1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitstreamWriter.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/UseListOrder.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/MC/StringTableBuilder.h" 32 #include "llvm/Object/IRSymtab.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/Program.h" 36 #include "llvm/Support/SHA1.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <cctype> 40 #include <map> 41 using namespace llvm; 42 43 namespace { 44 45 cl::opt<unsigned> 46 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 47 cl::desc("Number of metadatas above which we emit an index " 48 "to enable lazy-loading")); 49 /// These are manifest constants used by the bitcode writer. They do not need to 50 /// be kept in sync with the reader, but need to be consistent within this file. 51 enum { 52 // VALUE_SYMTAB_BLOCK abbrev id's. 53 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 VST_ENTRY_7_ABBREV, 55 VST_ENTRY_6_ABBREV, 56 VST_BBENTRY_6_ABBREV, 57 58 // CONSTANTS_BLOCK abbrev id's. 59 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 60 CONSTANTS_INTEGER_ABBREV, 61 CONSTANTS_CE_CAST_Abbrev, 62 CONSTANTS_NULL_Abbrev, 63 64 // FUNCTION_BLOCK abbrev id's. 65 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 66 FUNCTION_INST_BINOP_ABBREV, 67 FUNCTION_INST_BINOP_FLAGS_ABBREV, 68 FUNCTION_INST_CAST_ABBREV, 69 FUNCTION_INST_RET_VOID_ABBREV, 70 FUNCTION_INST_RET_VAL_ABBREV, 71 FUNCTION_INST_UNREACHABLE_ABBREV, 72 FUNCTION_INST_GEP_ABBREV, 73 }; 74 75 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 76 /// file type. 77 class BitcodeWriterBase { 78 protected: 79 /// The stream created and owned by the client. 80 BitstreamWriter &Stream; 81 82 StringTableBuilder &StrtabBuilder; 83 84 public: 85 /// Constructs a BitcodeWriterBase object that writes to the provided 86 /// \p Stream. 87 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 88 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 89 90 protected: 91 void writeBitcodeHeader(); 92 void writeModuleVersion(); 93 }; 94 95 void BitcodeWriterBase::writeModuleVersion() { 96 // VERSION: [version#] 97 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 98 } 99 100 /// Class to manage the bitcode writing for a module. 101 class ModuleBitcodeWriter : public BitcodeWriterBase { 102 /// Pointer to the buffer allocated by caller for bitcode writing. 103 const SmallVectorImpl<char> &Buffer; 104 105 /// The Module to write to bitcode. 106 const Module &M; 107 108 /// Enumerates ids for all values in the module. 109 ValueEnumerator VE; 110 111 /// Optional per-module index to write for ThinLTO. 112 const ModuleSummaryIndex *Index; 113 114 /// True if a module hash record should be written. 115 bool GenerateHash; 116 117 SHA1 Hasher; 118 119 /// If non-null, when GenerateHash is true, the resulting hash is written 120 /// into ModHash. When GenerateHash is false, that specified value 121 /// is used as the hash instead of computing from the generated bitcode. 122 /// Can be used to produce the same module hash for a minimized bitcode 123 /// used just for the thin link as in the regular full bitcode that will 124 /// be used in the backend. 125 ModuleHash *ModHash; 126 127 /// The start bit of the identification block. 128 uint64_t BitcodeStartBit; 129 130 /// Map that holds the correspondence between GUIDs in the summary index, 131 /// that came from indirect call profiles, and a value id generated by this 132 /// class to use in the VST and summary block records. 133 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 134 135 /// Tracks the last value id recorded in the GUIDToValueMap. 136 unsigned GlobalValueId; 137 138 /// Saves the offset of the VSTOffset record that must eventually be 139 /// backpatched with the offset of the actual VST. 140 uint64_t VSTOffsetPlaceholder = 0; 141 142 public: 143 /// Constructs a ModuleBitcodeWriter object for the given Module, 144 /// writing to the provided \p Buffer. 145 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 146 StringTableBuilder &StrtabBuilder, 147 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 148 const ModuleSummaryIndex *Index, bool GenerateHash, 149 ModuleHash *ModHash = nullptr) 150 : BitcodeWriterBase(Stream, StrtabBuilder), Buffer(Buffer), M(*M), 151 VE(*M, ShouldPreserveUseListOrder), Index(Index), 152 GenerateHash(GenerateHash), ModHash(ModHash), 153 BitcodeStartBit(Stream.GetCurrentBitNo()) { 154 // Assign ValueIds to any callee values in the index that came from 155 // indirect call profiles and were recorded as a GUID not a Value* 156 // (which would have been assigned an ID by the ValueEnumerator). 157 // The starting ValueId is just after the number of values in the 158 // ValueEnumerator, so that they can be emitted in the VST. 159 GlobalValueId = VE.getValues().size(); 160 if (!Index) 161 return; 162 for (const auto &GUIDSummaryLists : *Index) 163 // Examine all summaries for this GUID. 164 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 165 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 166 // For each call in the function summary, see if the call 167 // is to a GUID (which means it is for an indirect call, 168 // otherwise we would have a Value for it). If so, synthesize 169 // a value id. 170 for (auto &CallEdge : FS->calls()) 171 if (!CallEdge.first.getValue()) 172 assignValueId(CallEdge.first.getGUID()); 173 } 174 175 /// Emit the current module to the bitstream. 176 void write(); 177 178 private: 179 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 180 181 size_t addToStrtab(StringRef Str); 182 183 void writeAttributeGroupTable(); 184 void writeAttributeTable(); 185 void writeTypeTable(); 186 void writeComdats(); 187 void writeValueSymbolTableForwardDecl(); 188 void writeModuleInfo(); 189 void writeValueAsMetadata(const ValueAsMetadata *MD, 190 SmallVectorImpl<uint64_t> &Record); 191 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 192 unsigned Abbrev); 193 unsigned createDILocationAbbrev(); 194 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 195 unsigned &Abbrev); 196 unsigned createGenericDINodeAbbrev(); 197 void writeGenericDINode(const GenericDINode *N, 198 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 199 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 200 unsigned Abbrev); 201 void writeDIEnumerator(const DIEnumerator *N, 202 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 203 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 204 unsigned Abbrev); 205 void writeDIDerivedType(const DIDerivedType *N, 206 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 207 void writeDICompositeType(const DICompositeType *N, 208 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 209 void writeDISubroutineType(const DISubroutineType *N, 210 SmallVectorImpl<uint64_t> &Record, 211 unsigned Abbrev); 212 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 213 unsigned Abbrev); 214 void writeDICompileUnit(const DICompileUnit *N, 215 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 216 void writeDISubprogram(const DISubprogram *N, 217 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 218 void writeDILexicalBlock(const DILexicalBlock *N, 219 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 220 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 221 SmallVectorImpl<uint64_t> &Record, 222 unsigned Abbrev); 223 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 224 unsigned Abbrev); 225 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 226 unsigned Abbrev); 227 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 228 unsigned Abbrev); 229 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 230 unsigned Abbrev); 231 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 232 SmallVectorImpl<uint64_t> &Record, 233 unsigned Abbrev); 234 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 235 SmallVectorImpl<uint64_t> &Record, 236 unsigned Abbrev); 237 void writeDIGlobalVariable(const DIGlobalVariable *N, 238 SmallVectorImpl<uint64_t> &Record, 239 unsigned Abbrev); 240 void writeDILocalVariable(const DILocalVariable *N, 241 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 242 void writeDIExpression(const DIExpression *N, 243 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 244 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 245 SmallVectorImpl<uint64_t> &Record, 246 unsigned Abbrev); 247 void writeDIObjCProperty(const DIObjCProperty *N, 248 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 249 void writeDIImportedEntity(const DIImportedEntity *N, 250 SmallVectorImpl<uint64_t> &Record, 251 unsigned Abbrev); 252 unsigned createNamedMetadataAbbrev(); 253 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 254 unsigned createMetadataStringsAbbrev(); 255 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 256 SmallVectorImpl<uint64_t> &Record); 257 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 258 SmallVectorImpl<uint64_t> &Record, 259 std::vector<unsigned> *MDAbbrevs = nullptr, 260 std::vector<uint64_t> *IndexPos = nullptr); 261 void writeModuleMetadata(); 262 void writeFunctionMetadata(const Function &F); 263 void writeFunctionMetadataAttachment(const Function &F); 264 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 265 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 266 const GlobalObject &GO); 267 void writeModuleMetadataKinds(); 268 void writeOperandBundleTags(); 269 void writeSyncScopeNames(); 270 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 271 void writeModuleConstants(); 272 bool pushValueAndType(const Value *V, unsigned InstID, 273 SmallVectorImpl<unsigned> &Vals); 274 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 275 void pushValue(const Value *V, unsigned InstID, 276 SmallVectorImpl<unsigned> &Vals); 277 void pushValueSigned(const Value *V, unsigned InstID, 278 SmallVectorImpl<uint64_t> &Vals); 279 void writeInstruction(const Instruction &I, unsigned InstID, 280 SmallVectorImpl<unsigned> &Vals); 281 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 282 void writeGlobalValueSymbolTable( 283 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 284 void writeUseList(UseListOrder &&Order); 285 void writeUseListBlock(const Function *F); 286 void 287 writeFunction(const Function &F, 288 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 289 void writeBlockInfo(); 290 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 291 GlobalValueSummary *Summary, 292 unsigned ValueID, 293 unsigned FSCallsAbbrev, 294 unsigned FSCallsProfileAbbrev, 295 const Function &F); 296 void writeModuleLevelReferences(const GlobalVariable &V, 297 SmallVector<uint64_t, 64> &NameVals, 298 unsigned FSModRefsAbbrev); 299 void writePerModuleGlobalValueSummary(); 300 void writeModuleHash(size_t BlockStartPos); 301 302 void assignValueId(GlobalValue::GUID ValGUID) { 303 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 304 } 305 unsigned getValueId(GlobalValue::GUID ValGUID) { 306 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 307 // Expect that any GUID value had a value Id assigned by an 308 // earlier call to assignValueId. 309 assert(VMI != GUIDToValueIdMap.end() && 310 "GUID does not have assigned value Id"); 311 return VMI->second; 312 } 313 // Helper to get the valueId for the type of value recorded in VI. 314 unsigned getValueId(ValueInfo VI) { 315 if (!VI.getValue()) 316 return getValueId(VI.getGUID()); 317 return VE.getValueID(VI.getValue()); 318 } 319 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 320 321 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 322 return unsigned(SSID); 323 } 324 }; 325 326 /// Class to manage the bitcode writing for a combined index. 327 class IndexBitcodeWriter : public BitcodeWriterBase { 328 /// The combined index to write to bitcode. 329 const ModuleSummaryIndex &Index; 330 331 /// When writing a subset of the index for distributed backends, client 332 /// provides a map of modules to the corresponding GUIDs/summaries to write. 333 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 334 335 /// Map that holds the correspondence between the GUID used in the combined 336 /// index and a value id generated by this class to use in references. 337 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 338 339 /// Tracks the last value id recorded in the GUIDToValueMap. 340 unsigned GlobalValueId = 0; 341 342 public: 343 /// Constructs a IndexBitcodeWriter object for the given combined index, 344 /// writing to the provided \p Buffer. When writing a subset of the index 345 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 346 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 347 const ModuleSummaryIndex &Index, 348 const std::map<std::string, GVSummaryMapTy> 349 *ModuleToSummariesForIndex = nullptr) 350 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 351 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 352 // Assign unique value ids to all summaries to be written, for use 353 // in writing out the call graph edges. Save the mapping from GUID 354 // to the new global value id to use when writing those edges, which 355 // are currently saved in the index in terms of GUID. 356 forEachSummary([&](GVInfo I) { 357 GUIDToValueIdMap[I.first] = ++GlobalValueId; 358 }); 359 } 360 361 /// The below iterator returns the GUID and associated summary. 362 typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo; 363 364 /// Calls the callback for each value GUID and summary to be written to 365 /// bitcode. This hides the details of whether they are being pulled from the 366 /// entire index or just those in a provided ModuleToSummariesForIndex map. 367 template<typename Functor> 368 void forEachSummary(Functor Callback) { 369 if (ModuleToSummariesForIndex) { 370 for (auto &M : *ModuleToSummariesForIndex) 371 for (auto &Summary : M.second) 372 Callback(Summary); 373 } else { 374 for (auto &Summaries : Index) 375 for (auto &Summary : Summaries.second.SummaryList) 376 Callback({Summaries.first, Summary.get()}); 377 } 378 } 379 380 /// Calls the callback for each entry in the modulePaths StringMap that 381 /// should be written to the module path string table. This hides the details 382 /// of whether they are being pulled from the entire index or just those in a 383 /// provided ModuleToSummariesForIndex map. 384 template <typename Functor> void forEachModule(Functor Callback) { 385 if (ModuleToSummariesForIndex) { 386 for (const auto &M : *ModuleToSummariesForIndex) { 387 const auto &MPI = Index.modulePaths().find(M.first); 388 if (MPI == Index.modulePaths().end()) { 389 // This should only happen if the bitcode file was empty, in which 390 // case we shouldn't be importing (the ModuleToSummariesForIndex 391 // would only include the module we are writing and index for). 392 assert(ModuleToSummariesForIndex->size() == 1); 393 continue; 394 } 395 Callback(*MPI); 396 } 397 } else { 398 for (const auto &MPSE : Index.modulePaths()) 399 Callback(MPSE); 400 } 401 } 402 403 /// Main entry point for writing a combined index to bitcode. 404 void write(); 405 406 private: 407 void writeModStrings(); 408 void writeCombinedGlobalValueSummary(); 409 410 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 411 auto VMI = GUIDToValueIdMap.find(ValGUID); 412 if (VMI == GUIDToValueIdMap.end()) 413 return None; 414 return VMI->second; 415 } 416 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 417 }; 418 } // end anonymous namespace 419 420 static unsigned getEncodedCastOpcode(unsigned Opcode) { 421 switch (Opcode) { 422 default: llvm_unreachable("Unknown cast instruction!"); 423 case Instruction::Trunc : return bitc::CAST_TRUNC; 424 case Instruction::ZExt : return bitc::CAST_ZEXT; 425 case Instruction::SExt : return bitc::CAST_SEXT; 426 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 427 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 428 case Instruction::UIToFP : return bitc::CAST_UITOFP; 429 case Instruction::SIToFP : return bitc::CAST_SITOFP; 430 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 431 case Instruction::FPExt : return bitc::CAST_FPEXT; 432 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 433 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 434 case Instruction::BitCast : return bitc::CAST_BITCAST; 435 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 436 } 437 } 438 439 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 440 switch (Opcode) { 441 default: llvm_unreachable("Unknown binary instruction!"); 442 case Instruction::Add: 443 case Instruction::FAdd: return bitc::BINOP_ADD; 444 case Instruction::Sub: 445 case Instruction::FSub: return bitc::BINOP_SUB; 446 case Instruction::Mul: 447 case Instruction::FMul: return bitc::BINOP_MUL; 448 case Instruction::UDiv: return bitc::BINOP_UDIV; 449 case Instruction::FDiv: 450 case Instruction::SDiv: return bitc::BINOP_SDIV; 451 case Instruction::URem: return bitc::BINOP_UREM; 452 case Instruction::FRem: 453 case Instruction::SRem: return bitc::BINOP_SREM; 454 case Instruction::Shl: return bitc::BINOP_SHL; 455 case Instruction::LShr: return bitc::BINOP_LSHR; 456 case Instruction::AShr: return bitc::BINOP_ASHR; 457 case Instruction::And: return bitc::BINOP_AND; 458 case Instruction::Or: return bitc::BINOP_OR; 459 case Instruction::Xor: return bitc::BINOP_XOR; 460 } 461 } 462 463 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 464 switch (Op) { 465 default: llvm_unreachable("Unknown RMW operation!"); 466 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 467 case AtomicRMWInst::Add: return bitc::RMW_ADD; 468 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 469 case AtomicRMWInst::And: return bitc::RMW_AND; 470 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 471 case AtomicRMWInst::Or: return bitc::RMW_OR; 472 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 473 case AtomicRMWInst::Max: return bitc::RMW_MAX; 474 case AtomicRMWInst::Min: return bitc::RMW_MIN; 475 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 476 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 477 } 478 } 479 480 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 481 switch (Ordering) { 482 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 483 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 484 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 485 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 486 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 487 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 488 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 489 } 490 llvm_unreachable("Invalid ordering"); 491 } 492 493 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 494 StringRef Str, unsigned AbbrevToUse) { 495 SmallVector<unsigned, 64> Vals; 496 497 // Code: [strchar x N] 498 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 499 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 500 AbbrevToUse = 0; 501 Vals.push_back(Str[i]); 502 } 503 504 // Emit the finished record. 505 Stream.EmitRecord(Code, Vals, AbbrevToUse); 506 } 507 508 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 509 switch (Kind) { 510 case Attribute::Alignment: 511 return bitc::ATTR_KIND_ALIGNMENT; 512 case Attribute::AllocSize: 513 return bitc::ATTR_KIND_ALLOC_SIZE; 514 case Attribute::AlwaysInline: 515 return bitc::ATTR_KIND_ALWAYS_INLINE; 516 case Attribute::ArgMemOnly: 517 return bitc::ATTR_KIND_ARGMEMONLY; 518 case Attribute::Builtin: 519 return bitc::ATTR_KIND_BUILTIN; 520 case Attribute::ByVal: 521 return bitc::ATTR_KIND_BY_VAL; 522 case Attribute::Convergent: 523 return bitc::ATTR_KIND_CONVERGENT; 524 case Attribute::InAlloca: 525 return bitc::ATTR_KIND_IN_ALLOCA; 526 case Attribute::Cold: 527 return bitc::ATTR_KIND_COLD; 528 case Attribute::InaccessibleMemOnly: 529 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 530 case Attribute::InaccessibleMemOrArgMemOnly: 531 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 532 case Attribute::InlineHint: 533 return bitc::ATTR_KIND_INLINE_HINT; 534 case Attribute::InReg: 535 return bitc::ATTR_KIND_IN_REG; 536 case Attribute::JumpTable: 537 return bitc::ATTR_KIND_JUMP_TABLE; 538 case Attribute::MinSize: 539 return bitc::ATTR_KIND_MIN_SIZE; 540 case Attribute::Naked: 541 return bitc::ATTR_KIND_NAKED; 542 case Attribute::Nest: 543 return bitc::ATTR_KIND_NEST; 544 case Attribute::NoAlias: 545 return bitc::ATTR_KIND_NO_ALIAS; 546 case Attribute::NoBuiltin: 547 return bitc::ATTR_KIND_NO_BUILTIN; 548 case Attribute::NoCapture: 549 return bitc::ATTR_KIND_NO_CAPTURE; 550 case Attribute::NoDuplicate: 551 return bitc::ATTR_KIND_NO_DUPLICATE; 552 case Attribute::NoImplicitFloat: 553 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 554 case Attribute::NoInline: 555 return bitc::ATTR_KIND_NO_INLINE; 556 case Attribute::NoRecurse: 557 return bitc::ATTR_KIND_NO_RECURSE; 558 case Attribute::NonLazyBind: 559 return bitc::ATTR_KIND_NON_LAZY_BIND; 560 case Attribute::NonNull: 561 return bitc::ATTR_KIND_NON_NULL; 562 case Attribute::Dereferenceable: 563 return bitc::ATTR_KIND_DEREFERENCEABLE; 564 case Attribute::DereferenceableOrNull: 565 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 566 case Attribute::NoRedZone: 567 return bitc::ATTR_KIND_NO_RED_ZONE; 568 case Attribute::NoReturn: 569 return bitc::ATTR_KIND_NO_RETURN; 570 case Attribute::NoUnwind: 571 return bitc::ATTR_KIND_NO_UNWIND; 572 case Attribute::OptimizeForSize: 573 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 574 case Attribute::OptimizeNone: 575 return bitc::ATTR_KIND_OPTIMIZE_NONE; 576 case Attribute::ReadNone: 577 return bitc::ATTR_KIND_READ_NONE; 578 case Attribute::ReadOnly: 579 return bitc::ATTR_KIND_READ_ONLY; 580 case Attribute::Returned: 581 return bitc::ATTR_KIND_RETURNED; 582 case Attribute::ReturnsTwice: 583 return bitc::ATTR_KIND_RETURNS_TWICE; 584 case Attribute::SExt: 585 return bitc::ATTR_KIND_S_EXT; 586 case Attribute::Speculatable: 587 return bitc::ATTR_KIND_SPECULATABLE; 588 case Attribute::StackAlignment: 589 return bitc::ATTR_KIND_STACK_ALIGNMENT; 590 case Attribute::StackProtect: 591 return bitc::ATTR_KIND_STACK_PROTECT; 592 case Attribute::StackProtectReq: 593 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 594 case Attribute::StackProtectStrong: 595 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 596 case Attribute::SafeStack: 597 return bitc::ATTR_KIND_SAFESTACK; 598 case Attribute::StructRet: 599 return bitc::ATTR_KIND_STRUCT_RET; 600 case Attribute::SanitizeAddress: 601 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 602 case Attribute::SanitizeThread: 603 return bitc::ATTR_KIND_SANITIZE_THREAD; 604 case Attribute::SanitizeMemory: 605 return bitc::ATTR_KIND_SANITIZE_MEMORY; 606 case Attribute::SwiftError: 607 return bitc::ATTR_KIND_SWIFT_ERROR; 608 case Attribute::SwiftSelf: 609 return bitc::ATTR_KIND_SWIFT_SELF; 610 case Attribute::UWTable: 611 return bitc::ATTR_KIND_UW_TABLE; 612 case Attribute::WriteOnly: 613 return bitc::ATTR_KIND_WRITEONLY; 614 case Attribute::ZExt: 615 return bitc::ATTR_KIND_Z_EXT; 616 case Attribute::EndAttrKinds: 617 llvm_unreachable("Can not encode end-attribute kinds marker."); 618 case Attribute::None: 619 llvm_unreachable("Can not encode none-attribute."); 620 } 621 622 llvm_unreachable("Trying to encode unknown attribute"); 623 } 624 625 void ModuleBitcodeWriter::writeAttributeGroupTable() { 626 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 627 VE.getAttributeGroups(); 628 if (AttrGrps.empty()) return; 629 630 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 631 632 SmallVector<uint64_t, 64> Record; 633 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 634 unsigned AttrListIndex = Pair.first; 635 AttributeSet AS = Pair.second; 636 Record.push_back(VE.getAttributeGroupID(Pair)); 637 Record.push_back(AttrListIndex); 638 639 for (Attribute Attr : AS) { 640 if (Attr.isEnumAttribute()) { 641 Record.push_back(0); 642 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 643 } else if (Attr.isIntAttribute()) { 644 Record.push_back(1); 645 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 646 Record.push_back(Attr.getValueAsInt()); 647 } else { 648 StringRef Kind = Attr.getKindAsString(); 649 StringRef Val = Attr.getValueAsString(); 650 651 Record.push_back(Val.empty() ? 3 : 4); 652 Record.append(Kind.begin(), Kind.end()); 653 Record.push_back(0); 654 if (!Val.empty()) { 655 Record.append(Val.begin(), Val.end()); 656 Record.push_back(0); 657 } 658 } 659 } 660 661 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 662 Record.clear(); 663 } 664 665 Stream.ExitBlock(); 666 } 667 668 void ModuleBitcodeWriter::writeAttributeTable() { 669 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 670 if (Attrs.empty()) return; 671 672 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 673 674 SmallVector<uint64_t, 64> Record; 675 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 676 AttributeList AL = Attrs[i]; 677 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 678 AttributeSet AS = AL.getAttributes(i); 679 if (AS.hasAttributes()) 680 Record.push_back(VE.getAttributeGroupID({i, AS})); 681 } 682 683 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 684 Record.clear(); 685 } 686 687 Stream.ExitBlock(); 688 } 689 690 /// WriteTypeTable - Write out the type table for a module. 691 void ModuleBitcodeWriter::writeTypeTable() { 692 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 693 694 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 695 SmallVector<uint64_t, 64> TypeVals; 696 697 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 698 699 // Abbrev for TYPE_CODE_POINTER. 700 auto Abbv = std::make_shared<BitCodeAbbrev>(); 701 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 702 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 703 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 704 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 705 706 // Abbrev for TYPE_CODE_FUNCTION. 707 Abbv = std::make_shared<BitCodeAbbrev>(); 708 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 711 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 712 713 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 714 715 // Abbrev for TYPE_CODE_STRUCT_ANON. 716 Abbv = std::make_shared<BitCodeAbbrev>(); 717 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 718 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 719 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 721 722 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 723 724 // Abbrev for TYPE_CODE_STRUCT_NAME. 725 Abbv = std::make_shared<BitCodeAbbrev>(); 726 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 727 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 728 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 729 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 730 731 // Abbrev for TYPE_CODE_STRUCT_NAMED. 732 Abbv = std::make_shared<BitCodeAbbrev>(); 733 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 734 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 735 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 736 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 737 738 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 739 740 // Abbrev for TYPE_CODE_ARRAY. 741 Abbv = std::make_shared<BitCodeAbbrev>(); 742 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 743 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 744 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 745 746 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 747 748 // Emit an entry count so the reader can reserve space. 749 TypeVals.push_back(TypeList.size()); 750 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 751 TypeVals.clear(); 752 753 // Loop over all of the types, emitting each in turn. 754 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 755 Type *T = TypeList[i]; 756 int AbbrevToUse = 0; 757 unsigned Code = 0; 758 759 switch (T->getTypeID()) { 760 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 761 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 762 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 763 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 764 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 765 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 766 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 767 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 768 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 769 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 770 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 771 case Type::IntegerTyID: 772 // INTEGER: [width] 773 Code = bitc::TYPE_CODE_INTEGER; 774 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 775 break; 776 case Type::PointerTyID: { 777 PointerType *PTy = cast<PointerType>(T); 778 // POINTER: [pointee type, address space] 779 Code = bitc::TYPE_CODE_POINTER; 780 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 781 unsigned AddressSpace = PTy->getAddressSpace(); 782 TypeVals.push_back(AddressSpace); 783 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 784 break; 785 } 786 case Type::FunctionTyID: { 787 FunctionType *FT = cast<FunctionType>(T); 788 // FUNCTION: [isvararg, retty, paramty x N] 789 Code = bitc::TYPE_CODE_FUNCTION; 790 TypeVals.push_back(FT->isVarArg()); 791 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 792 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 793 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 794 AbbrevToUse = FunctionAbbrev; 795 break; 796 } 797 case Type::StructTyID: { 798 StructType *ST = cast<StructType>(T); 799 // STRUCT: [ispacked, eltty x N] 800 TypeVals.push_back(ST->isPacked()); 801 // Output all of the element types. 802 for (StructType::element_iterator I = ST->element_begin(), 803 E = ST->element_end(); I != E; ++I) 804 TypeVals.push_back(VE.getTypeID(*I)); 805 806 if (ST->isLiteral()) { 807 Code = bitc::TYPE_CODE_STRUCT_ANON; 808 AbbrevToUse = StructAnonAbbrev; 809 } else { 810 if (ST->isOpaque()) { 811 Code = bitc::TYPE_CODE_OPAQUE; 812 } else { 813 Code = bitc::TYPE_CODE_STRUCT_NAMED; 814 AbbrevToUse = StructNamedAbbrev; 815 } 816 817 // Emit the name if it is present. 818 if (!ST->getName().empty()) 819 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 820 StructNameAbbrev); 821 } 822 break; 823 } 824 case Type::ArrayTyID: { 825 ArrayType *AT = cast<ArrayType>(T); 826 // ARRAY: [numelts, eltty] 827 Code = bitc::TYPE_CODE_ARRAY; 828 TypeVals.push_back(AT->getNumElements()); 829 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 830 AbbrevToUse = ArrayAbbrev; 831 break; 832 } 833 case Type::VectorTyID: { 834 VectorType *VT = cast<VectorType>(T); 835 // VECTOR [numelts, eltty] 836 Code = bitc::TYPE_CODE_VECTOR; 837 TypeVals.push_back(VT->getNumElements()); 838 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 839 break; 840 } 841 } 842 843 // Emit the finished record. 844 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 845 TypeVals.clear(); 846 } 847 848 Stream.ExitBlock(); 849 } 850 851 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 852 switch (Linkage) { 853 case GlobalValue::ExternalLinkage: 854 return 0; 855 case GlobalValue::WeakAnyLinkage: 856 return 16; 857 case GlobalValue::AppendingLinkage: 858 return 2; 859 case GlobalValue::InternalLinkage: 860 return 3; 861 case GlobalValue::LinkOnceAnyLinkage: 862 return 18; 863 case GlobalValue::ExternalWeakLinkage: 864 return 7; 865 case GlobalValue::CommonLinkage: 866 return 8; 867 case GlobalValue::PrivateLinkage: 868 return 9; 869 case GlobalValue::WeakODRLinkage: 870 return 17; 871 case GlobalValue::LinkOnceODRLinkage: 872 return 19; 873 case GlobalValue::AvailableExternallyLinkage: 874 return 12; 875 } 876 llvm_unreachable("Invalid linkage"); 877 } 878 879 static unsigned getEncodedLinkage(const GlobalValue &GV) { 880 return getEncodedLinkage(GV.getLinkage()); 881 } 882 883 // Decode the flags for GlobalValue in the summary 884 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 885 uint64_t RawFlags = 0; 886 887 RawFlags |= Flags.NotEligibleToImport; // bool 888 RawFlags |= (Flags.Live << 1); 889 // Linkage don't need to be remapped at that time for the summary. Any future 890 // change to the getEncodedLinkage() function will need to be taken into 891 // account here as well. 892 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 893 894 return RawFlags; 895 } 896 897 static unsigned getEncodedVisibility(const GlobalValue &GV) { 898 switch (GV.getVisibility()) { 899 case GlobalValue::DefaultVisibility: return 0; 900 case GlobalValue::HiddenVisibility: return 1; 901 case GlobalValue::ProtectedVisibility: return 2; 902 } 903 llvm_unreachable("Invalid visibility"); 904 } 905 906 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 907 switch (GV.getDLLStorageClass()) { 908 case GlobalValue::DefaultStorageClass: return 0; 909 case GlobalValue::DLLImportStorageClass: return 1; 910 case GlobalValue::DLLExportStorageClass: return 2; 911 } 912 llvm_unreachable("Invalid DLL storage class"); 913 } 914 915 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 916 switch (GV.getThreadLocalMode()) { 917 case GlobalVariable::NotThreadLocal: return 0; 918 case GlobalVariable::GeneralDynamicTLSModel: return 1; 919 case GlobalVariable::LocalDynamicTLSModel: return 2; 920 case GlobalVariable::InitialExecTLSModel: return 3; 921 case GlobalVariable::LocalExecTLSModel: return 4; 922 } 923 llvm_unreachable("Invalid TLS model"); 924 } 925 926 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 927 switch (C.getSelectionKind()) { 928 case Comdat::Any: 929 return bitc::COMDAT_SELECTION_KIND_ANY; 930 case Comdat::ExactMatch: 931 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 932 case Comdat::Largest: 933 return bitc::COMDAT_SELECTION_KIND_LARGEST; 934 case Comdat::NoDuplicates: 935 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 936 case Comdat::SameSize: 937 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 938 } 939 llvm_unreachable("Invalid selection kind"); 940 } 941 942 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 943 switch (GV.getUnnamedAddr()) { 944 case GlobalValue::UnnamedAddr::None: return 0; 945 case GlobalValue::UnnamedAddr::Local: return 2; 946 case GlobalValue::UnnamedAddr::Global: return 1; 947 } 948 llvm_unreachable("Invalid unnamed_addr"); 949 } 950 951 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 952 if (GenerateHash) 953 Hasher.update(Str); 954 return StrtabBuilder.add(Str); 955 } 956 957 void ModuleBitcodeWriter::writeComdats() { 958 SmallVector<unsigned, 64> Vals; 959 for (const Comdat *C : VE.getComdats()) { 960 // COMDAT: [strtab offset, strtab size, selection_kind] 961 Vals.push_back(addToStrtab(C->getName())); 962 Vals.push_back(C->getName().size()); 963 Vals.push_back(getEncodedComdatSelectionKind(*C)); 964 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 965 Vals.clear(); 966 } 967 } 968 969 /// Write a record that will eventually hold the word offset of the 970 /// module-level VST. For now the offset is 0, which will be backpatched 971 /// after the real VST is written. Saves the bit offset to backpatch. 972 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 973 // Write a placeholder value in for the offset of the real VST, 974 // which is written after the function blocks so that it can include 975 // the offset of each function. The placeholder offset will be 976 // updated when the real VST is written. 977 auto Abbv = std::make_shared<BitCodeAbbrev>(); 978 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 979 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 980 // hold the real VST offset. Must use fixed instead of VBR as we don't 981 // know how many VBR chunks to reserve ahead of time. 982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 983 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 984 985 // Emit the placeholder 986 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 987 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 988 989 // Compute and save the bit offset to the placeholder, which will be 990 // patched when the real VST is written. We can simply subtract the 32-bit 991 // fixed size from the current bit number to get the location to backpatch. 992 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 993 } 994 995 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 996 997 /// Determine the encoding to use for the given string name and length. 998 static StringEncoding getStringEncoding(StringRef Str) { 999 bool isChar6 = true; 1000 for (char C : Str) { 1001 if (isChar6) 1002 isChar6 = BitCodeAbbrevOp::isChar6(C); 1003 if ((unsigned char)C & 128) 1004 // don't bother scanning the rest. 1005 return SE_Fixed8; 1006 } 1007 if (isChar6) 1008 return SE_Char6; 1009 return SE_Fixed7; 1010 } 1011 1012 /// Emit top-level description of module, including target triple, inline asm, 1013 /// descriptors for global variables, and function prototype info. 1014 /// Returns the bit offset to backpatch with the location of the real VST. 1015 void ModuleBitcodeWriter::writeModuleInfo() { 1016 // Emit various pieces of data attached to a module. 1017 if (!M.getTargetTriple().empty()) 1018 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1019 0 /*TODO*/); 1020 const std::string &DL = M.getDataLayoutStr(); 1021 if (!DL.empty()) 1022 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1023 if (!M.getModuleInlineAsm().empty()) 1024 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1025 0 /*TODO*/); 1026 1027 // Emit information about sections and GC, computing how many there are. Also 1028 // compute the maximum alignment value. 1029 std::map<std::string, unsigned> SectionMap; 1030 std::map<std::string, unsigned> GCMap; 1031 unsigned MaxAlignment = 0; 1032 unsigned MaxGlobalType = 0; 1033 for (const GlobalValue &GV : M.globals()) { 1034 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1035 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1036 if (GV.hasSection()) { 1037 // Give section names unique ID's. 1038 unsigned &Entry = SectionMap[GV.getSection()]; 1039 if (!Entry) { 1040 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1041 0 /*TODO*/); 1042 Entry = SectionMap.size(); 1043 } 1044 } 1045 } 1046 for (const Function &F : M) { 1047 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1048 if (F.hasSection()) { 1049 // Give section names unique ID's. 1050 unsigned &Entry = SectionMap[F.getSection()]; 1051 if (!Entry) { 1052 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1053 0 /*TODO*/); 1054 Entry = SectionMap.size(); 1055 } 1056 } 1057 if (F.hasGC()) { 1058 // Same for GC names. 1059 unsigned &Entry = GCMap[F.getGC()]; 1060 if (!Entry) { 1061 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1062 0 /*TODO*/); 1063 Entry = GCMap.size(); 1064 } 1065 } 1066 } 1067 1068 // Emit abbrev for globals, now that we know # sections and max alignment. 1069 unsigned SimpleGVarAbbrev = 0; 1070 if (!M.global_empty()) { 1071 // Add an abbrev for common globals with no visibility or thread localness. 1072 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1073 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1077 Log2_32_Ceil(MaxGlobalType+1))); 1078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1079 //| explicitType << 1 1080 //| constant 1081 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1082 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1083 if (MaxAlignment == 0) // Alignment. 1084 Abbv->Add(BitCodeAbbrevOp(0)); 1085 else { 1086 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1087 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1088 Log2_32_Ceil(MaxEncAlignment+1))); 1089 } 1090 if (SectionMap.empty()) // Section. 1091 Abbv->Add(BitCodeAbbrevOp(0)); 1092 else 1093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1094 Log2_32_Ceil(SectionMap.size()+1))); 1095 // Don't bother emitting vis + thread local. 1096 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1097 } 1098 1099 SmallVector<unsigned, 64> Vals; 1100 // Emit the module's source file name. 1101 { 1102 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1103 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1104 if (Bits == SE_Char6) 1105 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1106 else if (Bits == SE_Fixed7) 1107 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1108 1109 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1110 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1111 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1113 Abbv->Add(AbbrevOpToUse); 1114 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1115 1116 for (const auto P : M.getSourceFileName()) 1117 Vals.push_back((unsigned char)P); 1118 1119 // Emit the finished record. 1120 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1121 Vals.clear(); 1122 } 1123 1124 // Emit the global variable information. 1125 for (const GlobalVariable &GV : M.globals()) { 1126 unsigned AbbrevToUse = 0; 1127 1128 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1129 // linkage, alignment, section, visibility, threadlocal, 1130 // unnamed_addr, externally_initialized, dllstorageclass, 1131 // comdat, attributes] 1132 Vals.push_back(addToStrtab(GV.getName())); 1133 Vals.push_back(GV.getName().size()); 1134 Vals.push_back(VE.getTypeID(GV.getValueType())); 1135 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1136 Vals.push_back(GV.isDeclaration() ? 0 : 1137 (VE.getValueID(GV.getInitializer()) + 1)); 1138 Vals.push_back(getEncodedLinkage(GV)); 1139 Vals.push_back(Log2_32(GV.getAlignment())+1); 1140 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1141 if (GV.isThreadLocal() || 1142 GV.getVisibility() != GlobalValue::DefaultVisibility || 1143 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1144 GV.isExternallyInitialized() || 1145 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1146 GV.hasComdat() || 1147 GV.hasAttributes()) { 1148 Vals.push_back(getEncodedVisibility(GV)); 1149 Vals.push_back(getEncodedThreadLocalMode(GV)); 1150 Vals.push_back(getEncodedUnnamedAddr(GV)); 1151 Vals.push_back(GV.isExternallyInitialized()); 1152 Vals.push_back(getEncodedDLLStorageClass(GV)); 1153 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1154 1155 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1156 Vals.push_back(VE.getAttributeListID(AL)); 1157 } else { 1158 AbbrevToUse = SimpleGVarAbbrev; 1159 } 1160 1161 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1162 Vals.clear(); 1163 } 1164 1165 // Emit the function proto information. 1166 for (const Function &F : M) { 1167 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1168 // linkage, paramattrs, alignment, section, visibility, gc, 1169 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1170 // prefixdata, personalityfn] 1171 Vals.push_back(addToStrtab(F.getName())); 1172 Vals.push_back(F.getName().size()); 1173 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1174 Vals.push_back(F.getCallingConv()); 1175 Vals.push_back(F.isDeclaration()); 1176 Vals.push_back(getEncodedLinkage(F)); 1177 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1178 Vals.push_back(Log2_32(F.getAlignment())+1); 1179 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1180 Vals.push_back(getEncodedVisibility(F)); 1181 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1182 Vals.push_back(getEncodedUnnamedAddr(F)); 1183 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1184 : 0); 1185 Vals.push_back(getEncodedDLLStorageClass(F)); 1186 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1187 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1188 : 0); 1189 Vals.push_back( 1190 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1191 1192 unsigned AbbrevToUse = 0; 1193 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1194 Vals.clear(); 1195 } 1196 1197 // Emit the alias information. 1198 for (const GlobalAlias &A : M.aliases()) { 1199 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1200 // visibility, dllstorageclass, threadlocal, unnamed_addr] 1201 Vals.push_back(addToStrtab(A.getName())); 1202 Vals.push_back(A.getName().size()); 1203 Vals.push_back(VE.getTypeID(A.getValueType())); 1204 Vals.push_back(A.getType()->getAddressSpace()); 1205 Vals.push_back(VE.getValueID(A.getAliasee())); 1206 Vals.push_back(getEncodedLinkage(A)); 1207 Vals.push_back(getEncodedVisibility(A)); 1208 Vals.push_back(getEncodedDLLStorageClass(A)); 1209 Vals.push_back(getEncodedThreadLocalMode(A)); 1210 Vals.push_back(getEncodedUnnamedAddr(A)); 1211 unsigned AbbrevToUse = 0; 1212 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1213 Vals.clear(); 1214 } 1215 1216 // Emit the ifunc information. 1217 for (const GlobalIFunc &I : M.ifuncs()) { 1218 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1219 // val#, linkage, visibility] 1220 Vals.push_back(addToStrtab(I.getName())); 1221 Vals.push_back(I.getName().size()); 1222 Vals.push_back(VE.getTypeID(I.getValueType())); 1223 Vals.push_back(I.getType()->getAddressSpace()); 1224 Vals.push_back(VE.getValueID(I.getResolver())); 1225 Vals.push_back(getEncodedLinkage(I)); 1226 Vals.push_back(getEncodedVisibility(I)); 1227 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1228 Vals.clear(); 1229 } 1230 1231 writeValueSymbolTableForwardDecl(); 1232 } 1233 1234 static uint64_t getOptimizationFlags(const Value *V) { 1235 uint64_t Flags = 0; 1236 1237 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1238 if (OBO->hasNoSignedWrap()) 1239 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1240 if (OBO->hasNoUnsignedWrap()) 1241 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1242 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1243 if (PEO->isExact()) 1244 Flags |= 1 << bitc::PEO_EXACT; 1245 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1246 if (FPMO->hasUnsafeAlgebra()) 1247 Flags |= FastMathFlags::UnsafeAlgebra; 1248 if (FPMO->hasNoNaNs()) 1249 Flags |= FastMathFlags::NoNaNs; 1250 if (FPMO->hasNoInfs()) 1251 Flags |= FastMathFlags::NoInfs; 1252 if (FPMO->hasNoSignedZeros()) 1253 Flags |= FastMathFlags::NoSignedZeros; 1254 if (FPMO->hasAllowReciprocal()) 1255 Flags |= FastMathFlags::AllowReciprocal; 1256 if (FPMO->hasAllowContract()) 1257 Flags |= FastMathFlags::AllowContract; 1258 } 1259 1260 return Flags; 1261 } 1262 1263 void ModuleBitcodeWriter::writeValueAsMetadata( 1264 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1265 // Mimic an MDNode with a value as one operand. 1266 Value *V = MD->getValue(); 1267 Record.push_back(VE.getTypeID(V->getType())); 1268 Record.push_back(VE.getValueID(V)); 1269 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1270 Record.clear(); 1271 } 1272 1273 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1274 SmallVectorImpl<uint64_t> &Record, 1275 unsigned Abbrev) { 1276 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1277 Metadata *MD = N->getOperand(i); 1278 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1279 "Unexpected function-local metadata"); 1280 Record.push_back(VE.getMetadataOrNullID(MD)); 1281 } 1282 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1283 : bitc::METADATA_NODE, 1284 Record, Abbrev); 1285 Record.clear(); 1286 } 1287 1288 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1289 // Assume the column is usually under 128, and always output the inlined-at 1290 // location (it's never more expensive than building an array size 1). 1291 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1292 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1293 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1298 return Stream.EmitAbbrev(std::move(Abbv)); 1299 } 1300 1301 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1302 SmallVectorImpl<uint64_t> &Record, 1303 unsigned &Abbrev) { 1304 if (!Abbrev) 1305 Abbrev = createDILocationAbbrev(); 1306 1307 Record.push_back(N->isDistinct()); 1308 Record.push_back(N->getLine()); 1309 Record.push_back(N->getColumn()); 1310 Record.push_back(VE.getMetadataID(N->getScope())); 1311 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1312 1313 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1314 Record.clear(); 1315 } 1316 1317 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1318 // Assume the column is usually under 128, and always output the inlined-at 1319 // location (it's never more expensive than building an array size 1). 1320 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1321 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1328 return Stream.EmitAbbrev(std::move(Abbv)); 1329 } 1330 1331 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1332 SmallVectorImpl<uint64_t> &Record, 1333 unsigned &Abbrev) { 1334 if (!Abbrev) 1335 Abbrev = createGenericDINodeAbbrev(); 1336 1337 Record.push_back(N->isDistinct()); 1338 Record.push_back(N->getTag()); 1339 Record.push_back(0); // Per-tag version field; unused for now. 1340 1341 for (auto &I : N->operands()) 1342 Record.push_back(VE.getMetadataOrNullID(I)); 1343 1344 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1345 Record.clear(); 1346 } 1347 1348 static uint64_t rotateSign(int64_t I) { 1349 uint64_t U = I; 1350 return I < 0 ? ~(U << 1) : U << 1; 1351 } 1352 1353 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1354 SmallVectorImpl<uint64_t> &Record, 1355 unsigned Abbrev) { 1356 Record.push_back(N->isDistinct()); 1357 Record.push_back(N->getCount()); 1358 Record.push_back(rotateSign(N->getLowerBound())); 1359 1360 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1361 Record.clear(); 1362 } 1363 1364 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1365 SmallVectorImpl<uint64_t> &Record, 1366 unsigned Abbrev) { 1367 Record.push_back(N->isDistinct()); 1368 Record.push_back(rotateSign(N->getValue())); 1369 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1370 1371 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1372 Record.clear(); 1373 } 1374 1375 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1376 SmallVectorImpl<uint64_t> &Record, 1377 unsigned Abbrev) { 1378 Record.push_back(N->isDistinct()); 1379 Record.push_back(N->getTag()); 1380 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1381 Record.push_back(N->getSizeInBits()); 1382 Record.push_back(N->getAlignInBits()); 1383 Record.push_back(N->getEncoding()); 1384 1385 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1386 Record.clear(); 1387 } 1388 1389 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1390 SmallVectorImpl<uint64_t> &Record, 1391 unsigned Abbrev) { 1392 Record.push_back(N->isDistinct()); 1393 Record.push_back(N->getTag()); 1394 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1395 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1396 Record.push_back(N->getLine()); 1397 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1398 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1399 Record.push_back(N->getSizeInBits()); 1400 Record.push_back(N->getAlignInBits()); 1401 Record.push_back(N->getOffsetInBits()); 1402 Record.push_back(N->getFlags()); 1403 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1404 1405 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1406 // that there is no DWARF address space associated with DIDerivedType. 1407 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1408 Record.push_back(*DWARFAddressSpace + 1); 1409 else 1410 Record.push_back(0); 1411 1412 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1413 Record.clear(); 1414 } 1415 1416 void ModuleBitcodeWriter::writeDICompositeType( 1417 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1418 unsigned Abbrev) { 1419 const unsigned IsNotUsedInOldTypeRef = 0x2; 1420 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1421 Record.push_back(N->getTag()); 1422 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1423 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1424 Record.push_back(N->getLine()); 1425 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1426 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1427 Record.push_back(N->getSizeInBits()); 1428 Record.push_back(N->getAlignInBits()); 1429 Record.push_back(N->getOffsetInBits()); 1430 Record.push_back(N->getFlags()); 1431 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1432 Record.push_back(N->getRuntimeLang()); 1433 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1434 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1435 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1436 1437 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1438 Record.clear(); 1439 } 1440 1441 void ModuleBitcodeWriter::writeDISubroutineType( 1442 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1443 unsigned Abbrev) { 1444 const unsigned HasNoOldTypeRefs = 0x2; 1445 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1446 Record.push_back(N->getFlags()); 1447 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1448 Record.push_back(N->getCC()); 1449 1450 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1451 Record.clear(); 1452 } 1453 1454 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1455 SmallVectorImpl<uint64_t> &Record, 1456 unsigned Abbrev) { 1457 Record.push_back(N->isDistinct()); 1458 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1459 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1460 Record.push_back(N->getChecksumKind()); 1461 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum())); 1462 1463 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1464 Record.clear(); 1465 } 1466 1467 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1468 SmallVectorImpl<uint64_t> &Record, 1469 unsigned Abbrev) { 1470 assert(N->isDistinct() && "Expected distinct compile units"); 1471 Record.push_back(/* IsDistinct */ true); 1472 Record.push_back(N->getSourceLanguage()); 1473 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1474 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1475 Record.push_back(N->isOptimized()); 1476 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1477 Record.push_back(N->getRuntimeVersion()); 1478 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1479 Record.push_back(N->getEmissionKind()); 1480 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1481 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1482 Record.push_back(/* subprograms */ 0); 1483 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1484 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1485 Record.push_back(N->getDWOId()); 1486 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1487 Record.push_back(N->getSplitDebugInlining()); 1488 Record.push_back(N->getDebugInfoForProfiling()); 1489 1490 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1491 Record.clear(); 1492 } 1493 1494 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1495 SmallVectorImpl<uint64_t> &Record, 1496 unsigned Abbrev) { 1497 uint64_t HasUnitFlag = 1 << 1; 1498 Record.push_back(N->isDistinct() | HasUnitFlag); 1499 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1500 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1501 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1502 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1503 Record.push_back(N->getLine()); 1504 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1505 Record.push_back(N->isLocalToUnit()); 1506 Record.push_back(N->isDefinition()); 1507 Record.push_back(N->getScopeLine()); 1508 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1509 Record.push_back(N->getVirtuality()); 1510 Record.push_back(N->getVirtualIndex()); 1511 Record.push_back(N->getFlags()); 1512 Record.push_back(N->isOptimized()); 1513 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1514 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1515 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1516 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1517 Record.push_back(N->getThisAdjustment()); 1518 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1519 1520 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1521 Record.clear(); 1522 } 1523 1524 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1525 SmallVectorImpl<uint64_t> &Record, 1526 unsigned Abbrev) { 1527 Record.push_back(N->isDistinct()); 1528 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1529 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1530 Record.push_back(N->getLine()); 1531 Record.push_back(N->getColumn()); 1532 1533 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1534 Record.clear(); 1535 } 1536 1537 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1538 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1539 unsigned Abbrev) { 1540 Record.push_back(N->isDistinct()); 1541 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1542 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1543 Record.push_back(N->getDiscriminator()); 1544 1545 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1546 Record.clear(); 1547 } 1548 1549 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1550 SmallVectorImpl<uint64_t> &Record, 1551 unsigned Abbrev) { 1552 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1553 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1554 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1555 1556 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1557 Record.clear(); 1558 } 1559 1560 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1561 SmallVectorImpl<uint64_t> &Record, 1562 unsigned Abbrev) { 1563 Record.push_back(N->isDistinct()); 1564 Record.push_back(N->getMacinfoType()); 1565 Record.push_back(N->getLine()); 1566 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1567 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1568 1569 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1570 Record.clear(); 1571 } 1572 1573 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1574 SmallVectorImpl<uint64_t> &Record, 1575 unsigned Abbrev) { 1576 Record.push_back(N->isDistinct()); 1577 Record.push_back(N->getMacinfoType()); 1578 Record.push_back(N->getLine()); 1579 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1580 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1581 1582 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1583 Record.clear(); 1584 } 1585 1586 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1587 SmallVectorImpl<uint64_t> &Record, 1588 unsigned Abbrev) { 1589 Record.push_back(N->isDistinct()); 1590 for (auto &I : N->operands()) 1591 Record.push_back(VE.getMetadataOrNullID(I)); 1592 1593 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1594 Record.clear(); 1595 } 1596 1597 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1598 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1599 unsigned Abbrev) { 1600 Record.push_back(N->isDistinct()); 1601 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1602 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1603 1604 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1605 Record.clear(); 1606 } 1607 1608 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1609 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1610 unsigned Abbrev) { 1611 Record.push_back(N->isDistinct()); 1612 Record.push_back(N->getTag()); 1613 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1614 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1615 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1616 1617 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1618 Record.clear(); 1619 } 1620 1621 void ModuleBitcodeWriter::writeDIGlobalVariable( 1622 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1623 unsigned Abbrev) { 1624 const uint64_t Version = 1 << 1; 1625 Record.push_back((uint64_t)N->isDistinct() | Version); 1626 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1627 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1628 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1629 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1630 Record.push_back(N->getLine()); 1631 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1632 Record.push_back(N->isLocalToUnit()); 1633 Record.push_back(N->isDefinition()); 1634 Record.push_back(/* expr */ 0); 1635 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1636 Record.push_back(N->getAlignInBits()); 1637 1638 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1639 Record.clear(); 1640 } 1641 1642 void ModuleBitcodeWriter::writeDILocalVariable( 1643 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1644 unsigned Abbrev) { 1645 // In order to support all possible bitcode formats in BitcodeReader we need 1646 // to distinguish the following cases: 1647 // 1) Record has no artificial tag (Record[1]), 1648 // has no obsolete inlinedAt field (Record[9]). 1649 // In this case Record size will be 8, HasAlignment flag is false. 1650 // 2) Record has artificial tag (Record[1]), 1651 // has no obsolete inlignedAt field (Record[9]). 1652 // In this case Record size will be 9, HasAlignment flag is false. 1653 // 3) Record has both artificial tag (Record[1]) and 1654 // obsolete inlignedAt field (Record[9]). 1655 // In this case Record size will be 10, HasAlignment flag is false. 1656 // 4) Record has neither artificial tag, nor inlignedAt field, but 1657 // HasAlignment flag is true and Record[8] contains alignment value. 1658 const uint64_t HasAlignmentFlag = 1 << 1; 1659 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1660 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1661 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1662 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1663 Record.push_back(N->getLine()); 1664 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1665 Record.push_back(N->getArg()); 1666 Record.push_back(N->getFlags()); 1667 Record.push_back(N->getAlignInBits()); 1668 1669 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1670 Record.clear(); 1671 } 1672 1673 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1674 SmallVectorImpl<uint64_t> &Record, 1675 unsigned Abbrev) { 1676 Record.reserve(N->getElements().size() + 1); 1677 const uint64_t Version = 3 << 1; 1678 Record.push_back((uint64_t)N->isDistinct() | Version); 1679 Record.append(N->elements_begin(), N->elements_end()); 1680 1681 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1682 Record.clear(); 1683 } 1684 1685 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1686 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1687 unsigned Abbrev) { 1688 Record.push_back(N->isDistinct()); 1689 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1690 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1691 1692 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1693 Record.clear(); 1694 } 1695 1696 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1697 SmallVectorImpl<uint64_t> &Record, 1698 unsigned Abbrev) { 1699 Record.push_back(N->isDistinct()); 1700 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1701 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1702 Record.push_back(N->getLine()); 1703 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1704 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1705 Record.push_back(N->getAttributes()); 1706 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1707 1708 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1709 Record.clear(); 1710 } 1711 1712 void ModuleBitcodeWriter::writeDIImportedEntity( 1713 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1714 unsigned Abbrev) { 1715 Record.push_back(N->isDistinct()); 1716 Record.push_back(N->getTag()); 1717 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1718 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1719 Record.push_back(N->getLine()); 1720 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1721 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1722 1723 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1724 Record.clear(); 1725 } 1726 1727 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1728 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1729 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1732 return Stream.EmitAbbrev(std::move(Abbv)); 1733 } 1734 1735 void ModuleBitcodeWriter::writeNamedMetadata( 1736 SmallVectorImpl<uint64_t> &Record) { 1737 if (M.named_metadata_empty()) 1738 return; 1739 1740 unsigned Abbrev = createNamedMetadataAbbrev(); 1741 for (const NamedMDNode &NMD : M.named_metadata()) { 1742 // Write name. 1743 StringRef Str = NMD.getName(); 1744 Record.append(Str.bytes_begin(), Str.bytes_end()); 1745 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1746 Record.clear(); 1747 1748 // Write named metadata operands. 1749 for (const MDNode *N : NMD.operands()) 1750 Record.push_back(VE.getMetadataID(N)); 1751 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1752 Record.clear(); 1753 } 1754 } 1755 1756 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1757 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1758 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1761 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1762 return Stream.EmitAbbrev(std::move(Abbv)); 1763 } 1764 1765 /// Write out a record for MDString. 1766 /// 1767 /// All the metadata strings in a metadata block are emitted in a single 1768 /// record. The sizes and strings themselves are shoved into a blob. 1769 void ModuleBitcodeWriter::writeMetadataStrings( 1770 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1771 if (Strings.empty()) 1772 return; 1773 1774 // Start the record with the number of strings. 1775 Record.push_back(bitc::METADATA_STRINGS); 1776 Record.push_back(Strings.size()); 1777 1778 // Emit the sizes of the strings in the blob. 1779 SmallString<256> Blob; 1780 { 1781 BitstreamWriter W(Blob); 1782 for (const Metadata *MD : Strings) 1783 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1784 W.FlushToWord(); 1785 } 1786 1787 // Add the offset to the strings to the record. 1788 Record.push_back(Blob.size()); 1789 1790 // Add the strings to the blob. 1791 for (const Metadata *MD : Strings) 1792 Blob.append(cast<MDString>(MD)->getString()); 1793 1794 // Emit the final record. 1795 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1796 Record.clear(); 1797 } 1798 1799 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1800 enum MetadataAbbrev : unsigned { 1801 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1802 #include "llvm/IR/Metadata.def" 1803 LastPlusOne 1804 }; 1805 1806 void ModuleBitcodeWriter::writeMetadataRecords( 1807 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1808 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1809 if (MDs.empty()) 1810 return; 1811 1812 // Initialize MDNode abbreviations. 1813 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1814 #include "llvm/IR/Metadata.def" 1815 1816 for (const Metadata *MD : MDs) { 1817 if (IndexPos) 1818 IndexPos->push_back(Stream.GetCurrentBitNo()); 1819 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1820 assert(N->isResolved() && "Expected forward references to be resolved"); 1821 1822 switch (N->getMetadataID()) { 1823 default: 1824 llvm_unreachable("Invalid MDNode subclass"); 1825 #define HANDLE_MDNODE_LEAF(CLASS) \ 1826 case Metadata::CLASS##Kind: \ 1827 if (MDAbbrevs) \ 1828 write##CLASS(cast<CLASS>(N), Record, \ 1829 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1830 else \ 1831 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1832 continue; 1833 #include "llvm/IR/Metadata.def" 1834 } 1835 } 1836 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1837 } 1838 } 1839 1840 void ModuleBitcodeWriter::writeModuleMetadata() { 1841 if (!VE.hasMDs() && M.named_metadata_empty()) 1842 return; 1843 1844 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1845 SmallVector<uint64_t, 64> Record; 1846 1847 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1848 // block and load any metadata. 1849 std::vector<unsigned> MDAbbrevs; 1850 1851 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1852 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1853 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1854 createGenericDINodeAbbrev(); 1855 1856 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1857 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1858 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1859 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1860 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1861 1862 Abbv = std::make_shared<BitCodeAbbrev>(); 1863 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1864 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1865 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1866 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1867 1868 // Emit MDStrings together upfront. 1869 writeMetadataStrings(VE.getMDStrings(), Record); 1870 1871 // We only emit an index for the metadata record if we have more than a given 1872 // (naive) threshold of metadatas, otherwise it is not worth it. 1873 if (VE.getNonMDStrings().size() > IndexThreshold) { 1874 // Write a placeholder value in for the offset of the metadata index, 1875 // which is written after the records, so that it can include 1876 // the offset of each entry. The placeholder offset will be 1877 // updated after all records are emitted. 1878 uint64_t Vals[] = {0, 0}; 1879 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1880 } 1881 1882 // Compute and save the bit offset to the current position, which will be 1883 // patched when we emit the index later. We can simply subtract the 64-bit 1884 // fixed size from the current bit number to get the location to backpatch. 1885 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1886 1887 // This index will contain the bitpos for each individual record. 1888 std::vector<uint64_t> IndexPos; 1889 IndexPos.reserve(VE.getNonMDStrings().size()); 1890 1891 // Write all the records 1892 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1893 1894 if (VE.getNonMDStrings().size() > IndexThreshold) { 1895 // Now that we have emitted all the records we will emit the index. But 1896 // first 1897 // backpatch the forward reference so that the reader can skip the records 1898 // efficiently. 1899 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 1900 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 1901 1902 // Delta encode the index. 1903 uint64_t PreviousValue = IndexOffsetRecordBitPos; 1904 for (auto &Elt : IndexPos) { 1905 auto EltDelta = Elt - PreviousValue; 1906 PreviousValue = Elt; 1907 Elt = EltDelta; 1908 } 1909 // Emit the index record. 1910 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 1911 IndexPos.clear(); 1912 } 1913 1914 // Write the named metadata now. 1915 writeNamedMetadata(Record); 1916 1917 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 1918 SmallVector<uint64_t, 4> Record; 1919 Record.push_back(VE.getValueID(&GO)); 1920 pushGlobalMetadataAttachment(Record, GO); 1921 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 1922 }; 1923 for (const Function &F : M) 1924 if (F.isDeclaration() && F.hasMetadata()) 1925 AddDeclAttachedMetadata(F); 1926 // FIXME: Only store metadata for declarations here, and move data for global 1927 // variable definitions to a separate block (PR28134). 1928 for (const GlobalVariable &GV : M.globals()) 1929 if (GV.hasMetadata()) 1930 AddDeclAttachedMetadata(GV); 1931 1932 Stream.ExitBlock(); 1933 } 1934 1935 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 1936 if (!VE.hasMDs()) 1937 return; 1938 1939 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1940 SmallVector<uint64_t, 64> Record; 1941 writeMetadataStrings(VE.getMDStrings(), Record); 1942 writeMetadataRecords(VE.getNonMDStrings(), Record); 1943 Stream.ExitBlock(); 1944 } 1945 1946 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 1947 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 1948 // [n x [id, mdnode]] 1949 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1950 GO.getAllMetadata(MDs); 1951 for (const auto &I : MDs) { 1952 Record.push_back(I.first); 1953 Record.push_back(VE.getMetadataID(I.second)); 1954 } 1955 } 1956 1957 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 1958 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1959 1960 SmallVector<uint64_t, 64> Record; 1961 1962 if (F.hasMetadata()) { 1963 pushGlobalMetadataAttachment(Record, F); 1964 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1965 Record.clear(); 1966 } 1967 1968 // Write metadata attachments 1969 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1970 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1971 for (const BasicBlock &BB : F) 1972 for (const Instruction &I : BB) { 1973 MDs.clear(); 1974 I.getAllMetadataOtherThanDebugLoc(MDs); 1975 1976 // If no metadata, ignore instruction. 1977 if (MDs.empty()) continue; 1978 1979 Record.push_back(VE.getInstructionID(&I)); 1980 1981 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1982 Record.push_back(MDs[i].first); 1983 Record.push_back(VE.getMetadataID(MDs[i].second)); 1984 } 1985 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1986 Record.clear(); 1987 } 1988 1989 Stream.ExitBlock(); 1990 } 1991 1992 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 1993 SmallVector<uint64_t, 64> Record; 1994 1995 // Write metadata kinds 1996 // METADATA_KIND - [n x [id, name]] 1997 SmallVector<StringRef, 8> Names; 1998 M.getMDKindNames(Names); 1999 2000 if (Names.empty()) return; 2001 2002 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2003 2004 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2005 Record.push_back(MDKindID); 2006 StringRef KName = Names[MDKindID]; 2007 Record.append(KName.begin(), KName.end()); 2008 2009 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2010 Record.clear(); 2011 } 2012 2013 Stream.ExitBlock(); 2014 } 2015 2016 void ModuleBitcodeWriter::writeOperandBundleTags() { 2017 // Write metadata kinds 2018 // 2019 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2020 // 2021 // OPERAND_BUNDLE_TAG - [strchr x N] 2022 2023 SmallVector<StringRef, 8> Tags; 2024 M.getOperandBundleTags(Tags); 2025 2026 if (Tags.empty()) 2027 return; 2028 2029 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2030 2031 SmallVector<uint64_t, 64> Record; 2032 2033 for (auto Tag : Tags) { 2034 Record.append(Tag.begin(), Tag.end()); 2035 2036 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2037 Record.clear(); 2038 } 2039 2040 Stream.ExitBlock(); 2041 } 2042 2043 void ModuleBitcodeWriter::writeSyncScopeNames() { 2044 SmallVector<StringRef, 8> SSNs; 2045 M.getContext().getSyncScopeNames(SSNs); 2046 if (SSNs.empty()) 2047 return; 2048 2049 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2050 2051 SmallVector<uint64_t, 64> Record; 2052 for (auto SSN : SSNs) { 2053 Record.append(SSN.begin(), SSN.end()); 2054 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2055 Record.clear(); 2056 } 2057 2058 Stream.ExitBlock(); 2059 } 2060 2061 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2062 if ((int64_t)V >= 0) 2063 Vals.push_back(V << 1); 2064 else 2065 Vals.push_back((-V << 1) | 1); 2066 } 2067 2068 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2069 bool isGlobal) { 2070 if (FirstVal == LastVal) return; 2071 2072 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2073 2074 unsigned AggregateAbbrev = 0; 2075 unsigned String8Abbrev = 0; 2076 unsigned CString7Abbrev = 0; 2077 unsigned CString6Abbrev = 0; 2078 // If this is a constant pool for the module, emit module-specific abbrevs. 2079 if (isGlobal) { 2080 // Abbrev for CST_CODE_AGGREGATE. 2081 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2082 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2083 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2085 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2086 2087 // Abbrev for CST_CODE_STRING. 2088 Abbv = std::make_shared<BitCodeAbbrev>(); 2089 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2092 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2093 // Abbrev for CST_CODE_CSTRING. 2094 Abbv = std::make_shared<BitCodeAbbrev>(); 2095 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2096 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2097 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2098 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2099 // Abbrev for CST_CODE_CSTRING. 2100 Abbv = std::make_shared<BitCodeAbbrev>(); 2101 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2103 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2104 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2105 } 2106 2107 SmallVector<uint64_t, 64> Record; 2108 2109 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2110 Type *LastTy = nullptr; 2111 for (unsigned i = FirstVal; i != LastVal; ++i) { 2112 const Value *V = Vals[i].first; 2113 // If we need to switch types, do so now. 2114 if (V->getType() != LastTy) { 2115 LastTy = V->getType(); 2116 Record.push_back(VE.getTypeID(LastTy)); 2117 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2118 CONSTANTS_SETTYPE_ABBREV); 2119 Record.clear(); 2120 } 2121 2122 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2123 Record.push_back(unsigned(IA->hasSideEffects()) | 2124 unsigned(IA->isAlignStack()) << 1 | 2125 unsigned(IA->getDialect()&1) << 2); 2126 2127 // Add the asm string. 2128 const std::string &AsmStr = IA->getAsmString(); 2129 Record.push_back(AsmStr.size()); 2130 Record.append(AsmStr.begin(), AsmStr.end()); 2131 2132 // Add the constraint string. 2133 const std::string &ConstraintStr = IA->getConstraintString(); 2134 Record.push_back(ConstraintStr.size()); 2135 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2136 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2137 Record.clear(); 2138 continue; 2139 } 2140 const Constant *C = cast<Constant>(V); 2141 unsigned Code = -1U; 2142 unsigned AbbrevToUse = 0; 2143 if (C->isNullValue()) { 2144 Code = bitc::CST_CODE_NULL; 2145 } else if (isa<UndefValue>(C)) { 2146 Code = bitc::CST_CODE_UNDEF; 2147 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2148 if (IV->getBitWidth() <= 64) { 2149 uint64_t V = IV->getSExtValue(); 2150 emitSignedInt64(Record, V); 2151 Code = bitc::CST_CODE_INTEGER; 2152 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2153 } else { // Wide integers, > 64 bits in size. 2154 // We have an arbitrary precision integer value to write whose 2155 // bit width is > 64. However, in canonical unsigned integer 2156 // format it is likely that the high bits are going to be zero. 2157 // So, we only write the number of active words. 2158 unsigned NWords = IV->getValue().getActiveWords(); 2159 const uint64_t *RawWords = IV->getValue().getRawData(); 2160 for (unsigned i = 0; i != NWords; ++i) { 2161 emitSignedInt64(Record, RawWords[i]); 2162 } 2163 Code = bitc::CST_CODE_WIDE_INTEGER; 2164 } 2165 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2166 Code = bitc::CST_CODE_FLOAT; 2167 Type *Ty = CFP->getType(); 2168 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2169 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2170 } else if (Ty->isX86_FP80Ty()) { 2171 // api needed to prevent premature destruction 2172 // bits are not in the same order as a normal i80 APInt, compensate. 2173 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2174 const uint64_t *p = api.getRawData(); 2175 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2176 Record.push_back(p[0] & 0xffffLL); 2177 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2178 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2179 const uint64_t *p = api.getRawData(); 2180 Record.push_back(p[0]); 2181 Record.push_back(p[1]); 2182 } else { 2183 assert (0 && "Unknown FP type!"); 2184 } 2185 } else if (isa<ConstantDataSequential>(C) && 2186 cast<ConstantDataSequential>(C)->isString()) { 2187 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2188 // Emit constant strings specially. 2189 unsigned NumElts = Str->getNumElements(); 2190 // If this is a null-terminated string, use the denser CSTRING encoding. 2191 if (Str->isCString()) { 2192 Code = bitc::CST_CODE_CSTRING; 2193 --NumElts; // Don't encode the null, which isn't allowed by char6. 2194 } else { 2195 Code = bitc::CST_CODE_STRING; 2196 AbbrevToUse = String8Abbrev; 2197 } 2198 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2199 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2200 for (unsigned i = 0; i != NumElts; ++i) { 2201 unsigned char V = Str->getElementAsInteger(i); 2202 Record.push_back(V); 2203 isCStr7 &= (V & 128) == 0; 2204 if (isCStrChar6) 2205 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2206 } 2207 2208 if (isCStrChar6) 2209 AbbrevToUse = CString6Abbrev; 2210 else if (isCStr7) 2211 AbbrevToUse = CString7Abbrev; 2212 } else if (const ConstantDataSequential *CDS = 2213 dyn_cast<ConstantDataSequential>(C)) { 2214 Code = bitc::CST_CODE_DATA; 2215 Type *EltTy = CDS->getType()->getElementType(); 2216 if (isa<IntegerType>(EltTy)) { 2217 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2218 Record.push_back(CDS->getElementAsInteger(i)); 2219 } else { 2220 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2221 Record.push_back( 2222 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2223 } 2224 } else if (isa<ConstantAggregate>(C)) { 2225 Code = bitc::CST_CODE_AGGREGATE; 2226 for (const Value *Op : C->operands()) 2227 Record.push_back(VE.getValueID(Op)); 2228 AbbrevToUse = AggregateAbbrev; 2229 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2230 switch (CE->getOpcode()) { 2231 default: 2232 if (Instruction::isCast(CE->getOpcode())) { 2233 Code = bitc::CST_CODE_CE_CAST; 2234 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2235 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2236 Record.push_back(VE.getValueID(C->getOperand(0))); 2237 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2238 } else { 2239 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2240 Code = bitc::CST_CODE_CE_BINOP; 2241 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2242 Record.push_back(VE.getValueID(C->getOperand(0))); 2243 Record.push_back(VE.getValueID(C->getOperand(1))); 2244 uint64_t Flags = getOptimizationFlags(CE); 2245 if (Flags != 0) 2246 Record.push_back(Flags); 2247 } 2248 break; 2249 case Instruction::GetElementPtr: { 2250 Code = bitc::CST_CODE_CE_GEP; 2251 const auto *GO = cast<GEPOperator>(C); 2252 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2253 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2254 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2255 Record.push_back((*Idx << 1) | GO->isInBounds()); 2256 } else if (GO->isInBounds()) 2257 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2258 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2259 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2260 Record.push_back(VE.getValueID(C->getOperand(i))); 2261 } 2262 break; 2263 } 2264 case Instruction::Select: 2265 Code = bitc::CST_CODE_CE_SELECT; 2266 Record.push_back(VE.getValueID(C->getOperand(0))); 2267 Record.push_back(VE.getValueID(C->getOperand(1))); 2268 Record.push_back(VE.getValueID(C->getOperand(2))); 2269 break; 2270 case Instruction::ExtractElement: 2271 Code = bitc::CST_CODE_CE_EXTRACTELT; 2272 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2273 Record.push_back(VE.getValueID(C->getOperand(0))); 2274 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2275 Record.push_back(VE.getValueID(C->getOperand(1))); 2276 break; 2277 case Instruction::InsertElement: 2278 Code = bitc::CST_CODE_CE_INSERTELT; 2279 Record.push_back(VE.getValueID(C->getOperand(0))); 2280 Record.push_back(VE.getValueID(C->getOperand(1))); 2281 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2282 Record.push_back(VE.getValueID(C->getOperand(2))); 2283 break; 2284 case Instruction::ShuffleVector: 2285 // If the return type and argument types are the same, this is a 2286 // standard shufflevector instruction. If the types are different, 2287 // then the shuffle is widening or truncating the input vectors, and 2288 // the argument type must also be encoded. 2289 if (C->getType() == C->getOperand(0)->getType()) { 2290 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2291 } else { 2292 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2293 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2294 } 2295 Record.push_back(VE.getValueID(C->getOperand(0))); 2296 Record.push_back(VE.getValueID(C->getOperand(1))); 2297 Record.push_back(VE.getValueID(C->getOperand(2))); 2298 break; 2299 case Instruction::ICmp: 2300 case Instruction::FCmp: 2301 Code = bitc::CST_CODE_CE_CMP; 2302 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2303 Record.push_back(VE.getValueID(C->getOperand(0))); 2304 Record.push_back(VE.getValueID(C->getOperand(1))); 2305 Record.push_back(CE->getPredicate()); 2306 break; 2307 } 2308 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2309 Code = bitc::CST_CODE_BLOCKADDRESS; 2310 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2311 Record.push_back(VE.getValueID(BA->getFunction())); 2312 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2313 } else { 2314 #ifndef NDEBUG 2315 C->dump(); 2316 #endif 2317 llvm_unreachable("Unknown constant!"); 2318 } 2319 Stream.EmitRecord(Code, Record, AbbrevToUse); 2320 Record.clear(); 2321 } 2322 2323 Stream.ExitBlock(); 2324 } 2325 2326 void ModuleBitcodeWriter::writeModuleConstants() { 2327 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2328 2329 // Find the first constant to emit, which is the first non-globalvalue value. 2330 // We know globalvalues have been emitted by WriteModuleInfo. 2331 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2332 if (!isa<GlobalValue>(Vals[i].first)) { 2333 writeConstants(i, Vals.size(), true); 2334 return; 2335 } 2336 } 2337 } 2338 2339 /// pushValueAndType - The file has to encode both the value and type id for 2340 /// many values, because we need to know what type to create for forward 2341 /// references. However, most operands are not forward references, so this type 2342 /// field is not needed. 2343 /// 2344 /// This function adds V's value ID to Vals. If the value ID is higher than the 2345 /// instruction ID, then it is a forward reference, and it also includes the 2346 /// type ID. The value ID that is written is encoded relative to the InstID. 2347 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2348 SmallVectorImpl<unsigned> &Vals) { 2349 unsigned ValID = VE.getValueID(V); 2350 // Make encoding relative to the InstID. 2351 Vals.push_back(InstID - ValID); 2352 if (ValID >= InstID) { 2353 Vals.push_back(VE.getTypeID(V->getType())); 2354 return true; 2355 } 2356 return false; 2357 } 2358 2359 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2360 unsigned InstID) { 2361 SmallVector<unsigned, 64> Record; 2362 LLVMContext &C = CS.getInstruction()->getContext(); 2363 2364 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2365 const auto &Bundle = CS.getOperandBundleAt(i); 2366 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2367 2368 for (auto &Input : Bundle.Inputs) 2369 pushValueAndType(Input, InstID, Record); 2370 2371 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2372 Record.clear(); 2373 } 2374 } 2375 2376 /// pushValue - Like pushValueAndType, but where the type of the value is 2377 /// omitted (perhaps it was already encoded in an earlier operand). 2378 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2379 SmallVectorImpl<unsigned> &Vals) { 2380 unsigned ValID = VE.getValueID(V); 2381 Vals.push_back(InstID - ValID); 2382 } 2383 2384 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2385 SmallVectorImpl<uint64_t> &Vals) { 2386 unsigned ValID = VE.getValueID(V); 2387 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2388 emitSignedInt64(Vals, diff); 2389 } 2390 2391 /// WriteInstruction - Emit an instruction to the specified stream. 2392 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2393 unsigned InstID, 2394 SmallVectorImpl<unsigned> &Vals) { 2395 unsigned Code = 0; 2396 unsigned AbbrevToUse = 0; 2397 VE.setInstructionID(&I); 2398 switch (I.getOpcode()) { 2399 default: 2400 if (Instruction::isCast(I.getOpcode())) { 2401 Code = bitc::FUNC_CODE_INST_CAST; 2402 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2403 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2404 Vals.push_back(VE.getTypeID(I.getType())); 2405 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2406 } else { 2407 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2408 Code = bitc::FUNC_CODE_INST_BINOP; 2409 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2410 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2411 pushValue(I.getOperand(1), InstID, Vals); 2412 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2413 uint64_t Flags = getOptimizationFlags(&I); 2414 if (Flags != 0) { 2415 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2416 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2417 Vals.push_back(Flags); 2418 } 2419 } 2420 break; 2421 2422 case Instruction::GetElementPtr: { 2423 Code = bitc::FUNC_CODE_INST_GEP; 2424 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2425 auto &GEPInst = cast<GetElementPtrInst>(I); 2426 Vals.push_back(GEPInst.isInBounds()); 2427 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2428 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2429 pushValueAndType(I.getOperand(i), InstID, Vals); 2430 break; 2431 } 2432 case Instruction::ExtractValue: { 2433 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2434 pushValueAndType(I.getOperand(0), InstID, Vals); 2435 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2436 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2437 break; 2438 } 2439 case Instruction::InsertValue: { 2440 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2441 pushValueAndType(I.getOperand(0), InstID, Vals); 2442 pushValueAndType(I.getOperand(1), InstID, Vals); 2443 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2444 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2445 break; 2446 } 2447 case Instruction::Select: 2448 Code = bitc::FUNC_CODE_INST_VSELECT; 2449 pushValueAndType(I.getOperand(1), InstID, Vals); 2450 pushValue(I.getOperand(2), InstID, Vals); 2451 pushValueAndType(I.getOperand(0), InstID, Vals); 2452 break; 2453 case Instruction::ExtractElement: 2454 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2455 pushValueAndType(I.getOperand(0), InstID, Vals); 2456 pushValueAndType(I.getOperand(1), InstID, Vals); 2457 break; 2458 case Instruction::InsertElement: 2459 Code = bitc::FUNC_CODE_INST_INSERTELT; 2460 pushValueAndType(I.getOperand(0), InstID, Vals); 2461 pushValue(I.getOperand(1), InstID, Vals); 2462 pushValueAndType(I.getOperand(2), InstID, Vals); 2463 break; 2464 case Instruction::ShuffleVector: 2465 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2466 pushValueAndType(I.getOperand(0), InstID, Vals); 2467 pushValue(I.getOperand(1), InstID, Vals); 2468 pushValue(I.getOperand(2), InstID, Vals); 2469 break; 2470 case Instruction::ICmp: 2471 case Instruction::FCmp: { 2472 // compare returning Int1Ty or vector of Int1Ty 2473 Code = bitc::FUNC_CODE_INST_CMP2; 2474 pushValueAndType(I.getOperand(0), InstID, Vals); 2475 pushValue(I.getOperand(1), InstID, Vals); 2476 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2477 uint64_t Flags = getOptimizationFlags(&I); 2478 if (Flags != 0) 2479 Vals.push_back(Flags); 2480 break; 2481 } 2482 2483 case Instruction::Ret: 2484 { 2485 Code = bitc::FUNC_CODE_INST_RET; 2486 unsigned NumOperands = I.getNumOperands(); 2487 if (NumOperands == 0) 2488 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2489 else if (NumOperands == 1) { 2490 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2491 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2492 } else { 2493 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2494 pushValueAndType(I.getOperand(i), InstID, Vals); 2495 } 2496 } 2497 break; 2498 case Instruction::Br: 2499 { 2500 Code = bitc::FUNC_CODE_INST_BR; 2501 const BranchInst &II = cast<BranchInst>(I); 2502 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2503 if (II.isConditional()) { 2504 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2505 pushValue(II.getCondition(), InstID, Vals); 2506 } 2507 } 2508 break; 2509 case Instruction::Switch: 2510 { 2511 Code = bitc::FUNC_CODE_INST_SWITCH; 2512 const SwitchInst &SI = cast<SwitchInst>(I); 2513 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2514 pushValue(SI.getCondition(), InstID, Vals); 2515 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2516 for (auto Case : SI.cases()) { 2517 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2518 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2519 } 2520 } 2521 break; 2522 case Instruction::IndirectBr: 2523 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2524 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2525 // Encode the address operand as relative, but not the basic blocks. 2526 pushValue(I.getOperand(0), InstID, Vals); 2527 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2528 Vals.push_back(VE.getValueID(I.getOperand(i))); 2529 break; 2530 2531 case Instruction::Invoke: { 2532 const InvokeInst *II = cast<InvokeInst>(&I); 2533 const Value *Callee = II->getCalledValue(); 2534 FunctionType *FTy = II->getFunctionType(); 2535 2536 if (II->hasOperandBundles()) 2537 writeOperandBundles(II, InstID); 2538 2539 Code = bitc::FUNC_CODE_INST_INVOKE; 2540 2541 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2542 Vals.push_back(II->getCallingConv() | 1 << 13); 2543 Vals.push_back(VE.getValueID(II->getNormalDest())); 2544 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2545 Vals.push_back(VE.getTypeID(FTy)); 2546 pushValueAndType(Callee, InstID, Vals); 2547 2548 // Emit value #'s for the fixed parameters. 2549 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2550 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2551 2552 // Emit type/value pairs for varargs params. 2553 if (FTy->isVarArg()) { 2554 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2555 i != e; ++i) 2556 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2557 } 2558 break; 2559 } 2560 case Instruction::Resume: 2561 Code = bitc::FUNC_CODE_INST_RESUME; 2562 pushValueAndType(I.getOperand(0), InstID, Vals); 2563 break; 2564 case Instruction::CleanupRet: { 2565 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2566 const auto &CRI = cast<CleanupReturnInst>(I); 2567 pushValue(CRI.getCleanupPad(), InstID, Vals); 2568 if (CRI.hasUnwindDest()) 2569 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2570 break; 2571 } 2572 case Instruction::CatchRet: { 2573 Code = bitc::FUNC_CODE_INST_CATCHRET; 2574 const auto &CRI = cast<CatchReturnInst>(I); 2575 pushValue(CRI.getCatchPad(), InstID, Vals); 2576 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2577 break; 2578 } 2579 case Instruction::CleanupPad: 2580 case Instruction::CatchPad: { 2581 const auto &FuncletPad = cast<FuncletPadInst>(I); 2582 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2583 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2584 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2585 2586 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2587 Vals.push_back(NumArgOperands); 2588 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2589 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2590 break; 2591 } 2592 case Instruction::CatchSwitch: { 2593 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2594 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2595 2596 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2597 2598 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2599 Vals.push_back(NumHandlers); 2600 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2601 Vals.push_back(VE.getValueID(CatchPadBB)); 2602 2603 if (CatchSwitch.hasUnwindDest()) 2604 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2605 break; 2606 } 2607 case Instruction::Unreachable: 2608 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2609 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2610 break; 2611 2612 case Instruction::PHI: { 2613 const PHINode &PN = cast<PHINode>(I); 2614 Code = bitc::FUNC_CODE_INST_PHI; 2615 // With the newer instruction encoding, forward references could give 2616 // negative valued IDs. This is most common for PHIs, so we use 2617 // signed VBRs. 2618 SmallVector<uint64_t, 128> Vals64; 2619 Vals64.push_back(VE.getTypeID(PN.getType())); 2620 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2621 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2622 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2623 } 2624 // Emit a Vals64 vector and exit. 2625 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2626 Vals64.clear(); 2627 return; 2628 } 2629 2630 case Instruction::LandingPad: { 2631 const LandingPadInst &LP = cast<LandingPadInst>(I); 2632 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2633 Vals.push_back(VE.getTypeID(LP.getType())); 2634 Vals.push_back(LP.isCleanup()); 2635 Vals.push_back(LP.getNumClauses()); 2636 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2637 if (LP.isCatch(I)) 2638 Vals.push_back(LandingPadInst::Catch); 2639 else 2640 Vals.push_back(LandingPadInst::Filter); 2641 pushValueAndType(LP.getClause(I), InstID, Vals); 2642 } 2643 break; 2644 } 2645 2646 case Instruction::Alloca: { 2647 Code = bitc::FUNC_CODE_INST_ALLOCA; 2648 const AllocaInst &AI = cast<AllocaInst>(I); 2649 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2650 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2651 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2652 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2653 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2654 "not enough bits for maximum alignment"); 2655 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2656 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2657 AlignRecord |= 1 << 6; 2658 AlignRecord |= AI.isSwiftError() << 7; 2659 Vals.push_back(AlignRecord); 2660 break; 2661 } 2662 2663 case Instruction::Load: 2664 if (cast<LoadInst>(I).isAtomic()) { 2665 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2666 pushValueAndType(I.getOperand(0), InstID, Vals); 2667 } else { 2668 Code = bitc::FUNC_CODE_INST_LOAD; 2669 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2670 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2671 } 2672 Vals.push_back(VE.getTypeID(I.getType())); 2673 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2674 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2675 if (cast<LoadInst>(I).isAtomic()) { 2676 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2677 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2678 } 2679 break; 2680 case Instruction::Store: 2681 if (cast<StoreInst>(I).isAtomic()) 2682 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2683 else 2684 Code = bitc::FUNC_CODE_INST_STORE; 2685 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2686 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2687 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2688 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2689 if (cast<StoreInst>(I).isAtomic()) { 2690 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2691 Vals.push_back( 2692 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2693 } 2694 break; 2695 case Instruction::AtomicCmpXchg: 2696 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2697 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2698 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2699 pushValue(I.getOperand(2), InstID, Vals); // newval. 2700 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2701 Vals.push_back( 2702 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2703 Vals.push_back( 2704 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2705 Vals.push_back( 2706 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2707 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2708 break; 2709 case Instruction::AtomicRMW: 2710 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2711 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2712 pushValue(I.getOperand(1), InstID, Vals); // val. 2713 Vals.push_back( 2714 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2715 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2716 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2717 Vals.push_back( 2718 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2719 break; 2720 case Instruction::Fence: 2721 Code = bitc::FUNC_CODE_INST_FENCE; 2722 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2723 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2724 break; 2725 case Instruction::Call: { 2726 const CallInst &CI = cast<CallInst>(I); 2727 FunctionType *FTy = CI.getFunctionType(); 2728 2729 if (CI.hasOperandBundles()) 2730 writeOperandBundles(&CI, InstID); 2731 2732 Code = bitc::FUNC_CODE_INST_CALL; 2733 2734 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2735 2736 unsigned Flags = getOptimizationFlags(&I); 2737 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2738 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2739 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2740 1 << bitc::CALL_EXPLICIT_TYPE | 2741 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2742 unsigned(Flags != 0) << bitc::CALL_FMF); 2743 if (Flags != 0) 2744 Vals.push_back(Flags); 2745 2746 Vals.push_back(VE.getTypeID(FTy)); 2747 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2748 2749 // Emit value #'s for the fixed parameters. 2750 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2751 // Check for labels (can happen with asm labels). 2752 if (FTy->getParamType(i)->isLabelTy()) 2753 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2754 else 2755 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2756 } 2757 2758 // Emit type/value pairs for varargs params. 2759 if (FTy->isVarArg()) { 2760 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2761 i != e; ++i) 2762 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2763 } 2764 break; 2765 } 2766 case Instruction::VAArg: 2767 Code = bitc::FUNC_CODE_INST_VAARG; 2768 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2769 pushValue(I.getOperand(0), InstID, Vals); // valist. 2770 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2771 break; 2772 } 2773 2774 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2775 Vals.clear(); 2776 } 2777 2778 /// Write a GlobalValue VST to the module. The purpose of this data structure is 2779 /// to allow clients to efficiently find the function body. 2780 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 2781 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2782 // Get the offset of the VST we are writing, and backpatch it into 2783 // the VST forward declaration record. 2784 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2785 // The BitcodeStartBit was the stream offset of the identification block. 2786 VSTOffset -= bitcodeStartBit(); 2787 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2788 // Note that we add 1 here because the offset is relative to one word 2789 // before the start of the identification block, which was historically 2790 // always the start of the regular bitcode header. 2791 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2792 2793 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2794 2795 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2796 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2799 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2800 2801 for (const Function &F : M) { 2802 uint64_t Record[2]; 2803 2804 if (F.isDeclaration()) 2805 continue; 2806 2807 Record[0] = VE.getValueID(&F); 2808 2809 // Save the word offset of the function (from the start of the 2810 // actual bitcode written to the stream). 2811 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 2812 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2813 // Note that we add 1 here because the offset is relative to one word 2814 // before the start of the identification block, which was historically 2815 // always the start of the regular bitcode header. 2816 Record[1] = BitcodeIndex / 32 + 1; 2817 2818 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 2819 } 2820 2821 Stream.ExitBlock(); 2822 } 2823 2824 /// Emit names for arguments, instructions and basic blocks in a function. 2825 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 2826 const ValueSymbolTable &VST) { 2827 if (VST.empty()) 2828 return; 2829 2830 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2831 2832 // FIXME: Set up the abbrev, we know how many values there are! 2833 // FIXME: We know if the type names can use 7-bit ascii. 2834 SmallVector<uint64_t, 64> NameVals; 2835 2836 for (const ValueName &Name : VST) { 2837 // Figure out the encoding to use for the name. 2838 StringEncoding Bits = getStringEncoding(Name.getKey()); 2839 2840 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2841 NameVals.push_back(VE.getValueID(Name.getValue())); 2842 2843 // VST_CODE_ENTRY: [valueid, namechar x N] 2844 // VST_CODE_BBENTRY: [bbid, namechar x N] 2845 unsigned Code; 2846 if (isa<BasicBlock>(Name.getValue())) { 2847 Code = bitc::VST_CODE_BBENTRY; 2848 if (Bits == SE_Char6) 2849 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2850 } else { 2851 Code = bitc::VST_CODE_ENTRY; 2852 if (Bits == SE_Char6) 2853 AbbrevToUse = VST_ENTRY_6_ABBREV; 2854 else if (Bits == SE_Fixed7) 2855 AbbrevToUse = VST_ENTRY_7_ABBREV; 2856 } 2857 2858 for (const auto P : Name.getKey()) 2859 NameVals.push_back((unsigned char)P); 2860 2861 // Emit the finished record. 2862 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2863 NameVals.clear(); 2864 } 2865 2866 Stream.ExitBlock(); 2867 } 2868 2869 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 2870 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2871 unsigned Code; 2872 if (isa<BasicBlock>(Order.V)) 2873 Code = bitc::USELIST_CODE_BB; 2874 else 2875 Code = bitc::USELIST_CODE_DEFAULT; 2876 2877 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2878 Record.push_back(VE.getValueID(Order.V)); 2879 Stream.EmitRecord(Code, Record); 2880 } 2881 2882 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 2883 assert(VE.shouldPreserveUseListOrder() && 2884 "Expected to be preserving use-list order"); 2885 2886 auto hasMore = [&]() { 2887 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2888 }; 2889 if (!hasMore()) 2890 // Nothing to do. 2891 return; 2892 2893 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2894 while (hasMore()) { 2895 writeUseList(std::move(VE.UseListOrders.back())); 2896 VE.UseListOrders.pop_back(); 2897 } 2898 Stream.ExitBlock(); 2899 } 2900 2901 /// Emit a function body to the module stream. 2902 void ModuleBitcodeWriter::writeFunction( 2903 const Function &F, 2904 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2905 // Save the bitcode index of the start of this function block for recording 2906 // in the VST. 2907 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 2908 2909 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2910 VE.incorporateFunction(F); 2911 2912 SmallVector<unsigned, 64> Vals; 2913 2914 // Emit the number of basic blocks, so the reader can create them ahead of 2915 // time. 2916 Vals.push_back(VE.getBasicBlocks().size()); 2917 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2918 Vals.clear(); 2919 2920 // If there are function-local constants, emit them now. 2921 unsigned CstStart, CstEnd; 2922 VE.getFunctionConstantRange(CstStart, CstEnd); 2923 writeConstants(CstStart, CstEnd, false); 2924 2925 // If there is function-local metadata, emit it now. 2926 writeFunctionMetadata(F); 2927 2928 // Keep a running idea of what the instruction ID is. 2929 unsigned InstID = CstEnd; 2930 2931 bool NeedsMetadataAttachment = F.hasMetadata(); 2932 2933 DILocation *LastDL = nullptr; 2934 // Finally, emit all the instructions, in order. 2935 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2936 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2937 I != E; ++I) { 2938 writeInstruction(*I, InstID, Vals); 2939 2940 if (!I->getType()->isVoidTy()) 2941 ++InstID; 2942 2943 // If the instruction has metadata, write a metadata attachment later. 2944 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2945 2946 // If the instruction has a debug location, emit it. 2947 DILocation *DL = I->getDebugLoc(); 2948 if (!DL) 2949 continue; 2950 2951 if (DL == LastDL) { 2952 // Just repeat the same debug loc as last time. 2953 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2954 continue; 2955 } 2956 2957 Vals.push_back(DL->getLine()); 2958 Vals.push_back(DL->getColumn()); 2959 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2960 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2961 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2962 Vals.clear(); 2963 2964 LastDL = DL; 2965 } 2966 2967 // Emit names for all the instructions etc. 2968 if (auto *Symtab = F.getValueSymbolTable()) 2969 writeFunctionLevelValueSymbolTable(*Symtab); 2970 2971 if (NeedsMetadataAttachment) 2972 writeFunctionMetadataAttachment(F); 2973 if (VE.shouldPreserveUseListOrder()) 2974 writeUseListBlock(&F); 2975 VE.purgeFunction(); 2976 Stream.ExitBlock(); 2977 } 2978 2979 // Emit blockinfo, which defines the standard abbreviations etc. 2980 void ModuleBitcodeWriter::writeBlockInfo() { 2981 // We only want to emit block info records for blocks that have multiple 2982 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2983 // Other blocks can define their abbrevs inline. 2984 Stream.EnterBlockInfoBlock(); 2985 2986 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 2987 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2990 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2991 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2992 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2993 VST_ENTRY_8_ABBREV) 2994 llvm_unreachable("Unexpected abbrev ordering!"); 2995 } 2996 2997 { // 7-bit fixed width VST_CODE_ENTRY strings. 2998 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2999 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3002 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3003 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3004 VST_ENTRY_7_ABBREV) 3005 llvm_unreachable("Unexpected abbrev ordering!"); 3006 } 3007 { // 6-bit char6 VST_CODE_ENTRY strings. 3008 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3009 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3010 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3011 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3012 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3013 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3014 VST_ENTRY_6_ABBREV) 3015 llvm_unreachable("Unexpected abbrev ordering!"); 3016 } 3017 { // 6-bit char6 VST_CODE_BBENTRY strings. 3018 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3019 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3020 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3021 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3022 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3023 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3024 VST_BBENTRY_6_ABBREV) 3025 llvm_unreachable("Unexpected abbrev ordering!"); 3026 } 3027 3028 3029 3030 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3031 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3032 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3033 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3034 VE.computeBitsRequiredForTypeIndicies())); 3035 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3036 CONSTANTS_SETTYPE_ABBREV) 3037 llvm_unreachable("Unexpected abbrev ordering!"); 3038 } 3039 3040 { // INTEGER abbrev for CONSTANTS_BLOCK. 3041 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3042 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3043 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3044 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3045 CONSTANTS_INTEGER_ABBREV) 3046 llvm_unreachable("Unexpected abbrev ordering!"); 3047 } 3048 3049 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3050 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3051 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3054 VE.computeBitsRequiredForTypeIndicies())); 3055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3056 3057 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3058 CONSTANTS_CE_CAST_Abbrev) 3059 llvm_unreachable("Unexpected abbrev ordering!"); 3060 } 3061 { // NULL abbrev for CONSTANTS_BLOCK. 3062 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3063 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3064 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3065 CONSTANTS_NULL_Abbrev) 3066 llvm_unreachable("Unexpected abbrev ordering!"); 3067 } 3068 3069 // FIXME: This should only use space for first class types! 3070 3071 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3072 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3073 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3076 VE.computeBitsRequiredForTypeIndicies())); 3077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3079 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3080 FUNCTION_INST_LOAD_ABBREV) 3081 llvm_unreachable("Unexpected abbrev ordering!"); 3082 } 3083 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3084 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3085 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3086 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3087 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3088 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3089 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3090 FUNCTION_INST_BINOP_ABBREV) 3091 llvm_unreachable("Unexpected abbrev ordering!"); 3092 } 3093 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3094 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3095 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3096 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3097 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3098 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3099 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3100 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3101 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3102 llvm_unreachable("Unexpected abbrev ordering!"); 3103 } 3104 { // INST_CAST abbrev for FUNCTION_BLOCK. 3105 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3106 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3107 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3108 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3109 VE.computeBitsRequiredForTypeIndicies())); 3110 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3111 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3112 FUNCTION_INST_CAST_ABBREV) 3113 llvm_unreachable("Unexpected abbrev ordering!"); 3114 } 3115 3116 { // INST_RET abbrev for FUNCTION_BLOCK. 3117 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3118 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3119 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3120 FUNCTION_INST_RET_VOID_ABBREV) 3121 llvm_unreachable("Unexpected abbrev ordering!"); 3122 } 3123 { // INST_RET abbrev for FUNCTION_BLOCK. 3124 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3125 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3126 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3127 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3128 FUNCTION_INST_RET_VAL_ABBREV) 3129 llvm_unreachable("Unexpected abbrev ordering!"); 3130 } 3131 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3132 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3133 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3134 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3135 FUNCTION_INST_UNREACHABLE_ABBREV) 3136 llvm_unreachable("Unexpected abbrev ordering!"); 3137 } 3138 { 3139 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3140 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3141 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3143 Log2_32_Ceil(VE.getTypes().size() + 1))); 3144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3146 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3147 FUNCTION_INST_GEP_ABBREV) 3148 llvm_unreachable("Unexpected abbrev ordering!"); 3149 } 3150 3151 Stream.ExitBlock(); 3152 } 3153 3154 /// Write the module path strings, currently only used when generating 3155 /// a combined index file. 3156 void IndexBitcodeWriter::writeModStrings() { 3157 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3158 3159 // TODO: See which abbrev sizes we actually need to emit 3160 3161 // 8-bit fixed-width MST_ENTRY strings. 3162 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3163 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3167 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3168 3169 // 7-bit fixed width MST_ENTRY strings. 3170 Abbv = std::make_shared<BitCodeAbbrev>(); 3171 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3175 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3176 3177 // 6-bit char6 MST_ENTRY strings. 3178 Abbv = std::make_shared<BitCodeAbbrev>(); 3179 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3183 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3184 3185 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3186 Abbv = std::make_shared<BitCodeAbbrev>(); 3187 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3193 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3194 3195 SmallVector<unsigned, 64> Vals; 3196 forEachModule( 3197 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3198 StringRef Key = MPSE.getKey(); 3199 const auto &Value = MPSE.getValue(); 3200 StringEncoding Bits = getStringEncoding(Key); 3201 unsigned AbbrevToUse = Abbrev8Bit; 3202 if (Bits == SE_Char6) 3203 AbbrevToUse = Abbrev6Bit; 3204 else if (Bits == SE_Fixed7) 3205 AbbrevToUse = Abbrev7Bit; 3206 3207 Vals.push_back(Value.first); 3208 Vals.append(Key.begin(), Key.end()); 3209 3210 // Emit the finished record. 3211 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3212 3213 // Emit an optional hash for the module now 3214 const auto &Hash = Value.second; 3215 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3216 Vals.assign(Hash.begin(), Hash.end()); 3217 // Emit the hash record. 3218 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3219 } 3220 3221 Vals.clear(); 3222 }); 3223 Stream.ExitBlock(); 3224 } 3225 3226 /// Write the function type metadata related records that need to appear before 3227 /// a function summary entry (whether per-module or combined). 3228 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3229 FunctionSummary *FS) { 3230 if (!FS->type_tests().empty()) 3231 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3232 3233 SmallVector<uint64_t, 64> Record; 3234 3235 auto WriteVFuncIdVec = [&](uint64_t Ty, 3236 ArrayRef<FunctionSummary::VFuncId> VFs) { 3237 if (VFs.empty()) 3238 return; 3239 Record.clear(); 3240 for (auto &VF : VFs) { 3241 Record.push_back(VF.GUID); 3242 Record.push_back(VF.Offset); 3243 } 3244 Stream.EmitRecord(Ty, Record); 3245 }; 3246 3247 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3248 FS->type_test_assume_vcalls()); 3249 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3250 FS->type_checked_load_vcalls()); 3251 3252 auto WriteConstVCallVec = [&](uint64_t Ty, 3253 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3254 for (auto &VC : VCs) { 3255 Record.clear(); 3256 Record.push_back(VC.VFunc.GUID); 3257 Record.push_back(VC.VFunc.Offset); 3258 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3259 Stream.EmitRecord(Ty, Record); 3260 } 3261 }; 3262 3263 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3264 FS->type_test_assume_const_vcalls()); 3265 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3266 FS->type_checked_load_const_vcalls()); 3267 } 3268 3269 // Helper to emit a single function summary record. 3270 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord( 3271 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3272 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3273 const Function &F) { 3274 NameVals.push_back(ValueID); 3275 3276 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3277 writeFunctionTypeMetadataRecords(Stream, FS); 3278 3279 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3280 NameVals.push_back(FS->instCount()); 3281 NameVals.push_back(FS->refs().size()); 3282 3283 for (auto &RI : FS->refs()) 3284 NameVals.push_back(VE.getValueID(RI.getValue())); 3285 3286 bool HasProfileData = F.getEntryCount().hasValue(); 3287 for (auto &ECI : FS->calls()) { 3288 NameVals.push_back(getValueId(ECI.first)); 3289 if (HasProfileData) 3290 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3291 } 3292 3293 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3294 unsigned Code = 3295 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3296 3297 // Emit the finished record. 3298 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3299 NameVals.clear(); 3300 } 3301 3302 // Collect the global value references in the given variable's initializer, 3303 // and emit them in a summary record. 3304 void ModuleBitcodeWriter::writeModuleLevelReferences( 3305 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3306 unsigned FSModRefsAbbrev) { 3307 auto VI = Index->getValueInfo(GlobalValue::getGUID(V.getName())); 3308 if (!VI || VI.getSummaryList().empty()) { 3309 // Only declarations should not have a summary (a declaration might however 3310 // have a summary if the def was in module level asm). 3311 assert(V.isDeclaration()); 3312 return; 3313 } 3314 auto *Summary = VI.getSummaryList()[0].get(); 3315 NameVals.push_back(VE.getValueID(&V)); 3316 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3317 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3318 3319 unsigned SizeBeforeRefs = NameVals.size(); 3320 for (auto &RI : VS->refs()) 3321 NameVals.push_back(VE.getValueID(RI.getValue())); 3322 // Sort the refs for determinism output, the vector returned by FS->refs() has 3323 // been initialized from a DenseSet. 3324 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3325 3326 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3327 FSModRefsAbbrev); 3328 NameVals.clear(); 3329 } 3330 3331 // Current version for the summary. 3332 // This is bumped whenever we introduce changes in the way some record are 3333 // interpreted, like flags for instance. 3334 static const uint64_t INDEX_VERSION = 3; 3335 3336 /// Emit the per-module summary section alongside the rest of 3337 /// the module's bitcode. 3338 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() { 3339 // By default we compile with ThinLTO if the module has a summary, but the 3340 // client can request full LTO with a module flag. 3341 bool IsThinLTO = true; 3342 if (auto *MD = 3343 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3344 IsThinLTO = MD->getZExtValue(); 3345 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3346 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3347 4); 3348 3349 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3350 3351 if (Index->begin() == Index->end()) { 3352 Stream.ExitBlock(); 3353 return; 3354 } 3355 3356 for (const auto &GVI : valueIds()) { 3357 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3358 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3359 } 3360 3361 // Abbrev for FS_PERMODULE. 3362 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3363 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3368 // numrefs x valueid, n x (valueid) 3369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3371 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3372 3373 // Abbrev for FS_PERMODULE_PROFILE. 3374 Abbv = std::make_shared<BitCodeAbbrev>(); 3375 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3380 // numrefs x valueid, n x (valueid, hotness) 3381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3383 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3384 3385 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3386 Abbv = std::make_shared<BitCodeAbbrev>(); 3387 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3392 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3393 3394 // Abbrev for FS_ALIAS. 3395 Abbv = std::make_shared<BitCodeAbbrev>(); 3396 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3398 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3399 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3400 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3401 3402 SmallVector<uint64_t, 64> NameVals; 3403 // Iterate over the list of functions instead of the Index to 3404 // ensure the ordering is stable. 3405 for (const Function &F : M) { 3406 // Summary emission does not support anonymous functions, they have to 3407 // renamed using the anonymous function renaming pass. 3408 if (!F.hasName()) 3409 report_fatal_error("Unexpected anonymous function when writing summary"); 3410 3411 ValueInfo VI = Index->getValueInfo(GlobalValue::getGUID(F.getName())); 3412 if (!VI || VI.getSummaryList().empty()) { 3413 // Only declarations should not have a summary (a declaration might 3414 // however have a summary if the def was in module level asm). 3415 assert(F.isDeclaration()); 3416 continue; 3417 } 3418 auto *Summary = VI.getSummaryList()[0].get(); 3419 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3420 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3421 } 3422 3423 // Capture references from GlobalVariable initializers, which are outside 3424 // of a function scope. 3425 for (const GlobalVariable &G : M.globals()) 3426 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3427 3428 for (const GlobalAlias &A : M.aliases()) { 3429 auto *Aliasee = A.getBaseObject(); 3430 if (!Aliasee->hasName()) 3431 // Nameless function don't have an entry in the summary, skip it. 3432 continue; 3433 auto AliasId = VE.getValueID(&A); 3434 auto AliaseeId = VE.getValueID(Aliasee); 3435 NameVals.push_back(AliasId); 3436 auto *Summary = Index->getGlobalValueSummary(A); 3437 AliasSummary *AS = cast<AliasSummary>(Summary); 3438 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3439 NameVals.push_back(AliaseeId); 3440 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3441 NameVals.clear(); 3442 } 3443 3444 Stream.ExitBlock(); 3445 } 3446 3447 /// Emit the combined summary section into the combined index file. 3448 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3449 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3450 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3451 3452 for (const auto &GVI : valueIds()) { 3453 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3454 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3455 } 3456 3457 // Abbrev for FS_COMBINED. 3458 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3459 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3465 // numrefs x valueid, n x (valueid) 3466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3468 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3469 3470 // Abbrev for FS_COMBINED_PROFILE. 3471 Abbv = std::make_shared<BitCodeAbbrev>(); 3472 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3474 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3475 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3478 // numrefs x valueid, n x (valueid, hotness) 3479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3481 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3482 3483 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3484 Abbv = std::make_shared<BitCodeAbbrev>(); 3485 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3490 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3491 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3492 3493 // Abbrev for FS_COMBINED_ALIAS. 3494 Abbv = std::make_shared<BitCodeAbbrev>(); 3495 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3497 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3498 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3499 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3500 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3501 3502 // The aliases are emitted as a post-pass, and will point to the value 3503 // id of the aliasee. Save them in a vector for post-processing. 3504 SmallVector<AliasSummary *, 64> Aliases; 3505 3506 // Save the value id for each summary for alias emission. 3507 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3508 3509 SmallVector<uint64_t, 64> NameVals; 3510 3511 // For local linkage, we also emit the original name separately 3512 // immediately after the record. 3513 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3514 if (!GlobalValue::isLocalLinkage(S.linkage())) 3515 return; 3516 NameVals.push_back(S.getOriginalName()); 3517 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3518 NameVals.clear(); 3519 }; 3520 3521 forEachSummary([&](GVInfo I) { 3522 GlobalValueSummary *S = I.second; 3523 assert(S); 3524 3525 auto ValueId = getValueId(I.first); 3526 assert(ValueId); 3527 SummaryToValueIdMap[S] = *ValueId; 3528 3529 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3530 // Will process aliases as a post-pass because the reader wants all 3531 // global to be loaded first. 3532 Aliases.push_back(AS); 3533 return; 3534 } 3535 3536 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3537 NameVals.push_back(*ValueId); 3538 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3539 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3540 for (auto &RI : VS->refs()) { 3541 auto RefValueId = getValueId(RI.getGUID()); 3542 if (!RefValueId) 3543 continue; 3544 NameVals.push_back(*RefValueId); 3545 } 3546 3547 // Emit the finished record. 3548 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3549 FSModRefsAbbrev); 3550 NameVals.clear(); 3551 MaybeEmitOriginalName(*S); 3552 return; 3553 } 3554 3555 auto *FS = cast<FunctionSummary>(S); 3556 writeFunctionTypeMetadataRecords(Stream, FS); 3557 3558 NameVals.push_back(*ValueId); 3559 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3560 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3561 NameVals.push_back(FS->instCount()); 3562 // Fill in below 3563 NameVals.push_back(0); 3564 3565 unsigned Count = 0; 3566 for (auto &RI : FS->refs()) { 3567 auto RefValueId = getValueId(RI.getGUID()); 3568 if (!RefValueId) 3569 continue; 3570 NameVals.push_back(*RefValueId); 3571 Count++; 3572 } 3573 NameVals[4] = Count; 3574 3575 bool HasProfileData = false; 3576 for (auto &EI : FS->calls()) { 3577 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown; 3578 if (HasProfileData) 3579 break; 3580 } 3581 3582 for (auto &EI : FS->calls()) { 3583 // If this GUID doesn't have a value id, it doesn't have a function 3584 // summary and we don't need to record any calls to it. 3585 GlobalValue::GUID GUID = EI.first.getGUID(); 3586 auto CallValueId = getValueId(GUID); 3587 if (!CallValueId) { 3588 // For SamplePGO, the indirect call targets for local functions will 3589 // have its original name annotated in profile. We try to find the 3590 // corresponding PGOFuncName as the GUID. 3591 GUID = Index.getGUIDFromOriginalID(GUID); 3592 if (GUID == 0) 3593 continue; 3594 CallValueId = getValueId(GUID); 3595 if (!CallValueId) 3596 continue; 3597 } 3598 NameVals.push_back(*CallValueId); 3599 if (HasProfileData) 3600 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3601 } 3602 3603 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3604 unsigned Code = 3605 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3606 3607 // Emit the finished record. 3608 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3609 NameVals.clear(); 3610 MaybeEmitOriginalName(*S); 3611 }); 3612 3613 for (auto *AS : Aliases) { 3614 auto AliasValueId = SummaryToValueIdMap[AS]; 3615 assert(AliasValueId); 3616 NameVals.push_back(AliasValueId); 3617 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3618 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3619 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3620 assert(AliaseeValueId); 3621 NameVals.push_back(AliaseeValueId); 3622 3623 // Emit the finished record. 3624 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3625 NameVals.clear(); 3626 MaybeEmitOriginalName(*AS); 3627 } 3628 3629 if (!Index.cfiFunctionDefs().empty()) { 3630 for (auto &S : Index.cfiFunctionDefs()) { 3631 NameVals.push_back(StrtabBuilder.add(S)); 3632 NameVals.push_back(S.size()); 3633 } 3634 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 3635 NameVals.clear(); 3636 } 3637 3638 if (!Index.cfiFunctionDecls().empty()) { 3639 for (auto &S : Index.cfiFunctionDecls()) { 3640 NameVals.push_back(StrtabBuilder.add(S)); 3641 NameVals.push_back(S.size()); 3642 } 3643 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 3644 NameVals.clear(); 3645 } 3646 3647 Stream.ExitBlock(); 3648 } 3649 3650 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3651 /// current llvm version, and a record for the epoch number. 3652 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3653 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3654 3655 // Write the "user readable" string identifying the bitcode producer 3656 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3657 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3658 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3659 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3660 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3661 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3662 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3663 3664 // Write the epoch version 3665 Abbv = std::make_shared<BitCodeAbbrev>(); 3666 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3667 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3668 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3669 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3670 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3671 Stream.ExitBlock(); 3672 } 3673 3674 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3675 // Emit the module's hash. 3676 // MODULE_CODE_HASH: [5*i32] 3677 if (GenerateHash) { 3678 uint32_t Vals[5]; 3679 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3680 Buffer.size() - BlockStartPos)); 3681 StringRef Hash = Hasher.result(); 3682 for (int Pos = 0; Pos < 20; Pos += 4) { 3683 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3684 } 3685 3686 // Emit the finished record. 3687 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3688 3689 if (ModHash) 3690 // Save the written hash value. 3691 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash)); 3692 } else if (ModHash) 3693 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 3694 } 3695 3696 void ModuleBitcodeWriter::write() { 3697 writeIdentificationBlock(Stream); 3698 3699 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3700 size_t BlockStartPos = Buffer.size(); 3701 3702 writeModuleVersion(); 3703 3704 // Emit blockinfo, which defines the standard abbreviations etc. 3705 writeBlockInfo(); 3706 3707 // Emit information about attribute groups. 3708 writeAttributeGroupTable(); 3709 3710 // Emit information about parameter attributes. 3711 writeAttributeTable(); 3712 3713 // Emit information describing all of the types in the module. 3714 writeTypeTable(); 3715 3716 writeComdats(); 3717 3718 // Emit top-level description of module, including target triple, inline asm, 3719 // descriptors for global variables, and function prototype info. 3720 writeModuleInfo(); 3721 3722 // Emit constants. 3723 writeModuleConstants(); 3724 3725 // Emit metadata kind names. 3726 writeModuleMetadataKinds(); 3727 3728 // Emit metadata. 3729 writeModuleMetadata(); 3730 3731 // Emit module-level use-lists. 3732 if (VE.shouldPreserveUseListOrder()) 3733 writeUseListBlock(nullptr); 3734 3735 writeOperandBundleTags(); 3736 writeSyncScopeNames(); 3737 3738 // Emit function bodies. 3739 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3740 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3741 if (!F->isDeclaration()) 3742 writeFunction(*F, FunctionToBitcodeIndex); 3743 3744 // Need to write after the above call to WriteFunction which populates 3745 // the summary information in the index. 3746 if (Index) 3747 writePerModuleGlobalValueSummary(); 3748 3749 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 3750 3751 writeModuleHash(BlockStartPos); 3752 3753 Stream.ExitBlock(); 3754 } 3755 3756 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3757 uint32_t &Position) { 3758 support::endian::write32le(&Buffer[Position], Value); 3759 Position += 4; 3760 } 3761 3762 /// If generating a bc file on darwin, we have to emit a 3763 /// header and trailer to make it compatible with the system archiver. To do 3764 /// this we emit the following header, and then emit a trailer that pads the 3765 /// file out to be a multiple of 16 bytes. 3766 /// 3767 /// struct bc_header { 3768 /// uint32_t Magic; // 0x0B17C0DE 3769 /// uint32_t Version; // Version, currently always 0. 3770 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3771 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3772 /// uint32_t CPUType; // CPU specifier. 3773 /// ... potentially more later ... 3774 /// }; 3775 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3776 const Triple &TT) { 3777 unsigned CPUType = ~0U; 3778 3779 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3780 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3781 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3782 // specific constants here because they are implicitly part of the Darwin ABI. 3783 enum { 3784 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3785 DARWIN_CPU_TYPE_X86 = 7, 3786 DARWIN_CPU_TYPE_ARM = 12, 3787 DARWIN_CPU_TYPE_POWERPC = 18 3788 }; 3789 3790 Triple::ArchType Arch = TT.getArch(); 3791 if (Arch == Triple::x86_64) 3792 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3793 else if (Arch == Triple::x86) 3794 CPUType = DARWIN_CPU_TYPE_X86; 3795 else if (Arch == Triple::ppc) 3796 CPUType = DARWIN_CPU_TYPE_POWERPC; 3797 else if (Arch == Triple::ppc64) 3798 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3799 else if (Arch == Triple::arm || Arch == Triple::thumb) 3800 CPUType = DARWIN_CPU_TYPE_ARM; 3801 3802 // Traditional Bitcode starts after header. 3803 assert(Buffer.size() >= BWH_HeaderSize && 3804 "Expected header size to be reserved"); 3805 unsigned BCOffset = BWH_HeaderSize; 3806 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3807 3808 // Write the magic and version. 3809 unsigned Position = 0; 3810 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3811 writeInt32ToBuffer(0, Buffer, Position); // Version. 3812 writeInt32ToBuffer(BCOffset, Buffer, Position); 3813 writeInt32ToBuffer(BCSize, Buffer, Position); 3814 writeInt32ToBuffer(CPUType, Buffer, Position); 3815 3816 // If the file is not a multiple of 16 bytes, insert dummy padding. 3817 while (Buffer.size() & 15) 3818 Buffer.push_back(0); 3819 } 3820 3821 /// Helper to write the header common to all bitcode files. 3822 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3823 // Emit the file header. 3824 Stream.Emit((unsigned)'B', 8); 3825 Stream.Emit((unsigned)'C', 8); 3826 Stream.Emit(0x0, 4); 3827 Stream.Emit(0xC, 4); 3828 Stream.Emit(0xE, 4); 3829 Stream.Emit(0xD, 4); 3830 } 3831 3832 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3833 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3834 writeBitcodeHeader(*Stream); 3835 } 3836 3837 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 3838 3839 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 3840 Stream->EnterSubblock(Block, 3); 3841 3842 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3843 Abbv->Add(BitCodeAbbrevOp(Record)); 3844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 3845 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 3846 3847 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 3848 3849 Stream->ExitBlock(); 3850 } 3851 3852 void BitcodeWriter::writeSymtab() { 3853 assert(!WroteStrtab && !WroteSymtab); 3854 3855 // If any module has module-level inline asm, we will require a registered asm 3856 // parser for the target so that we can create an accurate symbol table for 3857 // the module. 3858 for (Module *M : Mods) { 3859 if (M->getModuleInlineAsm().empty()) 3860 continue; 3861 3862 std::string Err; 3863 const Triple TT(M->getTargetTriple()); 3864 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 3865 if (!T || !T->hasMCAsmParser()) 3866 return; 3867 } 3868 3869 WroteSymtab = true; 3870 SmallVector<char, 0> Symtab; 3871 // The irsymtab::build function may be unable to create a symbol table if the 3872 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 3873 // table is not required for correctness, but we still want to be able to 3874 // write malformed modules to bitcode files, so swallow the error. 3875 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 3876 consumeError(std::move(E)); 3877 return; 3878 } 3879 3880 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 3881 {Symtab.data(), Symtab.size()}); 3882 } 3883 3884 void BitcodeWriter::writeStrtab() { 3885 assert(!WroteStrtab); 3886 3887 std::vector<char> Strtab; 3888 StrtabBuilder.finalizeInOrder(); 3889 Strtab.resize(StrtabBuilder.getSize()); 3890 StrtabBuilder.write((uint8_t *)Strtab.data()); 3891 3892 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 3893 {Strtab.data(), Strtab.size()}); 3894 3895 WroteStrtab = true; 3896 } 3897 3898 void BitcodeWriter::copyStrtab(StringRef Strtab) { 3899 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 3900 WroteStrtab = true; 3901 } 3902 3903 void BitcodeWriter::writeModule(const Module *M, 3904 bool ShouldPreserveUseListOrder, 3905 const ModuleSummaryIndex *Index, 3906 bool GenerateHash, ModuleHash *ModHash) { 3907 assert(!WroteStrtab); 3908 3909 // The Mods vector is used by irsymtab::build, which requires non-const 3910 // Modules in case it needs to materialize metadata. But the bitcode writer 3911 // requires that the module is materialized, so we can cast to non-const here, 3912 // after checking that it is in fact materialized. 3913 assert(M->isMaterialized()); 3914 Mods.push_back(const_cast<Module *>(M)); 3915 3916 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 3917 ShouldPreserveUseListOrder, Index, 3918 GenerateHash, ModHash); 3919 ModuleWriter.write(); 3920 } 3921 3922 void BitcodeWriter::writeIndex( 3923 const ModuleSummaryIndex *Index, 3924 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 3925 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 3926 ModuleToSummariesForIndex); 3927 IndexWriter.write(); 3928 } 3929 3930 /// WriteBitcodeToFile - Write the specified module to the specified output 3931 /// stream. 3932 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3933 bool ShouldPreserveUseListOrder, 3934 const ModuleSummaryIndex *Index, 3935 bool GenerateHash, ModuleHash *ModHash) { 3936 SmallVector<char, 0> Buffer; 3937 Buffer.reserve(256*1024); 3938 3939 // If this is darwin or another generic macho target, reserve space for the 3940 // header. 3941 Triple TT(M->getTargetTriple()); 3942 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3943 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3944 3945 BitcodeWriter Writer(Buffer); 3946 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 3947 ModHash); 3948 Writer.writeSymtab(); 3949 Writer.writeStrtab(); 3950 3951 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3952 emitDarwinBCHeaderAndTrailer(Buffer, TT); 3953 3954 // Write the generated bitstream to "Out". 3955 Out.write((char*)&Buffer.front(), Buffer.size()); 3956 } 3957 3958 void IndexBitcodeWriter::write() { 3959 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3960 3961 writeModuleVersion(); 3962 3963 // Write the module paths in the combined index. 3964 writeModStrings(); 3965 3966 // Write the summary combined index records. 3967 writeCombinedGlobalValueSummary(); 3968 3969 Stream.ExitBlock(); 3970 } 3971 3972 // Write the specified module summary index to the given raw output stream, 3973 // where it will be written in a new bitcode block. This is used when 3974 // writing the combined index file for ThinLTO. When writing a subset of the 3975 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 3976 void llvm::WriteIndexToFile( 3977 const ModuleSummaryIndex &Index, raw_ostream &Out, 3978 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 3979 SmallVector<char, 0> Buffer; 3980 Buffer.reserve(256 * 1024); 3981 3982 BitcodeWriter Writer(Buffer); 3983 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 3984 Writer.writeStrtab(); 3985 3986 Out.write((char *)&Buffer.front(), Buffer.size()); 3987 } 3988