbrev>();
3367   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
3368   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3369   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
3370   unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3371 
3372   for (const Function &F : M) {
3373     uint64_t Record[2];
3374 
3375     if (F.isDeclaration())
3376       continue;
3377 
3378     Record[0] = VE.getValueID(&F);
3379 
3380     // Save the word offset of the function (from the start of the
3381     // actual bitcode written to the stream).
3382     uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
3383     assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
3384     // Note that we add 1 here because the offset is relative to one word
3385     // before the start of the identification block, which was historically
3386     // always the start of the regular bitcode header.
3387     Record[1] = BitcodeIndex / 32 + 1;
3388 
3389     Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
3390   }
3391 
3392   Stream.ExitBlock();
3393 }
3394 
3395 /// Emit names for arguments, instructions and basic blocks in a function.
3396 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
3397     const ValueSymbolTable &VST) {
3398   if (VST.empty())
3399     return;
3400 
3401   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3402 
3403   // FIXME: Set up the abbrev, we know how many values there are!
3404   // FIXME: We know if the type names can use 7-bit ascii.
3405   SmallVector<uint64_t, 64> NameVals;
3406 
3407   for (const ValueName &Name : VST) {
3408     // Figure out the encoding to use for the name.
3409     StringEncoding Bits = getStringEncoding(Name.getKey());
3410 
3411     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
3412     NameVals.push_back(VE.getValueID(Name.getValue()));
3413 
3414     // VST_CODE_ENTRY:   [valueid, namechar x N]
3415     // VST_CODE_BBENTRY: [bbid, namechar x N]
3416     unsigned Code;
3417     if (isa<BasicBlock>(Name.getValue())) {
3418       Code = bitc::VST_CODE_BBENTRY;
3419       if (Bits == SE_Char6)
3420         AbbrevToUse = VST_BBENTRY_6_ABBREV;
3421     } else {
3422       Code = bitc::VST_CODE_ENTRY;
3423       if (Bits == SE_Char6)
3424         AbbrevToUse = VST_ENTRY_6_ABBREV;
3425       else if (Bits == SE_Fixed7)
3426         AbbrevToUse = VST_ENTRY_7_ABBREV;
3427     }
3428 
3429     for (const auto P : Name.getKey())
3430       NameVals.push_back((unsigned char)P);
3431 
3432     // Emit the finished record.
3433     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
3434     NameVals.clear();
3435   }
3436 
3437   Stream.ExitBlock();
3438 }
3439 
3440 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3441   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3442   unsigned Code;
3443   if (isa<BasicBlock>(Order.V))
3444     Code = bitc::USELIST_CODE_BB;
3445   else
3446     Code = bitc::USELIST_CODE_DEFAULT;
3447 
3448   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3449   Record.push_back(VE.getValueID(Order.V));
3450   Stream.EmitRecord(Code, Record);
3451 }
3452 
3453 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3454   assert(VE.shouldPreserveUseListOrder() &&
3455          "Expected to be preserving use-list order");
3456 
3457   auto hasMore = [&]() {
3458     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3459   };
3460   if (!hasMore())
3461     // Nothing to do.
3462     return;
3463 
3464   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3465   while (hasMore()) {
3466     writeUseList(std::move(VE.UseListOrders.back()));
3467     VE.UseListOrders.pop_back();
3468   }
3469   Stream.ExitBlock();
3470 }
3471 
3472 /// Emit a function body to the module stream.
3473 void ModuleBitcodeWriter::writeFunction(
3474     const Function &F,
3475     DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3476   // Save the bitcode index of the start of this function block for recording
3477   // in the VST.
3478   FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3479 
3480   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3481   VE.incorporateFunction(F);
3482 
3483   SmallVector<unsigned, 64> Vals;
3484 
3485   // Emit the number of basic blocks, so the reader can create them ahead of
3486   // time.
3487   Vals.push_back(VE.getBasicBlocks().size());
3488   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3489   Vals.clear();
3490 
3491   // If there are function-local constants, emit them now.
3492   unsigned CstStart, CstEnd;
3493   VE.getFunctionConstantRange(CstStart, CstEnd);
3494   writeConstants(CstStart, CstEnd, false);
3495 
3496   // If there is function-local metadata, emit it now.
3497   writeFunctionMetadata(F);
3498 
3499   // Keep a running idea of what the instruction ID is.
3500   unsigned InstID = CstEnd;
3501 
3502   bool NeedsMetadataAttachment = F.hasMetadata();
3503 
3504   DILocation *LastDL = nullptr;
3505   SmallSetVector<Function *, 4> BlockAddressUsers;
3506 
3507   // Finally, emit all the instructions, in order.
3508   for (const BasicBlock &BB : F) {
3509     for (const Instruction &I : BB) {
3510       writeInstruction(I, InstID, Vals);
3511 
3512       if (!I.getType()->isVoidTy())
3513         ++InstID;
3514 
3515       // If the instruction has metadata, write a metadata attachment later.
3516       NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc();
3517 
3518       // If the instruction has a debug location, emit it.
3519       if (DILocation *DL = I.getDebugLoc()) {
3520         if (DL == LastDL) {
3521           // Just repeat the same debug loc as last time.
3522           Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3523         } else {
3524           Vals.push_back(DL->getLine());
3525           Vals.push_back(DL->getColumn());
3526           Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3527           Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3528           Vals.push_back(DL->isImplicitCode());
3529           Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3530           Vals.clear();
3531           LastDL = DL;
3532         }
3533       }
3534 
3535       // If the instruction has DbgRecords attached to it, emit them. Note that
3536       // they come after the instruction so that it's easy to attach them again
3537       // when reading the bitcode, even though conceptually the debug locations
3538       // start "before" the instruction.
3539       if (I.hasDbgRecords() && WriteNewDbgInfoFormatToBitcode) {
3540         /// Try to push the value only (unwrapped), otherwise push the
3541         /// metadata wrapped value. Returns true if the value was pushed
3542         /// without the ValueAsMetadata wrapper.
3543         auto PushValueOrMetadata = [&Vals, InstID,
3544                                     this](Metadata *RawLocation) {
3545           assert(RawLocation && "RawLocation unexpectedly null in DPValue");
3546           if (ValueAsMetadata *VAM = dyn_cast<ValueAsMetadata>(RawLocation)) {
3547             SmallVector<unsigned, 2> ValAndType;
3548             // If the value is a fwd-ref the type is also pushed. We don't
3549             // want the type, so fwd-refs are kept wrapped (pushValueAndType
3550             // returns false if the value is pushed without type).
3551             if (!pushValueAndType(VAM->getValue(), InstID, ValAndType)) {
3552               Vals.push_back(ValAndType[0]);
3553               return true;
3554             }
3555           }
3556           // The metadata is a DIArgList, or ValueAsMetadata wrapping a
3557           // fwd-ref. Push the metadata ID.
3558           Vals.push_back(VE.getMetadataID(RawLocation));
3559           return false;
3560         };
3561 
3562         // Write out non-instruction debug information attached to this
3563         // instruction. Write it after the instruction so that it's easy to
3564         // re-attach to the instruction reading the records in.
3565         for (DbgRecord &DR : I.DbgMarker->getDbgRecordRange()) {
3566           if (DPLabel *DPL = dyn_cast<DPLabel>(&DR)) {
3567             Vals.push_back(VE.getMetadataID(&*DPL->getDebugLoc()));
3568             Vals.push_back(VE.getMetadataID(DPL->getLabel()));
3569             Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_LABEL, Vals);
3570             Vals.clear();
3571             continue;
3572           }
3573 
3574           // First 3 fields are common to all kinds:
3575           //   DILocation, DILocalVariable, DIExpression
3576           // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE)
3577           //   ..., LocationMetadata
3578           // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd)
3579           //   ..., Value
3580           // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE)
3581           //   ..., LocationMetadata
3582           // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN)
3583           //   ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata
3584           DPValue &DPV = cast<DPValue>(DR);
3585           Vals.push_back(VE.getMetadataID(&*DPV.getDebugLoc()));
3586           Vals.push_back(VE.getMetadataID(DPV.getVariable()));
3587           Vals.push_back(VE.getMetadataID(DPV.getExpression()));
3588           if (DPV.isDbgValue()) {
3589             if (PushValueOrMetadata(DPV.getRawLocation()))
3590               Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE, Vals,
3591                                 FUNCTION_DEBUG_RECORD_VALUE_ABBREV);
3592             else
3593               Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE, Vals);
3594           } else if (DPV.isDbgDeclare()) {
3595             Vals.push_back(VE.getMetadataID(DPV.getRawLocation()));
3596             Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_DECLARE, Vals);
3597           } else {
3598             assert(DPV.isDbgAssign() && "Unexpected DbgRecord kind");
3599             Vals.push_back(VE.getMetadataID(DPV.getRawLocation()));
3600             Vals.push_back(VE.getMetadataID(DPV.getAssignID()));
3601             Vals.push_back(VE.getMetadataID(DPV.getAddressExpression()));
3602             Vals.push_back(VE.getMetadataID(DPV.getRawAddress()));
3603             Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN, Vals);
3604           }
3605           Vals.clear();
3606         }
3607       }
3608     }
3609 
3610     if (BlockAddress *BA = BlockAddress::lookup(&BB)) {
3611       SmallVector<Value *> Worklist{BA};
3612       SmallPtrSet<Value *, 8> Visited{BA};
3613       while (!Worklist.empty()) {
3614         Value *V = Worklist.pop_back_val();
3615         for (User *U : V->users()) {
3616           if (auto *I = dyn_cast<Instruction>(U)) {
3617             Function *P = I->getFunction();
3618             if (P != &F)
3619               BlockAddressUsers.insert(P);
3620           } else if (isa<Constant>(U) && !isa<GlobalValue>(U) &&
3621                      Visited.insert(U).second)
3622             Worklist.push_back(U);
3623         }
3624       }
3625     }
3626   }
3627 
3628   if (!BlockAddressUsers.empty()) {
3629     Vals.resize(BlockAddressUsers.size());
3630     for (auto I : llvm::enumerate(BlockAddressUsers))
3631       Vals[I.index()] = VE.getValueID(I.value());
3632     Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals);
3633     Vals.clear();
3634   }
3635 
3636   // Emit names for all the instructions etc.
3637   if (auto *Symtab = F.getValueSymbolTable())
3638     writeFunctionLevelValueSymbolTable(*Symtab);
3639 
3640   if (NeedsMetadataAttachment)
3641     writeFunctionMetadataAttachment(F);
3642   if (VE.shouldPreserveUseListOrder())
3643     writeUseListBlock(&F);
3644   VE.purgeFunction();
3645   Stream.ExitBlock();
3646 }
3647 
3648 // Emit blockinfo, which defines the standard abbreviations etc.
3649 void ModuleBitcodeWriter::writeBlockInfo() {
3650   // We only want to emit block info records for blocks that have multiple
3651   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3652   // Other blocks can define their abbrevs inline.
3653   Stream.EnterBlockInfoBlock();
3654 
3655   { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3656     auto Abbv = std::make_shared<BitCodeAbbrev>();
3657     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3658     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3659     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3660     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3661     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3662         VST_ENTRY_8_ABBREV)
3663       llvm_unreachable("Unexpected abbrev ordering!");
3664   }
3665 
3666   { // 7-bit fixed width VST_CODE_ENTRY strings.
3667     auto Abbv = std::make_shared<BitCodeAbbrev>();
3668     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3669     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3670     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3671     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3672     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3673         VST_ENTRY_7_ABBREV)
3674       llvm_unreachable("Unexpected abbrev ordering!");
3675   }
3676   { // 6-bit char6 VST_CODE_ENTRY strings.
3677     auto Abbv = std::make_shared<BitCodeAbbrev>();
3678     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3679     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3680     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3681     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3682     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3683         VST_ENTRY_6_ABBREV)
3684       llvm_unreachable("Unexpected abbrev ordering!");
3685   }
3686   { // 6-bit char6 VST_CODE_BBENTRY strings.
3687     auto Abbv = std::make_shared<BitCodeAbbrev>();
3688     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3689     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3690     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3691     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3692     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3693         VST_BBENTRY_6_ABBREV)
3694       llvm_unreachable("Unexpected abbrev ordering!");
3695   }
3696 
3697   { // SETTYPE abbrev for CONSTANTS_BLOCK.
3698     auto Abbv = std::make_shared<BitCodeAbbrev>();
3699     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3700     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3701                               VE.computeBitsRequiredForTypeIndicies()));
3702     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3703         CONSTANTS_SETTYPE_ABBREV)
3704       llvm_unreachable("Unexpected abbrev ordering!");
3705   }
3706 
3707   { // INTEGER abbrev for CONSTANTS_BLOCK.
3708     auto Abbv = std::make_shared<BitCodeAbbrev>();
3709     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3710     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3711     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3712         CONSTANTS_INTEGER_ABBREV)
3713       llvm_unreachable("Unexpected abbrev ordering!");
3714   }
3715 
3716   { // CE_CAST abbrev for CONSTANTS_BLOCK.
3717     auto Abbv = std::make_shared<BitCodeAbbrev>();
3718     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3719     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
3720     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
3721                               VE.computeBitsRequiredForTypeIndicies()));
3722     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
3723 
3724     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3725         CONSTANTS_CE_CAST_Abbrev)
3726       llvm_unreachable("Unexpected abbrev ordering!");
3727   }
3728   { // NULL abbrev for CONSTANTS_BLOCK.
3729     auto Abbv = std::make_shared<BitCodeAbbrev>();
3730     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3731     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3732         CONSTANTS_NULL_Abbrev)
3733       llvm_unreachable("Unexpected abbrev ordering!");
3734   }
3735 
3736   // FIXME: This should only use space for first class types!
3737 
3738   { // INST_LOAD abbrev for FUNCTION_BLOCK.
3739     auto Abbv = std::make_shared<BitCodeAbbrev>();
3740     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3741     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3742     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3743                               VE.computeBitsRequiredForTypeIndicies()));
3744     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3745     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3746     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3747         FUNCTION_INST_LOAD_ABBREV)
3748       llvm_unreachable("Unexpected abbrev ordering!");
3749   }
3750   { // INST_UNOP abbrev for FUNCTION_BLOCK.
3751     auto Abbv = std::make_shared<BitCodeAbbrev>();
3752     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3753     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3754     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3755     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3756         FUNCTION_INST_UNOP_ABBREV)
3757       llvm_unreachable("Unexpected abbrev ordering!");
3758   }
3759   { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3760     auto Abbv = std::make_shared<BitCodeAbbrev>();
3761     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3762     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3763     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3764     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3765     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3766         FUNCTION_INST_UNOP_FLAGS_ABBREV)
3767       llvm_unreachable("Unexpected abbrev ordering!");
3768   }
3769   { // INST_BINOP abbrev for FUNCTION_BLOCK.
3770     auto Abbv = std::make_shared<BitCodeAbbrev>();
3771     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3772     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3773     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3774     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3775     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3776         FUNCTION_INST_BINOP_ABBREV)
3777       llvm_unreachable("Unexpected abbrev ordering!");
3778   }
3779   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3780     auto Abbv = std::make_shared<BitCodeAbbrev>();
3781     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3782     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3783     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3784     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3785     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3786     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3787         FUNCTION_INST_BINOP_FLAGS_ABBREV)
3788       llvm_unreachable("Unexpected abbrev ordering!");
3789   }
3790   { // INST_CAST abbrev for FUNCTION_BLOCK.
3791     auto Abbv = std::make_shared<BitCodeAbbrev>();
3792     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3793     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
3794     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
3795                               VE.computeBitsRequiredForTypeIndicies()));
3796     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
3797     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3798         FUNCTION_INST_CAST_ABBREV)
3799       llvm_unreachable("Unexpected abbrev ordering!");
3800   }
3801   { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK.
3802     auto Abbv = std::make_shared<BitCodeAbbrev>();
3803     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3804     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
3805     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3806                               VE.computeBitsRequiredForTypeIndicies()));
3807     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3808     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3809     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3810         FUNCTION_INST_CAST_FLAGS_ABBREV)
3811       llvm_unreachable("Unexpected abbrev ordering!");
3812   }
3813 
3814   { // INST_RET abbrev for FUNCTION_BLOCK.
3815     auto Abbv = std::make_shared<BitCodeAbbrev>();
3816     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3817     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3818         FUNCTION_INST_RET_VOID_ABBREV)
3819       llvm_unreachable("Unexpected abbrev ordering!");
3820   }
3821   { // INST_RET abbrev for FUNCTION_BLOCK.
3822     auto Abbv = std::make_shared<BitCodeAbbrev>();
3823     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3824     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3825     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3826         FUNCTION_INST_RET_VAL_ABBREV)
3827       llvm_unreachable("Unexpected abbrev ordering!");
3828   }
3829   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3830     auto Abbv = std::make_shared<BitCodeAbbrev>();
3831     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3832     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3833         FUNCTION_INST_UNREACHABLE_ABBREV)
3834       llvm_unreachable("Unexpected abbrev ordering!");
3835   }
3836   {
3837     auto Abbv = std::make_shared<BitCodeAbbrev>();
3838     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3839     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3840     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3841                               Log2_32_Ceil(VE.getTypes().size() + 1)));
3842     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3843     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3844     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3845         FUNCTION_INST_GEP_ABBREV)
3846       llvm_unreachable("Unexpected abbrev ordering!");
3847   }
3848   {
3849     auto Abbv = std::make_shared<BitCodeAbbrev>();
3850     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE));
3851     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // dbgloc
3852     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // var
3853     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // expr
3854     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // val
3855     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3856         FUNCTION_DEBUG_RECORD_VALUE_ABBREV)
3857       llvm_unreachable("Unexpected abbrev ordering! 1");
3858   }
3859   Stream.ExitBlock();
3860 }
3861 
3862 /// Write the module path strings, currently only used when generating
3863 /// a combined index file.
3864 void IndexBitcodeWriter::writeModStrings() {
3865   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3866 
3867   // TODO: See which abbrev sizes we actually need to emit
3868 
3869   // 8-bit fixed-width MST_ENTRY strings.
3870   auto Abbv = std::make_shared<BitCodeAbbrev>();
3871   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3872   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3873   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3874   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3875   unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3876 
3877   // 7-bit fixed width MST_ENTRY strings.
3878   Abbv = std::make_shared<BitCodeAbbrev>();
3879   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3880   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3881   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3882   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3883   unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3884 
3885   // 6-bit char6 MST_ENTRY strings.
3886   Abbv = std::make_shared<BitCodeAbbrev>();
3887   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3888   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3889   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3890   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3891   unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3892 
3893   // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3894   Abbv = std::make_shared<BitCodeAbbrev>();
3895   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3896   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3897   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3898   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3899   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3900   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3901   unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3902 
3903   SmallVector<unsigned, 64> Vals;
3904   forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) {
3905     StringRef Key = MPSE.getKey();
3906     const auto &Hash = MPSE.getValue();
3907     StringEncoding Bits = getStringEncoding(Key);
3908     unsigned AbbrevToUse = Abbrev8Bit;
3909     if (Bits == SE_Char6)
3910       AbbrevToUse = Abbrev6Bit;
3911     else if (Bits == SE_Fixed7)
3912       AbbrevToUse = Abbrev7Bit;
3913 
3914     auto ModuleId = ModuleIdMap.size();
3915     ModuleIdMap[Key] = ModuleId;
3916     Vals.push_back(ModuleId);
3917     Vals.append(Key.begin(), Key.end());
3918 
3919     // Emit the finished record.
3920     Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3921 
3922     // Emit an optional hash for the module now
3923     if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3924       Vals.assign(Hash.begin(), Hash.end());
3925       // Emit the hash record.
3926       Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3927     }
3928 
3929     Vals.clear();
3930   });
3931   Stream.ExitBlock();
3932 }
3933 
3934 /// Write the function type metadata related records that need to appear before
3935 /// a function summary entry (whether per-module or combined).
3936 template <typename Fn>
3937 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
3938                                              FunctionSummary *FS,
3939                                              Fn GetValueID) {
3940   if (!FS->type_tests().empty())
3941     Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3942 
3943   SmallVector<uint64_t, 64> Record;
3944 
3945   auto WriteVFuncIdVec = [&](uint64_t Ty,
3946                              ArrayRef<FunctionSummary::VFuncId> VFs) {
3947     if (VFs.empty())
3948       return;
3949     Record.clear();
3950     for (auto &VF : VFs) {
3951       Record.push_back(VF.GUID);
3952       Record.push_back(VF.Offset);
3953     }
3954     Stream.EmitRecord(Ty, Record);
3955   };
3956 
3957   WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3958                   FS->type_test_assume_vcalls());
3959   WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3960                   FS->type_checked_load_vcalls());
3961 
3962   auto WriteConstVCallVec = [&](uint64_t Ty,
3963                                 ArrayRef<FunctionSummary::ConstVCall> VCs) {
3964     for (auto &VC : VCs) {
3965       Record.clear();
3966       Record.push_back(VC.VFunc.GUID);
3967       Record.push_back(VC.VFunc.Offset);
3968       llvm::append_range(Record, VC.Args);
3969       Stream.EmitRecord(Ty, Record);
3970     }
3971   };
3972 
3973   WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3974                      FS->type_test_assume_const_vcalls());
3975   WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3976                      FS->type_checked_load_const_vcalls());
3977 
3978   auto WriteRange = [&](ConstantRange Range) {
3979     Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
3980     assert(Range.getLower().getNumWords() == 1);
3981     assert(Range.getUpper().getNumWords() == 1);
3982     emitSignedInt64(Record, *Range.getLower().getRawData());
3983     emitSignedInt64(Record, *Range.getUpper().getRawData());
3984   };
3985 
3986   if (!FS->paramAccesses().empty()) {
3987     Record.clear();
3988     for (auto &Arg : FS->paramAccesses()) {
3989       size_t UndoSize = Record.size();
3990       Record.push_back(Arg.ParamNo);
3991       WriteRange(Arg.Use);
3992       Record.push_back(Arg.Calls.size());
3993       for (auto &Call : Arg.Calls) {
3994         Record.push_back(Call.ParamNo);
3995         std::optional<unsigned> ValueID = GetValueID(Call.Callee);
3996         if (!ValueID) {
3997           // If ValueID is unknown we can't drop just this call, we must drop
3998           // entire parameter.
3999           Record.resize(UndoSize);
4000           break;
4001         }
4002         Record.push_back(*ValueID);
4003         WriteRange(Call.Offsets);
4004       }
4005     }
4006     if (!Record.empty())
4007       Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record);
4008   }
4009 }
4010 
4011 /// Collect type IDs from type tests used by function.
4012 static void
4013 getReferencedTypeIds(FunctionSummary *FS,
4014                      std::set<GlobalValue::GUID> &ReferencedTypeIds) {
4015   if (!FS->type_tests().empty())
4016     for (auto &TT : FS->type_tests())
4017       ReferencedTypeIds.insert(TT);
4018 
4019   auto GetReferencedTypesFromVFuncIdVec =
4020       [&](ArrayRef<FunctionSummary::VFuncId> VFs) {
4021         for (auto &VF : VFs)
4022           ReferencedTypeIds.insert(VF.GUID);
4023       };
4024 
4025   GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
4026   GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
4027 
4028   auto GetReferencedTypesFromConstVCallVec =
4029       [&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
4030         for (auto &VC : VCs)
4031           ReferencedTypeIds.insert(VC.VFunc.GUID);
4032       };
4033 
4034   GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
4035   GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
4036 }
4037 
4038 static void writeWholeProgramDevirtResolutionByArg(
4039     SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
4040     const WholeProgramDevirtResolution::ByArg &ByArg) {
4041   NameVals.push_back(args.size());
4042   llvm::append_range(NameVals, args);
4043 
4044   NameVals.push_back(ByArg.TheKind);
4045   NameVals.push_back(ByArg.Info);
4046   NameVals.push_back(ByArg.Byte);
4047   NameVals.push_back(ByArg.Bit);
4048 }
4049 
4050 static void writeWholeProgramDevirtResolution(
4051     SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
4052     uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
4053   NameVals.push_back(Id);
4054 
4055   NameVals.push_back(Wpd.TheKind);
4056   NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
4057   NameVals.push_back(Wpd.SingleImplName.size());
4058 
4059   NameVals.push_back(Wpd.ResByArg.size());
4060   for (auto &A : Wpd.ResByArg)
4061     writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
4062 }
4063 
4064 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
4065                                      StringTableBuilder &StrtabBuilder,
4066                                      const std::string &Id,
4067                                      const TypeIdSummary &Summary) {
4068   NameVals.push_back(StrtabBuilder.add(Id));
4069   NameVals.push_back(Id.size());
4070 
4071   NameVals.push_back(Summary.TTRes.TheKind);
4072   NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
4073   NameVals.push_back(Summary.TTRes.AlignLog2);
4074   NameVals.push_back(Summary.TTRes.SizeM1);
4075   NameVals.push_back(Summary.TTRes.BitMask);
4076   NameVals.push_back(Summary.TTRes.InlineBits);
4077 
4078   for (auto &W : Summary.WPDRes)
4079     writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
4080                                       W.second);
4081 }
4082 
4083 static void writeTypeIdCompatibleVtableSummaryRecord(
4084     SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
4085     const std::string &Id, const TypeIdCompatibleVtableInfo &Summary,
4086     ValueEnumerator &VE) {
4087   NameVals.push_back(StrtabBuilder.add(Id));
4088   NameVals.push_back(Id.size());
4089 
4090   for (auto &P : Summary) {
4091     NameVals.push_back(P.AddressPointOffset);
4092     NameVals.push_back(VE.getValueID(P.VTableVI.getValue()));
4093   }
4094 }
4095 
4096 static void writeFunctionHeapProfileRecords(
4097     BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev,
4098     unsigned AllocAbbrev, bool PerModule,
4099     std::function<unsigned(const ValueInfo &VI)> GetValueID,
4100     std::function<unsigned(unsigned)> GetStackIndex) {
4101   SmallVector<uint64_t> Record;
4102 
4103   for (auto &CI : FS->callsites()) {
4104     Record.clear();
4105     // Per module callsite clones should always have a single entry of
4106     // value 0.
4107     assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0));
4108     Record.push_back(GetValueID(CI.Callee));
4109     if (!PerModule) {
4110       Record.push_back(CI.StackIdIndices.size());
4111       Record.push_back(CI.Clones.size());
4112     }
4113     for (auto Id : CI.StackIdIndices)
4114       Record.push_back(GetStackIndex(Id));
4115     if (!PerModule) {
4116       for (auto V : CI.Clones)
4117         Record.push_back(V);
4118     }
4119     Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO
4120                                 : bitc::FS_COMBINED_CALLSITE_INFO,
4121                       Record, CallsiteAbbrev);
4122   }
4123 
4124   for (auto &AI : FS->allocs()) {
4125     Record.clear();
4126     // Per module alloc versions should always have a single entry of
4127     // value 0.
4128     assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0));
4129     if (!PerModule) {
4130       Record.push_back(AI.MIBs.size());
4131       Record.push_back(AI.Versions.size());
4132     }
4133     for (auto &MIB : AI.MIBs) {
4134       Record.push_back((uint8_t)MIB.AllocType);
4135       Record.push_back(MIB.StackIdIndices.size());
4136       for (auto Id : MIB.StackIdIndices)
4137         Record.push_back(GetStackIndex(Id));
4138     }
4139     if (!PerModule) {
4140       for (auto V : AI.Versions)
4141         Record.push_back(V);
4142     }
4143     Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO
4144                                 : bitc::FS_COMBINED_ALLOC_INFO,
4145                       Record, AllocAbbrev);
4146   }
4147 }
4148 
4149 // Helper to emit a single function summary record.
4150 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
4151     SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
4152     unsigned ValueID, unsigned FSCallsRelBFAbbrev,
4153     unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev,
4154     unsigned AllocAbbrev, const Function &F) {
4155   NameVals.push_back(ValueID);
4156 
4157   FunctionSummary *FS = cast<FunctionSummary>(Summary);
4158 
4159   writeFunctionTypeMetadataRecords(
4160       Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> {
4161         return {VE.getValueID(VI.getValue())};
4162       });
4163 
4164   writeFunctionHeapProfileRecords(
4165       Stream, FS, CallsiteAbbrev, AllocAbbrev,
4166       /*PerModule*/ true,
4167       /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); },
4168       /*GetStackIndex*/ [&](unsigned I) { return I; });
4169 
4170   auto SpecialRefCnts = FS->specialRefCounts();
4171   NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
4172   NameVals.push_back(FS->instCount());
4173   NameVals.push_back(getEncodedFFlags(FS->fflags()));
4174   NameVals.push_back(FS->refs().size());
4175   NameVals.push_back(SpecialRefCnts.first);  // rorefcnt
4176   NameVals.push_back(SpecialRefCnts.second); // worefcnt
4177 
4178   for (auto &RI : FS->refs())
4179     NameVals.push_back(VE.getValueID(RI.getValue()));
4180 
4181   const bool UseRelBFRecord =
4182       WriteRelBFToSummary && !F.hasProfileData() &&
4183       ForceSummaryEdgesCold == FunctionSummary::FSHT_None;
4184   for (auto &ECI : FS->calls()) {
4185     NameVals.push_back(getValueId(ECI.first));
4186     if (UseRelBFRecord)
4187       NameVals.push_back(getEncodedRelBFCallEdgeInfo(ECI.second));
4188     else
4189       NameVals.push_back(getEncodedHotnessCallEdgeInfo(ECI.second));
4190   }
4191 
4192   unsigned FSAbbrev =
4193       (UseRelBFRecord ? FSCallsRelBFAbbrev : FSCallsProfileAbbrev);
4194   unsigned Code =
4195       (UseRelBFRecord ? bitc::FS_PERMODULE_RELBF : bitc::FS_PERMODULE_PROFILE);
4196 
4197   // Emit the finished record.
4198   Stream.EmitRecord(Code, NameVals, FSAbbrev);
4199   NameVals.clear();
4200 }
4201 
4202 // Collect the global value references in the given variable's initializer,
4203 // and emit them in a summary record.
4204 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
4205     const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
4206     unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) {
4207   auto VI = Index->getValueInfo(V.getGUID());
4208   if (!VI || VI.getSummaryList().empty()) {
4209     // Only declarations should not have a summary (a declaration might however
4210     // have a summary if the def was in module level asm).
4211     assert(V.isDeclaration());
4212     return;
4213   }
4214   auto *Summary = VI.getSummaryList()[0].get();
4215   NameVals.push_back(VE.getValueID(&V));
4216   GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
4217   NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4218   NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4219 
4220   auto VTableFuncs = VS->vTableFuncs();
4221   if (!VTableFuncs.empty())
4222     NameVals.push_back(VS->refs().size());
4223 
4224   unsigned SizeBeforeRefs = NameVals.size();
4225   for (auto &RI : VS->refs())
4226     NameVals.push_back(VE.getValueID(RI.getValue()));
4227   // Sort the refs for determinism output, the vector returned by FS->refs() has
4228   // been initialized from a DenseSet.
4229   llvm::sort(drop_begin(NameVals, SizeBeforeRefs));
4230 
4231   if (VTableFuncs.empty())
4232     Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
4233                       FSModRefsAbbrev);
4234   else {
4235     // VTableFuncs pairs should already be sorted by offset.
4236     for (auto &P : VTableFuncs) {
4237       NameVals.push_back(VE.getValueID(P.FuncVI.getValue()));
4238       NameVals.push_back(P.VTableOffset);
4239     }
4240 
4241     Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals,
4242                       FSModVTableRefsAbbrev);
4243   }
4244   NameVals.clear();
4245 }
4246 
4247 /// Emit the per-module summary section alongside the rest of
4248 /// the module's bitcode.
4249 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
4250   // By default we compile with ThinLTO if the module has a summary, but the
4251   // client can request full LTO with a module flag.
4252   bool IsThinLTO = true;
4253   if (auto *MD =
4254           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
4255     IsThinLTO = MD->getZExtValue();
4256   Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
4257                                  : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
4258                        4);
4259 
4260   Stream.EmitRecord(
4261       bitc::FS_VERSION,
4262       ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4263 
4264   // Write the index flags.
4265   uint64_t Flags = 0;
4266   // Bits 1-3 are set only in the combined index, skip them.
4267   if (Index->enableSplitLTOUnit())
4268     Flags |= 0x8;
4269   if (Index->hasUnifiedLTO())
4270     Flags |= 0x200;
4271 
4272   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
4273 
4274   if (Index->begin() == Index->end()) {
4275     Stream.ExitBlock();
4276     return;
4277   }
4278 
4279   for (const auto &GVI : valueIds()) {
4280     Stream.EmitRecord(bitc::FS_VALUE_GUID,
4281                       ArrayRef<uint64_t>{GVI.second, GVI.first});
4282   }
4283 
4284   if (!Index->stackIds().empty()) {
4285     auto StackIdAbbv = std::make_shared<BitCodeAbbrev>();
4286     StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS));
4287     // numids x stackid
4288     StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4289     StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4290     unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv));
4291     Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId);
4292   }
4293 
4294   // Abbrev for FS_PERMODULE_PROFILE.
4295   auto Abbv = std::make_shared<BitCodeAbbrev>();
4296   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
4297   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4298   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // flags
4299   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4300   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4301   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4302   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4303   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4304   // numrefs x valueid, n x (valueid, hotness+tailcall flags)
4305   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4306   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4307   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4308 
4309   // Abbrev for FS_PERMODULE_RELBF.
4310   Abbv = std::make_shared<BitCodeAbbrev>();
4311   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
4312   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4313   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4314   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4315   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4316   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4317   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4318   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4319   // numrefs x valueid, n x (valueid, rel_block_freq+tailcall])
4320   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4321   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4322   unsigned FSCallsRelBFAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4323 
4324   // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
4325   Abbv = std::make_shared<BitCodeAbbrev>();
4326   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
4327   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4328   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4329   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
4330   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4331   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4332 
4333   // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
4334   Abbv = std::make_shared<BitCodeAbbrev>();
4335   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS));
4336   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4337   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4338   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4339   // numrefs x valueid, n x (valueid , offset)
4340   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4341   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4342   unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4343 
4344   // Abbrev for FS_ALIAS.
4345   Abbv = std::make_shared<BitCodeAbbrev>();
4346   Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
4347   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4348   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4349   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4350   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4351 
4352   // Abbrev for FS_TYPE_ID_METADATA
4353   Abbv = std::make_shared<BitCodeAbbrev>();
4354   Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA));
4355   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index
4356   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length
4357   // n x (valueid , offset)
4358   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4359   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4360   unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4361 
4362   Abbv = std::make_shared<BitCodeAbbrev>();
4363   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO));
4364   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4365   // n x stackidindex
4366   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4367   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4368   unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4369 
4370   Abbv = std::make_shared<BitCodeAbbrev>();
4371   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO));
4372   // n x (alloc type, numstackids, numstackids x stackidindex)
4373   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4374   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4375   unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4376 
4377   SmallVector<uint64_t, 64> NameVals;
4378   // Iterate over the list of functions instead of the Index to
4379   // ensure the ordering is stable.
4380   for (const Function &F : M) {
4381     // Summary emission does not support anonymous functions, they have to
4382     // renamed using the anonymous function renaming pass.
4383     if (!F.hasName())
4384       report_fatal_error("Unexpected anonymous function when writing summary");
4385 
4386     ValueInfo VI = Index->getValueInfo(F.getGUID());
4387     if (!VI || VI.getSummaryList().empty()) {
4388       // Only declarations should not have a summary (a declaration might
4389       // however have a summary if the def was in module level asm).
4390       assert(F.isDeclaration());
4391       continue;
4392     }
4393     auto *Summary = VI.getSummaryList()[0].get();
4394     writePerModuleFunctionSummaryRecord(
4395         NameVals, Summary, VE.getValueID(&F), FSCallsRelBFAbbrev,
4396         FSCallsProfileAbbrev, CallsiteAbbrev, AllocAbbrev, F);
4397   }
4398 
4399   // Capture references from GlobalVariable initializers, which are outside
4400   // of a function scope.
4401   for (const GlobalVariable &G : M.globals())
4402     writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev,
4403                                FSModVTableRefsAbbrev);
4404 
4405   for (const GlobalAlias &A : M.aliases()) {
4406     auto *Aliasee = A.getAliaseeObject();
4407     // Skip ifunc and nameless functions which don't have an entry in the
4408     // summary.
4409     if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee))
4410       continue;
4411     auto AliasId = VE.getValueID(&A);
4412     auto AliaseeId = VE.getValueID(Aliasee);
4413     NameVals.push_back(AliasId);
4414     auto *Summary = Index->getGlobalValueSummary(A);
4415     AliasSummary *AS = cast<AliasSummary>(Summary);
4416     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4417     NameVals.push_back(AliaseeId);
4418     Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
4419     NameVals.clear();
4420   }
4421 
4422   for (auto &S : Index->typeIdCompatibleVtableMap()) {
4423     writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first,
4424                                              S.second, VE);
4425     Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals,
4426                       TypeIdCompatibleVtableAbbrev);
4427     NameVals.clear();
4428   }
4429 
4430   if (Index->getBlockCount())
4431     Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4432                       ArrayRef<uint64_t>{Index->getBlockCount()});
4433 
4434   Stream.ExitBlock();
4435 }
4436 
4437 /// Emit the combined summary section into the combined index file.
4438 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
4439   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4);
4440   Stream.EmitRecord(
4441       bitc::FS_VERSION,
4442       ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4443 
4444   // Write the index flags.
4445   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()});
4446 
4447   for (const auto &GVI : valueIds()) {
4448     Stream.EmitRecord(bitc::FS_VALUE_GUID,
4449                       ArrayRef<uint64_t>{GVI.second, GVI.first});
4450   }
4451 
4452   if (!StackIdIndices.empty()) {
4453     auto StackIdAbbv = std::make_shared<BitCodeAbbrev>();
4454     StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS));
4455     // numids x stackid
4456     StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4457     StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4458     unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv));
4459     // Write the stack ids used by this index, which will be a subset of those in
4460     // the full index in the case of distributed indexes.
4461     std::vector<uint64_t> StackIds;
4462     for (auto &I : StackIdIndices)
4463       StackIds.push_back(Index.getStackIdAtIndex(I));
4464     Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId);
4465   }
4466 
4467   // Abbrev for FS_COMBINED_PROFILE.
4468   auto Abbv = std::make_shared<BitCodeAbbrev>();
4469   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
4470   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4471   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4472   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4473   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4474   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4475   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount
4476   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4477   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4478   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4479   // numrefs x valueid, n x (valueid, hotness+tailcall flags)
4480   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4481   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4482   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4483 
4484   // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
4485   Abbv = std::make_shared<BitCodeAbbrev>();
4486   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
4487   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4488   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4489   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4490   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
4491   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4492   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4493 
4494   // Abbrev for FS_COMBINED_ALIAS.
4495   Abbv = std::make_shared<BitCodeAbbrev>();
4496   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
4497   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4498   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4499   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4500   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4501   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4502 
4503   Abbv = std::make_shared<BitCodeAbbrev>();
4504   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO));
4505   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4506   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices
4507   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver
4508   // numstackindices x stackidindex, numver x version
4509   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4510   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4511   unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4512 
4513   Abbv = std::make_shared<BitCodeAbbrev>();
4514   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO));
4515   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib
4516   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver
4517   // nummib x (alloc type, numstackids, numstackids x stackidindex),
4518   // numver x version
4519   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4520   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4521   unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4522 
4523   // The aliases are emitted as a post-pass, and will point to the value
4524   // id of the aliasee. Save them in a vector for post-processing.
4525   SmallVector<AliasSummary *, 64> Aliases;
4526 
4527   // Save the value id for each summary for alias emission.
4528   DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
4529 
4530   SmallVector<uint64_t, 64> NameVals;
4531 
4532   // Set that will be populated during call to writeFunctionTypeMetadataRecords
4533   // with the type ids referenced by this index file.
4534   std::set<GlobalValue::GUID> ReferencedTypeIds;
4535 
4536   // For local linkage, we also emit the original name separately
4537   // immediately after the record.
4538   auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
4539     // We don't need to emit the original name if we are writing the index for
4540     // distributed backends (in which case ModuleToSummariesForIndex is
4541     // non-null). The original name is only needed during the thin link, since
4542     // for SamplePGO the indirect call targets for local functions have
4543     // have the original name annotated in profile.
4544     // Continue to emit it when writing out the entire combined index, which is
4545     // used in testing the thin link via llvm-lto.
4546     if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage()))
4547       return;
4548     NameVals.push_back(S.getOriginalName());
4549     Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
4550     NameVals.clear();
4551   };
4552 
4553   std::set<GlobalValue::GUID> DefOrUseGUIDs;
4554   forEachSummary([&](GVInfo I, bool IsAliasee) {
4555     GlobalValueSummary *S = I.second;
4556     assert(S);
4557     DefOrUseGUIDs.insert(I.first);
4558     for (const ValueInfo &VI : S->refs())
4559       DefOrUseGUIDs.insert(VI.getGUID());
4560 
4561     auto ValueId = getValueId(I.first);
4562     assert(ValueId);
4563     SummaryToValueIdMap[S] = *ValueId;
4564 
4565     // If this is invoked for an aliasee, we want to record the above
4566     // mapping, but then not emit a summary entry (if the aliasee is
4567     // to be imported, we will invoke this separately with IsAliasee=false).
4568     if (IsAliasee)
4569       return;
4570 
4571     if (auto *AS = dyn_cast<AliasSummary>(S)) {
4572       // Will process aliases as a post-pass because the reader wants all
4573       // global to be loaded first.
4574       Aliases.push_back(AS);
4575       return;
4576     }
4577 
4578     if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
4579       NameVals.push_back(*ValueId);
4580       assert(ModuleIdMap.count(VS->modulePath()));
4581       NameVals.push_back(ModuleIdMap[VS->modulePath()]);
4582       NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4583       NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4584       for (auto &RI : VS->refs()) {
4585         auto RefValueId = getValueId(RI.getGUID());
4586         if (!RefValueId)
4587           continue;
4588         NameVals.push_back(*RefValueId);
4589       }
4590 
4591       // Emit the finished record.
4592       Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
4593                         FSModRefsAbbrev);
4594       NameVals.clear();
4595       MaybeEmitOriginalName(*S);
4596       return;
4597     }
4598 
4599     auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> {
4600       if (!VI)
4601         return std::nullopt;
4602       return getValueId(VI.getGUID());
4603     };
4604 
4605     auto *FS = cast<FunctionSummary>(S);
4606     writeFunctionTypeMetadataRecords(Stream, FS, GetValueId);
4607     getReferencedTypeIds(FS, ReferencedTypeIds);
4608 
4609     writeFunctionHeapProfileRecords(
4610         Stream, FS, CallsiteAbbrev, AllocAbbrev,
4611         /*PerModule*/ false,
4612         /*GetValueId*/ [&](const ValueInfo &VI) -> unsigned {
4613           std::optional<unsigned> ValueID = GetValueId(VI);
4614           // This can happen in shared index files for distributed ThinLTO if
4615           // the callee function summary is not included. Record 0 which we
4616           // will have to deal with conservatively when doing any kind of
4617           // validation in the ThinLTO backends.
4618           if (!ValueID)
4619             return 0;
4620           return *ValueID;
4621         },
4622         /*GetStackIndex*/ [&](unsigned I) {
4623           // Get the corresponding index into the list of StackIdIndices
4624           // actually being written for this combined index (which may be a
4625           // subset in the case of distributed indexes).
4626           auto Lower = llvm::lower_bound(StackIdIndices, I);
4627           return std::distance(StackIdIndices.begin(), Lower);
4628         });
4629 
4630     NameVals.push_back(*ValueId);
4631     assert(ModuleIdMap.count(FS->modulePath()));
4632     NameVals.push_back(ModuleIdMap[FS->modulePath()]);
4633     NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
4634     NameVals.push_back(FS->instCount());
4635     NameVals.push_back(getEncodedFFlags(FS->fflags()));
4636     NameVals.push_back(FS->entryCount());
4637 
4638     // Fill in below
4639     NameVals.push_back(0); // numrefs
4640     NameVals.push_back(0); // rorefcnt
4641     NameVals.push_back(0); // worefcnt
4642 
4643     unsigned Count = 0, RORefCnt = 0, WORefCnt = 0;
4644     for (auto &RI : FS->refs()) {
4645       auto RefValueId = getValueId(RI.getGUID());
4646       if (!RefValueId)
4647         continue;
4648       NameVals.push_back(*RefValueId);
4649       if (RI.isReadOnly())
4650         RORefCnt++;
4651       else if (RI.isWriteOnly())
4652         WORefCnt++;
4653       Count++;
4654     }
4655     NameVals[6] = Count;
4656     NameVals[7] = RORefCnt;
4657     NameVals[8] = WORefCnt;
4658 
4659     for (auto &EI : FS->calls()) {
4660       // If this GUID doesn't have a value id, it doesn't have a function
4661       // summary and we don't need to record any calls to it.
4662       std::optional<unsigned> CallValueId = GetValueId(EI.first);
4663       if (!CallValueId)
4664         continue;
4665       NameVals.push_back(*CallValueId);
4666       NameVals.push_back(getEncodedHotnessCallEdgeInfo(EI.second));
4667     }
4668 
4669     // Emit the finished record.
4670     Stream.EmitRecord(bitc::FS_COMBINED_PROFILE, NameVals,
4671                       FSCallsProfileAbbrev);
4672     NameVals.clear();
4673     MaybeEmitOriginalName(*S);
4674   });
4675 
4676   for (auto *AS : Aliases) {
4677     auto AliasValueId = SummaryToValueIdMap[AS];
4678     assert(AliasValueId);
4679     NameVals.push_back(AliasValueId);
4680     assert(ModuleIdMap.count(AS->modulePath()));
4681     NameVals.push_back(ModuleIdMap[AS->modulePath()]);
4682     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4683     auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
4684     assert(AliaseeValueId);
4685     NameVals.push_back(AliaseeValueId);
4686 
4687     // Emit the finished record.
4688     Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
4689     NameVals.clear();
4690     MaybeEmitOriginalName(*AS);
4691 
4692     if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
4693       getReferencedTypeIds(FS, ReferencedTypeIds);
4694   }
4695 
4696   if (!Index.cfiFunctionDefs().empty()) {
4697     for (auto &S : Index.cfiFunctionDefs()) {
4698       if (DefOrUseGUIDs.count(
4699               GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4700         NameVals.push_back(StrtabBuilder.add(S));
4701         NameVals.push_back(S.size());
4702       }
4703     }
4704     if (!NameVals.empty()) {
4705       Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
4706       NameVals.clear();
4707     }
4708   }
4709 
4710   if (!Index.cfiFunctionDecls().empty()) {
4711     for (auto &S : Index.cfiFunctionDecls()) {
4712       if (DefOrUseGUIDs.count(
4713               GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4714         NameVals.push_back(StrtabBuilder.add(S));
4715         NameVals.push_back(S.size());
4716       }
4717     }
4718     if (!NameVals.empty()) {
4719       Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
4720       NameVals.clear();
4721     }
4722   }
4723 
4724   // Walk the GUIDs that were referenced, and write the
4725   // corresponding type id records.
4726   for (auto &T : ReferencedTypeIds) {
4727     auto TidIter = Index.typeIds().equal_range(T);
4728     for (auto It = TidIter.first; It != TidIter.second; ++It) {
4729       writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first,
4730                                It->second.second);
4731       Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
4732       NameVals.clear();
4733     }
4734   }
4735 
4736   if (Index.getBlockCount())
4737     Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4738                       ArrayRef<uint64_t>{Index.getBlockCount()});
4739 
4740   Stream.ExitBlock();
4741 }
4742 
4743 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
4744 /// current llvm version, and a record for the epoch number.
4745 static void writeIdentificationBlock(BitstreamWriter &Stream) {
4746   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
4747 
4748   // Write the "user readable" string identifying the bitcode producer
4749   auto Abbv = std::make_shared<BitCodeAbbrev>();
4750   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
4751   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4752   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
4753   auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4754   writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
4755                     "LLVM" LLVM_VERSION_STRING, StringAbbrev);
4756 
4757   // Write the epoch version
4758   Abbv = std::make_shared<BitCodeAbbrev>();
4759   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
4760   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4761   auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4762   constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}};
4763   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
4764   Stream.ExitBlock();
4765 }
4766 
4767 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
4768   // Emit the module's hash.
4769   // MODULE_CODE_HASH: [5*i32]
4770   if (GenerateHash) {
4771     uint32_t Vals[5];
4772     Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
4773                                     Buffer.size() - BlockStartPos));
4774     std::array<uint8_t, 20> Hash = Hasher.result();
4775     for (int Pos = 0; Pos < 20; Pos += 4) {
4776       Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
4777     }
4778 
4779     // Emit the finished record.
4780     Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
4781 
4782     if (ModHash)
4783       // Save the written hash value.
4784       llvm::copy(Vals, std::begin(*ModHash));
4785   }
4786 }
4787 
4788 void ModuleBitcodeWriter::write() {
4789   writeIdentificationBlock(Stream);
4790 
4791   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4792   size_t BlockStartPos = Buffer.size();
4793 
4794   writeModuleVersion();
4795 
4796   // Emit blockinfo, which defines the standard abbreviations etc.
4797   writeBlockInfo();
4798 
4799   // Emit information describing all of the types in the module.
4800   writeTypeTable();
4801 
4802   // Emit information about attribute groups.
4803   writeAttributeGroupTable();
4804 
4805   // Emit information about parameter attributes.
4806   writeAttributeTable();
4807 
4808   writeComdats();
4809 
4810   // Emit top-level description of module, including target triple, inline asm,
4811   // descriptors for global variables, and function prototype info.
4812   writeModuleInfo();
4813 
4814   // Emit constants.
4815   writeModuleConstants();
4816 
4817   // Emit metadata kind names.
4818   writeModuleMetadataKinds();
4819 
4820   // Emit metadata.
4821   writeModuleMetadata();
4822 
4823   // Emit module-level use-lists.
4824   if (VE.shouldPreserveUseListOrder())
4825     writeUseListBlock(nullptr);
4826 
4827   writeOperandBundleTags();
4828   writeSyncScopeNames();
4829 
4830   // Emit function bodies.
4831   DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
4832   for (const Function &F : M)
4833     if (!F.isDeclaration())
4834       writeFunction(F, FunctionToBitcodeIndex);
4835 
4836   // Need to write after the above call to WriteFunction which populates
4837   // the summary information in the index.
4838   if (Index)
4839     writePerModuleGlobalValueSummary();
4840 
4841   writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
4842 
4843   writeModuleHash(BlockStartPos);
4844 
4845   Stream.ExitBlock();
4846 }
4847 
4848 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
4849                                uint32_t &Position) {
4850   support::endian::write32le(&Buffer[Position], Value);
4851   Position += 4;
4852 }
4853 
4854 /// If generating a bc file on darwin, we have to emit a
4855 /// header and trailer to make it compatible with the system archiver.  To do
4856 /// this we emit the following header, and then emit a trailer that pads the
4857 /// file out to be a multiple of 16 bytes.
4858 ///
4859 /// struct bc_header {
4860 ///   uint32_t Magic;         // 0x0B17C0DE
4861 ///   uint32_t Version;       // Version, currently always 0.
4862 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4863 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
4864 ///   uint32_t CPUType;       // CPU specifier.
4865 ///   ... potentially more later ...
4866 /// };
4867 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
4868                                          const Triple &TT) {
4869   unsigned CPUType = ~0U;
4870 
4871   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4872   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4873   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
4874   // specific constants here because they are implicitly part of the Darwin ABI.
4875   enum {
4876     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
4877     DARWIN_CPU_TYPE_X86        = 7,
4878     DARWIN_CPU_TYPE_ARM        = 12,
4879     DARWIN_CPU_TYPE_POWERPC    = 18
4880   };
4881 
4882   Triple::ArchType Arch = TT.getArch();
4883   if (Arch == Triple::x86_64)
4884     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4885   else if (Arch == Triple::x86)
4886     CPUType = DARWIN_CPU_TYPE_X86;
4887   else if (Arch == Triple::ppc)
4888     CPUType = DARWIN_CPU_TYPE_POWERPC;
4889   else if (Arch == Triple::ppc64)
4890     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4891   else if (Arch == Triple::arm || Arch == Triple::thumb)
4892     CPUType = DARWIN_CPU_TYPE_ARM;
4893 
4894   // Traditional Bitcode starts after header.
4895   assert(Buffer.size() >= BWH_HeaderSize &&
4896          "Expected header size to be reserved");
4897   unsigned BCOffset = BWH_HeaderSize;
4898   unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4899 
4900   // Write the magic and version.
4901   unsigned Position = 0;
4902   writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4903   writeInt32ToBuffer(0, Buffer, Position); // Version.
4904   writeInt32ToBuffer(BCOffset, Buffer, Position);
4905   writeInt32ToBuffer(BCSize, Buffer, Position);
4906   writeInt32ToBuffer(CPUType, Buffer, Position);
4907 
4908   // If the file is not a multiple of 16 bytes, insert dummy padding.
4909   while (Buffer.size() & 15)
4910     Buffer.push_back(0);
4911 }
4912 
4913 /// Helper to write the header common to all bitcode files.
4914 static void writeBitcodeHeader(BitstreamWriter &Stream) {
4915   // Emit the file header.
4916   Stream.Emit((unsigned)'B', 8);
4917   Stream.Emit((unsigned)'C', 8);
4918   Stream.Emit(0x0, 4);
4919   Stream.Emit(0xC, 4);
4920   Stream.Emit(0xE, 4);
4921   Stream.Emit(0xD, 4);
4922 }
4923 
4924 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS)
4925     : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) {
4926   writeBitcodeHeader(*Stream);
4927 }
4928 
4929 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
4930 
4931 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
4932   Stream->EnterSubblock(Block, 3);
4933 
4934   auto Abbv = std::make_shared<BitCodeAbbrev>();
4935   Abbv->Add(BitCodeAbbrevOp(Record));
4936   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4937   auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
4938 
4939   Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
4940 
4941   Stream->ExitBlock();
4942 }
4943 
4944 void BitcodeWriter::writeSymtab() {
4945   assert(!WroteStrtab && !WroteSymtab);
4946 
4947   // If any module has module-level inline asm, we will require a registered asm
4948   // parser for the target so that we can create an accurate symbol table for
4949   // the module.
4950   for (Module *M : Mods) {
4951     if (M->getModuleInlineAsm().empty())
4952       continue;
4953 
4954     std::string Err;
4955     const Triple TT(M->getTargetTriple());
4956     const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
4957     if (!T || !T->hasMCAsmParser())
4958       return;
4959   }
4960 
4961   WroteSymtab = true;
4962   SmallVector<char, 0> Symtab;
4963   // The irsymtab::build function may be unable to create a symbol table if the
4964   // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4965   // table is not required for correctness, but we still want to be able to
4966   // write malformed modules to bitcode files, so swallow the error.
4967   if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
4968     consumeError(std::move(E));
4969     return;
4970   }
4971 
4972   writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
4973             {Symtab.data(), Symtab.size()});
4974 }
4975 
4976 void BitcodeWriter::writeStrtab() {
4977   assert(!WroteStrtab);
4978 
4979   std::vector<char> Strtab;
4980   StrtabBuilder.finalizeInOrder();
4981   Strtab.resize(StrtabBuilder.getSize());
4982   StrtabBuilder.write((uint8_t *)Strtab.data());
4983 
4984   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
4985             {Strtab.data(), Strtab.size()});
4986 
4987   WroteStrtab = true;
4988 }
4989 
4990 void BitcodeWriter::copyStrtab(StringRef Strtab) {
4991   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
4992   WroteStrtab = true;
4993 }
4994 
4995 void BitcodeWriter::writeModule(const Module &M,
4996                                 bool ShouldPreserveUseListOrder,
4997                                 const ModuleSummaryIndex *Index,
4998                                 bool GenerateHash, ModuleHash *ModHash) {
4999   assert(!WroteStrtab);
5000 
5001   // The Mods vector is used by irsymtab::build, which requires non-const
5002   // Modules in case it needs to materialize metadata. But the bitcode writer
5003   // requires that the module is materialized, so we can cast to non-const here,
5004   // after checking that it is in fact materialized.
5005   assert(M.isMaterialized());
5006   Mods.push_back(const_cast<Module *>(&M));
5007 
5008   ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
5009                                    ShouldPreserveUseListOrder, Index,
5010                                    GenerateHash, ModHash);
5011   ModuleWriter.write();
5012 }
5013 
5014 void BitcodeWriter::writeIndex(
5015     const ModuleSummaryIndex *Index,
5016     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
5017   IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
5018                                  ModuleToSummariesForIndex);
5019   IndexWriter.write();
5020 }
5021 
5022 /// Write the specified module to the specified output stream.
5023 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
5024                               bool ShouldPreserveUseListOrder,
5025                               const ModuleSummaryIndex *Index,
5026                               bool GenerateHash, ModuleHash *ModHash) {
5027   SmallVector<char, 0> Buffer;
5028   Buffer.reserve(256*1024);
5029 
5030   // If this is darwin or another generic macho target, reserve space for the
5031   // header.
5032   Triple TT(M.getTargetTriple());
5033   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
5034     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
5035 
5036   BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out));
5037   Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
5038                      ModHash);
5039   Writer.writeSymtab();
5040   Writer.writeStrtab();
5041 
5042   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
5043     emitDarwinBCHeaderAndTrailer(Buffer, TT);
5044 
5045   // Write the generated bitstream to "Out".
5046   if (!Buffer.empty())
5047     Out.write((char *)&Buffer.front(), Buffer.size());
5048 }
5049 
5050 void IndexBitcodeWriter::write() {
5051   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
5052 
5053   writeModuleVersion();
5054 
5055   // Write the module paths in the combined index.
5056   writeModStrings();
5057 
5058   // Write the summary combined index records.
5059   writeCombinedGlobalValueSummary();
5060 
5061   Stream.ExitBlock();
5062 }
5063 
5064 // Write the specified module summary index to the given raw output stream,
5065 // where it will be written in a new bitcode block. This is used when
5066 // writing the combined index file for ThinLTO. When writing a subset of the
5067 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
5068 void llvm::writeIndexToFile(
5069     const ModuleSummaryIndex &Index, raw_ostream &Out,
5070     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
5071   SmallVector<char, 0> Buffer;
5072   Buffer.reserve(256 * 1024);
5073 
5074   BitcodeWriter Writer(Buffer);
5075   Writer.writeIndex(&Index, ModuleToSummariesForIndex);
5076   Writer.writeStrtab();
5077 
5078   Out.write((char *)&Buffer.front(), Buffer.size());
5079 }
5080 
5081 namespace {
5082 
5083 /// Class to manage the bitcode writing for a thin link bitcode file.
5084 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
5085   /// ModHash is for use in ThinLTO incremental build, generated while writing
5086   /// the module bitcode file.
5087   const ModuleHash *ModHash;
5088 
5089 public:
5090   ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
5091                         BitstreamWriter &Stream,
5092                         const ModuleSummaryIndex &Index,
5093                         const ModuleHash &ModHash)
5094       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
5095                                 /*ShouldPreserveUseListOrder=*/false, &Index),
5096         ModHash(&ModHash) {}
5097 
5098   void write();
5099 
5100 private:
5101   void writeSimplifiedModuleInfo();
5102 };
5103 
5104 } // end anonymous namespace
5105 
5106 // This function writes a simpilified module info for thin link bitcode file.
5107 // It only contains the source file name along with the name(the offset and
5108 // size in strtab) and linkage for global values. For the global value info
5109 // entry, in order to keep linkage at offset 5, there are three zeros used
5110 // as padding.
5111 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
5112   SmallVector<unsigned, 64> Vals;
5113   // Emit the module's source file name.
5114   {
5115     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
5116     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
5117     if (Bits == SE_Char6)
5118       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
5119     else if (Bits == SE_Fixed7)
5120       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
5121 
5122     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5123     auto Abbv = std::make_shared<BitCodeAbbrev>();
5124     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
5125     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
5126     Abbv->Add(AbbrevOpToUse);
5127     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
5128 
5129     for (const auto P : M.getSourceFileName())
5130       Vals.push_back((unsigned char)P);
5131 
5132     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
5133     Vals.clear();
5134   }
5135 
5136   // Emit the global variable information.
5137   for (const GlobalVariable &GV : M.globals()) {
5138     // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
5139     Vals.push_back(StrtabBuilder.add(GV.getName()));
5140     Vals.push_back(GV.getName().size());
5141     Vals.push_back(0);
5142     Vals.push_back(0);
5143     Vals.push_back(0);
5144     Vals.push_back(getEncodedLinkage(GV));
5145 
5146     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
5147     Vals.clear();
5148   }
5149 
5150   // Emit the function proto information.
5151   for (const Function &F : M) {
5152     // FUNCTION:  [strtab offset, strtab size, 0, 0, 0, linkage]
5153     Vals.push_back(StrtabBuilder.add(F.getName()));
5154     Vals.push_back(F.getName().size());
5155     Vals.push_back(0);
5156     Vals.push_back(0);
5157     Vals.push_back(0);
5158     Vals.push_back(getEncodedLinkage(F));
5159 
5160     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
5161     Vals.clear();
5162   }
5163 
5164   // Emit the alias information.
5165   for (const GlobalAlias &A : M.aliases()) {
5166     // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
5167     Vals.push_back(StrtabBuilder.add(A.getName()));
5168     Vals.push_back(A.getName().size());
5169     Vals.push_back(0);
5170     Vals.push_back(0);
5171     Vals.push_back(0);
5172     Vals.push_back(getEncodedLinkage(A));
5173 
5174     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
5175     Vals.clear();
5176   }
5177 
5178   // Emit the ifunc information.
5179   for (const GlobalIFunc &I : M.ifuncs()) {
5180     // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
5181     Vals.push_back(StrtabBuilder.add(I.getName()));
5182     Vals.push_back(I.getName().size());
5183     Vals.push_back(0);
5184     Vals.push_back(0);
5185     Vals.push_back(0);
5186     Vals.push_back(getEncodedLinkage(I));
5187 
5188     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
5189     Vals.clear();
5190   }
5191 }
5192 
5193 void ThinLinkBitcodeWriter::write() {
5194   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
5195 
5196   writeModuleVersion();
5197 
5198   writeSimplifiedModuleInfo();
5199 
5200   writePerModuleGlobalValueSummary();
5201 
5202   // Write module hash.
5203   Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
5204 
5205   Stream.ExitBlock();
5206 }
5207 
5208 void BitcodeWriter::writeThinLinkBitcode(const Module &M,
5209                                          const ModuleSummaryIndex &Index,
5210                                          const ModuleHash &ModHash) {
5211   assert(!WroteStrtab);
5212 
5213   // The Mods vector is used by irsymtab::build, which requires non-const
5214   // Modules in case it needs to materialize metadata. But the bitcode writer
5215   // requires that the module is materialized, so we can cast to non-const here,
5216   // after checking that it is in fact materialized.
5217   assert(M.isMaterialized());
5218   Mods.push_back(const_cast<Module *>(&M));
5219 
5220   ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
5221                                        ModHash);
5222   ThinLinkWriter.write();
5223 }
5224 
5225 // Write the specified thin link bitcode file to the given raw output stream,
5226 // where it will be written in a new bitcode block. This is used when
5227 // writing the per-module index file for ThinLTO.
5228 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
5229                                       const ModuleSummaryIndex &Index,
5230                                       const ModuleHash &ModHash) {
5231   SmallVector<char, 0> Buffer;
5232   Buffer.reserve(256 * 1024);
5233 
5234   BitcodeWriter Writer(Buffer);
5235   Writer.writeThinLinkBitcode(M, Index, ModHash);
5236   Writer.writeSymtab();
5237   Writer.writeStrtab();
5238 
5239   Out.write((char *)&Buffer.front(), Buffer.size());
5240 }
5241 
5242 static const char *getSectionNameForBitcode(const Triple &T) {
5243   switch (T.getObjectFormat()) {
5244   case Triple::MachO:
5245     return "__LLVM,__bitcode";
5246   case Triple::COFF:
5247   case Triple::ELF:
5248   case Triple::Wasm:
5249   case Triple::UnknownObjectFormat:
5250     return ".llvmbc";
5251   case Triple::GOFF:
5252     llvm_unreachable("GOFF is not yet implemented");
5253     break;
5254   case Triple::SPIRV:
5255     llvm_unreachable("SPIRV is not yet implemented");
5256     break;
5257   case Triple::XCOFF:
5258     llvm_unreachable("XCOFF is not yet implemented");
5259     break;
5260   case Triple::DXContainer:
5261     llvm_unreachable("DXContainer is not yet implemented");
5262     break;
5263   }
5264   llvm_unreachable("Unimplemented ObjectFormatType");
5265 }
5266 
5267 static const char *getSectionNameForCommandline(const Triple &T) {
5268   switch (T.getObjectFormat()) {
5269   case Triple::MachO:
5270     return "__LLVM,__cmdline";
5271   case Triple::COFF:
5272   case Triple::ELF:
5273   case Triple::Wasm:
5274   case Triple::UnknownObjectFormat:
5275     return ".llvmcmd";
5276   case Triple::GOFF:
5277     llvm_unreachable("GOFF is not yet implemented");
5278     break;
5279   case Triple::SPIRV:
5280     llvm_unreachable("SPIRV is not yet implemented");
5281     break;
5282   case Triple::XCOFF:
5283     llvm_unreachable("XCOFF is not yet implemented");
5284     break;
5285   case Triple::DXContainer:
5286     llvm_unreachable("DXC is not yet implemented");
5287     break;
5288   }
5289   llvm_unreachable("Unimplemented ObjectFormatType");
5290 }
5291 
5292 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf,
5293                                 bool EmbedBitcode, bool EmbedCmdline,
5294                                 const std::vector<uint8_t> &CmdArgs) {
5295   // Save llvm.compiler.used and remove it.
5296   SmallVector<Constant *, 2> UsedArray;
5297   SmallVector<GlobalValue *, 4> UsedGlobals;
5298   Type *UsedElementType = PointerType::getUnqual(M.getContext());
5299   GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true);
5300   for (auto *GV : UsedGlobals) {
5301     if (GV->getName() != "llvm.embedded.module" &&
5302         GV->getName() != "llvm.cmdline")
5303       UsedArray.push_back(
5304           ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5305   }
5306   if (Used)
5307     Used->eraseFromParent();
5308 
5309   // Embed the bitcode for the llvm module.
5310   std::string Data;
5311   ArrayRef<uint8_t> ModuleData;
5312   Triple T(M.getTargetTriple());
5313 
5314   if (EmbedBitcode) {
5315     if (Buf.getBufferSize() == 0 ||
5316         !isBitcode((const unsigned char *)Buf.getBufferStart(),
5317                    (const unsigned char *)Buf.getBufferEnd())) {
5318       // If the input is LLVM Assembly, bitcode is produced by serializing
5319       // the module. Use-lists order need to be preserved in this case.
5320       llvm::raw_string_ostream OS(Data);
5321       llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true);
5322       ModuleData =
5323           ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
5324     } else
5325       // If the input is LLVM bitcode, write the input byte stream directly.
5326       ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
5327                                      Buf.getBufferSize());
5328   }
5329   llvm::Constant *ModuleConstant =
5330       llvm::ConstantDataArray::get(M.getContext(), ModuleData);
5331   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
5332       M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
5333       ModuleConstant);
5334   GV->setSection(getSectionNameForBitcode(T));
5335   // Set alignment to 1 to prevent padding between two contributions from input
5336   // sections after linking.
5337   GV->setAlignment(Align(1));
5338   UsedArray.push_back(
5339       ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5340   if (llvm::GlobalVariable *Old =
5341           M.getGlobalVariable("llvm.embedded.module", true)) {
5342     assert(Old->hasZeroLiveUses() &&
5343            "llvm.embedded.module can only be used once in llvm.compiler.used");
5344     GV->takeName(Old);
5345     Old->eraseFromParent();
5346   } else {
5347     GV->setName("llvm.embedded.module");
5348   }
5349 
5350   // Skip if only bitcode needs to be embedded.
5351   if (EmbedCmdline) {
5352     // Embed command-line options.
5353     ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()),
5354                               CmdArgs.size());
5355     llvm::Constant *CmdConstant =
5356         llvm::ConstantDataArray::get(M.getContext(), CmdData);
5357     GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true,
5358                                   llvm::GlobalValue::PrivateLinkage,
5359                                   CmdConstant);
5360     GV->setSection(getSectionNameForCommandline(T));
5361     GV->setAlignment(Align(1));
5362     UsedArray.push_back(
5363         ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5364     if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) {
5365       assert(Old->hasZeroLiveUses() &&
5366              "llvm.cmdline can only be used once in llvm.compiler.used");
5367       GV->takeName(Old);
5368       Old->eraseFromParent();
5369     } else {
5370       GV->setName("llvm.cmdline");
5371     }
5372   }
5373 
5374   if (UsedArray.empty())
5375     return;
5376 
5377   // Recreate llvm.compiler.used.
5378   ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size());
5379   auto *NewUsed = new GlobalVariable(
5380       M, ATy, false, llvm::GlobalValue::AppendingLinkage,
5381       llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
5382   NewUsed->setSection("llvm.metadata");
5383 }
5384