xref: /llvm-project/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp (revision d20bf5a7258d4b6a7f017a81b125275dac1aa166)
1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Bitcode writer implementation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Bitcode/BitcodeWriter.h"
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/Bitcode/BitcodeReader.h"
28 #include "llvm/Bitcode/LLVMBitCodes.h"
29 #include "llvm/Bitstream/BitCodes.h"
30 #include "llvm/Bitstream/BitstreamWriter.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/Comdat.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalIFunc.h"
43 #include "llvm/IR/GlobalObject.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSummaryIndex.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/UseListOrder.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/MC/StringTableBuilder.h"
60 #include "llvm/Object/IRSymtab.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Endian.h"
65 #include "llvm/Support/Error.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/SHA1.h"
69 #include "llvm/Support/TargetRegistry.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstddef>
74 #include <cstdint>
75 #include <iterator>
76 #include <map>
77 #include <memory>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 static cl::opt<unsigned>
85     IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
86                    cl::desc("Number of metadatas above which we emit an index "
87                             "to enable lazy-loading"));
88 
89 static cl::opt<bool> WriteRelBFToSummary(
90     "write-relbf-to-summary", cl::Hidden, cl::init(false),
91     cl::desc("Write relative block frequency to function summary "));
92 
93 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
94 
95 namespace {
96 
97 /// These are manifest constants used by the bitcode writer. They do not need to
98 /// be kept in sync with the reader, but need to be consistent within this file.
99 enum {
100   // VALUE_SYMTAB_BLOCK abbrev id's.
101   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
102   VST_ENTRY_7_ABBREV,
103   VST_ENTRY_6_ABBREV,
104   VST_BBENTRY_6_ABBREV,
105 
106   // CONSTANTS_BLOCK abbrev id's.
107   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
108   CONSTANTS_INTEGER_ABBREV,
109   CONSTANTS_CE_CAST_Abbrev,
110   CONSTANTS_NULL_Abbrev,
111 
112   // FUNCTION_BLOCK abbrev id's.
113   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
114   FUNCTION_INST_UNOP_ABBREV,
115   FUNCTION_INST_UNOP_FLAGS_ABBREV,
116   FUNCTION_INST_BINOP_ABBREV,
117   FUNCTION_INST_BINOP_FLAGS_ABBREV,
118   FUNCTION_INST_CAST_ABBREV,
119   FUNCTION_INST_RET_VOID_ABBREV,
120   FUNCTION_INST_RET_VAL_ABBREV,
121   FUNCTION_INST_UNREACHABLE_ABBREV,
122   FUNCTION_INST_GEP_ABBREV,
123 };
124 
125 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
126 /// file type.
127 class BitcodeWriterBase {
128 protected:
129   /// The stream created and owned by the client.
130   BitstreamWriter &Stream;
131 
132   StringTableBuilder &StrtabBuilder;
133 
134 public:
135   /// Constructs a BitcodeWriterBase object that writes to the provided
136   /// \p Stream.
137   BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
138       : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
139 
140 protected:
141   void writeBitcodeHeader();
142   void writeModuleVersion();
143 };
144 
145 void BitcodeWriterBase::writeModuleVersion() {
146   // VERSION: [version#]
147   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
148 }
149 
150 /// Base class to manage the module bitcode writing, currently subclassed for
151 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
152 class ModuleBitcodeWriterBase : public BitcodeWriterBase {
153 protected:
154   /// The Module to write to bitcode.
155   const Module &M;
156 
157   /// Enumerates ids for all values in the module.
158   ValueEnumerator VE;
159 
160   /// Optional per-module index to write for ThinLTO.
161   const ModuleSummaryIndex *Index;
162 
163   /// Map that holds the correspondence between GUIDs in the summary index,
164   /// that came from indirect call profiles, and a value id generated by this
165   /// class to use in the VST and summary block records.
166   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
167 
168   /// Tracks the last value id recorded in the GUIDToValueMap.
169   unsigned GlobalValueId;
170 
171   /// Saves the offset of the VSTOffset record that must eventually be
172   /// backpatched with the offset of the actual VST.
173   uint64_t VSTOffsetPlaceholder = 0;
174 
175 public:
176   /// Constructs a ModuleBitcodeWriterBase object for the given Module,
177   /// writing to the provided \p Buffer.
178   ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
179                           BitstreamWriter &Stream,
180                           bool ShouldPreserveUseListOrder,
181                           const ModuleSummaryIndex *Index)
182       : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
183         VE(M, ShouldPreserveUseListOrder), Index(Index) {
184     // Assign ValueIds to any callee values in the index that came from
185     // indirect call profiles and were recorded as a GUID not a Value*
186     // (which would have been assigned an ID by the ValueEnumerator).
187     // The starting ValueId is just after the number of values in the
188     // ValueEnumerator, so that they can be emitted in the VST.
189     GlobalValueId = VE.getValues().size();
190     if (!Index)
191       return;
192     for (const auto &GUIDSummaryLists : *Index)
193       // Examine all summaries for this GUID.
194       for (auto &Summary : GUIDSummaryLists.second.SummaryList)
195         if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
196           // For each call in the function summary, see if the call
197           // is to a GUID (which means it is for an indirect call,
198           // otherwise we would have a Value for it). If so, synthesize
199           // a value id.
200           for (auto &CallEdge : FS->calls())
201             if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
202               assignValueId(CallEdge.first.getGUID());
203   }
204 
205 protected:
206   void writePerModuleGlobalValueSummary();
207 
208 private:
209   void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
210                                            GlobalValueSummary *Summary,
211                                            unsigned ValueID,
212                                            unsigned FSCallsAbbrev,
213                                            unsigned FSCallsProfileAbbrev,
214                                            const Function &F);
215   void writeModuleLevelReferences(const GlobalVariable &V,
216                                   SmallVector<uint64_t, 64> &NameVals,
217                                   unsigned FSModRefsAbbrev,
218                                   unsigned FSModVTableRefsAbbrev);
219 
220   void assignValueId(GlobalValue::GUID ValGUID) {
221     GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
222   }
223 
224   unsigned getValueId(GlobalValue::GUID ValGUID) {
225     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
226     // Expect that any GUID value had a value Id assigned by an
227     // earlier call to assignValueId.
228     assert(VMI != GUIDToValueIdMap.end() &&
229            "GUID does not have assigned value Id");
230     return VMI->second;
231   }
232 
233   // Helper to get the valueId for the type of value recorded in VI.
234   unsigned getValueId(ValueInfo VI) {
235     if (!VI.haveGVs() || !VI.getValue())
236       return getValueId(VI.getGUID());
237     return VE.getValueID(VI.getValue());
238   }
239 
240   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
241 };
242 
243 /// Class to manage the bitcode writing for a module.
244 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
245   /// Pointer to the buffer allocated by caller for bitcode writing.
246   const SmallVectorImpl<char> &Buffer;
247 
248   /// True if a module hash record should be written.
249   bool GenerateHash;
250 
251   /// If non-null, when GenerateHash is true, the resulting hash is written
252   /// into ModHash.
253   ModuleHash *ModHash;
254 
255   SHA1 Hasher;
256 
257   /// The start bit of the identification block.
258   uint64_t BitcodeStartBit;
259 
260 public:
261   /// Constructs a ModuleBitcodeWriter object for the given Module,
262   /// writing to the provided \p Buffer.
263   ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
264                       StringTableBuilder &StrtabBuilder,
265                       BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
266                       const ModuleSummaryIndex *Index, bool GenerateHash,
267                       ModuleHash *ModHash = nullptr)
268       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
269                                 ShouldPreserveUseListOrder, Index),
270         Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
271         BitcodeStartBit(Stream.GetCurrentBitNo()) {}
272 
273   /// Emit the current module to the bitstream.
274   void write();
275 
276 private:
277   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
278 
279   size_t addToStrtab(StringRef Str);
280 
281   void writeAttributeGroupTable();
282   void writeAttributeTable();
283   void writeTypeTable();
284   void writeComdats();
285   void writeValueSymbolTableForwardDecl();
286   void writeModuleInfo();
287   void writeValueAsMetadata(const ValueAsMetadata *MD,
288                             SmallVectorImpl<uint64_t> &Record);
289   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
290                     unsigned Abbrev);
291   unsigned createDILocationAbbrev();
292   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
293                        unsigned &Abbrev);
294   unsigned createGenericDINodeAbbrev();
295   void writeGenericDINode(const GenericDINode *N,
296                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
297   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
298                        unsigned Abbrev);
299   void writeDIEnumerator(const DIEnumerator *N,
300                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
301   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
302                         unsigned Abbrev);
303   void writeDIDerivedType(const DIDerivedType *N,
304                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
305   void writeDICompositeType(const DICompositeType *N,
306                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
307   void writeDISubroutineType(const DISubroutineType *N,
308                              SmallVectorImpl<uint64_t> &Record,
309                              unsigned Abbrev);
310   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
311                    unsigned Abbrev);
312   void writeDICompileUnit(const DICompileUnit *N,
313                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
314   void writeDISubprogram(const DISubprogram *N,
315                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
316   void writeDILexicalBlock(const DILexicalBlock *N,
317                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
318   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
319                                SmallVectorImpl<uint64_t> &Record,
320                                unsigned Abbrev);
321   void writeDICommonBlock(const DICommonBlock *N,
322                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
323   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
324                         unsigned Abbrev);
325   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
326                     unsigned Abbrev);
327   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
328                         unsigned Abbrev);
329   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
330                      unsigned Abbrev);
331   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
332                                     SmallVectorImpl<uint64_t> &Record,
333                                     unsigned Abbrev);
334   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
335                                      SmallVectorImpl<uint64_t> &Record,
336                                      unsigned Abbrev);
337   void writeDIGlobalVariable(const DIGlobalVariable *N,
338                              SmallVectorImpl<uint64_t> &Record,
339                              unsigned Abbrev);
340   void writeDILocalVariable(const DILocalVariable *N,
341                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
342   void writeDILabel(const DILabel *N,
343                     SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
344   void writeDIExpression(const DIExpression *N,
345                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
346   void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
347                                        SmallVectorImpl<uint64_t> &Record,
348                                        unsigned Abbrev);
349   void writeDIObjCProperty(const DIObjCProperty *N,
350                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
351   void writeDIImportedEntity(const DIImportedEntity *N,
352                              SmallVectorImpl<uint64_t> &Record,
353                              unsigned Abbrev);
354   unsigned createNamedMetadataAbbrev();
355   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
356   unsigned createMetadataStringsAbbrev();
357   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
358                             SmallVectorImpl<uint64_t> &Record);
359   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
360                             SmallVectorImpl<uint64_t> &Record,
361                             std::vector<unsigned> *MDAbbrevs = nullptr,
362                             std::vector<uint64_t> *IndexPos = nullptr);
363   void writeModuleMetadata();
364   void writeFunctionMetadata(const Function &F);
365   void writeFunctionMetadataAttachment(const Function &F);
366   void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
367   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
368                                     const GlobalObject &GO);
369   void writeModuleMetadataKinds();
370   void writeOperandBundleTags();
371   void writeSyncScopeNames();
372   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
373   void writeModuleConstants();
374   bool pushValueAndType(const Value *V, unsigned InstID,
375                         SmallVectorImpl<unsigned> &Vals);
376   void writeOperandBundles(const CallBase &CB, unsigned InstID);
377   void pushValue(const Value *V, unsigned InstID,
378                  SmallVectorImpl<unsigned> &Vals);
379   void pushValueSigned(const Value *V, unsigned InstID,
380                        SmallVectorImpl<uint64_t> &Vals);
381   void writeInstruction(const Instruction &I, unsigned InstID,
382                         SmallVectorImpl<unsigned> &Vals);
383   void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
384   void writeGlobalValueSymbolTable(
385       DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
386   void writeUseList(UseListOrder &&Order);
387   void writeUseListBlock(const Function *F);
388   void
389   writeFunction(const Function &F,
390                 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
391   void writeBlockInfo();
392   void writeModuleHash(size_t BlockStartPos);
393 
394   unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
395     return unsigned(SSID);
396   }
397 };
398 
399 /// Class to manage the bitcode writing for a combined index.
400 class IndexBitcodeWriter : public BitcodeWriterBase {
401   /// The combined index to write to bitcode.
402   const ModuleSummaryIndex &Index;
403 
404   /// When writing a subset of the index for distributed backends, client
405   /// provides a map of modules to the corresponding GUIDs/summaries to write.
406   const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
407 
408   /// Map that holds the correspondence between the GUID used in the combined
409   /// index and a value id generated by this class to use in references.
410   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
411 
412   /// Tracks the last value id recorded in the GUIDToValueMap.
413   unsigned GlobalValueId = 0;
414 
415 public:
416   /// Constructs a IndexBitcodeWriter object for the given combined index,
417   /// writing to the provided \p Buffer. When writing a subset of the index
418   /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
419   IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
420                      const ModuleSummaryIndex &Index,
421                      const std::map<std::string, GVSummaryMapTy>
422                          *ModuleToSummariesForIndex = nullptr)
423       : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
424         ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
425     // Assign unique value ids to all summaries to be written, for use
426     // in writing out the call graph edges. Save the mapping from GUID
427     // to the new global value id to use when writing those edges, which
428     // are currently saved in the index in terms of GUID.
429     forEachSummary([&](GVInfo I, bool) {
430       GUIDToValueIdMap[I.first] = ++GlobalValueId;
431     });
432   }
433 
434   /// The below iterator returns the GUID and associated summary.
435   using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
436 
437   /// Calls the callback for each value GUID and summary to be written to
438   /// bitcode. This hides the details of whether they are being pulled from the
439   /// entire index or just those in a provided ModuleToSummariesForIndex map.
440   template<typename Functor>
441   void forEachSummary(Functor Callback) {
442     if (ModuleToSummariesForIndex) {
443       for (auto &M : *ModuleToSummariesForIndex)
444         for (auto &Summary : M.second) {
445           Callback(Summary, false);
446           // Ensure aliasee is handled, e.g. for assigning a valueId,
447           // even if we are not importing the aliasee directly (the
448           // imported alias will contain a copy of aliasee).
449           if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
450             Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
451         }
452     } else {
453       for (auto &Summaries : Index)
454         for (auto &Summary : Summaries.second.SummaryList)
455           Callback({Summaries.first, Summary.get()}, false);
456     }
457   }
458 
459   /// Calls the callback for each entry in the modulePaths StringMap that
460   /// should be written to the module path string table. This hides the details
461   /// of whether they are being pulled from the entire index or just those in a
462   /// provided ModuleToSummariesForIndex map.
463   template <typename Functor> void forEachModule(Functor Callback) {
464     if (ModuleToSummariesForIndex) {
465       for (const auto &M : *ModuleToSummariesForIndex) {
466         const auto &MPI = Index.modulePaths().find(M.first);
467         if (MPI == Index.modulePaths().end()) {
468           // This should only happen if the bitcode file was empty, in which
469           // case we shouldn't be importing (the ModuleToSummariesForIndex
470           // would only include the module we are writing and index for).
471           assert(ModuleToSummariesForIndex->size() == 1);
472           continue;
473         }
474         Callback(*MPI);
475       }
476     } else {
477       for (const auto &MPSE : Index.modulePaths())
478         Callback(MPSE);
479     }
480   }
481 
482   /// Main entry point for writing a combined index to bitcode.
483   void write();
484 
485 private:
486   void writeModStrings();
487   void writeCombinedGlobalValueSummary();
488 
489   Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
490     auto VMI = GUIDToValueIdMap.find(ValGUID);
491     if (VMI == GUIDToValueIdMap.end())
492       return None;
493     return VMI->second;
494   }
495 
496   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
497 };
498 
499 } // end anonymous namespace
500 
501 static unsigned getEncodedCastOpcode(unsigned Opcode) {
502   switch (Opcode) {
503   default: llvm_unreachable("Unknown cast instruction!");
504   case Instruction::Trunc   : return bitc::CAST_TRUNC;
505   case Instruction::ZExt    : return bitc::CAST_ZEXT;
506   case Instruction::SExt    : return bitc::CAST_SEXT;
507   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
508   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
509   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
510   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
511   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
512   case Instruction::FPExt   : return bitc::CAST_FPEXT;
513   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
514   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
515   case Instruction::BitCast : return bitc::CAST_BITCAST;
516   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
517   }
518 }
519 
520 static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
521   switch (Opcode) {
522   default: llvm_unreachable("Unknown binary instruction!");
523   case Instruction::FNeg: return bitc::UNOP_FNEG;
524   }
525 }
526 
527 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
528   switch (Opcode) {
529   default: llvm_unreachable("Unknown binary instruction!");
530   case Instruction::Add:
531   case Instruction::FAdd: return bitc::BINOP_ADD;
532   case Instruction::Sub:
533   case Instruction::FSub: return bitc::BINOP_SUB;
534   case Instruction::Mul:
535   case Instruction::FMul: return bitc::BINOP_MUL;
536   case Instruction::UDiv: return bitc::BINOP_UDIV;
537   case Instruction::FDiv:
538   case Instruction::SDiv: return bitc::BINOP_SDIV;
539   case Instruction::URem: return bitc::BINOP_UREM;
540   case Instruction::FRem:
541   case Instruction::SRem: return bitc::BINOP_SREM;
542   case Instruction::Shl:  return bitc::BINOP_SHL;
543   case Instruction::LShr: return bitc::BINOP_LSHR;
544   case Instruction::AShr: return bitc::BINOP_ASHR;
545   case Instruction::And:  return bitc::BINOP_AND;
546   case Instruction::Or:   return bitc::BINOP_OR;
547   case Instruction::Xor:  return bitc::BINOP_XOR;
548   }
549 }
550 
551 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
552   switch (Op) {
553   default: llvm_unreachable("Unknown RMW operation!");
554   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
555   case AtomicRMWInst::Add: return bitc::RMW_ADD;
556   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
557   case AtomicRMWInst::And: return bitc::RMW_AND;
558   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
559   case AtomicRMWInst::Or: return bitc::RMW_OR;
560   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
561   case AtomicRMWInst::Max: return bitc::RMW_MAX;
562   case AtomicRMWInst::Min: return bitc::RMW_MIN;
563   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
564   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
565   case AtomicRMWInst::FAdd: return bitc::RMW_FADD;
566   case AtomicRMWInst::FSub: return bitc::RMW_FSUB;
567   }
568 }
569 
570 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
571   switch (Ordering) {
572   case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
573   case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
574   case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
575   case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
576   case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
577   case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
578   case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
579   }
580   llvm_unreachable("Invalid ordering");
581 }
582 
583 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
584                               StringRef Str, unsigned AbbrevToUse) {
585   SmallVector<unsigned, 64> Vals;
586 
587   // Code: [strchar x N]
588   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
589     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
590       AbbrevToUse = 0;
591     Vals.push_back(Str[i]);
592   }
593 
594   // Emit the finished record.
595   Stream.EmitRecord(Code, Vals, AbbrevToUse);
596 }
597 
598 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
599   switch (Kind) {
600   case Attribute::Alignment:
601     return bitc::ATTR_KIND_ALIGNMENT;
602   case Attribute::AllocSize:
603     return bitc::ATTR_KIND_ALLOC_SIZE;
604   case Attribute::AlwaysInline:
605     return bitc::ATTR_KIND_ALWAYS_INLINE;
606   case Attribute::ArgMemOnly:
607     return bitc::ATTR_KIND_ARGMEMONLY;
608   case Attribute::Builtin:
609     return bitc::ATTR_KIND_BUILTIN;
610   case Attribute::ByVal:
611     return bitc::ATTR_KIND_BY_VAL;
612   case Attribute::Convergent:
613     return bitc::ATTR_KIND_CONVERGENT;
614   case Attribute::InAlloca:
615     return bitc::ATTR_KIND_IN_ALLOCA;
616   case Attribute::Cold:
617     return bitc::ATTR_KIND_COLD;
618   case Attribute::InaccessibleMemOnly:
619     return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
620   case Attribute::InaccessibleMemOrArgMemOnly:
621     return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
622   case Attribute::InlineHint:
623     return bitc::ATTR_KIND_INLINE_HINT;
624   case Attribute::InReg:
625     return bitc::ATTR_KIND_IN_REG;
626   case Attribute::JumpTable:
627     return bitc::ATTR_KIND_JUMP_TABLE;
628   case Attribute::MinSize:
629     return bitc::ATTR_KIND_MIN_SIZE;
630   case Attribute::Naked:
631     return bitc::ATTR_KIND_NAKED;
632   case Attribute::Nest:
633     return bitc::ATTR_KIND_NEST;
634   case Attribute::NoAlias:
635     return bitc::ATTR_KIND_NO_ALIAS;
636   case Attribute::NoBuiltin:
637     return bitc::ATTR_KIND_NO_BUILTIN;
638   case Attribute::NoCapture:
639     return bitc::ATTR_KIND_NO_CAPTURE;
640   case Attribute::NoDuplicate:
641     return bitc::ATTR_KIND_NO_DUPLICATE;
642   case Attribute::NoFree:
643     return bitc::ATTR_KIND_NOFREE;
644   case Attribute::NoImplicitFloat:
645     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
646   case Attribute::NoInline:
647     return bitc::ATTR_KIND_NO_INLINE;
648   case Attribute::NoRecurse:
649     return bitc::ATTR_KIND_NO_RECURSE;
650   case Attribute::NoMerge:
651     return bitc::ATTR_KIND_NO_MERGE;
652   case Attribute::NonLazyBind:
653     return bitc::ATTR_KIND_NON_LAZY_BIND;
654   case Attribute::NonNull:
655     return bitc::ATTR_KIND_NON_NULL;
656   case Attribute::Dereferenceable:
657     return bitc::ATTR_KIND_DEREFERENCEABLE;
658   case Attribute::DereferenceableOrNull:
659     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
660   case Attribute::NoRedZone:
661     return bitc::ATTR_KIND_NO_RED_ZONE;
662   case Attribute::NoReturn:
663     return bitc::ATTR_KIND_NO_RETURN;
664   case Attribute::NoSync:
665     return bitc::ATTR_KIND_NOSYNC;
666   case Attribute::NoCfCheck:
667     return bitc::ATTR_KIND_NOCF_CHECK;
668   case Attribute::NoUnwind:
669     return bitc::ATTR_KIND_NO_UNWIND;
670   case Attribute::NullPointerIsValid:
671     return bitc::ATTR_KIND_NULL_POINTER_IS_VALID;
672   case Attribute::OptForFuzzing:
673     return bitc::ATTR_KIND_OPT_FOR_FUZZING;
674   case Attribute::OptimizeForSize:
675     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
676   case Attribute::OptimizeNone:
677     return bitc::ATTR_KIND_OPTIMIZE_NONE;
678   case Attribute::ReadNone:
679     return bitc::ATTR_KIND_READ_NONE;
680   case Attribute::ReadOnly:
681     return bitc::ATTR_KIND_READ_ONLY;
682   case Attribute::Returned:
683     return bitc::ATTR_KIND_RETURNED;
684   case Attribute::ReturnsTwice:
685     return bitc::ATTR_KIND_RETURNS_TWICE;
686   case Attribute::SExt:
687     return bitc::ATTR_KIND_S_EXT;
688   case Attribute::Speculatable:
689     return bitc::ATTR_KIND_SPECULATABLE;
690   case Attribute::StackAlignment:
691     return bitc::ATTR_KIND_STACK_ALIGNMENT;
692   case Attribute::StackProtect:
693     return bitc::ATTR_KIND_STACK_PROTECT;
694   case Attribute::StackProtectReq:
695     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
696   case Attribute::StackProtectStrong:
697     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
698   case Attribute::SafeStack:
699     return bitc::ATTR_KIND_SAFESTACK;
700   case Attribute::ShadowCallStack:
701     return bitc::ATTR_KIND_SHADOWCALLSTACK;
702   case Attribute::StrictFP:
703     return bitc::ATTR_KIND_STRICT_FP;
704   case Attribute::StructRet:
705     return bitc::ATTR_KIND_STRUCT_RET;
706   case Attribute::SanitizeAddress:
707     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
708   case Attribute::SanitizeHWAddress:
709     return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
710   case Attribute::SanitizeThread:
711     return bitc::ATTR_KIND_SANITIZE_THREAD;
712   case Attribute::SanitizeMemory:
713     return bitc::ATTR_KIND_SANITIZE_MEMORY;
714   case Attribute::SpeculativeLoadHardening:
715     return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
716   case Attribute::SwiftError:
717     return bitc::ATTR_KIND_SWIFT_ERROR;
718   case Attribute::SwiftSelf:
719     return bitc::ATTR_KIND_SWIFT_SELF;
720   case Attribute::UWTable:
721     return bitc::ATTR_KIND_UW_TABLE;
722   case Attribute::WillReturn:
723     return bitc::ATTR_KIND_WILLRETURN;
724   case Attribute::WriteOnly:
725     return bitc::ATTR_KIND_WRITEONLY;
726   case Attribute::ZExt:
727     return bitc::ATTR_KIND_Z_EXT;
728   case Attribute::ImmArg:
729     return bitc::ATTR_KIND_IMMARG;
730   case Attribute::SanitizeMemTag:
731     return bitc::ATTR_KIND_SANITIZE_MEMTAG;
732   case Attribute::Preallocated:
733     return bitc::ATTR_KIND_PREALLOCATED;
734   case Attribute::EndAttrKinds:
735     llvm_unreachable("Can not encode end-attribute kinds marker.");
736   case Attribute::None:
737     llvm_unreachable("Can not encode none-attribute.");
738   case Attribute::EmptyKey:
739   case Attribute::TombstoneKey:
740     llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
741   }
742 
743   llvm_unreachable("Trying to encode unknown attribute");
744 }
745 
746 void ModuleBitcodeWriter::writeAttributeGroupTable() {
747   const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
748       VE.getAttributeGroups();
749   if (AttrGrps.empty()) return;
750 
751   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
752 
753   SmallVector<uint64_t, 64> Record;
754   for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
755     unsigned AttrListIndex = Pair.first;
756     AttributeSet AS = Pair.second;
757     Record.push_back(VE.getAttributeGroupID(Pair));
758     Record.push_back(AttrListIndex);
759 
760     for (Attribute Attr : AS) {
761       if (Attr.isEnumAttribute()) {
762         Record.push_back(0);
763         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
764       } else if (Attr.isIntAttribute()) {
765         Record.push_back(1);
766         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
767         Record.push_back(Attr.getValueAsInt());
768       } else if (Attr.isStringAttribute()) {
769         StringRef Kind = Attr.getKindAsString();
770         StringRef Val = Attr.getValueAsString();
771 
772         Record.push_back(Val.empty() ? 3 : 4);
773         Record.append(Kind.begin(), Kind.end());
774         Record.push_back(0);
775         if (!Val.empty()) {
776           Record.append(Val.begin(), Val.end());
777           Record.push_back(0);
778         }
779       } else {
780         assert(Attr.isTypeAttribute());
781         Type *Ty = Attr.getValueAsType();
782         Record.push_back(Ty ? 6 : 5);
783         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
784         if (Ty)
785           Record.push_back(VE.getTypeID(Attr.getValueAsType()));
786       }
787     }
788 
789     Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
790     Record.clear();
791   }
792 
793   Stream.ExitBlock();
794 }
795 
796 void ModuleBitcodeWriter::writeAttributeTable() {
797   const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
798   if (Attrs.empty()) return;
799 
800   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
801 
802   SmallVector<uint64_t, 64> Record;
803   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
804     AttributeList AL = Attrs[i];
805     for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) {
806       AttributeSet AS = AL.getAttributes(i);
807       if (AS.hasAttributes())
808         Record.push_back(VE.getAttributeGroupID({i, AS}));
809     }
810 
811     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
812     Record.clear();
813   }
814 
815   Stream.ExitBlock();
816 }
817 
818 /// WriteTypeTable - Write out the type table for a module.
819 void ModuleBitcodeWriter::writeTypeTable() {
820   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
821 
822   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
823   SmallVector<uint64_t, 64> TypeVals;
824 
825   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
826 
827   // Abbrev for TYPE_CODE_POINTER.
828   auto Abbv = std::make_shared<BitCodeAbbrev>();
829   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
830   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
831   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
832   unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
833 
834   // Abbrev for TYPE_CODE_FUNCTION.
835   Abbv = std::make_shared<BitCodeAbbrev>();
836   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
837   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
838   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
839   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
840   unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
841 
842   // Abbrev for TYPE_CODE_STRUCT_ANON.
843   Abbv = std::make_shared<BitCodeAbbrev>();
844   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
845   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
846   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
847   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
848   unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
849 
850   // Abbrev for TYPE_CODE_STRUCT_NAME.
851   Abbv = std::make_shared<BitCodeAbbrev>();
852   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
853   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
854   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
855   unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
856 
857   // Abbrev for TYPE_CODE_STRUCT_NAMED.
858   Abbv = std::make_shared<BitCodeAbbrev>();
859   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
860   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
861   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
862   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
863   unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
864 
865   // Abbrev for TYPE_CODE_ARRAY.
866   Abbv = std::make_shared<BitCodeAbbrev>();
867   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
868   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
869   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
870   unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
871 
872   // Emit an entry count so the reader can reserve space.
873   TypeVals.push_back(TypeList.size());
874   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
875   TypeVals.clear();
876 
877   // Loop over all of the types, emitting each in turn.
878   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
879     Type *T = TypeList[i];
880     int AbbrevToUse = 0;
881     unsigned Code = 0;
882 
883     switch (T->getTypeID()) {
884     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
885     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
886     case Type::BFloatTyID:    Code = bitc::TYPE_CODE_BFLOAT;    break;
887     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
888     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
889     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
890     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
891     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
892     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
893     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
894     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
895     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
896     case Type::IntegerTyID:
897       // INTEGER: [width]
898       Code = bitc::TYPE_CODE_INTEGER;
899       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
900       break;
901     case Type::PointerTyID: {
902       PointerType *PTy = cast<PointerType>(T);
903       // POINTER: [pointee type, address space]
904       Code = bitc::TYPE_CODE_POINTER;
905       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
906       unsigned AddressSpace = PTy->getAddressSpace();
907       TypeVals.push_back(AddressSpace);
908       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
909       break;
910     }
911     case Type::FunctionTyID: {
912       FunctionType *FT = cast<FunctionType>(T);
913       // FUNCTION: [isvararg, retty, paramty x N]
914       Code = bitc::TYPE_CODE_FUNCTION;
915       TypeVals.push_back(FT->isVarArg());
916       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
917       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
918         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
919       AbbrevToUse = FunctionAbbrev;
920       break;
921     }
922     case Type::StructTyID: {
923       StructType *ST = cast<StructType>(T);
924       // STRUCT: [ispacked, eltty x N]
925       TypeVals.push_back(ST->isPacked());
926       // Output all of the element types.
927       for (StructType::element_iterator I = ST->element_begin(),
928            E = ST->element_end(); I != E; ++I)
929         TypeVals.push_back(VE.getTypeID(*I));
930 
931       if (ST->isLiteral()) {
932         Code = bitc::TYPE_CODE_STRUCT_ANON;
933         AbbrevToUse = StructAnonAbbrev;
934       } else {
935         if (ST->isOpaque()) {
936           Code = bitc::TYPE_CODE_OPAQUE;
937         } else {
938           Code = bitc::TYPE_CODE_STRUCT_NAMED;
939           AbbrevToUse = StructNamedAbbrev;
940         }
941 
942         // Emit the name if it is present.
943         if (!ST->getName().empty())
944           writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
945                             StructNameAbbrev);
946       }
947       break;
948     }
949     case Type::ArrayTyID: {
950       ArrayType *AT = cast<ArrayType>(T);
951       // ARRAY: [numelts, eltty]
952       Code = bitc::TYPE_CODE_ARRAY;
953       TypeVals.push_back(AT->getNumElements());
954       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
955       AbbrevToUse = ArrayAbbrev;
956       break;
957     }
958     case Type::FixedVectorTyID:
959     case Type::ScalableVectorTyID: {
960       VectorType *VT = cast<VectorType>(T);
961       // VECTOR [numelts, eltty] or
962       //        [numelts, eltty, scalable]
963       Code = bitc::TYPE_CODE_VECTOR;
964       TypeVals.push_back(VT->getNumElements());
965       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
966       if (isa<ScalableVectorType>(VT))
967         TypeVals.push_back(true);
968       break;
969     }
970     }
971 
972     // Emit the finished record.
973     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
974     TypeVals.clear();
975   }
976 
977   Stream.ExitBlock();
978 }
979 
980 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
981   switch (Linkage) {
982   case GlobalValue::ExternalLinkage:
983     return 0;
984   case GlobalValue::WeakAnyLinkage:
985     return 16;
986   case GlobalValue::AppendingLinkage:
987     return 2;
988   case GlobalValue::InternalLinkage:
989     return 3;
990   case GlobalValue::LinkOnceAnyLinkage:
991     return 18;
992   case GlobalValue::ExternalWeakLinkage:
993     return 7;
994   case GlobalValue::CommonLinkage:
995     return 8;
996   case GlobalValue::PrivateLinkage:
997     return 9;
998   case GlobalValue::WeakODRLinkage:
999     return 17;
1000   case GlobalValue::LinkOnceODRLinkage:
1001     return 19;
1002   case GlobalValue::AvailableExternallyLinkage:
1003     return 12;
1004   }
1005   llvm_unreachable("Invalid linkage");
1006 }
1007 
1008 static unsigned getEncodedLinkage(const GlobalValue &GV) {
1009   return getEncodedLinkage(GV.getLinkage());
1010 }
1011 
1012 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
1013   uint64_t RawFlags = 0;
1014   RawFlags |= Flags.ReadNone;
1015   RawFlags |= (Flags.ReadOnly << 1);
1016   RawFlags |= (Flags.NoRecurse << 2);
1017   RawFlags |= (Flags.ReturnDoesNotAlias << 3);
1018   RawFlags |= (Flags.NoInline << 4);
1019   RawFlags |= (Flags.AlwaysInline << 5);
1020   return RawFlags;
1021 }
1022 
1023 // Decode the flags for GlobalValue in the summary
1024 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
1025   uint64_t RawFlags = 0;
1026 
1027   RawFlags |= Flags.NotEligibleToImport; // bool
1028   RawFlags |= (Flags.Live << 1);
1029   RawFlags |= (Flags.DSOLocal << 2);
1030   RawFlags |= (Flags.CanAutoHide << 3);
1031 
1032   // Linkage don't need to be remapped at that time for the summary. Any future
1033   // change to the getEncodedLinkage() function will need to be taken into
1034   // account here as well.
1035   RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
1036 
1037   return RawFlags;
1038 }
1039 
1040 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
1041   uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) |
1042                       (Flags.Constant << 2) | Flags.VCallVisibility << 3;
1043   return RawFlags;
1044 }
1045 
1046 static unsigned getEncodedVisibility(const GlobalValue &GV) {
1047   switch (GV.getVisibility()) {
1048   case GlobalValue::DefaultVisibility:   return 0;
1049   case GlobalValue::HiddenVisibility:    return 1;
1050   case GlobalValue::ProtectedVisibility: return 2;
1051   }
1052   llvm_unreachable("Invalid visibility");
1053 }
1054 
1055 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1056   switch (GV.getDLLStorageClass()) {
1057   case GlobalValue::DefaultStorageClass:   return 0;
1058   case GlobalValue::DLLImportStorageClass: return 1;
1059   case GlobalValue::DLLExportStorageClass: return 2;
1060   }
1061   llvm_unreachable("Invalid DLL storage class");
1062 }
1063 
1064 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1065   switch (GV.getThreadLocalMode()) {
1066     case GlobalVariable::NotThreadLocal:         return 0;
1067     case GlobalVariable::GeneralDynamicTLSModel: return 1;
1068     case GlobalVariable::LocalDynamicTLSModel:   return 2;
1069     case GlobalVariable::InitialExecTLSModel:    return 3;
1070     case GlobalVariable::LocalExecTLSModel:      return 4;
1071   }
1072   llvm_unreachable("Invalid TLS model");
1073 }
1074 
1075 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1076   switch (C.getSelectionKind()) {
1077   case Comdat::Any:
1078     return bitc::COMDAT_SELECTION_KIND_ANY;
1079   case Comdat::ExactMatch:
1080     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1081   case Comdat::Largest:
1082     return bitc::COMDAT_SELECTION_KIND_LARGEST;
1083   case Comdat::NoDuplicates:
1084     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1085   case Comdat::SameSize:
1086     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1087   }
1088   llvm_unreachable("Invalid selection kind");
1089 }
1090 
1091 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1092   switch (GV.getUnnamedAddr()) {
1093   case GlobalValue::UnnamedAddr::None:   return 0;
1094   case GlobalValue::UnnamedAddr::Local:  return 2;
1095   case GlobalValue::UnnamedAddr::Global: return 1;
1096   }
1097   llvm_unreachable("Invalid unnamed_addr");
1098 }
1099 
1100 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1101   if (GenerateHash)
1102     Hasher.update(Str);
1103   return StrtabBuilder.add(Str);
1104 }
1105 
1106 void ModuleBitcodeWriter::writeComdats() {
1107   SmallVector<unsigned, 64> Vals;
1108   for (const Comdat *C : VE.getComdats()) {
1109     // COMDAT: [strtab offset, strtab size, selection_kind]
1110     Vals.push_back(addToStrtab(C->getName()));
1111     Vals.push_back(C->getName().size());
1112     Vals.push_back(getEncodedComdatSelectionKind(*C));
1113     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1114     Vals.clear();
1115   }
1116 }
1117 
1118 /// Write a record that will eventually hold the word offset of the
1119 /// module-level VST. For now the offset is 0, which will be backpatched
1120 /// after the real VST is written. Saves the bit offset to backpatch.
1121 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1122   // Write a placeholder value in for the offset of the real VST,
1123   // which is written after the function blocks so that it can include
1124   // the offset of each function. The placeholder offset will be
1125   // updated when the real VST is written.
1126   auto Abbv = std::make_shared<BitCodeAbbrev>();
1127   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1128   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1129   // hold the real VST offset. Must use fixed instead of VBR as we don't
1130   // know how many VBR chunks to reserve ahead of time.
1131   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1132   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1133 
1134   // Emit the placeholder
1135   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1136   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1137 
1138   // Compute and save the bit offset to the placeholder, which will be
1139   // patched when the real VST is written. We can simply subtract the 32-bit
1140   // fixed size from the current bit number to get the location to backpatch.
1141   VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1142 }
1143 
1144 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1145 
1146 /// Determine the encoding to use for the given string name and length.
1147 static StringEncoding getStringEncoding(StringRef Str) {
1148   bool isChar6 = true;
1149   for (char C : Str) {
1150     if (isChar6)
1151       isChar6 = BitCodeAbbrevOp::isChar6(C);
1152     if ((unsigned char)C & 128)
1153       // don't bother scanning the rest.
1154       return SE_Fixed8;
1155   }
1156   if (isChar6)
1157     return SE_Char6;
1158   return SE_Fixed7;
1159 }
1160 
1161 /// Emit top-level description of module, including target triple, inline asm,
1162 /// descriptors for global variables, and function prototype info.
1163 /// Returns the bit offset to backpatch with the location of the real VST.
1164 void ModuleBitcodeWriter::writeModuleInfo() {
1165   // Emit various pieces of data attached to a module.
1166   if (!M.getTargetTriple().empty())
1167     writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1168                       0 /*TODO*/);
1169   const std::string &DL = M.getDataLayoutStr();
1170   if (!DL.empty())
1171     writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1172   if (!M.getModuleInlineAsm().empty())
1173     writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1174                       0 /*TODO*/);
1175 
1176   // Emit information about sections and GC, computing how many there are. Also
1177   // compute the maximum alignment value.
1178   std::map<std::string, unsigned> SectionMap;
1179   std::map<std::string, unsigned> GCMap;
1180   unsigned MaxAlignment = 0;
1181   unsigned MaxGlobalType = 0;
1182   for (const GlobalValue &GV : M.globals()) {
1183     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
1184     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1185     if (GV.hasSection()) {
1186       // Give section names unique ID's.
1187       unsigned &Entry = SectionMap[std::string(GV.getSection())];
1188       if (!Entry) {
1189         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1190                           0 /*TODO*/);
1191         Entry = SectionMap.size();
1192       }
1193     }
1194   }
1195   for (const Function &F : M) {
1196     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
1197     if (F.hasSection()) {
1198       // Give section names unique ID's.
1199       unsigned &Entry = SectionMap[std::string(F.getSection())];
1200       if (!Entry) {
1201         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1202                           0 /*TODO*/);
1203         Entry = SectionMap.size();
1204       }
1205     }
1206     if (F.hasGC()) {
1207       // Same for GC names.
1208       unsigned &Entry = GCMap[F.getGC()];
1209       if (!Entry) {
1210         writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1211                           0 /*TODO*/);
1212         Entry = GCMap.size();
1213       }
1214     }
1215   }
1216 
1217   // Emit abbrev for globals, now that we know # sections and max alignment.
1218   unsigned SimpleGVarAbbrev = 0;
1219   if (!M.global_empty()) {
1220     // Add an abbrev for common globals with no visibility or thread localness.
1221     auto Abbv = std::make_shared<BitCodeAbbrev>();
1222     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1223     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1224     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1225     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1226                               Log2_32_Ceil(MaxGlobalType+1)));
1227     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1228                                                            //| explicitType << 1
1229                                                            //| constant
1230     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1231     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1232     if (MaxAlignment == 0)                                 // Alignment.
1233       Abbv->Add(BitCodeAbbrevOp(0));
1234     else {
1235       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
1236       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1237                                Log2_32_Ceil(MaxEncAlignment+1)));
1238     }
1239     if (SectionMap.empty())                                    // Section.
1240       Abbv->Add(BitCodeAbbrevOp(0));
1241     else
1242       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1243                                Log2_32_Ceil(SectionMap.size()+1)));
1244     // Don't bother emitting vis + thread local.
1245     SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1246   }
1247 
1248   SmallVector<unsigned, 64> Vals;
1249   // Emit the module's source file name.
1250   {
1251     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1252     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1253     if (Bits == SE_Char6)
1254       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1255     else if (Bits == SE_Fixed7)
1256       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1257 
1258     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1259     auto Abbv = std::make_shared<BitCodeAbbrev>();
1260     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1261     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1262     Abbv->Add(AbbrevOpToUse);
1263     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1264 
1265     for (const auto P : M.getSourceFileName())
1266       Vals.push_back((unsigned char)P);
1267 
1268     // Emit the finished record.
1269     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1270     Vals.clear();
1271   }
1272 
1273   // Emit the global variable information.
1274   for (const GlobalVariable &GV : M.globals()) {
1275     unsigned AbbrevToUse = 0;
1276 
1277     // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1278     //             linkage, alignment, section, visibility, threadlocal,
1279     //             unnamed_addr, externally_initialized, dllstorageclass,
1280     //             comdat, attributes, DSO_Local]
1281     Vals.push_back(addToStrtab(GV.getName()));
1282     Vals.push_back(GV.getName().size());
1283     Vals.push_back(VE.getTypeID(GV.getValueType()));
1284     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1285     Vals.push_back(GV.isDeclaration() ? 0 :
1286                    (VE.getValueID(GV.getInitializer()) + 1));
1287     Vals.push_back(getEncodedLinkage(GV));
1288     Vals.push_back(Log2_32(GV.getAlignment())+1);
1289     Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
1290                                    : 0);
1291     if (GV.isThreadLocal() ||
1292         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1293         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1294         GV.isExternallyInitialized() ||
1295         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1296         GV.hasComdat() ||
1297         GV.hasAttributes() ||
1298         GV.isDSOLocal() ||
1299         GV.hasPartition()) {
1300       Vals.push_back(getEncodedVisibility(GV));
1301       Vals.push_back(getEncodedThreadLocalMode(GV));
1302       Vals.push_back(getEncodedUnnamedAddr(GV));
1303       Vals.push_back(GV.isExternallyInitialized());
1304       Vals.push_back(getEncodedDLLStorageClass(GV));
1305       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1306 
1307       auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1308       Vals.push_back(VE.getAttributeListID(AL));
1309 
1310       Vals.push_back(GV.isDSOLocal());
1311       Vals.push_back(addToStrtab(GV.getPartition()));
1312       Vals.push_back(GV.getPartition().size());
1313     } else {
1314       AbbrevToUse = SimpleGVarAbbrev;
1315     }
1316 
1317     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1318     Vals.clear();
1319   }
1320 
1321   // Emit the function proto information.
1322   for (const Function &F : M) {
1323     // FUNCTION:  [strtab offset, strtab size, type, callingconv, isproto,
1324     //             linkage, paramattrs, alignment, section, visibility, gc,
1325     //             unnamed_addr, prologuedata, dllstorageclass, comdat,
1326     //             prefixdata, personalityfn, DSO_Local, addrspace]
1327     Vals.push_back(addToStrtab(F.getName()));
1328     Vals.push_back(F.getName().size());
1329     Vals.push_back(VE.getTypeID(F.getFunctionType()));
1330     Vals.push_back(F.getCallingConv());
1331     Vals.push_back(F.isDeclaration());
1332     Vals.push_back(getEncodedLinkage(F));
1333     Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1334     Vals.push_back(Log2_32(F.getAlignment())+1);
1335     Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
1336                                   : 0);
1337     Vals.push_back(getEncodedVisibility(F));
1338     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1339     Vals.push_back(getEncodedUnnamedAddr(F));
1340     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1341                                        : 0);
1342     Vals.push_back(getEncodedDLLStorageClass(F));
1343     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1344     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1345                                      : 0);
1346     Vals.push_back(
1347         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1348 
1349     Vals.push_back(F.isDSOLocal());
1350     Vals.push_back(F.getAddressSpace());
1351     Vals.push_back(addToStrtab(F.getPartition()));
1352     Vals.push_back(F.getPartition().size());
1353 
1354     unsigned AbbrevToUse = 0;
1355     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1356     Vals.clear();
1357   }
1358 
1359   // Emit the alias information.
1360   for (const GlobalAlias &A : M.aliases()) {
1361     // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1362     //         visibility, dllstorageclass, threadlocal, unnamed_addr,
1363     //         DSO_Local]
1364     Vals.push_back(addToStrtab(A.getName()));
1365     Vals.push_back(A.getName().size());
1366     Vals.push_back(VE.getTypeID(A.getValueType()));
1367     Vals.push_back(A.getType()->getAddressSpace());
1368     Vals.push_back(VE.getValueID(A.getAliasee()));
1369     Vals.push_back(getEncodedLinkage(A));
1370     Vals.push_back(getEncodedVisibility(A));
1371     Vals.push_back(getEncodedDLLStorageClass(A));
1372     Vals.push_back(getEncodedThreadLocalMode(A));
1373     Vals.push_back(getEncodedUnnamedAddr(A));
1374     Vals.push_back(A.isDSOLocal());
1375     Vals.push_back(addToStrtab(A.getPartition()));
1376     Vals.push_back(A.getPartition().size());
1377 
1378     unsigned AbbrevToUse = 0;
1379     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1380     Vals.clear();
1381   }
1382 
1383   // Emit the ifunc information.
1384   for (const GlobalIFunc &I : M.ifuncs()) {
1385     // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1386     //         val#, linkage, visibility, DSO_Local]
1387     Vals.push_back(addToStrtab(I.getName()));
1388     Vals.push_back(I.getName().size());
1389     Vals.push_back(VE.getTypeID(I.getValueType()));
1390     Vals.push_back(I.getType()->getAddressSpace());
1391     Vals.push_back(VE.getValueID(I.getResolver()));
1392     Vals.push_back(getEncodedLinkage(I));
1393     Vals.push_back(getEncodedVisibility(I));
1394     Vals.push_back(I.isDSOLocal());
1395     Vals.push_back(addToStrtab(I.getPartition()));
1396     Vals.push_back(I.getPartition().size());
1397     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1398     Vals.clear();
1399   }
1400 
1401   writeValueSymbolTableForwardDecl();
1402 }
1403 
1404 static uint64_t getOptimizationFlags(const Value *V) {
1405   uint64_t Flags = 0;
1406 
1407   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1408     if (OBO->hasNoSignedWrap())
1409       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1410     if (OBO->hasNoUnsignedWrap())
1411       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1412   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1413     if (PEO->isExact())
1414       Flags |= 1 << bitc::PEO_EXACT;
1415   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1416     if (FPMO->hasAllowReassoc())
1417       Flags |= bitc::AllowReassoc;
1418     if (FPMO->hasNoNaNs())
1419       Flags |= bitc::NoNaNs;
1420     if (FPMO->hasNoInfs())
1421       Flags |= bitc::NoInfs;
1422     if (FPMO->hasNoSignedZeros())
1423       Flags |= bitc::NoSignedZeros;
1424     if (FPMO->hasAllowReciprocal())
1425       Flags |= bitc::AllowReciprocal;
1426     if (FPMO->hasAllowContract())
1427       Flags |= bitc::AllowContract;
1428     if (FPMO->hasApproxFunc())
1429       Flags |= bitc::ApproxFunc;
1430   }
1431 
1432   return Flags;
1433 }
1434 
1435 void ModuleBitcodeWriter::writeValueAsMetadata(
1436     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1437   // Mimic an MDNode with a value as one operand.
1438   Value *V = MD->getValue();
1439   Record.push_back(VE.getTypeID(V->getType()));
1440   Record.push_back(VE.getValueID(V));
1441   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1442   Record.clear();
1443 }
1444 
1445 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1446                                        SmallVectorImpl<uint64_t> &Record,
1447                                        unsigned Abbrev) {
1448   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1449     Metadata *MD = N->getOperand(i);
1450     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1451            "Unexpected function-local metadata");
1452     Record.push_back(VE.getMetadataOrNullID(MD));
1453   }
1454   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1455                                     : bitc::METADATA_NODE,
1456                     Record, Abbrev);
1457   Record.clear();
1458 }
1459 
1460 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1461   // Assume the column is usually under 128, and always output the inlined-at
1462   // location (it's never more expensive than building an array size 1).
1463   auto Abbv = std::make_shared<BitCodeAbbrev>();
1464   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1465   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1466   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1467   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1468   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1469   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1470   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1471   return Stream.EmitAbbrev(std::move(Abbv));
1472 }
1473 
1474 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1475                                           SmallVectorImpl<uint64_t> &Record,
1476                                           unsigned &Abbrev) {
1477   if (!Abbrev)
1478     Abbrev = createDILocationAbbrev();
1479 
1480   Record.push_back(N->isDistinct());
1481   Record.push_back(N->getLine());
1482   Record.push_back(N->getColumn());
1483   Record.push_back(VE.getMetadataID(N->getScope()));
1484   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1485   Record.push_back(N->isImplicitCode());
1486 
1487   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1488   Record.clear();
1489 }
1490 
1491 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1492   // Assume the column is usually under 128, and always output the inlined-at
1493   // location (it's never more expensive than building an array size 1).
1494   auto Abbv = std::make_shared<BitCodeAbbrev>();
1495   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1496   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1497   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1498   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1499   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1500   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1501   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1502   return Stream.EmitAbbrev(std::move(Abbv));
1503 }
1504 
1505 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1506                                              SmallVectorImpl<uint64_t> &Record,
1507                                              unsigned &Abbrev) {
1508   if (!Abbrev)
1509     Abbrev = createGenericDINodeAbbrev();
1510 
1511   Record.push_back(N->isDistinct());
1512   Record.push_back(N->getTag());
1513   Record.push_back(0); // Per-tag version field; unused for now.
1514 
1515   for (auto &I : N->operands())
1516     Record.push_back(VE.getMetadataOrNullID(I));
1517 
1518   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1519   Record.clear();
1520 }
1521 
1522 static uint64_t rotateSign(int64_t I) {
1523   uint64_t U = I;
1524   return I < 0 ? ~(U << 1) : U << 1;
1525 }
1526 
1527 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1528                                           SmallVectorImpl<uint64_t> &Record,
1529                                           unsigned Abbrev) {
1530   const uint64_t Version = 2 << 1;
1531   Record.push_back((uint64_t)N->isDistinct() | Version);
1532   Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1533   Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1534   Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1535   Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1536 
1537   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1538   Record.clear();
1539 }
1540 
1541 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
1542   if ((int64_t)V >= 0)
1543     Vals.push_back(V << 1);
1544   else
1545     Vals.push_back((-V << 1) | 1);
1546 }
1547 
1548 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) {
1549   // We have an arbitrary precision integer value to write whose
1550   // bit width is > 64. However, in canonical unsigned integer
1551   // format it is likely that the high bits are going to be zero.
1552   // So, we only write the number of active words.
1553   unsigned NumWords = A.getActiveWords();
1554   const uint64_t *RawData = A.getRawData();
1555   for (unsigned i = 0; i < NumWords; i++)
1556     emitSignedInt64(Vals, RawData[i]);
1557 }
1558 
1559 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1560                                             SmallVectorImpl<uint64_t> &Record,
1561                                             unsigned Abbrev) {
1562   const uint64_t IsBigInt = 1 << 2;
1563   Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct());
1564   Record.push_back(N->getValue().getBitWidth());
1565   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1566   emitWideAPInt(Record, N->getValue());
1567 
1568   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1569   Record.clear();
1570 }
1571 
1572 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1573                                            SmallVectorImpl<uint64_t> &Record,
1574                                            unsigned Abbrev) {
1575   Record.push_back(N->isDistinct());
1576   Record.push_back(N->getTag());
1577   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1578   Record.push_back(N->getSizeInBits());
1579   Record.push_back(N->getAlignInBits());
1580   Record.push_back(N->getEncoding());
1581   Record.push_back(N->getFlags());
1582 
1583   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1584   Record.clear();
1585 }
1586 
1587 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1588                                              SmallVectorImpl<uint64_t> &Record,
1589                                              unsigned Abbrev) {
1590   Record.push_back(N->isDistinct());
1591   Record.push_back(N->getTag());
1592   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1593   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1594   Record.push_back(N->getLine());
1595   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1596   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1597   Record.push_back(N->getSizeInBits());
1598   Record.push_back(N->getAlignInBits());
1599   Record.push_back(N->getOffsetInBits());
1600   Record.push_back(N->getFlags());
1601   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1602 
1603   // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1604   // that there is no DWARF address space associated with DIDerivedType.
1605   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1606     Record.push_back(*DWARFAddressSpace + 1);
1607   else
1608     Record.push_back(0);
1609 
1610   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1611   Record.clear();
1612 }
1613 
1614 void ModuleBitcodeWriter::writeDICompositeType(
1615     const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1616     unsigned Abbrev) {
1617   const unsigned IsNotUsedInOldTypeRef = 0x2;
1618   Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1619   Record.push_back(N->getTag());
1620   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1621   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1622   Record.push_back(N->getLine());
1623   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1624   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1625   Record.push_back(N->getSizeInBits());
1626   Record.push_back(N->getAlignInBits());
1627   Record.push_back(N->getOffsetInBits());
1628   Record.push_back(N->getFlags());
1629   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1630   Record.push_back(N->getRuntimeLang());
1631   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1632   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1633   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1634   Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1635   Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation()));
1636 
1637   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1638   Record.clear();
1639 }
1640 
1641 void ModuleBitcodeWriter::writeDISubroutineType(
1642     const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1643     unsigned Abbrev) {
1644   const unsigned HasNoOldTypeRefs = 0x2;
1645   Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1646   Record.push_back(N->getFlags());
1647   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1648   Record.push_back(N->getCC());
1649 
1650   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1651   Record.clear();
1652 }
1653 
1654 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1655                                       SmallVectorImpl<uint64_t> &Record,
1656                                       unsigned Abbrev) {
1657   Record.push_back(N->isDistinct());
1658   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1659   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1660   if (N->getRawChecksum()) {
1661     Record.push_back(N->getRawChecksum()->Kind);
1662     Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1663   } else {
1664     // Maintain backwards compatibility with the old internal representation of
1665     // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1666     Record.push_back(0);
1667     Record.push_back(VE.getMetadataOrNullID(nullptr));
1668   }
1669   auto Source = N->getRawSource();
1670   if (Source)
1671     Record.push_back(VE.getMetadataOrNullID(*Source));
1672 
1673   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1674   Record.clear();
1675 }
1676 
1677 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1678                                              SmallVectorImpl<uint64_t> &Record,
1679                                              unsigned Abbrev) {
1680   assert(N->isDistinct() && "Expected distinct compile units");
1681   Record.push_back(/* IsDistinct */ true);
1682   Record.push_back(N->getSourceLanguage());
1683   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1684   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1685   Record.push_back(N->isOptimized());
1686   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1687   Record.push_back(N->getRuntimeVersion());
1688   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1689   Record.push_back(N->getEmissionKind());
1690   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1691   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1692   Record.push_back(/* subprograms */ 0);
1693   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1694   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1695   Record.push_back(N->getDWOId());
1696   Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1697   Record.push_back(N->getSplitDebugInlining());
1698   Record.push_back(N->getDebugInfoForProfiling());
1699   Record.push_back((unsigned)N->getNameTableKind());
1700   Record.push_back(N->getRangesBaseAddress());
1701   Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot()));
1702   Record.push_back(VE.getMetadataOrNullID(N->getRawSDK()));
1703 
1704   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1705   Record.clear();
1706 }
1707 
1708 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1709                                             SmallVectorImpl<uint64_t> &Record,
1710                                             unsigned Abbrev) {
1711   const uint64_t HasUnitFlag = 1 << 1;
1712   const uint64_t HasSPFlagsFlag = 1 << 2;
1713   Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
1714   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1715   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1716   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1717   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1718   Record.push_back(N->getLine());
1719   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1720   Record.push_back(N->getScopeLine());
1721   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1722   Record.push_back(N->getSPFlags());
1723   Record.push_back(N->getVirtualIndex());
1724   Record.push_back(N->getFlags());
1725   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1726   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1727   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1728   Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1729   Record.push_back(N->getThisAdjustment());
1730   Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1731 
1732   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1733   Record.clear();
1734 }
1735 
1736 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1737                                               SmallVectorImpl<uint64_t> &Record,
1738                                               unsigned Abbrev) {
1739   Record.push_back(N->isDistinct());
1740   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1741   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1742   Record.push_back(N->getLine());
1743   Record.push_back(N->getColumn());
1744 
1745   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1746   Record.clear();
1747 }
1748 
1749 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1750     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1751     unsigned Abbrev) {
1752   Record.push_back(N->isDistinct());
1753   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1754   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1755   Record.push_back(N->getDiscriminator());
1756 
1757   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1758   Record.clear();
1759 }
1760 
1761 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N,
1762                                              SmallVectorImpl<uint64_t> &Record,
1763                                              unsigned Abbrev) {
1764   Record.push_back(N->isDistinct());
1765   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1766   Record.push_back(VE.getMetadataOrNullID(N->getDecl()));
1767   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1768   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1769   Record.push_back(N->getLineNo());
1770 
1771   Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev);
1772   Record.clear();
1773 }
1774 
1775 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1776                                            SmallVectorImpl<uint64_t> &Record,
1777                                            unsigned Abbrev) {
1778   Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1779   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1780   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1781 
1782   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1783   Record.clear();
1784 }
1785 
1786 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1787                                        SmallVectorImpl<uint64_t> &Record,
1788                                        unsigned Abbrev) {
1789   Record.push_back(N->isDistinct());
1790   Record.push_back(N->getMacinfoType());
1791   Record.push_back(N->getLine());
1792   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1793   Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1794 
1795   Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1796   Record.clear();
1797 }
1798 
1799 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1800                                            SmallVectorImpl<uint64_t> &Record,
1801                                            unsigned Abbrev) {
1802   Record.push_back(N->isDistinct());
1803   Record.push_back(N->getMacinfoType());
1804   Record.push_back(N->getLine());
1805   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1806   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1807 
1808   Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1809   Record.clear();
1810 }
1811 
1812 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1813                                         SmallVectorImpl<uint64_t> &Record,
1814                                         unsigned Abbrev) {
1815   Record.push_back(N->isDistinct());
1816   for (auto &I : N->operands())
1817     Record.push_back(VE.getMetadataOrNullID(I));
1818   Record.push_back(N->getLineNo());
1819 
1820   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1821   Record.clear();
1822 }
1823 
1824 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1825     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1826     unsigned Abbrev) {
1827   Record.push_back(N->isDistinct());
1828   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1829   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1830   Record.push_back(N->isDefault());
1831 
1832   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1833   Record.clear();
1834 }
1835 
1836 void ModuleBitcodeWriter::writeDITemplateValueParameter(
1837     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1838     unsigned Abbrev) {
1839   Record.push_back(N->isDistinct());
1840   Record.push_back(N->getTag());
1841   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1842   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1843   Record.push_back(N->isDefault());
1844   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1845 
1846   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1847   Record.clear();
1848 }
1849 
1850 void ModuleBitcodeWriter::writeDIGlobalVariable(
1851     const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1852     unsigned Abbrev) {
1853   const uint64_t Version = 2 << 1;
1854   Record.push_back((uint64_t)N->isDistinct() | Version);
1855   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1856   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1857   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1858   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1859   Record.push_back(N->getLine());
1860   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1861   Record.push_back(N->isLocalToUnit());
1862   Record.push_back(N->isDefinition());
1863   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1864   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
1865   Record.push_back(N->getAlignInBits());
1866 
1867   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1868   Record.clear();
1869 }
1870 
1871 void ModuleBitcodeWriter::writeDILocalVariable(
1872     const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1873     unsigned Abbrev) {
1874   // In order to support all possible bitcode formats in BitcodeReader we need
1875   // to distinguish the following cases:
1876   // 1) Record has no artificial tag (Record[1]),
1877   //   has no obsolete inlinedAt field (Record[9]).
1878   //   In this case Record size will be 8, HasAlignment flag is false.
1879   // 2) Record has artificial tag (Record[1]),
1880   //   has no obsolete inlignedAt field (Record[9]).
1881   //   In this case Record size will be 9, HasAlignment flag is false.
1882   // 3) Record has both artificial tag (Record[1]) and
1883   //   obsolete inlignedAt field (Record[9]).
1884   //   In this case Record size will be 10, HasAlignment flag is false.
1885   // 4) Record has neither artificial tag, nor inlignedAt field, but
1886   //   HasAlignment flag is true and Record[8] contains alignment value.
1887   const uint64_t HasAlignmentFlag = 1 << 1;
1888   Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
1889   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1890   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1891   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1892   Record.push_back(N->getLine());
1893   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1894   Record.push_back(N->getArg());
1895   Record.push_back(N->getFlags());
1896   Record.push_back(N->getAlignInBits());
1897 
1898   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1899   Record.clear();
1900 }
1901 
1902 void ModuleBitcodeWriter::writeDILabel(
1903     const DILabel *N, SmallVectorImpl<uint64_t> &Record,
1904     unsigned Abbrev) {
1905   Record.push_back((uint64_t)N->isDistinct());
1906   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1907   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1908   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1909   Record.push_back(N->getLine());
1910 
1911   Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
1912   Record.clear();
1913 }
1914 
1915 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
1916                                             SmallVectorImpl<uint64_t> &Record,
1917                                             unsigned Abbrev) {
1918   Record.reserve(N->getElements().size() + 1);
1919   const uint64_t Version = 3 << 1;
1920   Record.push_back((uint64_t)N->isDistinct() | Version);
1921   Record.append(N->elements_begin(), N->elements_end());
1922 
1923   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1924   Record.clear();
1925 }
1926 
1927 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
1928     const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
1929     unsigned Abbrev) {
1930   Record.push_back(N->isDistinct());
1931   Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
1932   Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
1933 
1934   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
1935   Record.clear();
1936 }
1937 
1938 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1939                                               SmallVectorImpl<uint64_t> &Record,
1940                                               unsigned Abbrev) {
1941   Record.push_back(N->isDistinct());
1942   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1943   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1944   Record.push_back(N->getLine());
1945   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1946   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1947   Record.push_back(N->getAttributes());
1948   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1949 
1950   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1951   Record.clear();
1952 }
1953 
1954 void ModuleBitcodeWriter::writeDIImportedEntity(
1955     const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
1956     unsigned Abbrev) {
1957   Record.push_back(N->isDistinct());
1958   Record.push_back(N->getTag());
1959   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1960   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1961   Record.push_back(N->getLine());
1962   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1963   Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
1964 
1965   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1966   Record.clear();
1967 }
1968 
1969 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
1970   auto Abbv = std::make_shared<BitCodeAbbrev>();
1971   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1972   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1973   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1974   return Stream.EmitAbbrev(std::move(Abbv));
1975 }
1976 
1977 void ModuleBitcodeWriter::writeNamedMetadata(
1978     SmallVectorImpl<uint64_t> &Record) {
1979   if (M.named_metadata_empty())
1980     return;
1981 
1982   unsigned Abbrev = createNamedMetadataAbbrev();
1983   for (const NamedMDNode &NMD : M.named_metadata()) {
1984     // Write name.
1985     StringRef Str = NMD.getName();
1986     Record.append(Str.bytes_begin(), Str.bytes_end());
1987     Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
1988     Record.clear();
1989 
1990     // Write named metadata operands.
1991     for (const MDNode *N : NMD.operands())
1992       Record.push_back(VE.getMetadataID(N));
1993     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1994     Record.clear();
1995   }
1996 }
1997 
1998 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
1999   auto Abbv = std::make_shared<BitCodeAbbrev>();
2000   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
2001   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
2002   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
2003   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
2004   return Stream.EmitAbbrev(std::move(Abbv));
2005 }
2006 
2007 /// Write out a record for MDString.
2008 ///
2009 /// All the metadata strings in a metadata block are emitted in a single
2010 /// record.  The sizes and strings themselves are shoved into a blob.
2011 void ModuleBitcodeWriter::writeMetadataStrings(
2012     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
2013   if (Strings.empty())
2014     return;
2015 
2016   // Start the record with the number of strings.
2017   Record.push_back(bitc::METADATA_STRINGS);
2018   Record.push_back(Strings.size());
2019 
2020   // Emit the sizes of the strings in the blob.
2021   SmallString<256> Blob;
2022   {
2023     BitstreamWriter W(Blob);
2024     for (const Metadata *MD : Strings)
2025       W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
2026     W.FlushToWord();
2027   }
2028 
2029   // Add the offset to the strings to the record.
2030   Record.push_back(Blob.size());
2031 
2032   // Add the strings to the blob.
2033   for (const Metadata *MD : Strings)
2034     Blob.append(cast<MDString>(MD)->getString());
2035 
2036   // Emit the final record.
2037   Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
2038   Record.clear();
2039 }
2040 
2041 // Generates an enum to use as an index in the Abbrev array of Metadata record.
2042 enum MetadataAbbrev : unsigned {
2043 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
2044 #include "llvm/IR/Metadata.def"
2045   LastPlusOne
2046 };
2047 
2048 void ModuleBitcodeWriter::writeMetadataRecords(
2049     ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
2050     std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
2051   if (MDs.empty())
2052     return;
2053 
2054   // Initialize MDNode abbreviations.
2055 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
2056 #include "llvm/IR/Metadata.def"
2057 
2058   for (const Metadata *MD : MDs) {
2059     if (IndexPos)
2060       IndexPos->push_back(Stream.GetCurrentBitNo());
2061     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2062       assert(N->isResolved() && "Expected forward references to be resolved");
2063 
2064       switch (N->getMetadataID()) {
2065       default:
2066         llvm_unreachable("Invalid MDNode subclass");
2067 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
2068   case Metadata::CLASS##Kind:                                                  \
2069     if (MDAbbrevs)                                                             \
2070       write##CLASS(cast<CLASS>(N), Record,                                     \
2071                    (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
2072     else                                                                       \
2073       write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
2074     continue;
2075 #include "llvm/IR/Metadata.def"
2076       }
2077     }
2078     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
2079   }
2080 }
2081 
2082 void ModuleBitcodeWriter::writeModuleMetadata() {
2083   if (!VE.hasMDs() && M.named_metadata_empty())
2084     return;
2085 
2086   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
2087   SmallVector<uint64_t, 64> Record;
2088 
2089   // Emit all abbrevs upfront, so that the reader can jump in the middle of the
2090   // block and load any metadata.
2091   std::vector<unsigned> MDAbbrevs;
2092 
2093   MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
2094   MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
2095   MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
2096       createGenericDINodeAbbrev();
2097 
2098   auto Abbv = std::make_shared<BitCodeAbbrev>();
2099   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
2100   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2101   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2102   unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2103 
2104   Abbv = std::make_shared<BitCodeAbbrev>();
2105   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
2106   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2107   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2108   unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2109 
2110   // Emit MDStrings together upfront.
2111   writeMetadataStrings(VE.getMDStrings(), Record);
2112 
2113   // We only emit an index for the metadata record if we have more than a given
2114   // (naive) threshold of metadatas, otherwise it is not worth it.
2115   if (VE.getNonMDStrings().size() > IndexThreshold) {
2116     // Write a placeholder value in for the offset of the metadata index,
2117     // which is written after the records, so that it can include
2118     // the offset of each entry. The placeholder offset will be
2119     // updated after all records are emitted.
2120     uint64_t Vals[] = {0, 0};
2121     Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2122   }
2123 
2124   // Compute and save the bit offset to the current position, which will be
2125   // patched when we emit the index later. We can simply subtract the 64-bit
2126   // fixed size from the current bit number to get the location to backpatch.
2127   uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2128 
2129   // This index will contain the bitpos for each individual record.
2130   std::vector<uint64_t> IndexPos;
2131   IndexPos.reserve(VE.getNonMDStrings().size());
2132 
2133   // Write all the records
2134   writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2135 
2136   if (VE.getNonMDStrings().size() > IndexThreshold) {
2137     // Now that we have emitted all the records we will emit the index. But
2138     // first
2139     // backpatch the forward reference so that the reader can skip the records
2140     // efficiently.
2141     Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2142                            Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2143 
2144     // Delta encode the index.
2145     uint64_t PreviousValue = IndexOffsetRecordBitPos;
2146     for (auto &Elt : IndexPos) {
2147       auto EltDelta = Elt - PreviousValue;
2148       PreviousValue = Elt;
2149       Elt = EltDelta;
2150     }
2151     // Emit the index record.
2152     Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2153     IndexPos.clear();
2154   }
2155 
2156   // Write the named metadata now.
2157   writeNamedMetadata(Record);
2158 
2159   auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2160     SmallVector<uint64_t, 4> Record;
2161     Record.push_back(VE.getValueID(&GO));
2162     pushGlobalMetadataAttachment(Record, GO);
2163     Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2164   };
2165   for (const Function &F : M)
2166     if (F.isDeclaration() && F.hasMetadata())
2167       AddDeclAttachedMetadata(F);
2168   // FIXME: Only store metadata for declarations here, and move data for global
2169   // variable definitions to a separate block (PR28134).
2170   for (const GlobalVariable &GV : M.globals())
2171     if (GV.hasMetadata())
2172       AddDeclAttachedMetadata(GV);
2173 
2174   Stream.ExitBlock();
2175 }
2176 
2177 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2178   if (!VE.hasMDs())
2179     return;
2180 
2181   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2182   SmallVector<uint64_t, 64> Record;
2183   writeMetadataStrings(VE.getMDStrings(), Record);
2184   writeMetadataRecords(VE.getNonMDStrings(), Record);
2185   Stream.ExitBlock();
2186 }
2187 
2188 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2189     SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2190   // [n x [id, mdnode]]
2191   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2192   GO.getAllMetadata(MDs);
2193   for (const auto &I : MDs) {
2194     Record.push_back(I.first);
2195     Record.push_back(VE.getMetadataID(I.second));
2196   }
2197 }
2198 
2199 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2200   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2201 
2202   SmallVector<uint64_t, 64> Record;
2203 
2204   if (F.hasMetadata()) {
2205     pushGlobalMetadataAttachment(Record, F);
2206     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2207     Record.clear();
2208   }
2209 
2210   // Write metadata attachments
2211   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2212   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2213   for (const BasicBlock &BB : F)
2214     for (const Instruction &I : BB) {
2215       MDs.clear();
2216       I.getAllMetadataOtherThanDebugLoc(MDs);
2217 
2218       // If no metadata, ignore instruction.
2219       if (MDs.empty()) continue;
2220 
2221       Record.push_back(VE.getInstructionID(&I));
2222 
2223       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2224         Record.push_back(MDs[i].first);
2225         Record.push_back(VE.getMetadataID(MDs[i].second));
2226       }
2227       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2228       Record.clear();
2229     }
2230 
2231   Stream.ExitBlock();
2232 }
2233 
2234 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2235   SmallVector<uint64_t, 64> Record;
2236 
2237   // Write metadata kinds
2238   // METADATA_KIND - [n x [id, name]]
2239   SmallVector<StringRef, 8> Names;
2240   M.getMDKindNames(Names);
2241 
2242   if (Names.empty()) return;
2243 
2244   Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2245 
2246   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2247     Record.push_back(MDKindID);
2248     StringRef KName = Names[MDKindID];
2249     Record.append(KName.begin(), KName.end());
2250 
2251     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2252     Record.clear();
2253   }
2254 
2255   Stream.ExitBlock();
2256 }
2257 
2258 void ModuleBitcodeWriter::writeOperandBundleTags() {
2259   // Write metadata kinds
2260   //
2261   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2262   //
2263   // OPERAND_BUNDLE_TAG - [strchr x N]
2264 
2265   SmallVector<StringRef, 8> Tags;
2266   M.getOperandBundleTags(Tags);
2267 
2268   if (Tags.empty())
2269     return;
2270 
2271   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2272 
2273   SmallVector<uint64_t, 64> Record;
2274 
2275   for (auto Tag : Tags) {
2276     Record.append(Tag.begin(), Tag.end());
2277 
2278     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2279     Record.clear();
2280   }
2281 
2282   Stream.ExitBlock();
2283 }
2284 
2285 void ModuleBitcodeWriter::writeSyncScopeNames() {
2286   SmallVector<StringRef, 8> SSNs;
2287   M.getContext().getSyncScopeNames(SSNs);
2288   if (SSNs.empty())
2289     return;
2290 
2291   Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2292 
2293   SmallVector<uint64_t, 64> Record;
2294   for (auto SSN : SSNs) {
2295     Record.append(SSN.begin(), SSN.end());
2296     Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2297     Record.clear();
2298   }
2299 
2300   Stream.ExitBlock();
2301 }
2302 
2303 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2304                                          bool isGlobal) {
2305   if (FirstVal == LastVal) return;
2306 
2307   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2308 
2309   unsigned AggregateAbbrev = 0;
2310   unsigned String8Abbrev = 0;
2311   unsigned CString7Abbrev = 0;
2312   unsigned CString6Abbrev = 0;
2313   // If this is a constant pool for the module, emit module-specific abbrevs.
2314   if (isGlobal) {
2315     // Abbrev for CST_CODE_AGGREGATE.
2316     auto Abbv = std::make_shared<BitCodeAbbrev>();
2317     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2318     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2319     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2320     AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2321 
2322     // Abbrev for CST_CODE_STRING.
2323     Abbv = std::make_shared<BitCodeAbbrev>();
2324     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2325     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2326     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2327     String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2328     // Abbrev for CST_CODE_CSTRING.
2329     Abbv = std::make_shared<BitCodeAbbrev>();
2330     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2331     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2332     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2333     CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2334     // Abbrev for CST_CODE_CSTRING.
2335     Abbv = std::make_shared<BitCodeAbbrev>();
2336     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2337     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2338     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2339     CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2340   }
2341 
2342   SmallVector<uint64_t, 64> Record;
2343 
2344   const ValueEnumerator::ValueList &Vals = VE.getValues();
2345   Type *LastTy = nullptr;
2346   for (unsigned i = FirstVal; i != LastVal; ++i) {
2347     const Value *V = Vals[i].first;
2348     // If we need to switch types, do so now.
2349     if (V->getType() != LastTy) {
2350       LastTy = V->getType();
2351       Record.push_back(VE.getTypeID(LastTy));
2352       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2353                         CONSTANTS_SETTYPE_ABBREV);
2354       Record.clear();
2355     }
2356 
2357     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2358       Record.push_back(unsigned(IA->hasSideEffects()) |
2359                        unsigned(IA->isAlignStack()) << 1 |
2360                        unsigned(IA->getDialect()&1) << 2);
2361 
2362       // Add the asm string.
2363       const std::string &AsmStr = IA->getAsmString();
2364       Record.push_back(AsmStr.size());
2365       Record.append(AsmStr.begin(), AsmStr.end());
2366 
2367       // Add the constraint string.
2368       const std::string &ConstraintStr = IA->getConstraintString();
2369       Record.push_back(ConstraintStr.size());
2370       Record.append(ConstraintStr.begin(), ConstraintStr.end());
2371       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2372       Record.clear();
2373       continue;
2374     }
2375     const Constant *C = cast<Constant>(V);
2376     unsigned Code = -1U;
2377     unsigned AbbrevToUse = 0;
2378     if (C->isNullValue()) {
2379       Code = bitc::CST_CODE_NULL;
2380     } else if (isa<UndefValue>(C)) {
2381       Code = bitc::CST_CODE_UNDEF;
2382     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2383       if (IV->getBitWidth() <= 64) {
2384         uint64_t V = IV->getSExtValue();
2385         emitSignedInt64(Record, V);
2386         Code = bitc::CST_CODE_INTEGER;
2387         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2388       } else {                             // Wide integers, > 64 bits in size.
2389         emitWideAPInt(Record, IV->getValue());
2390         Code = bitc::CST_CODE_WIDE_INTEGER;
2391       }
2392     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2393       Code = bitc::CST_CODE_FLOAT;
2394       Type *Ty = CFP->getType();
2395       if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() ||
2396           Ty->isDoubleTy()) {
2397         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2398       } else if (Ty->isX86_FP80Ty()) {
2399         // api needed to prevent premature destruction
2400         // bits are not in the same order as a normal i80 APInt, compensate.
2401         APInt api = CFP->getValueAPF().bitcastToAPInt();
2402         const uint64_t *p = api.getRawData();
2403         Record.push_back((p[1] << 48) | (p[0] >> 16));
2404         Record.push_back(p[0] & 0xffffLL);
2405       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2406         APInt api = CFP->getValueAPF().bitcastToAPInt();
2407         const uint64_t *p = api.getRawData();
2408         Record.push_back(p[0]);
2409         Record.push_back(p[1]);
2410       } else {
2411         assert(0 && "Unknown FP type!");
2412       }
2413     } else if (isa<ConstantDataSequential>(C) &&
2414                cast<ConstantDataSequential>(C)->isString()) {
2415       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2416       // Emit constant strings specially.
2417       unsigned NumElts = Str->getNumElements();
2418       // If this is a null-terminated string, use the denser CSTRING encoding.
2419       if (Str->isCString()) {
2420         Code = bitc::CST_CODE_CSTRING;
2421         --NumElts;  // Don't encode the null, which isn't allowed by char6.
2422       } else {
2423         Code = bitc::CST_CODE_STRING;
2424         AbbrevToUse = String8Abbrev;
2425       }
2426       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2427       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2428       for (unsigned i = 0; i != NumElts; ++i) {
2429         unsigned char V = Str->getElementAsInteger(i);
2430         Record.push_back(V);
2431         isCStr7 &= (V & 128) == 0;
2432         if (isCStrChar6)
2433           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2434       }
2435 
2436       if (isCStrChar6)
2437         AbbrevToUse = CString6Abbrev;
2438       else if (isCStr7)
2439         AbbrevToUse = CString7Abbrev;
2440     } else if (const ConstantDataSequential *CDS =
2441                   dyn_cast<ConstantDataSequential>(C)) {
2442       Code = bitc::CST_CODE_DATA;
2443       Type *EltTy = CDS->getElementType();
2444       if (isa<IntegerType>(EltTy)) {
2445         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2446           Record.push_back(CDS->getElementAsInteger(i));
2447       } else {
2448         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2449           Record.push_back(
2450               CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2451       }
2452     } else if (isa<ConstantAggregate>(C)) {
2453       Code = bitc::CST_CODE_AGGREGATE;
2454       for (const Value *Op : C->operands())
2455         Record.push_back(VE.getValueID(Op));
2456       AbbrevToUse = AggregateAbbrev;
2457     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2458       switch (CE->getOpcode()) {
2459       default:
2460         if (Instruction::isCast(CE->getOpcode())) {
2461           Code = bitc::CST_CODE_CE_CAST;
2462           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2463           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2464           Record.push_back(VE.getValueID(C->getOperand(0)));
2465           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2466         } else {
2467           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2468           Code = bitc::CST_CODE_CE_BINOP;
2469           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2470           Record.push_back(VE.getValueID(C->getOperand(0)));
2471           Record.push_back(VE.getValueID(C->getOperand(1)));
2472           uint64_t Flags = getOptimizationFlags(CE);
2473           if (Flags != 0)
2474             Record.push_back(Flags);
2475         }
2476         break;
2477       case Instruction::FNeg: {
2478         assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
2479         Code = bitc::CST_CODE_CE_UNOP;
2480         Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
2481         Record.push_back(VE.getValueID(C->getOperand(0)));
2482         uint64_t Flags = getOptimizationFlags(CE);
2483         if (Flags != 0)
2484           Record.push_back(Flags);
2485         break;
2486       }
2487       case Instruction::GetElementPtr: {
2488         Code = bitc::CST_CODE_CE_GEP;
2489         const auto *GO = cast<GEPOperator>(C);
2490         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2491         if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
2492           Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2493           Record.push_back((*Idx << 1) | GO->isInBounds());
2494         } else if (GO->isInBounds())
2495           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2496         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2497           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2498           Record.push_back(VE.getValueID(C->getOperand(i)));
2499         }
2500         break;
2501       }
2502       case Instruction::Select:
2503         Code = bitc::CST_CODE_CE_SELECT;
2504         Record.push_back(VE.getValueID(C->getOperand(0)));
2505         Record.push_back(VE.getValueID(C->getOperand(1)));
2506         Record.push_back(VE.getValueID(C->getOperand(2)));
2507         break;
2508       case Instruction::ExtractElement:
2509         Code = bitc::CST_CODE_CE_EXTRACTELT;
2510         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2511         Record.push_back(VE.getValueID(C->getOperand(0)));
2512         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2513         Record.push_back(VE.getValueID(C->getOperand(1)));
2514         break;
2515       case Instruction::InsertElement:
2516         Code = bitc::CST_CODE_CE_INSERTELT;
2517         Record.push_back(VE.getValueID(C->getOperand(0)));
2518         Record.push_back(VE.getValueID(C->getOperand(1)));
2519         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2520         Record.push_back(VE.getValueID(C->getOperand(2)));
2521         break;
2522       case Instruction::ShuffleVector:
2523         // If the return type and argument types are the same, this is a
2524         // standard shufflevector instruction.  If the types are different,
2525         // then the shuffle is widening or truncating the input vectors, and
2526         // the argument type must also be encoded.
2527         if (C->getType() == C->getOperand(0)->getType()) {
2528           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2529         } else {
2530           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2531           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2532         }
2533         Record.push_back(VE.getValueID(C->getOperand(0)));
2534         Record.push_back(VE.getValueID(C->getOperand(1)));
2535         Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode()));
2536         break;
2537       case Instruction::ICmp:
2538       case Instruction::FCmp:
2539         Code = bitc::CST_CODE_CE_CMP;
2540         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2541         Record.push_back(VE.getValueID(C->getOperand(0)));
2542         Record.push_back(VE.getValueID(C->getOperand(1)));
2543         Record.push_back(CE->getPredicate());
2544         break;
2545       }
2546     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2547       Code = bitc::CST_CODE_BLOCKADDRESS;
2548       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2549       Record.push_back(VE.getValueID(BA->getFunction()));
2550       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2551     } else {
2552 #ifndef NDEBUG
2553       C->dump();
2554 #endif
2555       llvm_unreachable("Unknown constant!");
2556     }
2557     Stream.EmitRecord(Code, Record, AbbrevToUse);
2558     Record.clear();
2559   }
2560 
2561   Stream.ExitBlock();
2562 }
2563 
2564 void ModuleBitcodeWriter::writeModuleConstants() {
2565   const ValueEnumerator::ValueList &Vals = VE.getValues();
2566 
2567   // Find the first constant to emit, which is the first non-globalvalue value.
2568   // We know globalvalues have been emitted by WriteModuleInfo.
2569   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2570     if (!isa<GlobalValue>(Vals[i].first)) {
2571       writeConstants(i, Vals.size(), true);
2572       return;
2573     }
2574   }
2575 }
2576 
2577 /// pushValueAndType - The file has to encode both the value and type id for
2578 /// many values, because we need to know what type to create for forward
2579 /// references.  However, most operands are not forward references, so this type
2580 /// field is not needed.
2581 ///
2582 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2583 /// instruction ID, then it is a forward reference, and it also includes the
2584 /// type ID.  The value ID that is written is encoded relative to the InstID.
2585 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2586                                            SmallVectorImpl<unsigned> &Vals) {
2587   unsigned ValID = VE.getValueID(V);
2588   // Make encoding relative to the InstID.
2589   Vals.push_back(InstID - ValID);
2590   if (ValID >= InstID) {
2591     Vals.push_back(VE.getTypeID(V->getType()));
2592     return true;
2593   }
2594   return false;
2595 }
2596 
2597 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS,
2598                                               unsigned InstID) {
2599   SmallVector<unsigned, 64> Record;
2600   LLVMContext &C = CS.getContext();
2601 
2602   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2603     const auto &Bundle = CS.getOperandBundleAt(i);
2604     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2605 
2606     for (auto &Input : Bundle.Inputs)
2607       pushValueAndType(Input, InstID, Record);
2608 
2609     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2610     Record.clear();
2611   }
2612 }
2613 
2614 /// pushValue - Like pushValueAndType, but where the type of the value is
2615 /// omitted (perhaps it was already encoded in an earlier operand).
2616 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2617                                     SmallVectorImpl<unsigned> &Vals) {
2618   unsigned ValID = VE.getValueID(V);
2619   Vals.push_back(InstID - ValID);
2620 }
2621 
2622 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2623                                           SmallVectorImpl<uint64_t> &Vals) {
2624   unsigned ValID = VE.getValueID(V);
2625   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2626   emitSignedInt64(Vals, diff);
2627 }
2628 
2629 /// WriteInstruction - Emit an instruction to the specified stream.
2630 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2631                                            unsigned InstID,
2632                                            SmallVectorImpl<unsigned> &Vals) {
2633   unsigned Code = 0;
2634   unsigned AbbrevToUse = 0;
2635   VE.setInstructionID(&I);
2636   switch (I.getOpcode()) {
2637   default:
2638     if (Instruction::isCast(I.getOpcode())) {
2639       Code = bitc::FUNC_CODE_INST_CAST;
2640       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2641         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2642       Vals.push_back(VE.getTypeID(I.getType()));
2643       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2644     } else {
2645       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2646       Code = bitc::FUNC_CODE_INST_BINOP;
2647       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2648         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2649       pushValue(I.getOperand(1), InstID, Vals);
2650       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2651       uint64_t Flags = getOptimizationFlags(&I);
2652       if (Flags != 0) {
2653         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2654           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2655         Vals.push_back(Flags);
2656       }
2657     }
2658     break;
2659   case Instruction::FNeg: {
2660     Code = bitc::FUNC_CODE_INST_UNOP;
2661     if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2662       AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
2663     Vals.push_back(getEncodedUnaryOpcode(I.getOpcode()));
2664     uint64_t Flags = getOptimizationFlags(&I);
2665     if (Flags != 0) {
2666       if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
2667         AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
2668       Vals.push_back(Flags);
2669     }
2670     break;
2671   }
2672   case Instruction::GetElementPtr: {
2673     Code = bitc::FUNC_CODE_INST_GEP;
2674     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2675     auto &GEPInst = cast<GetElementPtrInst>(I);
2676     Vals.push_back(GEPInst.isInBounds());
2677     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2678     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2679       pushValueAndType(I.getOperand(i), InstID, Vals);
2680     break;
2681   }
2682   case Instruction::ExtractValue: {
2683     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2684     pushValueAndType(I.getOperand(0), InstID, Vals);
2685     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2686     Vals.append(EVI->idx_begin(), EVI->idx_end());
2687     break;
2688   }
2689   case Instruction::InsertValue: {
2690     Code = bitc::FUNC_CODE_INST_INSERTVAL;
2691     pushValueAndType(I.getOperand(0), InstID, Vals);
2692     pushValueAndType(I.getOperand(1), InstID, Vals);
2693     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2694     Vals.append(IVI->idx_begin(), IVI->idx_end());
2695     break;
2696   }
2697   case Instruction::Select: {
2698     Code = bitc::FUNC_CODE_INST_VSELECT;
2699     pushValueAndType(I.getOperand(1), InstID, Vals);
2700     pushValue(I.getOperand(2), InstID, Vals);
2701     pushValueAndType(I.getOperand(0), InstID, Vals);
2702     uint64_t Flags = getOptimizationFlags(&I);
2703     if (Flags != 0)
2704       Vals.push_back(Flags);
2705     break;
2706   }
2707   case Instruction::ExtractElement:
2708     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2709     pushValueAndType(I.getOperand(0), InstID, Vals);
2710     pushValueAndType(I.getOperand(1), InstID, Vals);
2711     break;
2712   case Instruction::InsertElement:
2713     Code = bitc::FUNC_CODE_INST_INSERTELT;
2714     pushValueAndType(I.getOperand(0), InstID, Vals);
2715     pushValue(I.getOperand(1), InstID, Vals);
2716     pushValueAndType(I.getOperand(2), InstID, Vals);
2717     break;
2718   case Instruction::ShuffleVector:
2719     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2720     pushValueAndType(I.getOperand(0), InstID, Vals);
2721     pushValue(I.getOperand(1), InstID, Vals);
2722     pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID,
2723               Vals);
2724     break;
2725   case Instruction::ICmp:
2726   case Instruction::FCmp: {
2727     // compare returning Int1Ty or vector of Int1Ty
2728     Code = bitc::FUNC_CODE_INST_CMP2;
2729     pushValueAndType(I.getOperand(0), InstID, Vals);
2730     pushValue(I.getOperand(1), InstID, Vals);
2731     Vals.push_back(cast<CmpInst>(I).getPredicate());
2732     uint64_t Flags = getOptimizationFlags(&I);
2733     if (Flags != 0)
2734       Vals.push_back(Flags);
2735     break;
2736   }
2737 
2738   case Instruction::Ret:
2739     {
2740       Code = bitc::FUNC_CODE_INST_RET;
2741       unsigned NumOperands = I.getNumOperands();
2742       if (NumOperands == 0)
2743         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2744       else if (NumOperands == 1) {
2745         if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2746           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2747       } else {
2748         for (unsigned i = 0, e = NumOperands; i != e; ++i)
2749           pushValueAndType(I.getOperand(i), InstID, Vals);
2750       }
2751     }
2752     break;
2753   case Instruction::Br:
2754     {
2755       Code = bitc::FUNC_CODE_INST_BR;
2756       const BranchInst &II = cast<BranchInst>(I);
2757       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2758       if (II.isConditional()) {
2759         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2760         pushValue(II.getCondition(), InstID, Vals);
2761       }
2762     }
2763     break;
2764   case Instruction::Switch:
2765     {
2766       Code = bitc::FUNC_CODE_INST_SWITCH;
2767       const SwitchInst &SI = cast<SwitchInst>(I);
2768       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2769       pushValue(SI.getCondition(), InstID, Vals);
2770       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2771       for (auto Case : SI.cases()) {
2772         Vals.push_back(VE.getValueID(Case.getCaseValue()));
2773         Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2774       }
2775     }
2776     break;
2777   case Instruction::IndirectBr:
2778     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2779     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2780     // Encode the address operand as relative, but not the basic blocks.
2781     pushValue(I.getOperand(0), InstID, Vals);
2782     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2783       Vals.push_back(VE.getValueID(I.getOperand(i)));
2784     break;
2785 
2786   case Instruction::Invoke: {
2787     const InvokeInst *II = cast<InvokeInst>(&I);
2788     const Value *Callee = II->getCalledOperand();
2789     FunctionType *FTy = II->getFunctionType();
2790 
2791     if (II->hasOperandBundles())
2792       writeOperandBundles(*II, InstID);
2793 
2794     Code = bitc::FUNC_CODE_INST_INVOKE;
2795 
2796     Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2797     Vals.push_back(II->getCallingConv() | 1 << 13);
2798     Vals.push_back(VE.getValueID(II->getNormalDest()));
2799     Vals.push_back(VE.getValueID(II->getUnwindDest()));
2800     Vals.push_back(VE.getTypeID(FTy));
2801     pushValueAndType(Callee, InstID, Vals);
2802 
2803     // Emit value #'s for the fixed parameters.
2804     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2805       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2806 
2807     // Emit type/value pairs for varargs params.
2808     if (FTy->isVarArg()) {
2809       for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands();
2810            i != e; ++i)
2811         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2812     }
2813     break;
2814   }
2815   case Instruction::Resume:
2816     Code = bitc::FUNC_CODE_INST_RESUME;
2817     pushValueAndType(I.getOperand(0), InstID, Vals);
2818     break;
2819   case Instruction::CleanupRet: {
2820     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2821     const auto &CRI = cast<CleanupReturnInst>(I);
2822     pushValue(CRI.getCleanupPad(), InstID, Vals);
2823     if (CRI.hasUnwindDest())
2824       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2825     break;
2826   }
2827   case Instruction::CatchRet: {
2828     Code = bitc::FUNC_CODE_INST_CATCHRET;
2829     const auto &CRI = cast<CatchReturnInst>(I);
2830     pushValue(CRI.getCatchPad(), InstID, Vals);
2831     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2832     break;
2833   }
2834   case Instruction::CleanupPad:
2835   case Instruction::CatchPad: {
2836     const auto &FuncletPad = cast<FuncletPadInst>(I);
2837     Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2838                                          : bitc::FUNC_CODE_INST_CLEANUPPAD;
2839     pushValue(FuncletPad.getParentPad(), InstID, Vals);
2840 
2841     unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2842     Vals.push_back(NumArgOperands);
2843     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2844       pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2845     break;
2846   }
2847   case Instruction::CatchSwitch: {
2848     Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2849     const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2850 
2851     pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2852 
2853     unsigned NumHandlers = CatchSwitch.getNumHandlers();
2854     Vals.push_back(NumHandlers);
2855     for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2856       Vals.push_back(VE.getValueID(CatchPadBB));
2857 
2858     if (CatchSwitch.hasUnwindDest())
2859       Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2860     break;
2861   }
2862   case Instruction::CallBr: {
2863     const CallBrInst *CBI = cast<CallBrInst>(&I);
2864     const Value *Callee = CBI->getCalledOperand();
2865     FunctionType *FTy = CBI->getFunctionType();
2866 
2867     if (CBI->hasOperandBundles())
2868       writeOperandBundles(*CBI, InstID);
2869 
2870     Code = bitc::FUNC_CODE_INST_CALLBR;
2871 
2872     Vals.push_back(VE.getAttributeListID(CBI->getAttributes()));
2873 
2874     Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV |
2875                    1 << bitc::CALL_EXPLICIT_TYPE);
2876 
2877     Vals.push_back(VE.getValueID(CBI->getDefaultDest()));
2878     Vals.push_back(CBI->getNumIndirectDests());
2879     for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
2880       Vals.push_back(VE.getValueID(CBI->getIndirectDest(i)));
2881 
2882     Vals.push_back(VE.getTypeID(FTy));
2883     pushValueAndType(Callee, InstID, Vals);
2884 
2885     // Emit value #'s for the fixed parameters.
2886     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2887       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2888 
2889     // Emit type/value pairs for varargs params.
2890     if (FTy->isVarArg()) {
2891       for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands();
2892            i != e; ++i)
2893         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2894     }
2895     break;
2896   }
2897   case Instruction::Unreachable:
2898     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2899     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2900     break;
2901 
2902   case Instruction::PHI: {
2903     const PHINode &PN = cast<PHINode>(I);
2904     Code = bitc::FUNC_CODE_INST_PHI;
2905     // With the newer instruction encoding, forward references could give
2906     // negative valued IDs.  This is most common for PHIs, so we use
2907     // signed VBRs.
2908     SmallVector<uint64_t, 128> Vals64;
2909     Vals64.push_back(VE.getTypeID(PN.getType()));
2910     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2911       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2912       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2913     }
2914 
2915     uint64_t Flags = getOptimizationFlags(&I);
2916     if (Flags != 0)
2917       Vals64.push_back(Flags);
2918 
2919     // Emit a Vals64 vector and exit.
2920     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2921     Vals64.clear();
2922     return;
2923   }
2924 
2925   case Instruction::LandingPad: {
2926     const LandingPadInst &LP = cast<LandingPadInst>(I);
2927     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2928     Vals.push_back(VE.getTypeID(LP.getType()));
2929     Vals.push_back(LP.isCleanup());
2930     Vals.push_back(LP.getNumClauses());
2931     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2932       if (LP.isCatch(I))
2933         Vals.push_back(LandingPadInst::Catch);
2934       else
2935         Vals.push_back(LandingPadInst::Filter);
2936       pushValueAndType(LP.getClause(I), InstID, Vals);
2937     }
2938     break;
2939   }
2940 
2941   case Instruction::Alloca: {
2942     Code = bitc::FUNC_CODE_INST_ALLOCA;
2943     const AllocaInst &AI = cast<AllocaInst>(I);
2944     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2945     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2946     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2947     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
2948     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
2949            "not enough bits for maximum alignment");
2950     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2951     AlignRecord |= AI.isUsedWithInAlloca() << 5;
2952     AlignRecord |= 1 << 6;
2953     AlignRecord |= AI.isSwiftError() << 7;
2954     Vals.push_back(AlignRecord);
2955     break;
2956   }
2957 
2958   case Instruction::Load:
2959     if (cast<LoadInst>(I).isAtomic()) {
2960       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2961       pushValueAndType(I.getOperand(0), InstID, Vals);
2962     } else {
2963       Code = bitc::FUNC_CODE_INST_LOAD;
2964       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2965         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
2966     }
2967     Vals.push_back(VE.getTypeID(I.getType()));
2968     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
2969     Vals.push_back(cast<LoadInst>(I).isVolatile());
2970     if (cast<LoadInst>(I).isAtomic()) {
2971       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2972       Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
2973     }
2974     break;
2975   case Instruction::Store:
2976     if (cast<StoreInst>(I).isAtomic())
2977       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2978     else
2979       Code = bitc::FUNC_CODE_INST_STORE;
2980     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2981     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2982     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
2983     Vals.push_back(cast<StoreInst>(I).isVolatile());
2984     if (cast<StoreInst>(I).isAtomic()) {
2985       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2986       Vals.push_back(
2987           getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
2988     }
2989     break;
2990   case Instruction::AtomicCmpXchg:
2991     Code = bitc::FUNC_CODE_INST_CMPXCHG;
2992     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2993     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2994     pushValue(I.getOperand(2), InstID, Vals);        // newval.
2995     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2996     Vals.push_back(
2997         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2998     Vals.push_back(
2999         getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
3000     Vals.push_back(
3001         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
3002     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
3003     break;
3004   case Instruction::AtomicRMW:
3005     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
3006     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3007     pushValue(I.getOperand(1), InstID, Vals);        // val.
3008     Vals.push_back(
3009         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
3010     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
3011     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
3012     Vals.push_back(
3013         getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
3014     break;
3015   case Instruction::Fence:
3016     Code = bitc::FUNC_CODE_INST_FENCE;
3017     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
3018     Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
3019     break;
3020   case Instruction::Call: {
3021     const CallInst &CI = cast<CallInst>(I);
3022     FunctionType *FTy = CI.getFunctionType();
3023 
3024     if (CI.hasOperandBundles())
3025       writeOperandBundles(CI, InstID);
3026 
3027     Code = bitc::FUNC_CODE_INST_CALL;
3028 
3029     Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
3030 
3031     unsigned Flags = getOptimizationFlags(&I);
3032     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
3033                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
3034                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
3035                    1 << bitc::CALL_EXPLICIT_TYPE |
3036                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
3037                    unsigned(Flags != 0) << bitc::CALL_FMF);
3038     if (Flags != 0)
3039       Vals.push_back(Flags);
3040 
3041     Vals.push_back(VE.getTypeID(FTy));
3042     pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
3043 
3044     // Emit value #'s for the fixed parameters.
3045     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3046       // Check for labels (can happen with asm labels).
3047       if (FTy->getParamType(i)->isLabelTy())
3048         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
3049       else
3050         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
3051     }
3052 
3053     // Emit type/value pairs for varargs params.
3054     if (FTy->isVarArg()) {
3055       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
3056            i != e; ++i)
3057         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
3058     }
3059     break;
3060   }
3061   case Instruction::VAArg:
3062     Code = bitc::FUNC_CODE_INST_VAARG;
3063     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
3064     pushValue(I.getOperand(0), InstID, Vals);                   // valist.
3065     Vals.push_back(VE.getTypeID(I.getType())); // restype.
3066     break;
3067   case Instruction::Freeze:
3068     Code = bitc::FUNC_CODE_INST_FREEZE;
3069     pushValueAndType(I.getOperand(0), InstID, Vals);
3070     break;
3071   }
3072 
3073   Stream.EmitRecord(Code, Vals, AbbrevToUse);
3074   Vals.clear();
3075 }
3076 
3077 /// Write a GlobalValue VST to the module. The purpose of this data structure is
3078 /// to allow clients to efficiently find the function body.
3079 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
3080   DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3081   // Get the offset of the VST we are writing, and backpatch it into
3082   // the VST forward declaration record.
3083   uint64_t VSTOffset = Stream.GetCurrentBitNo();
3084   // The BitcodeStartBit was the stream offset of the identification block.
3085   VSTOffset -= bitcodeStartBit();
3086   assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
3087   // Note that we add 1 here because the offset is relative to one word
3088   // before the start of the identification block, which was historically
3089   // always the start of the regular bitcode header.
3090   Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
3091 
3092   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3093 
3094   auto Abbv = std::make_shared<BitCodeAbbrev>();
3095   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
3096   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3097   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
3098   unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3099 
3100   for (const Function &F : M) {
3101     uint64_t Record[2];
3102 
3103     if (F.isDeclaration())
3104       continue;
3105 
3106     Record[0] = VE.getValueID(&F);
3107 
3108     // Save the word offset of the function (from the start of the
3109     // actual bitcode written to the stream).
3110     uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
3111     assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
3112     // Note that we add 1 here because the offset is relative to one word
3113     // before the start of the identification block, which was historically
3114     // always the start of the regular bitcode header.
3115     Record[1] = BitcodeIndex / 32 + 1;
3116 
3117     Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
3118   }
3119 
3120   Stream.ExitBlock();
3121 }
3122 
3123 /// Emit names for arguments, instructions and basic blocks in a function.
3124 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
3125     const ValueSymbolTable &VST) {
3126   if (VST.empty())
3127     return;
3128 
3129   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3130 
3131   // FIXME: Set up the abbrev, we know how many values there are!
3132   // FIXME: We know if the type names can use 7-bit ascii.
3133   SmallVector<uint64_t, 64> NameVals;
3134 
3135   for (const ValueName &Name : VST) {
3136     // Figure out the encoding to use for the name.
3137     StringEncoding Bits = getStringEncoding(Name.getKey());
3138 
3139     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
3140     NameVals.push_back(VE.getValueID(Name.getValue()));
3141 
3142     // VST_CODE_ENTRY:   [valueid, namechar x N]
3143     // VST_CODE_BBENTRY: [bbid, namechar x N]
3144     unsigned Code;
3145     if (isa<BasicBlock>(Name.getValue())) {
3146       Code = bitc::VST_CODE_BBENTRY;
3147       if (Bits == SE_Char6)
3148         AbbrevToUse = VST_BBENTRY_6_ABBREV;
3149     } else {
3150       Code = bitc::VST_CODE_ENTRY;
3151       if (Bits == SE_Char6)
3152         AbbrevToUse = VST_ENTRY_6_ABBREV;
3153       else if (Bits == SE_Fixed7)
3154         AbbrevToUse = VST_ENTRY_7_ABBREV;
3155     }
3156 
3157     for (const auto P : Name.getKey())
3158       NameVals.push_back((unsigned char)P);
3159 
3160     // Emit the finished record.
3161     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
3162     NameVals.clear();
3163   }
3164 
3165   Stream.ExitBlock();
3166 }
3167 
3168 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3169   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3170   unsigned Code;
3171   if (isa<BasicBlock>(Order.V))
3172     Code = bitc::USELIST_CODE_BB;
3173   else
3174     Code = bitc::USELIST_CODE_DEFAULT;
3175 
3176   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3177   Record.push_back(VE.getValueID(Order.V));
3178   Stream.EmitRecord(Code, Record);
3179 }
3180 
3181 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3182   assert(VE.shouldPreserveUseListOrder() &&
3183          "Expected to be preserving use-list order");
3184 
3185   auto hasMore = [&]() {
3186     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3187   };
3188   if (!hasMore())
3189     // Nothing to do.
3190     return;
3191 
3192   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3193   while (hasMore()) {
3194     writeUseList(std::move(VE.UseListOrders.back()));
3195     VE.UseListOrders.pop_back();
3196   }
3197   Stream.ExitBlock();
3198 }
3199 
3200 /// Emit a function body to the module stream.
3201 void ModuleBitcodeWriter::writeFunction(
3202     const Function &F,
3203     DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3204   // Save the bitcode index of the start of this function block for recording
3205   // in the VST.
3206   FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3207 
3208   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3209   VE.incorporateFunction(F);
3210 
3211   SmallVector<unsigned, 64> Vals;
3212 
3213   // Emit the number of basic blocks, so the reader can create them ahead of
3214   // time.
3215   Vals.push_back(VE.getBasicBlocks().size());
3216   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3217   Vals.clear();
3218 
3219   // If there are function-local constants, emit them now.
3220   unsigned CstStart, CstEnd;
3221   VE.getFunctionConstantRange(CstStart, CstEnd);
3222   writeConstants(CstStart, CstEnd, false);
3223 
3224   // If there is function-local metadata, emit it now.
3225   writeFunctionMetadata(F);
3226 
3227   // Keep a running idea of what the instruction ID is.
3228   unsigned InstID = CstEnd;
3229 
3230   bool NeedsMetadataAttachment = F.hasMetadata();
3231 
3232   DILocation *LastDL = nullptr;
3233   // Finally, emit all the instructions, in order.
3234   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
3235     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
3236          I != E; ++I) {
3237       writeInstruction(*I, InstID, Vals);
3238 
3239       if (!I->getType()->isVoidTy())
3240         ++InstID;
3241 
3242       // If the instruction has metadata, write a metadata attachment later.
3243       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
3244 
3245       // If the instruction has a debug location, emit it.
3246       DILocation *DL = I->getDebugLoc();
3247       if (!DL)
3248         continue;
3249 
3250       if (DL == LastDL) {
3251         // Just repeat the same debug loc as last time.
3252         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3253         continue;
3254       }
3255 
3256       Vals.push_back(DL->getLine());
3257       Vals.push_back(DL->getColumn());
3258       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3259       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3260       Vals.push_back(DL->isImplicitCode());
3261       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3262       Vals.clear();
3263 
3264       LastDL = DL;
3265     }
3266 
3267   // Emit names for all the instructions etc.
3268   if (auto *Symtab = F.getValueSymbolTable())
3269     writeFunctionLevelValueSymbolTable(*Symtab);
3270 
3271   if (NeedsMetadataAttachment)
3272     writeFunctionMetadataAttachment(F);
3273   if (VE.shouldPreserveUseListOrder())
3274     writeUseListBlock(&F);
3275   VE.purgeFunction();
3276   Stream.ExitBlock();
3277 }
3278 
3279 // Emit blockinfo, which defines the standard abbreviations etc.
3280 void ModuleBitcodeWriter::writeBlockInfo() {
3281   // We only want to emit block info records for blocks that have multiple
3282   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3283   // Other blocks can define their abbrevs inline.
3284   Stream.EnterBlockInfoBlock();
3285 
3286   { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3287     auto Abbv = std::make_shared<BitCodeAbbrev>();
3288     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3289     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3290     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3291     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3292     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3293         VST_ENTRY_8_ABBREV)
3294       llvm_unreachable("Unexpected abbrev ordering!");
3295   }
3296 
3297   { // 7-bit fixed width VST_CODE_ENTRY strings.
3298     auto Abbv = std::make_shared<BitCodeAbbrev>();
3299     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3300     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3301     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3302     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3303     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3304         VST_ENTRY_7_ABBREV)
3305       llvm_unreachable("Unexpected abbrev ordering!");
3306   }
3307   { // 6-bit char6 VST_CODE_ENTRY strings.
3308     auto Abbv = std::make_shared<BitCodeAbbrev>();
3309     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3310     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3311     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3312     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3313     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3314         VST_ENTRY_6_ABBREV)
3315       llvm_unreachable("Unexpected abbrev ordering!");
3316   }
3317   { // 6-bit char6 VST_CODE_BBENTRY strings.
3318     auto Abbv = std::make_shared<BitCodeAbbrev>();
3319     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3320     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3321     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3322     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3323     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3324         VST_BBENTRY_6_ABBREV)
3325       llvm_unreachable("Unexpected abbrev ordering!");
3326   }
3327 
3328   { // SETTYPE abbrev for CONSTANTS_BLOCK.
3329     auto Abbv = std::make_shared<BitCodeAbbrev>();
3330     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3331     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3332                               VE.computeBitsRequiredForTypeIndicies()));
3333     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3334         CONSTANTS_SETTYPE_ABBREV)
3335       llvm_unreachable("Unexpected abbrev ordering!");
3336   }
3337 
3338   { // INTEGER abbrev for CONSTANTS_BLOCK.
3339     auto Abbv = std::make_shared<BitCodeAbbrev>();
3340     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3341     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3342     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3343         CONSTANTS_INTEGER_ABBREV)
3344       llvm_unreachable("Unexpected abbrev ordering!");
3345   }
3346 
3347   { // CE_CAST abbrev for CONSTANTS_BLOCK.
3348     auto Abbv = std::make_shared<BitCodeAbbrev>();
3349     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3350     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
3351     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
3352                               VE.computeBitsRequiredForTypeIndicies()));
3353     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
3354 
3355     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3356         CONSTANTS_CE_CAST_Abbrev)
3357       llvm_unreachable("Unexpected abbrev ordering!");
3358   }
3359   { // NULL abbrev for CONSTANTS_BLOCK.
3360     auto Abbv = std::make_shared<BitCodeAbbrev>();
3361     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3362     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3363         CONSTANTS_NULL_Abbrev)
3364       llvm_unreachable("Unexpected abbrev ordering!");
3365   }
3366 
3367   // FIXME: This should only use space for first class types!
3368 
3369   { // INST_LOAD abbrev for FUNCTION_BLOCK.
3370     auto Abbv = std::make_shared<BitCodeAbbrev>();
3371     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3372     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3373     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3374                               VE.computeBitsRequiredForTypeIndicies()));
3375     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3376     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3377     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3378         FUNCTION_INST_LOAD_ABBREV)
3379       llvm_unreachable("Unexpected abbrev ordering!");
3380   }
3381   { // INST_UNOP abbrev for FUNCTION_BLOCK.
3382     auto Abbv = std::make_shared<BitCodeAbbrev>();
3383     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3384     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3385     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3386     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3387         FUNCTION_INST_UNOP_ABBREV)
3388       llvm_unreachable("Unexpected abbrev ordering!");
3389   }
3390   { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3391     auto Abbv = std::make_shared<BitCodeAbbrev>();
3392     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3393     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3394     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3395     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3396     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3397         FUNCTION_INST_UNOP_FLAGS_ABBREV)
3398       llvm_unreachable("Unexpected abbrev ordering!");
3399   }
3400   { // INST_BINOP abbrev for FUNCTION_BLOCK.
3401     auto Abbv = std::make_shared<BitCodeAbbrev>();
3402     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3403     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3404     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3405     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3406     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3407         FUNCTION_INST_BINOP_ABBREV)
3408       llvm_unreachable("Unexpected abbrev ordering!");
3409   }
3410   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3411     auto Abbv = std::make_shared<BitCodeAbbrev>();
3412     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3413     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3414     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3415     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3416     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3417     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3418         FUNCTION_INST_BINOP_FLAGS_ABBREV)
3419       llvm_unreachable("Unexpected abbrev ordering!");
3420   }
3421   { // INST_CAST abbrev for FUNCTION_BLOCK.
3422     auto Abbv = std::make_shared<BitCodeAbbrev>();
3423     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3424     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
3425     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
3426                               VE.computeBitsRequiredForTypeIndicies()));
3427     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
3428     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3429         FUNCTION_INST_CAST_ABBREV)
3430       llvm_unreachable("Unexpected abbrev ordering!");
3431   }
3432 
3433   { // INST_RET abbrev for FUNCTION_BLOCK.
3434     auto Abbv = std::make_shared<BitCodeAbbrev>();
3435     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3436     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3437         FUNCTION_INST_RET_VOID_ABBREV)
3438       llvm_unreachable("Unexpected abbrev ordering!");
3439   }
3440   { // INST_RET abbrev for FUNCTION_BLOCK.
3441     auto Abbv = std::make_shared<BitCodeAbbrev>();
3442     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3443     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3444     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3445         FUNCTION_INST_RET_VAL_ABBREV)
3446       llvm_unreachable("Unexpected abbrev ordering!");
3447   }
3448   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3449     auto Abbv = std::make_shared<BitCodeAbbrev>();
3450     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3451     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3452         FUNCTION_INST_UNREACHABLE_ABBREV)
3453       llvm_unreachable("Unexpected abbrev ordering!");
3454   }
3455   {
3456     auto Abbv = std::make_shared<BitCodeAbbrev>();
3457     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3458     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3459     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3460                               Log2_32_Ceil(VE.getTypes().size() + 1)));
3461     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3462     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3463     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3464         FUNCTION_INST_GEP_ABBREV)
3465       llvm_unreachable("Unexpected abbrev ordering!");
3466   }
3467 
3468   Stream.ExitBlock();
3469 }
3470 
3471 /// Write the module path strings, currently only used when generating
3472 /// a combined index file.
3473 void IndexBitcodeWriter::writeModStrings() {
3474   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3475 
3476   // TODO: See which abbrev sizes we actually need to emit
3477 
3478   // 8-bit fixed-width MST_ENTRY strings.
3479   auto Abbv = std::make_shared<BitCodeAbbrev>();
3480   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3481   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3482   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3483   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3484   unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3485 
3486   // 7-bit fixed width MST_ENTRY strings.
3487   Abbv = std::make_shared<BitCodeAbbrev>();
3488   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3489   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3490   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3491   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3492   unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3493 
3494   // 6-bit char6 MST_ENTRY strings.
3495   Abbv = std::make_shared<BitCodeAbbrev>();
3496   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3497   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3498   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3499   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3500   unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3501 
3502   // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3503   Abbv = std::make_shared<BitCodeAbbrev>();
3504   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3505   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3506   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3507   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3508   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3509   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3510   unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3511 
3512   SmallVector<unsigned, 64> Vals;
3513   forEachModule(
3514       [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) {
3515         StringRef Key = MPSE.getKey();
3516         const auto &Value = MPSE.getValue();
3517         StringEncoding Bits = getStringEncoding(Key);
3518         unsigned AbbrevToUse = Abbrev8Bit;
3519         if (Bits == SE_Char6)
3520           AbbrevToUse = Abbrev6Bit;
3521         else if (Bits == SE_Fixed7)
3522           AbbrevToUse = Abbrev7Bit;
3523 
3524         Vals.push_back(Value.first);
3525         Vals.append(Key.begin(), Key.end());
3526 
3527         // Emit the finished record.
3528         Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3529 
3530         // Emit an optional hash for the module now
3531         const auto &Hash = Value.second;
3532         if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3533           Vals.assign(Hash.begin(), Hash.end());
3534           // Emit the hash record.
3535           Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3536         }
3537 
3538         Vals.clear();
3539       });
3540   Stream.ExitBlock();
3541 }
3542 
3543 /// Write the function type metadata related records that need to appear before
3544 /// a function summary entry (whether per-module or combined).
3545 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
3546                                              FunctionSummary *FS) {
3547   if (!FS->type_tests().empty())
3548     Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3549 
3550   SmallVector<uint64_t, 64> Record;
3551 
3552   auto WriteVFuncIdVec = [&](uint64_t Ty,
3553                              ArrayRef<FunctionSummary::VFuncId> VFs) {
3554     if (VFs.empty())
3555       return;
3556     Record.clear();
3557     for (auto &VF : VFs) {
3558       Record.push_back(VF.GUID);
3559       Record.push_back(VF.Offset);
3560     }
3561     Stream.EmitRecord(Ty, Record);
3562   };
3563 
3564   WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3565                   FS->type_test_assume_vcalls());
3566   WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3567                   FS->type_checked_load_vcalls());
3568 
3569   auto WriteConstVCallVec = [&](uint64_t Ty,
3570                                 ArrayRef<FunctionSummary::ConstVCall> VCs) {
3571     for (auto &VC : VCs) {
3572       Record.clear();
3573       Record.push_back(VC.VFunc.GUID);
3574       Record.push_back(VC.VFunc.Offset);
3575       Record.insert(Record.end(), VC.Args.begin(), VC.Args.end());
3576       Stream.EmitRecord(Ty, Record);
3577     }
3578   };
3579 
3580   WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3581                      FS->type_test_assume_const_vcalls());
3582   WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3583                      FS->type_checked_load_const_vcalls());
3584 }
3585 
3586 /// Collect type IDs from type tests used by function.
3587 static void
3588 getReferencedTypeIds(FunctionSummary *FS,
3589                      std::set<GlobalValue::GUID> &ReferencedTypeIds) {
3590   if (!FS->type_tests().empty())
3591     for (auto &TT : FS->type_tests())
3592       ReferencedTypeIds.insert(TT);
3593 
3594   auto GetReferencedTypesFromVFuncIdVec =
3595       [&](ArrayRef<FunctionSummary::VFuncId> VFs) {
3596         for (auto &VF : VFs)
3597           ReferencedTypeIds.insert(VF.GUID);
3598       };
3599 
3600   GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
3601   GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
3602 
3603   auto GetReferencedTypesFromConstVCallVec =
3604       [&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
3605         for (auto &VC : VCs)
3606           ReferencedTypeIds.insert(VC.VFunc.GUID);
3607       };
3608 
3609   GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
3610   GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
3611 }
3612 
3613 static void writeWholeProgramDevirtResolutionByArg(
3614     SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
3615     const WholeProgramDevirtResolution::ByArg &ByArg) {
3616   NameVals.push_back(args.size());
3617   NameVals.insert(NameVals.end(), args.begin(), args.end());
3618 
3619   NameVals.push_back(ByArg.TheKind);
3620   NameVals.push_back(ByArg.Info);
3621   NameVals.push_back(ByArg.Byte);
3622   NameVals.push_back(ByArg.Bit);
3623 }
3624 
3625 static void writeWholeProgramDevirtResolution(
3626     SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3627     uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
3628   NameVals.push_back(Id);
3629 
3630   NameVals.push_back(Wpd.TheKind);
3631   NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
3632   NameVals.push_back(Wpd.SingleImplName.size());
3633 
3634   NameVals.push_back(Wpd.ResByArg.size());
3635   for (auto &A : Wpd.ResByArg)
3636     writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
3637 }
3638 
3639 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
3640                                      StringTableBuilder &StrtabBuilder,
3641                                      const std::string &Id,
3642                                      const TypeIdSummary &Summary) {
3643   NameVals.push_back(StrtabBuilder.add(Id));
3644   NameVals.push_back(Id.size());
3645 
3646   NameVals.push_back(Summary.TTRes.TheKind);
3647   NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
3648   NameVals.push_back(Summary.TTRes.AlignLog2);
3649   NameVals.push_back(Summary.TTRes.SizeM1);
3650   NameVals.push_back(Summary.TTRes.BitMask);
3651   NameVals.push_back(Summary.TTRes.InlineBits);
3652 
3653   for (auto &W : Summary.WPDRes)
3654     writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
3655                                       W.second);
3656 }
3657 
3658 static void writeTypeIdCompatibleVtableSummaryRecord(
3659     SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3660     const std::string &Id, const TypeIdCompatibleVtableInfo &Summary,
3661     ValueEnumerator &VE) {
3662   NameVals.push_back(StrtabBuilder.add(Id));
3663   NameVals.push_back(Id.size());
3664 
3665   for (auto &P : Summary) {
3666     NameVals.push_back(P.AddressPointOffset);
3667     NameVals.push_back(VE.getValueID(P.VTableVI.getValue()));
3668   }
3669 }
3670 
3671 // Helper to emit a single function summary record.
3672 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
3673     SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3674     unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3675     const Function &F) {
3676   NameVals.push_back(ValueID);
3677 
3678   FunctionSummary *FS = cast<FunctionSummary>(Summary);
3679   writeFunctionTypeMetadataRecords(Stream, FS);
3680 
3681   auto SpecialRefCnts = FS->specialRefCounts();
3682   NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3683   NameVals.push_back(FS->instCount());
3684   NameVals.push_back(getEncodedFFlags(FS->fflags()));
3685   NameVals.push_back(FS->refs().size());
3686   NameVals.push_back(SpecialRefCnts.first);  // rorefcnt
3687   NameVals.push_back(SpecialRefCnts.second); // worefcnt
3688 
3689   for (auto &RI : FS->refs())
3690     NameVals.push_back(VE.getValueID(RI.getValue()));
3691 
3692   bool HasProfileData =
3693       F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None;
3694   for (auto &ECI : FS->calls()) {
3695     NameVals.push_back(getValueId(ECI.first));
3696     if (HasProfileData)
3697       NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
3698     else if (WriteRelBFToSummary)
3699       NameVals.push_back(ECI.second.RelBlockFreq);
3700   }
3701 
3702   unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3703   unsigned Code =
3704       (HasProfileData ? bitc::FS_PERMODULE_PROFILE
3705                       : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF
3706                                              : bitc::FS_PERMODULE));
3707 
3708   // Emit the finished record.
3709   Stream.EmitRecord(Code, NameVals, FSAbbrev);
3710   NameVals.clear();
3711 }
3712 
3713 // Collect the global value references in the given variable's initializer,
3714 // and emit them in a summary record.
3715 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
3716     const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3717     unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) {
3718   auto VI = Index->getValueInfo(V.getGUID());
3719   if (!VI || VI.getSummaryList().empty()) {
3720     // Only declarations should not have a summary (a declaration might however
3721     // have a summary if the def was in module level asm).
3722     assert(V.isDeclaration());
3723     return;
3724   }
3725   auto *Summary = VI.getSummaryList()[0].get();
3726   NameVals.push_back(VE.getValueID(&V));
3727   GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3728   NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3729   NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
3730 
3731   auto VTableFuncs = VS->vTableFuncs();
3732   if (!VTableFuncs.empty())
3733     NameVals.push_back(VS->refs().size());
3734 
3735   unsigned SizeBeforeRefs = NameVals.size();
3736   for (auto &RI : VS->refs())
3737     NameVals.push_back(VE.getValueID(RI.getValue()));
3738   // Sort the refs for determinism output, the vector returned by FS->refs() has
3739   // been initialized from a DenseSet.
3740   llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3741 
3742   if (VTableFuncs.empty())
3743     Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
3744                       FSModRefsAbbrev);
3745   else {
3746     // VTableFuncs pairs should already be sorted by offset.
3747     for (auto &P : VTableFuncs) {
3748       NameVals.push_back(VE.getValueID(P.FuncVI.getValue()));
3749       NameVals.push_back(P.VTableOffset);
3750     }
3751 
3752     Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals,
3753                       FSModVTableRefsAbbrev);
3754   }
3755   NameVals.clear();
3756 }
3757 
3758 /// Emit the per-module summary section alongside the rest of
3759 /// the module's bitcode.
3760 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
3761   // By default we compile with ThinLTO if the module has a summary, but the
3762   // client can request full LTO with a module flag.
3763   bool IsThinLTO = true;
3764   if (auto *MD =
3765           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
3766     IsThinLTO = MD->getZExtValue();
3767   Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
3768                                  : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
3769                        4);
3770 
3771   Stream.EmitRecord(
3772       bitc::FS_VERSION,
3773       ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
3774 
3775   // Write the index flags.
3776   uint64_t Flags = 0;
3777   // Bits 1-3 are set only in the combined index, skip them.
3778   if (Index->enableSplitLTOUnit())
3779     Flags |= 0x8;
3780   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
3781 
3782   if (Index->begin() == Index->end()) {
3783     Stream.ExitBlock();
3784     return;
3785   }
3786 
3787   for (const auto &GVI : valueIds()) {
3788     Stream.EmitRecord(bitc::FS_VALUE_GUID,
3789                       ArrayRef<uint64_t>{GVI.second, GVI.first});
3790   }
3791 
3792   // Abbrev for FS_PERMODULE_PROFILE.
3793   auto Abbv = std::make_shared<BitCodeAbbrev>();
3794   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
3795   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3796   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3797   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3798   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3799   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3800   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
3801   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
3802   // numrefs x valueid, n x (valueid, hotness)
3803   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3804   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3805   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3806 
3807   // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF.
3808   Abbv = std::make_shared<BitCodeAbbrev>();
3809   if (WriteRelBFToSummary)
3810     Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
3811   else
3812     Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3813   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3814   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3815   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3816   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3817   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3818   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
3819   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
3820   // numrefs x valueid, n x (valueid [, rel_block_freq])
3821   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3822   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3823   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3824 
3825   // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3826   Abbv = std::make_shared<BitCodeAbbrev>();
3827   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
3828   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3829   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3830   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
3831   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3832   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3833 
3834   // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
3835   Abbv = std::make_shared<BitCodeAbbrev>();
3836   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS));
3837   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3838   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3839   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3840   // numrefs x valueid, n x (valueid , offset)
3841   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3842   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3843   unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3844 
3845   // Abbrev for FS_ALIAS.
3846   Abbv = std::make_shared<BitCodeAbbrev>();
3847   Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3848   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3849   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3850   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3851   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3852 
3853   // Abbrev for FS_TYPE_ID_METADATA
3854   Abbv = std::make_shared<BitCodeAbbrev>();
3855   Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA));
3856   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index
3857   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length
3858   // n x (valueid , offset)
3859   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3860   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3861   unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3862 
3863   SmallVector<uint64_t, 64> NameVals;
3864   // Iterate over the list of functions instead of the Index to
3865   // ensure the ordering is stable.
3866   for (const Function &F : M) {
3867     // Summary emission does not support anonymous functions, they have to
3868     // renamed using the anonymous function renaming pass.
3869     if (!F.hasName())
3870       report_fatal_error("Unexpected anonymous function when writing summary");
3871 
3872     ValueInfo VI = Index->getValueInfo(F.getGUID());
3873     if (!VI || VI.getSummaryList().empty()) {
3874       // Only declarations should not have a summary (a declaration might
3875       // however have a summary if the def was in module level asm).
3876       assert(F.isDeclaration());
3877       continue;
3878     }
3879     auto *Summary = VI.getSummaryList()[0].get();
3880     writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
3881                                         FSCallsAbbrev, FSCallsProfileAbbrev, F);
3882   }
3883 
3884   // Capture references from GlobalVariable initializers, which are outside
3885   // of a function scope.
3886   for (const GlobalVariable &G : M.globals())
3887     writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev,
3888                                FSModVTableRefsAbbrev);
3889 
3890   for (const GlobalAlias &A : M.aliases()) {
3891     auto *Aliasee = A.getBaseObject();
3892     if (!Aliasee->hasName())
3893       // Nameless function don't have an entry in the summary, skip it.
3894       continue;
3895     auto AliasId = VE.getValueID(&A);
3896     auto AliaseeId = VE.getValueID(Aliasee);
3897     NameVals.push_back(AliasId);
3898     auto *Summary = Index->getGlobalValueSummary(A);
3899     AliasSummary *AS = cast<AliasSummary>(Summary);
3900     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3901     NameVals.push_back(AliaseeId);
3902     Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
3903     NameVals.clear();
3904   }
3905 
3906   for (auto &S : Index->typeIdCompatibleVtableMap()) {
3907     writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first,
3908                                              S.second, VE);
3909     Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals,
3910                       TypeIdCompatibleVtableAbbrev);
3911     NameVals.clear();
3912   }
3913 
3914   Stream.ExitBlock();
3915 }
3916 
3917 /// Emit the combined summary section into the combined index file.
3918 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
3919   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
3920   Stream.EmitRecord(
3921       bitc::FS_VERSION,
3922       ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
3923 
3924   // Write the index flags.
3925   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()});
3926 
3927   for (const auto &GVI : valueIds()) {
3928     Stream.EmitRecord(bitc::FS_VALUE_GUID,
3929                       ArrayRef<uint64_t>{GVI.second, GVI.first});
3930   }
3931 
3932   // Abbrev for FS_COMBINED.
3933   auto Abbv = std::make_shared<BitCodeAbbrev>();
3934   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
3935   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3936   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3937   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3938   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3939   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3940   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount
3941   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3942   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
3943   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
3944   // numrefs x valueid, n x (valueid)
3945   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3946   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3947   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3948 
3949   // Abbrev for FS_COMBINED_PROFILE.
3950   Abbv = std::make_shared<BitCodeAbbrev>();
3951   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
3952   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3953   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3954   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3955   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3956   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3957   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount
3958   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3959   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
3960   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
3961   // numrefs x valueid, n x (valueid, hotness)
3962   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3963   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3964   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3965 
3966   // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
3967   Abbv = std::make_shared<BitCodeAbbrev>();
3968   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
3969   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3970   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3971   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3972   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
3973   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3974   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3975 
3976   // Abbrev for FS_COMBINED_ALIAS.
3977   Abbv = std::make_shared<BitCodeAbbrev>();
3978   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
3979   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3980   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3981   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3982   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3983   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3984 
3985   // The aliases are emitted as a post-pass, and will point to the value
3986   // id of the aliasee. Save them in a vector for post-processing.
3987   SmallVector<AliasSummary *, 64> Aliases;
3988 
3989   // Save the value id for each summary for alias emission.
3990   DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
3991 
3992   SmallVector<uint64_t, 64> NameVals;
3993 
3994   // Set that will be populated during call to writeFunctionTypeMetadataRecords
3995   // with the type ids referenced by this index file.
3996   std::set<GlobalValue::GUID> ReferencedTypeIds;
3997 
3998   // For local linkage, we also emit the original name separately
3999   // immediately after the record.
4000   auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
4001     if (!GlobalValue::isLocalLinkage(S.linkage()))
4002       return;
4003     NameVals.push_back(S.getOriginalName());
4004     Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
4005     NameVals.clear();
4006   };
4007 
4008   std::set<GlobalValue::GUID> DefOrUseGUIDs;
4009   forEachSummary([&](GVInfo I, bool IsAliasee) {
4010     GlobalValueSummary *S = I.second;
4011     assert(S);
4012     DefOrUseGUIDs.insert(I.first);
4013     for (const ValueInfo &VI : S->refs())
4014       DefOrUseGUIDs.insert(VI.getGUID());
4015 
4016     auto ValueId = getValueId(I.first);
4017     assert(ValueId);
4018     SummaryToValueIdMap[S] = *ValueId;
4019 
4020     // If this is invoked for an aliasee, we want to record the above
4021     // mapping, but then not emit a summary entry (if the aliasee is
4022     // to be imported, we will invoke this separately with IsAliasee=false).
4023     if (IsAliasee)
4024       return;
4025 
4026     if (auto *AS = dyn_cast<AliasSummary>(S)) {
4027       // Will process aliases as a post-pass because the reader wants all
4028       // global to be loaded first.
4029       Aliases.push_back(AS);
4030       return;
4031     }
4032 
4033     if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
4034       NameVals.push_back(*ValueId);
4035       NameVals.push_back(Index.getModuleId(VS->modulePath()));
4036       NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4037       NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4038       for (auto &RI : VS->refs()) {
4039         auto RefValueId = getValueId(RI.getGUID());
4040         if (!RefValueId)
4041           continue;
4042         NameVals.push_back(*RefValueId);
4043       }
4044 
4045       // Emit the finished record.
4046       Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
4047                         FSModRefsAbbrev);
4048       NameVals.clear();
4049       MaybeEmitOriginalName(*S);
4050       return;
4051     }
4052 
4053     auto *FS = cast<FunctionSummary>(S);
4054     writeFunctionTypeMetadataRecords(Stream, FS);
4055     getReferencedTypeIds(FS, ReferencedTypeIds);
4056 
4057     NameVals.push_back(*ValueId);
4058     NameVals.push_back(Index.getModuleId(FS->modulePath()));
4059     NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
4060     NameVals.push_back(FS->instCount());
4061     NameVals.push_back(getEncodedFFlags(FS->fflags()));
4062     NameVals.push_back(FS->entryCount());
4063 
4064     // Fill in below
4065     NameVals.push_back(0); // numrefs
4066     NameVals.push_back(0); // rorefcnt
4067     NameVals.push_back(0); // worefcnt
4068 
4069     unsigned Count = 0, RORefCnt = 0, WORefCnt = 0;
4070     for (auto &RI : FS->refs()) {
4071       auto RefValueId = getValueId(RI.getGUID());
4072       if (!RefValueId)
4073         continue;
4074       NameVals.push_back(*RefValueId);
4075       if (RI.isReadOnly())
4076         RORefCnt++;
4077       else if (RI.isWriteOnly())
4078         WORefCnt++;
4079       Count++;
4080     }
4081     NameVals[6] = Count;
4082     NameVals[7] = RORefCnt;
4083     NameVals[8] = WORefCnt;
4084 
4085     bool HasProfileData = false;
4086     for (auto &EI : FS->calls()) {
4087       HasProfileData |=
4088           EI.second.getHotness() != CalleeInfo::HotnessType::Unknown;
4089       if (HasProfileData)
4090         break;
4091     }
4092 
4093     for (auto &EI : FS->calls()) {
4094       // If this GUID doesn't have a value id, it doesn't have a function
4095       // summary and we don't need to record any calls to it.
4096       GlobalValue::GUID GUID = EI.first.getGUID();
4097       auto CallValueId = getValueId(GUID);
4098       if (!CallValueId) {
4099         // For SamplePGO, the indirect call targets for local functions will
4100         // have its original name annotated in profile. We try to find the
4101         // corresponding PGOFuncName as the GUID.
4102         GUID = Index.getGUIDFromOriginalID(GUID);
4103         if (GUID == 0)
4104           continue;
4105         CallValueId = getValueId(GUID);
4106         if (!CallValueId)
4107           continue;
4108         // The mapping from OriginalId to GUID may return a GUID
4109         // that corresponds to a static variable. Filter it out here.
4110         // This can happen when
4111         // 1) There is a call to a library function which does not have
4112         // a CallValidId;
4113         // 2) There is a static variable with the  OriginalGUID identical
4114         // to the GUID of the library function in 1);
4115         // When this happens, the logic for SamplePGO kicks in and
4116         // the static variable in 2) will be found, which needs to be
4117         // filtered out.
4118         auto *GVSum = Index.getGlobalValueSummary(GUID, false);
4119         if (GVSum &&
4120             GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind)
4121           continue;
4122       }
4123       NameVals.push_back(*CallValueId);
4124       if (HasProfileData)
4125         NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
4126     }
4127 
4128     unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
4129     unsigned Code =
4130         (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
4131 
4132     // Emit the finished record.
4133     Stream.EmitRecord(Code, NameVals, FSAbbrev);
4134     NameVals.clear();
4135     MaybeEmitOriginalName(*S);
4136   });
4137 
4138   for (auto *AS : Aliases) {
4139     auto AliasValueId = SummaryToValueIdMap[AS];
4140     assert(AliasValueId);
4141     NameVals.push_back(AliasValueId);
4142     NameVals.push_back(Index.getModuleId(AS->modulePath()));
4143     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4144     auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
4145     assert(AliaseeValueId);
4146     NameVals.push_back(AliaseeValueId);
4147 
4148     // Emit the finished record.
4149     Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
4150     NameVals.clear();
4151     MaybeEmitOriginalName(*AS);
4152 
4153     if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
4154       getReferencedTypeIds(FS, ReferencedTypeIds);
4155   }
4156 
4157   if (!Index.cfiFunctionDefs().empty()) {
4158     for (auto &S : Index.cfiFunctionDefs()) {
4159       if (DefOrUseGUIDs.count(
4160               GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4161         NameVals.push_back(StrtabBuilder.add(S));
4162         NameVals.push_back(S.size());
4163       }
4164     }
4165     if (!NameVals.empty()) {
4166       Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
4167       NameVals.clear();
4168     }
4169   }
4170 
4171   if (!Index.cfiFunctionDecls().empty()) {
4172     for (auto &S : Index.cfiFunctionDecls()) {
4173       if (DefOrUseGUIDs.count(
4174               GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4175         NameVals.push_back(StrtabBuilder.add(S));
4176         NameVals.push_back(S.size());
4177       }
4178     }
4179     if (!NameVals.empty()) {
4180       Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
4181       NameVals.clear();
4182     }
4183   }
4184 
4185   // Walk the GUIDs that were referenced, and write the
4186   // corresponding type id records.
4187   for (auto &T : ReferencedTypeIds) {
4188     auto TidIter = Index.typeIds().equal_range(T);
4189     for (auto It = TidIter.first; It != TidIter.second; ++It) {
4190       writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first,
4191                                It->second.second);
4192       Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
4193       NameVals.clear();
4194     }
4195   }
4196 
4197   Stream.ExitBlock();
4198 }
4199 
4200 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
4201 /// current llvm version, and a record for the epoch number.
4202 static void writeIdentificationBlock(BitstreamWriter &Stream) {
4203   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
4204 
4205   // Write the "user readable" string identifying the bitcode producer
4206   auto Abbv = std::make_shared<BitCodeAbbrev>();
4207   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
4208   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4209   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
4210   auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4211   writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
4212                     "LLVM" LLVM_VERSION_STRING, StringAbbrev);
4213 
4214   // Write the epoch version
4215   Abbv = std::make_shared<BitCodeAbbrev>();
4216   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
4217   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4218   auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4219   constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}};
4220   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
4221   Stream.ExitBlock();
4222 }
4223 
4224 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
4225   // Emit the module's hash.
4226   // MODULE_CODE_HASH: [5*i32]
4227   if (GenerateHash) {
4228     uint32_t Vals[5];
4229     Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
4230                                     Buffer.size() - BlockStartPos));
4231     StringRef Hash = Hasher.result();
4232     for (int Pos = 0; Pos < 20; Pos += 4) {
4233       Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
4234     }
4235 
4236     // Emit the finished record.
4237     Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
4238 
4239     if (ModHash)
4240       // Save the written hash value.
4241       llvm::copy(Vals, std::begin(*ModHash));
4242   }
4243 }
4244 
4245 void ModuleBitcodeWriter::write() {
4246   writeIdentificationBlock(Stream);
4247 
4248   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4249   size_t BlockStartPos = Buffer.size();
4250 
4251   writeModuleVersion();
4252 
4253   // Emit blockinfo, which defines the standard abbreviations etc.
4254   writeBlockInfo();
4255 
4256   // Emit information describing all of the types in the module.
4257   writeTypeTable();
4258 
4259   // Emit information about attribute groups.
4260   writeAttributeGroupTable();
4261 
4262   // Emit information about parameter attributes.
4263   writeAttributeTable();
4264 
4265   writeComdats();
4266 
4267   // Emit top-level description of module, including target triple, inline asm,
4268   // descriptors for global variables, and function prototype info.
4269   writeModuleInfo();
4270 
4271   // Emit constants.
4272   writeModuleConstants();
4273 
4274   // Emit metadata kind names.
4275   writeModuleMetadataKinds();
4276 
4277   // Emit metadata.
4278   writeModuleMetadata();
4279 
4280   // Emit module-level use-lists.
4281   if (VE.shouldPreserveUseListOrder())
4282     writeUseListBlock(nullptr);
4283 
4284   writeOperandBundleTags();
4285   writeSyncScopeNames();
4286 
4287   // Emit function bodies.
4288   DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
4289   for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
4290     if (!F->isDeclaration())
4291       writeFunction(*F, FunctionToBitcodeIndex);
4292 
4293   // Need to write after the above call to WriteFunction which populates
4294   // the summary information in the index.
4295   if (Index)
4296     writePerModuleGlobalValueSummary();
4297 
4298   writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
4299 
4300   writeModuleHash(BlockStartPos);
4301 
4302   Stream.ExitBlock();
4303 }
4304 
4305 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
4306                                uint32_t &Position) {
4307   support::endian::write32le(&Buffer[Position], Value);
4308   Position += 4;
4309 }
4310 
4311 /// If generating a bc file on darwin, we have to emit a
4312 /// header and trailer to make it compatible with the system archiver.  To do
4313 /// this we emit the following header, and then emit a trailer that pads the
4314 /// file out to be a multiple of 16 bytes.
4315 ///
4316 /// struct bc_header {
4317 ///   uint32_t Magic;         // 0x0B17C0DE
4318 ///   uint32_t Version;       // Version, currently always 0.
4319 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4320 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
4321 ///   uint32_t CPUType;       // CPU specifier.
4322 ///   ... potentially more later ...
4323 /// };
4324 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
4325                                          const Triple &TT) {
4326   unsigned CPUType = ~0U;
4327 
4328   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4329   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4330   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
4331   // specific constants here because they are implicitly part of the Darwin ABI.
4332   enum {
4333     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
4334     DARWIN_CPU_TYPE_X86        = 7,
4335     DARWIN_CPU_TYPE_ARM        = 12,
4336     DARWIN_CPU_TYPE_POWERPC    = 18
4337   };
4338 
4339   Triple::ArchType Arch = TT.getArch();
4340   if (Arch == Triple::x86_64)
4341     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4342   else if (Arch == Triple::x86)
4343     CPUType = DARWIN_CPU_TYPE_X86;
4344   else if (Arch == Triple::ppc)
4345     CPUType = DARWIN_CPU_TYPE_POWERPC;
4346   else if (Arch == Triple::ppc64)
4347     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4348   else if (Arch == Triple::arm || Arch == Triple::thumb)
4349     CPUType = DARWIN_CPU_TYPE_ARM;
4350 
4351   // Traditional Bitcode starts after header.
4352   assert(Buffer.size() >= BWH_HeaderSize &&
4353          "Expected header size to be reserved");
4354   unsigned BCOffset = BWH_HeaderSize;
4355   unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4356 
4357   // Write the magic and version.
4358   unsigned Position = 0;
4359   writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4360   writeInt32ToBuffer(0, Buffer, Position); // Version.
4361   writeInt32ToBuffer(BCOffset, Buffer, Position);
4362   writeInt32ToBuffer(BCSize, Buffer, Position);
4363   writeInt32ToBuffer(CPUType, Buffer, Position);
4364 
4365   // If the file is not a multiple of 16 bytes, insert dummy padding.
4366   while (Buffer.size() & 15)
4367     Buffer.push_back(0);
4368 }
4369 
4370 /// Helper to write the header common to all bitcode files.
4371 static void writeBitcodeHeader(BitstreamWriter &Stream) {
4372   // Emit the file header.
4373   Stream.Emit((unsigned)'B', 8);
4374   Stream.Emit((unsigned)'C', 8);
4375   Stream.Emit(0x0, 4);
4376   Stream.Emit(0xC, 4);
4377   Stream.Emit(0xE, 4);
4378   Stream.Emit(0xD, 4);
4379 }
4380 
4381 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
4382     : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) {
4383   writeBitcodeHeader(*Stream);
4384 }
4385 
4386 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
4387 
4388 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
4389   Stream->EnterSubblock(Block, 3);
4390 
4391   auto Abbv = std::make_shared<BitCodeAbbrev>();
4392   Abbv->Add(BitCodeAbbrevOp(Record));
4393   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4394   auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
4395 
4396   Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
4397 
4398   Stream->ExitBlock();
4399 }
4400 
4401 void BitcodeWriter::writeSymtab() {
4402   assert(!WroteStrtab && !WroteSymtab);
4403 
4404   // If any module has module-level inline asm, we will require a registered asm
4405   // parser for the target so that we can create an accurate symbol table for
4406   // the module.
4407   for (Module *M : Mods) {
4408     if (M->getModuleInlineAsm().empty())
4409       continue;
4410 
4411     std::string Err;
4412     const Triple TT(M->getTargetTriple());
4413     const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
4414     if (!T || !T->hasMCAsmParser())
4415       return;
4416   }
4417 
4418   WroteSymtab = true;
4419   SmallVector<char, 0> Symtab;
4420   // The irsymtab::build function may be unable to create a symbol table if the
4421   // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4422   // table is not required for correctness, but we still want to be able to
4423   // write malformed modules to bitcode files, so swallow the error.
4424   if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
4425     consumeError(std::move(E));
4426     return;
4427   }
4428 
4429   writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
4430             {Symtab.data(), Symtab.size()});
4431 }
4432 
4433 void BitcodeWriter::writeStrtab() {
4434   assert(!WroteStrtab);
4435 
4436   std::vector<char> Strtab;
4437   StrtabBuilder.finalizeInOrder();
4438   Strtab.resize(StrtabBuilder.getSize());
4439   StrtabBuilder.write((uint8_t *)Strtab.data());
4440 
4441   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
4442             {Strtab.data(), Strtab.size()});
4443 
4444   WroteStrtab = true;
4445 }
4446 
4447 void BitcodeWriter::copyStrtab(StringRef Strtab) {
4448   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
4449   WroteStrtab = true;
4450 }
4451 
4452 void BitcodeWriter::writeModule(const Module &M,
4453                                 bool ShouldPreserveUseListOrder,
4454                                 const ModuleSummaryIndex *Index,
4455                                 bool GenerateHash, ModuleHash *ModHash) {
4456   assert(!WroteStrtab);
4457 
4458   // The Mods vector is used by irsymtab::build, which requires non-const
4459   // Modules in case it needs to materialize metadata. But the bitcode writer
4460   // requires that the module is materialized, so we can cast to non-const here,
4461   // after checking that it is in fact materialized.
4462   assert(M.isMaterialized());
4463   Mods.push_back(const_cast<Module *>(&M));
4464 
4465   ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
4466                                    ShouldPreserveUseListOrder, Index,
4467                                    GenerateHash, ModHash);
4468   ModuleWriter.write();
4469 }
4470 
4471 void BitcodeWriter::writeIndex(
4472     const ModuleSummaryIndex *Index,
4473     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4474   IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
4475                                  ModuleToSummariesForIndex);
4476   IndexWriter.write();
4477 }
4478 
4479 /// Write the specified module to the specified output stream.
4480 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
4481                               bool ShouldPreserveUseListOrder,
4482                               const ModuleSummaryIndex *Index,
4483                               bool GenerateHash, ModuleHash *ModHash) {
4484   SmallVector<char, 0> Buffer;
4485   Buffer.reserve(256*1024);
4486 
4487   // If this is darwin or another generic macho target, reserve space for the
4488   // header.
4489   Triple TT(M.getTargetTriple());
4490   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4491     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
4492 
4493   BitcodeWriter Writer(Buffer);
4494   Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
4495                      ModHash);
4496   Writer.writeSymtab();
4497   Writer.writeStrtab();
4498 
4499   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4500     emitDarwinBCHeaderAndTrailer(Buffer, TT);
4501 
4502   // Write the generated bitstream to "Out".
4503   Out.write((char*)&Buffer.front(), Buffer.size());
4504 }
4505 
4506 void IndexBitcodeWriter::write() {
4507   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4508 
4509   writeModuleVersion();
4510 
4511   // Write the module paths in the combined index.
4512   writeModStrings();
4513 
4514   // Write the summary combined index records.
4515   writeCombinedGlobalValueSummary();
4516 
4517   Stream.ExitBlock();
4518 }
4519 
4520 // Write the specified module summary index to the given raw output stream,
4521 // where it will be written in a new bitcode block. This is used when
4522 // writing the combined index file for ThinLTO. When writing a subset of the
4523 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
4524 void llvm::WriteIndexToFile(
4525     const ModuleSummaryIndex &Index, raw_ostream &Out,
4526     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4527   SmallVector<char, 0> Buffer;
4528   Buffer.reserve(256 * 1024);
4529 
4530   BitcodeWriter Writer(Buffer);
4531   Writer.writeIndex(&Index, ModuleToSummariesForIndex);
4532   Writer.writeStrtab();
4533 
4534   Out.write((char *)&Buffer.front(), Buffer.size());
4535 }
4536 
4537 namespace {
4538 
4539 /// Class to manage the bitcode writing for a thin link bitcode file.
4540 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
4541   /// ModHash is for use in ThinLTO incremental build, generated while writing
4542   /// the module bitcode file.
4543   const ModuleHash *ModHash;
4544 
4545 public:
4546   ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
4547                         BitstreamWriter &Stream,
4548                         const ModuleSummaryIndex &Index,
4549                         const ModuleHash &ModHash)
4550       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
4551                                 /*ShouldPreserveUseListOrder=*/false, &Index),
4552         ModHash(&ModHash) {}
4553 
4554   void write();
4555 
4556 private:
4557   void writeSimplifiedModuleInfo();
4558 };
4559 
4560 } // end anonymous namespace
4561 
4562 // This function writes a simpilified module info for thin link bitcode file.
4563 // It only contains the source file name along with the name(the offset and
4564 // size in strtab) and linkage for global values. For the global value info
4565 // entry, in order to keep linkage at offset 5, there are three zeros used
4566 // as padding.
4567 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
4568   SmallVector<unsigned, 64> Vals;
4569   // Emit the module's source file name.
4570   {
4571     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
4572     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
4573     if (Bits == SE_Char6)
4574       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
4575     else if (Bits == SE_Fixed7)
4576       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
4577 
4578     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4579     auto Abbv = std::make_shared<BitCodeAbbrev>();
4580     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
4581     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4582     Abbv->Add(AbbrevOpToUse);
4583     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4584 
4585     for (const auto P : M.getSourceFileName())
4586       Vals.push_back((unsigned char)P);
4587 
4588     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
4589     Vals.clear();
4590   }
4591 
4592   // Emit the global variable information.
4593   for (const GlobalVariable &GV : M.globals()) {
4594     // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
4595     Vals.push_back(StrtabBuilder.add(GV.getName()));
4596     Vals.push_back(GV.getName().size());
4597     Vals.push_back(0);
4598     Vals.push_back(0);
4599     Vals.push_back(0);
4600     Vals.push_back(getEncodedLinkage(GV));
4601 
4602     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
4603     Vals.clear();
4604   }
4605 
4606   // Emit the function proto information.
4607   for (const Function &F : M) {
4608     // FUNCTION:  [strtab offset, strtab size, 0, 0, 0, linkage]
4609     Vals.push_back(StrtabBuilder.add(F.getName()));
4610     Vals.push_back(F.getName().size());
4611     Vals.push_back(0);
4612     Vals.push_back(0);
4613     Vals.push_back(0);
4614     Vals.push_back(getEncodedLinkage(F));
4615 
4616     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
4617     Vals.clear();
4618   }
4619 
4620   // Emit the alias information.
4621   for (const GlobalAlias &A : M.aliases()) {
4622     // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
4623     Vals.push_back(StrtabBuilder.add(A.getName()));
4624     Vals.push_back(A.getName().size());
4625     Vals.push_back(0);
4626     Vals.push_back(0);
4627     Vals.push_back(0);
4628     Vals.push_back(getEncodedLinkage(A));
4629 
4630     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
4631     Vals.clear();
4632   }
4633 
4634   // Emit the ifunc information.
4635   for (const GlobalIFunc &I : M.ifuncs()) {
4636     // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
4637     Vals.push_back(StrtabBuilder.add(I.getName()));
4638     Vals.push_back(I.getName().size());
4639     Vals.push_back(0);
4640     Vals.push_back(0);
4641     Vals.push_back(0);
4642     Vals.push_back(getEncodedLinkage(I));
4643 
4644     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
4645     Vals.clear();
4646   }
4647 }
4648 
4649 void ThinLinkBitcodeWriter::write() {
4650   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4651 
4652   writeModuleVersion();
4653 
4654   writeSimplifiedModuleInfo();
4655 
4656   writePerModuleGlobalValueSummary();
4657 
4658   // Write module hash.
4659   Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
4660 
4661   Stream.ExitBlock();
4662 }
4663 
4664 void BitcodeWriter::writeThinLinkBitcode(const Module &M,
4665                                          const ModuleSummaryIndex &Index,
4666                                          const ModuleHash &ModHash) {
4667   assert(!WroteStrtab);
4668 
4669   // The Mods vector is used by irsymtab::build, which requires non-const
4670   // Modules in case it needs to materialize metadata. But the bitcode writer
4671   // requires that the module is materialized, so we can cast to non-const here,
4672   // after checking that it is in fact materialized.
4673   assert(M.isMaterialized());
4674   Mods.push_back(const_cast<Module *>(&M));
4675 
4676   ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
4677                                        ModHash);
4678   ThinLinkWriter.write();
4679 }
4680 
4681 // Write the specified thin link bitcode file to the given raw output stream,
4682 // where it will be written in a new bitcode block. This is used when
4683 // writing the per-module index file for ThinLTO.
4684 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
4685                                       const ModuleSummaryIndex &Index,
4686                                       const ModuleHash &ModHash) {
4687   SmallVector<char, 0> Buffer;
4688   Buffer.reserve(256 * 1024);
4689 
4690   BitcodeWriter Writer(Buffer);
4691   Writer.writeThinLinkBitcode(M, Index, ModHash);
4692   Writer.writeSymtab();
4693   Writer.writeStrtab();
4694 
4695   Out.write((char *)&Buffer.front(), Buffer.size());
4696 }
4697 
4698 static const char *getSectionNameForBitcode(const Triple &T) {
4699   switch (T.getObjectFormat()) {
4700   case Triple::MachO:
4701     return "__LLVM,__bitcode";
4702   case Triple::COFF:
4703   case Triple::ELF:
4704   case Triple::Wasm:
4705   case Triple::UnknownObjectFormat:
4706     return ".llvmbc";
4707   case Triple::XCOFF:
4708     llvm_unreachable("XCOFF is not yet implemented");
4709     break;
4710   }
4711   llvm_unreachable("Unimplemented ObjectFormatType");
4712 }
4713 
4714 static const char *getSectionNameForCommandline(const Triple &T) {
4715   switch (T.getObjectFormat()) {
4716   case Triple::MachO:
4717     return "__LLVM,__cmdline";
4718   case Triple::COFF:
4719   case Triple::ELF:
4720   case Triple::Wasm:
4721   case Triple::UnknownObjectFormat:
4722     return ".llvmcmd";
4723   case Triple::XCOFF:
4724     llvm_unreachable("XCOFF is not yet implemented");
4725     break;
4726   }
4727   llvm_unreachable("Unimplemented ObjectFormatType");
4728 }
4729 
4730 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf,
4731                                 bool EmbedBitcode, bool EmbedMarker,
4732                                 const std::vector<uint8_t> *CmdArgs) {
4733   // Save llvm.compiler.used and remove it.
4734   SmallVector<Constant *, 2> UsedArray;
4735   SmallPtrSet<GlobalValue *, 4> UsedGlobals;
4736   Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0);
4737   GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true);
4738   for (auto *GV : UsedGlobals) {
4739     if (GV->getName() != "llvm.embedded.module" &&
4740         GV->getName() != "llvm.cmdline")
4741       UsedArray.push_back(
4742           ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
4743   }
4744   if (Used)
4745     Used->eraseFromParent();
4746 
4747   // Embed the bitcode for the llvm module.
4748   std::string Data;
4749   ArrayRef<uint8_t> ModuleData;
4750   Triple T(M.getTargetTriple());
4751   // Create a constant that contains the bitcode.
4752   // In case of embedding a marker, ignore the input Buf and use the empty
4753   // ArrayRef. It is also legal to create a bitcode marker even Buf is empty.
4754   if (EmbedBitcode) {
4755     if (!isBitcode((const unsigned char *)Buf.getBufferStart(),
4756                    (const unsigned char *)Buf.getBufferEnd())) {
4757       // If the input is LLVM Assembly, bitcode is produced by serializing
4758       // the module. Use-lists order need to be preserved in this case.
4759       llvm::raw_string_ostream OS(Data);
4760       llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true);
4761       ModuleData =
4762           ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
4763     } else
4764       // If the input is LLVM bitcode, write the input byte stream directly.
4765       ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
4766                                      Buf.getBufferSize());
4767   }
4768   llvm::Constant *ModuleConstant =
4769       llvm::ConstantDataArray::get(M.getContext(), ModuleData);
4770   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
4771       M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
4772       ModuleConstant);
4773   GV->setSection(getSectionNameForBitcode(T));
4774   UsedArray.push_back(
4775       ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
4776   if (llvm::GlobalVariable *Old =
4777           M.getGlobalVariable("llvm.embedded.module", true)) {
4778     assert(Old->hasOneUse() &&
4779            "llvm.embedded.module can only be used once in llvm.compiler.used");
4780     GV->takeName(Old);
4781     Old->eraseFromParent();
4782   } else {
4783     GV->setName("llvm.embedded.module");
4784   }
4785 
4786   // Skip if only bitcode needs to be embedded.
4787   if (EmbedMarker) {
4788     // Embed command-line options.
4789     ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs->data()),
4790                               CmdArgs->size());
4791     llvm::Constant *CmdConstant =
4792         llvm::ConstantDataArray::get(M.getContext(), CmdData);
4793     GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true,
4794                                   llvm::GlobalValue::PrivateLinkage,
4795                                   CmdConstant);
4796     GV->setSection(getSectionNameForCommandline(T));
4797     UsedArray.push_back(
4798         ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
4799     if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) {
4800       assert(Old->hasOneUse() &&
4801              "llvm.cmdline can only be used once in llvm.compiler.used");
4802       GV->takeName(Old);
4803       Old->eraseFromParent();
4804     } else {
4805       GV->setName("llvm.cmdline");
4806     }
4807   }
4808 
4809   if (UsedArray.empty())
4810     return;
4811 
4812   // Recreate llvm.compiler.used.
4813   ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size());
4814   auto *NewUsed = new GlobalVariable(
4815       M, ATy, false, llvm::GlobalValue::AppendingLinkage,
4816       llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
4817   NewUsed->setSection("llvm.metadata");
4818 }
4819