1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeCommon.h" 28 #include "llvm/Bitcode/BitcodeReader.h" 29 #include "llvm/Bitcode/LLVMBitCodes.h" 30 #include "llvm/Bitstream/BitCodes.h" 31 #include "llvm/Bitstream/BitstreamWriter.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/TargetRegistry.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 static cl::opt<unsigned> 86 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 87 cl::desc("Number of metadatas above which we emit an index " 88 "to enable lazy-loading")); 89 static cl::opt<uint32_t> FlushThreshold( 90 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 91 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 92 93 static cl::opt<bool> WriteRelBFToSummary( 94 "write-relbf-to-summary", cl::Hidden, cl::init(false), 95 cl::desc("Write relative block frequency to function summary ")); 96 97 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 98 99 namespace { 100 101 /// These are manifest constants used by the bitcode writer. They do not need to 102 /// be kept in sync with the reader, but need to be consistent within this file. 103 enum { 104 // VALUE_SYMTAB_BLOCK abbrev id's. 105 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 106 VST_ENTRY_7_ABBREV, 107 VST_ENTRY_6_ABBREV, 108 VST_BBENTRY_6_ABBREV, 109 110 // CONSTANTS_BLOCK abbrev id's. 111 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 112 CONSTANTS_INTEGER_ABBREV, 113 CONSTANTS_CE_CAST_Abbrev, 114 CONSTANTS_NULL_Abbrev, 115 116 // FUNCTION_BLOCK abbrev id's. 117 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 118 FUNCTION_INST_UNOP_ABBREV, 119 FUNCTION_INST_UNOP_FLAGS_ABBREV, 120 FUNCTION_INST_BINOP_ABBREV, 121 FUNCTION_INST_BINOP_FLAGS_ABBREV, 122 FUNCTION_INST_CAST_ABBREV, 123 FUNCTION_INST_RET_VOID_ABBREV, 124 FUNCTION_INST_RET_VAL_ABBREV, 125 FUNCTION_INST_UNREACHABLE_ABBREV, 126 FUNCTION_INST_GEP_ABBREV, 127 }; 128 129 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 130 /// file type. 131 class BitcodeWriterBase { 132 protected: 133 /// The stream created and owned by the client. 134 BitstreamWriter &Stream; 135 136 StringTableBuilder &StrtabBuilder; 137 138 public: 139 /// Constructs a BitcodeWriterBase object that writes to the provided 140 /// \p Stream. 141 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 142 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 143 144 protected: 145 void writeModuleVersion(); 146 }; 147 148 void BitcodeWriterBase::writeModuleVersion() { 149 // VERSION: [version#] 150 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 151 } 152 153 /// Base class to manage the module bitcode writing, currently subclassed for 154 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 155 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 156 protected: 157 /// The Module to write to bitcode. 158 const Module &M; 159 160 /// Enumerates ids for all values in the module. 161 ValueEnumerator VE; 162 163 /// Optional per-module index to write for ThinLTO. 164 const ModuleSummaryIndex *Index; 165 166 /// Map that holds the correspondence between GUIDs in the summary index, 167 /// that came from indirect call profiles, and a value id generated by this 168 /// class to use in the VST and summary block records. 169 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 170 171 /// Tracks the last value id recorded in the GUIDToValueMap. 172 unsigned GlobalValueId; 173 174 /// Saves the offset of the VSTOffset record that must eventually be 175 /// backpatched with the offset of the actual VST. 176 uint64_t VSTOffsetPlaceholder = 0; 177 178 public: 179 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 180 /// writing to the provided \p Buffer. 181 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 182 BitstreamWriter &Stream, 183 bool ShouldPreserveUseListOrder, 184 const ModuleSummaryIndex *Index) 185 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 186 VE(M, ShouldPreserveUseListOrder), Index(Index) { 187 // Assign ValueIds to any callee values in the index that came from 188 // indirect call profiles and were recorded as a GUID not a Value* 189 // (which would have been assigned an ID by the ValueEnumerator). 190 // The starting ValueId is just after the number of values in the 191 // ValueEnumerator, so that they can be emitted in the VST. 192 GlobalValueId = VE.getValues().size(); 193 if (!Index) 194 return; 195 for (const auto &GUIDSummaryLists : *Index) 196 // Examine all summaries for this GUID. 197 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 198 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 199 // For each call in the function summary, see if the call 200 // is to a GUID (which means it is for an indirect call, 201 // otherwise we would have a Value for it). If so, synthesize 202 // a value id. 203 for (auto &CallEdge : FS->calls()) 204 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 205 assignValueId(CallEdge.first.getGUID()); 206 } 207 208 protected: 209 void writePerModuleGlobalValueSummary(); 210 211 private: 212 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 213 GlobalValueSummary *Summary, 214 unsigned ValueID, 215 unsigned FSCallsAbbrev, 216 unsigned FSCallsProfileAbbrev, 217 const Function &F); 218 void writeModuleLevelReferences(const GlobalVariable &V, 219 SmallVector<uint64_t, 64> &NameVals, 220 unsigned FSModRefsAbbrev, 221 unsigned FSModVTableRefsAbbrev); 222 223 void assignValueId(GlobalValue::GUID ValGUID) { 224 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 225 } 226 227 unsigned getValueId(GlobalValue::GUID ValGUID) { 228 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 229 // Expect that any GUID value had a value Id assigned by an 230 // earlier call to assignValueId. 231 assert(VMI != GUIDToValueIdMap.end() && 232 "GUID does not have assigned value Id"); 233 return VMI->second; 234 } 235 236 // Helper to get the valueId for the type of value recorded in VI. 237 unsigned getValueId(ValueInfo VI) { 238 if (!VI.haveGVs() || !VI.getValue()) 239 return getValueId(VI.getGUID()); 240 return VE.getValueID(VI.getValue()); 241 } 242 243 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 244 }; 245 246 /// Class to manage the bitcode writing for a module. 247 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 248 /// Pointer to the buffer allocated by caller for bitcode writing. 249 const SmallVectorImpl<char> &Buffer; 250 251 /// True if a module hash record should be written. 252 bool GenerateHash; 253 254 /// If non-null, when GenerateHash is true, the resulting hash is written 255 /// into ModHash. 256 ModuleHash *ModHash; 257 258 SHA1 Hasher; 259 260 /// The start bit of the identification block. 261 uint64_t BitcodeStartBit; 262 263 public: 264 /// Constructs a ModuleBitcodeWriter object for the given Module, 265 /// writing to the provided \p Buffer. 266 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 267 StringTableBuilder &StrtabBuilder, 268 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 269 const ModuleSummaryIndex *Index, bool GenerateHash, 270 ModuleHash *ModHash = nullptr) 271 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 272 ShouldPreserveUseListOrder, Index), 273 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 274 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 275 276 /// Emit the current module to the bitstream. 277 void write(); 278 279 private: 280 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 281 282 size_t addToStrtab(StringRef Str); 283 284 void writeAttributeGroupTable(); 285 void writeAttributeTable(); 286 void writeTypeTable(); 287 void writeComdats(); 288 void writeValueSymbolTableForwardDecl(); 289 void writeModuleInfo(); 290 void writeValueAsMetadata(const ValueAsMetadata *MD, 291 SmallVectorImpl<uint64_t> &Record); 292 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 293 unsigned Abbrev); 294 unsigned createDILocationAbbrev(); 295 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 296 unsigned &Abbrev); 297 unsigned createGenericDINodeAbbrev(); 298 void writeGenericDINode(const GenericDINode *N, 299 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 300 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 301 unsigned Abbrev); 302 void writeDIGenericSubrange(const DIGenericSubrange *N, 303 SmallVectorImpl<uint64_t> &Record, 304 unsigned Abbrev); 305 void writeDIEnumerator(const DIEnumerator *N, 306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 307 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 308 unsigned Abbrev); 309 void writeDIStringType(const DIStringType *N, 310 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 311 void writeDIDerivedType(const DIDerivedType *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDICompositeType(const DICompositeType *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDISubroutineType(const DISubroutineType *N, 316 SmallVectorImpl<uint64_t> &Record, 317 unsigned Abbrev); 318 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDICompileUnit(const DICompileUnit *N, 321 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 322 void writeDISubprogram(const DISubprogram *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDILexicalBlock(const DILexicalBlock *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 327 SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDICommonBlock(const DICommonBlock *N, 330 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 331 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 332 unsigned Abbrev); 333 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 342 SmallVectorImpl<uint64_t> &Record, 343 unsigned Abbrev); 344 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 345 SmallVectorImpl<uint64_t> &Record, 346 unsigned Abbrev); 347 void writeDIGlobalVariable(const DIGlobalVariable *N, 348 SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 void writeDILocalVariable(const DILocalVariable *N, 351 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 352 void writeDILabel(const DILabel *N, 353 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 354 void writeDIExpression(const DIExpression *N, 355 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 356 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 357 SmallVectorImpl<uint64_t> &Record, 358 unsigned Abbrev); 359 void writeDIObjCProperty(const DIObjCProperty *N, 360 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 361 void writeDIImportedEntity(const DIImportedEntity *N, 362 SmallVectorImpl<uint64_t> &Record, 363 unsigned Abbrev); 364 unsigned createNamedMetadataAbbrev(); 365 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 366 unsigned createMetadataStringsAbbrev(); 367 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 368 SmallVectorImpl<uint64_t> &Record); 369 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 370 SmallVectorImpl<uint64_t> &Record, 371 std::vector<unsigned> *MDAbbrevs = nullptr, 372 std::vector<uint64_t> *IndexPos = nullptr); 373 void writeModuleMetadata(); 374 void writeFunctionMetadata(const Function &F); 375 void writeFunctionMetadataAttachment(const Function &F); 376 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 377 const GlobalObject &GO); 378 void writeModuleMetadataKinds(); 379 void writeOperandBundleTags(); 380 void writeSyncScopeNames(); 381 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 382 void writeModuleConstants(); 383 bool pushValueAndType(const Value *V, unsigned InstID, 384 SmallVectorImpl<unsigned> &Vals); 385 void writeOperandBundles(const CallBase &CB, unsigned InstID); 386 void pushValue(const Value *V, unsigned InstID, 387 SmallVectorImpl<unsigned> &Vals); 388 void pushValueSigned(const Value *V, unsigned InstID, 389 SmallVectorImpl<uint64_t> &Vals); 390 void writeInstruction(const Instruction &I, unsigned InstID, 391 SmallVectorImpl<unsigned> &Vals); 392 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 393 void writeGlobalValueSymbolTable( 394 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 395 void writeUseList(UseListOrder &&Order); 396 void writeUseListBlock(const Function *F); 397 void 398 writeFunction(const Function &F, 399 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 400 void writeBlockInfo(); 401 void writeModuleHash(size_t BlockStartPos); 402 403 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 404 return unsigned(SSID); 405 } 406 407 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 408 }; 409 410 /// Class to manage the bitcode writing for a combined index. 411 class IndexBitcodeWriter : public BitcodeWriterBase { 412 /// The combined index to write to bitcode. 413 const ModuleSummaryIndex &Index; 414 415 /// When writing a subset of the index for distributed backends, client 416 /// provides a map of modules to the corresponding GUIDs/summaries to write. 417 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 418 419 /// Map that holds the correspondence between the GUID used in the combined 420 /// index and a value id generated by this class to use in references. 421 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 422 423 /// Tracks the last value id recorded in the GUIDToValueMap. 424 unsigned GlobalValueId = 0; 425 426 public: 427 /// Constructs a IndexBitcodeWriter object for the given combined index, 428 /// writing to the provided \p Buffer. When writing a subset of the index 429 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 430 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 431 const ModuleSummaryIndex &Index, 432 const std::map<std::string, GVSummaryMapTy> 433 *ModuleToSummariesForIndex = nullptr) 434 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 435 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 436 // Assign unique value ids to all summaries to be written, for use 437 // in writing out the call graph edges. Save the mapping from GUID 438 // to the new global value id to use when writing those edges, which 439 // are currently saved in the index in terms of GUID. 440 forEachSummary([&](GVInfo I, bool) { 441 GUIDToValueIdMap[I.first] = ++GlobalValueId; 442 }); 443 } 444 445 /// The below iterator returns the GUID and associated summary. 446 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 447 448 /// Calls the callback for each value GUID and summary to be written to 449 /// bitcode. This hides the details of whether they are being pulled from the 450 /// entire index or just those in a provided ModuleToSummariesForIndex map. 451 template<typename Functor> 452 void forEachSummary(Functor Callback) { 453 if (ModuleToSummariesForIndex) { 454 for (auto &M : *ModuleToSummariesForIndex) 455 for (auto &Summary : M.second) { 456 Callback(Summary, false); 457 // Ensure aliasee is handled, e.g. for assigning a valueId, 458 // even if we are not importing the aliasee directly (the 459 // imported alias will contain a copy of aliasee). 460 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 461 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 462 } 463 } else { 464 for (auto &Summaries : Index) 465 for (auto &Summary : Summaries.second.SummaryList) 466 Callback({Summaries.first, Summary.get()}, false); 467 } 468 } 469 470 /// Calls the callback for each entry in the modulePaths StringMap that 471 /// should be written to the module path string table. This hides the details 472 /// of whether they are being pulled from the entire index or just those in a 473 /// provided ModuleToSummariesForIndex map. 474 template <typename Functor> void forEachModule(Functor Callback) { 475 if (ModuleToSummariesForIndex) { 476 for (const auto &M : *ModuleToSummariesForIndex) { 477 const auto &MPI = Index.modulePaths().find(M.first); 478 if (MPI == Index.modulePaths().end()) { 479 // This should only happen if the bitcode file was empty, in which 480 // case we shouldn't be importing (the ModuleToSummariesForIndex 481 // would only include the module we are writing and index for). 482 assert(ModuleToSummariesForIndex->size() == 1); 483 continue; 484 } 485 Callback(*MPI); 486 } 487 } else { 488 for (const auto &MPSE : Index.modulePaths()) 489 Callback(MPSE); 490 } 491 } 492 493 /// Main entry point for writing a combined index to bitcode. 494 void write(); 495 496 private: 497 void writeModStrings(); 498 void writeCombinedGlobalValueSummary(); 499 500 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 501 auto VMI = GUIDToValueIdMap.find(ValGUID); 502 if (VMI == GUIDToValueIdMap.end()) 503 return None; 504 return VMI->second; 505 } 506 507 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 508 }; 509 510 } // end anonymous namespace 511 512 static unsigned getEncodedCastOpcode(unsigned Opcode) { 513 switch (Opcode) { 514 default: llvm_unreachable("Unknown cast instruction!"); 515 case Instruction::Trunc : return bitc::CAST_TRUNC; 516 case Instruction::ZExt : return bitc::CAST_ZEXT; 517 case Instruction::SExt : return bitc::CAST_SEXT; 518 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 519 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 520 case Instruction::UIToFP : return bitc::CAST_UITOFP; 521 case Instruction::SIToFP : return bitc::CAST_SITOFP; 522 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 523 case Instruction::FPExt : return bitc::CAST_FPEXT; 524 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 525 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 526 case Instruction::BitCast : return bitc::CAST_BITCAST; 527 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 528 } 529 } 530 531 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 532 switch (Opcode) { 533 default: llvm_unreachable("Unknown binary instruction!"); 534 case Instruction::FNeg: return bitc::UNOP_FNEG; 535 } 536 } 537 538 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 539 switch (Opcode) { 540 default: llvm_unreachable("Unknown binary instruction!"); 541 case Instruction::Add: 542 case Instruction::FAdd: return bitc::BINOP_ADD; 543 case Instruction::Sub: 544 case Instruction::FSub: return bitc::BINOP_SUB; 545 case Instruction::Mul: 546 case Instruction::FMul: return bitc::BINOP_MUL; 547 case Instruction::UDiv: return bitc::BINOP_UDIV; 548 case Instruction::FDiv: 549 case Instruction::SDiv: return bitc::BINOP_SDIV; 550 case Instruction::URem: return bitc::BINOP_UREM; 551 case Instruction::FRem: 552 case Instruction::SRem: return bitc::BINOP_SREM; 553 case Instruction::Shl: return bitc::BINOP_SHL; 554 case Instruction::LShr: return bitc::BINOP_LSHR; 555 case Instruction::AShr: return bitc::BINOP_ASHR; 556 case Instruction::And: return bitc::BINOP_AND; 557 case Instruction::Or: return bitc::BINOP_OR; 558 case Instruction::Xor: return bitc::BINOP_XOR; 559 } 560 } 561 562 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 563 switch (Op) { 564 default: llvm_unreachable("Unknown RMW operation!"); 565 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 566 case AtomicRMWInst::Add: return bitc::RMW_ADD; 567 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 568 case AtomicRMWInst::And: return bitc::RMW_AND; 569 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 570 case AtomicRMWInst::Or: return bitc::RMW_OR; 571 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 572 case AtomicRMWInst::Max: return bitc::RMW_MAX; 573 case AtomicRMWInst::Min: return bitc::RMW_MIN; 574 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 575 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 576 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 577 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 578 } 579 } 580 581 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 582 switch (Ordering) { 583 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 584 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 585 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 586 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 587 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 588 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 589 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 590 } 591 llvm_unreachable("Invalid ordering"); 592 } 593 594 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 595 StringRef Str, unsigned AbbrevToUse) { 596 SmallVector<unsigned, 64> Vals; 597 598 // Code: [strchar x N] 599 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 600 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 601 AbbrevToUse = 0; 602 Vals.push_back(Str[i]); 603 } 604 605 // Emit the finished record. 606 Stream.EmitRecord(Code, Vals, AbbrevToUse); 607 } 608 609 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 610 switch (Kind) { 611 case Attribute::Alignment: 612 return bitc::ATTR_KIND_ALIGNMENT; 613 case Attribute::AllocSize: 614 return bitc::ATTR_KIND_ALLOC_SIZE; 615 case Attribute::AlwaysInline: 616 return bitc::ATTR_KIND_ALWAYS_INLINE; 617 case Attribute::ArgMemOnly: 618 return bitc::ATTR_KIND_ARGMEMONLY; 619 case Attribute::Builtin: 620 return bitc::ATTR_KIND_BUILTIN; 621 case Attribute::ByVal: 622 return bitc::ATTR_KIND_BY_VAL; 623 case Attribute::Convergent: 624 return bitc::ATTR_KIND_CONVERGENT; 625 case Attribute::InAlloca: 626 return bitc::ATTR_KIND_IN_ALLOCA; 627 case Attribute::Cold: 628 return bitc::ATTR_KIND_COLD; 629 case Attribute::DisableSanitizerInstrumentation: 630 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 631 case Attribute::Hot: 632 return bitc::ATTR_KIND_HOT; 633 case Attribute::ElementType: 634 return bitc::ATTR_KIND_ELEMENTTYPE; 635 case Attribute::InaccessibleMemOnly: 636 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 637 case Attribute::InaccessibleMemOrArgMemOnly: 638 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 639 case Attribute::InlineHint: 640 return bitc::ATTR_KIND_INLINE_HINT; 641 case Attribute::InReg: 642 return bitc::ATTR_KIND_IN_REG; 643 case Attribute::JumpTable: 644 return bitc::ATTR_KIND_JUMP_TABLE; 645 case Attribute::MinSize: 646 return bitc::ATTR_KIND_MIN_SIZE; 647 case Attribute::Naked: 648 return bitc::ATTR_KIND_NAKED; 649 case Attribute::Nest: 650 return bitc::ATTR_KIND_NEST; 651 case Attribute::NoAlias: 652 return bitc::ATTR_KIND_NO_ALIAS; 653 case Attribute::NoBuiltin: 654 return bitc::ATTR_KIND_NO_BUILTIN; 655 case Attribute::NoCallback: 656 return bitc::ATTR_KIND_NO_CALLBACK; 657 case Attribute::NoCapture: 658 return bitc::ATTR_KIND_NO_CAPTURE; 659 case Attribute::NoDuplicate: 660 return bitc::ATTR_KIND_NO_DUPLICATE; 661 case Attribute::NoFree: 662 return bitc::ATTR_KIND_NOFREE; 663 case Attribute::NoImplicitFloat: 664 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 665 case Attribute::NoInline: 666 return bitc::ATTR_KIND_NO_INLINE; 667 case Attribute::NoRecurse: 668 return bitc::ATTR_KIND_NO_RECURSE; 669 case Attribute::NoMerge: 670 return bitc::ATTR_KIND_NO_MERGE; 671 case Attribute::NonLazyBind: 672 return bitc::ATTR_KIND_NON_LAZY_BIND; 673 case Attribute::NonNull: 674 return bitc::ATTR_KIND_NON_NULL; 675 case Attribute::Dereferenceable: 676 return bitc::ATTR_KIND_DEREFERENCEABLE; 677 case Attribute::DereferenceableOrNull: 678 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 679 case Attribute::NoRedZone: 680 return bitc::ATTR_KIND_NO_RED_ZONE; 681 case Attribute::NoReturn: 682 return bitc::ATTR_KIND_NO_RETURN; 683 case Attribute::NoSync: 684 return bitc::ATTR_KIND_NOSYNC; 685 case Attribute::NoCfCheck: 686 return bitc::ATTR_KIND_NOCF_CHECK; 687 case Attribute::NoProfile: 688 return bitc::ATTR_KIND_NO_PROFILE; 689 case Attribute::NoUnwind: 690 return bitc::ATTR_KIND_NO_UNWIND; 691 case Attribute::NoSanitizeCoverage: 692 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 693 case Attribute::NullPointerIsValid: 694 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 695 case Attribute::OptForFuzzing: 696 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 697 case Attribute::OptimizeForSize: 698 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 699 case Attribute::OptimizeNone: 700 return bitc::ATTR_KIND_OPTIMIZE_NONE; 701 case Attribute::ReadNone: 702 return bitc::ATTR_KIND_READ_NONE; 703 case Attribute::ReadOnly: 704 return bitc::ATTR_KIND_READ_ONLY; 705 case Attribute::Returned: 706 return bitc::ATTR_KIND_RETURNED; 707 case Attribute::ReturnsTwice: 708 return bitc::ATTR_KIND_RETURNS_TWICE; 709 case Attribute::SExt: 710 return bitc::ATTR_KIND_S_EXT; 711 case Attribute::Speculatable: 712 return bitc::ATTR_KIND_SPECULATABLE; 713 case Attribute::StackAlignment: 714 return bitc::ATTR_KIND_STACK_ALIGNMENT; 715 case Attribute::StackProtect: 716 return bitc::ATTR_KIND_STACK_PROTECT; 717 case Attribute::StackProtectReq: 718 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 719 case Attribute::StackProtectStrong: 720 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 721 case Attribute::SafeStack: 722 return bitc::ATTR_KIND_SAFESTACK; 723 case Attribute::ShadowCallStack: 724 return bitc::ATTR_KIND_SHADOWCALLSTACK; 725 case Attribute::StrictFP: 726 return bitc::ATTR_KIND_STRICT_FP; 727 case Attribute::StructRet: 728 return bitc::ATTR_KIND_STRUCT_RET; 729 case Attribute::SanitizeAddress: 730 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 731 case Attribute::SanitizeHWAddress: 732 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 733 case Attribute::SanitizeThread: 734 return bitc::ATTR_KIND_SANITIZE_THREAD; 735 case Attribute::SanitizeMemory: 736 return bitc::ATTR_KIND_SANITIZE_MEMORY; 737 case Attribute::SpeculativeLoadHardening: 738 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 739 case Attribute::SwiftError: 740 return bitc::ATTR_KIND_SWIFT_ERROR; 741 case Attribute::SwiftSelf: 742 return bitc::ATTR_KIND_SWIFT_SELF; 743 case Attribute::SwiftAsync: 744 return bitc::ATTR_KIND_SWIFT_ASYNC; 745 case Attribute::UWTable: 746 return bitc::ATTR_KIND_UW_TABLE; 747 case Attribute::VScaleRange: 748 return bitc::ATTR_KIND_VSCALE_RANGE; 749 case Attribute::WillReturn: 750 return bitc::ATTR_KIND_WILLRETURN; 751 case Attribute::WriteOnly: 752 return bitc::ATTR_KIND_WRITEONLY; 753 case Attribute::ZExt: 754 return bitc::ATTR_KIND_Z_EXT; 755 case Attribute::ImmArg: 756 return bitc::ATTR_KIND_IMMARG; 757 case Attribute::SanitizeMemTag: 758 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 759 case Attribute::Preallocated: 760 return bitc::ATTR_KIND_PREALLOCATED; 761 case Attribute::NoUndef: 762 return bitc::ATTR_KIND_NOUNDEF; 763 case Attribute::ByRef: 764 return bitc::ATTR_KIND_BYREF; 765 case Attribute::MustProgress: 766 return bitc::ATTR_KIND_MUSTPROGRESS; 767 case Attribute::EndAttrKinds: 768 llvm_unreachable("Can not encode end-attribute kinds marker."); 769 case Attribute::None: 770 llvm_unreachable("Can not encode none-attribute."); 771 case Attribute::EmptyKey: 772 case Attribute::TombstoneKey: 773 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 774 } 775 776 llvm_unreachable("Trying to encode unknown attribute"); 777 } 778 779 void ModuleBitcodeWriter::writeAttributeGroupTable() { 780 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 781 VE.getAttributeGroups(); 782 if (AttrGrps.empty()) return; 783 784 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 785 786 SmallVector<uint64_t, 64> Record; 787 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 788 unsigned AttrListIndex = Pair.first; 789 AttributeSet AS = Pair.second; 790 Record.push_back(VE.getAttributeGroupID(Pair)); 791 Record.push_back(AttrListIndex); 792 793 for (Attribute Attr : AS) { 794 if (Attr.isEnumAttribute()) { 795 Record.push_back(0); 796 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 797 } else if (Attr.isIntAttribute()) { 798 Record.push_back(1); 799 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 800 Record.push_back(Attr.getValueAsInt()); 801 } else if (Attr.isStringAttribute()) { 802 StringRef Kind = Attr.getKindAsString(); 803 StringRef Val = Attr.getValueAsString(); 804 805 Record.push_back(Val.empty() ? 3 : 4); 806 Record.append(Kind.begin(), Kind.end()); 807 Record.push_back(0); 808 if (!Val.empty()) { 809 Record.append(Val.begin(), Val.end()); 810 Record.push_back(0); 811 } 812 } else { 813 assert(Attr.isTypeAttribute()); 814 Type *Ty = Attr.getValueAsType(); 815 Record.push_back(Ty ? 6 : 5); 816 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 817 if (Ty) 818 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 819 } 820 } 821 822 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 823 Record.clear(); 824 } 825 826 Stream.ExitBlock(); 827 } 828 829 void ModuleBitcodeWriter::writeAttributeTable() { 830 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 831 if (Attrs.empty()) return; 832 833 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 834 835 SmallVector<uint64_t, 64> Record; 836 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 837 AttributeList AL = Attrs[i]; 838 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 839 AttributeSet AS = AL.getAttributes(i); 840 if (AS.hasAttributes()) 841 Record.push_back(VE.getAttributeGroupID({i, AS})); 842 } 843 844 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 845 Record.clear(); 846 } 847 848 Stream.ExitBlock(); 849 } 850 851 /// WriteTypeTable - Write out the type table for a module. 852 void ModuleBitcodeWriter::writeTypeTable() { 853 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 854 855 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 856 SmallVector<uint64_t, 64> TypeVals; 857 858 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 859 860 // Abbrev for TYPE_CODE_POINTER. 861 auto Abbv = std::make_shared<BitCodeAbbrev>(); 862 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 864 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 865 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 866 867 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 868 Abbv = std::make_shared<BitCodeAbbrev>(); 869 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 870 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 871 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 872 873 // Abbrev for TYPE_CODE_FUNCTION. 874 Abbv = std::make_shared<BitCodeAbbrev>(); 875 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 876 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 877 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 878 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 879 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 880 881 // Abbrev for TYPE_CODE_STRUCT_ANON. 882 Abbv = std::make_shared<BitCodeAbbrev>(); 883 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 885 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 886 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 887 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 888 889 // Abbrev for TYPE_CODE_STRUCT_NAME. 890 Abbv = std::make_shared<BitCodeAbbrev>(); 891 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 893 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 894 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 895 896 // Abbrev for TYPE_CODE_STRUCT_NAMED. 897 Abbv = std::make_shared<BitCodeAbbrev>(); 898 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 899 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 902 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 903 904 // Abbrev for TYPE_CODE_ARRAY. 905 Abbv = std::make_shared<BitCodeAbbrev>(); 906 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 907 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 908 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 909 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 910 911 // Emit an entry count so the reader can reserve space. 912 TypeVals.push_back(TypeList.size()); 913 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 914 TypeVals.clear(); 915 916 // Loop over all of the types, emitting each in turn. 917 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 918 Type *T = TypeList[i]; 919 int AbbrevToUse = 0; 920 unsigned Code = 0; 921 922 switch (T->getTypeID()) { 923 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 924 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 925 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 926 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 927 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 928 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 929 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 930 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 931 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 932 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 933 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 934 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 935 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 936 case Type::IntegerTyID: 937 // INTEGER: [width] 938 Code = bitc::TYPE_CODE_INTEGER; 939 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 940 break; 941 case Type::PointerTyID: { 942 PointerType *PTy = cast<PointerType>(T); 943 unsigned AddressSpace = PTy->getAddressSpace(); 944 if (PTy->isOpaque()) { 945 // OPAQUE_POINTER: [address space] 946 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 947 TypeVals.push_back(AddressSpace); 948 if (AddressSpace == 0) 949 AbbrevToUse = OpaquePtrAbbrev; 950 } else { 951 // POINTER: [pointee type, address space] 952 Code = bitc::TYPE_CODE_POINTER; 953 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 954 TypeVals.push_back(AddressSpace); 955 if (AddressSpace == 0) 956 AbbrevToUse = PtrAbbrev; 957 } 958 break; 959 } 960 case Type::FunctionTyID: { 961 FunctionType *FT = cast<FunctionType>(T); 962 // FUNCTION: [isvararg, retty, paramty x N] 963 Code = bitc::TYPE_CODE_FUNCTION; 964 TypeVals.push_back(FT->isVarArg()); 965 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 966 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 967 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 968 AbbrevToUse = FunctionAbbrev; 969 break; 970 } 971 case Type::StructTyID: { 972 StructType *ST = cast<StructType>(T); 973 // STRUCT: [ispacked, eltty x N] 974 TypeVals.push_back(ST->isPacked()); 975 // Output all of the element types. 976 for (StructType::element_iterator I = ST->element_begin(), 977 E = ST->element_end(); I != E; ++I) 978 TypeVals.push_back(VE.getTypeID(*I)); 979 980 if (ST->isLiteral()) { 981 Code = bitc::TYPE_CODE_STRUCT_ANON; 982 AbbrevToUse = StructAnonAbbrev; 983 } else { 984 if (ST->isOpaque()) { 985 Code = bitc::TYPE_CODE_OPAQUE; 986 } else { 987 Code = bitc::TYPE_CODE_STRUCT_NAMED; 988 AbbrevToUse = StructNamedAbbrev; 989 } 990 991 // Emit the name if it is present. 992 if (!ST->getName().empty()) 993 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 994 StructNameAbbrev); 995 } 996 break; 997 } 998 case Type::ArrayTyID: { 999 ArrayType *AT = cast<ArrayType>(T); 1000 // ARRAY: [numelts, eltty] 1001 Code = bitc::TYPE_CODE_ARRAY; 1002 TypeVals.push_back(AT->getNumElements()); 1003 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1004 AbbrevToUse = ArrayAbbrev; 1005 break; 1006 } 1007 case Type::FixedVectorTyID: 1008 case Type::ScalableVectorTyID: { 1009 VectorType *VT = cast<VectorType>(T); 1010 // VECTOR [numelts, eltty] or 1011 // [numelts, eltty, scalable] 1012 Code = bitc::TYPE_CODE_VECTOR; 1013 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1014 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1015 if (isa<ScalableVectorType>(VT)) 1016 TypeVals.push_back(true); 1017 break; 1018 } 1019 } 1020 1021 // Emit the finished record. 1022 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1023 TypeVals.clear(); 1024 } 1025 1026 Stream.ExitBlock(); 1027 } 1028 1029 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1030 switch (Linkage) { 1031 case GlobalValue::ExternalLinkage: 1032 return 0; 1033 case GlobalValue::WeakAnyLinkage: 1034 return 16; 1035 case GlobalValue::AppendingLinkage: 1036 return 2; 1037 case GlobalValue::InternalLinkage: 1038 return 3; 1039 case GlobalValue::LinkOnceAnyLinkage: 1040 return 18; 1041 case GlobalValue::ExternalWeakLinkage: 1042 return 7; 1043 case GlobalValue::CommonLinkage: 1044 return 8; 1045 case GlobalValue::PrivateLinkage: 1046 return 9; 1047 case GlobalValue::WeakODRLinkage: 1048 return 17; 1049 case GlobalValue::LinkOnceODRLinkage: 1050 return 19; 1051 case GlobalValue::AvailableExternallyLinkage: 1052 return 12; 1053 } 1054 llvm_unreachable("Invalid linkage"); 1055 } 1056 1057 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1058 return getEncodedLinkage(GV.getLinkage()); 1059 } 1060 1061 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1062 uint64_t RawFlags = 0; 1063 RawFlags |= Flags.ReadNone; 1064 RawFlags |= (Flags.ReadOnly << 1); 1065 RawFlags |= (Flags.NoRecurse << 2); 1066 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1067 RawFlags |= (Flags.NoInline << 4); 1068 RawFlags |= (Flags.AlwaysInline << 5); 1069 return RawFlags; 1070 } 1071 1072 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1073 // in BitcodeReader.cpp. 1074 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1075 uint64_t RawFlags = 0; 1076 1077 RawFlags |= Flags.NotEligibleToImport; // bool 1078 RawFlags |= (Flags.Live << 1); 1079 RawFlags |= (Flags.DSOLocal << 2); 1080 RawFlags |= (Flags.CanAutoHide << 3); 1081 1082 // Linkage don't need to be remapped at that time for the summary. Any future 1083 // change to the getEncodedLinkage() function will need to be taken into 1084 // account here as well. 1085 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1086 1087 RawFlags |= (Flags.Visibility << 8); // 2 bits 1088 1089 return RawFlags; 1090 } 1091 1092 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1093 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1094 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1095 return RawFlags; 1096 } 1097 1098 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1099 switch (GV.getVisibility()) { 1100 case GlobalValue::DefaultVisibility: return 0; 1101 case GlobalValue::HiddenVisibility: return 1; 1102 case GlobalValue::ProtectedVisibility: return 2; 1103 } 1104 llvm_unreachable("Invalid visibility"); 1105 } 1106 1107 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1108 switch (GV.getDLLStorageClass()) { 1109 case GlobalValue::DefaultStorageClass: return 0; 1110 case GlobalValue::DLLImportStorageClass: return 1; 1111 case GlobalValue::DLLExportStorageClass: return 2; 1112 } 1113 llvm_unreachable("Invalid DLL storage class"); 1114 } 1115 1116 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1117 switch (GV.getThreadLocalMode()) { 1118 case GlobalVariable::NotThreadLocal: return 0; 1119 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1120 case GlobalVariable::LocalDynamicTLSModel: return 2; 1121 case GlobalVariable::InitialExecTLSModel: return 3; 1122 case GlobalVariable::LocalExecTLSModel: return 4; 1123 } 1124 llvm_unreachable("Invalid TLS model"); 1125 } 1126 1127 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1128 switch (C.getSelectionKind()) { 1129 case Comdat::Any: 1130 return bitc::COMDAT_SELECTION_KIND_ANY; 1131 case Comdat::ExactMatch: 1132 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1133 case Comdat::Largest: 1134 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1135 case Comdat::NoDeduplicate: 1136 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1137 case Comdat::SameSize: 1138 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1139 } 1140 llvm_unreachable("Invalid selection kind"); 1141 } 1142 1143 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1144 switch (GV.getUnnamedAddr()) { 1145 case GlobalValue::UnnamedAddr::None: return 0; 1146 case GlobalValue::UnnamedAddr::Local: return 2; 1147 case GlobalValue::UnnamedAddr::Global: return 1; 1148 } 1149 llvm_unreachable("Invalid unnamed_addr"); 1150 } 1151 1152 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1153 if (GenerateHash) 1154 Hasher.update(Str); 1155 return StrtabBuilder.add(Str); 1156 } 1157 1158 void ModuleBitcodeWriter::writeComdats() { 1159 SmallVector<unsigned, 64> Vals; 1160 for (const Comdat *C : VE.getComdats()) { 1161 // COMDAT: [strtab offset, strtab size, selection_kind] 1162 Vals.push_back(addToStrtab(C->getName())); 1163 Vals.push_back(C->getName().size()); 1164 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1165 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1166 Vals.clear(); 1167 } 1168 } 1169 1170 /// Write a record that will eventually hold the word offset of the 1171 /// module-level VST. For now the offset is 0, which will be backpatched 1172 /// after the real VST is written. Saves the bit offset to backpatch. 1173 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1174 // Write a placeholder value in for the offset of the real VST, 1175 // which is written after the function blocks so that it can include 1176 // the offset of each function. The placeholder offset will be 1177 // updated when the real VST is written. 1178 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1179 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1180 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1181 // hold the real VST offset. Must use fixed instead of VBR as we don't 1182 // know how many VBR chunks to reserve ahead of time. 1183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1184 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1185 1186 // Emit the placeholder 1187 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1188 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1189 1190 // Compute and save the bit offset to the placeholder, which will be 1191 // patched when the real VST is written. We can simply subtract the 32-bit 1192 // fixed size from the current bit number to get the location to backpatch. 1193 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1194 } 1195 1196 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1197 1198 /// Determine the encoding to use for the given string name and length. 1199 static StringEncoding getStringEncoding(StringRef Str) { 1200 bool isChar6 = true; 1201 for (char C : Str) { 1202 if (isChar6) 1203 isChar6 = BitCodeAbbrevOp::isChar6(C); 1204 if ((unsigned char)C & 128) 1205 // don't bother scanning the rest. 1206 return SE_Fixed8; 1207 } 1208 if (isChar6) 1209 return SE_Char6; 1210 return SE_Fixed7; 1211 } 1212 1213 /// Emit top-level description of module, including target triple, inline asm, 1214 /// descriptors for global variables, and function prototype info. 1215 /// Returns the bit offset to backpatch with the location of the real VST. 1216 void ModuleBitcodeWriter::writeModuleInfo() { 1217 // Emit various pieces of data attached to a module. 1218 if (!M.getTargetTriple().empty()) 1219 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1220 0 /*TODO*/); 1221 const std::string &DL = M.getDataLayoutStr(); 1222 if (!DL.empty()) 1223 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1224 if (!M.getModuleInlineAsm().empty()) 1225 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1226 0 /*TODO*/); 1227 1228 // Emit information about sections and GC, computing how many there are. Also 1229 // compute the maximum alignment value. 1230 std::map<std::string, unsigned> SectionMap; 1231 std::map<std::string, unsigned> GCMap; 1232 MaybeAlign MaxAlignment; 1233 unsigned MaxGlobalType = 0; 1234 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1235 if (A) 1236 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1237 }; 1238 for (const GlobalVariable &GV : M.globals()) { 1239 UpdateMaxAlignment(GV.getAlign()); 1240 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1241 if (GV.hasSection()) { 1242 // Give section names unique ID's. 1243 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1244 if (!Entry) { 1245 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1246 0 /*TODO*/); 1247 Entry = SectionMap.size(); 1248 } 1249 } 1250 } 1251 for (const Function &F : M) { 1252 UpdateMaxAlignment(F.getAlign()); 1253 if (F.hasSection()) { 1254 // Give section names unique ID's. 1255 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1256 if (!Entry) { 1257 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1258 0 /*TODO*/); 1259 Entry = SectionMap.size(); 1260 } 1261 } 1262 if (F.hasGC()) { 1263 // Same for GC names. 1264 unsigned &Entry = GCMap[F.getGC()]; 1265 if (!Entry) { 1266 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1267 0 /*TODO*/); 1268 Entry = GCMap.size(); 1269 } 1270 } 1271 } 1272 1273 // Emit abbrev for globals, now that we know # sections and max alignment. 1274 unsigned SimpleGVarAbbrev = 0; 1275 if (!M.global_empty()) { 1276 // Add an abbrev for common globals with no visibility or thread localness. 1277 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1278 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1279 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1282 Log2_32_Ceil(MaxGlobalType+1))); 1283 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1284 //| explicitType << 1 1285 //| constant 1286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1288 if (!MaxAlignment) // Alignment. 1289 Abbv->Add(BitCodeAbbrevOp(0)); 1290 else { 1291 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1293 Log2_32_Ceil(MaxEncAlignment+1))); 1294 } 1295 if (SectionMap.empty()) // Section. 1296 Abbv->Add(BitCodeAbbrevOp(0)); 1297 else 1298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1299 Log2_32_Ceil(SectionMap.size()+1))); 1300 // Don't bother emitting vis + thread local. 1301 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1302 } 1303 1304 SmallVector<unsigned, 64> Vals; 1305 // Emit the module's source file name. 1306 { 1307 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1308 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1309 if (Bits == SE_Char6) 1310 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1311 else if (Bits == SE_Fixed7) 1312 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1313 1314 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1315 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1316 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1318 Abbv->Add(AbbrevOpToUse); 1319 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1320 1321 for (const auto P : M.getSourceFileName()) 1322 Vals.push_back((unsigned char)P); 1323 1324 // Emit the finished record. 1325 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1326 Vals.clear(); 1327 } 1328 1329 // Emit the global variable information. 1330 for (const GlobalVariable &GV : M.globals()) { 1331 unsigned AbbrevToUse = 0; 1332 1333 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1334 // linkage, alignment, section, visibility, threadlocal, 1335 // unnamed_addr, externally_initialized, dllstorageclass, 1336 // comdat, attributes, DSO_Local] 1337 Vals.push_back(addToStrtab(GV.getName())); 1338 Vals.push_back(GV.getName().size()); 1339 Vals.push_back(VE.getTypeID(GV.getValueType())); 1340 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1341 Vals.push_back(GV.isDeclaration() ? 0 : 1342 (VE.getValueID(GV.getInitializer()) + 1)); 1343 Vals.push_back(getEncodedLinkage(GV)); 1344 Vals.push_back(getEncodedAlign(GV.getAlign())); 1345 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1346 : 0); 1347 if (GV.isThreadLocal() || 1348 GV.getVisibility() != GlobalValue::DefaultVisibility || 1349 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1350 GV.isExternallyInitialized() || 1351 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1352 GV.hasComdat() || 1353 GV.hasAttributes() || 1354 GV.isDSOLocal() || 1355 GV.hasPartition()) { 1356 Vals.push_back(getEncodedVisibility(GV)); 1357 Vals.push_back(getEncodedThreadLocalMode(GV)); 1358 Vals.push_back(getEncodedUnnamedAddr(GV)); 1359 Vals.push_back(GV.isExternallyInitialized()); 1360 Vals.push_back(getEncodedDLLStorageClass(GV)); 1361 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1362 1363 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1364 Vals.push_back(VE.getAttributeListID(AL)); 1365 1366 Vals.push_back(GV.isDSOLocal()); 1367 Vals.push_back(addToStrtab(GV.getPartition())); 1368 Vals.push_back(GV.getPartition().size()); 1369 } else { 1370 AbbrevToUse = SimpleGVarAbbrev; 1371 } 1372 1373 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1374 Vals.clear(); 1375 } 1376 1377 // Emit the function proto information. 1378 for (const Function &F : M) { 1379 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1380 // linkage, paramattrs, alignment, section, visibility, gc, 1381 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1382 // prefixdata, personalityfn, DSO_Local, addrspace] 1383 Vals.push_back(addToStrtab(F.getName())); 1384 Vals.push_back(F.getName().size()); 1385 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1386 Vals.push_back(F.getCallingConv()); 1387 Vals.push_back(F.isDeclaration()); 1388 Vals.push_back(getEncodedLinkage(F)); 1389 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1390 Vals.push_back(getEncodedAlign(F.getAlign())); 1391 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1392 : 0); 1393 Vals.push_back(getEncodedVisibility(F)); 1394 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1395 Vals.push_back(getEncodedUnnamedAddr(F)); 1396 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1397 : 0); 1398 Vals.push_back(getEncodedDLLStorageClass(F)); 1399 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1400 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1401 : 0); 1402 Vals.push_back( 1403 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1404 1405 Vals.push_back(F.isDSOLocal()); 1406 Vals.push_back(F.getAddressSpace()); 1407 Vals.push_back(addToStrtab(F.getPartition())); 1408 Vals.push_back(F.getPartition().size()); 1409 1410 unsigned AbbrevToUse = 0; 1411 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1412 Vals.clear(); 1413 } 1414 1415 // Emit the alias information. 1416 for (const GlobalAlias &A : M.aliases()) { 1417 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1418 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1419 // DSO_Local] 1420 Vals.push_back(addToStrtab(A.getName())); 1421 Vals.push_back(A.getName().size()); 1422 Vals.push_back(VE.getTypeID(A.getValueType())); 1423 Vals.push_back(A.getType()->getAddressSpace()); 1424 Vals.push_back(VE.getValueID(A.getAliasee())); 1425 Vals.push_back(getEncodedLinkage(A)); 1426 Vals.push_back(getEncodedVisibility(A)); 1427 Vals.push_back(getEncodedDLLStorageClass(A)); 1428 Vals.push_back(getEncodedThreadLocalMode(A)); 1429 Vals.push_back(getEncodedUnnamedAddr(A)); 1430 Vals.push_back(A.isDSOLocal()); 1431 Vals.push_back(addToStrtab(A.getPartition())); 1432 Vals.push_back(A.getPartition().size()); 1433 1434 unsigned AbbrevToUse = 0; 1435 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1436 Vals.clear(); 1437 } 1438 1439 // Emit the ifunc information. 1440 for (const GlobalIFunc &I : M.ifuncs()) { 1441 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1442 // val#, linkage, visibility, DSO_Local] 1443 Vals.push_back(addToStrtab(I.getName())); 1444 Vals.push_back(I.getName().size()); 1445 Vals.push_back(VE.getTypeID(I.getValueType())); 1446 Vals.push_back(I.getType()->getAddressSpace()); 1447 Vals.push_back(VE.getValueID(I.getResolver())); 1448 Vals.push_back(getEncodedLinkage(I)); 1449 Vals.push_back(getEncodedVisibility(I)); 1450 Vals.push_back(I.isDSOLocal()); 1451 Vals.push_back(addToStrtab(I.getPartition())); 1452 Vals.push_back(I.getPartition().size()); 1453 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1454 Vals.clear(); 1455 } 1456 1457 writeValueSymbolTableForwardDecl(); 1458 } 1459 1460 static uint64_t getOptimizationFlags(const Value *V) { 1461 uint64_t Flags = 0; 1462 1463 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1464 if (OBO->hasNoSignedWrap()) 1465 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1466 if (OBO->hasNoUnsignedWrap()) 1467 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1468 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1469 if (PEO->isExact()) 1470 Flags |= 1 << bitc::PEO_EXACT; 1471 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1472 if (FPMO->hasAllowReassoc()) 1473 Flags |= bitc::AllowReassoc; 1474 if (FPMO->hasNoNaNs()) 1475 Flags |= bitc::NoNaNs; 1476 if (FPMO->hasNoInfs()) 1477 Flags |= bitc::NoInfs; 1478 if (FPMO->hasNoSignedZeros()) 1479 Flags |= bitc::NoSignedZeros; 1480 if (FPMO->hasAllowReciprocal()) 1481 Flags |= bitc::AllowReciprocal; 1482 if (FPMO->hasAllowContract()) 1483 Flags |= bitc::AllowContract; 1484 if (FPMO->hasApproxFunc()) 1485 Flags |= bitc::ApproxFunc; 1486 } 1487 1488 return Flags; 1489 } 1490 1491 void ModuleBitcodeWriter::writeValueAsMetadata( 1492 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1493 // Mimic an MDNode with a value as one operand. 1494 Value *V = MD->getValue(); 1495 Record.push_back(VE.getTypeID(V->getType())); 1496 Record.push_back(VE.getValueID(V)); 1497 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1498 Record.clear(); 1499 } 1500 1501 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1502 SmallVectorImpl<uint64_t> &Record, 1503 unsigned Abbrev) { 1504 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1505 Metadata *MD = N->getOperand(i); 1506 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1507 "Unexpected function-local metadata"); 1508 Record.push_back(VE.getMetadataOrNullID(MD)); 1509 } 1510 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1511 : bitc::METADATA_NODE, 1512 Record, Abbrev); 1513 Record.clear(); 1514 } 1515 1516 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1517 // Assume the column is usually under 128, and always output the inlined-at 1518 // location (it's never more expensive than building an array size 1). 1519 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1520 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1527 return Stream.EmitAbbrev(std::move(Abbv)); 1528 } 1529 1530 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1531 SmallVectorImpl<uint64_t> &Record, 1532 unsigned &Abbrev) { 1533 if (!Abbrev) 1534 Abbrev = createDILocationAbbrev(); 1535 1536 Record.push_back(N->isDistinct()); 1537 Record.push_back(N->getLine()); 1538 Record.push_back(N->getColumn()); 1539 Record.push_back(VE.getMetadataID(N->getScope())); 1540 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1541 Record.push_back(N->isImplicitCode()); 1542 1543 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1544 Record.clear(); 1545 } 1546 1547 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1548 // Assume the column is usually under 128, and always output the inlined-at 1549 // location (it's never more expensive than building an array size 1). 1550 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1551 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1558 return Stream.EmitAbbrev(std::move(Abbv)); 1559 } 1560 1561 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1562 SmallVectorImpl<uint64_t> &Record, 1563 unsigned &Abbrev) { 1564 if (!Abbrev) 1565 Abbrev = createGenericDINodeAbbrev(); 1566 1567 Record.push_back(N->isDistinct()); 1568 Record.push_back(N->getTag()); 1569 Record.push_back(0); // Per-tag version field; unused for now. 1570 1571 for (auto &I : N->operands()) 1572 Record.push_back(VE.getMetadataOrNullID(I)); 1573 1574 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1575 Record.clear(); 1576 } 1577 1578 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1579 SmallVectorImpl<uint64_t> &Record, 1580 unsigned Abbrev) { 1581 const uint64_t Version = 2 << 1; 1582 Record.push_back((uint64_t)N->isDistinct() | Version); 1583 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1584 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1585 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1586 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1587 1588 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1589 Record.clear(); 1590 } 1591 1592 void ModuleBitcodeWriter::writeDIGenericSubrange( 1593 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1594 unsigned Abbrev) { 1595 Record.push_back((uint64_t)N->isDistinct()); 1596 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1597 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1598 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1599 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1600 1601 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1602 Record.clear(); 1603 } 1604 1605 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1606 if ((int64_t)V >= 0) 1607 Vals.push_back(V << 1); 1608 else 1609 Vals.push_back((-V << 1) | 1); 1610 } 1611 1612 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1613 // We have an arbitrary precision integer value to write whose 1614 // bit width is > 64. However, in canonical unsigned integer 1615 // format it is likely that the high bits are going to be zero. 1616 // So, we only write the number of active words. 1617 unsigned NumWords = A.getActiveWords(); 1618 const uint64_t *RawData = A.getRawData(); 1619 for (unsigned i = 0; i < NumWords; i++) 1620 emitSignedInt64(Vals, RawData[i]); 1621 } 1622 1623 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1624 SmallVectorImpl<uint64_t> &Record, 1625 unsigned Abbrev) { 1626 const uint64_t IsBigInt = 1 << 2; 1627 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1628 Record.push_back(N->getValue().getBitWidth()); 1629 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1630 emitWideAPInt(Record, N->getValue()); 1631 1632 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1633 Record.clear(); 1634 } 1635 1636 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1637 SmallVectorImpl<uint64_t> &Record, 1638 unsigned Abbrev) { 1639 Record.push_back(N->isDistinct()); 1640 Record.push_back(N->getTag()); 1641 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1642 Record.push_back(N->getSizeInBits()); 1643 Record.push_back(N->getAlignInBits()); 1644 Record.push_back(N->getEncoding()); 1645 Record.push_back(N->getFlags()); 1646 1647 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1648 Record.clear(); 1649 } 1650 1651 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1652 SmallVectorImpl<uint64_t> &Record, 1653 unsigned Abbrev) { 1654 Record.push_back(N->isDistinct()); 1655 Record.push_back(N->getTag()); 1656 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1657 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1658 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1659 Record.push_back(N->getSizeInBits()); 1660 Record.push_back(N->getAlignInBits()); 1661 Record.push_back(N->getEncoding()); 1662 1663 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1664 Record.clear(); 1665 } 1666 1667 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1668 SmallVectorImpl<uint64_t> &Record, 1669 unsigned Abbrev) { 1670 Record.push_back(N->isDistinct()); 1671 Record.push_back(N->getTag()); 1672 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1673 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1674 Record.push_back(N->getLine()); 1675 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1676 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1677 Record.push_back(N->getSizeInBits()); 1678 Record.push_back(N->getAlignInBits()); 1679 Record.push_back(N->getOffsetInBits()); 1680 Record.push_back(N->getFlags()); 1681 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1682 1683 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1684 // that there is no DWARF address space associated with DIDerivedType. 1685 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1686 Record.push_back(*DWARFAddressSpace + 1); 1687 else 1688 Record.push_back(0); 1689 1690 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1691 1692 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1693 Record.clear(); 1694 } 1695 1696 void ModuleBitcodeWriter::writeDICompositeType( 1697 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1698 unsigned Abbrev) { 1699 const unsigned IsNotUsedInOldTypeRef = 0x2; 1700 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1701 Record.push_back(N->getTag()); 1702 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1703 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1704 Record.push_back(N->getLine()); 1705 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1706 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1707 Record.push_back(N->getSizeInBits()); 1708 Record.push_back(N->getAlignInBits()); 1709 Record.push_back(N->getOffsetInBits()); 1710 Record.push_back(N->getFlags()); 1711 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1712 Record.push_back(N->getRuntimeLang()); 1713 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1714 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1715 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1716 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1717 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1718 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1719 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1720 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1721 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1722 1723 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1724 Record.clear(); 1725 } 1726 1727 void ModuleBitcodeWriter::writeDISubroutineType( 1728 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1729 unsigned Abbrev) { 1730 const unsigned HasNoOldTypeRefs = 0x2; 1731 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1732 Record.push_back(N->getFlags()); 1733 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1734 Record.push_back(N->getCC()); 1735 1736 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1737 Record.clear(); 1738 } 1739 1740 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1741 SmallVectorImpl<uint64_t> &Record, 1742 unsigned Abbrev) { 1743 Record.push_back(N->isDistinct()); 1744 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1745 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1746 if (N->getRawChecksum()) { 1747 Record.push_back(N->getRawChecksum()->Kind); 1748 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1749 } else { 1750 // Maintain backwards compatibility with the old internal representation of 1751 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1752 Record.push_back(0); 1753 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1754 } 1755 auto Source = N->getRawSource(); 1756 if (Source) 1757 Record.push_back(VE.getMetadataOrNullID(*Source)); 1758 1759 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1760 Record.clear(); 1761 } 1762 1763 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1764 SmallVectorImpl<uint64_t> &Record, 1765 unsigned Abbrev) { 1766 assert(N->isDistinct() && "Expected distinct compile units"); 1767 Record.push_back(/* IsDistinct */ true); 1768 Record.push_back(N->getSourceLanguage()); 1769 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1770 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1771 Record.push_back(N->isOptimized()); 1772 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1773 Record.push_back(N->getRuntimeVersion()); 1774 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1775 Record.push_back(N->getEmissionKind()); 1776 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1777 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1778 Record.push_back(/* subprograms */ 0); 1779 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1780 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1781 Record.push_back(N->getDWOId()); 1782 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1783 Record.push_back(N->getSplitDebugInlining()); 1784 Record.push_back(N->getDebugInfoForProfiling()); 1785 Record.push_back((unsigned)N->getNameTableKind()); 1786 Record.push_back(N->getRangesBaseAddress()); 1787 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1788 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1789 1790 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1791 Record.clear(); 1792 } 1793 1794 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1795 SmallVectorImpl<uint64_t> &Record, 1796 unsigned Abbrev) { 1797 const uint64_t HasUnitFlag = 1 << 1; 1798 const uint64_t HasSPFlagsFlag = 1 << 2; 1799 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1800 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1801 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1802 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1803 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1804 Record.push_back(N->getLine()); 1805 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1806 Record.push_back(N->getScopeLine()); 1807 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1808 Record.push_back(N->getSPFlags()); 1809 Record.push_back(N->getVirtualIndex()); 1810 Record.push_back(N->getFlags()); 1811 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1812 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1813 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1814 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1815 Record.push_back(N->getThisAdjustment()); 1816 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1817 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1818 1819 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1820 Record.clear(); 1821 } 1822 1823 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1824 SmallVectorImpl<uint64_t> &Record, 1825 unsigned Abbrev) { 1826 Record.push_back(N->isDistinct()); 1827 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1828 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1829 Record.push_back(N->getLine()); 1830 Record.push_back(N->getColumn()); 1831 1832 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1833 Record.clear(); 1834 } 1835 1836 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1837 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1838 unsigned Abbrev) { 1839 Record.push_back(N->isDistinct()); 1840 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1841 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1842 Record.push_back(N->getDiscriminator()); 1843 1844 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1845 Record.clear(); 1846 } 1847 1848 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1849 SmallVectorImpl<uint64_t> &Record, 1850 unsigned Abbrev) { 1851 Record.push_back(N->isDistinct()); 1852 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1853 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1854 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1855 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1856 Record.push_back(N->getLineNo()); 1857 1858 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1859 Record.clear(); 1860 } 1861 1862 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1863 SmallVectorImpl<uint64_t> &Record, 1864 unsigned Abbrev) { 1865 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1866 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1867 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1868 1869 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1870 Record.clear(); 1871 } 1872 1873 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1874 SmallVectorImpl<uint64_t> &Record, 1875 unsigned Abbrev) { 1876 Record.push_back(N->isDistinct()); 1877 Record.push_back(N->getMacinfoType()); 1878 Record.push_back(N->getLine()); 1879 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1880 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1881 1882 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1883 Record.clear(); 1884 } 1885 1886 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1887 SmallVectorImpl<uint64_t> &Record, 1888 unsigned Abbrev) { 1889 Record.push_back(N->isDistinct()); 1890 Record.push_back(N->getMacinfoType()); 1891 Record.push_back(N->getLine()); 1892 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1893 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1894 1895 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1896 Record.clear(); 1897 } 1898 1899 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1900 SmallVectorImpl<uint64_t> &Record, 1901 unsigned Abbrev) { 1902 Record.reserve(N->getArgs().size()); 1903 for (ValueAsMetadata *MD : N->getArgs()) 1904 Record.push_back(VE.getMetadataID(MD)); 1905 1906 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1907 Record.clear(); 1908 } 1909 1910 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1911 SmallVectorImpl<uint64_t> &Record, 1912 unsigned Abbrev) { 1913 Record.push_back(N->isDistinct()); 1914 for (auto &I : N->operands()) 1915 Record.push_back(VE.getMetadataOrNullID(I)); 1916 Record.push_back(N->getLineNo()); 1917 Record.push_back(N->getIsDecl()); 1918 1919 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1920 Record.clear(); 1921 } 1922 1923 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1924 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1925 unsigned Abbrev) { 1926 Record.push_back(N->isDistinct()); 1927 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1928 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1929 Record.push_back(N->isDefault()); 1930 1931 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1932 Record.clear(); 1933 } 1934 1935 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1936 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1937 unsigned Abbrev) { 1938 Record.push_back(N->isDistinct()); 1939 Record.push_back(N->getTag()); 1940 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1941 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1942 Record.push_back(N->isDefault()); 1943 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1944 1945 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1946 Record.clear(); 1947 } 1948 1949 void ModuleBitcodeWriter::writeDIGlobalVariable( 1950 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1951 unsigned Abbrev) { 1952 const uint64_t Version = 2 << 1; 1953 Record.push_back((uint64_t)N->isDistinct() | Version); 1954 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1955 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1956 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1957 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1958 Record.push_back(N->getLine()); 1959 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1960 Record.push_back(N->isLocalToUnit()); 1961 Record.push_back(N->isDefinition()); 1962 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1963 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1964 Record.push_back(N->getAlignInBits()); 1965 1966 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1967 Record.clear(); 1968 } 1969 1970 void ModuleBitcodeWriter::writeDILocalVariable( 1971 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1972 unsigned Abbrev) { 1973 // In order to support all possible bitcode formats in BitcodeReader we need 1974 // to distinguish the following cases: 1975 // 1) Record has no artificial tag (Record[1]), 1976 // has no obsolete inlinedAt field (Record[9]). 1977 // In this case Record size will be 8, HasAlignment flag is false. 1978 // 2) Record has artificial tag (Record[1]), 1979 // has no obsolete inlignedAt field (Record[9]). 1980 // In this case Record size will be 9, HasAlignment flag is false. 1981 // 3) Record has both artificial tag (Record[1]) and 1982 // obsolete inlignedAt field (Record[9]). 1983 // In this case Record size will be 10, HasAlignment flag is false. 1984 // 4) Record has neither artificial tag, nor inlignedAt field, but 1985 // HasAlignment flag is true and Record[8] contains alignment value. 1986 const uint64_t HasAlignmentFlag = 1 << 1; 1987 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1988 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1989 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1990 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1991 Record.push_back(N->getLine()); 1992 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1993 Record.push_back(N->getArg()); 1994 Record.push_back(N->getFlags()); 1995 Record.push_back(N->getAlignInBits()); 1996 1997 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1998 Record.clear(); 1999 } 2000 2001 void ModuleBitcodeWriter::writeDILabel( 2002 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2003 unsigned Abbrev) { 2004 Record.push_back((uint64_t)N->isDistinct()); 2005 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2006 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2007 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2008 Record.push_back(N->getLine()); 2009 2010 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2011 Record.clear(); 2012 } 2013 2014 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2015 SmallVectorImpl<uint64_t> &Record, 2016 unsigned Abbrev) { 2017 Record.reserve(N->getElements().size() + 1); 2018 const uint64_t Version = 3 << 1; 2019 Record.push_back((uint64_t)N->isDistinct() | Version); 2020 Record.append(N->elements_begin(), N->elements_end()); 2021 2022 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2023 Record.clear(); 2024 } 2025 2026 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2027 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2028 unsigned Abbrev) { 2029 Record.push_back(N->isDistinct()); 2030 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2031 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2032 2033 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2034 Record.clear(); 2035 } 2036 2037 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2038 SmallVectorImpl<uint64_t> &Record, 2039 unsigned Abbrev) { 2040 Record.push_back(N->isDistinct()); 2041 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2042 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2043 Record.push_back(N->getLine()); 2044 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2045 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2046 Record.push_back(N->getAttributes()); 2047 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2048 2049 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2050 Record.clear(); 2051 } 2052 2053 void ModuleBitcodeWriter::writeDIImportedEntity( 2054 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2055 unsigned Abbrev) { 2056 Record.push_back(N->isDistinct()); 2057 Record.push_back(N->getTag()); 2058 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2059 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2060 Record.push_back(N->getLine()); 2061 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2062 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2063 2064 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2065 Record.clear(); 2066 } 2067 2068 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2069 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2070 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2072 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2073 return Stream.EmitAbbrev(std::move(Abbv)); 2074 } 2075 2076 void ModuleBitcodeWriter::writeNamedMetadata( 2077 SmallVectorImpl<uint64_t> &Record) { 2078 if (M.named_metadata_empty()) 2079 return; 2080 2081 unsigned Abbrev = createNamedMetadataAbbrev(); 2082 for (const NamedMDNode &NMD : M.named_metadata()) { 2083 // Write name. 2084 StringRef Str = NMD.getName(); 2085 Record.append(Str.bytes_begin(), Str.bytes_end()); 2086 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2087 Record.clear(); 2088 2089 // Write named metadata operands. 2090 for (const MDNode *N : NMD.operands()) 2091 Record.push_back(VE.getMetadataID(N)); 2092 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2093 Record.clear(); 2094 } 2095 } 2096 2097 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2098 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2099 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2103 return Stream.EmitAbbrev(std::move(Abbv)); 2104 } 2105 2106 /// Write out a record for MDString. 2107 /// 2108 /// All the metadata strings in a metadata block are emitted in a single 2109 /// record. The sizes and strings themselves are shoved into a blob. 2110 void ModuleBitcodeWriter::writeMetadataStrings( 2111 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2112 if (Strings.empty()) 2113 return; 2114 2115 // Start the record with the number of strings. 2116 Record.push_back(bitc::METADATA_STRINGS); 2117 Record.push_back(Strings.size()); 2118 2119 // Emit the sizes of the strings in the blob. 2120 SmallString<256> Blob; 2121 { 2122 BitstreamWriter W(Blob); 2123 for (const Metadata *MD : Strings) 2124 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2125 W.FlushToWord(); 2126 } 2127 2128 // Add the offset to the strings to the record. 2129 Record.push_back(Blob.size()); 2130 2131 // Add the strings to the blob. 2132 for (const Metadata *MD : Strings) 2133 Blob.append(cast<MDString>(MD)->getString()); 2134 2135 // Emit the final record. 2136 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2137 Record.clear(); 2138 } 2139 2140 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2141 enum MetadataAbbrev : unsigned { 2142 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2143 #include "llvm/IR/Metadata.def" 2144 LastPlusOne 2145 }; 2146 2147 void ModuleBitcodeWriter::writeMetadataRecords( 2148 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2149 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2150 if (MDs.empty()) 2151 return; 2152 2153 // Initialize MDNode abbreviations. 2154 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2155 #include "llvm/IR/Metadata.def" 2156 2157 for (const Metadata *MD : MDs) { 2158 if (IndexPos) 2159 IndexPos->push_back(Stream.GetCurrentBitNo()); 2160 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2161 assert(N->isResolved() && "Expected forward references to be resolved"); 2162 2163 switch (N->getMetadataID()) { 2164 default: 2165 llvm_unreachable("Invalid MDNode subclass"); 2166 #define HANDLE_MDNODE_LEAF(CLASS) \ 2167 case Metadata::CLASS##Kind: \ 2168 if (MDAbbrevs) \ 2169 write##CLASS(cast<CLASS>(N), Record, \ 2170 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2171 else \ 2172 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2173 continue; 2174 #include "llvm/IR/Metadata.def" 2175 } 2176 } 2177 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2178 } 2179 } 2180 2181 void ModuleBitcodeWriter::writeModuleMetadata() { 2182 if (!VE.hasMDs() && M.named_metadata_empty()) 2183 return; 2184 2185 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2186 SmallVector<uint64_t, 64> Record; 2187 2188 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2189 // block and load any metadata. 2190 std::vector<unsigned> MDAbbrevs; 2191 2192 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2193 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2194 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2195 createGenericDINodeAbbrev(); 2196 2197 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2198 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2199 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2200 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2201 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2202 2203 Abbv = std::make_shared<BitCodeAbbrev>(); 2204 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2205 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2206 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2207 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2208 2209 // Emit MDStrings together upfront. 2210 writeMetadataStrings(VE.getMDStrings(), Record); 2211 2212 // We only emit an index for the metadata record if we have more than a given 2213 // (naive) threshold of metadatas, otherwise it is not worth it. 2214 if (VE.getNonMDStrings().size() > IndexThreshold) { 2215 // Write a placeholder value in for the offset of the metadata index, 2216 // which is written after the records, so that it can include 2217 // the offset of each entry. The placeholder offset will be 2218 // updated after all records are emitted. 2219 uint64_t Vals[] = {0, 0}; 2220 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2221 } 2222 2223 // Compute and save the bit offset to the current position, which will be 2224 // patched when we emit the index later. We can simply subtract the 64-bit 2225 // fixed size from the current bit number to get the location to backpatch. 2226 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2227 2228 // This index will contain the bitpos for each individual record. 2229 std::vector<uint64_t> IndexPos; 2230 IndexPos.reserve(VE.getNonMDStrings().size()); 2231 2232 // Write all the records 2233 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2234 2235 if (VE.getNonMDStrings().size() > IndexThreshold) { 2236 // Now that we have emitted all the records we will emit the index. But 2237 // first 2238 // backpatch the forward reference so that the reader can skip the records 2239 // efficiently. 2240 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2241 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2242 2243 // Delta encode the index. 2244 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2245 for (auto &Elt : IndexPos) { 2246 auto EltDelta = Elt - PreviousValue; 2247 PreviousValue = Elt; 2248 Elt = EltDelta; 2249 } 2250 // Emit the index record. 2251 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2252 IndexPos.clear(); 2253 } 2254 2255 // Write the named metadata now. 2256 writeNamedMetadata(Record); 2257 2258 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2259 SmallVector<uint64_t, 4> Record; 2260 Record.push_back(VE.getValueID(&GO)); 2261 pushGlobalMetadataAttachment(Record, GO); 2262 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2263 }; 2264 for (const Function &F : M) 2265 if (F.isDeclaration() && F.hasMetadata()) 2266 AddDeclAttachedMetadata(F); 2267 // FIXME: Only store metadata for declarations here, and move data for global 2268 // variable definitions to a separate block (PR28134). 2269 for (const GlobalVariable &GV : M.globals()) 2270 if (GV.hasMetadata()) 2271 AddDeclAttachedMetadata(GV); 2272 2273 Stream.ExitBlock(); 2274 } 2275 2276 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2277 if (!VE.hasMDs()) 2278 return; 2279 2280 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2281 SmallVector<uint64_t, 64> Record; 2282 writeMetadataStrings(VE.getMDStrings(), Record); 2283 writeMetadataRecords(VE.getNonMDStrings(), Record); 2284 Stream.ExitBlock(); 2285 } 2286 2287 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2288 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2289 // [n x [id, mdnode]] 2290 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2291 GO.getAllMetadata(MDs); 2292 for (const auto &I : MDs) { 2293 Record.push_back(I.first); 2294 Record.push_back(VE.getMetadataID(I.second)); 2295 } 2296 } 2297 2298 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2299 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2300 2301 SmallVector<uint64_t, 64> Record; 2302 2303 if (F.hasMetadata()) { 2304 pushGlobalMetadataAttachment(Record, F); 2305 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2306 Record.clear(); 2307 } 2308 2309 // Write metadata attachments 2310 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2311 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2312 for (const BasicBlock &BB : F) 2313 for (const Instruction &I : BB) { 2314 MDs.clear(); 2315 I.getAllMetadataOtherThanDebugLoc(MDs); 2316 2317 // If no metadata, ignore instruction. 2318 if (MDs.empty()) continue; 2319 2320 Record.push_back(VE.getInstructionID(&I)); 2321 2322 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2323 Record.push_back(MDs[i].first); 2324 Record.push_back(VE.getMetadataID(MDs[i].second)); 2325 } 2326 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2327 Record.clear(); 2328 } 2329 2330 Stream.ExitBlock(); 2331 } 2332 2333 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2334 SmallVector<uint64_t, 64> Record; 2335 2336 // Write metadata kinds 2337 // METADATA_KIND - [n x [id, name]] 2338 SmallVector<StringRef, 8> Names; 2339 M.getMDKindNames(Names); 2340 2341 if (Names.empty()) return; 2342 2343 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2344 2345 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2346 Record.push_back(MDKindID); 2347 StringRef KName = Names[MDKindID]; 2348 Record.append(KName.begin(), KName.end()); 2349 2350 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2351 Record.clear(); 2352 } 2353 2354 Stream.ExitBlock(); 2355 } 2356 2357 void ModuleBitcodeWriter::writeOperandBundleTags() { 2358 // Write metadata kinds 2359 // 2360 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2361 // 2362 // OPERAND_BUNDLE_TAG - [strchr x N] 2363 2364 SmallVector<StringRef, 8> Tags; 2365 M.getOperandBundleTags(Tags); 2366 2367 if (Tags.empty()) 2368 return; 2369 2370 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2371 2372 SmallVector<uint64_t, 64> Record; 2373 2374 for (auto Tag : Tags) { 2375 Record.append(Tag.begin(), Tag.end()); 2376 2377 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2378 Record.clear(); 2379 } 2380 2381 Stream.ExitBlock(); 2382 } 2383 2384 void ModuleBitcodeWriter::writeSyncScopeNames() { 2385 SmallVector<StringRef, 8> SSNs; 2386 M.getContext().getSyncScopeNames(SSNs); 2387 if (SSNs.empty()) 2388 return; 2389 2390 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2391 2392 SmallVector<uint64_t, 64> Record; 2393 for (auto SSN : SSNs) { 2394 Record.append(SSN.begin(), SSN.end()); 2395 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2396 Record.clear(); 2397 } 2398 2399 Stream.ExitBlock(); 2400 } 2401 2402 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2403 bool isGlobal) { 2404 if (FirstVal == LastVal) return; 2405 2406 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2407 2408 unsigned AggregateAbbrev = 0; 2409 unsigned String8Abbrev = 0; 2410 unsigned CString7Abbrev = 0; 2411 unsigned CString6Abbrev = 0; 2412 // If this is a constant pool for the module, emit module-specific abbrevs. 2413 if (isGlobal) { 2414 // Abbrev for CST_CODE_AGGREGATE. 2415 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2416 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2419 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2420 2421 // Abbrev for CST_CODE_STRING. 2422 Abbv = std::make_shared<BitCodeAbbrev>(); 2423 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2424 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2425 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2426 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2427 // Abbrev for CST_CODE_CSTRING. 2428 Abbv = std::make_shared<BitCodeAbbrev>(); 2429 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2432 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2433 // Abbrev for CST_CODE_CSTRING. 2434 Abbv = std::make_shared<BitCodeAbbrev>(); 2435 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2438 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2439 } 2440 2441 SmallVector<uint64_t, 64> Record; 2442 2443 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2444 Type *LastTy = nullptr; 2445 for (unsigned i = FirstVal; i != LastVal; ++i) { 2446 const Value *V = Vals[i].first; 2447 // If we need to switch types, do so now. 2448 if (V->getType() != LastTy) { 2449 LastTy = V->getType(); 2450 Record.push_back(VE.getTypeID(LastTy)); 2451 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2452 CONSTANTS_SETTYPE_ABBREV); 2453 Record.clear(); 2454 } 2455 2456 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2457 Record.push_back( 2458 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2459 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2460 2461 // Add the asm string. 2462 const std::string &AsmStr = IA->getAsmString(); 2463 Record.push_back(AsmStr.size()); 2464 Record.append(AsmStr.begin(), AsmStr.end()); 2465 2466 // Add the constraint string. 2467 const std::string &ConstraintStr = IA->getConstraintString(); 2468 Record.push_back(ConstraintStr.size()); 2469 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2470 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2471 Record.clear(); 2472 continue; 2473 } 2474 const Constant *C = cast<Constant>(V); 2475 unsigned Code = -1U; 2476 unsigned AbbrevToUse = 0; 2477 if (C->isNullValue()) { 2478 Code = bitc::CST_CODE_NULL; 2479 } else if (isa<PoisonValue>(C)) { 2480 Code = bitc::CST_CODE_POISON; 2481 } else if (isa<UndefValue>(C)) { 2482 Code = bitc::CST_CODE_UNDEF; 2483 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2484 if (IV->getBitWidth() <= 64) { 2485 uint64_t V = IV->getSExtValue(); 2486 emitSignedInt64(Record, V); 2487 Code = bitc::CST_CODE_INTEGER; 2488 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2489 } else { // Wide integers, > 64 bits in size. 2490 emitWideAPInt(Record, IV->getValue()); 2491 Code = bitc::CST_CODE_WIDE_INTEGER; 2492 } 2493 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2494 Code = bitc::CST_CODE_FLOAT; 2495 Type *Ty = CFP->getType(); 2496 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2497 Ty->isDoubleTy()) { 2498 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2499 } else if (Ty->isX86_FP80Ty()) { 2500 // api needed to prevent premature destruction 2501 // bits are not in the same order as a normal i80 APInt, compensate. 2502 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2503 const uint64_t *p = api.getRawData(); 2504 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2505 Record.push_back(p[0] & 0xffffLL); 2506 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2507 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2508 const uint64_t *p = api.getRawData(); 2509 Record.push_back(p[0]); 2510 Record.push_back(p[1]); 2511 } else { 2512 assert(0 && "Unknown FP type!"); 2513 } 2514 } else if (isa<ConstantDataSequential>(C) && 2515 cast<ConstantDataSequential>(C)->isString()) { 2516 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2517 // Emit constant strings specially. 2518 unsigned NumElts = Str->getNumElements(); 2519 // If this is a null-terminated string, use the denser CSTRING encoding. 2520 if (Str->isCString()) { 2521 Code = bitc::CST_CODE_CSTRING; 2522 --NumElts; // Don't encode the null, which isn't allowed by char6. 2523 } else { 2524 Code = bitc::CST_CODE_STRING; 2525 AbbrevToUse = String8Abbrev; 2526 } 2527 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2528 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2529 for (unsigned i = 0; i != NumElts; ++i) { 2530 unsigned char V = Str->getElementAsInteger(i); 2531 Record.push_back(V); 2532 isCStr7 &= (V & 128) == 0; 2533 if (isCStrChar6) 2534 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2535 } 2536 2537 if (isCStrChar6) 2538 AbbrevToUse = CString6Abbrev; 2539 else if (isCStr7) 2540 AbbrevToUse = CString7Abbrev; 2541 } else if (const ConstantDataSequential *CDS = 2542 dyn_cast<ConstantDataSequential>(C)) { 2543 Code = bitc::CST_CODE_DATA; 2544 Type *EltTy = CDS->getElementType(); 2545 if (isa<IntegerType>(EltTy)) { 2546 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2547 Record.push_back(CDS->getElementAsInteger(i)); 2548 } else { 2549 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2550 Record.push_back( 2551 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2552 } 2553 } else if (isa<ConstantAggregate>(C)) { 2554 Code = bitc::CST_CODE_AGGREGATE; 2555 for (const Value *Op : C->operands()) 2556 Record.push_back(VE.getValueID(Op)); 2557 AbbrevToUse = AggregateAbbrev; 2558 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2559 switch (CE->getOpcode()) { 2560 default: 2561 if (Instruction::isCast(CE->getOpcode())) { 2562 Code = bitc::CST_CODE_CE_CAST; 2563 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2564 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2565 Record.push_back(VE.getValueID(C->getOperand(0))); 2566 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2567 } else { 2568 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2569 Code = bitc::CST_CODE_CE_BINOP; 2570 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2571 Record.push_back(VE.getValueID(C->getOperand(0))); 2572 Record.push_back(VE.getValueID(C->getOperand(1))); 2573 uint64_t Flags = getOptimizationFlags(CE); 2574 if (Flags != 0) 2575 Record.push_back(Flags); 2576 } 2577 break; 2578 case Instruction::FNeg: { 2579 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2580 Code = bitc::CST_CODE_CE_UNOP; 2581 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2582 Record.push_back(VE.getValueID(C->getOperand(0))); 2583 uint64_t Flags = getOptimizationFlags(CE); 2584 if (Flags != 0) 2585 Record.push_back(Flags); 2586 break; 2587 } 2588 case Instruction::GetElementPtr: { 2589 Code = bitc::CST_CODE_CE_GEP; 2590 const auto *GO = cast<GEPOperator>(C); 2591 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2592 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2593 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2594 Record.push_back((*Idx << 1) | GO->isInBounds()); 2595 } else if (GO->isInBounds()) 2596 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2597 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2598 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2599 Record.push_back(VE.getValueID(C->getOperand(i))); 2600 } 2601 break; 2602 } 2603 case Instruction::Select: 2604 Code = bitc::CST_CODE_CE_SELECT; 2605 Record.push_back(VE.getValueID(C->getOperand(0))); 2606 Record.push_back(VE.getValueID(C->getOperand(1))); 2607 Record.push_back(VE.getValueID(C->getOperand(2))); 2608 break; 2609 case Instruction::ExtractElement: 2610 Code = bitc::CST_CODE_CE_EXTRACTELT; 2611 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2612 Record.push_back(VE.getValueID(C->getOperand(0))); 2613 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2614 Record.push_back(VE.getValueID(C->getOperand(1))); 2615 break; 2616 case Instruction::InsertElement: 2617 Code = bitc::CST_CODE_CE_INSERTELT; 2618 Record.push_back(VE.getValueID(C->getOperand(0))); 2619 Record.push_back(VE.getValueID(C->getOperand(1))); 2620 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2621 Record.push_back(VE.getValueID(C->getOperand(2))); 2622 break; 2623 case Instruction::ShuffleVector: 2624 // If the return type and argument types are the same, this is a 2625 // standard shufflevector instruction. If the types are different, 2626 // then the shuffle is widening or truncating the input vectors, and 2627 // the argument type must also be encoded. 2628 if (C->getType() == C->getOperand(0)->getType()) { 2629 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2630 } else { 2631 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2632 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2633 } 2634 Record.push_back(VE.getValueID(C->getOperand(0))); 2635 Record.push_back(VE.getValueID(C->getOperand(1))); 2636 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2637 break; 2638 case Instruction::ICmp: 2639 case Instruction::FCmp: 2640 Code = bitc::CST_CODE_CE_CMP; 2641 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2642 Record.push_back(VE.getValueID(C->getOperand(0))); 2643 Record.push_back(VE.getValueID(C->getOperand(1))); 2644 Record.push_back(CE->getPredicate()); 2645 break; 2646 } 2647 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2648 Code = bitc::CST_CODE_BLOCKADDRESS; 2649 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2650 Record.push_back(VE.getValueID(BA->getFunction())); 2651 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2652 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2653 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2654 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2655 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2656 } else { 2657 #ifndef NDEBUG 2658 C->dump(); 2659 #endif 2660 llvm_unreachable("Unknown constant!"); 2661 } 2662 Stream.EmitRecord(Code, Record, AbbrevToUse); 2663 Record.clear(); 2664 } 2665 2666 Stream.ExitBlock(); 2667 } 2668 2669 void ModuleBitcodeWriter::writeModuleConstants() { 2670 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2671 2672 // Find the first constant to emit, which is the first non-globalvalue value. 2673 // We know globalvalues have been emitted by WriteModuleInfo. 2674 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2675 if (!isa<GlobalValue>(Vals[i].first)) { 2676 writeConstants(i, Vals.size(), true); 2677 return; 2678 } 2679 } 2680 } 2681 2682 /// pushValueAndType - The file has to encode both the value and type id for 2683 /// many values, because we need to know what type to create for forward 2684 /// references. However, most operands are not forward references, so this type 2685 /// field is not needed. 2686 /// 2687 /// This function adds V's value ID to Vals. If the value ID is higher than the 2688 /// instruction ID, then it is a forward reference, and it also includes the 2689 /// type ID. The value ID that is written is encoded relative to the InstID. 2690 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2691 SmallVectorImpl<unsigned> &Vals) { 2692 unsigned ValID = VE.getValueID(V); 2693 // Make encoding relative to the InstID. 2694 Vals.push_back(InstID - ValID); 2695 if (ValID >= InstID) { 2696 Vals.push_back(VE.getTypeID(V->getType())); 2697 return true; 2698 } 2699 return false; 2700 } 2701 2702 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2703 unsigned InstID) { 2704 SmallVector<unsigned, 64> Record; 2705 LLVMContext &C = CS.getContext(); 2706 2707 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2708 const auto &Bundle = CS.getOperandBundleAt(i); 2709 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2710 2711 for (auto &Input : Bundle.Inputs) 2712 pushValueAndType(Input, InstID, Record); 2713 2714 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2715 Record.clear(); 2716 } 2717 } 2718 2719 /// pushValue - Like pushValueAndType, but where the type of the value is 2720 /// omitted (perhaps it was already encoded in an earlier operand). 2721 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2722 SmallVectorImpl<unsigned> &Vals) { 2723 unsigned ValID = VE.getValueID(V); 2724 Vals.push_back(InstID - ValID); 2725 } 2726 2727 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2728 SmallVectorImpl<uint64_t> &Vals) { 2729 unsigned ValID = VE.getValueID(V); 2730 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2731 emitSignedInt64(Vals, diff); 2732 } 2733 2734 /// WriteInstruction - Emit an instruction to the specified stream. 2735 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2736 unsigned InstID, 2737 SmallVectorImpl<unsigned> &Vals) { 2738 unsigned Code = 0; 2739 unsigned AbbrevToUse = 0; 2740 VE.setInstructionID(&I); 2741 switch (I.getOpcode()) { 2742 default: 2743 if (Instruction::isCast(I.getOpcode())) { 2744 Code = bitc::FUNC_CODE_INST_CAST; 2745 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2746 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2747 Vals.push_back(VE.getTypeID(I.getType())); 2748 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2749 } else { 2750 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2751 Code = bitc::FUNC_CODE_INST_BINOP; 2752 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2753 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2754 pushValue(I.getOperand(1), InstID, Vals); 2755 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2756 uint64_t Flags = getOptimizationFlags(&I); 2757 if (Flags != 0) { 2758 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2759 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2760 Vals.push_back(Flags); 2761 } 2762 } 2763 break; 2764 case Instruction::FNeg: { 2765 Code = bitc::FUNC_CODE_INST_UNOP; 2766 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2767 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2768 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2769 uint64_t Flags = getOptimizationFlags(&I); 2770 if (Flags != 0) { 2771 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2772 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2773 Vals.push_back(Flags); 2774 } 2775 break; 2776 } 2777 case Instruction::GetElementPtr: { 2778 Code = bitc::FUNC_CODE_INST_GEP; 2779 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2780 auto &GEPInst = cast<GetElementPtrInst>(I); 2781 Vals.push_back(GEPInst.isInBounds()); 2782 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2783 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2784 pushValueAndType(I.getOperand(i), InstID, Vals); 2785 break; 2786 } 2787 case Instruction::ExtractValue: { 2788 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2789 pushValueAndType(I.getOperand(0), InstID, Vals); 2790 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2791 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2792 break; 2793 } 2794 case Instruction::InsertValue: { 2795 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2796 pushValueAndType(I.getOperand(0), InstID, Vals); 2797 pushValueAndType(I.getOperand(1), InstID, Vals); 2798 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2799 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2800 break; 2801 } 2802 case Instruction::Select: { 2803 Code = bitc::FUNC_CODE_INST_VSELECT; 2804 pushValueAndType(I.getOperand(1), InstID, Vals); 2805 pushValue(I.getOperand(2), InstID, Vals); 2806 pushValueAndType(I.getOperand(0), InstID, Vals); 2807 uint64_t Flags = getOptimizationFlags(&I); 2808 if (Flags != 0) 2809 Vals.push_back(Flags); 2810 break; 2811 } 2812 case Instruction::ExtractElement: 2813 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2814 pushValueAndType(I.getOperand(0), InstID, Vals); 2815 pushValueAndType(I.getOperand(1), InstID, Vals); 2816 break; 2817 case Instruction::InsertElement: 2818 Code = bitc::FUNC_CODE_INST_INSERTELT; 2819 pushValueAndType(I.getOperand(0), InstID, Vals); 2820 pushValue(I.getOperand(1), InstID, Vals); 2821 pushValueAndType(I.getOperand(2), InstID, Vals); 2822 break; 2823 case Instruction::ShuffleVector: 2824 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2825 pushValueAndType(I.getOperand(0), InstID, Vals); 2826 pushValue(I.getOperand(1), InstID, Vals); 2827 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2828 Vals); 2829 break; 2830 case Instruction::ICmp: 2831 case Instruction::FCmp: { 2832 // compare returning Int1Ty or vector of Int1Ty 2833 Code = bitc::FUNC_CODE_INST_CMP2; 2834 pushValueAndType(I.getOperand(0), InstID, Vals); 2835 pushValue(I.getOperand(1), InstID, Vals); 2836 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2837 uint64_t Flags = getOptimizationFlags(&I); 2838 if (Flags != 0) 2839 Vals.push_back(Flags); 2840 break; 2841 } 2842 2843 case Instruction::Ret: 2844 { 2845 Code = bitc::FUNC_CODE_INST_RET; 2846 unsigned NumOperands = I.getNumOperands(); 2847 if (NumOperands == 0) 2848 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2849 else if (NumOperands == 1) { 2850 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2851 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2852 } else { 2853 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2854 pushValueAndType(I.getOperand(i), InstID, Vals); 2855 } 2856 } 2857 break; 2858 case Instruction::Br: 2859 { 2860 Code = bitc::FUNC_CODE_INST_BR; 2861 const BranchInst &II = cast<BranchInst>(I); 2862 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2863 if (II.isConditional()) { 2864 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2865 pushValue(II.getCondition(), InstID, Vals); 2866 } 2867 } 2868 break; 2869 case Instruction::Switch: 2870 { 2871 Code = bitc::FUNC_CODE_INST_SWITCH; 2872 const SwitchInst &SI = cast<SwitchInst>(I); 2873 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2874 pushValue(SI.getCondition(), InstID, Vals); 2875 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2876 for (auto Case : SI.cases()) { 2877 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2878 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2879 } 2880 } 2881 break; 2882 case Instruction::IndirectBr: 2883 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2884 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2885 // Encode the address operand as relative, but not the basic blocks. 2886 pushValue(I.getOperand(0), InstID, Vals); 2887 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2888 Vals.push_back(VE.getValueID(I.getOperand(i))); 2889 break; 2890 2891 case Instruction::Invoke: { 2892 const InvokeInst *II = cast<InvokeInst>(&I); 2893 const Value *Callee = II->getCalledOperand(); 2894 FunctionType *FTy = II->getFunctionType(); 2895 2896 if (II->hasOperandBundles()) 2897 writeOperandBundles(*II, InstID); 2898 2899 Code = bitc::FUNC_CODE_INST_INVOKE; 2900 2901 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2902 Vals.push_back(II->getCallingConv() | 1 << 13); 2903 Vals.push_back(VE.getValueID(II->getNormalDest())); 2904 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2905 Vals.push_back(VE.getTypeID(FTy)); 2906 pushValueAndType(Callee, InstID, Vals); 2907 2908 // Emit value #'s for the fixed parameters. 2909 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2910 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2911 2912 // Emit type/value pairs for varargs params. 2913 if (FTy->isVarArg()) { 2914 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2915 i != e; ++i) 2916 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2917 } 2918 break; 2919 } 2920 case Instruction::Resume: 2921 Code = bitc::FUNC_CODE_INST_RESUME; 2922 pushValueAndType(I.getOperand(0), InstID, Vals); 2923 break; 2924 case Instruction::CleanupRet: { 2925 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2926 const auto &CRI = cast<CleanupReturnInst>(I); 2927 pushValue(CRI.getCleanupPad(), InstID, Vals); 2928 if (CRI.hasUnwindDest()) 2929 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2930 break; 2931 } 2932 case Instruction::CatchRet: { 2933 Code = bitc::FUNC_CODE_INST_CATCHRET; 2934 const auto &CRI = cast<CatchReturnInst>(I); 2935 pushValue(CRI.getCatchPad(), InstID, Vals); 2936 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2937 break; 2938 } 2939 case Instruction::CleanupPad: 2940 case Instruction::CatchPad: { 2941 const auto &FuncletPad = cast<FuncletPadInst>(I); 2942 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2943 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2944 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2945 2946 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2947 Vals.push_back(NumArgOperands); 2948 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2949 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2950 break; 2951 } 2952 case Instruction::CatchSwitch: { 2953 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2954 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2955 2956 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2957 2958 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2959 Vals.push_back(NumHandlers); 2960 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2961 Vals.push_back(VE.getValueID(CatchPadBB)); 2962 2963 if (CatchSwitch.hasUnwindDest()) 2964 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2965 break; 2966 } 2967 case Instruction::CallBr: { 2968 const CallBrInst *CBI = cast<CallBrInst>(&I); 2969 const Value *Callee = CBI->getCalledOperand(); 2970 FunctionType *FTy = CBI->getFunctionType(); 2971 2972 if (CBI->hasOperandBundles()) 2973 writeOperandBundles(*CBI, InstID); 2974 2975 Code = bitc::FUNC_CODE_INST_CALLBR; 2976 2977 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2978 2979 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2980 1 << bitc::CALL_EXPLICIT_TYPE); 2981 2982 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2983 Vals.push_back(CBI->getNumIndirectDests()); 2984 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2985 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2986 2987 Vals.push_back(VE.getTypeID(FTy)); 2988 pushValueAndType(Callee, InstID, Vals); 2989 2990 // Emit value #'s for the fixed parameters. 2991 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2992 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2993 2994 // Emit type/value pairs for varargs params. 2995 if (FTy->isVarArg()) { 2996 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2997 i != e; ++i) 2998 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2999 } 3000 break; 3001 } 3002 case Instruction::Unreachable: 3003 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3004 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3005 break; 3006 3007 case Instruction::PHI: { 3008 const PHINode &PN = cast<PHINode>(I); 3009 Code = bitc::FUNC_CODE_INST_PHI; 3010 // With the newer instruction encoding, forward references could give 3011 // negative valued IDs. This is most common for PHIs, so we use 3012 // signed VBRs. 3013 SmallVector<uint64_t, 128> Vals64; 3014 Vals64.push_back(VE.getTypeID(PN.getType())); 3015 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3016 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3017 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3018 } 3019 3020 uint64_t Flags = getOptimizationFlags(&I); 3021 if (Flags != 0) 3022 Vals64.push_back(Flags); 3023 3024 // Emit a Vals64 vector and exit. 3025 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3026 Vals64.clear(); 3027 return; 3028 } 3029 3030 case Instruction::LandingPad: { 3031 const LandingPadInst &LP = cast<LandingPadInst>(I); 3032 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3033 Vals.push_back(VE.getTypeID(LP.getType())); 3034 Vals.push_back(LP.isCleanup()); 3035 Vals.push_back(LP.getNumClauses()); 3036 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3037 if (LP.isCatch(I)) 3038 Vals.push_back(LandingPadInst::Catch); 3039 else 3040 Vals.push_back(LandingPadInst::Filter); 3041 pushValueAndType(LP.getClause(I), InstID, Vals); 3042 } 3043 break; 3044 } 3045 3046 case Instruction::Alloca: { 3047 Code = bitc::FUNC_CODE_INST_ALLOCA; 3048 const AllocaInst &AI = cast<AllocaInst>(I); 3049 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3050 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3051 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3052 using APV = AllocaPackedValues; 3053 unsigned Record = 0; 3054 Bitfield::set<APV::Align>(Record, getEncodedAlign(AI.getAlign())); 3055 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3056 Bitfield::set<APV::ExplicitType>(Record, true); 3057 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3058 Vals.push_back(Record); 3059 break; 3060 } 3061 3062 case Instruction::Load: 3063 if (cast<LoadInst>(I).isAtomic()) { 3064 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3065 pushValueAndType(I.getOperand(0), InstID, Vals); 3066 } else { 3067 Code = bitc::FUNC_CODE_INST_LOAD; 3068 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3069 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3070 } 3071 Vals.push_back(VE.getTypeID(I.getType())); 3072 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3073 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3074 if (cast<LoadInst>(I).isAtomic()) { 3075 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3076 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3077 } 3078 break; 3079 case Instruction::Store: 3080 if (cast<StoreInst>(I).isAtomic()) 3081 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3082 else 3083 Code = bitc::FUNC_CODE_INST_STORE; 3084 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3085 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3086 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3087 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3088 if (cast<StoreInst>(I).isAtomic()) { 3089 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3090 Vals.push_back( 3091 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3092 } 3093 break; 3094 case Instruction::AtomicCmpXchg: 3095 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3096 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3097 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3098 pushValue(I.getOperand(2), InstID, Vals); // newval. 3099 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3100 Vals.push_back( 3101 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3102 Vals.push_back( 3103 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3104 Vals.push_back( 3105 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3106 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3107 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3108 break; 3109 case Instruction::AtomicRMW: 3110 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3111 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3112 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3113 Vals.push_back( 3114 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3115 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3116 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3117 Vals.push_back( 3118 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3119 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3120 break; 3121 case Instruction::Fence: 3122 Code = bitc::FUNC_CODE_INST_FENCE; 3123 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3124 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3125 break; 3126 case Instruction::Call: { 3127 const CallInst &CI = cast<CallInst>(I); 3128 FunctionType *FTy = CI.getFunctionType(); 3129 3130 if (CI.hasOperandBundles()) 3131 writeOperandBundles(CI, InstID); 3132 3133 Code = bitc::FUNC_CODE_INST_CALL; 3134 3135 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3136 3137 unsigned Flags = getOptimizationFlags(&I); 3138 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3139 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3140 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3141 1 << bitc::CALL_EXPLICIT_TYPE | 3142 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3143 unsigned(Flags != 0) << bitc::CALL_FMF); 3144 if (Flags != 0) 3145 Vals.push_back(Flags); 3146 3147 Vals.push_back(VE.getTypeID(FTy)); 3148 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3149 3150 // Emit value #'s for the fixed parameters. 3151 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3152 // Check for labels (can happen with asm labels). 3153 if (FTy->getParamType(i)->isLabelTy()) 3154 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3155 else 3156 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3157 } 3158 3159 // Emit type/value pairs for varargs params. 3160 if (FTy->isVarArg()) { 3161 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3162 i != e; ++i) 3163 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3164 } 3165 break; 3166 } 3167 case Instruction::VAArg: 3168 Code = bitc::FUNC_CODE_INST_VAARG; 3169 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3170 pushValue(I.getOperand(0), InstID, Vals); // valist. 3171 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3172 break; 3173 case Instruction::Freeze: 3174 Code = bitc::FUNC_CODE_INST_FREEZE; 3175 pushValueAndType(I.getOperand(0), InstID, Vals); 3176 break; 3177 } 3178 3179 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3180 Vals.clear(); 3181 } 3182 3183 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3184 /// to allow clients to efficiently find the function body. 3185 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3186 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3187 // Get the offset of the VST we are writing, and backpatch it into 3188 // the VST forward declaration record. 3189 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3190 // The BitcodeStartBit was the stream offset of the identification block. 3191 VSTOffset -= bitcodeStartBit(); 3192 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3193 // Note that we add 1 here because the offset is relative to one word 3194 // before the start of the identification block, which was historically 3195 // always the start of the regular bitcode header. 3196 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3197 3198 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3199 3200 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3201 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3204 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3205 3206 for (const Function &F : M) { 3207 uint64_t Record[2]; 3208 3209 if (F.isDeclaration()) 3210 continue; 3211 3212 Record[0] = VE.getValueID(&F); 3213 3214 // Save the word offset of the function (from the start of the 3215 // actual bitcode written to the stream). 3216 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3217 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3218 // Note that we add 1 here because the offset is relative to one word 3219 // before the start of the identification block, which was historically 3220 // always the start of the regular bitcode header. 3221 Record[1] = BitcodeIndex / 32 + 1; 3222 3223 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3224 } 3225 3226 Stream.ExitBlock(); 3227 } 3228 3229 /// Emit names for arguments, instructions and basic blocks in a function. 3230 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3231 const ValueSymbolTable &VST) { 3232 if (VST.empty()) 3233 return; 3234 3235 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3236 3237 // FIXME: Set up the abbrev, we know how many values there are! 3238 // FIXME: We know if the type names can use 7-bit ascii. 3239 SmallVector<uint64_t, 64> NameVals; 3240 3241 for (const ValueName &Name : VST) { 3242 // Figure out the encoding to use for the name. 3243 StringEncoding Bits = getStringEncoding(Name.getKey()); 3244 3245 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3246 NameVals.push_back(VE.getValueID(Name.getValue())); 3247 3248 // VST_CODE_ENTRY: [valueid, namechar x N] 3249 // VST_CODE_BBENTRY: [bbid, namechar x N] 3250 unsigned Code; 3251 if (isa<BasicBlock>(Name.getValue())) { 3252 Code = bitc::VST_CODE_BBENTRY; 3253 if (Bits == SE_Char6) 3254 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3255 } else { 3256 Code = bitc::VST_CODE_ENTRY; 3257 if (Bits == SE_Char6) 3258 AbbrevToUse = VST_ENTRY_6_ABBREV; 3259 else if (Bits == SE_Fixed7) 3260 AbbrevToUse = VST_ENTRY_7_ABBREV; 3261 } 3262 3263 for (const auto P : Name.getKey()) 3264 NameVals.push_back((unsigned char)P); 3265 3266 // Emit the finished record. 3267 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3268 NameVals.clear(); 3269 } 3270 3271 Stream.ExitBlock(); 3272 } 3273 3274 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3275 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3276 unsigned Code; 3277 if (isa<BasicBlock>(Order.V)) 3278 Code = bitc::USELIST_CODE_BB; 3279 else 3280 Code = bitc::USELIST_CODE_DEFAULT; 3281 3282 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3283 Record.push_back(VE.getValueID(Order.V)); 3284 Stream.EmitRecord(Code, Record); 3285 } 3286 3287 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3288 assert(VE.shouldPreserveUseListOrder() && 3289 "Expected to be preserving use-list order"); 3290 3291 auto hasMore = [&]() { 3292 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3293 }; 3294 if (!hasMore()) 3295 // Nothing to do. 3296 return; 3297 3298 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3299 while (hasMore()) { 3300 writeUseList(std::move(VE.UseListOrders.back())); 3301 VE.UseListOrders.pop_back(); 3302 } 3303 Stream.ExitBlock(); 3304 } 3305 3306 /// Emit a function body to the module stream. 3307 void ModuleBitcodeWriter::writeFunction( 3308 const Function &F, 3309 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3310 // Save the bitcode index of the start of this function block for recording 3311 // in the VST. 3312 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3313 3314 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3315 VE.incorporateFunction(F); 3316 3317 SmallVector<unsigned, 64> Vals; 3318 3319 // Emit the number of basic blocks, so the reader can create them ahead of 3320 // time. 3321 Vals.push_back(VE.getBasicBlocks().size()); 3322 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3323 Vals.clear(); 3324 3325 // If there are function-local constants, emit them now. 3326 unsigned CstStart, CstEnd; 3327 VE.getFunctionConstantRange(CstStart, CstEnd); 3328 writeConstants(CstStart, CstEnd, false); 3329 3330 // If there is function-local metadata, emit it now. 3331 writeFunctionMetadata(F); 3332 3333 // Keep a running idea of what the instruction ID is. 3334 unsigned InstID = CstEnd; 3335 3336 bool NeedsMetadataAttachment = F.hasMetadata(); 3337 3338 DILocation *LastDL = nullptr; 3339 // Finally, emit all the instructions, in order. 3340 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3341 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3342 I != E; ++I) { 3343 writeInstruction(*I, InstID, Vals); 3344 3345 if (!I->getType()->isVoidTy()) 3346 ++InstID; 3347 3348 // If the instruction has metadata, write a metadata attachment later. 3349 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3350 3351 // If the instruction has a debug location, emit it. 3352 DILocation *DL = I->getDebugLoc(); 3353 if (!DL) 3354 continue; 3355 3356 if (DL == LastDL) { 3357 // Just repeat the same debug loc as last time. 3358 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3359 continue; 3360 } 3361 3362 Vals.push_back(DL->getLine()); 3363 Vals.push_back(DL->getColumn()); 3364 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3365 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3366 Vals.push_back(DL->isImplicitCode()); 3367 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3368 Vals.clear(); 3369 3370 LastDL = DL; 3371 } 3372 3373 // Emit names for all the instructions etc. 3374 if (auto *Symtab = F.getValueSymbolTable()) 3375 writeFunctionLevelValueSymbolTable(*Symtab); 3376 3377 if (NeedsMetadataAttachment) 3378 writeFunctionMetadataAttachment(F); 3379 if (VE.shouldPreserveUseListOrder()) 3380 writeUseListBlock(&F); 3381 VE.purgeFunction(); 3382 Stream.ExitBlock(); 3383 } 3384 3385 // Emit blockinfo, which defines the standard abbreviations etc. 3386 void ModuleBitcodeWriter::writeBlockInfo() { 3387 // We only want to emit block info records for blocks that have multiple 3388 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3389 // Other blocks can define their abbrevs inline. 3390 Stream.EnterBlockInfoBlock(); 3391 3392 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3393 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3398 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3399 VST_ENTRY_8_ABBREV) 3400 llvm_unreachable("Unexpected abbrev ordering!"); 3401 } 3402 3403 { // 7-bit fixed width VST_CODE_ENTRY strings. 3404 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3405 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3407 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3408 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3409 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3410 VST_ENTRY_7_ABBREV) 3411 llvm_unreachable("Unexpected abbrev ordering!"); 3412 } 3413 { // 6-bit char6 VST_CODE_ENTRY strings. 3414 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3415 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3419 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3420 VST_ENTRY_6_ABBREV) 3421 llvm_unreachable("Unexpected abbrev ordering!"); 3422 } 3423 { // 6-bit char6 VST_CODE_BBENTRY strings. 3424 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3425 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3429 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3430 VST_BBENTRY_6_ABBREV) 3431 llvm_unreachable("Unexpected abbrev ordering!"); 3432 } 3433 3434 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3435 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3436 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3438 VE.computeBitsRequiredForTypeIndicies())); 3439 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3440 CONSTANTS_SETTYPE_ABBREV) 3441 llvm_unreachable("Unexpected abbrev ordering!"); 3442 } 3443 3444 { // INTEGER abbrev for CONSTANTS_BLOCK. 3445 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3446 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3448 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3449 CONSTANTS_INTEGER_ABBREV) 3450 llvm_unreachable("Unexpected abbrev ordering!"); 3451 } 3452 3453 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3454 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3455 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3458 VE.computeBitsRequiredForTypeIndicies())); 3459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3460 3461 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3462 CONSTANTS_CE_CAST_Abbrev) 3463 llvm_unreachable("Unexpected abbrev ordering!"); 3464 } 3465 { // NULL abbrev for CONSTANTS_BLOCK. 3466 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3467 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3468 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3469 CONSTANTS_NULL_Abbrev) 3470 llvm_unreachable("Unexpected abbrev ordering!"); 3471 } 3472 3473 // FIXME: This should only use space for first class types! 3474 3475 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3476 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3477 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3480 VE.computeBitsRequiredForTypeIndicies())); 3481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3483 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3484 FUNCTION_INST_LOAD_ABBREV) 3485 llvm_unreachable("Unexpected abbrev ordering!"); 3486 } 3487 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3488 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3489 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3490 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3491 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3492 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3493 FUNCTION_INST_UNOP_ABBREV) 3494 llvm_unreachable("Unexpected abbrev ordering!"); 3495 } 3496 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3497 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3498 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3499 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3502 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3503 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3504 llvm_unreachable("Unexpected abbrev ordering!"); 3505 } 3506 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3507 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3508 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3509 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3510 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3511 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3512 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3513 FUNCTION_INST_BINOP_ABBREV) 3514 llvm_unreachable("Unexpected abbrev ordering!"); 3515 } 3516 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3517 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3518 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3519 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3523 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3524 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3525 llvm_unreachable("Unexpected abbrev ordering!"); 3526 } 3527 { // INST_CAST abbrev for FUNCTION_BLOCK. 3528 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3529 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3532 VE.computeBitsRequiredForTypeIndicies())); 3533 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3534 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3535 FUNCTION_INST_CAST_ABBREV) 3536 llvm_unreachable("Unexpected abbrev ordering!"); 3537 } 3538 3539 { // INST_RET abbrev for FUNCTION_BLOCK. 3540 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3541 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3542 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3543 FUNCTION_INST_RET_VOID_ABBREV) 3544 llvm_unreachable("Unexpected abbrev ordering!"); 3545 } 3546 { // INST_RET abbrev for FUNCTION_BLOCK. 3547 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3548 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3550 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3551 FUNCTION_INST_RET_VAL_ABBREV) 3552 llvm_unreachable("Unexpected abbrev ordering!"); 3553 } 3554 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3555 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3556 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3557 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3558 FUNCTION_INST_UNREACHABLE_ABBREV) 3559 llvm_unreachable("Unexpected abbrev ordering!"); 3560 } 3561 { 3562 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3563 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3564 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3565 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3566 Log2_32_Ceil(VE.getTypes().size() + 1))); 3567 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3568 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3569 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3570 FUNCTION_INST_GEP_ABBREV) 3571 llvm_unreachable("Unexpected abbrev ordering!"); 3572 } 3573 3574 Stream.ExitBlock(); 3575 } 3576 3577 /// Write the module path strings, currently only used when generating 3578 /// a combined index file. 3579 void IndexBitcodeWriter::writeModStrings() { 3580 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3581 3582 // TODO: See which abbrev sizes we actually need to emit 3583 3584 // 8-bit fixed-width MST_ENTRY strings. 3585 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3586 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3587 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3588 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3590 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3591 3592 // 7-bit fixed width MST_ENTRY strings. 3593 Abbv = std::make_shared<BitCodeAbbrev>(); 3594 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3598 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3599 3600 // 6-bit char6 MST_ENTRY strings. 3601 Abbv = std::make_shared<BitCodeAbbrev>(); 3602 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3603 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3604 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3605 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3606 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3607 3608 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3609 Abbv = std::make_shared<BitCodeAbbrev>(); 3610 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3611 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3612 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3614 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3616 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3617 3618 SmallVector<unsigned, 64> Vals; 3619 forEachModule( 3620 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3621 StringRef Key = MPSE.getKey(); 3622 const auto &Value = MPSE.getValue(); 3623 StringEncoding Bits = getStringEncoding(Key); 3624 unsigned AbbrevToUse = Abbrev8Bit; 3625 if (Bits == SE_Char6) 3626 AbbrevToUse = Abbrev6Bit; 3627 else if (Bits == SE_Fixed7) 3628 AbbrevToUse = Abbrev7Bit; 3629 3630 Vals.push_back(Value.first); 3631 Vals.append(Key.begin(), Key.end()); 3632 3633 // Emit the finished record. 3634 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3635 3636 // Emit an optional hash for the module now 3637 const auto &Hash = Value.second; 3638 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3639 Vals.assign(Hash.begin(), Hash.end()); 3640 // Emit the hash record. 3641 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3642 } 3643 3644 Vals.clear(); 3645 }); 3646 Stream.ExitBlock(); 3647 } 3648 3649 /// Write the function type metadata related records that need to appear before 3650 /// a function summary entry (whether per-module or combined). 3651 template <typename Fn> 3652 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3653 FunctionSummary *FS, 3654 Fn GetValueID) { 3655 if (!FS->type_tests().empty()) 3656 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3657 3658 SmallVector<uint64_t, 64> Record; 3659 3660 auto WriteVFuncIdVec = [&](uint64_t Ty, 3661 ArrayRef<FunctionSummary::VFuncId> VFs) { 3662 if (VFs.empty()) 3663 return; 3664 Record.clear(); 3665 for (auto &VF : VFs) { 3666 Record.push_back(VF.GUID); 3667 Record.push_back(VF.Offset); 3668 } 3669 Stream.EmitRecord(Ty, Record); 3670 }; 3671 3672 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3673 FS->type_test_assume_vcalls()); 3674 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3675 FS->type_checked_load_vcalls()); 3676 3677 auto WriteConstVCallVec = [&](uint64_t Ty, 3678 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3679 for (auto &VC : VCs) { 3680 Record.clear(); 3681 Record.push_back(VC.VFunc.GUID); 3682 Record.push_back(VC.VFunc.Offset); 3683 llvm::append_range(Record, VC.Args); 3684 Stream.EmitRecord(Ty, Record); 3685 } 3686 }; 3687 3688 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3689 FS->type_test_assume_const_vcalls()); 3690 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3691 FS->type_checked_load_const_vcalls()); 3692 3693 auto WriteRange = [&](ConstantRange Range) { 3694 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3695 assert(Range.getLower().getNumWords() == 1); 3696 assert(Range.getUpper().getNumWords() == 1); 3697 emitSignedInt64(Record, *Range.getLower().getRawData()); 3698 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3699 }; 3700 3701 if (!FS->paramAccesses().empty()) { 3702 Record.clear(); 3703 for (auto &Arg : FS->paramAccesses()) { 3704 size_t UndoSize = Record.size(); 3705 Record.push_back(Arg.ParamNo); 3706 WriteRange(Arg.Use); 3707 Record.push_back(Arg.Calls.size()); 3708 for (auto &Call : Arg.Calls) { 3709 Record.push_back(Call.ParamNo); 3710 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3711 if (!ValueID) { 3712 // If ValueID is unknown we can't drop just this call, we must drop 3713 // entire parameter. 3714 Record.resize(UndoSize); 3715 break; 3716 } 3717 Record.push_back(*ValueID); 3718 WriteRange(Call.Offsets); 3719 } 3720 } 3721 if (!Record.empty()) 3722 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3723 } 3724 } 3725 3726 /// Collect type IDs from type tests used by function. 3727 static void 3728 getReferencedTypeIds(FunctionSummary *FS, 3729 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3730 if (!FS->type_tests().empty()) 3731 for (auto &TT : FS->type_tests()) 3732 ReferencedTypeIds.insert(TT); 3733 3734 auto GetReferencedTypesFromVFuncIdVec = 3735 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3736 for (auto &VF : VFs) 3737 ReferencedTypeIds.insert(VF.GUID); 3738 }; 3739 3740 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3741 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3742 3743 auto GetReferencedTypesFromConstVCallVec = 3744 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3745 for (auto &VC : VCs) 3746 ReferencedTypeIds.insert(VC.VFunc.GUID); 3747 }; 3748 3749 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3750 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3751 } 3752 3753 static void writeWholeProgramDevirtResolutionByArg( 3754 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3755 const WholeProgramDevirtResolution::ByArg &ByArg) { 3756 NameVals.push_back(args.size()); 3757 llvm::append_range(NameVals, args); 3758 3759 NameVals.push_back(ByArg.TheKind); 3760 NameVals.push_back(ByArg.Info); 3761 NameVals.push_back(ByArg.Byte); 3762 NameVals.push_back(ByArg.Bit); 3763 } 3764 3765 static void writeWholeProgramDevirtResolution( 3766 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3767 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3768 NameVals.push_back(Id); 3769 3770 NameVals.push_back(Wpd.TheKind); 3771 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3772 NameVals.push_back(Wpd.SingleImplName.size()); 3773 3774 NameVals.push_back(Wpd.ResByArg.size()); 3775 for (auto &A : Wpd.ResByArg) 3776 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3777 } 3778 3779 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3780 StringTableBuilder &StrtabBuilder, 3781 const std::string &Id, 3782 const TypeIdSummary &Summary) { 3783 NameVals.push_back(StrtabBuilder.add(Id)); 3784 NameVals.push_back(Id.size()); 3785 3786 NameVals.push_back(Summary.TTRes.TheKind); 3787 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3788 NameVals.push_back(Summary.TTRes.AlignLog2); 3789 NameVals.push_back(Summary.TTRes.SizeM1); 3790 NameVals.push_back(Summary.TTRes.BitMask); 3791 NameVals.push_back(Summary.TTRes.InlineBits); 3792 3793 for (auto &W : Summary.WPDRes) 3794 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3795 W.second); 3796 } 3797 3798 static void writeTypeIdCompatibleVtableSummaryRecord( 3799 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3800 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3801 ValueEnumerator &VE) { 3802 NameVals.push_back(StrtabBuilder.add(Id)); 3803 NameVals.push_back(Id.size()); 3804 3805 for (auto &P : Summary) { 3806 NameVals.push_back(P.AddressPointOffset); 3807 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3808 } 3809 } 3810 3811 // Helper to emit a single function summary record. 3812 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3813 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3814 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3815 const Function &F) { 3816 NameVals.push_back(ValueID); 3817 3818 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3819 3820 writeFunctionTypeMetadataRecords( 3821 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3822 return {VE.getValueID(VI.getValue())}; 3823 }); 3824 3825 auto SpecialRefCnts = FS->specialRefCounts(); 3826 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3827 NameVals.push_back(FS->instCount()); 3828 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3829 NameVals.push_back(FS->refs().size()); 3830 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3831 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3832 3833 for (auto &RI : FS->refs()) 3834 NameVals.push_back(VE.getValueID(RI.getValue())); 3835 3836 bool HasProfileData = 3837 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3838 for (auto &ECI : FS->calls()) { 3839 NameVals.push_back(getValueId(ECI.first)); 3840 if (HasProfileData) 3841 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3842 else if (WriteRelBFToSummary) 3843 NameVals.push_back(ECI.second.RelBlockFreq); 3844 } 3845 3846 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3847 unsigned Code = 3848 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3849 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3850 : bitc::FS_PERMODULE)); 3851 3852 // Emit the finished record. 3853 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3854 NameVals.clear(); 3855 } 3856 3857 // Collect the global value references in the given variable's initializer, 3858 // and emit them in a summary record. 3859 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3860 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3861 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3862 auto VI = Index->getValueInfo(V.getGUID()); 3863 if (!VI || VI.getSummaryList().empty()) { 3864 // Only declarations should not have a summary (a declaration might however 3865 // have a summary if the def was in module level asm). 3866 assert(V.isDeclaration()); 3867 return; 3868 } 3869 auto *Summary = VI.getSummaryList()[0].get(); 3870 NameVals.push_back(VE.getValueID(&V)); 3871 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3872 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3873 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3874 3875 auto VTableFuncs = VS->vTableFuncs(); 3876 if (!VTableFuncs.empty()) 3877 NameVals.push_back(VS->refs().size()); 3878 3879 unsigned SizeBeforeRefs = NameVals.size(); 3880 for (auto &RI : VS->refs()) 3881 NameVals.push_back(VE.getValueID(RI.getValue())); 3882 // Sort the refs for determinism output, the vector returned by FS->refs() has 3883 // been initialized from a DenseSet. 3884 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 3885 3886 if (VTableFuncs.empty()) 3887 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3888 FSModRefsAbbrev); 3889 else { 3890 // VTableFuncs pairs should already be sorted by offset. 3891 for (auto &P : VTableFuncs) { 3892 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3893 NameVals.push_back(P.VTableOffset); 3894 } 3895 3896 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3897 FSModVTableRefsAbbrev); 3898 } 3899 NameVals.clear(); 3900 } 3901 3902 /// Emit the per-module summary section alongside the rest of 3903 /// the module's bitcode. 3904 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3905 // By default we compile with ThinLTO if the module has a summary, but the 3906 // client can request full LTO with a module flag. 3907 bool IsThinLTO = true; 3908 if (auto *MD = 3909 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3910 IsThinLTO = MD->getZExtValue(); 3911 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3912 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3913 4); 3914 3915 Stream.EmitRecord( 3916 bitc::FS_VERSION, 3917 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3918 3919 // Write the index flags. 3920 uint64_t Flags = 0; 3921 // Bits 1-3 are set only in the combined index, skip them. 3922 if (Index->enableSplitLTOUnit()) 3923 Flags |= 0x8; 3924 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3925 3926 if (Index->begin() == Index->end()) { 3927 Stream.ExitBlock(); 3928 return; 3929 } 3930 3931 for (const auto &GVI : valueIds()) { 3932 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3933 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3934 } 3935 3936 // Abbrev for FS_PERMODULE_PROFILE. 3937 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3938 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3946 // numrefs x valueid, n x (valueid, hotness) 3947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3949 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3950 3951 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3952 Abbv = std::make_shared<BitCodeAbbrev>(); 3953 if (WriteRelBFToSummary) 3954 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3955 else 3956 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3964 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3967 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3968 3969 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3970 Abbv = std::make_shared<BitCodeAbbrev>(); 3971 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3976 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3977 3978 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3979 Abbv = std::make_shared<BitCodeAbbrev>(); 3980 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3981 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3983 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3984 // numrefs x valueid, n x (valueid , offset) 3985 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3986 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3987 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3988 3989 // Abbrev for FS_ALIAS. 3990 Abbv = std::make_shared<BitCodeAbbrev>(); 3991 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3992 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3993 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3994 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3995 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3996 3997 // Abbrev for FS_TYPE_ID_METADATA 3998 Abbv = std::make_shared<BitCodeAbbrev>(); 3999 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4002 // n x (valueid , offset) 4003 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4005 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4006 4007 SmallVector<uint64_t, 64> NameVals; 4008 // Iterate over the list of functions instead of the Index to 4009 // ensure the ordering is stable. 4010 for (const Function &F : M) { 4011 // Summary emission does not support anonymous functions, they have to 4012 // renamed using the anonymous function renaming pass. 4013 if (!F.hasName()) 4014 report_fatal_error("Unexpected anonymous function when writing summary"); 4015 4016 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4017 if (!VI || VI.getSummaryList().empty()) { 4018 // Only declarations should not have a summary (a declaration might 4019 // however have a summary if the def was in module level asm). 4020 assert(F.isDeclaration()); 4021 continue; 4022 } 4023 auto *Summary = VI.getSummaryList()[0].get(); 4024 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4025 FSCallsAbbrev, FSCallsProfileAbbrev, F); 4026 } 4027 4028 // Capture references from GlobalVariable initializers, which are outside 4029 // of a function scope. 4030 for (const GlobalVariable &G : M.globals()) 4031 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4032 FSModVTableRefsAbbrev); 4033 4034 for (const GlobalAlias &A : M.aliases()) { 4035 auto *Aliasee = A.getBaseObject(); 4036 if (!Aliasee->hasName()) 4037 // Nameless function don't have an entry in the summary, skip it. 4038 continue; 4039 auto AliasId = VE.getValueID(&A); 4040 auto AliaseeId = VE.getValueID(Aliasee); 4041 NameVals.push_back(AliasId); 4042 auto *Summary = Index->getGlobalValueSummary(A); 4043 AliasSummary *AS = cast<AliasSummary>(Summary); 4044 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4045 NameVals.push_back(AliaseeId); 4046 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4047 NameVals.clear(); 4048 } 4049 4050 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4051 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4052 S.second, VE); 4053 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4054 TypeIdCompatibleVtableAbbrev); 4055 NameVals.clear(); 4056 } 4057 4058 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4059 ArrayRef<uint64_t>{Index->getBlockCount()}); 4060 4061 Stream.ExitBlock(); 4062 } 4063 4064 /// Emit the combined summary section into the combined index file. 4065 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4066 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 4067 Stream.EmitRecord( 4068 bitc::FS_VERSION, 4069 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4070 4071 // Write the index flags. 4072 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4073 4074 for (const auto &GVI : valueIds()) { 4075 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4076 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4077 } 4078 4079 // Abbrev for FS_COMBINED. 4080 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4081 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4082 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4083 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4085 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4086 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4087 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4088 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4089 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4091 // numrefs x valueid, n x (valueid) 4092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4094 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4095 4096 // Abbrev for FS_COMBINED_PROFILE. 4097 Abbv = std::make_shared<BitCodeAbbrev>(); 4098 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4099 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4103 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4104 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4105 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4106 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4107 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4108 // numrefs x valueid, n x (valueid, hotness) 4109 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4110 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4111 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4112 4113 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4114 Abbv = std::make_shared<BitCodeAbbrev>(); 4115 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4116 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4117 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4118 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4119 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4120 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4121 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4122 4123 // Abbrev for FS_COMBINED_ALIAS. 4124 Abbv = std::make_shared<BitCodeAbbrev>(); 4125 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4126 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4130 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4131 4132 // The aliases are emitted as a post-pass, and will point to the value 4133 // id of the aliasee. Save them in a vector for post-processing. 4134 SmallVector<AliasSummary *, 64> Aliases; 4135 4136 // Save the value id for each summary for alias emission. 4137 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4138 4139 SmallVector<uint64_t, 64> NameVals; 4140 4141 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4142 // with the type ids referenced by this index file. 4143 std::set<GlobalValue::GUID> ReferencedTypeIds; 4144 4145 // For local linkage, we also emit the original name separately 4146 // immediately after the record. 4147 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4148 if (!GlobalValue::isLocalLinkage(S.linkage())) 4149 return; 4150 NameVals.push_back(S.getOriginalName()); 4151 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4152 NameVals.clear(); 4153 }; 4154 4155 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4156 forEachSummary([&](GVInfo I, bool IsAliasee) { 4157 GlobalValueSummary *S = I.second; 4158 assert(S); 4159 DefOrUseGUIDs.insert(I.first); 4160 for (const ValueInfo &VI : S->refs()) 4161 DefOrUseGUIDs.insert(VI.getGUID()); 4162 4163 auto ValueId = getValueId(I.first); 4164 assert(ValueId); 4165 SummaryToValueIdMap[S] = *ValueId; 4166 4167 // If this is invoked for an aliasee, we want to record the above 4168 // mapping, but then not emit a summary entry (if the aliasee is 4169 // to be imported, we will invoke this separately with IsAliasee=false). 4170 if (IsAliasee) 4171 return; 4172 4173 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4174 // Will process aliases as a post-pass because the reader wants all 4175 // global to be loaded first. 4176 Aliases.push_back(AS); 4177 return; 4178 } 4179 4180 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4181 NameVals.push_back(*ValueId); 4182 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4183 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4184 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4185 for (auto &RI : VS->refs()) { 4186 auto RefValueId = getValueId(RI.getGUID()); 4187 if (!RefValueId) 4188 continue; 4189 NameVals.push_back(*RefValueId); 4190 } 4191 4192 // Emit the finished record. 4193 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4194 FSModRefsAbbrev); 4195 NameVals.clear(); 4196 MaybeEmitOriginalName(*S); 4197 return; 4198 } 4199 4200 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4201 GlobalValue::GUID GUID = VI.getGUID(); 4202 Optional<unsigned> CallValueId = getValueId(GUID); 4203 if (CallValueId) 4204 return CallValueId; 4205 // For SamplePGO, the indirect call targets for local functions will 4206 // have its original name annotated in profile. We try to find the 4207 // corresponding PGOFuncName as the GUID. 4208 GUID = Index.getGUIDFromOriginalID(GUID); 4209 if (!GUID) 4210 return None; 4211 CallValueId = getValueId(GUID); 4212 if (!CallValueId) 4213 return None; 4214 // The mapping from OriginalId to GUID may return a GUID 4215 // that corresponds to a static variable. Filter it out here. 4216 // This can happen when 4217 // 1) There is a call to a library function which does not have 4218 // a CallValidId; 4219 // 2) There is a static variable with the OriginalGUID identical 4220 // to the GUID of the library function in 1); 4221 // When this happens, the logic for SamplePGO kicks in and 4222 // the static variable in 2) will be found, which needs to be 4223 // filtered out. 4224 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 4225 if (GVSum && GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4226 return None; 4227 return CallValueId; 4228 }; 4229 4230 auto *FS = cast<FunctionSummary>(S); 4231 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4232 getReferencedTypeIds(FS, ReferencedTypeIds); 4233 4234 NameVals.push_back(*ValueId); 4235 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4236 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4237 NameVals.push_back(FS->instCount()); 4238 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4239 NameVals.push_back(FS->entryCount()); 4240 4241 // Fill in below 4242 NameVals.push_back(0); // numrefs 4243 NameVals.push_back(0); // rorefcnt 4244 NameVals.push_back(0); // worefcnt 4245 4246 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4247 for (auto &RI : FS->refs()) { 4248 auto RefValueId = getValueId(RI.getGUID()); 4249 if (!RefValueId) 4250 continue; 4251 NameVals.push_back(*RefValueId); 4252 if (RI.isReadOnly()) 4253 RORefCnt++; 4254 else if (RI.isWriteOnly()) 4255 WORefCnt++; 4256 Count++; 4257 } 4258 NameVals[6] = Count; 4259 NameVals[7] = RORefCnt; 4260 NameVals[8] = WORefCnt; 4261 4262 bool HasProfileData = false; 4263 for (auto &EI : FS->calls()) { 4264 HasProfileData |= 4265 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4266 if (HasProfileData) 4267 break; 4268 } 4269 4270 for (auto &EI : FS->calls()) { 4271 // If this GUID doesn't have a value id, it doesn't have a function 4272 // summary and we don't need to record any calls to it. 4273 Optional<unsigned> CallValueId = GetValueId(EI.first); 4274 if (!CallValueId) 4275 continue; 4276 NameVals.push_back(*CallValueId); 4277 if (HasProfileData) 4278 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4279 } 4280 4281 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4282 unsigned Code = 4283 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4284 4285 // Emit the finished record. 4286 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4287 NameVals.clear(); 4288 MaybeEmitOriginalName(*S); 4289 }); 4290 4291 for (auto *AS : Aliases) { 4292 auto AliasValueId = SummaryToValueIdMap[AS]; 4293 assert(AliasValueId); 4294 NameVals.push_back(AliasValueId); 4295 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4296 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4297 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4298 assert(AliaseeValueId); 4299 NameVals.push_back(AliaseeValueId); 4300 4301 // Emit the finished record. 4302 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4303 NameVals.clear(); 4304 MaybeEmitOriginalName(*AS); 4305 4306 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4307 getReferencedTypeIds(FS, ReferencedTypeIds); 4308 } 4309 4310 if (!Index.cfiFunctionDefs().empty()) { 4311 for (auto &S : Index.cfiFunctionDefs()) { 4312 if (DefOrUseGUIDs.count( 4313 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4314 NameVals.push_back(StrtabBuilder.add(S)); 4315 NameVals.push_back(S.size()); 4316 } 4317 } 4318 if (!NameVals.empty()) { 4319 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4320 NameVals.clear(); 4321 } 4322 } 4323 4324 if (!Index.cfiFunctionDecls().empty()) { 4325 for (auto &S : Index.cfiFunctionDecls()) { 4326 if (DefOrUseGUIDs.count( 4327 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4328 NameVals.push_back(StrtabBuilder.add(S)); 4329 NameVals.push_back(S.size()); 4330 } 4331 } 4332 if (!NameVals.empty()) { 4333 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4334 NameVals.clear(); 4335 } 4336 } 4337 4338 // Walk the GUIDs that were referenced, and write the 4339 // corresponding type id records. 4340 for (auto &T : ReferencedTypeIds) { 4341 auto TidIter = Index.typeIds().equal_range(T); 4342 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4343 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4344 It->second.second); 4345 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4346 NameVals.clear(); 4347 } 4348 } 4349 4350 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4351 ArrayRef<uint64_t>{Index.getBlockCount()}); 4352 4353 Stream.ExitBlock(); 4354 } 4355 4356 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4357 /// current llvm version, and a record for the epoch number. 4358 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4359 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4360 4361 // Write the "user readable" string identifying the bitcode producer 4362 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4363 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4366 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4367 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4368 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4369 4370 // Write the epoch version 4371 Abbv = std::make_shared<BitCodeAbbrev>(); 4372 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4374 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4375 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4376 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4377 Stream.ExitBlock(); 4378 } 4379 4380 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4381 // Emit the module's hash. 4382 // MODULE_CODE_HASH: [5*i32] 4383 if (GenerateHash) { 4384 uint32_t Vals[5]; 4385 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4386 Buffer.size() - BlockStartPos)); 4387 StringRef Hash = Hasher.result(); 4388 for (int Pos = 0; Pos < 20; Pos += 4) { 4389 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4390 } 4391 4392 // Emit the finished record. 4393 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4394 4395 if (ModHash) 4396 // Save the written hash value. 4397 llvm::copy(Vals, std::begin(*ModHash)); 4398 } 4399 } 4400 4401 void ModuleBitcodeWriter::write() { 4402 writeIdentificationBlock(Stream); 4403 4404 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4405 size_t BlockStartPos = Buffer.size(); 4406 4407 writeModuleVersion(); 4408 4409 // Emit blockinfo, which defines the standard abbreviations etc. 4410 writeBlockInfo(); 4411 4412 // Emit information describing all of the types in the module. 4413 writeTypeTable(); 4414 4415 // Emit information about attribute groups. 4416 writeAttributeGroupTable(); 4417 4418 // Emit information about parameter attributes. 4419 writeAttributeTable(); 4420 4421 writeComdats(); 4422 4423 // Emit top-level description of module, including target triple, inline asm, 4424 // descriptors for global variables, and function prototype info. 4425 writeModuleInfo(); 4426 4427 // Emit constants. 4428 writeModuleConstants(); 4429 4430 // Emit metadata kind names. 4431 writeModuleMetadataKinds(); 4432 4433 // Emit metadata. 4434 writeModuleMetadata(); 4435 4436 // Emit module-level use-lists. 4437 if (VE.shouldPreserveUseListOrder()) 4438 writeUseListBlock(nullptr); 4439 4440 writeOperandBundleTags(); 4441 writeSyncScopeNames(); 4442 4443 // Emit function bodies. 4444 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4445 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4446 if (!F->isDeclaration()) 4447 writeFunction(*F, FunctionToBitcodeIndex); 4448 4449 // Need to write after the above call to WriteFunction which populates 4450 // the summary information in the index. 4451 if (Index) 4452 writePerModuleGlobalValueSummary(); 4453 4454 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4455 4456 writeModuleHash(BlockStartPos); 4457 4458 Stream.ExitBlock(); 4459 } 4460 4461 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4462 uint32_t &Position) { 4463 support::endian::write32le(&Buffer[Position], Value); 4464 Position += 4; 4465 } 4466 4467 /// If generating a bc file on darwin, we have to emit a 4468 /// header and trailer to make it compatible with the system archiver. To do 4469 /// this we emit the following header, and then emit a trailer that pads the 4470 /// file out to be a multiple of 16 bytes. 4471 /// 4472 /// struct bc_header { 4473 /// uint32_t Magic; // 0x0B17C0DE 4474 /// uint32_t Version; // Version, currently always 0. 4475 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4476 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4477 /// uint32_t CPUType; // CPU specifier. 4478 /// ... potentially more later ... 4479 /// }; 4480 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4481 const Triple &TT) { 4482 unsigned CPUType = ~0U; 4483 4484 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4485 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4486 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4487 // specific constants here because they are implicitly part of the Darwin ABI. 4488 enum { 4489 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4490 DARWIN_CPU_TYPE_X86 = 7, 4491 DARWIN_CPU_TYPE_ARM = 12, 4492 DARWIN_CPU_TYPE_POWERPC = 18 4493 }; 4494 4495 Triple::ArchType Arch = TT.getArch(); 4496 if (Arch == Triple::x86_64) 4497 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4498 else if (Arch == Triple::x86) 4499 CPUType = DARWIN_CPU_TYPE_X86; 4500 else if (Arch == Triple::ppc) 4501 CPUType = DARWIN_CPU_TYPE_POWERPC; 4502 else if (Arch == Triple::ppc64) 4503 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4504 else if (Arch == Triple::arm || Arch == Triple::thumb) 4505 CPUType = DARWIN_CPU_TYPE_ARM; 4506 4507 // Traditional Bitcode starts after header. 4508 assert(Buffer.size() >= BWH_HeaderSize && 4509 "Expected header size to be reserved"); 4510 unsigned BCOffset = BWH_HeaderSize; 4511 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4512 4513 // Write the magic and version. 4514 unsigned Position = 0; 4515 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4516 writeInt32ToBuffer(0, Buffer, Position); // Version. 4517 writeInt32ToBuffer(BCOffset, Buffer, Position); 4518 writeInt32ToBuffer(BCSize, Buffer, Position); 4519 writeInt32ToBuffer(CPUType, Buffer, Position); 4520 4521 // If the file is not a multiple of 16 bytes, insert dummy padding. 4522 while (Buffer.size() & 15) 4523 Buffer.push_back(0); 4524 } 4525 4526 /// Helper to write the header common to all bitcode files. 4527 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4528 // Emit the file header. 4529 Stream.Emit((unsigned)'B', 8); 4530 Stream.Emit((unsigned)'C', 8); 4531 Stream.Emit(0x0, 4); 4532 Stream.Emit(0xC, 4); 4533 Stream.Emit(0xE, 4); 4534 Stream.Emit(0xD, 4); 4535 } 4536 4537 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4538 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4539 writeBitcodeHeader(*Stream); 4540 } 4541 4542 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4543 4544 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4545 Stream->EnterSubblock(Block, 3); 4546 4547 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4548 Abbv->Add(BitCodeAbbrevOp(Record)); 4549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4550 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4551 4552 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4553 4554 Stream->ExitBlock(); 4555 } 4556 4557 void BitcodeWriter::writeSymtab() { 4558 assert(!WroteStrtab && !WroteSymtab); 4559 4560 // If any module has module-level inline asm, we will require a registered asm 4561 // parser for the target so that we can create an accurate symbol table for 4562 // the module. 4563 for (Module *M : Mods) { 4564 if (M->getModuleInlineAsm().empty()) 4565 continue; 4566 4567 std::string Err; 4568 const Triple TT(M->getTargetTriple()); 4569 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4570 if (!T || !T->hasMCAsmParser()) 4571 return; 4572 } 4573 4574 WroteSymtab = true; 4575 SmallVector<char, 0> Symtab; 4576 // The irsymtab::build function may be unable to create a symbol table if the 4577 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4578 // table is not required for correctness, but we still want to be able to 4579 // write malformed modules to bitcode files, so swallow the error. 4580 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4581 consumeError(std::move(E)); 4582 return; 4583 } 4584 4585 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4586 {Symtab.data(), Symtab.size()}); 4587 } 4588 4589 void BitcodeWriter::writeStrtab() { 4590 assert(!WroteStrtab); 4591 4592 std::vector<char> Strtab; 4593 StrtabBuilder.finalizeInOrder(); 4594 Strtab.resize(StrtabBuilder.getSize()); 4595 StrtabBuilder.write((uint8_t *)Strtab.data()); 4596 4597 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4598 {Strtab.data(), Strtab.size()}); 4599 4600 WroteStrtab = true; 4601 } 4602 4603 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4604 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4605 WroteStrtab = true; 4606 } 4607 4608 void BitcodeWriter::writeModule(const Module &M, 4609 bool ShouldPreserveUseListOrder, 4610 const ModuleSummaryIndex *Index, 4611 bool GenerateHash, ModuleHash *ModHash) { 4612 assert(!WroteStrtab); 4613 4614 // The Mods vector is used by irsymtab::build, which requires non-const 4615 // Modules in case it needs to materialize metadata. But the bitcode writer 4616 // requires that the module is materialized, so we can cast to non-const here, 4617 // after checking that it is in fact materialized. 4618 assert(M.isMaterialized()); 4619 Mods.push_back(const_cast<Module *>(&M)); 4620 4621 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4622 ShouldPreserveUseListOrder, Index, 4623 GenerateHash, ModHash); 4624 ModuleWriter.write(); 4625 } 4626 4627 void BitcodeWriter::writeIndex( 4628 const ModuleSummaryIndex *Index, 4629 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4630 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4631 ModuleToSummariesForIndex); 4632 IndexWriter.write(); 4633 } 4634 4635 /// Write the specified module to the specified output stream. 4636 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4637 bool ShouldPreserveUseListOrder, 4638 const ModuleSummaryIndex *Index, 4639 bool GenerateHash, ModuleHash *ModHash) { 4640 SmallVector<char, 0> Buffer; 4641 Buffer.reserve(256*1024); 4642 4643 // If this is darwin or another generic macho target, reserve space for the 4644 // header. 4645 Triple TT(M.getTargetTriple()); 4646 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4647 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4648 4649 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4650 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4651 ModHash); 4652 Writer.writeSymtab(); 4653 Writer.writeStrtab(); 4654 4655 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4656 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4657 4658 // Write the generated bitstream to "Out". 4659 if (!Buffer.empty()) 4660 Out.write((char *)&Buffer.front(), Buffer.size()); 4661 } 4662 4663 void IndexBitcodeWriter::write() { 4664 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4665 4666 writeModuleVersion(); 4667 4668 // Write the module paths in the combined index. 4669 writeModStrings(); 4670 4671 // Write the summary combined index records. 4672 writeCombinedGlobalValueSummary(); 4673 4674 Stream.ExitBlock(); 4675 } 4676 4677 // Write the specified module summary index to the given raw output stream, 4678 // where it will be written in a new bitcode block. This is used when 4679 // writing the combined index file for ThinLTO. When writing a subset of the 4680 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4681 void llvm::WriteIndexToFile( 4682 const ModuleSummaryIndex &Index, raw_ostream &Out, 4683 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4684 SmallVector<char, 0> Buffer; 4685 Buffer.reserve(256 * 1024); 4686 4687 BitcodeWriter Writer(Buffer); 4688 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4689 Writer.writeStrtab(); 4690 4691 Out.write((char *)&Buffer.front(), Buffer.size()); 4692 } 4693 4694 namespace { 4695 4696 /// Class to manage the bitcode writing for a thin link bitcode file. 4697 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4698 /// ModHash is for use in ThinLTO incremental build, generated while writing 4699 /// the module bitcode file. 4700 const ModuleHash *ModHash; 4701 4702 public: 4703 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4704 BitstreamWriter &Stream, 4705 const ModuleSummaryIndex &Index, 4706 const ModuleHash &ModHash) 4707 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4708 /*ShouldPreserveUseListOrder=*/false, &Index), 4709 ModHash(&ModHash) {} 4710 4711 void write(); 4712 4713 private: 4714 void writeSimplifiedModuleInfo(); 4715 }; 4716 4717 } // end anonymous namespace 4718 4719 // This function writes a simpilified module info for thin link bitcode file. 4720 // It only contains the source file name along with the name(the offset and 4721 // size in strtab) and linkage for global values. For the global value info 4722 // entry, in order to keep linkage at offset 5, there are three zeros used 4723 // as padding. 4724 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4725 SmallVector<unsigned, 64> Vals; 4726 // Emit the module's source file name. 4727 { 4728 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4729 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4730 if (Bits == SE_Char6) 4731 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4732 else if (Bits == SE_Fixed7) 4733 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4734 4735 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4736 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4737 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4738 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4739 Abbv->Add(AbbrevOpToUse); 4740 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4741 4742 for (const auto P : M.getSourceFileName()) 4743 Vals.push_back((unsigned char)P); 4744 4745 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4746 Vals.clear(); 4747 } 4748 4749 // Emit the global variable information. 4750 for (const GlobalVariable &GV : M.globals()) { 4751 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4752 Vals.push_back(StrtabBuilder.add(GV.getName())); 4753 Vals.push_back(GV.getName().size()); 4754 Vals.push_back(0); 4755 Vals.push_back(0); 4756 Vals.push_back(0); 4757 Vals.push_back(getEncodedLinkage(GV)); 4758 4759 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4760 Vals.clear(); 4761 } 4762 4763 // Emit the function proto information. 4764 for (const Function &F : M) { 4765 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4766 Vals.push_back(StrtabBuilder.add(F.getName())); 4767 Vals.push_back(F.getName().size()); 4768 Vals.push_back(0); 4769 Vals.push_back(0); 4770 Vals.push_back(0); 4771 Vals.push_back(getEncodedLinkage(F)); 4772 4773 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4774 Vals.clear(); 4775 } 4776 4777 // Emit the alias information. 4778 for (const GlobalAlias &A : M.aliases()) { 4779 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4780 Vals.push_back(StrtabBuilder.add(A.getName())); 4781 Vals.push_back(A.getName().size()); 4782 Vals.push_back(0); 4783 Vals.push_back(0); 4784 Vals.push_back(0); 4785 Vals.push_back(getEncodedLinkage(A)); 4786 4787 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4788 Vals.clear(); 4789 } 4790 4791 // Emit the ifunc information. 4792 for (const GlobalIFunc &I : M.ifuncs()) { 4793 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4794 Vals.push_back(StrtabBuilder.add(I.getName())); 4795 Vals.push_back(I.getName().size()); 4796 Vals.push_back(0); 4797 Vals.push_back(0); 4798 Vals.push_back(0); 4799 Vals.push_back(getEncodedLinkage(I)); 4800 4801 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4802 Vals.clear(); 4803 } 4804 } 4805 4806 void ThinLinkBitcodeWriter::write() { 4807 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4808 4809 writeModuleVersion(); 4810 4811 writeSimplifiedModuleInfo(); 4812 4813 writePerModuleGlobalValueSummary(); 4814 4815 // Write module hash. 4816 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4817 4818 Stream.ExitBlock(); 4819 } 4820 4821 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4822 const ModuleSummaryIndex &Index, 4823 const ModuleHash &ModHash) { 4824 assert(!WroteStrtab); 4825 4826 // The Mods vector is used by irsymtab::build, which requires non-const 4827 // Modules in case it needs to materialize metadata. But the bitcode writer 4828 // requires that the module is materialized, so we can cast to non-const here, 4829 // after checking that it is in fact materialized. 4830 assert(M.isMaterialized()); 4831 Mods.push_back(const_cast<Module *>(&M)); 4832 4833 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4834 ModHash); 4835 ThinLinkWriter.write(); 4836 } 4837 4838 // Write the specified thin link bitcode file to the given raw output stream, 4839 // where it will be written in a new bitcode block. This is used when 4840 // writing the per-module index file for ThinLTO. 4841 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4842 const ModuleSummaryIndex &Index, 4843 const ModuleHash &ModHash) { 4844 SmallVector<char, 0> Buffer; 4845 Buffer.reserve(256 * 1024); 4846 4847 BitcodeWriter Writer(Buffer); 4848 Writer.writeThinLinkBitcode(M, Index, ModHash); 4849 Writer.writeSymtab(); 4850 Writer.writeStrtab(); 4851 4852 Out.write((char *)&Buffer.front(), Buffer.size()); 4853 } 4854 4855 static const char *getSectionNameForBitcode(const Triple &T) { 4856 switch (T.getObjectFormat()) { 4857 case Triple::MachO: 4858 return "__LLVM,__bitcode"; 4859 case Triple::COFF: 4860 case Triple::ELF: 4861 case Triple::Wasm: 4862 case Triple::UnknownObjectFormat: 4863 return ".llvmbc"; 4864 case Triple::GOFF: 4865 llvm_unreachable("GOFF is not yet implemented"); 4866 break; 4867 case Triple::XCOFF: 4868 llvm_unreachable("XCOFF is not yet implemented"); 4869 break; 4870 } 4871 llvm_unreachable("Unimplemented ObjectFormatType"); 4872 } 4873 4874 static const char *getSectionNameForCommandline(const Triple &T) { 4875 switch (T.getObjectFormat()) { 4876 case Triple::MachO: 4877 return "__LLVM,__cmdline"; 4878 case Triple::COFF: 4879 case Triple::ELF: 4880 case Triple::Wasm: 4881 case Triple::UnknownObjectFormat: 4882 return ".llvmcmd"; 4883 case Triple::GOFF: 4884 llvm_unreachable("GOFF is not yet implemented"); 4885 break; 4886 case Triple::XCOFF: 4887 llvm_unreachable("XCOFF is not yet implemented"); 4888 break; 4889 } 4890 llvm_unreachable("Unimplemented ObjectFormatType"); 4891 } 4892 4893 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4894 bool EmbedBitcode, bool EmbedCmdline, 4895 const std::vector<uint8_t> &CmdArgs) { 4896 // Save llvm.compiler.used and remove it. 4897 SmallVector<Constant *, 2> UsedArray; 4898 SmallVector<GlobalValue *, 4> UsedGlobals; 4899 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4900 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4901 for (auto *GV : UsedGlobals) { 4902 if (GV->getName() != "llvm.embedded.module" && 4903 GV->getName() != "llvm.cmdline") 4904 UsedArray.push_back( 4905 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4906 } 4907 if (Used) 4908 Used->eraseFromParent(); 4909 4910 // Embed the bitcode for the llvm module. 4911 std::string Data; 4912 ArrayRef<uint8_t> ModuleData; 4913 Triple T(M.getTargetTriple()); 4914 4915 if (EmbedBitcode) { 4916 if (Buf.getBufferSize() == 0 || 4917 !isBitcode((const unsigned char *)Buf.getBufferStart(), 4918 (const unsigned char *)Buf.getBufferEnd())) { 4919 // If the input is LLVM Assembly, bitcode is produced by serializing 4920 // the module. Use-lists order need to be preserved in this case. 4921 llvm::raw_string_ostream OS(Data); 4922 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4923 ModuleData = 4924 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4925 } else 4926 // If the input is LLVM bitcode, write the input byte stream directly. 4927 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4928 Buf.getBufferSize()); 4929 } 4930 llvm::Constant *ModuleConstant = 4931 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4932 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4933 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4934 ModuleConstant); 4935 GV->setSection(getSectionNameForBitcode(T)); 4936 // Set alignment to 1 to prevent padding between two contributions from input 4937 // sections after linking. 4938 GV->setAlignment(Align(1)); 4939 UsedArray.push_back( 4940 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4941 if (llvm::GlobalVariable *Old = 4942 M.getGlobalVariable("llvm.embedded.module", true)) { 4943 assert(Old->hasOneUse() && 4944 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4945 GV->takeName(Old); 4946 Old->eraseFromParent(); 4947 } else { 4948 GV->setName("llvm.embedded.module"); 4949 } 4950 4951 // Skip if only bitcode needs to be embedded. 4952 if (EmbedCmdline) { 4953 // Embed command-line options. 4954 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 4955 CmdArgs.size()); 4956 llvm::Constant *CmdConstant = 4957 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4958 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4959 llvm::GlobalValue::PrivateLinkage, 4960 CmdConstant); 4961 GV->setSection(getSectionNameForCommandline(T)); 4962 GV->setAlignment(Align(1)); 4963 UsedArray.push_back( 4964 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4965 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4966 assert(Old->hasOneUse() && 4967 "llvm.cmdline can only be used once in llvm.compiler.used"); 4968 GV->takeName(Old); 4969 Old->eraseFromParent(); 4970 } else { 4971 GV->setName("llvm.cmdline"); 4972 } 4973 } 4974 4975 if (UsedArray.empty()) 4976 return; 4977 4978 // Recreate llvm.compiler.used. 4979 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4980 auto *NewUsed = new GlobalVariable( 4981 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4982 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4983 NewUsed->setSection("llvm.metadata"); 4984 } 4985