xref: /llvm-project/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp (revision d4ddf06b0c7f38612f334db71ef1d7a58a3cc8e0)
1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Bitcode writer implementation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Bitcode/BitcodeWriter.h"
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Bitcode/BitcodeCommon.h"
27 #include "llvm/Bitcode/BitcodeReader.h"
28 #include "llvm/Bitcode/LLVMBitCodes.h"
29 #include "llvm/Bitstream/BitCodes.h"
30 #include "llvm/Bitstream/BitstreamWriter.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/Comdat.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/ConstantRangeList.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSummaryIndex.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/UseListOrder.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/IR/ValueSymbolTable.h"
60 #include "llvm/MC/StringTableBuilder.h"
61 #include "llvm/MC/TargetRegistry.h"
62 #include "llvm/Object/IRSymtab.h"
63 #include "llvm/Support/AtomicOrdering.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Endian.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Support/SHA1.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/TargetParser/Triple.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstddef>
76 #include <cstdint>
77 #include <iterator>
78 #include <map>
79 #include <memory>
80 #include <optional>
81 #include <string>
82 #include <utility>
83 #include <vector>
84 
85 using namespace llvm;
86 
87 static cl::opt<unsigned>
88     IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
89                    cl::desc("Number of metadatas above which we emit an index "
90                             "to enable lazy-loading"));
91 static cl::opt<uint32_t> FlushThreshold(
92     "bitcode-flush-threshold", cl::Hidden, cl::init(512),
93     cl::desc("The threshold (unit M) for flushing LLVM bitcode."));
94 
95 static cl::opt<bool> WriteRelBFToSummary(
96     "write-relbf-to-summary", cl::Hidden, cl::init(false),
97     cl::desc("Write relative block frequency to function summary "));
98 
99 namespace llvm {
100 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
101 }
102 
103 extern bool WriteNewDbgInfoFormatToBitcode;
104 extern llvm::cl::opt<bool> UseNewDbgInfoFormat;
105 
106 namespace {
107 
108 /// These are manifest constants used by the bitcode writer. They do not need to
109 /// be kept in sync with the reader, but need to be consistent within this file.
110 enum {
111   // VALUE_SYMTAB_BLOCK abbrev id's.
112   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
113   VST_ENTRY_7_ABBREV,
114   VST_ENTRY_6_ABBREV,
115   VST_BBENTRY_6_ABBREV,
116 
117   // CONSTANTS_BLOCK abbrev id's.
118   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
119   CONSTANTS_INTEGER_ABBREV,
120   CONSTANTS_CE_CAST_Abbrev,
121   CONSTANTS_NULL_Abbrev,
122 
123   // FUNCTION_BLOCK abbrev id's.
124   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
125   FUNCTION_INST_UNOP_ABBREV,
126   FUNCTION_INST_UNOP_FLAGS_ABBREV,
127   FUNCTION_INST_BINOP_ABBREV,
128   FUNCTION_INST_BINOP_FLAGS_ABBREV,
129   FUNCTION_INST_CAST_ABBREV,
130   FUNCTION_INST_CAST_FLAGS_ABBREV,
131   FUNCTION_INST_RET_VOID_ABBREV,
132   FUNCTION_INST_RET_VAL_ABBREV,
133   FUNCTION_INST_UNREACHABLE_ABBREV,
134   FUNCTION_INST_GEP_ABBREV,
135   FUNCTION_DEBUG_RECORD_VALUE_ABBREV,
136 };
137 
138 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
139 /// file type.
140 class BitcodeWriterBase {
141 protected:
142   /// The stream created and owned by the client.
143   BitstreamWriter &Stream;
144 
145   StringTableBuilder &StrtabBuilder;
146 
147 public:
148   /// Constructs a BitcodeWriterBase object that writes to the provided
149   /// \p Stream.
150   BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
151       : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
152 
153 protected:
154   void writeModuleVersion();
155 };
156 
157 void BitcodeWriterBase::writeModuleVersion() {
158   // VERSION: [version#]
159   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
160 }
161 
162 /// Base class to manage the module bitcode writing, currently subclassed for
163 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
164 class ModuleBitcodeWriterBase : public BitcodeWriterBase {
165 protected:
166   /// The Module to write to bitcode.
167   const Module &M;
168 
169   /// Enumerates ids for all values in the module.
170   ValueEnumerator VE;
171 
172   /// Optional per-module index to write for ThinLTO.
173   const ModuleSummaryIndex *Index;
174 
175   /// Map that holds the correspondence between GUIDs in the summary index,
176   /// that came from indirect call profiles, and a value id generated by this
177   /// class to use in the VST and summary block records.
178   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
179 
180   /// Tracks the last value id recorded in the GUIDToValueMap.
181   unsigned GlobalValueId;
182 
183   /// Saves the offset of the VSTOffset record that must eventually be
184   /// backpatched with the offset of the actual VST.
185   uint64_t VSTOffsetPlaceholder = 0;
186 
187 public:
188   /// Constructs a ModuleBitcodeWriterBase object for the given Module,
189   /// writing to the provided \p Buffer.
190   ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
191                           BitstreamWriter &Stream,
192                           bool ShouldPreserveUseListOrder,
193                           const ModuleSummaryIndex *Index)
194       : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
195         VE(M, ShouldPreserveUseListOrder), Index(Index) {
196     // Assign ValueIds to any callee values in the index that came from
197     // indirect call profiles and were recorded as a GUID not a Value*
198     // (which would have been assigned an ID by the ValueEnumerator).
199     // The starting ValueId is just after the number of values in the
200     // ValueEnumerator, so that they can be emitted in the VST.
201     GlobalValueId = VE.getValues().size();
202     if (!Index)
203       return;
204     for (const auto &GUIDSummaryLists : *Index)
205       // Examine all summaries for this GUID.
206       for (auto &Summary : GUIDSummaryLists.second.SummaryList)
207         if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) {
208           // For each call in the function summary, see if the call
209           // is to a GUID (which means it is for an indirect call,
210           // otherwise we would have a Value for it). If so, synthesize
211           // a value id.
212           for (auto &CallEdge : FS->calls())
213             if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
214               assignValueId(CallEdge.first.getGUID());
215 
216           // For each referenced variables in the function summary, see if the
217           // variable is represented by a GUID (as opposed to a symbol to
218           // declarations or definitions in the module). If so, synthesize a
219           // value id.
220           for (auto &RefEdge : FS->refs())
221             if (!RefEdge.haveGVs() || !RefEdge.getValue())
222               assignValueId(RefEdge.getGUID());
223         }
224   }
225 
226 protected:
227   void writePerModuleGlobalValueSummary();
228 
229 private:
230   void writePerModuleFunctionSummaryRecord(
231       SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
232       unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
233       unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F);
234   void writeModuleLevelReferences(const GlobalVariable &V,
235                                   SmallVector<uint64_t, 64> &NameVals,
236                                   unsigned FSModRefsAbbrev,
237                                   unsigned FSModVTableRefsAbbrev);
238 
239   void assignValueId(GlobalValue::GUID ValGUID) {
240     GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
241   }
242 
243   unsigned getValueId(GlobalValue::GUID ValGUID) {
244     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
245     // Expect that any GUID value had a value Id assigned by an
246     // earlier call to assignValueId.
247     assert(VMI != GUIDToValueIdMap.end() &&
248            "GUID does not have assigned value Id");
249     return VMI->second;
250   }
251 
252   // Helper to get the valueId for the type of value recorded in VI.
253   unsigned getValueId(ValueInfo VI) {
254     if (!VI.haveGVs() || !VI.getValue())
255       return getValueId(VI.getGUID());
256     return VE.getValueID(VI.getValue());
257   }
258 
259   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
260 };
261 
262 /// Class to manage the bitcode writing for a module.
263 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
264   /// True if a module hash record should be written.
265   bool GenerateHash;
266 
267   /// If non-null, when GenerateHash is true, the resulting hash is written
268   /// into ModHash.
269   ModuleHash *ModHash;
270 
271   SHA1 Hasher;
272 
273   /// The start bit of the identification block.
274   uint64_t BitcodeStartBit;
275 
276 public:
277   /// Constructs a ModuleBitcodeWriter object for the given Module,
278   /// writing to the provided \p Buffer.
279   ModuleBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
280                       BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
281                       const ModuleSummaryIndex *Index, bool GenerateHash,
282                       ModuleHash *ModHash = nullptr)
283       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
284                                 ShouldPreserveUseListOrder, Index),
285         GenerateHash(GenerateHash), ModHash(ModHash),
286         BitcodeStartBit(Stream.GetCurrentBitNo()) {}
287 
288   /// Emit the current module to the bitstream.
289   void write();
290 
291 private:
292   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
293 
294   size_t addToStrtab(StringRef Str);
295 
296   void writeAttributeGroupTable();
297   void writeAttributeTable();
298   void writeTypeTable();
299   void writeComdats();
300   void writeValueSymbolTableForwardDecl();
301   void writeModuleInfo();
302   void writeValueAsMetadata(const ValueAsMetadata *MD,
303                             SmallVectorImpl<uint64_t> &Record);
304   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
305                     unsigned Abbrev);
306   unsigned createDILocationAbbrev();
307   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
308                        unsigned &Abbrev);
309   unsigned createGenericDINodeAbbrev();
310   void writeGenericDINode(const GenericDINode *N,
311                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
312   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
313                        unsigned Abbrev);
314   void writeDIGenericSubrange(const DIGenericSubrange *N,
315                               SmallVectorImpl<uint64_t> &Record,
316                               unsigned Abbrev);
317   void writeDIEnumerator(const DIEnumerator *N,
318                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
319   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
320                         unsigned Abbrev);
321   void writeDIStringType(const DIStringType *N,
322                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
323   void writeDIDerivedType(const DIDerivedType *N,
324                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
325   void writeDICompositeType(const DICompositeType *N,
326                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
327   void writeDISubroutineType(const DISubroutineType *N,
328                              SmallVectorImpl<uint64_t> &Record,
329                              unsigned Abbrev);
330   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
331                    unsigned Abbrev);
332   void writeDICompileUnit(const DICompileUnit *N,
333                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
334   void writeDISubprogram(const DISubprogram *N,
335                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
336   void writeDILexicalBlock(const DILexicalBlock *N,
337                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
338   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
339                                SmallVectorImpl<uint64_t> &Record,
340                                unsigned Abbrev);
341   void writeDICommonBlock(const DICommonBlock *N,
342                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
343   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
344                         unsigned Abbrev);
345   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
346                     unsigned Abbrev);
347   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
348                         unsigned Abbrev);
349   void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record);
350   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
351                      unsigned Abbrev);
352   void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record,
353                        unsigned Abbrev);
354   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
355                                     SmallVectorImpl<uint64_t> &Record,
356                                     unsigned Abbrev);
357   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
358                                      SmallVectorImpl<uint64_t> &Record,
359                                      unsigned Abbrev);
360   void writeDIGlobalVariable(const DIGlobalVariable *N,
361                              SmallVectorImpl<uint64_t> &Record,
362                              unsigned Abbrev);
363   void writeDILocalVariable(const DILocalVariable *N,
364                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
365   void writeDILabel(const DILabel *N,
366                     SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
367   void writeDIExpression(const DIExpression *N,
368                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
369   void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
370                                        SmallVectorImpl<uint64_t> &Record,
371                                        unsigned Abbrev);
372   void writeDIObjCProperty(const DIObjCProperty *N,
373                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
374   void writeDIImportedEntity(const DIImportedEntity *N,
375                              SmallVectorImpl<uint64_t> &Record,
376                              unsigned Abbrev);
377   unsigned createNamedMetadataAbbrev();
378   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
379   unsigned createMetadataStringsAbbrev();
380   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
381                             SmallVectorImpl<uint64_t> &Record);
382   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
383                             SmallVectorImpl<uint64_t> &Record,
384                             std::vector<unsigned> *MDAbbrevs = nullptr,
385                             std::vector<uint64_t> *IndexPos = nullptr);
386   void writeModuleMetadata();
387   void writeFunctionMetadata(const Function &F);
388   void writeFunctionMetadataAttachment(const Function &F);
389   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
390                                     const GlobalObject &GO);
391   void writeModuleMetadataKinds();
392   void writeOperandBundleTags();
393   void writeSyncScopeNames();
394   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
395   void writeModuleConstants();
396   bool pushValueAndType(const Value *V, unsigned InstID,
397                         SmallVectorImpl<unsigned> &Vals);
398   void writeOperandBundles(const CallBase &CB, unsigned InstID);
399   void pushValue(const Value *V, unsigned InstID,
400                  SmallVectorImpl<unsigned> &Vals);
401   void pushValueSigned(const Value *V, unsigned InstID,
402                        SmallVectorImpl<uint64_t> &Vals);
403   void writeInstruction(const Instruction &I, unsigned InstID,
404                         SmallVectorImpl<unsigned> &Vals);
405   void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
406   void writeGlobalValueSymbolTable(
407       DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
408   void writeUseList(UseListOrder &&Order);
409   void writeUseListBlock(const Function *F);
410   void
411   writeFunction(const Function &F,
412                 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
413   void writeBlockInfo();
414   void writeModuleHash(StringRef View);
415 
416   unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
417     return unsigned(SSID);
418   }
419 
420   unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
421 };
422 
423 /// Class to manage the bitcode writing for a combined index.
424 class IndexBitcodeWriter : public BitcodeWriterBase {
425   /// The combined index to write to bitcode.
426   const ModuleSummaryIndex &Index;
427 
428   /// When writing combined summaries, provides the set of global value
429   /// summaries for which the value (function, function alias, etc) should be
430   /// imported as a declaration.
431   const GVSummaryPtrSet *DecSummaries = nullptr;
432 
433   /// When writing a subset of the index for distributed backends, client
434   /// provides a map of modules to the corresponding GUIDs/summaries to write.
435   const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex;
436 
437   /// Map that holds the correspondence between the GUID used in the combined
438   /// index and a value id generated by this class to use in references.
439   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
440 
441   // The stack ids used by this index, which will be a subset of those in
442   // the full index in the case of distributed indexes.
443   std::vector<uint64_t> StackIds;
444 
445   // Keep a map of the stack id indices used by records being written for this
446   // index to the index of the corresponding stack id in the above StackIds
447   // vector. Ensures we write each referenced stack id once.
448   DenseMap<unsigned, unsigned> StackIdIndicesToIndex;
449 
450   /// Tracks the last value id recorded in the GUIDToValueMap.
451   unsigned GlobalValueId = 0;
452 
453   /// Tracks the assignment of module paths in the module path string table to
454   /// an id assigned for use in summary references to the module path.
455   DenseMap<StringRef, uint64_t> ModuleIdMap;
456 
457 public:
458   /// Constructs a IndexBitcodeWriter object for the given combined index,
459   /// writing to the provided \p Buffer. When writing a subset of the index
460   /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
461   /// If provided, \p DecSummaries specifies the set of summaries for which
462   /// the corresponding functions or aliased functions should be imported as a
463   /// declaration (but not definition) for each module.
464   IndexBitcodeWriter(
465       BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
466       const ModuleSummaryIndex &Index,
467       const GVSummaryPtrSet *DecSummaries = nullptr,
468       const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex = nullptr)
469       : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
470         DecSummaries(DecSummaries),
471         ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
472 
473     // See if the StackIdIndex was already added to the StackId map and
474     // vector. If not, record it.
475     auto RecordStackIdReference = [&](unsigned StackIdIndex) {
476       // If the StackIdIndex is not yet in the map, the below insert ensures
477       // that it will point to the new StackIds vector entry we push to just
478       // below.
479       auto Inserted =
480           StackIdIndicesToIndex.insert({StackIdIndex, StackIds.size()});
481       if (Inserted.second)
482         StackIds.push_back(Index.getStackIdAtIndex(StackIdIndex));
483     };
484 
485     // Assign unique value ids to all summaries to be written, for use
486     // in writing out the call graph edges. Save the mapping from GUID
487     // to the new global value id to use when writing those edges, which
488     // are currently saved in the index in terms of GUID.
489     forEachSummary([&](GVInfo I, bool IsAliasee) {
490       GUIDToValueIdMap[I.first] = ++GlobalValueId;
491       if (IsAliasee)
492         return;
493       auto *FS = dyn_cast<FunctionSummary>(I.second);
494       if (!FS)
495         return;
496       // Record all stack id indices actually used in the summary entries being
497       // written, so that we can compact them in the case of distributed ThinLTO
498       // indexes.
499       for (auto &CI : FS->callsites()) {
500         // If the stack id list is empty, this callsite info was synthesized for
501         // a missing tail call frame. Ensure that the callee's GUID gets a value
502         // id. Normally we only generate these for defined summaries, which in
503         // the case of distributed ThinLTO is only the functions already defined
504         // in the module or that we want to import. We don't bother to include
505         // all the callee symbols as they aren't normally needed in the backend.
506         // However, for the synthesized callsite infos we do need the callee
507         // GUID in the backend so that we can correlate the identified callee
508         // with this callsite info (which for non-tail calls is done by the
509         // ordering of the callsite infos and verified via stack ids).
510         if (CI.StackIdIndices.empty()) {
511           GUIDToValueIdMap[CI.Callee.getGUID()] = ++GlobalValueId;
512           continue;
513         }
514         for (auto Idx : CI.StackIdIndices)
515           RecordStackIdReference(Idx);
516       }
517       for (auto &AI : FS->allocs())
518         for (auto &MIB : AI.MIBs)
519           for (auto Idx : MIB.StackIdIndices)
520             RecordStackIdReference(Idx);
521     });
522   }
523 
524   /// The below iterator returns the GUID and associated summary.
525   using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
526 
527   /// Calls the callback for each value GUID and summary to be written to
528   /// bitcode. This hides the details of whether they are being pulled from the
529   /// entire index or just those in a provided ModuleToSummariesForIndex map.
530   template<typename Functor>
531   void forEachSummary(Functor Callback) {
532     if (ModuleToSummariesForIndex) {
533       for (auto &M : *ModuleToSummariesForIndex)
534         for (auto &Summary : M.second) {
535           Callback(Summary, false);
536           // Ensure aliasee is handled, e.g. for assigning a valueId,
537           // even if we are not importing the aliasee directly (the
538           // imported alias will contain a copy of aliasee).
539           if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
540             Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
541         }
542     } else {
543       for (auto &Summaries : Index)
544         for (auto &Summary : Summaries.second.SummaryList)
545           Callback({Summaries.first, Summary.get()}, false);
546     }
547   }
548 
549   /// Calls the callback for each entry in the modulePaths StringMap that
550   /// should be written to the module path string table. This hides the details
551   /// of whether they are being pulled from the entire index or just those in a
552   /// provided ModuleToSummariesForIndex map.
553   template <typename Functor> void forEachModule(Functor Callback) {
554     if (ModuleToSummariesForIndex) {
555       for (const auto &M : *ModuleToSummariesForIndex) {
556         const auto &MPI = Index.modulePaths().find(M.first);
557         if (MPI == Index.modulePaths().end()) {
558           // This should only happen if the bitcode file was empty, in which
559           // case we shouldn't be importing (the ModuleToSummariesForIndex
560           // would only include the module we are writing and index for).
561           assert(ModuleToSummariesForIndex->size() == 1);
562           continue;
563         }
564         Callback(*MPI);
565       }
566     } else {
567       // Since StringMap iteration order isn't guaranteed, order by path string
568       // first.
569       // FIXME: Make this a vector of StringMapEntry instead to avoid the later
570       // map lookup.
571       std::vector<StringRef> ModulePaths;
572       for (auto &[ModPath, _] : Index.modulePaths())
573         ModulePaths.push_back(ModPath);
574       llvm::sort(ModulePaths.begin(), ModulePaths.end());
575       for (auto &ModPath : ModulePaths)
576         Callback(*Index.modulePaths().find(ModPath));
577     }
578   }
579 
580   /// Main entry point for writing a combined index to bitcode.
581   void write();
582 
583 private:
584   void writeModStrings();
585   void writeCombinedGlobalValueSummary();
586 
587   std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
588     auto VMI = GUIDToValueIdMap.find(ValGUID);
589     if (VMI == GUIDToValueIdMap.end())
590       return std::nullopt;
591     return VMI->second;
592   }
593 
594   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
595 };
596 
597 } // end anonymous namespace
598 
599 static unsigned getEncodedCastOpcode(unsigned Opcode) {
600   switch (Opcode) {
601   default: llvm_unreachable("Unknown cast instruction!");
602   case Instruction::Trunc   : return bitc::CAST_TRUNC;
603   case Instruction::ZExt    : return bitc::CAST_ZEXT;
604   case Instruction::SExt    : return bitc::CAST_SEXT;
605   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
606   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
607   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
608   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
609   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
610   case Instruction::FPExt   : return bitc::CAST_FPEXT;
611   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
612   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
613   case Instruction::BitCast : return bitc::CAST_BITCAST;
614   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
615   }
616 }
617 
618 static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
619   switch (Opcode) {
620   default: llvm_unreachable("Unknown binary instruction!");
621   case Instruction::FNeg: return bitc::UNOP_FNEG;
622   }
623 }
624 
625 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
626   switch (Opcode) {
627   default: llvm_unreachable("Unknown binary instruction!");
628   case Instruction::Add:
629   case Instruction::FAdd: return bitc::BINOP_ADD;
630   case Instruction::Sub:
631   case Instruction::FSub: return bitc::BINOP_SUB;
632   case Instruction::Mul:
633   case Instruction::FMul: return bitc::BINOP_MUL;
634   case Instruction::UDiv: return bitc::BINOP_UDIV;
635   case Instruction::FDiv:
636   case Instruction::SDiv: return bitc::BINOP_SDIV;
637   case Instruction::URem: return bitc::BINOP_UREM;
638   case Instruction::FRem:
639   case Instruction::SRem: return bitc::BINOP_SREM;
640   case Instruction::Shl:  return bitc::BINOP_SHL;
641   case Instruction::LShr: return bitc::BINOP_LSHR;
642   case Instruction::AShr: return bitc::BINOP_ASHR;
643   case Instruction::And:  return bitc::BINOP_AND;
644   case Instruction::Or:   return bitc::BINOP_OR;
645   case Instruction::Xor:  return bitc::BINOP_XOR;
646   }
647 }
648 
649 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
650   switch (Op) {
651   default: llvm_unreachable("Unknown RMW operation!");
652   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
653   case AtomicRMWInst::Add: return bitc::RMW_ADD;
654   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
655   case AtomicRMWInst::And: return bitc::RMW_AND;
656   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
657   case AtomicRMWInst::Or: return bitc::RMW_OR;
658   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
659   case AtomicRMWInst::Max: return bitc::RMW_MAX;
660   case AtomicRMWInst::Min: return bitc::RMW_MIN;
661   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
662   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
663   case AtomicRMWInst::FAdd: return bitc::RMW_FADD;
664   case AtomicRMWInst::FSub: return bitc::RMW_FSUB;
665   case AtomicRMWInst::FMax: return bitc::RMW_FMAX;
666   case AtomicRMWInst::FMin: return bitc::RMW_FMIN;
667   case AtomicRMWInst::UIncWrap:
668     return bitc::RMW_UINC_WRAP;
669   case AtomicRMWInst::UDecWrap:
670     return bitc::RMW_UDEC_WRAP;
671   case AtomicRMWInst::USubCond:
672     return bitc::RMW_USUB_COND;
673   case AtomicRMWInst::USubSat:
674     return bitc::RMW_USUB_SAT;
675   }
676 }
677 
678 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
679   switch (Ordering) {
680   case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
681   case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
682   case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
683   case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
684   case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
685   case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
686   case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
687   }
688   llvm_unreachable("Invalid ordering");
689 }
690 
691 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
692                               StringRef Str, unsigned AbbrevToUse) {
693   SmallVector<unsigned, 64> Vals;
694 
695   // Code: [strchar x N]
696   for (char C : Str) {
697     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C))
698       AbbrevToUse = 0;
699     Vals.push_back(C);
700   }
701 
702   // Emit the finished record.
703   Stream.EmitRecord(Code, Vals, AbbrevToUse);
704 }
705 
706 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
707   switch (Kind) {
708   case Attribute::Alignment:
709     return bitc::ATTR_KIND_ALIGNMENT;
710   case Attribute::AllocAlign:
711     return bitc::ATTR_KIND_ALLOC_ALIGN;
712   case Attribute::AllocSize:
713     return bitc::ATTR_KIND_ALLOC_SIZE;
714   case Attribute::AlwaysInline:
715     return bitc::ATTR_KIND_ALWAYS_INLINE;
716   case Attribute::Builtin:
717     return bitc::ATTR_KIND_BUILTIN;
718   case Attribute::ByVal:
719     return bitc::ATTR_KIND_BY_VAL;
720   case Attribute::Convergent:
721     return bitc::ATTR_KIND_CONVERGENT;
722   case Attribute::InAlloca:
723     return bitc::ATTR_KIND_IN_ALLOCA;
724   case Attribute::Cold:
725     return bitc::ATTR_KIND_COLD;
726   case Attribute::DisableSanitizerInstrumentation:
727     return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION;
728   case Attribute::FnRetThunkExtern:
729     return bitc::ATTR_KIND_FNRETTHUNK_EXTERN;
730   case Attribute::Hot:
731     return bitc::ATTR_KIND_HOT;
732   case Attribute::ElementType:
733     return bitc::ATTR_KIND_ELEMENTTYPE;
734   case Attribute::HybridPatchable:
735     return bitc::ATTR_KIND_HYBRID_PATCHABLE;
736   case Attribute::InlineHint:
737     return bitc::ATTR_KIND_INLINE_HINT;
738   case Attribute::InReg:
739     return bitc::ATTR_KIND_IN_REG;
740   case Attribute::JumpTable:
741     return bitc::ATTR_KIND_JUMP_TABLE;
742   case Attribute::MinSize:
743     return bitc::ATTR_KIND_MIN_SIZE;
744   case Attribute::AllocatedPointer:
745     return bitc::ATTR_KIND_ALLOCATED_POINTER;
746   case Attribute::AllocKind:
747     return bitc::ATTR_KIND_ALLOC_KIND;
748   case Attribute::Memory:
749     return bitc::ATTR_KIND_MEMORY;
750   case Attribute::NoFPClass:
751     return bitc::ATTR_KIND_NOFPCLASS;
752   case Attribute::Naked:
753     return bitc::ATTR_KIND_NAKED;
754   case Attribute::Nest:
755     return bitc::ATTR_KIND_NEST;
756   case Attribute::NoAlias:
757     return bitc::ATTR_KIND_NO_ALIAS;
758   case Attribute::NoBuiltin:
759     return bitc::ATTR_KIND_NO_BUILTIN;
760   case Attribute::NoCallback:
761     return bitc::ATTR_KIND_NO_CALLBACK;
762   case Attribute::NoCapture:
763     return bitc::ATTR_KIND_NO_CAPTURE;
764   case Attribute::NoDuplicate:
765     return bitc::ATTR_KIND_NO_DUPLICATE;
766   case Attribute::NoFree:
767     return bitc::ATTR_KIND_NOFREE;
768   case Attribute::NoImplicitFloat:
769     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
770   case Attribute::NoInline:
771     return bitc::ATTR_KIND_NO_INLINE;
772   case Attribute::NoRecurse:
773     return bitc::ATTR_KIND_NO_RECURSE;
774   case Attribute::NoMerge:
775     return bitc::ATTR_KIND_NO_MERGE;
776   case Attribute::NonLazyBind:
777     return bitc::ATTR_KIND_NON_LAZY_BIND;
778   case Attribute::NonNull:
779     return bitc::ATTR_KIND_NON_NULL;
780   case Attribute::Dereferenceable:
781     return bitc::ATTR_KIND_DEREFERENCEABLE;
782   case Attribute::DereferenceableOrNull:
783     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
784   case Attribute::NoRedZone:
785     return bitc::ATTR_KIND_NO_RED_ZONE;
786   case Attribute::NoReturn:
787     return bitc::ATTR_KIND_NO_RETURN;
788   case Attribute::NoSync:
789     return bitc::ATTR_KIND_NOSYNC;
790   case Attribute::NoCfCheck:
791     return bitc::ATTR_KIND_NOCF_CHECK;
792   case Attribute::NoProfile:
793     return bitc::ATTR_KIND_NO_PROFILE;
794   case Attribute::SkipProfile:
795     return bitc::ATTR_KIND_SKIP_PROFILE;
796   case Attribute::NoUnwind:
797     return bitc::ATTR_KIND_NO_UNWIND;
798   case Attribute::NoSanitizeBounds:
799     return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS;
800   case Attribute::NoSanitizeCoverage:
801     return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE;
802   case Attribute::NullPointerIsValid:
803     return bitc::ATTR_KIND_NULL_POINTER_IS_VALID;
804   case Attribute::OptimizeForDebugging:
805     return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING;
806   case Attribute::OptForFuzzing:
807     return bitc::ATTR_KIND_OPT_FOR_FUZZING;
808   case Attribute::OptimizeForSize:
809     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
810   case Attribute::OptimizeNone:
811     return bitc::ATTR_KIND_OPTIMIZE_NONE;
812   case Attribute::ReadNone:
813     return bitc::ATTR_KIND_READ_NONE;
814   case Attribute::ReadOnly:
815     return bitc::ATTR_KIND_READ_ONLY;
816   case Attribute::Returned:
817     return bitc::ATTR_KIND_RETURNED;
818   case Attribute::ReturnsTwice:
819     return bitc::ATTR_KIND_RETURNS_TWICE;
820   case Attribute::SExt:
821     return bitc::ATTR_KIND_S_EXT;
822   case Attribute::Speculatable:
823     return bitc::ATTR_KIND_SPECULATABLE;
824   case Attribute::StackAlignment:
825     return bitc::ATTR_KIND_STACK_ALIGNMENT;
826   case Attribute::StackProtect:
827     return bitc::ATTR_KIND_STACK_PROTECT;
828   case Attribute::StackProtectReq:
829     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
830   case Attribute::StackProtectStrong:
831     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
832   case Attribute::SafeStack:
833     return bitc::ATTR_KIND_SAFESTACK;
834   case Attribute::ShadowCallStack:
835     return bitc::ATTR_KIND_SHADOWCALLSTACK;
836   case Attribute::StrictFP:
837     return bitc::ATTR_KIND_STRICT_FP;
838   case Attribute::StructRet:
839     return bitc::ATTR_KIND_STRUCT_RET;
840   case Attribute::SanitizeAddress:
841     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
842   case Attribute::SanitizeHWAddress:
843     return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
844   case Attribute::SanitizeThread:
845     return bitc::ATTR_KIND_SANITIZE_THREAD;
846   case Attribute::SanitizeMemory:
847     return bitc::ATTR_KIND_SANITIZE_MEMORY;
848   case Attribute::SanitizeNumericalStability:
849     return bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY;
850   case Attribute::SanitizeRealtime:
851     return bitc::ATTR_KIND_SANITIZE_REALTIME;
852   case Attribute::SpeculativeLoadHardening:
853     return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
854   case Attribute::SwiftError:
855     return bitc::ATTR_KIND_SWIFT_ERROR;
856   case Attribute::SwiftSelf:
857     return bitc::ATTR_KIND_SWIFT_SELF;
858   case Attribute::SwiftAsync:
859     return bitc::ATTR_KIND_SWIFT_ASYNC;
860   case Attribute::UWTable:
861     return bitc::ATTR_KIND_UW_TABLE;
862   case Attribute::VScaleRange:
863     return bitc::ATTR_KIND_VSCALE_RANGE;
864   case Attribute::WillReturn:
865     return bitc::ATTR_KIND_WILLRETURN;
866   case Attribute::WriteOnly:
867     return bitc::ATTR_KIND_WRITEONLY;
868   case Attribute::ZExt:
869     return bitc::ATTR_KIND_Z_EXT;
870   case Attribute::ImmArg:
871     return bitc::ATTR_KIND_IMMARG;
872   case Attribute::SanitizeMemTag:
873     return bitc::ATTR_KIND_SANITIZE_MEMTAG;
874   case Attribute::Preallocated:
875     return bitc::ATTR_KIND_PREALLOCATED;
876   case Attribute::NoUndef:
877     return bitc::ATTR_KIND_NOUNDEF;
878   case Attribute::ByRef:
879     return bitc::ATTR_KIND_BYREF;
880   case Attribute::MustProgress:
881     return bitc::ATTR_KIND_MUSTPROGRESS;
882   case Attribute::PresplitCoroutine:
883     return bitc::ATTR_KIND_PRESPLIT_COROUTINE;
884   case Attribute::Writable:
885     return bitc::ATTR_KIND_WRITABLE;
886   case Attribute::CoroDestroyOnlyWhenComplete:
887     return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE;
888   case Attribute::DeadOnUnwind:
889     return bitc::ATTR_KIND_DEAD_ON_UNWIND;
890   case Attribute::Range:
891     return bitc::ATTR_KIND_RANGE;
892   case Attribute::Initializes:
893     return bitc::ATTR_KIND_INITIALIZES;
894   case Attribute::EndAttrKinds:
895     llvm_unreachable("Can not encode end-attribute kinds marker.");
896   case Attribute::None:
897     llvm_unreachable("Can not encode none-attribute.");
898   case Attribute::EmptyKey:
899   case Attribute::TombstoneKey:
900     llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
901   }
902 
903   llvm_unreachable("Trying to encode unknown attribute");
904 }
905 
906 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
907   if ((int64_t)V >= 0)
908     Vals.push_back(V << 1);
909   else
910     Vals.push_back((-V << 1) | 1);
911 }
912 
913 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) {
914   // We have an arbitrary precision integer value to write whose
915   // bit width is > 64. However, in canonical unsigned integer
916   // format it is likely that the high bits are going to be zero.
917   // So, we only write the number of active words.
918   unsigned NumWords = A.getActiveWords();
919   const uint64_t *RawData = A.getRawData();
920   for (unsigned i = 0; i < NumWords; i++)
921     emitSignedInt64(Vals, RawData[i]);
922 }
923 
924 static void emitConstantRange(SmallVectorImpl<uint64_t> &Record,
925                               const ConstantRange &CR, bool EmitBitWidth) {
926   unsigned BitWidth = CR.getBitWidth();
927   if (EmitBitWidth)
928     Record.push_back(BitWidth);
929   if (BitWidth > 64) {
930     Record.push_back(CR.getLower().getActiveWords() |
931                      (uint64_t(CR.getUpper().getActiveWords()) << 32));
932     emitWideAPInt(Record, CR.getLower());
933     emitWideAPInt(Record, CR.getUpper());
934   } else {
935     emitSignedInt64(Record, CR.getLower().getSExtValue());
936     emitSignedInt64(Record, CR.getUpper().getSExtValue());
937   }
938 }
939 
940 void ModuleBitcodeWriter::writeAttributeGroupTable() {
941   const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
942       VE.getAttributeGroups();
943   if (AttrGrps.empty()) return;
944 
945   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
946 
947   SmallVector<uint64_t, 64> Record;
948   for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
949     unsigned AttrListIndex = Pair.first;
950     AttributeSet AS = Pair.second;
951     Record.push_back(VE.getAttributeGroupID(Pair));
952     Record.push_back(AttrListIndex);
953 
954     for (Attribute Attr : AS) {
955       if (Attr.isEnumAttribute()) {
956         Record.push_back(0);
957         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
958       } else if (Attr.isIntAttribute()) {
959         Record.push_back(1);
960         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
961         Record.push_back(Attr.getValueAsInt());
962       } else if (Attr.isStringAttribute()) {
963         StringRef Kind = Attr.getKindAsString();
964         StringRef Val = Attr.getValueAsString();
965 
966         Record.push_back(Val.empty() ? 3 : 4);
967         Record.append(Kind.begin(), Kind.end());
968         Record.push_back(0);
969         if (!Val.empty()) {
970           Record.append(Val.begin(), Val.end());
971           Record.push_back(0);
972         }
973       } else if (Attr.isTypeAttribute()) {
974         Type *Ty = Attr.getValueAsType();
975         Record.push_back(Ty ? 6 : 5);
976         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
977         if (Ty)
978           Record.push_back(VE.getTypeID(Attr.getValueAsType()));
979       } else if (Attr.isConstantRangeAttribute()) {
980         Record.push_back(7);
981         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
982         emitConstantRange(Record, Attr.getValueAsConstantRange(),
983                           /*EmitBitWidth=*/true);
984       } else {
985         assert(Attr.isConstantRangeListAttribute());
986         Record.push_back(8);
987         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
988         ArrayRef<ConstantRange> Val = Attr.getValueAsConstantRangeList();
989         Record.push_back(Val.size());
990         Record.push_back(Val[0].getBitWidth());
991         for (auto &CR : Val)
992           emitConstantRange(Record, CR, /*EmitBitWidth=*/false);
993       }
994     }
995 
996     Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
997     Record.clear();
998   }
999 
1000   Stream.ExitBlock();
1001 }
1002 
1003 void ModuleBitcodeWriter::writeAttributeTable() {
1004   const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
1005   if (Attrs.empty()) return;
1006 
1007   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
1008 
1009   SmallVector<uint64_t, 64> Record;
1010   for (const AttributeList &AL : Attrs) {
1011     for (unsigned i : AL.indexes()) {
1012       AttributeSet AS = AL.getAttributes(i);
1013       if (AS.hasAttributes())
1014         Record.push_back(VE.getAttributeGroupID({i, AS}));
1015     }
1016 
1017     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
1018     Record.clear();
1019   }
1020 
1021   Stream.ExitBlock();
1022 }
1023 
1024 /// WriteTypeTable - Write out the type table for a module.
1025 void ModuleBitcodeWriter::writeTypeTable() {
1026   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
1027 
1028   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
1029   SmallVector<uint64_t, 64> TypeVals;
1030 
1031   uint64_t NumBits = VE.computeBitsRequiredForTypeIndices();
1032 
1033   // Abbrev for TYPE_CODE_OPAQUE_POINTER.
1034   auto Abbv = std::make_shared<BitCodeAbbrev>();
1035   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER));
1036   Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
1037   unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1038 
1039   // Abbrev for TYPE_CODE_FUNCTION.
1040   Abbv = std::make_shared<BitCodeAbbrev>();
1041   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
1042   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
1043   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1044   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1045   unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1046 
1047   // Abbrev for TYPE_CODE_STRUCT_ANON.
1048   Abbv = std::make_shared<BitCodeAbbrev>();
1049   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
1050   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
1051   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1052   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1053   unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1054 
1055   // Abbrev for TYPE_CODE_STRUCT_NAME.
1056   Abbv = std::make_shared<BitCodeAbbrev>();
1057   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
1058   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1059   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1060   unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1061 
1062   // Abbrev for TYPE_CODE_STRUCT_NAMED.
1063   Abbv = std::make_shared<BitCodeAbbrev>();
1064   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
1065   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
1066   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1067   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1068   unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1069 
1070   // Abbrev for TYPE_CODE_ARRAY.
1071   Abbv = std::make_shared<BitCodeAbbrev>();
1072   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
1073   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
1074   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1075   unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1076 
1077   // Emit an entry count so the reader can reserve space.
1078   TypeVals.push_back(TypeList.size());
1079   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
1080   TypeVals.clear();
1081 
1082   // Loop over all of the types, emitting each in turn.
1083   for (Type *T : TypeList) {
1084     int AbbrevToUse = 0;
1085     unsigned Code = 0;
1086 
1087     switch (T->getTypeID()) {
1088     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
1089     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
1090     case Type::BFloatTyID:    Code = bitc::TYPE_CODE_BFLOAT;    break;
1091     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
1092     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
1093     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
1094     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
1095     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
1096     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
1097     case Type::MetadataTyID:
1098       Code = bitc::TYPE_CODE_METADATA;
1099       break;
1100     case Type::X86_AMXTyID:   Code = bitc::TYPE_CODE_X86_AMX;   break;
1101     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
1102     case Type::IntegerTyID:
1103       // INTEGER: [width]
1104       Code = bitc::TYPE_CODE_INTEGER;
1105       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
1106       break;
1107     case Type::PointerTyID: {
1108       PointerType *PTy = cast<PointerType>(T);
1109       unsigned AddressSpace = PTy->getAddressSpace();
1110       // OPAQUE_POINTER: [address space]
1111       Code = bitc::TYPE_CODE_OPAQUE_POINTER;
1112       TypeVals.push_back(AddressSpace);
1113       if (AddressSpace == 0)
1114         AbbrevToUse = OpaquePtrAbbrev;
1115       break;
1116     }
1117     case Type::FunctionTyID: {
1118       FunctionType *FT = cast<FunctionType>(T);
1119       // FUNCTION: [isvararg, retty, paramty x N]
1120       Code = bitc::TYPE_CODE_FUNCTION;
1121       TypeVals.push_back(FT->isVarArg());
1122       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
1123       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
1124         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
1125       AbbrevToUse = FunctionAbbrev;
1126       break;
1127     }
1128     case Type::StructTyID: {
1129       StructType *ST = cast<StructType>(T);
1130       // STRUCT: [ispacked, eltty x N]
1131       TypeVals.push_back(ST->isPacked());
1132       // Output all of the element types.
1133       for (Type *ET : ST->elements())
1134         TypeVals.push_back(VE.getTypeID(ET));
1135 
1136       if (ST->isLiteral()) {
1137         Code = bitc::TYPE_CODE_STRUCT_ANON;
1138         AbbrevToUse = StructAnonAbbrev;
1139       } else {
1140         if (ST->isOpaque()) {
1141           Code = bitc::TYPE_CODE_OPAQUE;
1142         } else {
1143           Code = bitc::TYPE_CODE_STRUCT_NAMED;
1144           AbbrevToUse = StructNamedAbbrev;
1145         }
1146 
1147         // Emit the name if it is present.
1148         if (!ST->getName().empty())
1149           writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
1150                             StructNameAbbrev);
1151       }
1152       break;
1153     }
1154     case Type::ArrayTyID: {
1155       ArrayType *AT = cast<ArrayType>(T);
1156       // ARRAY: [numelts, eltty]
1157       Code = bitc::TYPE_CODE_ARRAY;
1158       TypeVals.push_back(AT->getNumElements());
1159       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
1160       AbbrevToUse = ArrayAbbrev;
1161       break;
1162     }
1163     case Type::FixedVectorTyID:
1164     case Type::ScalableVectorTyID: {
1165       VectorType *VT = cast<VectorType>(T);
1166       // VECTOR [numelts, eltty] or
1167       //        [numelts, eltty, scalable]
1168       Code = bitc::TYPE_CODE_VECTOR;
1169       TypeVals.push_back(VT->getElementCount().getKnownMinValue());
1170       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
1171       if (isa<ScalableVectorType>(VT))
1172         TypeVals.push_back(true);
1173       break;
1174     }
1175     case Type::TargetExtTyID: {
1176       TargetExtType *TET = cast<TargetExtType>(T);
1177       Code = bitc::TYPE_CODE_TARGET_TYPE;
1178       writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(),
1179                         StructNameAbbrev);
1180       TypeVals.push_back(TET->getNumTypeParameters());
1181       for (Type *InnerTy : TET->type_params())
1182         TypeVals.push_back(VE.getTypeID(InnerTy));
1183       for (unsigned IntParam : TET->int_params())
1184         TypeVals.push_back(IntParam);
1185       break;
1186     }
1187     case Type::TypedPointerTyID:
1188       llvm_unreachable("Typed pointers cannot be added to IR modules");
1189     }
1190 
1191     // Emit the finished record.
1192     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
1193     TypeVals.clear();
1194   }
1195 
1196   Stream.ExitBlock();
1197 }
1198 
1199 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
1200   switch (Linkage) {
1201   case GlobalValue::ExternalLinkage:
1202     return 0;
1203   case GlobalValue::WeakAnyLinkage:
1204     return 16;
1205   case GlobalValue::AppendingLinkage:
1206     return 2;
1207   case GlobalValue::InternalLinkage:
1208     return 3;
1209   case GlobalValue::LinkOnceAnyLinkage:
1210     return 18;
1211   case GlobalValue::ExternalWeakLinkage:
1212     return 7;
1213   case GlobalValue::CommonLinkage:
1214     return 8;
1215   case GlobalValue::PrivateLinkage:
1216     return 9;
1217   case GlobalValue::WeakODRLinkage:
1218     return 17;
1219   case GlobalValue::LinkOnceODRLinkage:
1220     return 19;
1221   case GlobalValue::AvailableExternallyLinkage:
1222     return 12;
1223   }
1224   llvm_unreachable("Invalid linkage");
1225 }
1226 
1227 static unsigned getEncodedLinkage(const GlobalValue &GV) {
1228   return getEncodedLinkage(GV.getLinkage());
1229 }
1230 
1231 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
1232   uint64_t RawFlags = 0;
1233   RawFlags |= Flags.ReadNone;
1234   RawFlags |= (Flags.ReadOnly << 1);
1235   RawFlags |= (Flags.NoRecurse << 2);
1236   RawFlags |= (Flags.ReturnDoesNotAlias << 3);
1237   RawFlags |= (Flags.NoInline << 4);
1238   RawFlags |= (Flags.AlwaysInline << 5);
1239   RawFlags |= (Flags.NoUnwind << 6);
1240   RawFlags |= (Flags.MayThrow << 7);
1241   RawFlags |= (Flags.HasUnknownCall << 8);
1242   RawFlags |= (Flags.MustBeUnreachable << 9);
1243   return RawFlags;
1244 }
1245 
1246 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags
1247 // in BitcodeReader.cpp.
1248 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags,
1249                                          bool ImportAsDecl = false) {
1250   uint64_t RawFlags = 0;
1251 
1252   RawFlags |= Flags.NotEligibleToImport; // bool
1253   RawFlags |= (Flags.Live << 1);
1254   RawFlags |= (Flags.DSOLocal << 2);
1255   RawFlags |= (Flags.CanAutoHide << 3);
1256 
1257   // Linkage don't need to be remapped at that time for the summary. Any future
1258   // change to the getEncodedLinkage() function will need to be taken into
1259   // account here as well.
1260   RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
1261 
1262   RawFlags |= (Flags.Visibility << 8); // 2 bits
1263 
1264   unsigned ImportType = Flags.ImportType | ImportAsDecl;
1265   RawFlags |= (ImportType << 10); // 1 bit
1266 
1267   return RawFlags;
1268 }
1269 
1270 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
1271   uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) |
1272                       (Flags.Constant << 2) | Flags.VCallVisibility << 3;
1273   return RawFlags;
1274 }
1275 
1276 static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo &CI) {
1277   uint64_t RawFlags = 0;
1278 
1279   RawFlags |= CI.Hotness;            // 3 bits
1280   RawFlags |= (CI.HasTailCall << 3); // 1 bit
1281 
1282   return RawFlags;
1283 }
1284 
1285 static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo &CI) {
1286   uint64_t RawFlags = 0;
1287 
1288   RawFlags |= CI.RelBlockFreq; // CalleeInfo::RelBlockFreqBits bits
1289   RawFlags |= (CI.HasTailCall << CalleeInfo::RelBlockFreqBits); // 1 bit
1290 
1291   return RawFlags;
1292 }
1293 
1294 static unsigned getEncodedVisibility(const GlobalValue &GV) {
1295   switch (GV.getVisibility()) {
1296   case GlobalValue::DefaultVisibility:   return 0;
1297   case GlobalValue::HiddenVisibility:    return 1;
1298   case GlobalValue::ProtectedVisibility: return 2;
1299   }
1300   llvm_unreachable("Invalid visibility");
1301 }
1302 
1303 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1304   switch (GV.getDLLStorageClass()) {
1305   case GlobalValue::DefaultStorageClass:   return 0;
1306   case GlobalValue::DLLImportStorageClass: return 1;
1307   case GlobalValue::DLLExportStorageClass: return 2;
1308   }
1309   llvm_unreachable("Invalid DLL storage class");
1310 }
1311 
1312 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1313   switch (GV.getThreadLocalMode()) {
1314     case GlobalVariable::NotThreadLocal:         return 0;
1315     case GlobalVariable::GeneralDynamicTLSModel: return 1;
1316     case GlobalVariable::LocalDynamicTLSModel:   return 2;
1317     case GlobalVariable::InitialExecTLSModel:    return 3;
1318     case GlobalVariable::LocalExecTLSModel:      return 4;
1319   }
1320   llvm_unreachable("Invalid TLS model");
1321 }
1322 
1323 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1324   switch (C.getSelectionKind()) {
1325   case Comdat::Any:
1326     return bitc::COMDAT_SELECTION_KIND_ANY;
1327   case Comdat::ExactMatch:
1328     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1329   case Comdat::Largest:
1330     return bitc::COMDAT_SELECTION_KIND_LARGEST;
1331   case Comdat::NoDeduplicate:
1332     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1333   case Comdat::SameSize:
1334     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1335   }
1336   llvm_unreachable("Invalid selection kind");
1337 }
1338 
1339 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1340   switch (GV.getUnnamedAddr()) {
1341   case GlobalValue::UnnamedAddr::None:   return 0;
1342   case GlobalValue::UnnamedAddr::Local:  return 2;
1343   case GlobalValue::UnnamedAddr::Global: return 1;
1344   }
1345   llvm_unreachable("Invalid unnamed_addr");
1346 }
1347 
1348 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1349   if (GenerateHash)
1350     Hasher.update(Str);
1351   return StrtabBuilder.add(Str);
1352 }
1353 
1354 void ModuleBitcodeWriter::writeComdats() {
1355   SmallVector<unsigned, 64> Vals;
1356   for (const Comdat *C : VE.getComdats()) {
1357     // COMDAT: [strtab offset, strtab size, selection_kind]
1358     Vals.push_back(addToStrtab(C->getName()));
1359     Vals.push_back(C->getName().size());
1360     Vals.push_back(getEncodedComdatSelectionKind(*C));
1361     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1362     Vals.clear();
1363   }
1364 }
1365 
1366 /// Write a record that will eventually hold the word offset of the
1367 /// module-level VST. For now the offset is 0, which will be backpatched
1368 /// after the real VST is written. Saves the bit offset to backpatch.
1369 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1370   // Write a placeholder value in for the offset of the real VST,
1371   // which is written after the function blocks so that it can include
1372   // the offset of each function. The placeholder offset will be
1373   // updated when the real VST is written.
1374   auto Abbv = std::make_shared<BitCodeAbbrev>();
1375   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1376   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1377   // hold the real VST offset. Must use fixed instead of VBR as we don't
1378   // know how many VBR chunks to reserve ahead of time.
1379   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1380   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1381 
1382   // Emit the placeholder
1383   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1384   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1385 
1386   // Compute and save the bit offset to the placeholder, which will be
1387   // patched when the real VST is written. We can simply subtract the 32-bit
1388   // fixed size from the current bit number to get the location to backpatch.
1389   VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1390 }
1391 
1392 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1393 
1394 /// Determine the encoding to use for the given string name and length.
1395 static StringEncoding getStringEncoding(StringRef Str) {
1396   bool isChar6 = true;
1397   for (char C : Str) {
1398     if (isChar6)
1399       isChar6 = BitCodeAbbrevOp::isChar6(C);
1400     if ((unsigned char)C & 128)
1401       // don't bother scanning the rest.
1402       return SE_Fixed8;
1403   }
1404   if (isChar6)
1405     return SE_Char6;
1406   return SE_Fixed7;
1407 }
1408 
1409 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned),
1410               "Sanitizer Metadata is too large for naive serialization.");
1411 static unsigned
1412 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) {
1413   return Meta.NoAddress | (Meta.NoHWAddress << 1) |
1414          (Meta.Memtag << 2) | (Meta.IsDynInit << 3);
1415 }
1416 
1417 /// Emit top-level description of module, including target triple, inline asm,
1418 /// descriptors for global variables, and function prototype info.
1419 /// Returns the bit offset to backpatch with the location of the real VST.
1420 void ModuleBitcodeWriter::writeModuleInfo() {
1421   // Emit various pieces of data attached to a module.
1422   if (!M.getTargetTriple().empty())
1423     writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1424                       0 /*TODO*/);
1425   const std::string &DL = M.getDataLayoutStr();
1426   if (!DL.empty())
1427     writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1428   if (!M.getModuleInlineAsm().empty())
1429     writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1430                       0 /*TODO*/);
1431 
1432   // Emit information about sections and GC, computing how many there are. Also
1433   // compute the maximum alignment value.
1434   std::map<std::string, unsigned> SectionMap;
1435   std::map<std::string, unsigned> GCMap;
1436   MaybeAlign MaxAlignment;
1437   unsigned MaxGlobalType = 0;
1438   const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
1439     if (A)
1440       MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
1441   };
1442   for (const GlobalVariable &GV : M.globals()) {
1443     UpdateMaxAlignment(GV.getAlign());
1444     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1445     if (GV.hasSection()) {
1446       // Give section names unique ID's.
1447       unsigned &Entry = SectionMap[std::string(GV.getSection())];
1448       if (!Entry) {
1449         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1450                           0 /*TODO*/);
1451         Entry = SectionMap.size();
1452       }
1453     }
1454   }
1455   for (const Function &F : M) {
1456     UpdateMaxAlignment(F.getAlign());
1457     if (F.hasSection()) {
1458       // Give section names unique ID's.
1459       unsigned &Entry = SectionMap[std::string(F.getSection())];
1460       if (!Entry) {
1461         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1462                           0 /*TODO*/);
1463         Entry = SectionMap.size();
1464       }
1465     }
1466     if (F.hasGC()) {
1467       // Same for GC names.
1468       unsigned &Entry = GCMap[F.getGC()];
1469       if (!Entry) {
1470         writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1471                           0 /*TODO*/);
1472         Entry = GCMap.size();
1473       }
1474     }
1475   }
1476 
1477   // Emit abbrev for globals, now that we know # sections and max alignment.
1478   unsigned SimpleGVarAbbrev = 0;
1479   if (!M.global_empty()) {
1480     // Add an abbrev for common globals with no visibility or thread localness.
1481     auto Abbv = std::make_shared<BitCodeAbbrev>();
1482     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1483     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1484     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1485     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1486                               Log2_32_Ceil(MaxGlobalType+1)));
1487     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1488                                                            //| explicitType << 1
1489                                                            //| constant
1490     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1491     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1492     if (!MaxAlignment)                                     // Alignment.
1493       Abbv->Add(BitCodeAbbrevOp(0));
1494     else {
1495       unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
1496       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1497                                Log2_32_Ceil(MaxEncAlignment+1)));
1498     }
1499     if (SectionMap.empty())                                    // Section.
1500       Abbv->Add(BitCodeAbbrevOp(0));
1501     else
1502       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1503                                Log2_32_Ceil(SectionMap.size()+1)));
1504     // Don't bother emitting vis + thread local.
1505     SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1506   }
1507 
1508   SmallVector<unsigned, 64> Vals;
1509   // Emit the module's source file name.
1510   {
1511     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1512     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1513     if (Bits == SE_Char6)
1514       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1515     else if (Bits == SE_Fixed7)
1516       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1517 
1518     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1519     auto Abbv = std::make_shared<BitCodeAbbrev>();
1520     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1521     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1522     Abbv->Add(AbbrevOpToUse);
1523     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1524 
1525     for (const auto P : M.getSourceFileName())
1526       Vals.push_back((unsigned char)P);
1527 
1528     // Emit the finished record.
1529     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1530     Vals.clear();
1531   }
1532 
1533   // Emit the global variable information.
1534   for (const GlobalVariable &GV : M.globals()) {
1535     unsigned AbbrevToUse = 0;
1536 
1537     // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1538     //             linkage, alignment, section, visibility, threadlocal,
1539     //             unnamed_addr, externally_initialized, dllstorageclass,
1540     //             comdat, attributes, DSO_Local, GlobalSanitizer, code_model]
1541     Vals.push_back(addToStrtab(GV.getName()));
1542     Vals.push_back(GV.getName().size());
1543     Vals.push_back(VE.getTypeID(GV.getValueType()));
1544     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1545     Vals.push_back(GV.isDeclaration() ? 0 :
1546                    (VE.getValueID(GV.getInitializer()) + 1));
1547     Vals.push_back(getEncodedLinkage(GV));
1548     Vals.push_back(getEncodedAlign(GV.getAlign()));
1549     Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
1550                                    : 0);
1551     if (GV.isThreadLocal() ||
1552         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1553         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1554         GV.isExternallyInitialized() ||
1555         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1556         GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() ||
1557         GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) {
1558       Vals.push_back(getEncodedVisibility(GV));
1559       Vals.push_back(getEncodedThreadLocalMode(GV));
1560       Vals.push_back(getEncodedUnnamedAddr(GV));
1561       Vals.push_back(GV.isExternallyInitialized());
1562       Vals.push_back(getEncodedDLLStorageClass(GV));
1563       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1564 
1565       auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1566       Vals.push_back(VE.getAttributeListID(AL));
1567 
1568       Vals.push_back(GV.isDSOLocal());
1569       Vals.push_back(addToStrtab(GV.getPartition()));
1570       Vals.push_back(GV.getPartition().size());
1571 
1572       Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata(
1573                                                       GV.getSanitizerMetadata())
1574                                                 : 0));
1575       Vals.push_back(GV.getCodeModelRaw());
1576     } else {
1577       AbbrevToUse = SimpleGVarAbbrev;
1578     }
1579 
1580     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1581     Vals.clear();
1582   }
1583 
1584   // Emit the function proto information.
1585   for (const Function &F : M) {
1586     // FUNCTION:  [strtab offset, strtab size, type, callingconv, isproto,
1587     //             linkage, paramattrs, alignment, section, visibility, gc,
1588     //             unnamed_addr, prologuedata, dllstorageclass, comdat,
1589     //             prefixdata, personalityfn, DSO_Local, addrspace]
1590     Vals.push_back(addToStrtab(F.getName()));
1591     Vals.push_back(F.getName().size());
1592     Vals.push_back(VE.getTypeID(F.getFunctionType()));
1593     Vals.push_back(F.getCallingConv());
1594     Vals.push_back(F.isDeclaration());
1595     Vals.push_back(getEncodedLinkage(F));
1596     Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1597     Vals.push_back(getEncodedAlign(F.getAlign()));
1598     Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
1599                                   : 0);
1600     Vals.push_back(getEncodedVisibility(F));
1601     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1602     Vals.push_back(getEncodedUnnamedAddr(F));
1603     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1604                                        : 0);
1605     Vals.push_back(getEncodedDLLStorageClass(F));
1606     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1607     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1608                                      : 0);
1609     Vals.push_back(
1610         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1611 
1612     Vals.push_back(F.isDSOLocal());
1613     Vals.push_back(F.getAddressSpace());
1614     Vals.push_back(addToStrtab(F.getPartition()));
1615     Vals.push_back(F.getPartition().size());
1616 
1617     unsigned AbbrevToUse = 0;
1618     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1619     Vals.clear();
1620   }
1621 
1622   // Emit the alias information.
1623   for (const GlobalAlias &A : M.aliases()) {
1624     // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1625     //         visibility, dllstorageclass, threadlocal, unnamed_addr,
1626     //         DSO_Local]
1627     Vals.push_back(addToStrtab(A.getName()));
1628     Vals.push_back(A.getName().size());
1629     Vals.push_back(VE.getTypeID(A.getValueType()));
1630     Vals.push_back(A.getType()->getAddressSpace());
1631     Vals.push_back(VE.getValueID(A.getAliasee()));
1632     Vals.push_back(getEncodedLinkage(A));
1633     Vals.push_back(getEncodedVisibility(A));
1634     Vals.push_back(getEncodedDLLStorageClass(A));
1635     Vals.push_back(getEncodedThreadLocalMode(A));
1636     Vals.push_back(getEncodedUnnamedAddr(A));
1637     Vals.push_back(A.isDSOLocal());
1638     Vals.push_back(addToStrtab(A.getPartition()));
1639     Vals.push_back(A.getPartition().size());
1640 
1641     unsigned AbbrevToUse = 0;
1642     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1643     Vals.clear();
1644   }
1645 
1646   // Emit the ifunc information.
1647   for (const GlobalIFunc &I : M.ifuncs()) {
1648     // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1649     //         val#, linkage, visibility, DSO_Local]
1650     Vals.push_back(addToStrtab(I.getName()));
1651     Vals.push_back(I.getName().size());
1652     Vals.push_back(VE.getTypeID(I.getValueType()));
1653     Vals.push_back(I.getType()->getAddressSpace());
1654     Vals.push_back(VE.getValueID(I.getResolver()));
1655     Vals.push_back(getEncodedLinkage(I));
1656     Vals.push_back(getEncodedVisibility(I));
1657     Vals.push_back(I.isDSOLocal());
1658     Vals.push_back(addToStrtab(I.getPartition()));
1659     Vals.push_back(I.getPartition().size());
1660     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1661     Vals.clear();
1662   }
1663 
1664   writeValueSymbolTableForwardDecl();
1665 }
1666 
1667 static uint64_t getOptimizationFlags(const Value *V) {
1668   uint64_t Flags = 0;
1669 
1670   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1671     if (OBO->hasNoSignedWrap())
1672       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1673     if (OBO->hasNoUnsignedWrap())
1674       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1675   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1676     if (PEO->isExact())
1677       Flags |= 1 << bitc::PEO_EXACT;
1678   } else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) {
1679     if (PDI->isDisjoint())
1680       Flags |= 1 << bitc::PDI_DISJOINT;
1681   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1682     if (FPMO->hasAllowReassoc())
1683       Flags |= bitc::AllowReassoc;
1684     if (FPMO->hasNoNaNs())
1685       Flags |= bitc::NoNaNs;
1686     if (FPMO->hasNoInfs())
1687       Flags |= bitc::NoInfs;
1688     if (FPMO->hasNoSignedZeros())
1689       Flags |= bitc::NoSignedZeros;
1690     if (FPMO->hasAllowReciprocal())
1691       Flags |= bitc::AllowReciprocal;
1692     if (FPMO->hasAllowContract())
1693       Flags |= bitc::AllowContract;
1694     if (FPMO->hasApproxFunc())
1695       Flags |= bitc::ApproxFunc;
1696   } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) {
1697     if (NNI->hasNonNeg())
1698       Flags |= 1 << bitc::PNNI_NON_NEG;
1699   } else if (const auto *TI = dyn_cast<TruncInst>(V)) {
1700     if (TI->hasNoSignedWrap())
1701       Flags |= 1 << bitc::TIO_NO_SIGNED_WRAP;
1702     if (TI->hasNoUnsignedWrap())
1703       Flags |= 1 << bitc::TIO_NO_UNSIGNED_WRAP;
1704   } else if (const auto *GEP = dyn_cast<GEPOperator>(V)) {
1705     if (GEP->isInBounds())
1706       Flags |= 1 << bitc::GEP_INBOUNDS;
1707     if (GEP->hasNoUnsignedSignedWrap())
1708       Flags |= 1 << bitc::GEP_NUSW;
1709     if (GEP->hasNoUnsignedWrap())
1710       Flags |= 1 << bitc::GEP_NUW;
1711   }
1712 
1713   return Flags;
1714 }
1715 
1716 void ModuleBitcodeWriter::writeValueAsMetadata(
1717     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1718   // Mimic an MDNode with a value as one operand.
1719   Value *V = MD->getValue();
1720   Record.push_back(VE.getTypeID(V->getType()));
1721   Record.push_back(VE.getValueID(V));
1722   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1723   Record.clear();
1724 }
1725 
1726 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1727                                        SmallVectorImpl<uint64_t> &Record,
1728                                        unsigned Abbrev) {
1729   for (const MDOperand &MDO : N->operands()) {
1730     Metadata *MD = MDO;
1731     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1732            "Unexpected function-local metadata");
1733     Record.push_back(VE.getMetadataOrNullID(MD));
1734   }
1735   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1736                                     : bitc::METADATA_NODE,
1737                     Record, Abbrev);
1738   Record.clear();
1739 }
1740 
1741 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1742   // Assume the column is usually under 128, and always output the inlined-at
1743   // location (it's never more expensive than building an array size 1).
1744   auto Abbv = std::make_shared<BitCodeAbbrev>();
1745   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1746   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1747   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1748   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1749   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1750   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1751   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1752   return Stream.EmitAbbrev(std::move(Abbv));
1753 }
1754 
1755 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1756                                           SmallVectorImpl<uint64_t> &Record,
1757                                           unsigned &Abbrev) {
1758   if (!Abbrev)
1759     Abbrev = createDILocationAbbrev();
1760 
1761   Record.push_back(N->isDistinct());
1762   Record.push_back(N->getLine());
1763   Record.push_back(N->getColumn());
1764   Record.push_back(VE.getMetadataID(N->getScope()));
1765   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1766   Record.push_back(N->isImplicitCode());
1767 
1768   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1769   Record.clear();
1770 }
1771 
1772 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1773   // Assume the column is usually under 128, and always output the inlined-at
1774   // location (it's never more expensive than building an array size 1).
1775   auto Abbv = std::make_shared<BitCodeAbbrev>();
1776   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1777   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1778   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1779   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1780   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1781   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1782   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1783   return Stream.EmitAbbrev(std::move(Abbv));
1784 }
1785 
1786 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1787                                              SmallVectorImpl<uint64_t> &Record,
1788                                              unsigned &Abbrev) {
1789   if (!Abbrev)
1790     Abbrev = createGenericDINodeAbbrev();
1791 
1792   Record.push_back(N->isDistinct());
1793   Record.push_back(N->getTag());
1794   Record.push_back(0); // Per-tag version field; unused for now.
1795 
1796   for (auto &I : N->operands())
1797     Record.push_back(VE.getMetadataOrNullID(I));
1798 
1799   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1800   Record.clear();
1801 }
1802 
1803 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1804                                           SmallVectorImpl<uint64_t> &Record,
1805                                           unsigned Abbrev) {
1806   const uint64_t Version = 2 << 1;
1807   Record.push_back((uint64_t)N->isDistinct() | Version);
1808   Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1809   Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1810   Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1811   Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1812 
1813   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1814   Record.clear();
1815 }
1816 
1817 void ModuleBitcodeWriter::writeDIGenericSubrange(
1818     const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record,
1819     unsigned Abbrev) {
1820   Record.push_back((uint64_t)N->isDistinct());
1821   Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1822   Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1823   Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1824   Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1825 
1826   Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev);
1827   Record.clear();
1828 }
1829 
1830 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1831                                             SmallVectorImpl<uint64_t> &Record,
1832                                             unsigned Abbrev) {
1833   const uint64_t IsBigInt = 1 << 2;
1834   Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct());
1835   Record.push_back(N->getValue().getBitWidth());
1836   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1837   emitWideAPInt(Record, N->getValue());
1838 
1839   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1840   Record.clear();
1841 }
1842 
1843 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1844                                            SmallVectorImpl<uint64_t> &Record,
1845                                            unsigned Abbrev) {
1846   Record.push_back(N->isDistinct());
1847   Record.push_back(N->getTag());
1848   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1849   Record.push_back(N->getSizeInBits());
1850   Record.push_back(N->getAlignInBits());
1851   Record.push_back(N->getEncoding());
1852   Record.push_back(N->getFlags());
1853 
1854   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1855   Record.clear();
1856 }
1857 
1858 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N,
1859                                             SmallVectorImpl<uint64_t> &Record,
1860                                             unsigned Abbrev) {
1861   Record.push_back(N->isDistinct());
1862   Record.push_back(N->getTag());
1863   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1864   Record.push_back(VE.getMetadataOrNullID(N->getStringLength()));
1865   Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp()));
1866   Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp()));
1867   Record.push_back(N->getSizeInBits());
1868   Record.push_back(N->getAlignInBits());
1869   Record.push_back(N->getEncoding());
1870 
1871   Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev);
1872   Record.clear();
1873 }
1874 
1875 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1876                                              SmallVectorImpl<uint64_t> &Record,
1877                                              unsigned Abbrev) {
1878   Record.push_back(N->isDistinct());
1879   Record.push_back(N->getTag());
1880   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1881   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1882   Record.push_back(N->getLine());
1883   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1884   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1885   Record.push_back(N->getSizeInBits());
1886   Record.push_back(N->getAlignInBits());
1887   Record.push_back(N->getOffsetInBits());
1888   Record.push_back(N->getFlags());
1889   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1890 
1891   // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1892   // that there is no DWARF address space associated with DIDerivedType.
1893   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1894     Record.push_back(*DWARFAddressSpace + 1);
1895   else
1896     Record.push_back(0);
1897 
1898   Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1899 
1900   if (auto PtrAuthData = N->getPtrAuthData())
1901     Record.push_back(PtrAuthData->RawData);
1902   else
1903     Record.push_back(0);
1904 
1905   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1906   Record.clear();
1907 }
1908 
1909 void ModuleBitcodeWriter::writeDICompositeType(
1910     const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1911     unsigned Abbrev) {
1912   const unsigned IsNotUsedInOldTypeRef = 0x2;
1913   Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1914   Record.push_back(N->getTag());
1915   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1916   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1917   Record.push_back(N->getLine());
1918   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1919   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1920   Record.push_back(N->getSizeInBits());
1921   Record.push_back(N->getAlignInBits());
1922   Record.push_back(N->getOffsetInBits());
1923   Record.push_back(N->getFlags());
1924   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1925   Record.push_back(N->getRuntimeLang());
1926   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1927   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1928   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1929   Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1930   Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation()));
1931   Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated()));
1932   Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated()));
1933   Record.push_back(VE.getMetadataOrNullID(N->getRawRank()));
1934   Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1935 
1936   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1937   Record.clear();
1938 }
1939 
1940 void ModuleBitcodeWriter::writeDISubroutineType(
1941     const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1942     unsigned Abbrev) {
1943   const unsigned HasNoOldTypeRefs = 0x2;
1944   Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1945   Record.push_back(N->getFlags());
1946   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1947   Record.push_back(N->getCC());
1948 
1949   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1950   Record.clear();
1951 }
1952 
1953 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1954                                       SmallVectorImpl<uint64_t> &Record,
1955                                       unsigned Abbrev) {
1956   Record.push_back(N->isDistinct());
1957   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1958   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1959   if (N->getRawChecksum()) {
1960     Record.push_back(N->getRawChecksum()->Kind);
1961     Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1962   } else {
1963     // Maintain backwards compatibility with the old internal representation of
1964     // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1965     Record.push_back(0);
1966     Record.push_back(VE.getMetadataOrNullID(nullptr));
1967   }
1968   auto Source = N->getRawSource();
1969   if (Source)
1970     Record.push_back(VE.getMetadataOrNullID(Source));
1971 
1972   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1973   Record.clear();
1974 }
1975 
1976 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1977                                              SmallVectorImpl<uint64_t> &Record,
1978                                              unsigned Abbrev) {
1979   assert(N->isDistinct() && "Expected distinct compile units");
1980   Record.push_back(/* IsDistinct */ true);
1981   Record.push_back(N->getSourceLanguage());
1982   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1983   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1984   Record.push_back(N->isOptimized());
1985   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1986   Record.push_back(N->getRuntimeVersion());
1987   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1988   Record.push_back(N->getEmissionKind());
1989   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1990   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1991   Record.push_back(/* subprograms */ 0);
1992   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1993   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1994   Record.push_back(N->getDWOId());
1995   Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1996   Record.push_back(N->getSplitDebugInlining());
1997   Record.push_back(N->getDebugInfoForProfiling());
1998   Record.push_back((unsigned)N->getNameTableKind());
1999   Record.push_back(N->getRangesBaseAddress());
2000   Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot()));
2001   Record.push_back(VE.getMetadataOrNullID(N->getRawSDK()));
2002 
2003   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
2004   Record.clear();
2005 }
2006 
2007 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
2008                                             SmallVectorImpl<uint64_t> &Record,
2009                                             unsigned Abbrev) {
2010   const uint64_t HasUnitFlag = 1 << 1;
2011   const uint64_t HasSPFlagsFlag = 1 << 2;
2012   Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
2013   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2014   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2015   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
2016   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2017   Record.push_back(N->getLine());
2018   Record.push_back(VE.getMetadataOrNullID(N->getType()));
2019   Record.push_back(N->getScopeLine());
2020   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
2021   Record.push_back(N->getSPFlags());
2022   Record.push_back(N->getVirtualIndex());
2023   Record.push_back(N->getFlags());
2024   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
2025   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
2026   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
2027   Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
2028   Record.push_back(N->getThisAdjustment());
2029   Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
2030   Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
2031   Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName()));
2032 
2033   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
2034   Record.clear();
2035 }
2036 
2037 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
2038                                               SmallVectorImpl<uint64_t> &Record,
2039                                               unsigned Abbrev) {
2040   Record.push_back(N->isDistinct());
2041   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2042   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2043   Record.push_back(N->getLine());
2044   Record.push_back(N->getColumn());
2045 
2046   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
2047   Record.clear();
2048 }
2049 
2050 void ModuleBitcodeWriter::writeDILexicalBlockFile(
2051     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
2052     unsigned Abbrev) {
2053   Record.push_back(N->isDistinct());
2054   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2055   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2056   Record.push_back(N->getDiscriminator());
2057 
2058   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
2059   Record.clear();
2060 }
2061 
2062 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N,
2063                                              SmallVectorImpl<uint64_t> &Record,
2064                                              unsigned Abbrev) {
2065   Record.push_back(N->isDistinct());
2066   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2067   Record.push_back(VE.getMetadataOrNullID(N->getDecl()));
2068   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2069   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2070   Record.push_back(N->getLineNo());
2071 
2072   Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev);
2073   Record.clear();
2074 }
2075 
2076 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
2077                                            SmallVectorImpl<uint64_t> &Record,
2078                                            unsigned Abbrev) {
2079   Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
2080   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2081   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2082 
2083   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
2084   Record.clear();
2085 }
2086 
2087 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
2088                                        SmallVectorImpl<uint64_t> &Record,
2089                                        unsigned Abbrev) {
2090   Record.push_back(N->isDistinct());
2091   Record.push_back(N->getMacinfoType());
2092   Record.push_back(N->getLine());
2093   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2094   Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
2095 
2096   Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
2097   Record.clear();
2098 }
2099 
2100 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
2101                                            SmallVectorImpl<uint64_t> &Record,
2102                                            unsigned Abbrev) {
2103   Record.push_back(N->isDistinct());
2104   Record.push_back(N->getMacinfoType());
2105   Record.push_back(N->getLine());
2106   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2107   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
2108 
2109   Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
2110   Record.clear();
2111 }
2112 
2113 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N,
2114                                          SmallVectorImpl<uint64_t> &Record) {
2115   Record.reserve(N->getArgs().size());
2116   for (ValueAsMetadata *MD : N->getArgs())
2117     Record.push_back(VE.getMetadataID(MD));
2118 
2119   Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record);
2120   Record.clear();
2121 }
2122 
2123 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
2124                                         SmallVectorImpl<uint64_t> &Record,
2125                                         unsigned Abbrev) {
2126   Record.push_back(N->isDistinct());
2127   for (auto &I : N->operands())
2128     Record.push_back(VE.getMetadataOrNullID(I));
2129   Record.push_back(N->getLineNo());
2130   Record.push_back(N->getIsDecl());
2131 
2132   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
2133   Record.clear();
2134 }
2135 
2136 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N,
2137                                           SmallVectorImpl<uint64_t> &Record,
2138                                           unsigned Abbrev) {
2139   // There are no arguments for this metadata type.
2140   Record.push_back(N->isDistinct());
2141   Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev);
2142   Record.clear();
2143 }
2144 
2145 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
2146     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
2147     unsigned Abbrev) {
2148   Record.push_back(N->isDistinct());
2149   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2150   Record.push_back(VE.getMetadataOrNullID(N->getType()));
2151   Record.push_back(N->isDefault());
2152 
2153   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
2154   Record.clear();
2155 }
2156 
2157 void ModuleBitcodeWriter::writeDITemplateValueParameter(
2158     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
2159     unsigned Abbrev) {
2160   Record.push_back(N->isDistinct());
2161   Record.push_back(N->getTag());
2162   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2163   Record.push_back(VE.getMetadataOrNullID(N->getType()));
2164   Record.push_back(N->isDefault());
2165   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
2166 
2167   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
2168   Record.clear();
2169 }
2170 
2171 void ModuleBitcodeWriter::writeDIGlobalVariable(
2172     const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
2173     unsigned Abbrev) {
2174   const uint64_t Version = 2 << 1;
2175   Record.push_back((uint64_t)N->isDistinct() | Version);
2176   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2177   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2178   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
2179   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2180   Record.push_back(N->getLine());
2181   Record.push_back(VE.getMetadataOrNullID(N->getType()));
2182   Record.push_back(N->isLocalToUnit());
2183   Record.push_back(N->isDefinition());
2184   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
2185   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
2186   Record.push_back(N->getAlignInBits());
2187   Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
2188 
2189   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
2190   Record.clear();
2191 }
2192 
2193 void ModuleBitcodeWriter::writeDILocalVariable(
2194     const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
2195     unsigned Abbrev) {
2196   // In order to support all possible bitcode formats in BitcodeReader we need
2197   // to distinguish the following cases:
2198   // 1) Record has no artificial tag (Record[1]),
2199   //   has no obsolete inlinedAt field (Record[9]).
2200   //   In this case Record size will be 8, HasAlignment flag is false.
2201   // 2) Record has artificial tag (Record[1]),
2202   //   has no obsolete inlignedAt field (Record[9]).
2203   //   In this case Record size will be 9, HasAlignment flag is false.
2204   // 3) Record has both artificial tag (Record[1]) and
2205   //   obsolete inlignedAt field (Record[9]).
2206   //   In this case Record size will be 10, HasAlignment flag is false.
2207   // 4) Record has neither artificial tag, nor inlignedAt field, but
2208   //   HasAlignment flag is true and Record[8] contains alignment value.
2209   const uint64_t HasAlignmentFlag = 1 << 1;
2210   Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
2211   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2212   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2213   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2214   Record.push_back(N->getLine());
2215   Record.push_back(VE.getMetadataOrNullID(N->getType()));
2216   Record.push_back(N->getArg());
2217   Record.push_back(N->getFlags());
2218   Record.push_back(N->getAlignInBits());
2219   Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
2220 
2221   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
2222   Record.clear();
2223 }
2224 
2225 void ModuleBitcodeWriter::writeDILabel(
2226     const DILabel *N, SmallVectorImpl<uint64_t> &Record,
2227     unsigned Abbrev) {
2228   Record.push_back((uint64_t)N->isDistinct());
2229   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2230   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2231   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2232   Record.push_back(N->getLine());
2233 
2234   Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
2235   Record.clear();
2236 }
2237 
2238 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
2239                                             SmallVectorImpl<uint64_t> &Record,
2240                                             unsigned Abbrev) {
2241   Record.reserve(N->getElements().size() + 1);
2242   const uint64_t Version = 3 << 1;
2243   Record.push_back((uint64_t)N->isDistinct() | Version);
2244   Record.append(N->elements_begin(), N->elements_end());
2245 
2246   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
2247   Record.clear();
2248 }
2249 
2250 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
2251     const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
2252     unsigned Abbrev) {
2253   Record.push_back(N->isDistinct());
2254   Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
2255   Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
2256 
2257   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
2258   Record.clear();
2259 }
2260 
2261 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
2262                                               SmallVectorImpl<uint64_t> &Record,
2263                                               unsigned Abbrev) {
2264   Record.push_back(N->isDistinct());
2265   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2266   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2267   Record.push_back(N->getLine());
2268   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
2269   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
2270   Record.push_back(N->getAttributes());
2271   Record.push_back(VE.getMetadataOrNullID(N->getType()));
2272 
2273   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
2274   Record.clear();
2275 }
2276 
2277 void ModuleBitcodeWriter::writeDIImportedEntity(
2278     const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
2279     unsigned Abbrev) {
2280   Record.push_back(N->isDistinct());
2281   Record.push_back(N->getTag());
2282   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2283   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
2284   Record.push_back(N->getLine());
2285   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2286   Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
2287   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
2288 
2289   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
2290   Record.clear();
2291 }
2292 
2293 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
2294   auto Abbv = std::make_shared<BitCodeAbbrev>();
2295   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
2296   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2297   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2298   return Stream.EmitAbbrev(std::move(Abbv));
2299 }
2300 
2301 void ModuleBitcodeWriter::writeNamedMetadata(
2302     SmallVectorImpl<uint64_t> &Record) {
2303   if (M.named_metadata_empty())
2304     return;
2305 
2306   unsigned Abbrev = createNamedMetadataAbbrev();
2307   for (const NamedMDNode &NMD : M.named_metadata()) {
2308     // Write name.
2309     StringRef Str = NMD.getName();
2310     Record.append(Str.bytes_begin(), Str.bytes_end());
2311     Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
2312     Record.clear();
2313 
2314     // Write named metadata operands.
2315     for (const MDNode *N : NMD.operands())
2316       Record.push_back(VE.getMetadataID(N));
2317     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
2318     Record.clear();
2319   }
2320 }
2321 
2322 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
2323   auto Abbv = std::make_shared<BitCodeAbbrev>();
2324   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
2325   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
2326   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
2327   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
2328   return Stream.EmitAbbrev(std::move(Abbv));
2329 }
2330 
2331 /// Write out a record for MDString.
2332 ///
2333 /// All the metadata strings in a metadata block are emitted in a single
2334 /// record.  The sizes and strings themselves are shoved into a blob.
2335 void ModuleBitcodeWriter::writeMetadataStrings(
2336     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
2337   if (Strings.empty())
2338     return;
2339 
2340   // Start the record with the number of strings.
2341   Record.push_back(bitc::METADATA_STRINGS);
2342   Record.push_back(Strings.size());
2343 
2344   // Emit the sizes of the strings in the blob.
2345   SmallString<256> Blob;
2346   {
2347     BitstreamWriter W(Blob);
2348     for (const Metadata *MD : Strings)
2349       W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
2350     W.FlushToWord();
2351   }
2352 
2353   // Add the offset to the strings to the record.
2354   Record.push_back(Blob.size());
2355 
2356   // Add the strings to the blob.
2357   for (const Metadata *MD : Strings)
2358     Blob.append(cast<MDString>(MD)->getString());
2359 
2360   // Emit the final record.
2361   Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
2362   Record.clear();
2363 }
2364 
2365 // Generates an enum to use as an index in the Abbrev array of Metadata record.
2366 enum MetadataAbbrev : unsigned {
2367 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
2368 #include "llvm/IR/Metadata.def"
2369   LastPlusOne
2370 };
2371 
2372 void ModuleBitcodeWriter::writeMetadataRecords(
2373     ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
2374     std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
2375   if (MDs.empty())
2376     return;
2377 
2378   // Initialize MDNode abbreviations.
2379 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
2380 #include "llvm/IR/Metadata.def"
2381 
2382   for (const Metadata *MD : MDs) {
2383     if (IndexPos)
2384       IndexPos->push_back(Stream.GetCurrentBitNo());
2385     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2386       assert(N->isResolved() && "Expected forward references to be resolved");
2387 
2388       switch (N->getMetadataID()) {
2389       default:
2390         llvm_unreachable("Invalid MDNode subclass");
2391 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
2392   case Metadata::CLASS##Kind:                                                  \
2393     if (MDAbbrevs)                                                             \
2394       write##CLASS(cast<CLASS>(N), Record,                                     \
2395                    (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
2396     else                                                                       \
2397       write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
2398     continue;
2399 #include "llvm/IR/Metadata.def"
2400       }
2401     }
2402     if (auto *AL = dyn_cast<DIArgList>(MD)) {
2403       writeDIArgList(AL, Record);
2404       continue;
2405     }
2406     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
2407   }
2408 }
2409 
2410 void ModuleBitcodeWriter::writeModuleMetadata() {
2411   if (!VE.hasMDs() && M.named_metadata_empty())
2412     return;
2413 
2414   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
2415   SmallVector<uint64_t, 64> Record;
2416 
2417   // Emit all abbrevs upfront, so that the reader can jump in the middle of the
2418   // block and load any metadata.
2419   std::vector<unsigned> MDAbbrevs;
2420 
2421   MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
2422   MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
2423   MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
2424       createGenericDINodeAbbrev();
2425 
2426   auto Abbv = std::make_shared<BitCodeAbbrev>();
2427   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
2428   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2429   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2430   unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2431 
2432   Abbv = std::make_shared<BitCodeAbbrev>();
2433   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
2434   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2435   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2436   unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2437 
2438   // Emit MDStrings together upfront.
2439   writeMetadataStrings(VE.getMDStrings(), Record);
2440 
2441   // We only emit an index for the metadata record if we have more than a given
2442   // (naive) threshold of metadatas, otherwise it is not worth it.
2443   if (VE.getNonMDStrings().size() > IndexThreshold) {
2444     // Write a placeholder value in for the offset of the metadata index,
2445     // which is written after the records, so that it can include
2446     // the offset of each entry. The placeholder offset will be
2447     // updated after all records are emitted.
2448     uint64_t Vals[] = {0, 0};
2449     Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2450   }
2451 
2452   // Compute and save the bit offset to the current position, which will be
2453   // patched when we emit the index later. We can simply subtract the 64-bit
2454   // fixed size from the current bit number to get the location to backpatch.
2455   uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2456 
2457   // This index will contain the bitpos for each individual record.
2458   std::vector<uint64_t> IndexPos;
2459   IndexPos.reserve(VE.getNonMDStrings().size());
2460 
2461   // Write all the records
2462   writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2463 
2464   if (VE.getNonMDStrings().size() > IndexThreshold) {
2465     // Now that we have emitted all the records we will emit the index. But
2466     // first
2467     // backpatch the forward reference so that the reader can skip the records
2468     // efficiently.
2469     Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2470                            Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2471 
2472     // Delta encode the index.
2473     uint64_t PreviousValue = IndexOffsetRecordBitPos;
2474     for (auto &Elt : IndexPos) {
2475       auto EltDelta = Elt - PreviousValue;
2476       PreviousValue = Elt;
2477       Elt = EltDelta;
2478     }
2479     // Emit the index record.
2480     Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2481     IndexPos.clear();
2482   }
2483 
2484   // Write the named metadata now.
2485   writeNamedMetadata(Record);
2486 
2487   auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2488     SmallVector<uint64_t, 4> Record;
2489     Record.push_back(VE.getValueID(&GO));
2490     pushGlobalMetadataAttachment(Record, GO);
2491     Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2492   };
2493   for (const Function &F : M)
2494     if (F.isDeclaration() && F.hasMetadata())
2495       AddDeclAttachedMetadata(F);
2496   // FIXME: Only store metadata for declarations here, and move data for global
2497   // variable definitions to a separate block (PR28134).
2498   for (const GlobalVariable &GV : M.globals())
2499     if (GV.hasMetadata())
2500       AddDeclAttachedMetadata(GV);
2501 
2502   Stream.ExitBlock();
2503 }
2504 
2505 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2506   if (!VE.hasMDs())
2507     return;
2508 
2509   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2510   SmallVector<uint64_t, 64> Record;
2511   writeMetadataStrings(VE.getMDStrings(), Record);
2512   writeMetadataRecords(VE.getNonMDStrings(), Record);
2513   Stream.ExitBlock();
2514 }
2515 
2516 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2517     SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2518   // [n x [id, mdnode]]
2519   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2520   GO.getAllMetadata(MDs);
2521   for (const auto &I : MDs) {
2522     Record.push_back(I.first);
2523     Record.push_back(VE.getMetadataID(I.second));
2524   }
2525 }
2526 
2527 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2528   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2529 
2530   SmallVector<uint64_t, 64> Record;
2531 
2532   if (F.hasMetadata()) {
2533     pushGlobalMetadataAttachment(Record, F);
2534     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2535     Record.clear();
2536   }
2537 
2538   // Write metadata attachments
2539   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2540   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2541   for (const BasicBlock &BB : F)
2542     for (const Instruction &I : BB) {
2543       MDs.clear();
2544       I.getAllMetadataOtherThanDebugLoc(MDs);
2545 
2546       // If no metadata, ignore instruction.
2547       if (MDs.empty()) continue;
2548 
2549       Record.push_back(VE.getInstructionID(&I));
2550 
2551       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2552         Record.push_back(MDs[i].first);
2553         Record.push_back(VE.getMetadataID(MDs[i].second));
2554       }
2555       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2556       Record.clear();
2557     }
2558 
2559   Stream.ExitBlock();
2560 }
2561 
2562 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2563   SmallVector<uint64_t, 64> Record;
2564 
2565   // Write metadata kinds
2566   // METADATA_KIND - [n x [id, name]]
2567   SmallVector<StringRef, 8> Names;
2568   M.getMDKindNames(Names);
2569 
2570   if (Names.empty()) return;
2571 
2572   Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2573 
2574   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2575     Record.push_back(MDKindID);
2576     StringRef KName = Names[MDKindID];
2577     Record.append(KName.begin(), KName.end());
2578 
2579     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2580     Record.clear();
2581   }
2582 
2583   Stream.ExitBlock();
2584 }
2585 
2586 void ModuleBitcodeWriter::writeOperandBundleTags() {
2587   // Write metadata kinds
2588   //
2589   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2590   //
2591   // OPERAND_BUNDLE_TAG - [strchr x N]
2592 
2593   SmallVector<StringRef, 8> Tags;
2594   M.getOperandBundleTags(Tags);
2595 
2596   if (Tags.empty())
2597     return;
2598 
2599   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2600 
2601   SmallVector<uint64_t, 64> Record;
2602 
2603   for (auto Tag : Tags) {
2604     Record.append(Tag.begin(), Tag.end());
2605 
2606     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2607     Record.clear();
2608   }
2609 
2610   Stream.ExitBlock();
2611 }
2612 
2613 void ModuleBitcodeWriter::writeSyncScopeNames() {
2614   SmallVector<StringRef, 8> SSNs;
2615   M.getContext().getSyncScopeNames(SSNs);
2616   if (SSNs.empty())
2617     return;
2618 
2619   Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2620 
2621   SmallVector<uint64_t, 64> Record;
2622   for (auto SSN : SSNs) {
2623     Record.append(SSN.begin(), SSN.end());
2624     Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2625     Record.clear();
2626   }
2627 
2628   Stream.ExitBlock();
2629 }
2630 
2631 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2632                                          bool isGlobal) {
2633   if (FirstVal == LastVal) return;
2634 
2635   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2636 
2637   unsigned AggregateAbbrev = 0;
2638   unsigned String8Abbrev = 0;
2639   unsigned CString7Abbrev = 0;
2640   unsigned CString6Abbrev = 0;
2641   // If this is a constant pool for the module, emit module-specific abbrevs.
2642   if (isGlobal) {
2643     // Abbrev for CST_CODE_AGGREGATE.
2644     auto Abbv = std::make_shared<BitCodeAbbrev>();
2645     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2646     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2647     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2648     AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2649 
2650     // Abbrev for CST_CODE_STRING.
2651     Abbv = std::make_shared<BitCodeAbbrev>();
2652     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2653     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2654     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2655     String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2656     // Abbrev for CST_CODE_CSTRING.
2657     Abbv = std::make_shared<BitCodeAbbrev>();
2658     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2659     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2660     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2661     CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2662     // Abbrev for CST_CODE_CSTRING.
2663     Abbv = std::make_shared<BitCodeAbbrev>();
2664     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2665     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2666     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2667     CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2668   }
2669 
2670   SmallVector<uint64_t, 64> Record;
2671 
2672   const ValueEnumerator::ValueList &Vals = VE.getValues();
2673   Type *LastTy = nullptr;
2674   for (unsigned i = FirstVal; i != LastVal; ++i) {
2675     const Value *V = Vals[i].first;
2676     // If we need to switch types, do so now.
2677     if (V->getType() != LastTy) {
2678       LastTy = V->getType();
2679       Record.push_back(VE.getTypeID(LastTy));
2680       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2681                         CONSTANTS_SETTYPE_ABBREV);
2682       Record.clear();
2683     }
2684 
2685     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2686       Record.push_back(VE.getTypeID(IA->getFunctionType()));
2687       Record.push_back(
2688           unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 |
2689           unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3);
2690 
2691       // Add the asm string.
2692       const std::string &AsmStr = IA->getAsmString();
2693       Record.push_back(AsmStr.size());
2694       Record.append(AsmStr.begin(), AsmStr.end());
2695 
2696       // Add the constraint string.
2697       const std::string &ConstraintStr = IA->getConstraintString();
2698       Record.push_back(ConstraintStr.size());
2699       Record.append(ConstraintStr.begin(), ConstraintStr.end());
2700       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2701       Record.clear();
2702       continue;
2703     }
2704     const Constant *C = cast<Constant>(V);
2705     unsigned Code = -1U;
2706     unsigned AbbrevToUse = 0;
2707     if (C->isNullValue()) {
2708       Code = bitc::CST_CODE_NULL;
2709     } else if (isa<PoisonValue>(C)) {
2710       Code = bitc::CST_CODE_POISON;
2711     } else if (isa<UndefValue>(C)) {
2712       Code = bitc::CST_CODE_UNDEF;
2713     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2714       if (IV->getBitWidth() <= 64) {
2715         uint64_t V = IV->getSExtValue();
2716         emitSignedInt64(Record, V);
2717         Code = bitc::CST_CODE_INTEGER;
2718         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2719       } else {                             // Wide integers, > 64 bits in size.
2720         emitWideAPInt(Record, IV->getValue());
2721         Code = bitc::CST_CODE_WIDE_INTEGER;
2722       }
2723     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2724       Code = bitc::CST_CODE_FLOAT;
2725       Type *Ty = CFP->getType()->getScalarType();
2726       if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() ||
2727           Ty->isDoubleTy()) {
2728         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2729       } else if (Ty->isX86_FP80Ty()) {
2730         // api needed to prevent premature destruction
2731         // bits are not in the same order as a normal i80 APInt, compensate.
2732         APInt api = CFP->getValueAPF().bitcastToAPInt();
2733         const uint64_t *p = api.getRawData();
2734         Record.push_back((p[1] << 48) | (p[0] >> 16));
2735         Record.push_back(p[0] & 0xffffLL);
2736       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2737         APInt api = CFP->getValueAPF().bitcastToAPInt();
2738         const uint64_t *p = api.getRawData();
2739         Record.push_back(p[0]);
2740         Record.push_back(p[1]);
2741       } else {
2742         assert(0 && "Unknown FP type!");
2743       }
2744     } else if (isa<ConstantDataSequential>(C) &&
2745                cast<ConstantDataSequential>(C)->isString()) {
2746       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2747       // Emit constant strings specially.
2748       unsigned NumElts = Str->getNumElements();
2749       // If this is a null-terminated string, use the denser CSTRING encoding.
2750       if (Str->isCString()) {
2751         Code = bitc::CST_CODE_CSTRING;
2752         --NumElts;  // Don't encode the null, which isn't allowed by char6.
2753       } else {
2754         Code = bitc::CST_CODE_STRING;
2755         AbbrevToUse = String8Abbrev;
2756       }
2757       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2758       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2759       for (unsigned i = 0; i != NumElts; ++i) {
2760         unsigned char V = Str->getElementAsInteger(i);
2761         Record.push_back(V);
2762         isCStr7 &= (V & 128) == 0;
2763         if (isCStrChar6)
2764           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2765       }
2766 
2767       if (isCStrChar6)
2768         AbbrevToUse = CString6Abbrev;
2769       else if (isCStr7)
2770         AbbrevToUse = CString7Abbrev;
2771     } else if (const ConstantDataSequential *CDS =
2772                   dyn_cast<ConstantDataSequential>(C)) {
2773       Code = bitc::CST_CODE_DATA;
2774       Type *EltTy = CDS->getElementType();
2775       if (isa<IntegerType>(EltTy)) {
2776         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2777           Record.push_back(CDS->getElementAsInteger(i));
2778       } else {
2779         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2780           Record.push_back(
2781               CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2782       }
2783     } else if (isa<ConstantAggregate>(C)) {
2784       Code = bitc::CST_CODE_AGGREGATE;
2785       for (const Value *Op : C->operands())
2786         Record.push_back(VE.getValueID(Op));
2787       AbbrevToUse = AggregateAbbrev;
2788     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2789       switch (CE->getOpcode()) {
2790       default:
2791         if (Instruction::isCast(CE->getOpcode())) {
2792           Code = bitc::CST_CODE_CE_CAST;
2793           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2794           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2795           Record.push_back(VE.getValueID(C->getOperand(0)));
2796           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2797         } else {
2798           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2799           Code = bitc::CST_CODE_CE_BINOP;
2800           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2801           Record.push_back(VE.getValueID(C->getOperand(0)));
2802           Record.push_back(VE.getValueID(C->getOperand(1)));
2803           uint64_t Flags = getOptimizationFlags(CE);
2804           if (Flags != 0)
2805             Record.push_back(Flags);
2806         }
2807         break;
2808       case Instruction::FNeg: {
2809         assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
2810         Code = bitc::CST_CODE_CE_UNOP;
2811         Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
2812         Record.push_back(VE.getValueID(C->getOperand(0)));
2813         uint64_t Flags = getOptimizationFlags(CE);
2814         if (Flags != 0)
2815           Record.push_back(Flags);
2816         break;
2817       }
2818       case Instruction::GetElementPtr: {
2819         Code = bitc::CST_CODE_CE_GEP;
2820         const auto *GO = cast<GEPOperator>(C);
2821         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2822         Record.push_back(getOptimizationFlags(GO));
2823         if (std::optional<ConstantRange> Range = GO->getInRange()) {
2824           Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE;
2825           emitConstantRange(Record, *Range, /*EmitBitWidth=*/true);
2826         }
2827         for (const Value *Op : CE->operands()) {
2828           Record.push_back(VE.getTypeID(Op->getType()));
2829           Record.push_back(VE.getValueID(Op));
2830         }
2831         break;
2832       }
2833       case Instruction::ExtractElement:
2834         Code = bitc::CST_CODE_CE_EXTRACTELT;
2835         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2836         Record.push_back(VE.getValueID(C->getOperand(0)));
2837         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2838         Record.push_back(VE.getValueID(C->getOperand(1)));
2839         break;
2840       case Instruction::InsertElement:
2841         Code = bitc::CST_CODE_CE_INSERTELT;
2842         Record.push_back(VE.getValueID(C->getOperand(0)));
2843         Record.push_back(VE.getValueID(C->getOperand(1)));
2844         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2845         Record.push_back(VE.getValueID(C->getOperand(2)));
2846         break;
2847       case Instruction::ShuffleVector:
2848         // If the return type and argument types are the same, this is a
2849         // standard shufflevector instruction.  If the types are different,
2850         // then the shuffle is widening or truncating the input vectors, and
2851         // the argument type must also be encoded.
2852         if (C->getType() == C->getOperand(0)->getType()) {
2853           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2854         } else {
2855           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2856           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2857         }
2858         Record.push_back(VE.getValueID(C->getOperand(0)));
2859         Record.push_back(VE.getValueID(C->getOperand(1)));
2860         Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode()));
2861         break;
2862       }
2863     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2864       Code = bitc::CST_CODE_BLOCKADDRESS;
2865       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2866       Record.push_back(VE.getValueID(BA->getFunction()));
2867       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2868     } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) {
2869       Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT;
2870       Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType()));
2871       Record.push_back(VE.getValueID(Equiv->getGlobalValue()));
2872     } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) {
2873       Code = bitc::CST_CODE_NO_CFI_VALUE;
2874       Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType()));
2875       Record.push_back(VE.getValueID(NC->getGlobalValue()));
2876     } else if (const auto *CPA = dyn_cast<ConstantPtrAuth>(C)) {
2877       Code = bitc::CST_CODE_PTRAUTH;
2878       Record.push_back(VE.getValueID(CPA->getPointer()));
2879       Record.push_back(VE.getValueID(CPA->getKey()));
2880       Record.push_back(VE.getValueID(CPA->getDiscriminator()));
2881       Record.push_back(VE.getValueID(CPA->getAddrDiscriminator()));
2882     } else {
2883 #ifndef NDEBUG
2884       C->dump();
2885 #endif
2886       llvm_unreachable("Unknown constant!");
2887     }
2888     Stream.EmitRecord(Code, Record, AbbrevToUse);
2889     Record.clear();
2890   }
2891 
2892   Stream.ExitBlock();
2893 }
2894 
2895 void ModuleBitcodeWriter::writeModuleConstants() {
2896   const ValueEnumerator::ValueList &Vals = VE.getValues();
2897 
2898   // Find the first constant to emit, which is the first non-globalvalue value.
2899   // We know globalvalues have been emitted by WriteModuleInfo.
2900   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2901     if (!isa<GlobalValue>(Vals[i].first)) {
2902       writeConstants(i, Vals.size(), true);
2903       return;
2904     }
2905   }
2906 }
2907 
2908 /// pushValueAndType - The file has to encode both the value and type id for
2909 /// many values, because we need to know what type to create for forward
2910 /// references.  However, most operands are not forward references, so this type
2911 /// field is not needed.
2912 ///
2913 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2914 /// instruction ID, then it is a forward reference, and it also includes the
2915 /// type ID.  The value ID that is written is encoded relative to the InstID.
2916 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2917                                            SmallVectorImpl<unsigned> &Vals) {
2918   unsigned ValID = VE.getValueID(V);
2919   // Make encoding relative to the InstID.
2920   Vals.push_back(InstID - ValID);
2921   if (ValID >= InstID) {
2922     Vals.push_back(VE.getTypeID(V->getType()));
2923     return true;
2924   }
2925   return false;
2926 }
2927 
2928 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS,
2929                                               unsigned InstID) {
2930   SmallVector<unsigned, 64> Record;
2931   LLVMContext &C = CS.getContext();
2932 
2933   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2934     const auto &Bundle = CS.getOperandBundleAt(i);
2935     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2936 
2937     for (auto &Input : Bundle.Inputs)
2938       pushValueAndType(Input, InstID, Record);
2939 
2940     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2941     Record.clear();
2942   }
2943 }
2944 
2945 /// pushValue - Like pushValueAndType, but where the type of the value is
2946 /// omitted (perhaps it was already encoded in an earlier operand).
2947 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2948                                     SmallVectorImpl<unsigned> &Vals) {
2949   unsigned ValID = VE.getValueID(V);
2950   Vals.push_back(InstID - ValID);
2951 }
2952 
2953 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2954                                           SmallVectorImpl<uint64_t> &Vals) {
2955   unsigned ValID = VE.getValueID(V);
2956   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2957   emitSignedInt64(Vals, diff);
2958 }
2959 
2960 /// WriteInstruction - Emit an instruction to the specified stream.
2961 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2962                                            unsigned InstID,
2963                                            SmallVectorImpl<unsigned> &Vals) {
2964   unsigned Code = 0;
2965   unsigned AbbrevToUse = 0;
2966   VE.setInstructionID(&I);
2967   switch (I.getOpcode()) {
2968   default:
2969     if (Instruction::isCast(I.getOpcode())) {
2970       Code = bitc::FUNC_CODE_INST_CAST;
2971       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2972         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2973       Vals.push_back(VE.getTypeID(I.getType()));
2974       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2975       uint64_t Flags = getOptimizationFlags(&I);
2976       if (Flags != 0) {
2977         if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV)
2978           AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV;
2979         Vals.push_back(Flags);
2980       }
2981     } else {
2982       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2983       Code = bitc::FUNC_CODE_INST_BINOP;
2984       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2985         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2986       pushValue(I.getOperand(1), InstID, Vals);
2987       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2988       uint64_t Flags = getOptimizationFlags(&I);
2989       if (Flags != 0) {
2990         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2991           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2992         Vals.push_back(Flags);
2993       }
2994     }
2995     break;
2996   case Instruction::FNeg: {
2997     Code = bitc::FUNC_CODE_INST_UNOP;
2998     if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2999       AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
3000     Vals.push_back(getEncodedUnaryOpcode(I.getOpcode()));
3001     uint64_t Flags = getOptimizationFlags(&I);
3002     if (Flags != 0) {
3003       if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
3004         AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
3005       Vals.push_back(Flags);
3006     }
3007     break;
3008   }
3009   case Instruction::GetElementPtr: {
3010     Code = bitc::FUNC_CODE_INST_GEP;
3011     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
3012     auto &GEPInst = cast<GetElementPtrInst>(I);
3013     Vals.push_back(getOptimizationFlags(&I));
3014     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
3015     for (const Value *Op : I.operands())
3016       pushValueAndType(Op, InstID, Vals);
3017     break;
3018   }
3019   case Instruction::ExtractValue: {
3020     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
3021     pushValueAndType(I.getOperand(0), InstID, Vals);
3022     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
3023     Vals.append(EVI->idx_begin(), EVI->idx_end());
3024     break;
3025   }
3026   case Instruction::InsertValue: {
3027     Code = bitc::FUNC_CODE_INST_INSERTVAL;
3028     pushValueAndType(I.getOperand(0), InstID, Vals);
3029     pushValueAndType(I.getOperand(1), InstID, Vals);
3030     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
3031     Vals.append(IVI->idx_begin(), IVI->idx_end());
3032     break;
3033   }
3034   case Instruction::Select: {
3035     Code = bitc::FUNC_CODE_INST_VSELECT;
3036     pushValueAndType(I.getOperand(1), InstID, Vals);
3037     pushValue(I.getOperand(2), InstID, Vals);
3038     pushValueAndType(I.getOperand(0), InstID, Vals);
3039     uint64_t Flags = getOptimizationFlags(&I);
3040     if (Flags != 0)
3041       Vals.push_back(Flags);
3042     break;
3043   }
3044   case Instruction::ExtractElement:
3045     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
3046     pushValueAndType(I.getOperand(0), InstID, Vals);
3047     pushValueAndType(I.getOperand(1), InstID, Vals);
3048     break;
3049   case Instruction::InsertElement:
3050     Code = bitc::FUNC_CODE_INST_INSERTELT;
3051     pushValueAndType(I.getOperand(0), InstID, Vals);
3052     pushValue(I.getOperand(1), InstID, Vals);
3053     pushValueAndType(I.getOperand(2), InstID, Vals);
3054     break;
3055   case Instruction::ShuffleVector:
3056     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
3057     pushValueAndType(I.getOperand(0), InstID, Vals);
3058     pushValue(I.getOperand(1), InstID, Vals);
3059     pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID,
3060               Vals);
3061     break;
3062   case Instruction::ICmp:
3063   case Instruction::FCmp: {
3064     // compare returning Int1Ty or vector of Int1Ty
3065     Code = bitc::FUNC_CODE_INST_CMP2;
3066     pushValueAndType(I.getOperand(0), InstID, Vals);
3067     pushValue(I.getOperand(1), InstID, Vals);
3068     Vals.push_back(cast<CmpInst>(I).getPredicate());
3069     uint64_t Flags = getOptimizationFlags(&I);
3070     if (Flags != 0)
3071       Vals.push_back(Flags);
3072     break;
3073   }
3074 
3075   case Instruction::Ret:
3076     {
3077       Code = bitc::FUNC_CODE_INST_RET;
3078       unsigned NumOperands = I.getNumOperands();
3079       if (NumOperands == 0)
3080         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
3081       else if (NumOperands == 1) {
3082         if (!pushValueAndType(I.getOperand(0), InstID, Vals))
3083           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
3084       } else {
3085         for (const Value *Op : I.operands())
3086           pushValueAndType(Op, InstID, Vals);
3087       }
3088     }
3089     break;
3090   case Instruction::Br:
3091     {
3092       Code = bitc::FUNC_CODE_INST_BR;
3093       const BranchInst &II = cast<BranchInst>(I);
3094       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
3095       if (II.isConditional()) {
3096         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
3097         pushValue(II.getCondition(), InstID, Vals);
3098       }
3099     }
3100     break;
3101   case Instruction::Switch:
3102     {
3103       Code = bitc::FUNC_CODE_INST_SWITCH;
3104       const SwitchInst &SI = cast<SwitchInst>(I);
3105       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
3106       pushValue(SI.getCondition(), InstID, Vals);
3107       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
3108       for (auto Case : SI.cases()) {
3109         Vals.push_back(VE.getValueID(Case.getCaseValue()));
3110         Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
3111       }
3112     }
3113     break;
3114   case Instruction::IndirectBr:
3115     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
3116     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
3117     // Encode the address operand as relative, but not the basic blocks.
3118     pushValue(I.getOperand(0), InstID, Vals);
3119     for (const Value *Op : drop_begin(I.operands()))
3120       Vals.push_back(VE.getValueID(Op));
3121     break;
3122 
3123   case Instruction::Invoke: {
3124     const InvokeInst *II = cast<InvokeInst>(&I);
3125     const Value *Callee = II->getCalledOperand();
3126     FunctionType *FTy = II->getFunctionType();
3127 
3128     if (II->hasOperandBundles())
3129       writeOperandBundles(*II, InstID);
3130 
3131     Code = bitc::FUNC_CODE_INST_INVOKE;
3132 
3133     Vals.push_back(VE.getAttributeListID(II->getAttributes()));
3134     Vals.push_back(II->getCallingConv() | 1 << 13);
3135     Vals.push_back(VE.getValueID(II->getNormalDest()));
3136     Vals.push_back(VE.getValueID(II->getUnwindDest()));
3137     Vals.push_back(VE.getTypeID(FTy));
3138     pushValueAndType(Callee, InstID, Vals);
3139 
3140     // Emit value #'s for the fixed parameters.
3141     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3142       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
3143 
3144     // Emit type/value pairs for varargs params.
3145     if (FTy->isVarArg()) {
3146       for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i)
3147         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
3148     }
3149     break;
3150   }
3151   case Instruction::Resume:
3152     Code = bitc::FUNC_CODE_INST_RESUME;
3153     pushValueAndType(I.getOperand(0), InstID, Vals);
3154     break;
3155   case Instruction::CleanupRet: {
3156     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
3157     const auto &CRI = cast<CleanupReturnInst>(I);
3158     pushValue(CRI.getCleanupPad(), InstID, Vals);
3159     if (CRI.hasUnwindDest())
3160       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
3161     break;
3162   }
3163   case Instruction::CatchRet: {
3164     Code = bitc::FUNC_CODE_INST_CATCHRET;
3165     const auto &CRI = cast<CatchReturnInst>(I);
3166     pushValue(CRI.getCatchPad(), InstID, Vals);
3167     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
3168     break;
3169   }
3170   case Instruction::CleanupPad:
3171   case Instruction::CatchPad: {
3172     const auto &FuncletPad = cast<FuncletPadInst>(I);
3173     Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
3174                                          : bitc::FUNC_CODE_INST_CLEANUPPAD;
3175     pushValue(FuncletPad.getParentPad(), InstID, Vals);
3176 
3177     unsigned NumArgOperands = FuncletPad.arg_size();
3178     Vals.push_back(NumArgOperands);
3179     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
3180       pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
3181     break;
3182   }
3183   case Instruction::CatchSwitch: {
3184     Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
3185     const auto &CatchSwitch = cast<CatchSwitchInst>(I);
3186 
3187     pushValue(CatchSwitch.getParentPad(), InstID, Vals);
3188 
3189     unsigned NumHandlers = CatchSwitch.getNumHandlers();
3190     Vals.push_back(NumHandlers);
3191     for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
3192       Vals.push_back(VE.getValueID(CatchPadBB));
3193 
3194     if (CatchSwitch.hasUnwindDest())
3195       Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
3196     break;
3197   }
3198   case Instruction::CallBr: {
3199     const CallBrInst *CBI = cast<CallBrInst>(&I);
3200     const Value *Callee = CBI->getCalledOperand();
3201     FunctionType *FTy = CBI->getFunctionType();
3202 
3203     if (CBI->hasOperandBundles())
3204       writeOperandBundles(*CBI, InstID);
3205 
3206     Code = bitc::FUNC_CODE_INST_CALLBR;
3207 
3208     Vals.push_back(VE.getAttributeListID(CBI->getAttributes()));
3209 
3210     Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV |
3211                    1 << bitc::CALL_EXPLICIT_TYPE);
3212 
3213     Vals.push_back(VE.getValueID(CBI->getDefaultDest()));
3214     Vals.push_back(CBI->getNumIndirectDests());
3215     for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
3216       Vals.push_back(VE.getValueID(CBI->getIndirectDest(i)));
3217 
3218     Vals.push_back(VE.getTypeID(FTy));
3219     pushValueAndType(Callee, InstID, Vals);
3220 
3221     // Emit value #'s for the fixed parameters.
3222     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3223       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
3224 
3225     // Emit type/value pairs for varargs params.
3226     if (FTy->isVarArg()) {
3227       for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i)
3228         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
3229     }
3230     break;
3231   }
3232   case Instruction::Unreachable:
3233     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
3234     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
3235     break;
3236 
3237   case Instruction::PHI: {
3238     const PHINode &PN = cast<PHINode>(I);
3239     Code = bitc::FUNC_CODE_INST_PHI;
3240     // With the newer instruction encoding, forward references could give
3241     // negative valued IDs.  This is most common for PHIs, so we use
3242     // signed VBRs.
3243     SmallVector<uint64_t, 128> Vals64;
3244     Vals64.push_back(VE.getTypeID(PN.getType()));
3245     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
3246       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
3247       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
3248     }
3249 
3250     uint64_t Flags = getOptimizationFlags(&I);
3251     if (Flags != 0)
3252       Vals64.push_back(Flags);
3253 
3254     // Emit a Vals64 vector and exit.
3255     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
3256     Vals64.clear();
3257     return;
3258   }
3259 
3260   case Instruction::LandingPad: {
3261     const LandingPadInst &LP = cast<LandingPadInst>(I);
3262     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
3263     Vals.push_back(VE.getTypeID(LP.getType()));
3264     Vals.push_back(LP.isCleanup());
3265     Vals.push_back(LP.getNumClauses());
3266     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
3267       if (LP.isCatch(I))
3268         Vals.push_back(LandingPadInst::Catch);
3269       else
3270         Vals.push_back(LandingPadInst::Filter);
3271       pushValueAndType(LP.getClause(I), InstID, Vals);
3272     }
3273     break;
3274   }
3275 
3276   case Instruction::Alloca: {
3277     Code = bitc::FUNC_CODE_INST_ALLOCA;
3278     const AllocaInst &AI = cast<AllocaInst>(I);
3279     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
3280     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
3281     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
3282     using APV = AllocaPackedValues;
3283     unsigned Record = 0;
3284     unsigned EncodedAlign = getEncodedAlign(AI.getAlign());
3285     Bitfield::set<APV::AlignLower>(
3286         Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1));
3287     Bitfield::set<APV::AlignUpper>(Record,
3288                                    EncodedAlign >> APV::AlignLower::Bits);
3289     Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca());
3290     Bitfield::set<APV::ExplicitType>(Record, true);
3291     Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError());
3292     Vals.push_back(Record);
3293 
3294     unsigned AS = AI.getAddressSpace();
3295     if (AS != M.getDataLayout().getAllocaAddrSpace())
3296       Vals.push_back(AS);
3297     break;
3298   }
3299 
3300   case Instruction::Load:
3301     if (cast<LoadInst>(I).isAtomic()) {
3302       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
3303       pushValueAndType(I.getOperand(0), InstID, Vals);
3304     } else {
3305       Code = bitc::FUNC_CODE_INST_LOAD;
3306       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
3307         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
3308     }
3309     Vals.push_back(VE.getTypeID(I.getType()));
3310     Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign()));
3311     Vals.push_back(cast<LoadInst>(I).isVolatile());
3312     if (cast<LoadInst>(I).isAtomic()) {
3313       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
3314       Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
3315     }
3316     break;
3317   case Instruction::Store:
3318     if (cast<StoreInst>(I).isAtomic())
3319       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
3320     else
3321       Code = bitc::FUNC_CODE_INST_STORE;
3322     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
3323     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
3324     Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign()));
3325     Vals.push_back(cast<StoreInst>(I).isVolatile());
3326     if (cast<StoreInst>(I).isAtomic()) {
3327       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
3328       Vals.push_back(
3329           getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
3330     }
3331     break;
3332   case Instruction::AtomicCmpXchg:
3333     Code = bitc::FUNC_CODE_INST_CMPXCHG;
3334     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3335     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
3336     pushValue(I.getOperand(2), InstID, Vals);        // newval.
3337     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
3338     Vals.push_back(
3339         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
3340     Vals.push_back(
3341         getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
3342     Vals.push_back(
3343         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
3344     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
3345     Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign()));
3346     break;
3347   case Instruction::AtomicRMW:
3348     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
3349     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3350     pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val
3351     Vals.push_back(
3352         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
3353     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
3354     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
3355     Vals.push_back(
3356         getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
3357     Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign()));
3358     break;
3359   case Instruction::Fence:
3360     Code = bitc::FUNC_CODE_INST_FENCE;
3361     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
3362     Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
3363     break;
3364   case Instruction::Call: {
3365     const CallInst &CI = cast<CallInst>(I);
3366     FunctionType *FTy = CI.getFunctionType();
3367 
3368     if (CI.hasOperandBundles())
3369       writeOperandBundles(CI, InstID);
3370 
3371     Code = bitc::FUNC_CODE_INST_CALL;
3372 
3373     Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
3374 
3375     unsigned Flags = getOptimizationFlags(&I);
3376     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
3377                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
3378                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
3379                    1 << bitc::CALL_EXPLICIT_TYPE |
3380                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
3381                    unsigned(Flags != 0) << bitc::CALL_FMF);
3382     if (Flags != 0)
3383       Vals.push_back(Flags);
3384 
3385     Vals.push_back(VE.getTypeID(FTy));
3386     pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
3387 
3388     // Emit value #'s for the fixed parameters.
3389     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3390       // Check for labels (can happen with asm labels).
3391       if (FTy->getParamType(i)->isLabelTy())
3392         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
3393       else
3394         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
3395     }
3396 
3397     // Emit type/value pairs for varargs params.
3398     if (FTy->isVarArg()) {
3399       for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i)
3400         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
3401     }
3402     break;
3403   }
3404   case Instruction::VAArg:
3405     Code = bitc::FUNC_CODE_INST_VAARG;
3406     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
3407     pushValue(I.getOperand(0), InstID, Vals);                   // valist.
3408     Vals.push_back(VE.getTypeID(I.getType())); // restype.
3409     break;
3410   case Instruction::Freeze:
3411     Code = bitc::FUNC_CODE_INST_FREEZE;
3412     pushValueAndType(I.getOperand(0), InstID, Vals);
3413     break;
3414   }
3415 
3416   Stream.EmitRecord(Code, Vals, AbbrevToUse);
3417   Vals.clear();
3418 }
3419 
3420 /// Write a GlobalValue VST to the module. The purpose of this data structure is
3421 /// to allow clients to efficiently find the function body.
3422 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
3423   DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3424   // Get the offset of the VST we are writing, and backpatch it into
3425   // the VST forward declaration record.
3426   uint64_t VSTOffset = Stream.GetCurrentBitNo();
3427   // The BitcodeStartBit was the stream offset of the identification block.
3428   VSTOffset -= bitcodeStartBit();
3429   assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
3430   // Note that we add 1 here because the offset is relative to one word
3431   // before the start of the identification block, which was historically
3432   // always the start of the regular bitcode header.
3433   Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
3434 
3435   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3436 
3437   auto Abbv = std::make_shared<BitCodeAbbrev>();
3438   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
3439   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3440   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
3441   unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3442 
3443   for (const Function &F : M) {
3444     uint64_t Record[2];
3445 
3446     if (F.isDeclaration())
3447       continue;
3448 
3449     Record[0] = VE.getValueID(&F);
3450 
3451     // Save the word offset of the function (from the start of the
3452     // actual bitcode written to the stream).
3453     uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
3454     assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
3455     // Note that we add 1 here because the offset is relative to one word
3456     // before the start of the identification block, which was historically
3457     // always the start of the regular bitcode header.
3458     Record[1] = BitcodeIndex / 32 + 1;
3459 
3460     Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
3461   }
3462 
3463   Stream.ExitBlock();
3464 }
3465 
3466 /// Emit names for arguments, instructions and basic blocks in a function.
3467 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
3468     const ValueSymbolTable &VST) {
3469   if (VST.empty())
3470     return;
3471 
3472   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3473 
3474   // FIXME: Set up the abbrev, we know how many values there are!
3475   // FIXME: We know if the type names can use 7-bit ascii.
3476   SmallVector<uint64_t, 64> NameVals;
3477 
3478   for (const ValueName &Name : VST) {
3479     // Figure out the encoding to use for the name.
3480     StringEncoding Bits = getStringEncoding(Name.getKey());
3481 
3482     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
3483     NameVals.push_back(VE.getValueID(Name.getValue()));
3484 
3485     // VST_CODE_ENTRY:   [valueid, namechar x N]
3486     // VST_CODE_BBENTRY: [bbid, namechar x N]
3487     unsigned Code;
3488     if (isa<BasicBlock>(Name.getValue())) {
3489       Code = bitc::VST_CODE_BBENTRY;
3490       if (Bits == SE_Char6)
3491         AbbrevToUse = VST_BBENTRY_6_ABBREV;
3492     } else {
3493       Code = bitc::VST_CODE_ENTRY;
3494       if (Bits == SE_Char6)
3495         AbbrevToUse = VST_ENTRY_6_ABBREV;
3496       else if (Bits == SE_Fixed7)
3497         AbbrevToUse = VST_ENTRY_7_ABBREV;
3498     }
3499 
3500     for (const auto P : Name.getKey())
3501       NameVals.push_back((unsigned char)P);
3502 
3503     // Emit the finished record.
3504     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
3505     NameVals.clear();
3506   }
3507 
3508   Stream.ExitBlock();
3509 }
3510 
3511 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3512   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3513   unsigned Code;
3514   if (isa<BasicBlock>(Order.V))
3515     Code = bitc::USELIST_CODE_BB;
3516   else
3517     Code = bitc::USELIST_CODE_DEFAULT;
3518 
3519   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3520   Record.push_back(VE.getValueID(Order.V));
3521   Stream.EmitRecord(Code, Record);
3522 }
3523 
3524 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3525   assert(VE.shouldPreserveUseListOrder() &&
3526          "Expected to be preserving use-list order");
3527 
3528   auto hasMore = [&]() {
3529     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3530   };
3531   if (!hasMore())
3532     // Nothing to do.
3533     return;
3534 
3535   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3536   while (hasMore()) {
3537     writeUseList(std::move(VE.UseListOrders.back()));
3538     VE.UseListOrders.pop_back();
3539   }
3540   Stream.ExitBlock();
3541 }
3542 
3543 /// Emit a function body to the module stream.
3544 void ModuleBitcodeWriter::writeFunction(
3545     const Function &F,
3546     DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3547   // Save the bitcode index of the start of this function block for recording
3548   // in the VST.
3549   FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3550 
3551   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3552   VE.incorporateFunction(F);
3553 
3554   SmallVector<unsigned, 64> Vals;
3555 
3556   // Emit the number of basic blocks, so the reader can create them ahead of
3557   // time.
3558   Vals.push_back(VE.getBasicBlocks().size());
3559   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3560   Vals.clear();
3561 
3562   // If there are function-local constants, emit them now.
3563   unsigned CstStart, CstEnd;
3564   VE.getFunctionConstantRange(CstStart, CstEnd);
3565   writeConstants(CstStart, CstEnd, false);
3566 
3567   // If there is function-local metadata, emit it now.
3568   writeFunctionMetadata(F);
3569 
3570   // Keep a running idea of what the instruction ID is.
3571   unsigned InstID = CstEnd;
3572 
3573   bool NeedsMetadataAttachment = F.hasMetadata();
3574 
3575   DILocation *LastDL = nullptr;
3576   SmallSetVector<Function *, 4> BlockAddressUsers;
3577 
3578   // Finally, emit all the instructions, in order.
3579   for (const BasicBlock &BB : F) {
3580     for (const Instruction &I : BB) {
3581       writeInstruction(I, InstID, Vals);
3582 
3583       if (!I.getType()->isVoidTy())
3584         ++InstID;
3585 
3586       // If the instruction has metadata, write a metadata attachment later.
3587       NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc();
3588 
3589       // If the instruction has a debug location, emit it.
3590       if (DILocation *DL = I.getDebugLoc()) {
3591         if (DL == LastDL) {
3592           // Just repeat the same debug loc as last time.
3593           Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3594         } else {
3595           Vals.push_back(DL->getLine());
3596           Vals.push_back(DL->getColumn());
3597           Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3598           Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3599           Vals.push_back(DL->isImplicitCode());
3600           Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3601           Vals.clear();
3602           LastDL = DL;
3603         }
3604       }
3605 
3606       // If the instruction has DbgRecords attached to it, emit them. Note that
3607       // they come after the instruction so that it's easy to attach them again
3608       // when reading the bitcode, even though conceptually the debug locations
3609       // start "before" the instruction.
3610       if (I.hasDbgRecords() && WriteNewDbgInfoFormatToBitcode) {
3611         /// Try to push the value only (unwrapped), otherwise push the
3612         /// metadata wrapped value. Returns true if the value was pushed
3613         /// without the ValueAsMetadata wrapper.
3614         auto PushValueOrMetadata = [&Vals, InstID,
3615                                     this](Metadata *RawLocation) {
3616           assert(RawLocation &&
3617                  "RawLocation unexpectedly null in DbgVariableRecord");
3618           if (ValueAsMetadata *VAM = dyn_cast<ValueAsMetadata>(RawLocation)) {
3619             SmallVector<unsigned, 2> ValAndType;
3620             // If the value is a fwd-ref the type is also pushed. We don't
3621             // want the type, so fwd-refs are kept wrapped (pushValueAndType
3622             // returns false if the value is pushed without type).
3623             if (!pushValueAndType(VAM->getValue(), InstID, ValAndType)) {
3624               Vals.push_back(ValAndType[0]);
3625               return true;
3626             }
3627           }
3628           // The metadata is a DIArgList, or ValueAsMetadata wrapping a
3629           // fwd-ref. Push the metadata ID.
3630           Vals.push_back(VE.getMetadataID(RawLocation));
3631           return false;
3632         };
3633 
3634         // Write out non-instruction debug information attached to this
3635         // instruction. Write it after the instruction so that it's easy to
3636         // re-attach to the instruction reading the records in.
3637         for (DbgRecord &DR : I.DebugMarker->getDbgRecordRange()) {
3638           if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
3639             Vals.push_back(VE.getMetadataID(&*DLR->getDebugLoc()));
3640             Vals.push_back(VE.getMetadataID(DLR->getLabel()));
3641             Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_LABEL, Vals);
3642             Vals.clear();
3643             continue;
3644           }
3645 
3646           // First 3 fields are common to all kinds:
3647           //   DILocation, DILocalVariable, DIExpression
3648           // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE)
3649           //   ..., LocationMetadata
3650           // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd)
3651           //   ..., Value
3652           // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE)
3653           //   ..., LocationMetadata
3654           // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN)
3655           //   ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata
3656           DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
3657           Vals.push_back(VE.getMetadataID(&*DVR.getDebugLoc()));
3658           Vals.push_back(VE.getMetadataID(DVR.getVariable()));
3659           Vals.push_back(VE.getMetadataID(DVR.getExpression()));
3660           if (DVR.isDbgValue()) {
3661             if (PushValueOrMetadata(DVR.getRawLocation()))
3662               Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE, Vals,
3663                                 FUNCTION_DEBUG_RECORD_VALUE_ABBREV);
3664             else
3665               Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE, Vals);
3666           } else if (DVR.isDbgDeclare()) {
3667             Vals.push_back(VE.getMetadataID(DVR.getRawLocation()));
3668             Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_DECLARE, Vals);
3669           } else {
3670             assert(DVR.isDbgAssign() && "Unexpected DbgRecord kind");
3671             Vals.push_back(VE.getMetadataID(DVR.getRawLocation()));
3672             Vals.push_back(VE.getMetadataID(DVR.getAssignID()));
3673             Vals.push_back(VE.getMetadataID(DVR.getAddressExpression()));
3674             Vals.push_back(VE.getMetadataID(DVR.getRawAddress()));
3675             Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN, Vals);
3676           }
3677           Vals.clear();
3678         }
3679       }
3680     }
3681 
3682     if (BlockAddress *BA = BlockAddress::lookup(&BB)) {
3683       SmallVector<Value *> Worklist{BA};
3684       SmallPtrSet<Value *, 8> Visited{BA};
3685       while (!Worklist.empty()) {
3686         Value *V = Worklist.pop_back_val();
3687         for (User *U : V->users()) {
3688           if (auto *I = dyn_cast<Instruction>(U)) {
3689             Function *P = I->getFunction();
3690             if (P != &F)
3691               BlockAddressUsers.insert(P);
3692           } else if (isa<Constant>(U) && !isa<GlobalValue>(U) &&
3693                      Visited.insert(U).second)
3694             Worklist.push_back(U);
3695         }
3696       }
3697     }
3698   }
3699 
3700   if (!BlockAddressUsers.empty()) {
3701     Vals.resize(BlockAddressUsers.size());
3702     for (auto I : llvm::enumerate(BlockAddressUsers))
3703       Vals[I.index()] = VE.getValueID(I.value());
3704     Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals);
3705     Vals.clear();
3706   }
3707 
3708   // Emit names for all the instructions etc.
3709   if (auto *Symtab = F.getValueSymbolTable())
3710     writeFunctionLevelValueSymbolTable(*Symtab);
3711 
3712   if (NeedsMetadataAttachment)
3713     writeFunctionMetadataAttachment(F);
3714   if (VE.shouldPreserveUseListOrder())
3715     writeUseListBlock(&F);
3716   VE.purgeFunction();
3717   Stream.ExitBlock();
3718 }
3719 
3720 // Emit blockinfo, which defines the standard abbreviations etc.
3721 void ModuleBitcodeWriter::writeBlockInfo() {
3722   // We only want to emit block info records for blocks that have multiple
3723   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3724   // Other blocks can define their abbrevs inline.
3725   Stream.EnterBlockInfoBlock();
3726 
3727   { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3728     auto Abbv = std::make_shared<BitCodeAbbrev>();
3729     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3730     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3731     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3732     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3733     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3734         VST_ENTRY_8_ABBREV)
3735       llvm_unreachable("Unexpected abbrev ordering!");
3736   }
3737 
3738   { // 7-bit fixed width VST_CODE_ENTRY strings.
3739     auto Abbv = std::make_shared<BitCodeAbbrev>();
3740     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3741     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3742     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3743     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3744     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3745         VST_ENTRY_7_ABBREV)
3746       llvm_unreachable("Unexpected abbrev ordering!");
3747   }
3748   { // 6-bit char6 VST_CODE_ENTRY strings.
3749     auto Abbv = std::make_shared<BitCodeAbbrev>();
3750     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3751     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3752     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3753     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3754     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3755         VST_ENTRY_6_ABBREV)
3756       llvm_unreachable("Unexpected abbrev ordering!");
3757   }
3758   { // 6-bit char6 VST_CODE_BBENTRY strings.
3759     auto Abbv = std::make_shared<BitCodeAbbrev>();
3760     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3761     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3762     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3763     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3764     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3765         VST_BBENTRY_6_ABBREV)
3766       llvm_unreachable("Unexpected abbrev ordering!");
3767   }
3768 
3769   { // SETTYPE abbrev for CONSTANTS_BLOCK.
3770     auto Abbv = std::make_shared<BitCodeAbbrev>();
3771     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3772     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3773                               VE.computeBitsRequiredForTypeIndices()));
3774     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3775         CONSTANTS_SETTYPE_ABBREV)
3776       llvm_unreachable("Unexpected abbrev ordering!");
3777   }
3778 
3779   { // INTEGER abbrev for CONSTANTS_BLOCK.
3780     auto Abbv = std::make_shared<BitCodeAbbrev>();
3781     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3782     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3783     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3784         CONSTANTS_INTEGER_ABBREV)
3785       llvm_unreachable("Unexpected abbrev ordering!");
3786   }
3787 
3788   { // CE_CAST abbrev for CONSTANTS_BLOCK.
3789     auto Abbv = std::make_shared<BitCodeAbbrev>();
3790     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3791     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
3792     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
3793                               VE.computeBitsRequiredForTypeIndices()));
3794     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
3795 
3796     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3797         CONSTANTS_CE_CAST_Abbrev)
3798       llvm_unreachable("Unexpected abbrev ordering!");
3799   }
3800   { // NULL abbrev for CONSTANTS_BLOCK.
3801     auto Abbv = std::make_shared<BitCodeAbbrev>();
3802     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3803     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3804         CONSTANTS_NULL_Abbrev)
3805       llvm_unreachable("Unexpected abbrev ordering!");
3806   }
3807 
3808   // FIXME: This should only use space for first class types!
3809 
3810   { // INST_LOAD abbrev for FUNCTION_BLOCK.
3811     auto Abbv = std::make_shared<BitCodeAbbrev>();
3812     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3813     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3814     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3815                               VE.computeBitsRequiredForTypeIndices()));
3816     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3817     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3818     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3819         FUNCTION_INST_LOAD_ABBREV)
3820       llvm_unreachable("Unexpected abbrev ordering!");
3821   }
3822   { // INST_UNOP abbrev for FUNCTION_BLOCK.
3823     auto Abbv = std::make_shared<BitCodeAbbrev>();
3824     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3825     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3826     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3827     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3828         FUNCTION_INST_UNOP_ABBREV)
3829       llvm_unreachable("Unexpected abbrev ordering!");
3830   }
3831   { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3832     auto Abbv = std::make_shared<BitCodeAbbrev>();
3833     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3834     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3835     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3836     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3837     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3838         FUNCTION_INST_UNOP_FLAGS_ABBREV)
3839       llvm_unreachable("Unexpected abbrev ordering!");
3840   }
3841   { // INST_BINOP abbrev for FUNCTION_BLOCK.
3842     auto Abbv = std::make_shared<BitCodeAbbrev>();
3843     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3844     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3845     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3846     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3847     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3848         FUNCTION_INST_BINOP_ABBREV)
3849       llvm_unreachable("Unexpected abbrev ordering!");
3850   }
3851   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3852     auto Abbv = std::make_shared<BitCodeAbbrev>();
3853     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3854     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3855     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3856     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3857     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3858     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3859         FUNCTION_INST_BINOP_FLAGS_ABBREV)
3860       llvm_unreachable("Unexpected abbrev ordering!");
3861   }
3862   { // INST_CAST abbrev for FUNCTION_BLOCK.
3863     auto Abbv = std::make_shared<BitCodeAbbrev>();
3864     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3865     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
3866     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
3867                               VE.computeBitsRequiredForTypeIndices()));
3868     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
3869     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3870         FUNCTION_INST_CAST_ABBREV)
3871       llvm_unreachable("Unexpected abbrev ordering!");
3872   }
3873   { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK.
3874     auto Abbv = std::make_shared<BitCodeAbbrev>();
3875     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3876     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
3877     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3878                               VE.computeBitsRequiredForTypeIndices()));
3879     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3880     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3881     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3882         FUNCTION_INST_CAST_FLAGS_ABBREV)
3883       llvm_unreachable("Unexpected abbrev ordering!");
3884   }
3885 
3886   { // INST_RET abbrev for FUNCTION_BLOCK.
3887     auto Abbv = std::make_shared<BitCodeAbbrev>();
3888     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3889     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3890         FUNCTION_INST_RET_VOID_ABBREV)
3891       llvm_unreachable("Unexpected abbrev ordering!");
3892   }
3893   { // INST_RET abbrev for FUNCTION_BLOCK.
3894     auto Abbv = std::make_shared<BitCodeAbbrev>();
3895     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3896     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3897     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3898         FUNCTION_INST_RET_VAL_ABBREV)
3899       llvm_unreachable("Unexpected abbrev ordering!");
3900   }
3901   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3902     auto Abbv = std::make_shared<BitCodeAbbrev>();
3903     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3904     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3905         FUNCTION_INST_UNREACHABLE_ABBREV)
3906       llvm_unreachable("Unexpected abbrev ordering!");
3907   }
3908   {
3909     auto Abbv = std::make_shared<BitCodeAbbrev>();
3910     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3911     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3912     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3913                               Log2_32_Ceil(VE.getTypes().size() + 1)));
3914     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3915     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3916     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3917         FUNCTION_INST_GEP_ABBREV)
3918       llvm_unreachable("Unexpected abbrev ordering!");
3919   }
3920   {
3921     auto Abbv = std::make_shared<BitCodeAbbrev>();
3922     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE));
3923     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // dbgloc
3924     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // var
3925     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // expr
3926     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // val
3927     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3928         FUNCTION_DEBUG_RECORD_VALUE_ABBREV)
3929       llvm_unreachable("Unexpected abbrev ordering! 1");
3930   }
3931   Stream.ExitBlock();
3932 }
3933 
3934 /// Write the module path strings, currently only used when generating
3935 /// a combined index file.
3936 void IndexBitcodeWriter::writeModStrings() {
3937   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3938 
3939   // TODO: See which abbrev sizes we actually need to emit
3940 
3941   // 8-bit fixed-width MST_ENTRY strings.
3942   auto Abbv = std::make_shared<BitCodeAbbrev>();
3943   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3944   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3945   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3946   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3947   unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3948 
3949   // 7-bit fixed width MST_ENTRY strings.
3950   Abbv = std::make_shared<BitCodeAbbrev>();
3951   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3952   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3953   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3954   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3955   unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3956 
3957   // 6-bit char6 MST_ENTRY strings.
3958   Abbv = std::make_shared<BitCodeAbbrev>();
3959   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3960   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3961   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3962   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3963   unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3964 
3965   // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3966   Abbv = std::make_shared<BitCodeAbbrev>();
3967   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3968   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3969   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3970   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3971   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3972   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3973   unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3974 
3975   SmallVector<unsigned, 64> Vals;
3976   forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) {
3977     StringRef Key = MPSE.getKey();
3978     const auto &Hash = MPSE.getValue();
3979     StringEncoding Bits = getStringEncoding(Key);
3980     unsigned AbbrevToUse = Abbrev8Bit;
3981     if (Bits == SE_Char6)
3982       AbbrevToUse = Abbrev6Bit;
3983     else if (Bits == SE_Fixed7)
3984       AbbrevToUse = Abbrev7Bit;
3985 
3986     auto ModuleId = ModuleIdMap.size();
3987     ModuleIdMap[Key] = ModuleId;
3988     Vals.push_back(ModuleId);
3989     Vals.append(Key.begin(), Key.end());
3990 
3991     // Emit the finished record.
3992     Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3993 
3994     // Emit an optional hash for the module now
3995     if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3996       Vals.assign(Hash.begin(), Hash.end());
3997       // Emit the hash record.
3998       Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3999     }
4000 
4001     Vals.clear();
4002   });
4003   Stream.ExitBlock();
4004 }
4005 
4006 /// Write the function type metadata related records that need to appear before
4007 /// a function summary entry (whether per-module or combined).
4008 template <typename Fn>
4009 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
4010                                              FunctionSummary *FS,
4011                                              Fn GetValueID) {
4012   if (!FS->type_tests().empty())
4013     Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
4014 
4015   SmallVector<uint64_t, 64> Record;
4016 
4017   auto WriteVFuncIdVec = [&](uint64_t Ty,
4018                              ArrayRef<FunctionSummary::VFuncId> VFs) {
4019     if (VFs.empty())
4020       return;
4021     Record.clear();
4022     for (auto &VF : VFs) {
4023       Record.push_back(VF.GUID);
4024       Record.push_back(VF.Offset);
4025     }
4026     Stream.EmitRecord(Ty, Record);
4027   };
4028 
4029   WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
4030                   FS->type_test_assume_vcalls());
4031   WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
4032                   FS->type_checked_load_vcalls());
4033 
4034   auto WriteConstVCallVec = [&](uint64_t Ty,
4035                                 ArrayRef<FunctionSummary::ConstVCall> VCs) {
4036     for (auto &VC : VCs) {
4037       Record.clear();
4038       Record.push_back(VC.VFunc.GUID);
4039       Record.push_back(VC.VFunc.Offset);
4040       llvm::append_range(Record, VC.Args);
4041       Stream.EmitRecord(Ty, Record);
4042     }
4043   };
4044 
4045   WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
4046                      FS->type_test_assume_const_vcalls());
4047   WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
4048                      FS->type_checked_load_const_vcalls());
4049 
4050   auto WriteRange = [&](ConstantRange Range) {
4051     Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
4052     assert(Range.getLower().getNumWords() == 1);
4053     assert(Range.getUpper().getNumWords() == 1);
4054     emitSignedInt64(Record, *Range.getLower().getRawData());
4055     emitSignedInt64(Record, *Range.getUpper().getRawData());
4056   };
4057 
4058   if (!FS->paramAccesses().empty()) {
4059     Record.clear();
4060     for (auto &Arg : FS->paramAccesses()) {
4061       size_t UndoSize = Record.size();
4062       Record.push_back(Arg.ParamNo);
4063       WriteRange(Arg.Use);
4064       Record.push_back(Arg.Calls.size());
4065       for (auto &Call : Arg.Calls) {
4066         Record.push_back(Call.ParamNo);
4067         std::optional<unsigned> ValueID = GetValueID(Call.Callee);
4068         if (!ValueID) {
4069           // If ValueID is unknown we can't drop just this call, we must drop
4070           // entire parameter.
4071           Record.resize(UndoSize);
4072           break;
4073         }
4074         Record.push_back(*ValueID);
4075         WriteRange(Call.Offsets);
4076       }
4077     }
4078     if (!Record.empty())
4079       Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record);
4080   }
4081 }
4082 
4083 /// Collect type IDs from type tests used by function.
4084 static void
4085 getReferencedTypeIds(FunctionSummary *FS,
4086                      std::set<GlobalValue::GUID> &ReferencedTypeIds) {
4087   if (!FS->type_tests().empty())
4088     for (auto &TT : FS->type_tests())
4089       ReferencedTypeIds.insert(TT);
4090 
4091   auto GetReferencedTypesFromVFuncIdVec =
4092       [&](ArrayRef<FunctionSummary::VFuncId> VFs) {
4093         for (auto &VF : VFs)
4094           ReferencedTypeIds.insert(VF.GUID);
4095       };
4096 
4097   GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
4098   GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
4099 
4100   auto GetReferencedTypesFromConstVCallVec =
4101       [&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
4102         for (auto &VC : VCs)
4103           ReferencedTypeIds.insert(VC.VFunc.GUID);
4104       };
4105 
4106   GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
4107   GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
4108 }
4109 
4110 static void writeWholeProgramDevirtResolutionByArg(
4111     SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
4112     const WholeProgramDevirtResolution::ByArg &ByArg) {
4113   NameVals.push_back(args.size());
4114   llvm::append_range(NameVals, args);
4115 
4116   NameVals.push_back(ByArg.TheKind);
4117   NameVals.push_back(ByArg.Info);
4118   NameVals.push_back(ByArg.Byte);
4119   NameVals.push_back(ByArg.Bit);
4120 }
4121 
4122 static void writeWholeProgramDevirtResolution(
4123     SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
4124     uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
4125   NameVals.push_back(Id);
4126 
4127   NameVals.push_back(Wpd.TheKind);
4128   NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
4129   NameVals.push_back(Wpd.SingleImplName.size());
4130 
4131   NameVals.push_back(Wpd.ResByArg.size());
4132   for (auto &A : Wpd.ResByArg)
4133     writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
4134 }
4135 
4136 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
4137                                      StringTableBuilder &StrtabBuilder,
4138                                      const std::string &Id,
4139                                      const TypeIdSummary &Summary) {
4140   NameVals.push_back(StrtabBuilder.add(Id));
4141   NameVals.push_back(Id.size());
4142 
4143   NameVals.push_back(Summary.TTRes.TheKind);
4144   NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
4145   NameVals.push_back(Summary.TTRes.AlignLog2);
4146   NameVals.push_back(Summary.TTRes.SizeM1);
4147   NameVals.push_back(Summary.TTRes.BitMask);
4148   NameVals.push_back(Summary.TTRes.InlineBits);
4149 
4150   for (auto &W : Summary.WPDRes)
4151     writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
4152                                       W.second);
4153 }
4154 
4155 static void writeTypeIdCompatibleVtableSummaryRecord(
4156     SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
4157     const std::string &Id, const TypeIdCompatibleVtableInfo &Summary,
4158     ValueEnumerator &VE) {
4159   NameVals.push_back(StrtabBuilder.add(Id));
4160   NameVals.push_back(Id.size());
4161 
4162   for (auto &P : Summary) {
4163     NameVals.push_back(P.AddressPointOffset);
4164     NameVals.push_back(VE.getValueID(P.VTableVI.getValue()));
4165   }
4166 }
4167 
4168 static void writeFunctionHeapProfileRecords(
4169     BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev,
4170     unsigned AllocAbbrev, bool PerModule,
4171     std::function<unsigned(const ValueInfo &VI)> GetValueID,
4172     std::function<unsigned(unsigned)> GetStackIndex) {
4173   SmallVector<uint64_t> Record;
4174 
4175   for (auto &CI : FS->callsites()) {
4176     Record.clear();
4177     // Per module callsite clones should always have a single entry of
4178     // value 0.
4179     assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0));
4180     Record.push_back(GetValueID(CI.Callee));
4181     if (!PerModule) {
4182       Record.push_back(CI.StackIdIndices.size());
4183       Record.push_back(CI.Clones.size());
4184     }
4185     for (auto Id : CI.StackIdIndices)
4186       Record.push_back(GetStackIndex(Id));
4187     if (!PerModule) {
4188       for (auto V : CI.Clones)
4189         Record.push_back(V);
4190     }
4191     Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO
4192                                 : bitc::FS_COMBINED_CALLSITE_INFO,
4193                       Record, CallsiteAbbrev);
4194   }
4195 
4196   for (auto &AI : FS->allocs()) {
4197     Record.clear();
4198     // Per module alloc versions should always have a single entry of
4199     // value 0.
4200     assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0));
4201     Record.push_back(AI.MIBs.size());
4202     if (!PerModule)
4203       Record.push_back(AI.Versions.size());
4204     for (auto &MIB : AI.MIBs) {
4205       Record.push_back((uint8_t)MIB.AllocType);
4206       Record.push_back(MIB.StackIdIndices.size());
4207       for (auto Id : MIB.StackIdIndices)
4208         Record.push_back(GetStackIndex(Id));
4209     }
4210     if (!PerModule) {
4211       for (auto V : AI.Versions)
4212         Record.push_back(V);
4213     }
4214     assert(AI.TotalSizes.empty() || AI.TotalSizes.size() == AI.MIBs.size());
4215     if (!AI.TotalSizes.empty()) {
4216       for (auto Size : AI.TotalSizes)
4217         Record.push_back(Size);
4218     }
4219     Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO
4220                                 : bitc::FS_COMBINED_ALLOC_INFO,
4221                       Record, AllocAbbrev);
4222   }
4223 }
4224 
4225 // Helper to emit a single function summary record.
4226 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
4227     SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
4228     unsigned ValueID, unsigned FSCallsRelBFAbbrev,
4229     unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev,
4230     unsigned AllocAbbrev, const Function &F) {
4231   NameVals.push_back(ValueID);
4232 
4233   FunctionSummary *FS = cast<FunctionSummary>(Summary);
4234 
4235   writeFunctionTypeMetadataRecords(
4236       Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> {
4237         return {VE.getValueID(VI.getValue())};
4238       });
4239 
4240   writeFunctionHeapProfileRecords(
4241       Stream, FS, CallsiteAbbrev, AllocAbbrev,
4242       /*PerModule*/ true,
4243       /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); },
4244       /*GetStackIndex*/ [&](unsigned I) { return I; });
4245 
4246   auto SpecialRefCnts = FS->specialRefCounts();
4247   NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
4248   NameVals.push_back(FS->instCount());
4249   NameVals.push_back(getEncodedFFlags(FS->fflags()));
4250   NameVals.push_back(FS->refs().size());
4251   NameVals.push_back(SpecialRefCnts.first);  // rorefcnt
4252   NameVals.push_back(SpecialRefCnts.second); // worefcnt
4253 
4254   for (auto &RI : FS->refs())
4255     NameVals.push_back(getValueId(RI));
4256 
4257   const bool UseRelBFRecord =
4258       WriteRelBFToSummary && !F.hasProfileData() &&
4259       ForceSummaryEdgesCold == FunctionSummary::FSHT_None;
4260   for (auto &ECI : FS->calls()) {
4261     NameVals.push_back(getValueId(ECI.first));
4262     if (UseRelBFRecord)
4263       NameVals.push_back(getEncodedRelBFCallEdgeInfo(ECI.second));
4264     else
4265       NameVals.push_back(getEncodedHotnessCallEdgeInfo(ECI.second));
4266   }
4267 
4268   unsigned FSAbbrev =
4269       (UseRelBFRecord ? FSCallsRelBFAbbrev : FSCallsProfileAbbrev);
4270   unsigned Code =
4271       (UseRelBFRecord ? bitc::FS_PERMODULE_RELBF : bitc::FS_PERMODULE_PROFILE);
4272 
4273   // Emit the finished record.
4274   Stream.EmitRecord(Code, NameVals, FSAbbrev);
4275   NameVals.clear();
4276 }
4277 
4278 // Collect the global value references in the given variable's initializer,
4279 // and emit them in a summary record.
4280 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
4281     const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
4282     unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) {
4283   auto VI = Index->getValueInfo(V.getGUID());
4284   if (!VI || VI.getSummaryList().empty()) {
4285     // Only declarations should not have a summary (a declaration might however
4286     // have a summary if the def was in module level asm).
4287     assert(V.isDeclaration());
4288     return;
4289   }
4290   auto *Summary = VI.getSummaryList()[0].get();
4291   NameVals.push_back(VE.getValueID(&V));
4292   GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
4293   NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4294   NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4295 
4296   auto VTableFuncs = VS->vTableFuncs();
4297   if (!VTableFuncs.empty())
4298     NameVals.push_back(VS->refs().size());
4299 
4300   unsigned SizeBeforeRefs = NameVals.size();
4301   for (auto &RI : VS->refs())
4302     NameVals.push_back(VE.getValueID(RI.getValue()));
4303   // Sort the refs for determinism output, the vector returned by FS->refs() has
4304   // been initialized from a DenseSet.
4305   llvm::sort(drop_begin(NameVals, SizeBeforeRefs));
4306 
4307   if (VTableFuncs.empty())
4308     Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
4309                       FSModRefsAbbrev);
4310   else {
4311     // VTableFuncs pairs should already be sorted by offset.
4312     for (auto &P : VTableFuncs) {
4313       NameVals.push_back(VE.getValueID(P.FuncVI.getValue()));
4314       NameVals.push_back(P.VTableOffset);
4315     }
4316 
4317     Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals,
4318                       FSModVTableRefsAbbrev);
4319   }
4320   NameVals.clear();
4321 }
4322 
4323 /// Emit the per-module summary section alongside the rest of
4324 /// the module's bitcode.
4325 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
4326   // By default we compile with ThinLTO if the module has a summary, but the
4327   // client can request full LTO with a module flag.
4328   bool IsThinLTO = true;
4329   if (auto *MD =
4330           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
4331     IsThinLTO = MD->getZExtValue();
4332   Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
4333                                  : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
4334                        4);
4335 
4336   Stream.EmitRecord(
4337       bitc::FS_VERSION,
4338       ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4339 
4340   // Write the index flags.
4341   uint64_t Flags = 0;
4342   // Bits 1-3 are set only in the combined index, skip them.
4343   if (Index->enableSplitLTOUnit())
4344     Flags |= 0x8;
4345   if (Index->hasUnifiedLTO())
4346     Flags |= 0x200;
4347 
4348   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
4349 
4350   if (Index->begin() == Index->end()) {
4351     Stream.ExitBlock();
4352     return;
4353   }
4354 
4355   auto Abbv = std::make_shared<BitCodeAbbrev>();
4356   Abbv->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID));
4357   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4358   // GUIDS often use up most of 64-bits, so encode as two Fixed 32.
4359   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
4360   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
4361   unsigned ValueGuidAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4362 
4363   for (const auto &GVI : valueIds()) {
4364     Stream.EmitRecord(bitc::FS_VALUE_GUID,
4365                       ArrayRef<uint32_t>{GVI.second,
4366                                          static_cast<uint32_t>(GVI.first >> 32),
4367                                          static_cast<uint32_t>(GVI.first)},
4368                       ValueGuidAbbrev);
4369   }
4370 
4371   if (!Index->stackIds().empty()) {
4372     auto StackIdAbbv = std::make_shared<BitCodeAbbrev>();
4373     StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS));
4374     // numids x stackid
4375     StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4376     StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4377     unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv));
4378     Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId);
4379   }
4380 
4381   // Abbrev for FS_PERMODULE_PROFILE.
4382   Abbv = std::make_shared<BitCodeAbbrev>();
4383   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
4384   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4385   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // flags
4386   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4387   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4388   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4389   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4390   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4391   // numrefs x valueid, n x (valueid, hotness+tailcall flags)
4392   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4393   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4394   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4395 
4396   // Abbrev for FS_PERMODULE_RELBF.
4397   Abbv = std::make_shared<BitCodeAbbrev>();
4398   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
4399   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4400   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4401   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4402   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4403   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4404   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4405   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4406   // numrefs x valueid, n x (valueid, rel_block_freq+tailcall])
4407   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4408   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4409   unsigned FSCallsRelBFAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4410 
4411   // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
4412   Abbv = std::make_shared<BitCodeAbbrev>();
4413   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
4414   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4415   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4416   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
4417   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4418   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4419 
4420   // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
4421   Abbv = std::make_shared<BitCodeAbbrev>();
4422   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS));
4423   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4424   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4425   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4426   // numrefs x valueid, n x (valueid , offset)
4427   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4428   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4429   unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4430 
4431   // Abbrev for FS_ALIAS.
4432   Abbv = std::make_shared<BitCodeAbbrev>();
4433   Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
4434   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4435   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4436   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4437   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4438 
4439   // Abbrev for FS_TYPE_ID_METADATA
4440   Abbv = std::make_shared<BitCodeAbbrev>();
4441   Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA));
4442   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index
4443   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length
4444   // n x (valueid , offset)
4445   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4446   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4447   unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4448 
4449   Abbv = std::make_shared<BitCodeAbbrev>();
4450   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO));
4451   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4452   // n x stackidindex
4453   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4454   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4455   unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4456 
4457   Abbv = std::make_shared<BitCodeAbbrev>();
4458   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO));
4459   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib
4460   // n x (alloc type, numstackids, numstackids x stackidindex)
4461   // optional: nummib x total size
4462   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4463   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4464   unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4465 
4466   SmallVector<uint64_t, 64> NameVals;
4467   // Iterate over the list of functions instead of the Index to
4468   // ensure the ordering is stable.
4469   for (const Function &F : M) {
4470     // Summary emission does not support anonymous functions, they have to
4471     // renamed using the anonymous function renaming pass.
4472     if (!F.hasName())
4473       report_fatal_error("Unexpected anonymous function when writing summary");
4474 
4475     ValueInfo VI = Index->getValueInfo(F.getGUID());
4476     if (!VI || VI.getSummaryList().empty()) {
4477       // Only declarations should not have a summary (a declaration might
4478       // however have a summary if the def was in module level asm).
4479       assert(F.isDeclaration());
4480       continue;
4481     }
4482     auto *Summary = VI.getSummaryList()[0].get();
4483     writePerModuleFunctionSummaryRecord(
4484         NameVals, Summary, VE.getValueID(&F), FSCallsRelBFAbbrev,
4485         FSCallsProfileAbbrev, CallsiteAbbrev, AllocAbbrev, F);
4486   }
4487 
4488   // Capture references from GlobalVariable initializers, which are outside
4489   // of a function scope.
4490   for (const GlobalVariable &G : M.globals())
4491     writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev,
4492                                FSModVTableRefsAbbrev);
4493 
4494   for (const GlobalAlias &A : M.aliases()) {
4495     auto *Aliasee = A.getAliaseeObject();
4496     // Skip ifunc and nameless functions which don't have an entry in the
4497     // summary.
4498     if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee))
4499       continue;
4500     auto AliasId = VE.getValueID(&A);
4501     auto AliaseeId = VE.getValueID(Aliasee);
4502     NameVals.push_back(AliasId);
4503     auto *Summary = Index->getGlobalValueSummary(A);
4504     AliasSummary *AS = cast<AliasSummary>(Summary);
4505     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4506     NameVals.push_back(AliaseeId);
4507     Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
4508     NameVals.clear();
4509   }
4510 
4511   for (auto &S : Index->typeIdCompatibleVtableMap()) {
4512     writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first,
4513                                              S.second, VE);
4514     Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals,
4515                       TypeIdCompatibleVtableAbbrev);
4516     NameVals.clear();
4517   }
4518 
4519   if (Index->getBlockCount())
4520     Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4521                       ArrayRef<uint64_t>{Index->getBlockCount()});
4522 
4523   Stream.ExitBlock();
4524 }
4525 
4526 /// Emit the combined summary section into the combined index file.
4527 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
4528   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4);
4529   Stream.EmitRecord(
4530       bitc::FS_VERSION,
4531       ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4532 
4533   // Write the index flags.
4534   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()});
4535 
4536   auto Abbv = std::make_shared<BitCodeAbbrev>();
4537   Abbv->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID));
4538   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4539   // GUIDS often use up most of 64-bits, so encode as two Fixed 32.
4540   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
4541   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
4542   unsigned ValueGuidAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4543 
4544   for (const auto &GVI : valueIds()) {
4545     Stream.EmitRecord(bitc::FS_VALUE_GUID,
4546                       ArrayRef<uint32_t>{GVI.second,
4547                                          static_cast<uint32_t>(GVI.first >> 32),
4548                                          static_cast<uint32_t>(GVI.first)},
4549                       ValueGuidAbbrev);
4550   }
4551 
4552   // Write the stack ids used by this index, which will be a subset of those in
4553   // the full index in the case of distributed indexes.
4554   if (!StackIds.empty()) {
4555     auto StackIdAbbv = std::make_shared<BitCodeAbbrev>();
4556     StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS));
4557     // numids x stackid
4558     StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4559     StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4560     unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv));
4561     Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId);
4562   }
4563 
4564   // Abbrev for FS_COMBINED_PROFILE.
4565   Abbv = std::make_shared<BitCodeAbbrev>();
4566   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
4567   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4568   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4569   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4570   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4571   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4572   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount
4573   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4574   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4575   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4576   // numrefs x valueid, n x (valueid, hotness+tailcall flags)
4577   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4578   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4579   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4580 
4581   // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
4582   Abbv = std::make_shared<BitCodeAbbrev>();
4583   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
4584   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4585   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4586   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4587   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
4588   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4589   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4590 
4591   // Abbrev for FS_COMBINED_ALIAS.
4592   Abbv = std::make_shared<BitCodeAbbrev>();
4593   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
4594   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4595   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4596   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4597   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4598   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4599 
4600   Abbv = std::make_shared<BitCodeAbbrev>();
4601   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO));
4602   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4603   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices
4604   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver
4605   // numstackindices x stackidindex, numver x version
4606   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4607   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4608   unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4609 
4610   Abbv = std::make_shared<BitCodeAbbrev>();
4611   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO));
4612   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib
4613   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver
4614   // nummib x (alloc type, numstackids, numstackids x stackidindex),
4615   // numver x version
4616   // optional: nummib x total size
4617   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4618   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4619   unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4620 
4621   auto shouldImportValueAsDecl = [&](GlobalValueSummary *GVS) -> bool {
4622     if (DecSummaries == nullptr)
4623       return false;
4624     return DecSummaries->count(GVS);
4625   };
4626 
4627   // The aliases are emitted as a post-pass, and will point to the value
4628   // id of the aliasee. Save them in a vector for post-processing.
4629   SmallVector<AliasSummary *, 64> Aliases;
4630 
4631   // Save the value id for each summary for alias emission.
4632   DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
4633 
4634   SmallVector<uint64_t, 64> NameVals;
4635 
4636   // Set that will be populated during call to writeFunctionTypeMetadataRecords
4637   // with the type ids referenced by this index file.
4638   std::set<GlobalValue::GUID> ReferencedTypeIds;
4639 
4640   // For local linkage, we also emit the original name separately
4641   // immediately after the record.
4642   auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
4643     // We don't need to emit the original name if we are writing the index for
4644     // distributed backends (in which case ModuleToSummariesForIndex is
4645     // non-null). The original name is only needed during the thin link, since
4646     // for SamplePGO the indirect call targets for local functions have
4647     // have the original name annotated in profile.
4648     // Continue to emit it when writing out the entire combined index, which is
4649     // used in testing the thin link via llvm-lto.
4650     if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage()))
4651       return;
4652     NameVals.push_back(S.getOriginalName());
4653     Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
4654     NameVals.clear();
4655   };
4656 
4657   DenseSet<GlobalValue::GUID> DefOrUseGUIDs;
4658   forEachSummary([&](GVInfo I, bool IsAliasee) {
4659     GlobalValueSummary *S = I.second;
4660     assert(S);
4661     DefOrUseGUIDs.insert(I.first);
4662     for (const ValueInfo &VI : S->refs())
4663       DefOrUseGUIDs.insert(VI.getGUID());
4664 
4665     auto ValueId = getValueId(I.first);
4666     assert(ValueId);
4667     SummaryToValueIdMap[S] = *ValueId;
4668 
4669     // If this is invoked for an aliasee, we want to record the above
4670     // mapping, but then not emit a summary entry (if the aliasee is
4671     // to be imported, we will invoke this separately with IsAliasee=false).
4672     if (IsAliasee)
4673       return;
4674 
4675     if (auto *AS = dyn_cast<AliasSummary>(S)) {
4676       // Will process aliases as a post-pass because the reader wants all
4677       // global to be loaded first.
4678       Aliases.push_back(AS);
4679       return;
4680     }
4681 
4682     if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
4683       NameVals.push_back(*ValueId);
4684       assert(ModuleIdMap.count(VS->modulePath()));
4685       NameVals.push_back(ModuleIdMap[VS->modulePath()]);
4686       NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4687       NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4688       for (auto &RI : VS->refs()) {
4689         auto RefValueId = getValueId(RI.getGUID());
4690         if (!RefValueId)
4691           continue;
4692         NameVals.push_back(*RefValueId);
4693       }
4694 
4695       // Emit the finished record.
4696       Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
4697                         FSModRefsAbbrev);
4698       NameVals.clear();
4699       MaybeEmitOriginalName(*S);
4700       return;
4701     }
4702 
4703     auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> {
4704       if (!VI)
4705         return std::nullopt;
4706       return getValueId(VI.getGUID());
4707     };
4708 
4709     auto *FS = cast<FunctionSummary>(S);
4710     writeFunctionTypeMetadataRecords(Stream, FS, GetValueId);
4711     getReferencedTypeIds(FS, ReferencedTypeIds);
4712 
4713     writeFunctionHeapProfileRecords(
4714         Stream, FS, CallsiteAbbrev, AllocAbbrev,
4715         /*PerModule*/ false,
4716         /*GetValueId*/
4717         [&](const ValueInfo &VI) -> unsigned {
4718           std::optional<unsigned> ValueID = GetValueId(VI);
4719           // This can happen in shared index files for distributed ThinLTO if
4720           // the callee function summary is not included. Record 0 which we
4721           // will have to deal with conservatively when doing any kind of
4722           // validation in the ThinLTO backends.
4723           if (!ValueID)
4724             return 0;
4725           return *ValueID;
4726         },
4727         /*GetStackIndex*/
4728         [&](unsigned I) {
4729           // Get the corresponding index into the list of StackIds actually
4730           // being written for this combined index (which may be a subset in
4731           // the case of distributed indexes).
4732           assert(StackIdIndicesToIndex.contains(I));
4733           return StackIdIndicesToIndex[I];
4734         });
4735 
4736     NameVals.push_back(*ValueId);
4737     assert(ModuleIdMap.count(FS->modulePath()));
4738     NameVals.push_back(ModuleIdMap[FS->modulePath()]);
4739     NameVals.push_back(
4740         getEncodedGVSummaryFlags(FS->flags(), shouldImportValueAsDecl(FS)));
4741     NameVals.push_back(FS->instCount());
4742     NameVals.push_back(getEncodedFFlags(FS->fflags()));
4743     // TODO: Stop writing entry count and bump bitcode version.
4744     NameVals.push_back(0 /* EntryCount */);
4745 
4746     // Fill in below
4747     NameVals.push_back(0); // numrefs
4748     NameVals.push_back(0); // rorefcnt
4749     NameVals.push_back(0); // worefcnt
4750 
4751     unsigned Count = 0, RORefCnt = 0, WORefCnt = 0;
4752     for (auto &RI : FS->refs()) {
4753       auto RefValueId = getValueId(RI.getGUID());
4754       if (!RefValueId)
4755         continue;
4756       NameVals.push_back(*RefValueId);
4757       if (RI.isReadOnly())
4758         RORefCnt++;
4759       else if (RI.isWriteOnly())
4760         WORefCnt++;
4761       Count++;
4762     }
4763     NameVals[6] = Count;
4764     NameVals[7] = RORefCnt;
4765     NameVals[8] = WORefCnt;
4766 
4767     for (auto &EI : FS->calls()) {
4768       // If this GUID doesn't have a value id, it doesn't have a function
4769       // summary and we don't need to record any calls to it.
4770       std::optional<unsigned> CallValueId = GetValueId(EI.first);
4771       if (!CallValueId)
4772         continue;
4773       NameVals.push_back(*CallValueId);
4774       NameVals.push_back(getEncodedHotnessCallEdgeInfo(EI.second));
4775     }
4776 
4777     // Emit the finished record.
4778     Stream.EmitRecord(bitc::FS_COMBINED_PROFILE, NameVals,
4779                       FSCallsProfileAbbrev);
4780     NameVals.clear();
4781     MaybeEmitOriginalName(*S);
4782   });
4783 
4784   for (auto *AS : Aliases) {
4785     auto AliasValueId = SummaryToValueIdMap[AS];
4786     assert(AliasValueId);
4787     NameVals.push_back(AliasValueId);
4788     assert(ModuleIdMap.count(AS->modulePath()));
4789     NameVals.push_back(ModuleIdMap[AS->modulePath()]);
4790     NameVals.push_back(
4791         getEncodedGVSummaryFlags(AS->flags(), shouldImportValueAsDecl(AS)));
4792     auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
4793     assert(AliaseeValueId);
4794     NameVals.push_back(AliaseeValueId);
4795 
4796     // Emit the finished record.
4797     Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
4798     NameVals.clear();
4799     MaybeEmitOriginalName(*AS);
4800 
4801     if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
4802       getReferencedTypeIds(FS, ReferencedTypeIds);
4803   }
4804 
4805   if (!Index.cfiFunctionDefs().empty()) {
4806     for (auto &S : Index.cfiFunctionDefs()) {
4807       if (DefOrUseGUIDs.contains(
4808               GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4809         NameVals.push_back(StrtabBuilder.add(S));
4810         NameVals.push_back(S.size());
4811       }
4812     }
4813     if (!NameVals.empty()) {
4814       Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
4815       NameVals.clear();
4816     }
4817   }
4818 
4819   if (!Index.cfiFunctionDecls().empty()) {
4820     for (auto &S : Index.cfiFunctionDecls()) {
4821       if (DefOrUseGUIDs.contains(
4822               GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4823         NameVals.push_back(StrtabBuilder.add(S));
4824         NameVals.push_back(S.size());
4825       }
4826     }
4827     if (!NameVals.empty()) {
4828       Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
4829       NameVals.clear();
4830     }
4831   }
4832 
4833   // Walk the GUIDs that were referenced, and write the
4834   // corresponding type id records.
4835   for (auto &T : ReferencedTypeIds) {
4836     auto TidIter = Index.typeIds().equal_range(T);
4837     for (const auto &[GUID, TypeIdPair] : make_range(TidIter)) {
4838       writeTypeIdSummaryRecord(NameVals, StrtabBuilder, TypeIdPair.first,
4839                                TypeIdPair.second);
4840       Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
4841       NameVals.clear();
4842     }
4843   }
4844 
4845   if (Index.getBlockCount())
4846     Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4847                       ArrayRef<uint64_t>{Index.getBlockCount()});
4848 
4849   Stream.ExitBlock();
4850 }
4851 
4852 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
4853 /// current llvm version, and a record for the epoch number.
4854 static void writeIdentificationBlock(BitstreamWriter &Stream) {
4855   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
4856 
4857   // Write the "user readable" string identifying the bitcode producer
4858   auto Abbv = std::make_shared<BitCodeAbbrev>();
4859   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
4860   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4861   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
4862   auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4863   writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
4864                     "LLVM" LLVM_VERSION_STRING, StringAbbrev);
4865 
4866   // Write the epoch version
4867   Abbv = std::make_shared<BitCodeAbbrev>();
4868   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
4869   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4870   auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4871   constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}};
4872   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
4873   Stream.ExitBlock();
4874 }
4875 
4876 void ModuleBitcodeWriter::writeModuleHash(StringRef View) {
4877   // Emit the module's hash.
4878   // MODULE_CODE_HASH: [5*i32]
4879   if (GenerateHash) {
4880     uint32_t Vals[5];
4881     Hasher.update(ArrayRef<uint8_t>(
4882         reinterpret_cast<const uint8_t *>(View.data()), View.size()));
4883     std::array<uint8_t, 20> Hash = Hasher.result();
4884     for (int Pos = 0; Pos < 20; Pos += 4) {
4885       Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
4886     }
4887 
4888     // Emit the finished record.
4889     Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
4890 
4891     if (ModHash)
4892       // Save the written hash value.
4893       llvm::copy(Vals, std::begin(*ModHash));
4894   }
4895 }
4896 
4897 void ModuleBitcodeWriter::write() {
4898   writeIdentificationBlock(Stream);
4899 
4900   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4901   // We will want to write the module hash at this point. Block any flushing so
4902   // we can have access to the whole underlying data later.
4903   Stream.markAndBlockFlushing();
4904 
4905   writeModuleVersion();
4906 
4907   // Emit blockinfo, which defines the standard abbreviations etc.
4908   writeBlockInfo();
4909 
4910   // Emit information describing all of the types in the module.
4911   writeTypeTable();
4912 
4913   // Emit information about attribute groups.
4914   writeAttributeGroupTable();
4915 
4916   // Emit information about parameter attributes.
4917   writeAttributeTable();
4918 
4919   writeComdats();
4920 
4921   // Emit top-level description of module, including target triple, inline asm,
4922   // descriptors for global variables, and function prototype info.
4923   writeModuleInfo();
4924 
4925   // Emit constants.
4926   writeModuleConstants();
4927 
4928   // Emit metadata kind names.
4929   writeModuleMetadataKinds();
4930 
4931   // Emit metadata.
4932   writeModuleMetadata();
4933 
4934   // Emit module-level use-lists.
4935   if (VE.shouldPreserveUseListOrder())
4936     writeUseListBlock(nullptr);
4937 
4938   writeOperandBundleTags();
4939   writeSyncScopeNames();
4940 
4941   // Emit function bodies.
4942   DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
4943   for (const Function &F : M)
4944     if (!F.isDeclaration())
4945       writeFunction(F, FunctionToBitcodeIndex);
4946 
4947   // Need to write after the above call to WriteFunction which populates
4948   // the summary information in the index.
4949   if (Index)
4950     writePerModuleGlobalValueSummary();
4951 
4952   writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
4953 
4954   writeModuleHash(Stream.getMarkedBufferAndResumeFlushing());
4955 
4956   Stream.ExitBlock();
4957 }
4958 
4959 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
4960                                uint32_t &Position) {
4961   support::endian::write32le(&Buffer[Position], Value);
4962   Position += 4;
4963 }
4964 
4965 /// If generating a bc file on darwin, we have to emit a
4966 /// header and trailer to make it compatible with the system archiver.  To do
4967 /// this we emit the following header, and then emit a trailer that pads the
4968 /// file out to be a multiple of 16 bytes.
4969 ///
4970 /// struct bc_header {
4971 ///   uint32_t Magic;         // 0x0B17C0DE
4972 ///   uint32_t Version;       // Version, currently always 0.
4973 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4974 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
4975 ///   uint32_t CPUType;       // CPU specifier.
4976 ///   ... potentially more later ...
4977 /// };
4978 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
4979                                          const Triple &TT) {
4980   unsigned CPUType = ~0U;
4981 
4982   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4983   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4984   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
4985   // specific constants here because they are implicitly part of the Darwin ABI.
4986   enum {
4987     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
4988     DARWIN_CPU_TYPE_X86        = 7,
4989     DARWIN_CPU_TYPE_ARM        = 12,
4990     DARWIN_CPU_TYPE_POWERPC    = 18
4991   };
4992 
4993   Triple::ArchType Arch = TT.getArch();
4994   if (Arch == Triple::x86_64)
4995     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4996   else if (Arch == Triple::x86)
4997     CPUType = DARWIN_CPU_TYPE_X86;
4998   else if (Arch == Triple::ppc)
4999     CPUType = DARWIN_CPU_TYPE_POWERPC;
5000   else if (Arch == Triple::ppc64)
5001     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
5002   else if (Arch == Triple::arm || Arch == Triple::thumb)
5003     CPUType = DARWIN_CPU_TYPE_ARM;
5004 
5005   // Traditional Bitcode starts after header.
5006   assert(Buffer.size() >= BWH_HeaderSize &&
5007          "Expected header size to be reserved");
5008   unsigned BCOffset = BWH_HeaderSize;
5009   unsigned BCSize = Buffer.size() - BWH_HeaderSize;
5010 
5011   // Write the magic and version.
5012   unsigned Position = 0;
5013   writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
5014   writeInt32ToBuffer(0, Buffer, Position); // Version.
5015   writeInt32ToBuffer(BCOffset, Buffer, Position);
5016   writeInt32ToBuffer(BCSize, Buffer, Position);
5017   writeInt32ToBuffer(CPUType, Buffer, Position);
5018 
5019   // If the file is not a multiple of 16 bytes, insert dummy padding.
5020   while (Buffer.size() & 15)
5021     Buffer.push_back(0);
5022 }
5023 
5024 /// Helper to write the header common to all bitcode files.
5025 static void writeBitcodeHeader(BitstreamWriter &Stream) {
5026   // Emit the file header.
5027   Stream.Emit((unsigned)'B', 8);
5028   Stream.Emit((unsigned)'C', 8);
5029   Stream.Emit(0x0, 4);
5030   Stream.Emit(0xC, 4);
5031   Stream.Emit(0xE, 4);
5032   Stream.Emit(0xD, 4);
5033 }
5034 
5035 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
5036     : Stream(new BitstreamWriter(Buffer)) {
5037   writeBitcodeHeader(*Stream);
5038 }
5039 
5040 BitcodeWriter::BitcodeWriter(raw_ostream &FS)
5041     : Stream(new BitstreamWriter(FS, FlushThreshold)) {
5042   writeBitcodeHeader(*Stream);
5043 }
5044 
5045 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
5046 
5047 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
5048   Stream->EnterSubblock(Block, 3);
5049 
5050   auto Abbv = std::make_shared<BitCodeAbbrev>();
5051   Abbv->Add(BitCodeAbbrevOp(Record));
5052   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
5053   auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
5054 
5055   Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
5056 
5057   Stream->ExitBlock();
5058 }
5059 
5060 void BitcodeWriter::writeSymtab() {
5061   assert(!WroteStrtab && !WroteSymtab);
5062 
5063   // If any module has module-level inline asm, we will require a registered asm
5064   // parser for the target so that we can create an accurate symbol table for
5065   // the module.
5066   for (Module *M : Mods) {
5067     if (M->getModuleInlineAsm().empty())
5068       continue;
5069 
5070     std::string Err;
5071     const Triple TT(M->getTargetTriple());
5072     const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
5073     if (!T || !T->hasMCAsmParser())
5074       return;
5075   }
5076 
5077   WroteSymtab = true;
5078   SmallVector<char, 0> Symtab;
5079   // The irsymtab::build function may be unable to create a symbol table if the
5080   // module is malformed (e.g. it contains an invalid alias). Writing a symbol
5081   // table is not required for correctness, but we still want to be able to
5082   // write malformed modules to bitcode files, so swallow the error.
5083   if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
5084     consumeError(std::move(E));
5085     return;
5086   }
5087 
5088   writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
5089             {Symtab.data(), Symtab.size()});
5090 }
5091 
5092 void BitcodeWriter::writeStrtab() {
5093   assert(!WroteStrtab);
5094 
5095   std::vector<char> Strtab;
5096   StrtabBuilder.finalizeInOrder();
5097   Strtab.resize(StrtabBuilder.getSize());
5098   StrtabBuilder.write((uint8_t *)Strtab.data());
5099 
5100   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
5101             {Strtab.data(), Strtab.size()});
5102 
5103   WroteStrtab = true;
5104 }
5105 
5106 void BitcodeWriter::copyStrtab(StringRef Strtab) {
5107   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
5108   WroteStrtab = true;
5109 }
5110 
5111 void BitcodeWriter::writeModule(const Module &M,
5112                                 bool ShouldPreserveUseListOrder,
5113                                 const ModuleSummaryIndex *Index,
5114                                 bool GenerateHash, ModuleHash *ModHash) {
5115   assert(!WroteStrtab);
5116 
5117   // The Mods vector is used by irsymtab::build, which requires non-const
5118   // Modules in case it needs to materialize metadata. But the bitcode writer
5119   // requires that the module is materialized, so we can cast to non-const here,
5120   // after checking that it is in fact materialized.
5121   assert(M.isMaterialized());
5122   Mods.push_back(const_cast<Module *>(&M));
5123 
5124   ModuleBitcodeWriter ModuleWriter(M, StrtabBuilder, *Stream,
5125                                    ShouldPreserveUseListOrder, Index,
5126                                    GenerateHash, ModHash);
5127   ModuleWriter.write();
5128 }
5129 
5130 void BitcodeWriter::writeIndex(
5131     const ModuleSummaryIndex *Index,
5132     const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex,
5133     const GVSummaryPtrSet *DecSummaries) {
5134   IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, DecSummaries,
5135                                  ModuleToSummariesForIndex);
5136   IndexWriter.write();
5137 }
5138 
5139 /// Write the specified module to the specified output stream.
5140 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
5141                               bool ShouldPreserveUseListOrder,
5142                               const ModuleSummaryIndex *Index,
5143                               bool GenerateHash, ModuleHash *ModHash) {
5144   auto Write = [&](BitcodeWriter &Writer) {
5145     Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
5146                        ModHash);
5147     Writer.writeSymtab();
5148     Writer.writeStrtab();
5149   };
5150   Triple TT(M.getTargetTriple());
5151   if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) {
5152     // If this is darwin or another generic macho target, reserve space for the
5153     // header. Note that the header is computed *after* the output is known, so
5154     // we currently explicitly use a buffer, write to it, and then subsequently
5155     // flush to Out.
5156     SmallVector<char, 0> Buffer;
5157     Buffer.reserve(256 * 1024);
5158     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
5159     BitcodeWriter Writer(Buffer);
5160     Write(Writer);
5161     emitDarwinBCHeaderAndTrailer(Buffer, TT);
5162     Out.write(Buffer.data(), Buffer.size());
5163   } else {
5164     BitcodeWriter Writer(Out);
5165     Write(Writer);
5166   }
5167 }
5168 
5169 void IndexBitcodeWriter::write() {
5170   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
5171 
5172   writeModuleVersion();
5173 
5174   // Write the module paths in the combined index.
5175   writeModStrings();
5176 
5177   // Write the summary combined index records.
5178   writeCombinedGlobalValueSummary();
5179 
5180   Stream.ExitBlock();
5181 }
5182 
5183 // Write the specified module summary index to the given raw output stream,
5184 // where it will be written in a new bitcode block. This is used when
5185 // writing the combined index file for ThinLTO. When writing a subset of the
5186 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
5187 void llvm::writeIndexToFile(
5188     const ModuleSummaryIndex &Index, raw_ostream &Out,
5189     const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex,
5190     const GVSummaryPtrSet *DecSummaries) {
5191   SmallVector<char, 0> Buffer;
5192   Buffer.reserve(256 * 1024);
5193 
5194   BitcodeWriter Writer(Buffer);
5195   Writer.writeIndex(&Index, ModuleToSummariesForIndex, DecSummaries);
5196   Writer.writeStrtab();
5197 
5198   Out.write((char *)&Buffer.front(), Buffer.size());
5199 }
5200 
5201 namespace {
5202 
5203 /// Class to manage the bitcode writing for a thin link bitcode file.
5204 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
5205   /// ModHash is for use in ThinLTO incremental build, generated while writing
5206   /// the module bitcode file.
5207   const ModuleHash *ModHash;
5208 
5209 public:
5210   ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
5211                         BitstreamWriter &Stream,
5212                         const ModuleSummaryIndex &Index,
5213                         const ModuleHash &ModHash)
5214       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
5215                                 /*ShouldPreserveUseListOrder=*/false, &Index),
5216         ModHash(&ModHash) {}
5217 
5218   void write();
5219 
5220 private:
5221   void writeSimplifiedModuleInfo();
5222 };
5223 
5224 } // end anonymous namespace
5225 
5226 // This function writes a simpilified module info for thin link bitcode file.
5227 // It only contains the source file name along with the name(the offset and
5228 // size in strtab) and linkage for global values. For the global value info
5229 // entry, in order to keep linkage at offset 5, there are three zeros used
5230 // as padding.
5231 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
5232   SmallVector<unsigned, 64> Vals;
5233   // Emit the module's source file name.
5234   {
5235     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
5236     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
5237     if (Bits == SE_Char6)
5238       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
5239     else if (Bits == SE_Fixed7)
5240       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
5241 
5242     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5243     auto Abbv = std::make_shared<BitCodeAbbrev>();
5244     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
5245     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
5246     Abbv->Add(AbbrevOpToUse);
5247     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
5248 
5249     for (const auto P : M.getSourceFileName())
5250       Vals.push_back((unsigned char)P);
5251 
5252     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
5253     Vals.clear();
5254   }
5255 
5256   // Emit the global variable information.
5257   for (const GlobalVariable &GV : M.globals()) {
5258     // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
5259     Vals.push_back(StrtabBuilder.add(GV.getName()));
5260     Vals.push_back(GV.getName().size());
5261     Vals.push_back(0);
5262     Vals.push_back(0);
5263     Vals.push_back(0);
5264     Vals.push_back(getEncodedLinkage(GV));
5265 
5266     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
5267     Vals.clear();
5268   }
5269 
5270   // Emit the function proto information.
5271   for (const Function &F : M) {
5272     // FUNCTION:  [strtab offset, strtab size, 0, 0, 0, linkage]
5273     Vals.push_back(StrtabBuilder.add(F.getName()));
5274     Vals.push_back(F.getName().size());
5275     Vals.push_back(0);
5276     Vals.push_back(0);
5277     Vals.push_back(0);
5278     Vals.push_back(getEncodedLinkage(F));
5279 
5280     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
5281     Vals.clear();
5282   }
5283 
5284   // Emit the alias information.
5285   for (const GlobalAlias &A : M.aliases()) {
5286     // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
5287     Vals.push_back(StrtabBuilder.add(A.getName()));
5288     Vals.push_back(A.getName().size());
5289     Vals.push_back(0);
5290     Vals.push_back(0);
5291     Vals.push_back(0);
5292     Vals.push_back(getEncodedLinkage(A));
5293 
5294     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
5295     Vals.clear();
5296   }
5297 
5298   // Emit the ifunc information.
5299   for (const GlobalIFunc &I : M.ifuncs()) {
5300     // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
5301     Vals.push_back(StrtabBuilder.add(I.getName()));
5302     Vals.push_back(I.getName().size());
5303     Vals.push_back(0);
5304     Vals.push_back(0);
5305     Vals.push_back(0);
5306     Vals.push_back(getEncodedLinkage(I));
5307 
5308     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
5309     Vals.clear();
5310   }
5311 }
5312 
5313 void ThinLinkBitcodeWriter::write() {
5314   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
5315 
5316   writeModuleVersion();
5317 
5318   writeSimplifiedModuleInfo();
5319 
5320   writePerModuleGlobalValueSummary();
5321 
5322   // Write module hash.
5323   Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
5324 
5325   Stream.ExitBlock();
5326 }
5327 
5328 void BitcodeWriter::writeThinLinkBitcode(const Module &M,
5329                                          const ModuleSummaryIndex &Index,
5330                                          const ModuleHash &ModHash) {
5331   assert(!WroteStrtab);
5332 
5333   // The Mods vector is used by irsymtab::build, which requires non-const
5334   // Modules in case it needs to materialize metadata. But the bitcode writer
5335   // requires that the module is materialized, so we can cast to non-const here,
5336   // after checking that it is in fact materialized.
5337   assert(M.isMaterialized());
5338   Mods.push_back(const_cast<Module *>(&M));
5339 
5340   ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
5341                                        ModHash);
5342   ThinLinkWriter.write();
5343 }
5344 
5345 // Write the specified thin link bitcode file to the given raw output stream,
5346 // where it will be written in a new bitcode block. This is used when
5347 // writing the per-module index file for ThinLTO.
5348 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
5349                                       const ModuleSummaryIndex &Index,
5350                                       const ModuleHash &ModHash) {
5351   SmallVector<char, 0> Buffer;
5352   Buffer.reserve(256 * 1024);
5353 
5354   BitcodeWriter Writer(Buffer);
5355   Writer.writeThinLinkBitcode(M, Index, ModHash);
5356   Writer.writeSymtab();
5357   Writer.writeStrtab();
5358 
5359   Out.write((char *)&Buffer.front(), Buffer.size());
5360 }
5361 
5362 static const char *getSectionNameForBitcode(const Triple &T) {
5363   switch (T.getObjectFormat()) {
5364   case Triple::MachO:
5365     return "__LLVM,__bitcode";
5366   case Triple::COFF:
5367   case Triple::ELF:
5368   case Triple::Wasm:
5369   case Triple::UnknownObjectFormat:
5370     return ".llvmbc";
5371   case Triple::GOFF:
5372     llvm_unreachable("GOFF is not yet implemented");
5373     break;
5374   case Triple::SPIRV:
5375     if (T.getVendor() == Triple::AMD)
5376       return ".llvmbc";
5377     llvm_unreachable("SPIRV is not yet implemented");
5378     break;
5379   case Triple::XCOFF:
5380     llvm_unreachable("XCOFF is not yet implemented");
5381     break;
5382   case Triple::DXContainer:
5383     llvm_unreachable("DXContainer is not yet implemented");
5384     break;
5385   }
5386   llvm_unreachable("Unimplemented ObjectFormatType");
5387 }
5388 
5389 static const char *getSectionNameForCommandline(const Triple &T) {
5390   switch (T.getObjectFormat()) {
5391   case Triple::MachO:
5392     return "__LLVM,__cmdline";
5393   case Triple::COFF:
5394   case Triple::ELF:
5395   case Triple::Wasm:
5396   case Triple::UnknownObjectFormat:
5397     return ".llvmcmd";
5398   case Triple::GOFF:
5399     llvm_unreachable("GOFF is not yet implemented");
5400     break;
5401   case Triple::SPIRV:
5402     if (T.getVendor() == Triple::AMD)
5403       return ".llvmcmd";
5404     llvm_unreachable("SPIRV is not yet implemented");
5405     break;
5406   case Triple::XCOFF:
5407     llvm_unreachable("XCOFF is not yet implemented");
5408     break;
5409   case Triple::DXContainer:
5410     llvm_unreachable("DXC is not yet implemented");
5411     break;
5412   }
5413   llvm_unreachable("Unimplemented ObjectFormatType");
5414 }
5415 
5416 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf,
5417                                 bool EmbedBitcode, bool EmbedCmdline,
5418                                 const std::vector<uint8_t> &CmdArgs) {
5419   // Save llvm.compiler.used and remove it.
5420   SmallVector<Constant *, 2> UsedArray;
5421   SmallVector<GlobalValue *, 4> UsedGlobals;
5422   Type *UsedElementType = PointerType::getUnqual(M.getContext());
5423   GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true);
5424   for (auto *GV : UsedGlobals) {
5425     if (GV->getName() != "llvm.embedded.module" &&
5426         GV->getName() != "llvm.cmdline")
5427       UsedArray.push_back(
5428           ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5429   }
5430   if (Used)
5431     Used->eraseFromParent();
5432 
5433   // Embed the bitcode for the llvm module.
5434   std::string Data;
5435   ArrayRef<uint8_t> ModuleData;
5436   Triple T(M.getTargetTriple());
5437 
5438   if (EmbedBitcode) {
5439     if (Buf.getBufferSize() == 0 ||
5440         !isBitcode((const unsigned char *)Buf.getBufferStart(),
5441                    (const unsigned char *)Buf.getBufferEnd())) {
5442       // If the input is LLVM Assembly, bitcode is produced by serializing
5443       // the module. Use-lists order need to be preserved in this case.
5444       llvm::raw_string_ostream OS(Data);
5445       llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true);
5446       ModuleData =
5447           ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
5448     } else
5449       // If the input is LLVM bitcode, write the input byte stream directly.
5450       ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
5451                                      Buf.getBufferSize());
5452   }
5453   llvm::Constant *ModuleConstant =
5454       llvm::ConstantDataArray::get(M.getContext(), ModuleData);
5455   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
5456       M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
5457       ModuleConstant);
5458   GV->setSection(getSectionNameForBitcode(T));
5459   // Set alignment to 1 to prevent padding between two contributions from input
5460   // sections after linking.
5461   GV->setAlignment(Align(1));
5462   UsedArray.push_back(
5463       ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5464   if (llvm::GlobalVariable *Old =
5465           M.getGlobalVariable("llvm.embedded.module", true)) {
5466     assert(Old->hasZeroLiveUses() &&
5467            "llvm.embedded.module can only be used once in llvm.compiler.used");
5468     GV->takeName(Old);
5469     Old->eraseFromParent();
5470   } else {
5471     GV->setName("llvm.embedded.module");
5472   }
5473 
5474   // Skip if only bitcode needs to be embedded.
5475   if (EmbedCmdline) {
5476     // Embed command-line options.
5477     ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()),
5478                               CmdArgs.size());
5479     llvm::Constant *CmdConstant =
5480         llvm::ConstantDataArray::get(M.getContext(), CmdData);
5481     GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true,
5482                                   llvm::GlobalValue::PrivateLinkage,
5483                                   CmdConstant);
5484     GV->setSection(getSectionNameForCommandline(T));
5485     GV->setAlignment(Align(1));
5486     UsedArray.push_back(
5487         ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5488     if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) {
5489       assert(Old->hasZeroLiveUses() &&
5490              "llvm.cmdline can only be used once in llvm.compiler.used");
5491       GV->takeName(Old);
5492       Old->eraseFromParent();
5493     } else {
5494       GV->setName("llvm.cmdline");
5495     }
5496   }
5497 
5498   if (UsedArray.empty())
5499     return;
5500 
5501   // Recreate llvm.compiler.used.
5502   ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size());
5503   auto *NewUsed = new GlobalVariable(
5504       M, ATy, false, llvm::GlobalValue::AppendingLinkage,
5505       llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
5506   NewUsed->setSection("llvm.metadata");
5507 }
5508