1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/ValueSymbolTable.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/Program.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <cctype> 32 #include <map> 33 using namespace llvm; 34 35 static cl::opt<bool> 36 EnablePreserveUseListOrdering("enable-bc-uselist-preserve", 37 cl::desc("Turn on experimental support for " 38 "use-list order preservation."), 39 cl::init(false), cl::Hidden); 40 41 /// These are manifest constants used by the bitcode writer. They do not need to 42 /// be kept in sync with the reader, but need to be consistent within this file. 43 enum { 44 // VALUE_SYMTAB_BLOCK abbrev id's. 45 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 46 VST_ENTRY_7_ABBREV, 47 VST_ENTRY_6_ABBREV, 48 VST_BBENTRY_6_ABBREV, 49 50 // CONSTANTS_BLOCK abbrev id's. 51 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 CONSTANTS_INTEGER_ABBREV, 53 CONSTANTS_CE_CAST_Abbrev, 54 CONSTANTS_NULL_Abbrev, 55 56 // FUNCTION_BLOCK abbrev id's. 57 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 58 FUNCTION_INST_BINOP_ABBREV, 59 FUNCTION_INST_BINOP_FLAGS_ABBREV, 60 FUNCTION_INST_CAST_ABBREV, 61 FUNCTION_INST_RET_VOID_ABBREV, 62 FUNCTION_INST_RET_VAL_ABBREV, 63 FUNCTION_INST_UNREACHABLE_ABBREV 64 }; 65 66 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 67 switch (Opcode) { 68 default: llvm_unreachable("Unknown cast instruction!"); 69 case Instruction::Trunc : return bitc::CAST_TRUNC; 70 case Instruction::ZExt : return bitc::CAST_ZEXT; 71 case Instruction::SExt : return bitc::CAST_SEXT; 72 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 73 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 74 case Instruction::UIToFP : return bitc::CAST_UITOFP; 75 case Instruction::SIToFP : return bitc::CAST_SITOFP; 76 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 77 case Instruction::FPExt : return bitc::CAST_FPEXT; 78 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 79 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 80 case Instruction::BitCast : return bitc::CAST_BITCAST; 81 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 82 } 83 } 84 85 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 86 switch (Opcode) { 87 default: llvm_unreachable("Unknown binary instruction!"); 88 case Instruction::Add: 89 case Instruction::FAdd: return bitc::BINOP_ADD; 90 case Instruction::Sub: 91 case Instruction::FSub: return bitc::BINOP_SUB; 92 case Instruction::Mul: 93 case Instruction::FMul: return bitc::BINOP_MUL; 94 case Instruction::UDiv: return bitc::BINOP_UDIV; 95 case Instruction::FDiv: 96 case Instruction::SDiv: return bitc::BINOP_SDIV; 97 case Instruction::URem: return bitc::BINOP_UREM; 98 case Instruction::FRem: 99 case Instruction::SRem: return bitc::BINOP_SREM; 100 case Instruction::Shl: return bitc::BINOP_SHL; 101 case Instruction::LShr: return bitc::BINOP_LSHR; 102 case Instruction::AShr: return bitc::BINOP_ASHR; 103 case Instruction::And: return bitc::BINOP_AND; 104 case Instruction::Or: return bitc::BINOP_OR; 105 case Instruction::Xor: return bitc::BINOP_XOR; 106 } 107 } 108 109 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 110 switch (Op) { 111 default: llvm_unreachable("Unknown RMW operation!"); 112 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 113 case AtomicRMWInst::Add: return bitc::RMW_ADD; 114 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 115 case AtomicRMWInst::And: return bitc::RMW_AND; 116 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 117 case AtomicRMWInst::Or: return bitc::RMW_OR; 118 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 119 case AtomicRMWInst::Max: return bitc::RMW_MAX; 120 case AtomicRMWInst::Min: return bitc::RMW_MIN; 121 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 122 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 123 } 124 } 125 126 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 127 switch (Ordering) { 128 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 129 case Unordered: return bitc::ORDERING_UNORDERED; 130 case Monotonic: return bitc::ORDERING_MONOTONIC; 131 case Acquire: return bitc::ORDERING_ACQUIRE; 132 case Release: return bitc::ORDERING_RELEASE; 133 case AcquireRelease: return bitc::ORDERING_ACQREL; 134 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 135 } 136 llvm_unreachable("Invalid ordering"); 137 } 138 139 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 140 switch (SynchScope) { 141 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 142 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 143 } 144 llvm_unreachable("Invalid synch scope"); 145 } 146 147 static void WriteStringRecord(unsigned Code, StringRef Str, 148 unsigned AbbrevToUse, BitstreamWriter &Stream) { 149 SmallVector<unsigned, 64> Vals; 150 151 // Code: [strchar x N] 152 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 153 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 154 AbbrevToUse = 0; 155 Vals.push_back(Str[i]); 156 } 157 158 // Emit the finished record. 159 Stream.EmitRecord(Code, Vals, AbbrevToUse); 160 } 161 162 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 163 switch (Kind) { 164 case Attribute::Alignment: 165 return bitc::ATTR_KIND_ALIGNMENT; 166 case Attribute::AlwaysInline: 167 return bitc::ATTR_KIND_ALWAYS_INLINE; 168 case Attribute::Builtin: 169 return bitc::ATTR_KIND_BUILTIN; 170 case Attribute::ByVal: 171 return bitc::ATTR_KIND_BY_VAL; 172 case Attribute::InAlloca: 173 return bitc::ATTR_KIND_IN_ALLOCA; 174 case Attribute::Cold: 175 return bitc::ATTR_KIND_COLD; 176 case Attribute::InlineHint: 177 return bitc::ATTR_KIND_INLINE_HINT; 178 case Attribute::InReg: 179 return bitc::ATTR_KIND_IN_REG; 180 case Attribute::MinSize: 181 return bitc::ATTR_KIND_MIN_SIZE; 182 case Attribute::Naked: 183 return bitc::ATTR_KIND_NAKED; 184 case Attribute::Nest: 185 return bitc::ATTR_KIND_NEST; 186 case Attribute::NoAlias: 187 return bitc::ATTR_KIND_NO_ALIAS; 188 case Attribute::NoBuiltin: 189 return bitc::ATTR_KIND_NO_BUILTIN; 190 case Attribute::NoCapture: 191 return bitc::ATTR_KIND_NO_CAPTURE; 192 case Attribute::NoDuplicate: 193 return bitc::ATTR_KIND_NO_DUPLICATE; 194 case Attribute::NoImplicitFloat: 195 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 196 case Attribute::NoInline: 197 return bitc::ATTR_KIND_NO_INLINE; 198 case Attribute::NonLazyBind: 199 return bitc::ATTR_KIND_NON_LAZY_BIND; 200 case Attribute::NonNull: 201 return bitc::ATTR_KIND_NON_NULL; 202 case Attribute::NoRedZone: 203 return bitc::ATTR_KIND_NO_RED_ZONE; 204 case Attribute::NoReturn: 205 return bitc::ATTR_KIND_NO_RETURN; 206 case Attribute::NoUnwind: 207 return bitc::ATTR_KIND_NO_UNWIND; 208 case Attribute::OptimizeForSize: 209 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 210 case Attribute::OptimizeNone: 211 return bitc::ATTR_KIND_OPTIMIZE_NONE; 212 case Attribute::ReadNone: 213 return bitc::ATTR_KIND_READ_NONE; 214 case Attribute::ReadOnly: 215 return bitc::ATTR_KIND_READ_ONLY; 216 case Attribute::Returned: 217 return bitc::ATTR_KIND_RETURNED; 218 case Attribute::ReturnsTwice: 219 return bitc::ATTR_KIND_RETURNS_TWICE; 220 case Attribute::SExt: 221 return bitc::ATTR_KIND_S_EXT; 222 case Attribute::StackAlignment: 223 return bitc::ATTR_KIND_STACK_ALIGNMENT; 224 case Attribute::StackProtect: 225 return bitc::ATTR_KIND_STACK_PROTECT; 226 case Attribute::StackProtectReq: 227 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 228 case Attribute::StackProtectStrong: 229 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 230 case Attribute::StructRet: 231 return bitc::ATTR_KIND_STRUCT_RET; 232 case Attribute::SanitizeAddress: 233 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 234 case Attribute::SanitizeThread: 235 return bitc::ATTR_KIND_SANITIZE_THREAD; 236 case Attribute::SanitizeMemory: 237 return bitc::ATTR_KIND_SANITIZE_MEMORY; 238 case Attribute::UWTable: 239 return bitc::ATTR_KIND_UW_TABLE; 240 case Attribute::ZExt: 241 return bitc::ATTR_KIND_Z_EXT; 242 case Attribute::EndAttrKinds: 243 llvm_unreachable("Can not encode end-attribute kinds marker."); 244 case Attribute::None: 245 llvm_unreachable("Can not encode none-attribute."); 246 } 247 248 llvm_unreachable("Trying to encode unknown attribute"); 249 } 250 251 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 252 BitstreamWriter &Stream) { 253 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 254 if (AttrGrps.empty()) return; 255 256 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 257 258 SmallVector<uint64_t, 64> Record; 259 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 260 AttributeSet AS = AttrGrps[i]; 261 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 262 AttributeSet A = AS.getSlotAttributes(i); 263 264 Record.push_back(VE.getAttributeGroupID(A)); 265 Record.push_back(AS.getSlotIndex(i)); 266 267 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 268 I != E; ++I) { 269 Attribute Attr = *I; 270 if (Attr.isEnumAttribute()) { 271 Record.push_back(0); 272 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 273 } else if (Attr.isAlignAttribute()) { 274 Record.push_back(1); 275 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 276 Record.push_back(Attr.getValueAsInt()); 277 } else { 278 StringRef Kind = Attr.getKindAsString(); 279 StringRef Val = Attr.getValueAsString(); 280 281 Record.push_back(Val.empty() ? 3 : 4); 282 Record.append(Kind.begin(), Kind.end()); 283 Record.push_back(0); 284 if (!Val.empty()) { 285 Record.append(Val.begin(), Val.end()); 286 Record.push_back(0); 287 } 288 } 289 } 290 291 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 292 Record.clear(); 293 } 294 } 295 296 Stream.ExitBlock(); 297 } 298 299 static void WriteAttributeTable(const ValueEnumerator &VE, 300 BitstreamWriter &Stream) { 301 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 302 if (Attrs.empty()) return; 303 304 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 305 306 SmallVector<uint64_t, 64> Record; 307 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 308 const AttributeSet &A = Attrs[i]; 309 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 310 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 311 312 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 313 Record.clear(); 314 } 315 316 Stream.ExitBlock(); 317 } 318 319 /// WriteTypeTable - Write out the type table for a module. 320 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 321 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 322 323 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 324 SmallVector<uint64_t, 64> TypeVals; 325 326 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 327 328 // Abbrev for TYPE_CODE_POINTER. 329 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 330 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 332 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 333 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 334 335 // Abbrev for TYPE_CODE_FUNCTION. 336 Abbv = new BitCodeAbbrev(); 337 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 341 342 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 343 344 // Abbrev for TYPE_CODE_STRUCT_ANON. 345 Abbv = new BitCodeAbbrev(); 346 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 350 351 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 352 353 // Abbrev for TYPE_CODE_STRUCT_NAME. 354 Abbv = new BitCodeAbbrev(); 355 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 358 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 359 360 // Abbrev for TYPE_CODE_STRUCT_NAMED. 361 Abbv = new BitCodeAbbrev(); 362 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 366 367 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 368 369 // Abbrev for TYPE_CODE_ARRAY. 370 Abbv = new BitCodeAbbrev(); 371 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 374 375 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 376 377 // Emit an entry count so the reader can reserve space. 378 TypeVals.push_back(TypeList.size()); 379 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 380 TypeVals.clear(); 381 382 // Loop over all of the types, emitting each in turn. 383 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 384 Type *T = TypeList[i]; 385 int AbbrevToUse = 0; 386 unsigned Code = 0; 387 388 switch (T->getTypeID()) { 389 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 390 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 391 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 392 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 393 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 394 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 395 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 396 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 397 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 398 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 399 case Type::IntegerTyID: 400 // INTEGER: [width] 401 Code = bitc::TYPE_CODE_INTEGER; 402 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 403 break; 404 case Type::PointerTyID: { 405 PointerType *PTy = cast<PointerType>(T); 406 // POINTER: [pointee type, address space] 407 Code = bitc::TYPE_CODE_POINTER; 408 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 409 unsigned AddressSpace = PTy->getAddressSpace(); 410 TypeVals.push_back(AddressSpace); 411 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 412 break; 413 } 414 case Type::FunctionTyID: { 415 FunctionType *FT = cast<FunctionType>(T); 416 // FUNCTION: [isvararg, retty, paramty x N] 417 Code = bitc::TYPE_CODE_FUNCTION; 418 TypeVals.push_back(FT->isVarArg()); 419 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 420 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 421 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 422 AbbrevToUse = FunctionAbbrev; 423 break; 424 } 425 case Type::StructTyID: { 426 StructType *ST = cast<StructType>(T); 427 // STRUCT: [ispacked, eltty x N] 428 TypeVals.push_back(ST->isPacked()); 429 // Output all of the element types. 430 for (StructType::element_iterator I = ST->element_begin(), 431 E = ST->element_end(); I != E; ++I) 432 TypeVals.push_back(VE.getTypeID(*I)); 433 434 if (ST->isLiteral()) { 435 Code = bitc::TYPE_CODE_STRUCT_ANON; 436 AbbrevToUse = StructAnonAbbrev; 437 } else { 438 if (ST->isOpaque()) { 439 Code = bitc::TYPE_CODE_OPAQUE; 440 } else { 441 Code = bitc::TYPE_CODE_STRUCT_NAMED; 442 AbbrevToUse = StructNamedAbbrev; 443 } 444 445 // Emit the name if it is present. 446 if (!ST->getName().empty()) 447 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 448 StructNameAbbrev, Stream); 449 } 450 break; 451 } 452 case Type::ArrayTyID: { 453 ArrayType *AT = cast<ArrayType>(T); 454 // ARRAY: [numelts, eltty] 455 Code = bitc::TYPE_CODE_ARRAY; 456 TypeVals.push_back(AT->getNumElements()); 457 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 458 AbbrevToUse = ArrayAbbrev; 459 break; 460 } 461 case Type::VectorTyID: { 462 VectorType *VT = cast<VectorType>(T); 463 // VECTOR [numelts, eltty] 464 Code = bitc::TYPE_CODE_VECTOR; 465 TypeVals.push_back(VT->getNumElements()); 466 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 467 break; 468 } 469 } 470 471 // Emit the finished record. 472 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 473 TypeVals.clear(); 474 } 475 476 Stream.ExitBlock(); 477 } 478 479 static unsigned getEncodedLinkage(const GlobalValue *GV) { 480 switch (GV->getLinkage()) { 481 case GlobalValue::ExternalLinkage: return 0; 482 case GlobalValue::WeakAnyLinkage: return 1; 483 case GlobalValue::AppendingLinkage: return 2; 484 case GlobalValue::InternalLinkage: return 3; 485 case GlobalValue::LinkOnceAnyLinkage: return 4; 486 case GlobalValue::ExternalWeakLinkage: return 7; 487 case GlobalValue::CommonLinkage: return 8; 488 case GlobalValue::PrivateLinkage: return 9; 489 case GlobalValue::WeakODRLinkage: return 10; 490 case GlobalValue::LinkOnceODRLinkage: return 11; 491 case GlobalValue::AvailableExternallyLinkage: return 12; 492 } 493 llvm_unreachable("Invalid linkage"); 494 } 495 496 static unsigned getEncodedVisibility(const GlobalValue *GV) { 497 switch (GV->getVisibility()) { 498 case GlobalValue::DefaultVisibility: return 0; 499 case GlobalValue::HiddenVisibility: return 1; 500 case GlobalValue::ProtectedVisibility: return 2; 501 } 502 llvm_unreachable("Invalid visibility"); 503 } 504 505 static unsigned getEncodedDLLStorageClass(const GlobalValue *GV) { 506 switch (GV->getDLLStorageClass()) { 507 case GlobalValue::DefaultStorageClass: return 0; 508 case GlobalValue::DLLImportStorageClass: return 1; 509 case GlobalValue::DLLExportStorageClass: return 2; 510 } 511 llvm_unreachable("Invalid DLL storage class"); 512 } 513 514 static unsigned getEncodedThreadLocalMode(const GlobalVariable *GV) { 515 switch (GV->getThreadLocalMode()) { 516 case GlobalVariable::NotThreadLocal: return 0; 517 case GlobalVariable::GeneralDynamicTLSModel: return 1; 518 case GlobalVariable::LocalDynamicTLSModel: return 2; 519 case GlobalVariable::InitialExecTLSModel: return 3; 520 case GlobalVariable::LocalExecTLSModel: return 4; 521 } 522 llvm_unreachable("Invalid TLS model"); 523 } 524 525 // Emit top-level description of module, including target triple, inline asm, 526 // descriptors for global variables, and function prototype info. 527 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 528 BitstreamWriter &Stream) { 529 // Emit various pieces of data attached to a module. 530 if (!M->getTargetTriple().empty()) 531 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 532 0/*TODO*/, Stream); 533 const std::string &DL = M->getDataLayoutStr(); 534 if (!DL.empty()) 535 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 536 if (!M->getModuleInlineAsm().empty()) 537 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 538 0/*TODO*/, Stream); 539 540 // Emit information about sections and GC, computing how many there are. Also 541 // compute the maximum alignment value. 542 std::map<std::string, unsigned> SectionMap; 543 std::map<std::string, unsigned> GCMap; 544 unsigned MaxAlignment = 0; 545 unsigned MaxGlobalType = 0; 546 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 547 GV != E; ++GV) { 548 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 549 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 550 if (GV->hasSection()) { 551 // Give section names unique ID's. 552 unsigned &Entry = SectionMap[GV->getSection()]; 553 if (!Entry) { 554 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 555 0/*TODO*/, Stream); 556 Entry = SectionMap.size(); 557 } 558 } 559 } 560 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 561 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 562 if (F->hasSection()) { 563 // Give section names unique ID's. 564 unsigned &Entry = SectionMap[F->getSection()]; 565 if (!Entry) { 566 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 567 0/*TODO*/, Stream); 568 Entry = SectionMap.size(); 569 } 570 } 571 if (F->hasGC()) { 572 // Same for GC names. 573 unsigned &Entry = GCMap[F->getGC()]; 574 if (!Entry) { 575 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 576 0/*TODO*/, Stream); 577 Entry = GCMap.size(); 578 } 579 } 580 } 581 582 // Emit abbrev for globals, now that we know # sections and max alignment. 583 unsigned SimpleGVarAbbrev = 0; 584 if (!M->global_empty()) { 585 // Add an abbrev for common globals with no visibility or thread localness. 586 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 587 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 588 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 589 Log2_32_Ceil(MaxGlobalType+1))); 590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 593 if (MaxAlignment == 0) // Alignment. 594 Abbv->Add(BitCodeAbbrevOp(0)); 595 else { 596 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 598 Log2_32_Ceil(MaxEncAlignment+1))); 599 } 600 if (SectionMap.empty()) // Section. 601 Abbv->Add(BitCodeAbbrevOp(0)); 602 else 603 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 604 Log2_32_Ceil(SectionMap.size()+1))); 605 // Don't bother emitting vis + thread local. 606 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 607 } 608 609 // Emit the global variable information. 610 SmallVector<unsigned, 64> Vals; 611 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 612 GV != E; ++GV) { 613 unsigned AbbrevToUse = 0; 614 615 // GLOBALVAR: [type, isconst, initid, 616 // linkage, alignment, section, visibility, threadlocal, 617 // unnamed_addr, externally_initialized, dllstorageclass] 618 Vals.push_back(VE.getTypeID(GV->getType())); 619 Vals.push_back(GV->isConstant()); 620 Vals.push_back(GV->isDeclaration() ? 0 : 621 (VE.getValueID(GV->getInitializer()) + 1)); 622 Vals.push_back(getEncodedLinkage(GV)); 623 Vals.push_back(Log2_32(GV->getAlignment())+1); 624 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 625 if (GV->isThreadLocal() || 626 GV->getVisibility() != GlobalValue::DefaultVisibility || 627 GV->hasUnnamedAddr() || GV->isExternallyInitialized() || 628 GV->getDLLStorageClass() != GlobalValue::DefaultStorageClass) { 629 Vals.push_back(getEncodedVisibility(GV)); 630 Vals.push_back(getEncodedThreadLocalMode(GV)); 631 Vals.push_back(GV->hasUnnamedAddr()); 632 Vals.push_back(GV->isExternallyInitialized()); 633 Vals.push_back(getEncodedDLLStorageClass(GV)); 634 } else { 635 AbbrevToUse = SimpleGVarAbbrev; 636 } 637 638 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 639 Vals.clear(); 640 } 641 642 // Emit the function proto information. 643 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 644 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 645 // section, visibility, gc, unnamed_addr, prefix] 646 Vals.push_back(VE.getTypeID(F->getType())); 647 Vals.push_back(F->getCallingConv()); 648 Vals.push_back(F->isDeclaration()); 649 Vals.push_back(getEncodedLinkage(F)); 650 Vals.push_back(VE.getAttributeID(F->getAttributes())); 651 Vals.push_back(Log2_32(F->getAlignment())+1); 652 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 653 Vals.push_back(getEncodedVisibility(F)); 654 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 655 Vals.push_back(F->hasUnnamedAddr()); 656 Vals.push_back(F->hasPrefixData() ? (VE.getValueID(F->getPrefixData()) + 1) 657 : 0); 658 Vals.push_back(getEncodedDLLStorageClass(F)); 659 660 unsigned AbbrevToUse = 0; 661 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 662 Vals.clear(); 663 } 664 665 // Emit the alias information. 666 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 667 AI != E; ++AI) { 668 // ALIAS: [alias type, aliasee val#, linkage, visibility] 669 Vals.push_back(VE.getTypeID(AI->getType())); 670 Vals.push_back(VE.getValueID(AI->getAliasee())); 671 Vals.push_back(getEncodedLinkage(AI)); 672 Vals.push_back(getEncodedVisibility(AI)); 673 Vals.push_back(getEncodedDLLStorageClass(AI)); 674 unsigned AbbrevToUse = 0; 675 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 676 Vals.clear(); 677 } 678 } 679 680 static uint64_t GetOptimizationFlags(const Value *V) { 681 uint64_t Flags = 0; 682 683 if (const OverflowingBinaryOperator *OBO = 684 dyn_cast<OverflowingBinaryOperator>(V)) { 685 if (OBO->hasNoSignedWrap()) 686 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 687 if (OBO->hasNoUnsignedWrap()) 688 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 689 } else if (const PossiblyExactOperator *PEO = 690 dyn_cast<PossiblyExactOperator>(V)) { 691 if (PEO->isExact()) 692 Flags |= 1 << bitc::PEO_EXACT; 693 } else if (const FPMathOperator *FPMO = 694 dyn_cast<const FPMathOperator>(V)) { 695 if (FPMO->hasUnsafeAlgebra()) 696 Flags |= FastMathFlags::UnsafeAlgebra; 697 if (FPMO->hasNoNaNs()) 698 Flags |= FastMathFlags::NoNaNs; 699 if (FPMO->hasNoInfs()) 700 Flags |= FastMathFlags::NoInfs; 701 if (FPMO->hasNoSignedZeros()) 702 Flags |= FastMathFlags::NoSignedZeros; 703 if (FPMO->hasAllowReciprocal()) 704 Flags |= FastMathFlags::AllowReciprocal; 705 } 706 707 return Flags; 708 } 709 710 static void WriteMDNode(const MDNode *N, 711 const ValueEnumerator &VE, 712 BitstreamWriter &Stream, 713 SmallVectorImpl<uint64_t> &Record) { 714 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 715 if (N->getOperand(i)) { 716 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 717 Record.push_back(VE.getValueID(N->getOperand(i))); 718 } else { 719 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 720 Record.push_back(0); 721 } 722 } 723 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE : 724 bitc::METADATA_NODE; 725 Stream.EmitRecord(MDCode, Record, 0); 726 Record.clear(); 727 } 728 729 static void WriteModuleMetadata(const Module *M, 730 const ValueEnumerator &VE, 731 BitstreamWriter &Stream) { 732 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 733 bool StartedMetadataBlock = false; 734 unsigned MDSAbbrev = 0; 735 SmallVector<uint64_t, 64> Record; 736 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 737 738 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 739 if (!N->isFunctionLocal() || !N->getFunction()) { 740 if (!StartedMetadataBlock) { 741 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 742 StartedMetadataBlock = true; 743 } 744 WriteMDNode(N, VE, Stream, Record); 745 } 746 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 747 if (!StartedMetadataBlock) { 748 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 749 750 // Abbrev for METADATA_STRING. 751 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 752 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 754 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 755 MDSAbbrev = Stream.EmitAbbrev(Abbv); 756 StartedMetadataBlock = true; 757 } 758 759 // Code: [strchar x N] 760 Record.append(MDS->begin(), MDS->end()); 761 762 // Emit the finished record. 763 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 764 Record.clear(); 765 } 766 } 767 768 // Write named metadata. 769 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 770 E = M->named_metadata_end(); I != E; ++I) { 771 const NamedMDNode *NMD = I; 772 if (!StartedMetadataBlock) { 773 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 774 StartedMetadataBlock = true; 775 } 776 777 // Write name. 778 StringRef Str = NMD->getName(); 779 for (unsigned i = 0, e = Str.size(); i != e; ++i) 780 Record.push_back(Str[i]); 781 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 782 Record.clear(); 783 784 // Write named metadata operands. 785 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 786 Record.push_back(VE.getValueID(NMD->getOperand(i))); 787 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 788 Record.clear(); 789 } 790 791 if (StartedMetadataBlock) 792 Stream.ExitBlock(); 793 } 794 795 static void WriteFunctionLocalMetadata(const Function &F, 796 const ValueEnumerator &VE, 797 BitstreamWriter &Stream) { 798 bool StartedMetadataBlock = false; 799 SmallVector<uint64_t, 64> Record; 800 const SmallVectorImpl<const MDNode *> &Vals = VE.getFunctionLocalMDValues(); 801 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 802 if (const MDNode *N = Vals[i]) 803 if (N->isFunctionLocal() && N->getFunction() == &F) { 804 if (!StartedMetadataBlock) { 805 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 806 StartedMetadataBlock = true; 807 } 808 WriteMDNode(N, VE, Stream, Record); 809 } 810 811 if (StartedMetadataBlock) 812 Stream.ExitBlock(); 813 } 814 815 static void WriteMetadataAttachment(const Function &F, 816 const ValueEnumerator &VE, 817 BitstreamWriter &Stream) { 818 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 819 820 SmallVector<uint64_t, 64> Record; 821 822 // Write metadata attachments 823 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 824 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 825 826 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 827 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 828 I != E; ++I) { 829 MDs.clear(); 830 I->getAllMetadataOtherThanDebugLoc(MDs); 831 832 // If no metadata, ignore instruction. 833 if (MDs.empty()) continue; 834 835 Record.push_back(VE.getInstructionID(I)); 836 837 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 838 Record.push_back(MDs[i].first); 839 Record.push_back(VE.getValueID(MDs[i].second)); 840 } 841 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 842 Record.clear(); 843 } 844 845 Stream.ExitBlock(); 846 } 847 848 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 849 SmallVector<uint64_t, 64> Record; 850 851 // Write metadata kinds 852 // METADATA_KIND - [n x [id, name]] 853 SmallVector<StringRef, 8> Names; 854 M->getMDKindNames(Names); 855 856 if (Names.empty()) return; 857 858 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 859 860 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 861 Record.push_back(MDKindID); 862 StringRef KName = Names[MDKindID]; 863 Record.append(KName.begin(), KName.end()); 864 865 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 866 Record.clear(); 867 } 868 869 Stream.ExitBlock(); 870 } 871 872 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 873 if ((int64_t)V >= 0) 874 Vals.push_back(V << 1); 875 else 876 Vals.push_back((-V << 1) | 1); 877 } 878 879 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 880 const ValueEnumerator &VE, 881 BitstreamWriter &Stream, bool isGlobal) { 882 if (FirstVal == LastVal) return; 883 884 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 885 886 unsigned AggregateAbbrev = 0; 887 unsigned String8Abbrev = 0; 888 unsigned CString7Abbrev = 0; 889 unsigned CString6Abbrev = 0; 890 // If this is a constant pool for the module, emit module-specific abbrevs. 891 if (isGlobal) { 892 // Abbrev for CST_CODE_AGGREGATE. 893 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 894 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 895 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 896 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 897 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 898 899 // Abbrev for CST_CODE_STRING. 900 Abbv = new BitCodeAbbrev(); 901 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 902 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 903 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 904 String8Abbrev = Stream.EmitAbbrev(Abbv); 905 // Abbrev for CST_CODE_CSTRING. 906 Abbv = new BitCodeAbbrev(); 907 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 908 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 909 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 910 CString7Abbrev = Stream.EmitAbbrev(Abbv); 911 // Abbrev for CST_CODE_CSTRING. 912 Abbv = new BitCodeAbbrev(); 913 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 915 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 916 CString6Abbrev = Stream.EmitAbbrev(Abbv); 917 } 918 919 SmallVector<uint64_t, 64> Record; 920 921 const ValueEnumerator::ValueList &Vals = VE.getValues(); 922 Type *LastTy = nullptr; 923 for (unsigned i = FirstVal; i != LastVal; ++i) { 924 const Value *V = Vals[i].first; 925 // If we need to switch types, do so now. 926 if (V->getType() != LastTy) { 927 LastTy = V->getType(); 928 Record.push_back(VE.getTypeID(LastTy)); 929 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 930 CONSTANTS_SETTYPE_ABBREV); 931 Record.clear(); 932 } 933 934 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 935 Record.push_back(unsigned(IA->hasSideEffects()) | 936 unsigned(IA->isAlignStack()) << 1 | 937 unsigned(IA->getDialect()&1) << 2); 938 939 // Add the asm string. 940 const std::string &AsmStr = IA->getAsmString(); 941 Record.push_back(AsmStr.size()); 942 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 943 Record.push_back(AsmStr[i]); 944 945 // Add the constraint string. 946 const std::string &ConstraintStr = IA->getConstraintString(); 947 Record.push_back(ConstraintStr.size()); 948 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 949 Record.push_back(ConstraintStr[i]); 950 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 951 Record.clear(); 952 continue; 953 } 954 const Constant *C = cast<Constant>(V); 955 unsigned Code = -1U; 956 unsigned AbbrevToUse = 0; 957 if (C->isNullValue()) { 958 Code = bitc::CST_CODE_NULL; 959 } else if (isa<UndefValue>(C)) { 960 Code = bitc::CST_CODE_UNDEF; 961 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 962 if (IV->getBitWidth() <= 64) { 963 uint64_t V = IV->getSExtValue(); 964 emitSignedInt64(Record, V); 965 Code = bitc::CST_CODE_INTEGER; 966 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 967 } else { // Wide integers, > 64 bits in size. 968 // We have an arbitrary precision integer value to write whose 969 // bit width is > 64. However, in canonical unsigned integer 970 // format it is likely that the high bits are going to be zero. 971 // So, we only write the number of active words. 972 unsigned NWords = IV->getValue().getActiveWords(); 973 const uint64_t *RawWords = IV->getValue().getRawData(); 974 for (unsigned i = 0; i != NWords; ++i) { 975 emitSignedInt64(Record, RawWords[i]); 976 } 977 Code = bitc::CST_CODE_WIDE_INTEGER; 978 } 979 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 980 Code = bitc::CST_CODE_FLOAT; 981 Type *Ty = CFP->getType(); 982 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 983 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 984 } else if (Ty->isX86_FP80Ty()) { 985 // api needed to prevent premature destruction 986 // bits are not in the same order as a normal i80 APInt, compensate. 987 APInt api = CFP->getValueAPF().bitcastToAPInt(); 988 const uint64_t *p = api.getRawData(); 989 Record.push_back((p[1] << 48) | (p[0] >> 16)); 990 Record.push_back(p[0] & 0xffffLL); 991 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 992 APInt api = CFP->getValueAPF().bitcastToAPInt(); 993 const uint64_t *p = api.getRawData(); 994 Record.push_back(p[0]); 995 Record.push_back(p[1]); 996 } else { 997 assert (0 && "Unknown FP type!"); 998 } 999 } else if (isa<ConstantDataSequential>(C) && 1000 cast<ConstantDataSequential>(C)->isString()) { 1001 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1002 // Emit constant strings specially. 1003 unsigned NumElts = Str->getNumElements(); 1004 // If this is a null-terminated string, use the denser CSTRING encoding. 1005 if (Str->isCString()) { 1006 Code = bitc::CST_CODE_CSTRING; 1007 --NumElts; // Don't encode the null, which isn't allowed by char6. 1008 } else { 1009 Code = bitc::CST_CODE_STRING; 1010 AbbrevToUse = String8Abbrev; 1011 } 1012 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1013 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1014 for (unsigned i = 0; i != NumElts; ++i) { 1015 unsigned char V = Str->getElementAsInteger(i); 1016 Record.push_back(V); 1017 isCStr7 &= (V & 128) == 0; 1018 if (isCStrChar6) 1019 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1020 } 1021 1022 if (isCStrChar6) 1023 AbbrevToUse = CString6Abbrev; 1024 else if (isCStr7) 1025 AbbrevToUse = CString7Abbrev; 1026 } else if (const ConstantDataSequential *CDS = 1027 dyn_cast<ConstantDataSequential>(C)) { 1028 Code = bitc::CST_CODE_DATA; 1029 Type *EltTy = CDS->getType()->getElementType(); 1030 if (isa<IntegerType>(EltTy)) { 1031 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1032 Record.push_back(CDS->getElementAsInteger(i)); 1033 } else if (EltTy->isFloatTy()) { 1034 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1035 union { float F; uint32_t I; }; 1036 F = CDS->getElementAsFloat(i); 1037 Record.push_back(I); 1038 } 1039 } else { 1040 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1041 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1042 union { double F; uint64_t I; }; 1043 F = CDS->getElementAsDouble(i); 1044 Record.push_back(I); 1045 } 1046 } 1047 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1048 isa<ConstantVector>(C)) { 1049 Code = bitc::CST_CODE_AGGREGATE; 1050 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1051 Record.push_back(VE.getValueID(C->getOperand(i))); 1052 AbbrevToUse = AggregateAbbrev; 1053 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1054 switch (CE->getOpcode()) { 1055 default: 1056 if (Instruction::isCast(CE->getOpcode())) { 1057 Code = bitc::CST_CODE_CE_CAST; 1058 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1059 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1060 Record.push_back(VE.getValueID(C->getOperand(0))); 1061 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1062 } else { 1063 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1064 Code = bitc::CST_CODE_CE_BINOP; 1065 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1066 Record.push_back(VE.getValueID(C->getOperand(0))); 1067 Record.push_back(VE.getValueID(C->getOperand(1))); 1068 uint64_t Flags = GetOptimizationFlags(CE); 1069 if (Flags != 0) 1070 Record.push_back(Flags); 1071 } 1072 break; 1073 case Instruction::GetElementPtr: 1074 Code = bitc::CST_CODE_CE_GEP; 1075 if (cast<GEPOperator>(C)->isInBounds()) 1076 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1077 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1078 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1079 Record.push_back(VE.getValueID(C->getOperand(i))); 1080 } 1081 break; 1082 case Instruction::Select: 1083 Code = bitc::CST_CODE_CE_SELECT; 1084 Record.push_back(VE.getValueID(C->getOperand(0))); 1085 Record.push_back(VE.getValueID(C->getOperand(1))); 1086 Record.push_back(VE.getValueID(C->getOperand(2))); 1087 break; 1088 case Instruction::ExtractElement: 1089 Code = bitc::CST_CODE_CE_EXTRACTELT; 1090 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1091 Record.push_back(VE.getValueID(C->getOperand(0))); 1092 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1093 Record.push_back(VE.getValueID(C->getOperand(1))); 1094 break; 1095 case Instruction::InsertElement: 1096 Code = bitc::CST_CODE_CE_INSERTELT; 1097 Record.push_back(VE.getValueID(C->getOperand(0))); 1098 Record.push_back(VE.getValueID(C->getOperand(1))); 1099 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1100 Record.push_back(VE.getValueID(C->getOperand(2))); 1101 break; 1102 case Instruction::ShuffleVector: 1103 // If the return type and argument types are the same, this is a 1104 // standard shufflevector instruction. If the types are different, 1105 // then the shuffle is widening or truncating the input vectors, and 1106 // the argument type must also be encoded. 1107 if (C->getType() == C->getOperand(0)->getType()) { 1108 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1109 } else { 1110 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1111 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1112 } 1113 Record.push_back(VE.getValueID(C->getOperand(0))); 1114 Record.push_back(VE.getValueID(C->getOperand(1))); 1115 Record.push_back(VE.getValueID(C->getOperand(2))); 1116 break; 1117 case Instruction::ICmp: 1118 case Instruction::FCmp: 1119 Code = bitc::CST_CODE_CE_CMP; 1120 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1121 Record.push_back(VE.getValueID(C->getOperand(0))); 1122 Record.push_back(VE.getValueID(C->getOperand(1))); 1123 Record.push_back(CE->getPredicate()); 1124 break; 1125 } 1126 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1127 Code = bitc::CST_CODE_BLOCKADDRESS; 1128 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1129 Record.push_back(VE.getValueID(BA->getFunction())); 1130 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1131 } else { 1132 #ifndef NDEBUG 1133 C->dump(); 1134 #endif 1135 llvm_unreachable("Unknown constant!"); 1136 } 1137 Stream.EmitRecord(Code, Record, AbbrevToUse); 1138 Record.clear(); 1139 } 1140 1141 Stream.ExitBlock(); 1142 } 1143 1144 static void WriteModuleConstants(const ValueEnumerator &VE, 1145 BitstreamWriter &Stream) { 1146 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1147 1148 // Find the first constant to emit, which is the first non-globalvalue value. 1149 // We know globalvalues have been emitted by WriteModuleInfo. 1150 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1151 if (!isa<GlobalValue>(Vals[i].first)) { 1152 WriteConstants(i, Vals.size(), VE, Stream, true); 1153 return; 1154 } 1155 } 1156 } 1157 1158 /// PushValueAndType - The file has to encode both the value and type id for 1159 /// many values, because we need to know what type to create for forward 1160 /// references. However, most operands are not forward references, so this type 1161 /// field is not needed. 1162 /// 1163 /// This function adds V's value ID to Vals. If the value ID is higher than the 1164 /// instruction ID, then it is a forward reference, and it also includes the 1165 /// type ID. The value ID that is written is encoded relative to the InstID. 1166 static bool PushValueAndType(const Value *V, unsigned InstID, 1167 SmallVectorImpl<unsigned> &Vals, 1168 ValueEnumerator &VE) { 1169 unsigned ValID = VE.getValueID(V); 1170 // Make encoding relative to the InstID. 1171 Vals.push_back(InstID - ValID); 1172 if (ValID >= InstID) { 1173 Vals.push_back(VE.getTypeID(V->getType())); 1174 return true; 1175 } 1176 return false; 1177 } 1178 1179 /// pushValue - Like PushValueAndType, but where the type of the value is 1180 /// omitted (perhaps it was already encoded in an earlier operand). 1181 static void pushValue(const Value *V, unsigned InstID, 1182 SmallVectorImpl<unsigned> &Vals, 1183 ValueEnumerator &VE) { 1184 unsigned ValID = VE.getValueID(V); 1185 Vals.push_back(InstID - ValID); 1186 } 1187 1188 static void pushValueSigned(const Value *V, unsigned InstID, 1189 SmallVectorImpl<uint64_t> &Vals, 1190 ValueEnumerator &VE) { 1191 unsigned ValID = VE.getValueID(V); 1192 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1193 emitSignedInt64(Vals, diff); 1194 } 1195 1196 /// WriteInstruction - Emit an instruction to the specified stream. 1197 static void WriteInstruction(const Instruction &I, unsigned InstID, 1198 ValueEnumerator &VE, BitstreamWriter &Stream, 1199 SmallVectorImpl<unsigned> &Vals) { 1200 unsigned Code = 0; 1201 unsigned AbbrevToUse = 0; 1202 VE.setInstructionID(&I); 1203 switch (I.getOpcode()) { 1204 default: 1205 if (Instruction::isCast(I.getOpcode())) { 1206 Code = bitc::FUNC_CODE_INST_CAST; 1207 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1208 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1209 Vals.push_back(VE.getTypeID(I.getType())); 1210 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1211 } else { 1212 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1213 Code = bitc::FUNC_CODE_INST_BINOP; 1214 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1215 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1216 pushValue(I.getOperand(1), InstID, Vals, VE); 1217 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1218 uint64_t Flags = GetOptimizationFlags(&I); 1219 if (Flags != 0) { 1220 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1221 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1222 Vals.push_back(Flags); 1223 } 1224 } 1225 break; 1226 1227 case Instruction::GetElementPtr: 1228 Code = bitc::FUNC_CODE_INST_GEP; 1229 if (cast<GEPOperator>(&I)->isInBounds()) 1230 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1231 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1232 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1233 break; 1234 case Instruction::ExtractValue: { 1235 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1236 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1237 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1238 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1239 Vals.push_back(*i); 1240 break; 1241 } 1242 case Instruction::InsertValue: { 1243 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1244 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1245 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1246 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1247 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1248 Vals.push_back(*i); 1249 break; 1250 } 1251 case Instruction::Select: 1252 Code = bitc::FUNC_CODE_INST_VSELECT; 1253 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1254 pushValue(I.getOperand(2), InstID, Vals, VE); 1255 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1256 break; 1257 case Instruction::ExtractElement: 1258 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1259 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1260 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1261 break; 1262 case Instruction::InsertElement: 1263 Code = bitc::FUNC_CODE_INST_INSERTELT; 1264 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1265 pushValue(I.getOperand(1), InstID, Vals, VE); 1266 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1267 break; 1268 case Instruction::ShuffleVector: 1269 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1270 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1271 pushValue(I.getOperand(1), InstID, Vals, VE); 1272 pushValue(I.getOperand(2), InstID, Vals, VE); 1273 break; 1274 case Instruction::ICmp: 1275 case Instruction::FCmp: 1276 // compare returning Int1Ty or vector of Int1Ty 1277 Code = bitc::FUNC_CODE_INST_CMP2; 1278 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1279 pushValue(I.getOperand(1), InstID, Vals, VE); 1280 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1281 break; 1282 1283 case Instruction::Ret: 1284 { 1285 Code = bitc::FUNC_CODE_INST_RET; 1286 unsigned NumOperands = I.getNumOperands(); 1287 if (NumOperands == 0) 1288 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1289 else if (NumOperands == 1) { 1290 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1291 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1292 } else { 1293 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1294 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1295 } 1296 } 1297 break; 1298 case Instruction::Br: 1299 { 1300 Code = bitc::FUNC_CODE_INST_BR; 1301 const BranchInst &II = cast<BranchInst>(I); 1302 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1303 if (II.isConditional()) { 1304 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1305 pushValue(II.getCondition(), InstID, Vals, VE); 1306 } 1307 } 1308 break; 1309 case Instruction::Switch: 1310 { 1311 Code = bitc::FUNC_CODE_INST_SWITCH; 1312 const SwitchInst &SI = cast<SwitchInst>(I); 1313 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1314 pushValue(SI.getCondition(), InstID, Vals, VE); 1315 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1316 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1317 i != e; ++i) { 1318 Vals.push_back(VE.getValueID(i.getCaseValue())); 1319 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1320 } 1321 } 1322 break; 1323 case Instruction::IndirectBr: 1324 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1325 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1326 // Encode the address operand as relative, but not the basic blocks. 1327 pushValue(I.getOperand(0), InstID, Vals, VE); 1328 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1329 Vals.push_back(VE.getValueID(I.getOperand(i))); 1330 break; 1331 1332 case Instruction::Invoke: { 1333 const InvokeInst *II = cast<InvokeInst>(&I); 1334 const Value *Callee(II->getCalledValue()); 1335 PointerType *PTy = cast<PointerType>(Callee->getType()); 1336 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1337 Code = bitc::FUNC_CODE_INST_INVOKE; 1338 1339 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1340 Vals.push_back(II->getCallingConv()); 1341 Vals.push_back(VE.getValueID(II->getNormalDest())); 1342 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1343 PushValueAndType(Callee, InstID, Vals, VE); 1344 1345 // Emit value #'s for the fixed parameters. 1346 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1347 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1348 1349 // Emit type/value pairs for varargs params. 1350 if (FTy->isVarArg()) { 1351 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1352 i != e; ++i) 1353 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1354 } 1355 break; 1356 } 1357 case Instruction::Resume: 1358 Code = bitc::FUNC_CODE_INST_RESUME; 1359 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1360 break; 1361 case Instruction::Unreachable: 1362 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1363 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1364 break; 1365 1366 case Instruction::PHI: { 1367 const PHINode &PN = cast<PHINode>(I); 1368 Code = bitc::FUNC_CODE_INST_PHI; 1369 // With the newer instruction encoding, forward references could give 1370 // negative valued IDs. This is most common for PHIs, so we use 1371 // signed VBRs. 1372 SmallVector<uint64_t, 128> Vals64; 1373 Vals64.push_back(VE.getTypeID(PN.getType())); 1374 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1375 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1376 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1377 } 1378 // Emit a Vals64 vector and exit. 1379 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1380 Vals64.clear(); 1381 return; 1382 } 1383 1384 case Instruction::LandingPad: { 1385 const LandingPadInst &LP = cast<LandingPadInst>(I); 1386 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1387 Vals.push_back(VE.getTypeID(LP.getType())); 1388 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1389 Vals.push_back(LP.isCleanup()); 1390 Vals.push_back(LP.getNumClauses()); 1391 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1392 if (LP.isCatch(I)) 1393 Vals.push_back(LandingPadInst::Catch); 1394 else 1395 Vals.push_back(LandingPadInst::Filter); 1396 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1397 } 1398 break; 1399 } 1400 1401 case Instruction::Alloca: 1402 Code = bitc::FUNC_CODE_INST_ALLOCA; 1403 Vals.push_back(VE.getTypeID(I.getType())); 1404 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1405 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1406 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1407 break; 1408 1409 case Instruction::Load: 1410 if (cast<LoadInst>(I).isAtomic()) { 1411 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1412 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1413 } else { 1414 Code = bitc::FUNC_CODE_INST_LOAD; 1415 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1416 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1417 } 1418 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1419 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1420 if (cast<LoadInst>(I).isAtomic()) { 1421 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1422 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1423 } 1424 break; 1425 case Instruction::Store: 1426 if (cast<StoreInst>(I).isAtomic()) 1427 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1428 else 1429 Code = bitc::FUNC_CODE_INST_STORE; 1430 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1431 pushValue(I.getOperand(0), InstID, Vals, VE); // val. 1432 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1433 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1434 if (cast<StoreInst>(I).isAtomic()) { 1435 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1436 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1437 } 1438 break; 1439 case Instruction::AtomicCmpXchg: 1440 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1441 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1442 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1443 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1444 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1445 Vals.push_back(GetEncodedOrdering( 1446 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1447 Vals.push_back(GetEncodedSynchScope( 1448 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1449 Vals.push_back(GetEncodedOrdering( 1450 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1451 break; 1452 case Instruction::AtomicRMW: 1453 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1454 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1455 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1456 Vals.push_back(GetEncodedRMWOperation( 1457 cast<AtomicRMWInst>(I).getOperation())); 1458 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1459 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1460 Vals.push_back(GetEncodedSynchScope( 1461 cast<AtomicRMWInst>(I).getSynchScope())); 1462 break; 1463 case Instruction::Fence: 1464 Code = bitc::FUNC_CODE_INST_FENCE; 1465 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1466 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1467 break; 1468 case Instruction::Call: { 1469 const CallInst &CI = cast<CallInst>(I); 1470 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1471 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1472 1473 Code = bitc::FUNC_CODE_INST_CALL; 1474 1475 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1476 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1477 unsigned(CI.isMustTailCall()) << 14); 1478 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1479 1480 // Emit value #'s for the fixed parameters. 1481 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1482 // Check for labels (can happen with asm labels). 1483 if (FTy->getParamType(i)->isLabelTy()) 1484 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1485 else 1486 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1487 } 1488 1489 // Emit type/value pairs for varargs params. 1490 if (FTy->isVarArg()) { 1491 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1492 i != e; ++i) 1493 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1494 } 1495 break; 1496 } 1497 case Instruction::VAArg: 1498 Code = bitc::FUNC_CODE_INST_VAARG; 1499 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1500 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1501 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1502 break; 1503 } 1504 1505 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1506 Vals.clear(); 1507 } 1508 1509 // Emit names for globals/functions etc. 1510 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1511 const ValueEnumerator &VE, 1512 BitstreamWriter &Stream) { 1513 if (VST.empty()) return; 1514 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1515 1516 // FIXME: Set up the abbrev, we know how many values there are! 1517 // FIXME: We know if the type names can use 7-bit ascii. 1518 SmallVector<unsigned, 64> NameVals; 1519 1520 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1521 SI != SE; ++SI) { 1522 1523 const ValueName &Name = *SI; 1524 1525 // Figure out the encoding to use for the name. 1526 bool is7Bit = true; 1527 bool isChar6 = true; 1528 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1529 C != E; ++C) { 1530 if (isChar6) 1531 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1532 if ((unsigned char)*C & 128) { 1533 is7Bit = false; 1534 break; // don't bother scanning the rest. 1535 } 1536 } 1537 1538 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1539 1540 // VST_ENTRY: [valueid, namechar x N] 1541 // VST_BBENTRY: [bbid, namechar x N] 1542 unsigned Code; 1543 if (isa<BasicBlock>(SI->getValue())) { 1544 Code = bitc::VST_CODE_BBENTRY; 1545 if (isChar6) 1546 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1547 } else { 1548 Code = bitc::VST_CODE_ENTRY; 1549 if (isChar6) 1550 AbbrevToUse = VST_ENTRY_6_ABBREV; 1551 else if (is7Bit) 1552 AbbrevToUse = VST_ENTRY_7_ABBREV; 1553 } 1554 1555 NameVals.push_back(VE.getValueID(SI->getValue())); 1556 for (const char *P = Name.getKeyData(), 1557 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1558 NameVals.push_back((unsigned char)*P); 1559 1560 // Emit the finished record. 1561 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1562 NameVals.clear(); 1563 } 1564 Stream.ExitBlock(); 1565 } 1566 1567 /// WriteFunction - Emit a function body to the module stream. 1568 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1569 BitstreamWriter &Stream) { 1570 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1571 VE.incorporateFunction(F); 1572 1573 SmallVector<unsigned, 64> Vals; 1574 1575 // Emit the number of basic blocks, so the reader can create them ahead of 1576 // time. 1577 Vals.push_back(VE.getBasicBlocks().size()); 1578 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1579 Vals.clear(); 1580 1581 // If there are function-local constants, emit them now. 1582 unsigned CstStart, CstEnd; 1583 VE.getFunctionConstantRange(CstStart, CstEnd); 1584 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1585 1586 // If there is function-local metadata, emit it now. 1587 WriteFunctionLocalMetadata(F, VE, Stream); 1588 1589 // Keep a running idea of what the instruction ID is. 1590 unsigned InstID = CstEnd; 1591 1592 bool NeedsMetadataAttachment = false; 1593 1594 DebugLoc LastDL; 1595 1596 // Finally, emit all the instructions, in order. 1597 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1598 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1599 I != E; ++I) { 1600 WriteInstruction(*I, InstID, VE, Stream, Vals); 1601 1602 if (!I->getType()->isVoidTy()) 1603 ++InstID; 1604 1605 // If the instruction has metadata, write a metadata attachment later. 1606 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1607 1608 // If the instruction has a debug location, emit it. 1609 DebugLoc DL = I->getDebugLoc(); 1610 if (DL.isUnknown()) { 1611 // nothing todo. 1612 } else if (DL == LastDL) { 1613 // Just repeat the same debug loc as last time. 1614 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1615 } else { 1616 MDNode *Scope, *IA; 1617 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1618 1619 Vals.push_back(DL.getLine()); 1620 Vals.push_back(DL.getCol()); 1621 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); 1622 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); 1623 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1624 Vals.clear(); 1625 1626 LastDL = DL; 1627 } 1628 } 1629 1630 // Emit names for all the instructions etc. 1631 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1632 1633 if (NeedsMetadataAttachment) 1634 WriteMetadataAttachment(F, VE, Stream); 1635 VE.purgeFunction(); 1636 Stream.ExitBlock(); 1637 } 1638 1639 // Emit blockinfo, which defines the standard abbreviations etc. 1640 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1641 // We only want to emit block info records for blocks that have multiple 1642 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 1643 // Other blocks can define their abbrevs inline. 1644 Stream.EnterBlockInfoBlock(2); 1645 1646 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1647 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1648 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1649 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1650 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1651 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1652 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1653 Abbv) != VST_ENTRY_8_ABBREV) 1654 llvm_unreachable("Unexpected abbrev ordering!"); 1655 } 1656 1657 { // 7-bit fixed width VST_ENTRY strings. 1658 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1659 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1660 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1661 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1662 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1663 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1664 Abbv) != VST_ENTRY_7_ABBREV) 1665 llvm_unreachable("Unexpected abbrev ordering!"); 1666 } 1667 { // 6-bit char6 VST_ENTRY strings. 1668 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1669 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1670 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1671 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1672 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1673 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1674 Abbv) != VST_ENTRY_6_ABBREV) 1675 llvm_unreachable("Unexpected abbrev ordering!"); 1676 } 1677 { // 6-bit char6 VST_BBENTRY strings. 1678 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1679 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1680 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1681 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1682 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1683 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1684 Abbv) != VST_BBENTRY_6_ABBREV) 1685 llvm_unreachable("Unexpected abbrev ordering!"); 1686 } 1687 1688 1689 1690 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1691 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1692 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1693 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1694 Log2_32_Ceil(VE.getTypes().size()+1))); 1695 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1696 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1697 llvm_unreachable("Unexpected abbrev ordering!"); 1698 } 1699 1700 { // INTEGER abbrev for CONSTANTS_BLOCK. 1701 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1702 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1703 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1704 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1705 Abbv) != CONSTANTS_INTEGER_ABBREV) 1706 llvm_unreachable("Unexpected abbrev ordering!"); 1707 } 1708 1709 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1710 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1711 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1714 Log2_32_Ceil(VE.getTypes().size()+1))); 1715 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1716 1717 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1718 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1719 llvm_unreachable("Unexpected abbrev ordering!"); 1720 } 1721 { // NULL abbrev for CONSTANTS_BLOCK. 1722 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1723 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1724 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1725 Abbv) != CONSTANTS_NULL_Abbrev) 1726 llvm_unreachable("Unexpected abbrev ordering!"); 1727 } 1728 1729 // FIXME: This should only use space for first class types! 1730 1731 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1732 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1733 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1734 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1735 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1736 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1737 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1738 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1739 llvm_unreachable("Unexpected abbrev ordering!"); 1740 } 1741 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1742 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1743 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1744 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1745 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1746 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1747 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1748 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1749 llvm_unreachable("Unexpected abbrev ordering!"); 1750 } 1751 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1752 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1753 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1754 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1755 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1756 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1758 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1759 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1760 llvm_unreachable("Unexpected abbrev ordering!"); 1761 } 1762 { // INST_CAST abbrev for FUNCTION_BLOCK. 1763 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1764 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1765 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1767 Log2_32_Ceil(VE.getTypes().size()+1))); 1768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1769 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1770 Abbv) != FUNCTION_INST_CAST_ABBREV) 1771 llvm_unreachable("Unexpected abbrev ordering!"); 1772 } 1773 1774 { // INST_RET abbrev for FUNCTION_BLOCK. 1775 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1776 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1777 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1778 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1779 llvm_unreachable("Unexpected abbrev ordering!"); 1780 } 1781 { // INST_RET abbrev for FUNCTION_BLOCK. 1782 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1783 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1785 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1786 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1787 llvm_unreachable("Unexpected abbrev ordering!"); 1788 } 1789 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1790 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1791 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1792 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1793 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1794 llvm_unreachable("Unexpected abbrev ordering!"); 1795 } 1796 1797 Stream.ExitBlock(); 1798 } 1799 1800 // Sort the Users based on the order in which the reader parses the bitcode 1801 // file. 1802 static bool bitcodereader_order(const User *lhs, const User *rhs) { 1803 // TODO: Implement. 1804 return true; 1805 } 1806 1807 static void WriteUseList(const Value *V, const ValueEnumerator &VE, 1808 BitstreamWriter &Stream) { 1809 1810 // One or zero uses can't get out of order. 1811 if (V->use_empty() || V->hasNUses(1)) 1812 return; 1813 1814 // Make a copy of the in-memory use-list for sorting. 1815 SmallVector<const User*, 8> UserList(V->user_begin(), V->user_end()); 1816 1817 // Sort the copy based on the order read by the BitcodeReader. 1818 std::sort(UserList.begin(), UserList.end(), bitcodereader_order); 1819 1820 // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the 1821 // sorted list (i.e., the expected BitcodeReader in-memory use-list). 1822 1823 // TODO: Emit the USELIST_CODE_ENTRYs. 1824 } 1825 1826 static void WriteFunctionUseList(const Function *F, ValueEnumerator &VE, 1827 BitstreamWriter &Stream) { 1828 VE.incorporateFunction(*F); 1829 1830 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); 1831 AI != AE; ++AI) 1832 WriteUseList(AI, VE, Stream); 1833 for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE; 1834 ++BB) { 1835 WriteUseList(BB, VE, Stream); 1836 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE; 1837 ++II) { 1838 WriteUseList(II, VE, Stream); 1839 for (User::const_op_iterator OI = II->op_begin(), E = II->op_end(); 1840 OI != E; ++OI) { 1841 if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || 1842 isa<InlineAsm>(*OI)) 1843 WriteUseList(*OI, VE, Stream); 1844 } 1845 } 1846 } 1847 VE.purgeFunction(); 1848 } 1849 1850 // Emit use-lists. 1851 static void WriteModuleUseLists(const Module *M, ValueEnumerator &VE, 1852 BitstreamWriter &Stream) { 1853 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1854 1855 // XXX: this modifies the module, but in a way that should never change the 1856 // behavior of any pass or codegen in LLVM. The problem is that GVs may 1857 // contain entries in the use_list that do not exist in the Module and are 1858 // not stored in the .bc file. 1859 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); 1860 I != E; ++I) 1861 I->removeDeadConstantUsers(); 1862 1863 // Write the global variables. 1864 for (Module::const_global_iterator GI = M->global_begin(), 1865 GE = M->global_end(); GI != GE; ++GI) { 1866 WriteUseList(GI, VE, Stream); 1867 1868 // Write the global variable initializers. 1869 if (GI->hasInitializer()) 1870 WriteUseList(GI->getInitializer(), VE, Stream); 1871 } 1872 1873 // Write the functions. 1874 for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 1875 WriteUseList(FI, VE, Stream); 1876 if (!FI->isDeclaration()) 1877 WriteFunctionUseList(FI, VE, Stream); 1878 if (FI->hasPrefixData()) 1879 WriteUseList(FI->getPrefixData(), VE, Stream); 1880 } 1881 1882 // Write the aliases. 1883 for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end(); 1884 AI != AE; ++AI) { 1885 WriteUseList(AI, VE, Stream); 1886 WriteUseList(AI->getAliasee(), VE, Stream); 1887 } 1888 1889 Stream.ExitBlock(); 1890 } 1891 1892 /// WriteModule - Emit the specified module to the bitstream. 1893 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1894 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1895 1896 SmallVector<unsigned, 1> Vals; 1897 unsigned CurVersion = 1; 1898 Vals.push_back(CurVersion); 1899 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1900 1901 // Analyze the module, enumerating globals, functions, etc. 1902 ValueEnumerator VE(M); 1903 1904 // Emit blockinfo, which defines the standard abbreviations etc. 1905 WriteBlockInfo(VE, Stream); 1906 1907 // Emit information about attribute groups. 1908 WriteAttributeGroupTable(VE, Stream); 1909 1910 // Emit information about parameter attributes. 1911 WriteAttributeTable(VE, Stream); 1912 1913 // Emit information describing all of the types in the module. 1914 WriteTypeTable(VE, Stream); 1915 1916 // Emit top-level description of module, including target triple, inline asm, 1917 // descriptors for global variables, and function prototype info. 1918 WriteModuleInfo(M, VE, Stream); 1919 1920 // Emit constants. 1921 WriteModuleConstants(VE, Stream); 1922 1923 // Emit metadata. 1924 WriteModuleMetadata(M, VE, Stream); 1925 1926 // Emit metadata. 1927 WriteModuleMetadataStore(M, Stream); 1928 1929 // Emit names for globals/functions etc. 1930 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1931 1932 // Emit use-lists. 1933 if (EnablePreserveUseListOrdering) 1934 WriteModuleUseLists(M, VE, Stream); 1935 1936 // Emit function bodies. 1937 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1938 if (!F->isDeclaration()) 1939 WriteFunction(*F, VE, Stream); 1940 1941 Stream.ExitBlock(); 1942 } 1943 1944 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1945 /// header and trailer to make it compatible with the system archiver. To do 1946 /// this we emit the following header, and then emit a trailer that pads the 1947 /// file out to be a multiple of 16 bytes. 1948 /// 1949 /// struct bc_header { 1950 /// uint32_t Magic; // 0x0B17C0DE 1951 /// uint32_t Version; // Version, currently always 0. 1952 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1953 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1954 /// uint32_t CPUType; // CPU specifier. 1955 /// ... potentially more later ... 1956 /// }; 1957 enum { 1958 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1959 DarwinBCHeaderSize = 5*4 1960 }; 1961 1962 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 1963 uint32_t &Position) { 1964 Buffer[Position + 0] = (unsigned char) (Value >> 0); 1965 Buffer[Position + 1] = (unsigned char) (Value >> 8); 1966 Buffer[Position + 2] = (unsigned char) (Value >> 16); 1967 Buffer[Position + 3] = (unsigned char) (Value >> 24); 1968 Position += 4; 1969 } 1970 1971 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 1972 const Triple &TT) { 1973 unsigned CPUType = ~0U; 1974 1975 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1976 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1977 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1978 // specific constants here because they are implicitly part of the Darwin ABI. 1979 enum { 1980 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1981 DARWIN_CPU_TYPE_X86 = 7, 1982 DARWIN_CPU_TYPE_ARM = 12, 1983 DARWIN_CPU_TYPE_POWERPC = 18 1984 }; 1985 1986 Triple::ArchType Arch = TT.getArch(); 1987 if (Arch == Triple::x86_64) 1988 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1989 else if (Arch == Triple::x86) 1990 CPUType = DARWIN_CPU_TYPE_X86; 1991 else if (Arch == Triple::ppc) 1992 CPUType = DARWIN_CPU_TYPE_POWERPC; 1993 else if (Arch == Triple::ppc64) 1994 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1995 else if (Arch == Triple::arm || Arch == Triple::thumb) 1996 CPUType = DARWIN_CPU_TYPE_ARM; 1997 1998 // Traditional Bitcode starts after header. 1999 assert(Buffer.size() >= DarwinBCHeaderSize && 2000 "Expected header size to be reserved"); 2001 unsigned BCOffset = DarwinBCHeaderSize; 2002 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2003 2004 // Write the magic and version. 2005 unsigned Position = 0; 2006 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2007 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2008 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2009 WriteInt32ToBuffer(BCSize , Buffer, Position); 2010 WriteInt32ToBuffer(CPUType , Buffer, Position); 2011 2012 // If the file is not a multiple of 16 bytes, insert dummy padding. 2013 while (Buffer.size() & 15) 2014 Buffer.push_back(0); 2015 } 2016 2017 /// WriteBitcodeToFile - Write the specified module to the specified output 2018 /// stream. 2019 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 2020 SmallVector<char, 0> Buffer; 2021 Buffer.reserve(256*1024); 2022 2023 // If this is darwin or another generic macho target, reserve space for the 2024 // header. 2025 Triple TT(M->getTargetTriple()); 2026 if (TT.isOSDarwin()) 2027 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2028 2029 // Emit the module into the buffer. 2030 { 2031 BitstreamWriter Stream(Buffer); 2032 2033 // Emit the file header. 2034 Stream.Emit((unsigned)'B', 8); 2035 Stream.Emit((unsigned)'C', 8); 2036 Stream.Emit(0x0, 4); 2037 Stream.Emit(0xC, 4); 2038 Stream.Emit(0xE, 4); 2039 Stream.Emit(0xD, 4); 2040 2041 // Emit the module. 2042 WriteModule(M, Stream); 2043 } 2044 2045 if (TT.isOSDarwin()) 2046 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2047 2048 // Write the generated bitstream to "Out". 2049 Out.write((char*)&Buffer.front(), Buffer.size()); 2050 } 2051