xref: /llvm-project/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp (revision cea84ab93aeb079a358ab1c8aeba6d9140ef8b47)
1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Bitcode writer implementation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Bitcode/BitcodeWriter.h"
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/Bitcode/BitCodes.h"
28 #include "llvm/Bitcode/BitstreamWriter.h"
29 #include "llvm/Bitcode/LLVMBitCodes.h"
30 #include "llvm/Config/llvm-config.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Comdat.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalIFunc.h"
43 #include "llvm/IR/GlobalObject.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSummaryIndex.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/UseListOrder.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/MC/StringTableBuilder.h"
60 #include "llvm/Object/IRSymtab.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Endian.h"
65 #include "llvm/Support/Error.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/SHA1.h"
69 #include "llvm/Support/TargetRegistry.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstddef>
74 #include <cstdint>
75 #include <iterator>
76 #include <map>
77 #include <memory>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 static cl::opt<unsigned>
85     IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
86                    cl::desc("Number of metadatas above which we emit an index "
87                             "to enable lazy-loading"));
88 
89 cl::opt<bool> WriteRelBFToSummary(
90     "write-relbf-to-summary", cl::Hidden, cl::init(false),
91     cl::desc("Write relative block frequency to function summary "));
92 
93 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
94 
95 namespace {
96 
97 /// These are manifest constants used by the bitcode writer. They do not need to
98 /// be kept in sync with the reader, but need to be consistent within this file.
99 enum {
100   // VALUE_SYMTAB_BLOCK abbrev id's.
101   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
102   VST_ENTRY_7_ABBREV,
103   VST_ENTRY_6_ABBREV,
104   VST_BBENTRY_6_ABBREV,
105 
106   // CONSTANTS_BLOCK abbrev id's.
107   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
108   CONSTANTS_INTEGER_ABBREV,
109   CONSTANTS_CE_CAST_Abbrev,
110   CONSTANTS_NULL_Abbrev,
111 
112   // FUNCTION_BLOCK abbrev id's.
113   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
114   FUNCTION_INST_UNOP_ABBREV,
115   FUNCTION_INST_UNOP_FLAGS_ABBREV,
116   FUNCTION_INST_BINOP_ABBREV,
117   FUNCTION_INST_BINOP_FLAGS_ABBREV,
118   FUNCTION_INST_CAST_ABBREV,
119   FUNCTION_INST_RET_VOID_ABBREV,
120   FUNCTION_INST_RET_VAL_ABBREV,
121   FUNCTION_INST_UNREACHABLE_ABBREV,
122   FUNCTION_INST_GEP_ABBREV,
123 };
124 
125 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
126 /// file type.
127 class BitcodeWriterBase {
128 protected:
129   /// The stream created and owned by the client.
130   BitstreamWriter &Stream;
131 
132   StringTableBuilder &StrtabBuilder;
133 
134 public:
135   /// Constructs a BitcodeWriterBase object that writes to the provided
136   /// \p Stream.
137   BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
138       : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
139 
140 protected:
141   void writeBitcodeHeader();
142   void writeModuleVersion();
143 };
144 
145 void BitcodeWriterBase::writeModuleVersion() {
146   // VERSION: [version#]
147   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
148 }
149 
150 /// Base class to manage the module bitcode writing, currently subclassed for
151 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
152 class ModuleBitcodeWriterBase : public BitcodeWriterBase {
153 protected:
154   /// The Module to write to bitcode.
155   const Module &M;
156 
157   /// Enumerates ids for all values in the module.
158   ValueEnumerator VE;
159 
160   /// Optional per-module index to write for ThinLTO.
161   const ModuleSummaryIndex *Index;
162 
163   /// Map that holds the correspondence between GUIDs in the summary index,
164   /// that came from indirect call profiles, and a value id generated by this
165   /// class to use in the VST and summary block records.
166   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
167 
168   /// Tracks the last value id recorded in the GUIDToValueMap.
169   unsigned GlobalValueId;
170 
171   /// Saves the offset of the VSTOffset record that must eventually be
172   /// backpatched with the offset of the actual VST.
173   uint64_t VSTOffsetPlaceholder = 0;
174 
175 public:
176   /// Constructs a ModuleBitcodeWriterBase object for the given Module,
177   /// writing to the provided \p Buffer.
178   ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
179                           BitstreamWriter &Stream,
180                           bool ShouldPreserveUseListOrder,
181                           const ModuleSummaryIndex *Index)
182       : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
183         VE(M, ShouldPreserveUseListOrder), Index(Index) {
184     // Assign ValueIds to any callee values in the index that came from
185     // indirect call profiles and were recorded as a GUID not a Value*
186     // (which would have been assigned an ID by the ValueEnumerator).
187     // The starting ValueId is just after the number of values in the
188     // ValueEnumerator, so that they can be emitted in the VST.
189     GlobalValueId = VE.getValues().size();
190     if (!Index)
191       return;
192     for (const auto &GUIDSummaryLists : *Index)
193       // Examine all summaries for this GUID.
194       for (auto &Summary : GUIDSummaryLists.second.SummaryList)
195         if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
196           // For each call in the function summary, see if the call
197           // is to a GUID (which means it is for an indirect call,
198           // otherwise we would have a Value for it). If so, synthesize
199           // a value id.
200           for (auto &CallEdge : FS->calls())
201             if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
202               assignValueId(CallEdge.first.getGUID());
203   }
204 
205 protected:
206   void writePerModuleGlobalValueSummary();
207 
208 private:
209   void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
210                                            GlobalValueSummary *Summary,
211                                            unsigned ValueID,
212                                            unsigned FSCallsAbbrev,
213                                            unsigned FSCallsProfileAbbrev,
214                                            const Function &F);
215   void writeModuleLevelReferences(const GlobalVariable &V,
216                                   SmallVector<uint64_t, 64> &NameVals,
217                                   unsigned FSModRefsAbbrev);
218 
219   void assignValueId(GlobalValue::GUID ValGUID) {
220     GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
221   }
222 
223   unsigned getValueId(GlobalValue::GUID ValGUID) {
224     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
225     // Expect that any GUID value had a value Id assigned by an
226     // earlier call to assignValueId.
227     assert(VMI != GUIDToValueIdMap.end() &&
228            "GUID does not have assigned value Id");
229     return VMI->second;
230   }
231 
232   // Helper to get the valueId for the type of value recorded in VI.
233   unsigned getValueId(ValueInfo VI) {
234     if (!VI.haveGVs() || !VI.getValue())
235       return getValueId(VI.getGUID());
236     return VE.getValueID(VI.getValue());
237   }
238 
239   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
240 };
241 
242 /// Class to manage the bitcode writing for a module.
243 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
244   /// Pointer to the buffer allocated by caller for bitcode writing.
245   const SmallVectorImpl<char> &Buffer;
246 
247   /// True if a module hash record should be written.
248   bool GenerateHash;
249 
250   /// If non-null, when GenerateHash is true, the resulting hash is written
251   /// into ModHash.
252   ModuleHash *ModHash;
253 
254   SHA1 Hasher;
255 
256   /// The start bit of the identification block.
257   uint64_t BitcodeStartBit;
258 
259 public:
260   /// Constructs a ModuleBitcodeWriter object for the given Module,
261   /// writing to the provided \p Buffer.
262   ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
263                       StringTableBuilder &StrtabBuilder,
264                       BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
265                       const ModuleSummaryIndex *Index, bool GenerateHash,
266                       ModuleHash *ModHash = nullptr)
267       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
268                                 ShouldPreserveUseListOrder, Index),
269         Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
270         BitcodeStartBit(Stream.GetCurrentBitNo()) {}
271 
272   /// Emit the current module to the bitstream.
273   void write();
274 
275 private:
276   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
277 
278   size_t addToStrtab(StringRef Str);
279 
280   void writeAttributeGroupTable();
281   void writeAttributeTable();
282   void writeTypeTable();
283   void writeComdats();
284   void writeValueSymbolTableForwardDecl();
285   void writeModuleInfo();
286   void writeValueAsMetadata(const ValueAsMetadata *MD,
287                             SmallVectorImpl<uint64_t> &Record);
288   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
289                     unsigned Abbrev);
290   unsigned createDILocationAbbrev();
291   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
292                        unsigned &Abbrev);
293   unsigned createGenericDINodeAbbrev();
294   void writeGenericDINode(const GenericDINode *N,
295                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
296   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
297                        unsigned Abbrev);
298   void writeDIEnumerator(const DIEnumerator *N,
299                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
300   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
301                         unsigned Abbrev);
302   void writeDIDerivedType(const DIDerivedType *N,
303                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
304   void writeDICompositeType(const DICompositeType *N,
305                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
306   void writeDISubroutineType(const DISubroutineType *N,
307                              SmallVectorImpl<uint64_t> &Record,
308                              unsigned Abbrev);
309   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
310                    unsigned Abbrev);
311   void writeDICompileUnit(const DICompileUnit *N,
312                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
313   void writeDISubprogram(const DISubprogram *N,
314                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
315   void writeDILexicalBlock(const DILexicalBlock *N,
316                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
317   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
318                                SmallVectorImpl<uint64_t> &Record,
319                                unsigned Abbrev);
320   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
321                         unsigned Abbrev);
322   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
323                     unsigned Abbrev);
324   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
325                         unsigned Abbrev);
326   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
327                      unsigned Abbrev);
328   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
329                                     SmallVectorImpl<uint64_t> &Record,
330                                     unsigned Abbrev);
331   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
332                                      SmallVectorImpl<uint64_t> &Record,
333                                      unsigned Abbrev);
334   void writeDIGlobalVariable(const DIGlobalVariable *N,
335                              SmallVectorImpl<uint64_t> &Record,
336                              unsigned Abbrev);
337   void writeDILocalVariable(const DILocalVariable *N,
338                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
339   void writeDILabel(const DILabel *N,
340                     SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
341   void writeDIExpression(const DIExpression *N,
342                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
343   void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
344                                        SmallVectorImpl<uint64_t> &Record,
345                                        unsigned Abbrev);
346   void writeDIObjCProperty(const DIObjCProperty *N,
347                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
348   void writeDIImportedEntity(const DIImportedEntity *N,
349                              SmallVectorImpl<uint64_t> &Record,
350                              unsigned Abbrev);
351   unsigned createNamedMetadataAbbrev();
352   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
353   unsigned createMetadataStringsAbbrev();
354   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
355                             SmallVectorImpl<uint64_t> &Record);
356   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
357                             SmallVectorImpl<uint64_t> &Record,
358                             std::vector<unsigned> *MDAbbrevs = nullptr,
359                             std::vector<uint64_t> *IndexPos = nullptr);
360   void writeModuleMetadata();
361   void writeFunctionMetadata(const Function &F);
362   void writeFunctionMetadataAttachment(const Function &F);
363   void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
364   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
365                                     const GlobalObject &GO);
366   void writeModuleMetadataKinds();
367   void writeOperandBundleTags();
368   void writeSyncScopeNames();
369   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
370   void writeModuleConstants();
371   bool pushValueAndType(const Value *V, unsigned InstID,
372                         SmallVectorImpl<unsigned> &Vals);
373   void writeOperandBundles(ImmutableCallSite CS, unsigned InstID);
374   void pushValue(const Value *V, unsigned InstID,
375                  SmallVectorImpl<unsigned> &Vals);
376   void pushValueSigned(const Value *V, unsigned InstID,
377                        SmallVectorImpl<uint64_t> &Vals);
378   void writeInstruction(const Instruction &I, unsigned InstID,
379                         SmallVectorImpl<unsigned> &Vals);
380   void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
381   void writeGlobalValueSymbolTable(
382       DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
383   void writeUseList(UseListOrder &&Order);
384   void writeUseListBlock(const Function *F);
385   void
386   writeFunction(const Function &F,
387                 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
388   void writeBlockInfo();
389   void writeModuleHash(size_t BlockStartPos);
390 
391   unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
392     return unsigned(SSID);
393   }
394 };
395 
396 /// Class to manage the bitcode writing for a combined index.
397 class IndexBitcodeWriter : public BitcodeWriterBase {
398   /// The combined index to write to bitcode.
399   const ModuleSummaryIndex &Index;
400 
401   /// When writing a subset of the index for distributed backends, client
402   /// provides a map of modules to the corresponding GUIDs/summaries to write.
403   const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
404 
405   /// Map that holds the correspondence between the GUID used in the combined
406   /// index and a value id generated by this class to use in references.
407   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
408 
409   /// Tracks the last value id recorded in the GUIDToValueMap.
410   unsigned GlobalValueId = 0;
411 
412 public:
413   /// Constructs a IndexBitcodeWriter object for the given combined index,
414   /// writing to the provided \p Buffer. When writing a subset of the index
415   /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
416   IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
417                      const ModuleSummaryIndex &Index,
418                      const std::map<std::string, GVSummaryMapTy>
419                          *ModuleToSummariesForIndex = nullptr)
420       : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
421         ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
422     // Assign unique value ids to all summaries to be written, for use
423     // in writing out the call graph edges. Save the mapping from GUID
424     // to the new global value id to use when writing those edges, which
425     // are currently saved in the index in terms of GUID.
426     forEachSummary([&](GVInfo I, bool) {
427       GUIDToValueIdMap[I.first] = ++GlobalValueId;
428     });
429   }
430 
431   /// The below iterator returns the GUID and associated summary.
432   using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
433 
434   /// Calls the callback for each value GUID and summary to be written to
435   /// bitcode. This hides the details of whether they are being pulled from the
436   /// entire index or just those in a provided ModuleToSummariesForIndex map.
437   template<typename Functor>
438   void forEachSummary(Functor Callback) {
439     if (ModuleToSummariesForIndex) {
440       for (auto &M : *ModuleToSummariesForIndex)
441         for (auto &Summary : M.second) {
442           Callback(Summary, false);
443           // Ensure aliasee is handled, e.g. for assigning a valueId,
444           // even if we are not importing the aliasee directly (the
445           // imported alias will contain a copy of aliasee).
446           if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
447             Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
448         }
449     } else {
450       for (auto &Summaries : Index)
451         for (auto &Summary : Summaries.second.SummaryList)
452           Callback({Summaries.first, Summary.get()}, false);
453     }
454   }
455 
456   /// Calls the callback for each entry in the modulePaths StringMap that
457   /// should be written to the module path string table. This hides the details
458   /// of whether they are being pulled from the entire index or just those in a
459   /// provided ModuleToSummariesForIndex map.
460   template <typename Functor> void forEachModule(Functor Callback) {
461     if (ModuleToSummariesForIndex) {
462       for (const auto &M : *ModuleToSummariesForIndex) {
463         const auto &MPI = Index.modulePaths().find(M.first);
464         if (MPI == Index.modulePaths().end()) {
465           // This should only happen if the bitcode file was empty, in which
466           // case we shouldn't be importing (the ModuleToSummariesForIndex
467           // would only include the module we are writing and index for).
468           assert(ModuleToSummariesForIndex->size() == 1);
469           continue;
470         }
471         Callback(*MPI);
472       }
473     } else {
474       for (const auto &MPSE : Index.modulePaths())
475         Callback(MPSE);
476     }
477   }
478 
479   /// Main entry point for writing a combined index to bitcode.
480   void write();
481 
482 private:
483   void writeModStrings();
484   void writeCombinedGlobalValueSummary();
485 
486   Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
487     auto VMI = GUIDToValueIdMap.find(ValGUID);
488     if (VMI == GUIDToValueIdMap.end())
489       return None;
490     return VMI->second;
491   }
492 
493   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
494 };
495 
496 } // end anonymous namespace
497 
498 static unsigned getEncodedCastOpcode(unsigned Opcode) {
499   switch (Opcode) {
500   default: llvm_unreachable("Unknown cast instruction!");
501   case Instruction::Trunc   : return bitc::CAST_TRUNC;
502   case Instruction::ZExt    : return bitc::CAST_ZEXT;
503   case Instruction::SExt    : return bitc::CAST_SEXT;
504   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
505   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
506   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
507   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
508   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
509   case Instruction::FPExt   : return bitc::CAST_FPEXT;
510   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
511   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
512   case Instruction::BitCast : return bitc::CAST_BITCAST;
513   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
514   }
515 }
516 
517 static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
518   switch (Opcode) {
519   default: llvm_unreachable("Unknown binary instruction!");
520   case Instruction::FNeg: return bitc::UNOP_NEG;
521   }
522 }
523 
524 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
525   switch (Opcode) {
526   default: llvm_unreachable("Unknown binary instruction!");
527   case Instruction::Add:
528   case Instruction::FAdd: return bitc::BINOP_ADD;
529   case Instruction::Sub:
530   case Instruction::FSub: return bitc::BINOP_SUB;
531   case Instruction::Mul:
532   case Instruction::FMul: return bitc::BINOP_MUL;
533   case Instruction::UDiv: return bitc::BINOP_UDIV;
534   case Instruction::FDiv:
535   case Instruction::SDiv: return bitc::BINOP_SDIV;
536   case Instruction::URem: return bitc::BINOP_UREM;
537   case Instruction::FRem:
538   case Instruction::SRem: return bitc::BINOP_SREM;
539   case Instruction::Shl:  return bitc::BINOP_SHL;
540   case Instruction::LShr: return bitc::BINOP_LSHR;
541   case Instruction::AShr: return bitc::BINOP_ASHR;
542   case Instruction::And:  return bitc::BINOP_AND;
543   case Instruction::Or:   return bitc::BINOP_OR;
544   case Instruction::Xor:  return bitc::BINOP_XOR;
545   }
546 }
547 
548 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
549   switch (Op) {
550   default: llvm_unreachable("Unknown RMW operation!");
551   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
552   case AtomicRMWInst::Add: return bitc::RMW_ADD;
553   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
554   case AtomicRMWInst::And: return bitc::RMW_AND;
555   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
556   case AtomicRMWInst::Or: return bitc::RMW_OR;
557   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
558   case AtomicRMWInst::Max: return bitc::RMW_MAX;
559   case AtomicRMWInst::Min: return bitc::RMW_MIN;
560   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
561   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
562   case AtomicRMWInst::FAdd: return bitc::RMW_FADD;
563   case AtomicRMWInst::FSub: return bitc::RMW_FSUB;
564   }
565 }
566 
567 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
568   switch (Ordering) {
569   case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
570   case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
571   case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
572   case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
573   case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
574   case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
575   case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
576   }
577   llvm_unreachable("Invalid ordering");
578 }
579 
580 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
581                               StringRef Str, unsigned AbbrevToUse) {
582   SmallVector<unsigned, 64> Vals;
583 
584   // Code: [strchar x N]
585   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
586     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
587       AbbrevToUse = 0;
588     Vals.push_back(Str[i]);
589   }
590 
591   // Emit the finished record.
592   Stream.EmitRecord(Code, Vals, AbbrevToUse);
593 }
594 
595 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
596   switch (Kind) {
597   case Attribute::Alignment:
598     return bitc::ATTR_KIND_ALIGNMENT;
599   case Attribute::AllocSize:
600     return bitc::ATTR_KIND_ALLOC_SIZE;
601   case Attribute::AlwaysInline:
602     return bitc::ATTR_KIND_ALWAYS_INLINE;
603   case Attribute::ArgMemOnly:
604     return bitc::ATTR_KIND_ARGMEMONLY;
605   case Attribute::Builtin:
606     return bitc::ATTR_KIND_BUILTIN;
607   case Attribute::ByVal:
608     return bitc::ATTR_KIND_BY_VAL;
609   case Attribute::Convergent:
610     return bitc::ATTR_KIND_CONVERGENT;
611   case Attribute::InAlloca:
612     return bitc::ATTR_KIND_IN_ALLOCA;
613   case Attribute::Cold:
614     return bitc::ATTR_KIND_COLD;
615   case Attribute::InaccessibleMemOnly:
616     return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
617   case Attribute::InaccessibleMemOrArgMemOnly:
618     return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
619   case Attribute::InlineHint:
620     return bitc::ATTR_KIND_INLINE_HINT;
621   case Attribute::InReg:
622     return bitc::ATTR_KIND_IN_REG;
623   case Attribute::JumpTable:
624     return bitc::ATTR_KIND_JUMP_TABLE;
625   case Attribute::MinSize:
626     return bitc::ATTR_KIND_MIN_SIZE;
627   case Attribute::Naked:
628     return bitc::ATTR_KIND_NAKED;
629   case Attribute::Nest:
630     return bitc::ATTR_KIND_NEST;
631   case Attribute::NoAlias:
632     return bitc::ATTR_KIND_NO_ALIAS;
633   case Attribute::NoBuiltin:
634     return bitc::ATTR_KIND_NO_BUILTIN;
635   case Attribute::NoCapture:
636     return bitc::ATTR_KIND_NO_CAPTURE;
637   case Attribute::NoDuplicate:
638     return bitc::ATTR_KIND_NO_DUPLICATE;
639   case Attribute::NoImplicitFloat:
640     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
641   case Attribute::NoInline:
642     return bitc::ATTR_KIND_NO_INLINE;
643   case Attribute::NoRecurse:
644     return bitc::ATTR_KIND_NO_RECURSE;
645   case Attribute::NonLazyBind:
646     return bitc::ATTR_KIND_NON_LAZY_BIND;
647   case Attribute::NonNull:
648     return bitc::ATTR_KIND_NON_NULL;
649   case Attribute::Dereferenceable:
650     return bitc::ATTR_KIND_DEREFERENCEABLE;
651   case Attribute::DereferenceableOrNull:
652     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
653   case Attribute::NoRedZone:
654     return bitc::ATTR_KIND_NO_RED_ZONE;
655   case Attribute::NoReturn:
656     return bitc::ATTR_KIND_NO_RETURN;
657   case Attribute::ExpectNoReturn:
658     return bitc::ATTR_KIND_EXPECT_NO_RETURN;
659   case Attribute::NoCfCheck:
660     return bitc::ATTR_KIND_NOCF_CHECK;
661   case Attribute::NoUnwind:
662     return bitc::ATTR_KIND_NO_UNWIND;
663   case Attribute::OptForFuzzing:
664     return bitc::ATTR_KIND_OPT_FOR_FUZZING;
665   case Attribute::OptimizeForSize:
666     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
667   case Attribute::OptimizeNone:
668     return bitc::ATTR_KIND_OPTIMIZE_NONE;
669   case Attribute::ReadNone:
670     return bitc::ATTR_KIND_READ_NONE;
671   case Attribute::ReadOnly:
672     return bitc::ATTR_KIND_READ_ONLY;
673   case Attribute::Returned:
674     return bitc::ATTR_KIND_RETURNED;
675   case Attribute::ReturnsTwice:
676     return bitc::ATTR_KIND_RETURNS_TWICE;
677   case Attribute::SExt:
678     return bitc::ATTR_KIND_S_EXT;
679   case Attribute::Speculatable:
680     return bitc::ATTR_KIND_SPECULATABLE;
681   case Attribute::StackAlignment:
682     return bitc::ATTR_KIND_STACK_ALIGNMENT;
683   case Attribute::StackProtect:
684     return bitc::ATTR_KIND_STACK_PROTECT;
685   case Attribute::StackProtectReq:
686     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
687   case Attribute::StackProtectStrong:
688     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
689   case Attribute::SafeStack:
690     return bitc::ATTR_KIND_SAFESTACK;
691   case Attribute::ShadowCallStack:
692     return bitc::ATTR_KIND_SHADOWCALLSTACK;
693   case Attribute::StrictFP:
694     return bitc::ATTR_KIND_STRICT_FP;
695   case Attribute::StructRet:
696     return bitc::ATTR_KIND_STRUCT_RET;
697   case Attribute::SanitizeAddress:
698     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
699   case Attribute::SanitizeHWAddress:
700     return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
701   case Attribute::SanitizeThread:
702     return bitc::ATTR_KIND_SANITIZE_THREAD;
703   case Attribute::SanitizeMemory:
704     return bitc::ATTR_KIND_SANITIZE_MEMORY;
705   case Attribute::SpeculativeLoadHardening:
706     return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
707   case Attribute::SwiftError:
708     return bitc::ATTR_KIND_SWIFT_ERROR;
709   case Attribute::SwiftSelf:
710     return bitc::ATTR_KIND_SWIFT_SELF;
711   case Attribute::UWTable:
712     return bitc::ATTR_KIND_UW_TABLE;
713   case Attribute::WriteOnly:
714     return bitc::ATTR_KIND_WRITEONLY;
715   case Attribute::ZExt:
716     return bitc::ATTR_KIND_Z_EXT;
717   case Attribute::EndAttrKinds:
718     llvm_unreachable("Can not encode end-attribute kinds marker.");
719   case Attribute::None:
720     llvm_unreachable("Can not encode none-attribute.");
721   }
722 
723   llvm_unreachable("Trying to encode unknown attribute");
724 }
725 
726 void ModuleBitcodeWriter::writeAttributeGroupTable() {
727   const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
728       VE.getAttributeGroups();
729   if (AttrGrps.empty()) return;
730 
731   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
732 
733   SmallVector<uint64_t, 64> Record;
734   for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
735     unsigned AttrListIndex = Pair.first;
736     AttributeSet AS = Pair.second;
737     Record.push_back(VE.getAttributeGroupID(Pair));
738     Record.push_back(AttrListIndex);
739 
740     for (Attribute Attr : AS) {
741       if (Attr.isEnumAttribute()) {
742         Record.push_back(0);
743         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
744       } else if (Attr.isIntAttribute()) {
745         Record.push_back(1);
746         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
747         Record.push_back(Attr.getValueAsInt());
748       } else {
749         StringRef Kind = Attr.getKindAsString();
750         StringRef Val = Attr.getValueAsString();
751 
752         Record.push_back(Val.empty() ? 3 : 4);
753         Record.append(Kind.begin(), Kind.end());
754         Record.push_back(0);
755         if (!Val.empty()) {
756           Record.append(Val.begin(), Val.end());
757           Record.push_back(0);
758         }
759       }
760     }
761 
762     Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
763     Record.clear();
764   }
765 
766   Stream.ExitBlock();
767 }
768 
769 void ModuleBitcodeWriter::writeAttributeTable() {
770   const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
771   if (Attrs.empty()) return;
772 
773   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
774 
775   SmallVector<uint64_t, 64> Record;
776   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
777     AttributeList AL = Attrs[i];
778     for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) {
779       AttributeSet AS = AL.getAttributes(i);
780       if (AS.hasAttributes())
781         Record.push_back(VE.getAttributeGroupID({i, AS}));
782     }
783 
784     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
785     Record.clear();
786   }
787 
788   Stream.ExitBlock();
789 }
790 
791 /// WriteTypeTable - Write out the type table for a module.
792 void ModuleBitcodeWriter::writeTypeTable() {
793   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
794 
795   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
796   SmallVector<uint64_t, 64> TypeVals;
797 
798   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
799 
800   // Abbrev for TYPE_CODE_POINTER.
801   auto Abbv = std::make_shared<BitCodeAbbrev>();
802   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
803   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
804   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
805   unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
806 
807   // Abbrev for TYPE_CODE_FUNCTION.
808   Abbv = std::make_shared<BitCodeAbbrev>();
809   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
810   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
811   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
812   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
813   unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
814 
815   // Abbrev for TYPE_CODE_STRUCT_ANON.
816   Abbv = std::make_shared<BitCodeAbbrev>();
817   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
818   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
819   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
820   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
821   unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
822 
823   // Abbrev for TYPE_CODE_STRUCT_NAME.
824   Abbv = std::make_shared<BitCodeAbbrev>();
825   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
826   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
827   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
828   unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
829 
830   // Abbrev for TYPE_CODE_STRUCT_NAMED.
831   Abbv = std::make_shared<BitCodeAbbrev>();
832   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
833   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
834   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
835   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
836   unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
837 
838   // Abbrev for TYPE_CODE_ARRAY.
839   Abbv = std::make_shared<BitCodeAbbrev>();
840   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
841   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
842   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
843   unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
844 
845   // Emit an entry count so the reader can reserve space.
846   TypeVals.push_back(TypeList.size());
847   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
848   TypeVals.clear();
849 
850   // Loop over all of the types, emitting each in turn.
851   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
852     Type *T = TypeList[i];
853     int AbbrevToUse = 0;
854     unsigned Code = 0;
855 
856     switch (T->getTypeID()) {
857     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
858     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
859     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
860     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
861     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
862     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
863     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
864     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
865     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
866     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
867     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
868     case Type::IntegerTyID:
869       // INTEGER: [width]
870       Code = bitc::TYPE_CODE_INTEGER;
871       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
872       break;
873     case Type::PointerTyID: {
874       PointerType *PTy = cast<PointerType>(T);
875       // POINTER: [pointee type, address space]
876       Code = bitc::TYPE_CODE_POINTER;
877       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
878       unsigned AddressSpace = PTy->getAddressSpace();
879       TypeVals.push_back(AddressSpace);
880       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
881       break;
882     }
883     case Type::FunctionTyID: {
884       FunctionType *FT = cast<FunctionType>(T);
885       // FUNCTION: [isvararg, retty, paramty x N]
886       Code = bitc::TYPE_CODE_FUNCTION;
887       TypeVals.push_back(FT->isVarArg());
888       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
889       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
890         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
891       AbbrevToUse = FunctionAbbrev;
892       break;
893     }
894     case Type::StructTyID: {
895       StructType *ST = cast<StructType>(T);
896       // STRUCT: [ispacked, eltty x N]
897       TypeVals.push_back(ST->isPacked());
898       // Output all of the element types.
899       for (StructType::element_iterator I = ST->element_begin(),
900            E = ST->element_end(); I != E; ++I)
901         TypeVals.push_back(VE.getTypeID(*I));
902 
903       if (ST->isLiteral()) {
904         Code = bitc::TYPE_CODE_STRUCT_ANON;
905         AbbrevToUse = StructAnonAbbrev;
906       } else {
907         if (ST->isOpaque()) {
908           Code = bitc::TYPE_CODE_OPAQUE;
909         } else {
910           Code = bitc::TYPE_CODE_STRUCT_NAMED;
911           AbbrevToUse = StructNamedAbbrev;
912         }
913 
914         // Emit the name if it is present.
915         if (!ST->getName().empty())
916           writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
917                             StructNameAbbrev);
918       }
919       break;
920     }
921     case Type::ArrayTyID: {
922       ArrayType *AT = cast<ArrayType>(T);
923       // ARRAY: [numelts, eltty]
924       Code = bitc::TYPE_CODE_ARRAY;
925       TypeVals.push_back(AT->getNumElements());
926       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
927       AbbrevToUse = ArrayAbbrev;
928       break;
929     }
930     case Type::VectorTyID: {
931       VectorType *VT = cast<VectorType>(T);
932       // VECTOR [numelts, eltty]
933       Code = bitc::TYPE_CODE_VECTOR;
934       TypeVals.push_back(VT->getNumElements());
935       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
936       break;
937     }
938     }
939 
940     // Emit the finished record.
941     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
942     TypeVals.clear();
943   }
944 
945   Stream.ExitBlock();
946 }
947 
948 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
949   switch (Linkage) {
950   case GlobalValue::ExternalLinkage:
951     return 0;
952   case GlobalValue::WeakAnyLinkage:
953     return 16;
954   case GlobalValue::AppendingLinkage:
955     return 2;
956   case GlobalValue::InternalLinkage:
957     return 3;
958   case GlobalValue::LinkOnceAnyLinkage:
959     return 18;
960   case GlobalValue::ExternalWeakLinkage:
961     return 7;
962   case GlobalValue::CommonLinkage:
963     return 8;
964   case GlobalValue::PrivateLinkage:
965     return 9;
966   case GlobalValue::WeakODRLinkage:
967     return 17;
968   case GlobalValue::LinkOnceODRLinkage:
969     return 19;
970   case GlobalValue::AvailableExternallyLinkage:
971     return 12;
972   }
973   llvm_unreachable("Invalid linkage");
974 }
975 
976 static unsigned getEncodedLinkage(const GlobalValue &GV) {
977   return getEncodedLinkage(GV.getLinkage());
978 }
979 
980 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
981   uint64_t RawFlags = 0;
982   RawFlags |= Flags.ReadNone;
983   RawFlags |= (Flags.ReadOnly << 1);
984   RawFlags |= (Flags.NoRecurse << 2);
985   RawFlags |= (Flags.ReturnDoesNotAlias << 3);
986   RawFlags |= (Flags.NoInline << 4);
987   return RawFlags;
988 }
989 
990 // Decode the flags for GlobalValue in the summary
991 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
992   uint64_t RawFlags = 0;
993 
994   RawFlags |= Flags.NotEligibleToImport; // bool
995   RawFlags |= (Flags.Live << 1);
996   RawFlags |= (Flags.DSOLocal << 2);
997 
998   // Linkage don't need to be remapped at that time for the summary. Any future
999   // change to the getEncodedLinkage() function will need to be taken into
1000   // account here as well.
1001   RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
1002 
1003   return RawFlags;
1004 }
1005 
1006 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
1007   uint64_t RawFlags = Flags.ReadOnly;
1008   return RawFlags;
1009 }
1010 
1011 static unsigned getEncodedVisibility(const GlobalValue &GV) {
1012   switch (GV.getVisibility()) {
1013   case GlobalValue::DefaultVisibility:   return 0;
1014   case GlobalValue::HiddenVisibility:    return 1;
1015   case GlobalValue::ProtectedVisibility: return 2;
1016   }
1017   llvm_unreachable("Invalid visibility");
1018 }
1019 
1020 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1021   switch (GV.getDLLStorageClass()) {
1022   case GlobalValue::DefaultStorageClass:   return 0;
1023   case GlobalValue::DLLImportStorageClass: return 1;
1024   case GlobalValue::DLLExportStorageClass: return 2;
1025   }
1026   llvm_unreachable("Invalid DLL storage class");
1027 }
1028 
1029 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1030   switch (GV.getThreadLocalMode()) {
1031     case GlobalVariable::NotThreadLocal:         return 0;
1032     case GlobalVariable::GeneralDynamicTLSModel: return 1;
1033     case GlobalVariable::LocalDynamicTLSModel:   return 2;
1034     case GlobalVariable::InitialExecTLSModel:    return 3;
1035     case GlobalVariable::LocalExecTLSModel:      return 4;
1036   }
1037   llvm_unreachable("Invalid TLS model");
1038 }
1039 
1040 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1041   switch (C.getSelectionKind()) {
1042   case Comdat::Any:
1043     return bitc::COMDAT_SELECTION_KIND_ANY;
1044   case Comdat::ExactMatch:
1045     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1046   case Comdat::Largest:
1047     return bitc::COMDAT_SELECTION_KIND_LARGEST;
1048   case Comdat::NoDuplicates:
1049     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1050   case Comdat::SameSize:
1051     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1052   }
1053   llvm_unreachable("Invalid selection kind");
1054 }
1055 
1056 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1057   switch (GV.getUnnamedAddr()) {
1058   case GlobalValue::UnnamedAddr::None:   return 0;
1059   case GlobalValue::UnnamedAddr::Local:  return 2;
1060   case GlobalValue::UnnamedAddr::Global: return 1;
1061   }
1062   llvm_unreachable("Invalid unnamed_addr");
1063 }
1064 
1065 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1066   if (GenerateHash)
1067     Hasher.update(Str);
1068   return StrtabBuilder.add(Str);
1069 }
1070 
1071 void ModuleBitcodeWriter::writeComdats() {
1072   SmallVector<unsigned, 64> Vals;
1073   for (const Comdat *C : VE.getComdats()) {
1074     // COMDAT: [strtab offset, strtab size, selection_kind]
1075     Vals.push_back(addToStrtab(C->getName()));
1076     Vals.push_back(C->getName().size());
1077     Vals.push_back(getEncodedComdatSelectionKind(*C));
1078     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1079     Vals.clear();
1080   }
1081 }
1082 
1083 /// Write a record that will eventually hold the word offset of the
1084 /// module-level VST. For now the offset is 0, which will be backpatched
1085 /// after the real VST is written. Saves the bit offset to backpatch.
1086 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1087   // Write a placeholder value in for the offset of the real VST,
1088   // which is written after the function blocks so that it can include
1089   // the offset of each function. The placeholder offset will be
1090   // updated when the real VST is written.
1091   auto Abbv = std::make_shared<BitCodeAbbrev>();
1092   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1093   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1094   // hold the real VST offset. Must use fixed instead of VBR as we don't
1095   // know how many VBR chunks to reserve ahead of time.
1096   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1097   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1098 
1099   // Emit the placeholder
1100   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1101   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1102 
1103   // Compute and save the bit offset to the placeholder, which will be
1104   // patched when the real VST is written. We can simply subtract the 32-bit
1105   // fixed size from the current bit number to get the location to backpatch.
1106   VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1107 }
1108 
1109 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1110 
1111 /// Determine the encoding to use for the given string name and length.
1112 static StringEncoding getStringEncoding(StringRef Str) {
1113   bool isChar6 = true;
1114   for (char C : Str) {
1115     if (isChar6)
1116       isChar6 = BitCodeAbbrevOp::isChar6(C);
1117     if ((unsigned char)C & 128)
1118       // don't bother scanning the rest.
1119       return SE_Fixed8;
1120   }
1121   if (isChar6)
1122     return SE_Char6;
1123   return SE_Fixed7;
1124 }
1125 
1126 /// Emit top-level description of module, including target triple, inline asm,
1127 /// descriptors for global variables, and function prototype info.
1128 /// Returns the bit offset to backpatch with the location of the real VST.
1129 void ModuleBitcodeWriter::writeModuleInfo() {
1130   // Emit various pieces of data attached to a module.
1131   if (!M.getTargetTriple().empty())
1132     writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1133                       0 /*TODO*/);
1134   const std::string &DL = M.getDataLayoutStr();
1135   if (!DL.empty())
1136     writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1137   if (!M.getModuleInlineAsm().empty())
1138     writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1139                       0 /*TODO*/);
1140 
1141   // Emit information about sections and GC, computing how many there are. Also
1142   // compute the maximum alignment value.
1143   std::map<std::string, unsigned> SectionMap;
1144   std::map<std::string, unsigned> GCMap;
1145   unsigned MaxAlignment = 0;
1146   unsigned MaxGlobalType = 0;
1147   for (const GlobalValue &GV : M.globals()) {
1148     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
1149     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1150     if (GV.hasSection()) {
1151       // Give section names unique ID's.
1152       unsigned &Entry = SectionMap[GV.getSection()];
1153       if (!Entry) {
1154         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1155                           0 /*TODO*/);
1156         Entry = SectionMap.size();
1157       }
1158     }
1159   }
1160   for (const Function &F : M) {
1161     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
1162     if (F.hasSection()) {
1163       // Give section names unique ID's.
1164       unsigned &Entry = SectionMap[F.getSection()];
1165       if (!Entry) {
1166         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1167                           0 /*TODO*/);
1168         Entry = SectionMap.size();
1169       }
1170     }
1171     if (F.hasGC()) {
1172       // Same for GC names.
1173       unsigned &Entry = GCMap[F.getGC()];
1174       if (!Entry) {
1175         writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1176                           0 /*TODO*/);
1177         Entry = GCMap.size();
1178       }
1179     }
1180   }
1181 
1182   // Emit abbrev for globals, now that we know # sections and max alignment.
1183   unsigned SimpleGVarAbbrev = 0;
1184   if (!M.global_empty()) {
1185     // Add an abbrev for common globals with no visibility or thread localness.
1186     auto Abbv = std::make_shared<BitCodeAbbrev>();
1187     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1188     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1189     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1190     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1191                               Log2_32_Ceil(MaxGlobalType+1)));
1192     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1193                                                            //| explicitType << 1
1194                                                            //| constant
1195     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1196     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1197     if (MaxAlignment == 0)                                 // Alignment.
1198       Abbv->Add(BitCodeAbbrevOp(0));
1199     else {
1200       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
1201       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1202                                Log2_32_Ceil(MaxEncAlignment+1)));
1203     }
1204     if (SectionMap.empty())                                    // Section.
1205       Abbv->Add(BitCodeAbbrevOp(0));
1206     else
1207       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1208                                Log2_32_Ceil(SectionMap.size()+1)));
1209     // Don't bother emitting vis + thread local.
1210     SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1211   }
1212 
1213   SmallVector<unsigned, 64> Vals;
1214   // Emit the module's source file name.
1215   {
1216     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1217     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1218     if (Bits == SE_Char6)
1219       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1220     else if (Bits == SE_Fixed7)
1221       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1222 
1223     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1224     auto Abbv = std::make_shared<BitCodeAbbrev>();
1225     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1226     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1227     Abbv->Add(AbbrevOpToUse);
1228     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1229 
1230     for (const auto P : M.getSourceFileName())
1231       Vals.push_back((unsigned char)P);
1232 
1233     // Emit the finished record.
1234     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1235     Vals.clear();
1236   }
1237 
1238   // Emit the global variable information.
1239   for (const GlobalVariable &GV : M.globals()) {
1240     unsigned AbbrevToUse = 0;
1241 
1242     // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1243     //             linkage, alignment, section, visibility, threadlocal,
1244     //             unnamed_addr, externally_initialized, dllstorageclass,
1245     //             comdat, attributes, DSO_Local]
1246     Vals.push_back(addToStrtab(GV.getName()));
1247     Vals.push_back(GV.getName().size());
1248     Vals.push_back(VE.getTypeID(GV.getValueType()));
1249     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1250     Vals.push_back(GV.isDeclaration() ? 0 :
1251                    (VE.getValueID(GV.getInitializer()) + 1));
1252     Vals.push_back(getEncodedLinkage(GV));
1253     Vals.push_back(Log2_32(GV.getAlignment())+1);
1254     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
1255     if (GV.isThreadLocal() ||
1256         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1257         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1258         GV.isExternallyInitialized() ||
1259         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1260         GV.hasComdat() ||
1261         GV.hasAttributes() ||
1262         GV.isDSOLocal()) {
1263       Vals.push_back(getEncodedVisibility(GV));
1264       Vals.push_back(getEncodedThreadLocalMode(GV));
1265       Vals.push_back(getEncodedUnnamedAddr(GV));
1266       Vals.push_back(GV.isExternallyInitialized());
1267       Vals.push_back(getEncodedDLLStorageClass(GV));
1268       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1269 
1270       auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1271       Vals.push_back(VE.getAttributeListID(AL));
1272 
1273       Vals.push_back(GV.isDSOLocal());
1274     } else {
1275       AbbrevToUse = SimpleGVarAbbrev;
1276     }
1277 
1278     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1279     Vals.clear();
1280   }
1281 
1282   // Emit the function proto information.
1283   for (const Function &F : M) {
1284     // FUNCTION:  [strtab offset, strtab size, type, callingconv, isproto,
1285     //             linkage, paramattrs, alignment, section, visibility, gc,
1286     //             unnamed_addr, prologuedata, dllstorageclass, comdat,
1287     //             prefixdata, personalityfn, DSO_Local, addrspace]
1288     Vals.push_back(addToStrtab(F.getName()));
1289     Vals.push_back(F.getName().size());
1290     Vals.push_back(VE.getTypeID(F.getFunctionType()));
1291     Vals.push_back(F.getCallingConv());
1292     Vals.push_back(F.isDeclaration());
1293     Vals.push_back(getEncodedLinkage(F));
1294     Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1295     Vals.push_back(Log2_32(F.getAlignment())+1);
1296     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
1297     Vals.push_back(getEncodedVisibility(F));
1298     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1299     Vals.push_back(getEncodedUnnamedAddr(F));
1300     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1301                                        : 0);
1302     Vals.push_back(getEncodedDLLStorageClass(F));
1303     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1304     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1305                                      : 0);
1306     Vals.push_back(
1307         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1308 
1309     Vals.push_back(F.isDSOLocal());
1310     Vals.push_back(F.getAddressSpace());
1311 
1312     unsigned AbbrevToUse = 0;
1313     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1314     Vals.clear();
1315   }
1316 
1317   // Emit the alias information.
1318   for (const GlobalAlias &A : M.aliases()) {
1319     // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1320     //         visibility, dllstorageclass, threadlocal, unnamed_addr,
1321     //         DSO_Local]
1322     Vals.push_back(addToStrtab(A.getName()));
1323     Vals.push_back(A.getName().size());
1324     Vals.push_back(VE.getTypeID(A.getValueType()));
1325     Vals.push_back(A.getType()->getAddressSpace());
1326     Vals.push_back(VE.getValueID(A.getAliasee()));
1327     Vals.push_back(getEncodedLinkage(A));
1328     Vals.push_back(getEncodedVisibility(A));
1329     Vals.push_back(getEncodedDLLStorageClass(A));
1330     Vals.push_back(getEncodedThreadLocalMode(A));
1331     Vals.push_back(getEncodedUnnamedAddr(A));
1332     Vals.push_back(A.isDSOLocal());
1333 
1334     unsigned AbbrevToUse = 0;
1335     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1336     Vals.clear();
1337   }
1338 
1339   // Emit the ifunc information.
1340   for (const GlobalIFunc &I : M.ifuncs()) {
1341     // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1342     //         val#, linkage, visibility, DSO_Local]
1343     Vals.push_back(addToStrtab(I.getName()));
1344     Vals.push_back(I.getName().size());
1345     Vals.push_back(VE.getTypeID(I.getValueType()));
1346     Vals.push_back(I.getType()->getAddressSpace());
1347     Vals.push_back(VE.getValueID(I.getResolver()));
1348     Vals.push_back(getEncodedLinkage(I));
1349     Vals.push_back(getEncodedVisibility(I));
1350     Vals.push_back(I.isDSOLocal());
1351     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1352     Vals.clear();
1353   }
1354 
1355   writeValueSymbolTableForwardDecl();
1356 }
1357 
1358 static uint64_t getOptimizationFlags(const Value *V) {
1359   uint64_t Flags = 0;
1360 
1361   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1362     if (OBO->hasNoSignedWrap())
1363       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1364     if (OBO->hasNoUnsignedWrap())
1365       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1366   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1367     if (PEO->isExact())
1368       Flags |= 1 << bitc::PEO_EXACT;
1369   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1370     if (FPMO->hasAllowReassoc())
1371       Flags |= bitc::AllowReassoc;
1372     if (FPMO->hasNoNaNs())
1373       Flags |= bitc::NoNaNs;
1374     if (FPMO->hasNoInfs())
1375       Flags |= bitc::NoInfs;
1376     if (FPMO->hasNoSignedZeros())
1377       Flags |= bitc::NoSignedZeros;
1378     if (FPMO->hasAllowReciprocal())
1379       Flags |= bitc::AllowReciprocal;
1380     if (FPMO->hasAllowContract())
1381       Flags |= bitc::AllowContract;
1382     if (FPMO->hasApproxFunc())
1383       Flags |= bitc::ApproxFunc;
1384   }
1385 
1386   return Flags;
1387 }
1388 
1389 void ModuleBitcodeWriter::writeValueAsMetadata(
1390     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1391   // Mimic an MDNode with a value as one operand.
1392   Value *V = MD->getValue();
1393   Record.push_back(VE.getTypeID(V->getType()));
1394   Record.push_back(VE.getValueID(V));
1395   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1396   Record.clear();
1397 }
1398 
1399 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1400                                        SmallVectorImpl<uint64_t> &Record,
1401                                        unsigned Abbrev) {
1402   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1403     Metadata *MD = N->getOperand(i);
1404     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1405            "Unexpected function-local metadata");
1406     Record.push_back(VE.getMetadataOrNullID(MD));
1407   }
1408   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1409                                     : bitc::METADATA_NODE,
1410                     Record, Abbrev);
1411   Record.clear();
1412 }
1413 
1414 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1415   // Assume the column is usually under 128, and always output the inlined-at
1416   // location (it's never more expensive than building an array size 1).
1417   auto Abbv = std::make_shared<BitCodeAbbrev>();
1418   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1419   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1420   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1421   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1422   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1423   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1424   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1425   return Stream.EmitAbbrev(std::move(Abbv));
1426 }
1427 
1428 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1429                                           SmallVectorImpl<uint64_t> &Record,
1430                                           unsigned &Abbrev) {
1431   if (!Abbrev)
1432     Abbrev = createDILocationAbbrev();
1433 
1434   Record.push_back(N->isDistinct());
1435   Record.push_back(N->getLine());
1436   Record.push_back(N->getColumn());
1437   Record.push_back(VE.getMetadataID(N->getScope()));
1438   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1439   Record.push_back(N->isImplicitCode());
1440 
1441   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1442   Record.clear();
1443 }
1444 
1445 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1446   // Assume the column is usually under 128, and always output the inlined-at
1447   // location (it's never more expensive than building an array size 1).
1448   auto Abbv = std::make_shared<BitCodeAbbrev>();
1449   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1450   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1451   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1452   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1453   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1454   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1455   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1456   return Stream.EmitAbbrev(std::move(Abbv));
1457 }
1458 
1459 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1460                                              SmallVectorImpl<uint64_t> &Record,
1461                                              unsigned &Abbrev) {
1462   if (!Abbrev)
1463     Abbrev = createGenericDINodeAbbrev();
1464 
1465   Record.push_back(N->isDistinct());
1466   Record.push_back(N->getTag());
1467   Record.push_back(0); // Per-tag version field; unused for now.
1468 
1469   for (auto &I : N->operands())
1470     Record.push_back(VE.getMetadataOrNullID(I));
1471 
1472   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1473   Record.clear();
1474 }
1475 
1476 static uint64_t rotateSign(int64_t I) {
1477   uint64_t U = I;
1478   return I < 0 ? ~(U << 1) : U << 1;
1479 }
1480 
1481 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1482                                           SmallVectorImpl<uint64_t> &Record,
1483                                           unsigned Abbrev) {
1484   const uint64_t Version = 1 << 1;
1485   Record.push_back((uint64_t)N->isDistinct() | Version);
1486   Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1487   Record.push_back(rotateSign(N->getLowerBound()));
1488 
1489   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1490   Record.clear();
1491 }
1492 
1493 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1494                                             SmallVectorImpl<uint64_t> &Record,
1495                                             unsigned Abbrev) {
1496   Record.push_back((N->isUnsigned() << 1) | N->isDistinct());
1497   Record.push_back(rotateSign(N->getValue()));
1498   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1499 
1500   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1501   Record.clear();
1502 }
1503 
1504 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1505                                            SmallVectorImpl<uint64_t> &Record,
1506                                            unsigned Abbrev) {
1507   Record.push_back(N->isDistinct());
1508   Record.push_back(N->getTag());
1509   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1510   Record.push_back(N->getSizeInBits());
1511   Record.push_back(N->getAlignInBits());
1512   Record.push_back(N->getEncoding());
1513   Record.push_back(N->getFlags());
1514 
1515   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1516   Record.clear();
1517 }
1518 
1519 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1520                                              SmallVectorImpl<uint64_t> &Record,
1521                                              unsigned Abbrev) {
1522   Record.push_back(N->isDistinct());
1523   Record.push_back(N->getTag());
1524   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1525   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1526   Record.push_back(N->getLine());
1527   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1528   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1529   Record.push_back(N->getSizeInBits());
1530   Record.push_back(N->getAlignInBits());
1531   Record.push_back(N->getOffsetInBits());
1532   Record.push_back(N->getFlags());
1533   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1534 
1535   // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1536   // that there is no DWARF address space associated with DIDerivedType.
1537   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1538     Record.push_back(*DWARFAddressSpace + 1);
1539   else
1540     Record.push_back(0);
1541 
1542   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1543   Record.clear();
1544 }
1545 
1546 void ModuleBitcodeWriter::writeDICompositeType(
1547     const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1548     unsigned Abbrev) {
1549   const unsigned IsNotUsedInOldTypeRef = 0x2;
1550   Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1551   Record.push_back(N->getTag());
1552   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1553   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1554   Record.push_back(N->getLine());
1555   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1556   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1557   Record.push_back(N->getSizeInBits());
1558   Record.push_back(N->getAlignInBits());
1559   Record.push_back(N->getOffsetInBits());
1560   Record.push_back(N->getFlags());
1561   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1562   Record.push_back(N->getRuntimeLang());
1563   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1564   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1565   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1566   Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1567 
1568   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1569   Record.clear();
1570 }
1571 
1572 void ModuleBitcodeWriter::writeDISubroutineType(
1573     const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1574     unsigned Abbrev) {
1575   const unsigned HasNoOldTypeRefs = 0x2;
1576   Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1577   Record.push_back(N->getFlags());
1578   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1579   Record.push_back(N->getCC());
1580 
1581   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1582   Record.clear();
1583 }
1584 
1585 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1586                                       SmallVectorImpl<uint64_t> &Record,
1587                                       unsigned Abbrev) {
1588   Record.push_back(N->isDistinct());
1589   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1590   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1591   if (N->getRawChecksum()) {
1592     Record.push_back(N->getRawChecksum()->Kind);
1593     Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1594   } else {
1595     // Maintain backwards compatibility with the old internal representation of
1596     // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1597     Record.push_back(0);
1598     Record.push_back(VE.getMetadataOrNullID(nullptr));
1599   }
1600   auto Source = N->getRawSource();
1601   if (Source)
1602     Record.push_back(VE.getMetadataOrNullID(*Source));
1603 
1604   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1605   Record.clear();
1606 }
1607 
1608 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1609                                              SmallVectorImpl<uint64_t> &Record,
1610                                              unsigned Abbrev) {
1611   assert(N->isDistinct() && "Expected distinct compile units");
1612   Record.push_back(/* IsDistinct */ true);
1613   Record.push_back(N->getSourceLanguage());
1614   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1615   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1616   Record.push_back(N->isOptimized());
1617   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1618   Record.push_back(N->getRuntimeVersion());
1619   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1620   Record.push_back(N->getEmissionKind());
1621   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1622   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1623   Record.push_back(/* subprograms */ 0);
1624   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1625   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1626   Record.push_back(N->getDWOId());
1627   Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1628   Record.push_back(N->getSplitDebugInlining());
1629   Record.push_back(N->getDebugInfoForProfiling());
1630   Record.push_back((unsigned)N->getNameTableKind());
1631 
1632   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1633   Record.clear();
1634 }
1635 
1636 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1637                                             SmallVectorImpl<uint64_t> &Record,
1638                                             unsigned Abbrev) {
1639   const uint64_t HasUnitFlag = 1 << 1;
1640   const uint64_t HasSPFlagsFlag = 1 << 2;
1641   Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
1642   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1643   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1644   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1645   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1646   Record.push_back(N->getLine());
1647   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1648   Record.push_back(N->getScopeLine());
1649   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1650   Record.push_back(N->getSPFlags());
1651   Record.push_back(N->getVirtualIndex());
1652   Record.push_back(N->getFlags());
1653   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1654   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1655   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1656   Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1657   Record.push_back(N->getThisAdjustment());
1658   Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1659 
1660   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1661   Record.clear();
1662 }
1663 
1664 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1665                                               SmallVectorImpl<uint64_t> &Record,
1666                                               unsigned Abbrev) {
1667   Record.push_back(N->isDistinct());
1668   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1669   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1670   Record.push_back(N->getLine());
1671   Record.push_back(N->getColumn());
1672 
1673   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1674   Record.clear();
1675 }
1676 
1677 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1678     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1679     unsigned Abbrev) {
1680   Record.push_back(N->isDistinct());
1681   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1682   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1683   Record.push_back(N->getDiscriminator());
1684 
1685   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1686   Record.clear();
1687 }
1688 
1689 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1690                                            SmallVectorImpl<uint64_t> &Record,
1691                                            unsigned Abbrev) {
1692   Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1693   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1694   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1695 
1696   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1697   Record.clear();
1698 }
1699 
1700 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1701                                        SmallVectorImpl<uint64_t> &Record,
1702                                        unsigned Abbrev) {
1703   Record.push_back(N->isDistinct());
1704   Record.push_back(N->getMacinfoType());
1705   Record.push_back(N->getLine());
1706   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1707   Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1708 
1709   Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1710   Record.clear();
1711 }
1712 
1713 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1714                                            SmallVectorImpl<uint64_t> &Record,
1715                                            unsigned Abbrev) {
1716   Record.push_back(N->isDistinct());
1717   Record.push_back(N->getMacinfoType());
1718   Record.push_back(N->getLine());
1719   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1720   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1721 
1722   Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1723   Record.clear();
1724 }
1725 
1726 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1727                                         SmallVectorImpl<uint64_t> &Record,
1728                                         unsigned Abbrev) {
1729   Record.push_back(N->isDistinct());
1730   for (auto &I : N->operands())
1731     Record.push_back(VE.getMetadataOrNullID(I));
1732 
1733   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1734   Record.clear();
1735 }
1736 
1737 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1738     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1739     unsigned Abbrev) {
1740   Record.push_back(N->isDistinct());
1741   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1742   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1743 
1744   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1745   Record.clear();
1746 }
1747 
1748 void ModuleBitcodeWriter::writeDITemplateValueParameter(
1749     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1750     unsigned Abbrev) {
1751   Record.push_back(N->isDistinct());
1752   Record.push_back(N->getTag());
1753   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1754   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1755   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1756 
1757   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1758   Record.clear();
1759 }
1760 
1761 void ModuleBitcodeWriter::writeDIGlobalVariable(
1762     const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1763     unsigned Abbrev) {
1764   const uint64_t Version = 2 << 1;
1765   Record.push_back((uint64_t)N->isDistinct() | Version);
1766   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1767   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1768   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1769   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1770   Record.push_back(N->getLine());
1771   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1772   Record.push_back(N->isLocalToUnit());
1773   Record.push_back(N->isDefinition());
1774   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1775   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
1776   Record.push_back(N->getAlignInBits());
1777 
1778   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1779   Record.clear();
1780 }
1781 
1782 void ModuleBitcodeWriter::writeDILocalVariable(
1783     const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1784     unsigned Abbrev) {
1785   // In order to support all possible bitcode formats in BitcodeReader we need
1786   // to distinguish the following cases:
1787   // 1) Record has no artificial tag (Record[1]),
1788   //   has no obsolete inlinedAt field (Record[9]).
1789   //   In this case Record size will be 8, HasAlignment flag is false.
1790   // 2) Record has artificial tag (Record[1]),
1791   //   has no obsolete inlignedAt field (Record[9]).
1792   //   In this case Record size will be 9, HasAlignment flag is false.
1793   // 3) Record has both artificial tag (Record[1]) and
1794   //   obsolete inlignedAt field (Record[9]).
1795   //   In this case Record size will be 10, HasAlignment flag is false.
1796   // 4) Record has neither artificial tag, nor inlignedAt field, but
1797   //   HasAlignment flag is true and Record[8] contains alignment value.
1798   const uint64_t HasAlignmentFlag = 1 << 1;
1799   Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
1800   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1801   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1802   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1803   Record.push_back(N->getLine());
1804   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1805   Record.push_back(N->getArg());
1806   Record.push_back(N->getFlags());
1807   Record.push_back(N->getAlignInBits());
1808 
1809   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1810   Record.clear();
1811 }
1812 
1813 void ModuleBitcodeWriter::writeDILabel(
1814     const DILabel *N, SmallVectorImpl<uint64_t> &Record,
1815     unsigned Abbrev) {
1816   Record.push_back((uint64_t)N->isDistinct());
1817   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1818   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1819   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1820   Record.push_back(N->getLine());
1821 
1822   Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
1823   Record.clear();
1824 }
1825 
1826 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
1827                                             SmallVectorImpl<uint64_t> &Record,
1828                                             unsigned Abbrev) {
1829   Record.reserve(N->getElements().size() + 1);
1830   const uint64_t Version = 3 << 1;
1831   Record.push_back((uint64_t)N->isDistinct() | Version);
1832   Record.append(N->elements_begin(), N->elements_end());
1833 
1834   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1835   Record.clear();
1836 }
1837 
1838 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
1839     const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
1840     unsigned Abbrev) {
1841   Record.push_back(N->isDistinct());
1842   Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
1843   Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
1844 
1845   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
1846   Record.clear();
1847 }
1848 
1849 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1850                                               SmallVectorImpl<uint64_t> &Record,
1851                                               unsigned Abbrev) {
1852   Record.push_back(N->isDistinct());
1853   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1854   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1855   Record.push_back(N->getLine());
1856   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1857   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1858   Record.push_back(N->getAttributes());
1859   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1860 
1861   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1862   Record.clear();
1863 }
1864 
1865 void ModuleBitcodeWriter::writeDIImportedEntity(
1866     const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
1867     unsigned Abbrev) {
1868   Record.push_back(N->isDistinct());
1869   Record.push_back(N->getTag());
1870   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1871   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1872   Record.push_back(N->getLine());
1873   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1874   Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
1875 
1876   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1877   Record.clear();
1878 }
1879 
1880 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
1881   auto Abbv = std::make_shared<BitCodeAbbrev>();
1882   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1883   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1884   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1885   return Stream.EmitAbbrev(std::move(Abbv));
1886 }
1887 
1888 void ModuleBitcodeWriter::writeNamedMetadata(
1889     SmallVectorImpl<uint64_t> &Record) {
1890   if (M.named_metadata_empty())
1891     return;
1892 
1893   unsigned Abbrev = createNamedMetadataAbbrev();
1894   for (const NamedMDNode &NMD : M.named_metadata()) {
1895     // Write name.
1896     StringRef Str = NMD.getName();
1897     Record.append(Str.bytes_begin(), Str.bytes_end());
1898     Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
1899     Record.clear();
1900 
1901     // Write named metadata operands.
1902     for (const MDNode *N : NMD.operands())
1903       Record.push_back(VE.getMetadataID(N));
1904     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1905     Record.clear();
1906   }
1907 }
1908 
1909 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
1910   auto Abbv = std::make_shared<BitCodeAbbrev>();
1911   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
1912   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
1913   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
1914   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
1915   return Stream.EmitAbbrev(std::move(Abbv));
1916 }
1917 
1918 /// Write out a record for MDString.
1919 ///
1920 /// All the metadata strings in a metadata block are emitted in a single
1921 /// record.  The sizes and strings themselves are shoved into a blob.
1922 void ModuleBitcodeWriter::writeMetadataStrings(
1923     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1924   if (Strings.empty())
1925     return;
1926 
1927   // Start the record with the number of strings.
1928   Record.push_back(bitc::METADATA_STRINGS);
1929   Record.push_back(Strings.size());
1930 
1931   // Emit the sizes of the strings in the blob.
1932   SmallString<256> Blob;
1933   {
1934     BitstreamWriter W(Blob);
1935     for (const Metadata *MD : Strings)
1936       W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
1937     W.FlushToWord();
1938   }
1939 
1940   // Add the offset to the strings to the record.
1941   Record.push_back(Blob.size());
1942 
1943   // Add the strings to the blob.
1944   for (const Metadata *MD : Strings)
1945     Blob.append(cast<MDString>(MD)->getString());
1946 
1947   // Emit the final record.
1948   Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
1949   Record.clear();
1950 }
1951 
1952 // Generates an enum to use as an index in the Abbrev array of Metadata record.
1953 enum MetadataAbbrev : unsigned {
1954 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
1955 #include "llvm/IR/Metadata.def"
1956   LastPlusOne
1957 };
1958 
1959 void ModuleBitcodeWriter::writeMetadataRecords(
1960     ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
1961     std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
1962   if (MDs.empty())
1963     return;
1964 
1965   // Initialize MDNode abbreviations.
1966 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1967 #include "llvm/IR/Metadata.def"
1968 
1969   for (const Metadata *MD : MDs) {
1970     if (IndexPos)
1971       IndexPos->push_back(Stream.GetCurrentBitNo());
1972     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1973       assert(N->isResolved() && "Expected forward references to be resolved");
1974 
1975       switch (N->getMetadataID()) {
1976       default:
1977         llvm_unreachable("Invalid MDNode subclass");
1978 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1979   case Metadata::CLASS##Kind:                                                  \
1980     if (MDAbbrevs)                                                             \
1981       write##CLASS(cast<CLASS>(N), Record,                                     \
1982                    (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
1983     else                                                                       \
1984       write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
1985     continue;
1986 #include "llvm/IR/Metadata.def"
1987       }
1988     }
1989     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
1990   }
1991 }
1992 
1993 void ModuleBitcodeWriter::writeModuleMetadata() {
1994   if (!VE.hasMDs() && M.named_metadata_empty())
1995     return;
1996 
1997   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
1998   SmallVector<uint64_t, 64> Record;
1999 
2000   // Emit all abbrevs upfront, so that the reader can jump in the middle of the
2001   // block and load any metadata.
2002   std::vector<unsigned> MDAbbrevs;
2003 
2004   MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
2005   MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
2006   MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
2007       createGenericDINodeAbbrev();
2008 
2009   auto Abbv = std::make_shared<BitCodeAbbrev>();
2010   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
2011   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2012   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2013   unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2014 
2015   Abbv = std::make_shared<BitCodeAbbrev>();
2016   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
2017   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2018   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2019   unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2020 
2021   // Emit MDStrings together upfront.
2022   writeMetadataStrings(VE.getMDStrings(), Record);
2023 
2024   // We only emit an index for the metadata record if we have more than a given
2025   // (naive) threshold of metadatas, otherwise it is not worth it.
2026   if (VE.getNonMDStrings().size() > IndexThreshold) {
2027     // Write a placeholder value in for the offset of the metadata index,
2028     // which is written after the records, so that it can include
2029     // the offset of each entry. The placeholder offset will be
2030     // updated after all records are emitted.
2031     uint64_t Vals[] = {0, 0};
2032     Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2033   }
2034 
2035   // Compute and save the bit offset to the current position, which will be
2036   // patched when we emit the index later. We can simply subtract the 64-bit
2037   // fixed size from the current bit number to get the location to backpatch.
2038   uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2039 
2040   // This index will contain the bitpos for each individual record.
2041   std::vector<uint64_t> IndexPos;
2042   IndexPos.reserve(VE.getNonMDStrings().size());
2043 
2044   // Write all the records
2045   writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2046 
2047   if (VE.getNonMDStrings().size() > IndexThreshold) {
2048     // Now that we have emitted all the records we will emit the index. But
2049     // first
2050     // backpatch the forward reference so that the reader can skip the records
2051     // efficiently.
2052     Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2053                            Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2054 
2055     // Delta encode the index.
2056     uint64_t PreviousValue = IndexOffsetRecordBitPos;
2057     for (auto &Elt : IndexPos) {
2058       auto EltDelta = Elt - PreviousValue;
2059       PreviousValue = Elt;
2060       Elt = EltDelta;
2061     }
2062     // Emit the index record.
2063     Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2064     IndexPos.clear();
2065   }
2066 
2067   // Write the named metadata now.
2068   writeNamedMetadata(Record);
2069 
2070   auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2071     SmallVector<uint64_t, 4> Record;
2072     Record.push_back(VE.getValueID(&GO));
2073     pushGlobalMetadataAttachment(Record, GO);
2074     Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2075   };
2076   for (const Function &F : M)
2077     if (F.isDeclaration() && F.hasMetadata())
2078       AddDeclAttachedMetadata(F);
2079   // FIXME: Only store metadata for declarations here, and move data for global
2080   // variable definitions to a separate block (PR28134).
2081   for (const GlobalVariable &GV : M.globals())
2082     if (GV.hasMetadata())
2083       AddDeclAttachedMetadata(GV);
2084 
2085   Stream.ExitBlock();
2086 }
2087 
2088 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2089   if (!VE.hasMDs())
2090     return;
2091 
2092   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2093   SmallVector<uint64_t, 64> Record;
2094   writeMetadataStrings(VE.getMDStrings(), Record);
2095   writeMetadataRecords(VE.getNonMDStrings(), Record);
2096   Stream.ExitBlock();
2097 }
2098 
2099 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2100     SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2101   // [n x [id, mdnode]]
2102   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2103   GO.getAllMetadata(MDs);
2104   for (const auto &I : MDs) {
2105     Record.push_back(I.first);
2106     Record.push_back(VE.getMetadataID(I.second));
2107   }
2108 }
2109 
2110 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2111   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2112 
2113   SmallVector<uint64_t, 64> Record;
2114 
2115   if (F.hasMetadata()) {
2116     pushGlobalMetadataAttachment(Record, F);
2117     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2118     Record.clear();
2119   }
2120 
2121   // Write metadata attachments
2122   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2123   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2124   for (const BasicBlock &BB : F)
2125     for (const Instruction &I : BB) {
2126       MDs.clear();
2127       I.getAllMetadataOtherThanDebugLoc(MDs);
2128 
2129       // If no metadata, ignore instruction.
2130       if (MDs.empty()) continue;
2131 
2132       Record.push_back(VE.getInstructionID(&I));
2133 
2134       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2135         Record.push_back(MDs[i].first);
2136         Record.push_back(VE.getMetadataID(MDs[i].second));
2137       }
2138       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2139       Record.clear();
2140     }
2141 
2142   Stream.ExitBlock();
2143 }
2144 
2145 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2146   SmallVector<uint64_t, 64> Record;
2147 
2148   // Write metadata kinds
2149   // METADATA_KIND - [n x [id, name]]
2150   SmallVector<StringRef, 8> Names;
2151   M.getMDKindNames(Names);
2152 
2153   if (Names.empty()) return;
2154 
2155   Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2156 
2157   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2158     Record.push_back(MDKindID);
2159     StringRef KName = Names[MDKindID];
2160     Record.append(KName.begin(), KName.end());
2161 
2162     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2163     Record.clear();
2164   }
2165 
2166   Stream.ExitBlock();
2167 }
2168 
2169 void ModuleBitcodeWriter::writeOperandBundleTags() {
2170   // Write metadata kinds
2171   //
2172   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2173   //
2174   // OPERAND_BUNDLE_TAG - [strchr x N]
2175 
2176   SmallVector<StringRef, 8> Tags;
2177   M.getOperandBundleTags(Tags);
2178 
2179   if (Tags.empty())
2180     return;
2181 
2182   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2183 
2184   SmallVector<uint64_t, 64> Record;
2185 
2186   for (auto Tag : Tags) {
2187     Record.append(Tag.begin(), Tag.end());
2188 
2189     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2190     Record.clear();
2191   }
2192 
2193   Stream.ExitBlock();
2194 }
2195 
2196 void ModuleBitcodeWriter::writeSyncScopeNames() {
2197   SmallVector<StringRef, 8> SSNs;
2198   M.getContext().getSyncScopeNames(SSNs);
2199   if (SSNs.empty())
2200     return;
2201 
2202   Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2203 
2204   SmallVector<uint64_t, 64> Record;
2205   for (auto SSN : SSNs) {
2206     Record.append(SSN.begin(), SSN.end());
2207     Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2208     Record.clear();
2209   }
2210 
2211   Stream.ExitBlock();
2212 }
2213 
2214 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
2215   if ((int64_t)V >= 0)
2216     Vals.push_back(V << 1);
2217   else
2218     Vals.push_back((-V << 1) | 1);
2219 }
2220 
2221 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2222                                          bool isGlobal) {
2223   if (FirstVal == LastVal) return;
2224 
2225   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2226 
2227   unsigned AggregateAbbrev = 0;
2228   unsigned String8Abbrev = 0;
2229   unsigned CString7Abbrev = 0;
2230   unsigned CString6Abbrev = 0;
2231   // If this is a constant pool for the module, emit module-specific abbrevs.
2232   if (isGlobal) {
2233     // Abbrev for CST_CODE_AGGREGATE.
2234     auto Abbv = std::make_shared<BitCodeAbbrev>();
2235     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2236     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2237     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2238     AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2239 
2240     // Abbrev for CST_CODE_STRING.
2241     Abbv = std::make_shared<BitCodeAbbrev>();
2242     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2243     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2244     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2245     String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2246     // Abbrev for CST_CODE_CSTRING.
2247     Abbv = std::make_shared<BitCodeAbbrev>();
2248     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2249     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2250     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2251     CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2252     // Abbrev for CST_CODE_CSTRING.
2253     Abbv = std::make_shared<BitCodeAbbrev>();
2254     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2255     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2256     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2257     CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2258   }
2259 
2260   SmallVector<uint64_t, 64> Record;
2261 
2262   const ValueEnumerator::ValueList &Vals = VE.getValues();
2263   Type *LastTy = nullptr;
2264   for (unsigned i = FirstVal; i != LastVal; ++i) {
2265     const Value *V = Vals[i].first;
2266     // If we need to switch types, do so now.
2267     if (V->getType() != LastTy) {
2268       LastTy = V->getType();
2269       Record.push_back(VE.getTypeID(LastTy));
2270       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2271                         CONSTANTS_SETTYPE_ABBREV);
2272       Record.clear();
2273     }
2274 
2275     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2276       Record.push_back(unsigned(IA->hasSideEffects()) |
2277                        unsigned(IA->isAlignStack()) << 1 |
2278                        unsigned(IA->getDialect()&1) << 2);
2279 
2280       // Add the asm string.
2281       const std::string &AsmStr = IA->getAsmString();
2282       Record.push_back(AsmStr.size());
2283       Record.append(AsmStr.begin(), AsmStr.end());
2284 
2285       // Add the constraint string.
2286       const std::string &ConstraintStr = IA->getConstraintString();
2287       Record.push_back(ConstraintStr.size());
2288       Record.append(ConstraintStr.begin(), ConstraintStr.end());
2289       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2290       Record.clear();
2291       continue;
2292     }
2293     const Constant *C = cast<Constant>(V);
2294     unsigned Code = -1U;
2295     unsigned AbbrevToUse = 0;
2296     if (C->isNullValue()) {
2297       Code = bitc::CST_CODE_NULL;
2298     } else if (isa<UndefValue>(C)) {
2299       Code = bitc::CST_CODE_UNDEF;
2300     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2301       if (IV->getBitWidth() <= 64) {
2302         uint64_t V = IV->getSExtValue();
2303         emitSignedInt64(Record, V);
2304         Code = bitc::CST_CODE_INTEGER;
2305         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2306       } else {                             // Wide integers, > 64 bits in size.
2307         // We have an arbitrary precision integer value to write whose
2308         // bit width is > 64. However, in canonical unsigned integer
2309         // format it is likely that the high bits are going to be zero.
2310         // So, we only write the number of active words.
2311         unsigned NWords = IV->getValue().getActiveWords();
2312         const uint64_t *RawWords = IV->getValue().getRawData();
2313         for (unsigned i = 0; i != NWords; ++i) {
2314           emitSignedInt64(Record, RawWords[i]);
2315         }
2316         Code = bitc::CST_CODE_WIDE_INTEGER;
2317       }
2318     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2319       Code = bitc::CST_CODE_FLOAT;
2320       Type *Ty = CFP->getType();
2321       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2322         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2323       } else if (Ty->isX86_FP80Ty()) {
2324         // api needed to prevent premature destruction
2325         // bits are not in the same order as a normal i80 APInt, compensate.
2326         APInt api = CFP->getValueAPF().bitcastToAPInt();
2327         const uint64_t *p = api.getRawData();
2328         Record.push_back((p[1] << 48) | (p[0] >> 16));
2329         Record.push_back(p[0] & 0xffffLL);
2330       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2331         APInt api = CFP->getValueAPF().bitcastToAPInt();
2332         const uint64_t *p = api.getRawData();
2333         Record.push_back(p[0]);
2334         Record.push_back(p[1]);
2335       } else {
2336         assert(0 && "Unknown FP type!");
2337       }
2338     } else if (isa<ConstantDataSequential>(C) &&
2339                cast<ConstantDataSequential>(C)->isString()) {
2340       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2341       // Emit constant strings specially.
2342       unsigned NumElts = Str->getNumElements();
2343       // If this is a null-terminated string, use the denser CSTRING encoding.
2344       if (Str->isCString()) {
2345         Code = bitc::CST_CODE_CSTRING;
2346         --NumElts;  // Don't encode the null, which isn't allowed by char6.
2347       } else {
2348         Code = bitc::CST_CODE_STRING;
2349         AbbrevToUse = String8Abbrev;
2350       }
2351       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2352       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2353       for (unsigned i = 0; i != NumElts; ++i) {
2354         unsigned char V = Str->getElementAsInteger(i);
2355         Record.push_back(V);
2356         isCStr7 &= (V & 128) == 0;
2357         if (isCStrChar6)
2358           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2359       }
2360 
2361       if (isCStrChar6)
2362         AbbrevToUse = CString6Abbrev;
2363       else if (isCStr7)
2364         AbbrevToUse = CString7Abbrev;
2365     } else if (const ConstantDataSequential *CDS =
2366                   dyn_cast<ConstantDataSequential>(C)) {
2367       Code = bitc::CST_CODE_DATA;
2368       Type *EltTy = CDS->getType()->getElementType();
2369       if (isa<IntegerType>(EltTy)) {
2370         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2371           Record.push_back(CDS->getElementAsInteger(i));
2372       } else {
2373         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2374           Record.push_back(
2375               CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2376       }
2377     } else if (isa<ConstantAggregate>(C)) {
2378       Code = bitc::CST_CODE_AGGREGATE;
2379       for (const Value *Op : C->operands())
2380         Record.push_back(VE.getValueID(Op));
2381       AbbrevToUse = AggregateAbbrev;
2382     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2383       switch (CE->getOpcode()) {
2384       default:
2385         if (Instruction::isCast(CE->getOpcode())) {
2386           Code = bitc::CST_CODE_CE_CAST;
2387           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2388           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2389           Record.push_back(VE.getValueID(C->getOperand(0)));
2390           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2391         } else {
2392           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2393           Code = bitc::CST_CODE_CE_BINOP;
2394           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2395           Record.push_back(VE.getValueID(C->getOperand(0)));
2396           Record.push_back(VE.getValueID(C->getOperand(1)));
2397           uint64_t Flags = getOptimizationFlags(CE);
2398           if (Flags != 0)
2399             Record.push_back(Flags);
2400         }
2401         break;
2402       case Instruction::FNeg: {
2403         assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
2404         Code = bitc::CST_CODE_CE_UNOP;
2405         Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
2406         Record.push_back(VE.getValueID(C->getOperand(0)));
2407         uint64_t Flags = getOptimizationFlags(CE);
2408         if (Flags != 0)
2409           Record.push_back(Flags);
2410         break;
2411       }
2412       case Instruction::GetElementPtr: {
2413         Code = bitc::CST_CODE_CE_GEP;
2414         const auto *GO = cast<GEPOperator>(C);
2415         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2416         if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
2417           Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2418           Record.push_back((*Idx << 1) | GO->isInBounds());
2419         } else if (GO->isInBounds())
2420           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2421         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2422           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2423           Record.push_back(VE.getValueID(C->getOperand(i)));
2424         }
2425         break;
2426       }
2427       case Instruction::Select:
2428         Code = bitc::CST_CODE_CE_SELECT;
2429         Record.push_back(VE.getValueID(C->getOperand(0)));
2430         Record.push_back(VE.getValueID(C->getOperand(1)));
2431         Record.push_back(VE.getValueID(C->getOperand(2)));
2432         break;
2433       case Instruction::ExtractElement:
2434         Code = bitc::CST_CODE_CE_EXTRACTELT;
2435         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2436         Record.push_back(VE.getValueID(C->getOperand(0)));
2437         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2438         Record.push_back(VE.getValueID(C->getOperand(1)));
2439         break;
2440       case Instruction::InsertElement:
2441         Code = bitc::CST_CODE_CE_INSERTELT;
2442         Record.push_back(VE.getValueID(C->getOperand(0)));
2443         Record.push_back(VE.getValueID(C->getOperand(1)));
2444         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2445         Record.push_back(VE.getValueID(C->getOperand(2)));
2446         break;
2447       case Instruction::ShuffleVector:
2448         // If the return type and argument types are the same, this is a
2449         // standard shufflevector instruction.  If the types are different,
2450         // then the shuffle is widening or truncating the input vectors, and
2451         // the argument type must also be encoded.
2452         if (C->getType() == C->getOperand(0)->getType()) {
2453           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2454         } else {
2455           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2456           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2457         }
2458         Record.push_back(VE.getValueID(C->getOperand(0)));
2459         Record.push_back(VE.getValueID(C->getOperand(1)));
2460         Record.push_back(VE.getValueID(C->getOperand(2)));
2461         break;
2462       case Instruction::ICmp:
2463       case Instruction::FCmp:
2464         Code = bitc::CST_CODE_CE_CMP;
2465         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2466         Record.push_back(VE.getValueID(C->getOperand(0)));
2467         Record.push_back(VE.getValueID(C->getOperand(1)));
2468         Record.push_back(CE->getPredicate());
2469         break;
2470       }
2471     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2472       Code = bitc::CST_CODE_BLOCKADDRESS;
2473       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2474       Record.push_back(VE.getValueID(BA->getFunction()));
2475       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2476     } else {
2477 #ifndef NDEBUG
2478       C->dump();
2479 #endif
2480       llvm_unreachable("Unknown constant!");
2481     }
2482     Stream.EmitRecord(Code, Record, AbbrevToUse);
2483     Record.clear();
2484   }
2485 
2486   Stream.ExitBlock();
2487 }
2488 
2489 void ModuleBitcodeWriter::writeModuleConstants() {
2490   const ValueEnumerator::ValueList &Vals = VE.getValues();
2491 
2492   // Find the first constant to emit, which is the first non-globalvalue value.
2493   // We know globalvalues have been emitted by WriteModuleInfo.
2494   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2495     if (!isa<GlobalValue>(Vals[i].first)) {
2496       writeConstants(i, Vals.size(), true);
2497       return;
2498     }
2499   }
2500 }
2501 
2502 /// pushValueAndType - The file has to encode both the value and type id for
2503 /// many values, because we need to know what type to create for forward
2504 /// references.  However, most operands are not forward references, so this type
2505 /// field is not needed.
2506 ///
2507 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2508 /// instruction ID, then it is a forward reference, and it also includes the
2509 /// type ID.  The value ID that is written is encoded relative to the InstID.
2510 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2511                                            SmallVectorImpl<unsigned> &Vals) {
2512   unsigned ValID = VE.getValueID(V);
2513   // Make encoding relative to the InstID.
2514   Vals.push_back(InstID - ValID);
2515   if (ValID >= InstID) {
2516     Vals.push_back(VE.getTypeID(V->getType()));
2517     return true;
2518   }
2519   return false;
2520 }
2521 
2522 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS,
2523                                               unsigned InstID) {
2524   SmallVector<unsigned, 64> Record;
2525   LLVMContext &C = CS.getInstruction()->getContext();
2526 
2527   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2528     const auto &Bundle = CS.getOperandBundleAt(i);
2529     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2530 
2531     for (auto &Input : Bundle.Inputs)
2532       pushValueAndType(Input, InstID, Record);
2533 
2534     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2535     Record.clear();
2536   }
2537 }
2538 
2539 /// pushValue - Like pushValueAndType, but where the type of the value is
2540 /// omitted (perhaps it was already encoded in an earlier operand).
2541 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2542                                     SmallVectorImpl<unsigned> &Vals) {
2543   unsigned ValID = VE.getValueID(V);
2544   Vals.push_back(InstID - ValID);
2545 }
2546 
2547 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2548                                           SmallVectorImpl<uint64_t> &Vals) {
2549   unsigned ValID = VE.getValueID(V);
2550   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2551   emitSignedInt64(Vals, diff);
2552 }
2553 
2554 /// WriteInstruction - Emit an instruction to the specified stream.
2555 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2556                                            unsigned InstID,
2557                                            SmallVectorImpl<unsigned> &Vals) {
2558   unsigned Code = 0;
2559   unsigned AbbrevToUse = 0;
2560   VE.setInstructionID(&I);
2561   switch (I.getOpcode()) {
2562   default:
2563     if (Instruction::isCast(I.getOpcode())) {
2564       Code = bitc::FUNC_CODE_INST_CAST;
2565       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2566         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2567       Vals.push_back(VE.getTypeID(I.getType()));
2568       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2569     } else {
2570       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2571       Code = bitc::FUNC_CODE_INST_BINOP;
2572       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2573         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2574       pushValue(I.getOperand(1), InstID, Vals);
2575       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2576       uint64_t Flags = getOptimizationFlags(&I);
2577       if (Flags != 0) {
2578         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2579           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2580         Vals.push_back(Flags);
2581       }
2582     }
2583     break;
2584   case Instruction::FNeg: {
2585     Code = bitc::FUNC_CODE_INST_UNOP;
2586     if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2587       AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
2588     Vals.push_back(getEncodedUnaryOpcode(I.getOpcode()));
2589     uint64_t Flags = getOptimizationFlags(&I);
2590     if (Flags != 0) {
2591       if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
2592         AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
2593       Vals.push_back(Flags);
2594     }
2595     break;
2596   }
2597   case Instruction::GetElementPtr: {
2598     Code = bitc::FUNC_CODE_INST_GEP;
2599     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2600     auto &GEPInst = cast<GetElementPtrInst>(I);
2601     Vals.push_back(GEPInst.isInBounds());
2602     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2603     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2604       pushValueAndType(I.getOperand(i), InstID, Vals);
2605     break;
2606   }
2607   case Instruction::ExtractValue: {
2608     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2609     pushValueAndType(I.getOperand(0), InstID, Vals);
2610     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2611     Vals.append(EVI->idx_begin(), EVI->idx_end());
2612     break;
2613   }
2614   case Instruction::InsertValue: {
2615     Code = bitc::FUNC_CODE_INST_INSERTVAL;
2616     pushValueAndType(I.getOperand(0), InstID, Vals);
2617     pushValueAndType(I.getOperand(1), InstID, Vals);
2618     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2619     Vals.append(IVI->idx_begin(), IVI->idx_end());
2620     break;
2621   }
2622   case Instruction::Select:
2623     Code = bitc::FUNC_CODE_INST_VSELECT;
2624     pushValueAndType(I.getOperand(1), InstID, Vals);
2625     pushValue(I.getOperand(2), InstID, Vals);
2626     pushValueAndType(I.getOperand(0), InstID, Vals);
2627     break;
2628   case Instruction::ExtractElement:
2629     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2630     pushValueAndType(I.getOperand(0), InstID, Vals);
2631     pushValueAndType(I.getOperand(1), InstID, Vals);
2632     break;
2633   case Instruction::InsertElement:
2634     Code = bitc::FUNC_CODE_INST_INSERTELT;
2635     pushValueAndType(I.getOperand(0), InstID, Vals);
2636     pushValue(I.getOperand(1), InstID, Vals);
2637     pushValueAndType(I.getOperand(2), InstID, Vals);
2638     break;
2639   case Instruction::ShuffleVector:
2640     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2641     pushValueAndType(I.getOperand(0), InstID, Vals);
2642     pushValue(I.getOperand(1), InstID, Vals);
2643     pushValue(I.getOperand(2), InstID, Vals);
2644     break;
2645   case Instruction::ICmp:
2646   case Instruction::FCmp: {
2647     // compare returning Int1Ty or vector of Int1Ty
2648     Code = bitc::FUNC_CODE_INST_CMP2;
2649     pushValueAndType(I.getOperand(0), InstID, Vals);
2650     pushValue(I.getOperand(1), InstID, Vals);
2651     Vals.push_back(cast<CmpInst>(I).getPredicate());
2652     uint64_t Flags = getOptimizationFlags(&I);
2653     if (Flags != 0)
2654       Vals.push_back(Flags);
2655     break;
2656   }
2657 
2658   case Instruction::Ret:
2659     {
2660       Code = bitc::FUNC_CODE_INST_RET;
2661       unsigned NumOperands = I.getNumOperands();
2662       if (NumOperands == 0)
2663         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2664       else if (NumOperands == 1) {
2665         if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2666           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2667       } else {
2668         for (unsigned i = 0, e = NumOperands; i != e; ++i)
2669           pushValueAndType(I.getOperand(i), InstID, Vals);
2670       }
2671     }
2672     break;
2673   case Instruction::Br:
2674     {
2675       Code = bitc::FUNC_CODE_INST_BR;
2676       const BranchInst &II = cast<BranchInst>(I);
2677       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2678       if (II.isConditional()) {
2679         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2680         pushValue(II.getCondition(), InstID, Vals);
2681       }
2682     }
2683     break;
2684   case Instruction::Switch:
2685     {
2686       Code = bitc::FUNC_CODE_INST_SWITCH;
2687       const SwitchInst &SI = cast<SwitchInst>(I);
2688       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2689       pushValue(SI.getCondition(), InstID, Vals);
2690       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2691       for (auto Case : SI.cases()) {
2692         Vals.push_back(VE.getValueID(Case.getCaseValue()));
2693         Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2694       }
2695     }
2696     break;
2697   case Instruction::IndirectBr:
2698     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2699     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2700     // Encode the address operand as relative, but not the basic blocks.
2701     pushValue(I.getOperand(0), InstID, Vals);
2702     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2703       Vals.push_back(VE.getValueID(I.getOperand(i)));
2704     break;
2705 
2706   case Instruction::Invoke: {
2707     const InvokeInst *II = cast<InvokeInst>(&I);
2708     const Value *Callee = II->getCalledValue();
2709     FunctionType *FTy = II->getFunctionType();
2710 
2711     if (II->hasOperandBundles())
2712       writeOperandBundles(II, InstID);
2713 
2714     Code = bitc::FUNC_CODE_INST_INVOKE;
2715 
2716     Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2717     Vals.push_back(II->getCallingConv() | 1 << 13);
2718     Vals.push_back(VE.getValueID(II->getNormalDest()));
2719     Vals.push_back(VE.getValueID(II->getUnwindDest()));
2720     Vals.push_back(VE.getTypeID(FTy));
2721     pushValueAndType(Callee, InstID, Vals);
2722 
2723     // Emit value #'s for the fixed parameters.
2724     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2725       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2726 
2727     // Emit type/value pairs for varargs params.
2728     if (FTy->isVarArg()) {
2729       for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands();
2730            i != e; ++i)
2731         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2732     }
2733     break;
2734   }
2735   case Instruction::Resume:
2736     Code = bitc::FUNC_CODE_INST_RESUME;
2737     pushValueAndType(I.getOperand(0), InstID, Vals);
2738     break;
2739   case Instruction::CleanupRet: {
2740     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2741     const auto &CRI = cast<CleanupReturnInst>(I);
2742     pushValue(CRI.getCleanupPad(), InstID, Vals);
2743     if (CRI.hasUnwindDest())
2744       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2745     break;
2746   }
2747   case Instruction::CatchRet: {
2748     Code = bitc::FUNC_CODE_INST_CATCHRET;
2749     const auto &CRI = cast<CatchReturnInst>(I);
2750     pushValue(CRI.getCatchPad(), InstID, Vals);
2751     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2752     break;
2753   }
2754   case Instruction::CleanupPad:
2755   case Instruction::CatchPad: {
2756     const auto &FuncletPad = cast<FuncletPadInst>(I);
2757     Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2758                                          : bitc::FUNC_CODE_INST_CLEANUPPAD;
2759     pushValue(FuncletPad.getParentPad(), InstID, Vals);
2760 
2761     unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2762     Vals.push_back(NumArgOperands);
2763     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2764       pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2765     break;
2766   }
2767   case Instruction::CatchSwitch: {
2768     Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2769     const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2770 
2771     pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2772 
2773     unsigned NumHandlers = CatchSwitch.getNumHandlers();
2774     Vals.push_back(NumHandlers);
2775     for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2776       Vals.push_back(VE.getValueID(CatchPadBB));
2777 
2778     if (CatchSwitch.hasUnwindDest())
2779       Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2780     break;
2781   }
2782   case Instruction::Unreachable:
2783     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2784     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2785     break;
2786 
2787   case Instruction::PHI: {
2788     const PHINode &PN = cast<PHINode>(I);
2789     Code = bitc::FUNC_CODE_INST_PHI;
2790     // With the newer instruction encoding, forward references could give
2791     // negative valued IDs.  This is most common for PHIs, so we use
2792     // signed VBRs.
2793     SmallVector<uint64_t, 128> Vals64;
2794     Vals64.push_back(VE.getTypeID(PN.getType()));
2795     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2796       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2797       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2798     }
2799     // Emit a Vals64 vector and exit.
2800     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2801     Vals64.clear();
2802     return;
2803   }
2804 
2805   case Instruction::LandingPad: {
2806     const LandingPadInst &LP = cast<LandingPadInst>(I);
2807     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2808     Vals.push_back(VE.getTypeID(LP.getType()));
2809     Vals.push_back(LP.isCleanup());
2810     Vals.push_back(LP.getNumClauses());
2811     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2812       if (LP.isCatch(I))
2813         Vals.push_back(LandingPadInst::Catch);
2814       else
2815         Vals.push_back(LandingPadInst::Filter);
2816       pushValueAndType(LP.getClause(I), InstID, Vals);
2817     }
2818     break;
2819   }
2820 
2821   case Instruction::Alloca: {
2822     Code = bitc::FUNC_CODE_INST_ALLOCA;
2823     const AllocaInst &AI = cast<AllocaInst>(I);
2824     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2825     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2826     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2827     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
2828     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
2829            "not enough bits for maximum alignment");
2830     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2831     AlignRecord |= AI.isUsedWithInAlloca() << 5;
2832     AlignRecord |= 1 << 6;
2833     AlignRecord |= AI.isSwiftError() << 7;
2834     Vals.push_back(AlignRecord);
2835     break;
2836   }
2837 
2838   case Instruction::Load:
2839     if (cast<LoadInst>(I).isAtomic()) {
2840       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2841       pushValueAndType(I.getOperand(0), InstID, Vals);
2842     } else {
2843       Code = bitc::FUNC_CODE_INST_LOAD;
2844       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2845         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
2846     }
2847     Vals.push_back(VE.getTypeID(I.getType()));
2848     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
2849     Vals.push_back(cast<LoadInst>(I).isVolatile());
2850     if (cast<LoadInst>(I).isAtomic()) {
2851       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2852       Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
2853     }
2854     break;
2855   case Instruction::Store:
2856     if (cast<StoreInst>(I).isAtomic())
2857       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2858     else
2859       Code = bitc::FUNC_CODE_INST_STORE;
2860     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2861     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2862     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
2863     Vals.push_back(cast<StoreInst>(I).isVolatile());
2864     if (cast<StoreInst>(I).isAtomic()) {
2865       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2866       Vals.push_back(
2867           getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
2868     }
2869     break;
2870   case Instruction::AtomicCmpXchg:
2871     Code = bitc::FUNC_CODE_INST_CMPXCHG;
2872     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2873     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2874     pushValue(I.getOperand(2), InstID, Vals);        // newval.
2875     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2876     Vals.push_back(
2877         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2878     Vals.push_back(
2879         getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
2880     Vals.push_back(
2881         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2882     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2883     break;
2884   case Instruction::AtomicRMW:
2885     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2886     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2887     pushValue(I.getOperand(1), InstID, Vals);        // val.
2888     Vals.push_back(
2889         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2890     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2891     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2892     Vals.push_back(
2893         getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
2894     break;
2895   case Instruction::Fence:
2896     Code = bitc::FUNC_CODE_INST_FENCE;
2897     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2898     Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
2899     break;
2900   case Instruction::Call: {
2901     const CallInst &CI = cast<CallInst>(I);
2902     FunctionType *FTy = CI.getFunctionType();
2903 
2904     if (CI.hasOperandBundles())
2905       writeOperandBundles(&CI, InstID);
2906 
2907     Code = bitc::FUNC_CODE_INST_CALL;
2908 
2909     Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
2910 
2911     unsigned Flags = getOptimizationFlags(&I);
2912     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
2913                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
2914                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
2915                    1 << bitc::CALL_EXPLICIT_TYPE |
2916                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
2917                    unsigned(Flags != 0) << bitc::CALL_FMF);
2918     if (Flags != 0)
2919       Vals.push_back(Flags);
2920 
2921     Vals.push_back(VE.getTypeID(FTy));
2922     pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee
2923 
2924     // Emit value #'s for the fixed parameters.
2925     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2926       // Check for labels (can happen with asm labels).
2927       if (FTy->getParamType(i)->isLabelTy())
2928         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2929       else
2930         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2931     }
2932 
2933     // Emit type/value pairs for varargs params.
2934     if (FTy->isVarArg()) {
2935       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
2936            i != e; ++i)
2937         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2938     }
2939     break;
2940   }
2941   case Instruction::VAArg:
2942     Code = bitc::FUNC_CODE_INST_VAARG;
2943     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
2944     pushValue(I.getOperand(0), InstID, Vals);                   // valist.
2945     Vals.push_back(VE.getTypeID(I.getType())); // restype.
2946     break;
2947   }
2948 
2949   Stream.EmitRecord(Code, Vals, AbbrevToUse);
2950   Vals.clear();
2951 }
2952 
2953 /// Write a GlobalValue VST to the module. The purpose of this data structure is
2954 /// to allow clients to efficiently find the function body.
2955 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
2956   DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
2957   // Get the offset of the VST we are writing, and backpatch it into
2958   // the VST forward declaration record.
2959   uint64_t VSTOffset = Stream.GetCurrentBitNo();
2960   // The BitcodeStartBit was the stream offset of the identification block.
2961   VSTOffset -= bitcodeStartBit();
2962   assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
2963   // Note that we add 1 here because the offset is relative to one word
2964   // before the start of the identification block, which was historically
2965   // always the start of the regular bitcode header.
2966   Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
2967 
2968   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2969 
2970   auto Abbv = std::make_shared<BitCodeAbbrev>();
2971   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2972   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2973   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2974   unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2975 
2976   for (const Function &F : M) {
2977     uint64_t Record[2];
2978 
2979     if (F.isDeclaration())
2980       continue;
2981 
2982     Record[0] = VE.getValueID(&F);
2983 
2984     // Save the word offset of the function (from the start of the
2985     // actual bitcode written to the stream).
2986     uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
2987     assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
2988     // Note that we add 1 here because the offset is relative to one word
2989     // before the start of the identification block, which was historically
2990     // always the start of the regular bitcode header.
2991     Record[1] = BitcodeIndex / 32 + 1;
2992 
2993     Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
2994   }
2995 
2996   Stream.ExitBlock();
2997 }
2998 
2999 /// Emit names for arguments, instructions and basic blocks in a function.
3000 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
3001     const ValueSymbolTable &VST) {
3002   if (VST.empty())
3003     return;
3004 
3005   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3006 
3007   // FIXME: Set up the abbrev, we know how many values there are!
3008   // FIXME: We know if the type names can use 7-bit ascii.
3009   SmallVector<uint64_t, 64> NameVals;
3010 
3011   for (const ValueName &Name : VST) {
3012     // Figure out the encoding to use for the name.
3013     StringEncoding Bits = getStringEncoding(Name.getKey());
3014 
3015     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
3016     NameVals.push_back(VE.getValueID(Name.getValue()));
3017 
3018     // VST_CODE_ENTRY:   [valueid, namechar x N]
3019     // VST_CODE_BBENTRY: [bbid, namechar x N]
3020     unsigned Code;
3021     if (isa<BasicBlock>(Name.getValue())) {
3022       Code = bitc::VST_CODE_BBENTRY;
3023       if (Bits == SE_Char6)
3024         AbbrevToUse = VST_BBENTRY_6_ABBREV;
3025     } else {
3026       Code = bitc::VST_CODE_ENTRY;
3027       if (Bits == SE_Char6)
3028         AbbrevToUse = VST_ENTRY_6_ABBREV;
3029       else if (Bits == SE_Fixed7)
3030         AbbrevToUse = VST_ENTRY_7_ABBREV;
3031     }
3032 
3033     for (const auto P : Name.getKey())
3034       NameVals.push_back((unsigned char)P);
3035 
3036     // Emit the finished record.
3037     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
3038     NameVals.clear();
3039   }
3040 
3041   Stream.ExitBlock();
3042 }
3043 
3044 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3045   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3046   unsigned Code;
3047   if (isa<BasicBlock>(Order.V))
3048     Code = bitc::USELIST_CODE_BB;
3049   else
3050     Code = bitc::USELIST_CODE_DEFAULT;
3051 
3052   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3053   Record.push_back(VE.getValueID(Order.V));
3054   Stream.EmitRecord(Code, Record);
3055 }
3056 
3057 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3058   assert(VE.shouldPreserveUseListOrder() &&
3059          "Expected to be preserving use-list order");
3060 
3061   auto hasMore = [&]() {
3062     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3063   };
3064   if (!hasMore())
3065     // Nothing to do.
3066     return;
3067 
3068   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3069   while (hasMore()) {
3070     writeUseList(std::move(VE.UseListOrders.back()));
3071     VE.UseListOrders.pop_back();
3072   }
3073   Stream.ExitBlock();
3074 }
3075 
3076 /// Emit a function body to the module stream.
3077 void ModuleBitcodeWriter::writeFunction(
3078     const Function &F,
3079     DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3080   // Save the bitcode index of the start of this function block for recording
3081   // in the VST.
3082   FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3083 
3084   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3085   VE.incorporateFunction(F);
3086 
3087   SmallVector<unsigned, 64> Vals;
3088 
3089   // Emit the number of basic blocks, so the reader can create them ahead of
3090   // time.
3091   Vals.push_back(VE.getBasicBlocks().size());
3092   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3093   Vals.clear();
3094 
3095   // If there are function-local constants, emit them now.
3096   unsigned CstStart, CstEnd;
3097   VE.getFunctionConstantRange(CstStart, CstEnd);
3098   writeConstants(CstStart, CstEnd, false);
3099 
3100   // If there is function-local metadata, emit it now.
3101   writeFunctionMetadata(F);
3102 
3103   // Keep a running idea of what the instruction ID is.
3104   unsigned InstID = CstEnd;
3105 
3106   bool NeedsMetadataAttachment = F.hasMetadata();
3107 
3108   DILocation *LastDL = nullptr;
3109   // Finally, emit all the instructions, in order.
3110   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
3111     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
3112          I != E; ++I) {
3113       writeInstruction(*I, InstID, Vals);
3114 
3115       if (!I->getType()->isVoidTy())
3116         ++InstID;
3117 
3118       // If the instruction has metadata, write a metadata attachment later.
3119       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
3120 
3121       // If the instruction has a debug location, emit it.
3122       DILocation *DL = I->getDebugLoc();
3123       if (!DL)
3124         continue;
3125 
3126       if (DL == LastDL) {
3127         // Just repeat the same debug loc as last time.
3128         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3129         continue;
3130       }
3131 
3132       Vals.push_back(DL->getLine());
3133       Vals.push_back(DL->getColumn());
3134       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3135       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3136       Vals.push_back(DL->isImplicitCode());
3137       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3138       Vals.clear();
3139 
3140       LastDL = DL;
3141     }
3142 
3143   // Emit names for all the instructions etc.
3144   if (auto *Symtab = F.getValueSymbolTable())
3145     writeFunctionLevelValueSymbolTable(*Symtab);
3146 
3147   if (NeedsMetadataAttachment)
3148     writeFunctionMetadataAttachment(F);
3149   if (VE.shouldPreserveUseListOrder())
3150     writeUseListBlock(&F);
3151   VE.purgeFunction();
3152   Stream.ExitBlock();
3153 }
3154 
3155 // Emit blockinfo, which defines the standard abbreviations etc.
3156 void ModuleBitcodeWriter::writeBlockInfo() {
3157   // We only want to emit block info records for blocks that have multiple
3158   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3159   // Other blocks can define their abbrevs inline.
3160   Stream.EnterBlockInfoBlock();
3161 
3162   { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3163     auto Abbv = std::make_shared<BitCodeAbbrev>();
3164     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3165     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3166     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3167     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3168     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3169         VST_ENTRY_8_ABBREV)
3170       llvm_unreachable("Unexpected abbrev ordering!");
3171   }
3172 
3173   { // 7-bit fixed width VST_CODE_ENTRY strings.
3174     auto Abbv = std::make_shared<BitCodeAbbrev>();
3175     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3176     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3177     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3178     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3179     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3180         VST_ENTRY_7_ABBREV)
3181       llvm_unreachable("Unexpected abbrev ordering!");
3182   }
3183   { // 6-bit char6 VST_CODE_ENTRY strings.
3184     auto Abbv = std::make_shared<BitCodeAbbrev>();
3185     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3186     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3187     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3188     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3189     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3190         VST_ENTRY_6_ABBREV)
3191       llvm_unreachable("Unexpected abbrev ordering!");
3192   }
3193   { // 6-bit char6 VST_CODE_BBENTRY strings.
3194     auto Abbv = std::make_shared<BitCodeAbbrev>();
3195     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3196     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3197     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3198     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3199     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3200         VST_BBENTRY_6_ABBREV)
3201       llvm_unreachable("Unexpected abbrev ordering!");
3202   }
3203 
3204   { // SETTYPE abbrev for CONSTANTS_BLOCK.
3205     auto Abbv = std::make_shared<BitCodeAbbrev>();
3206     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3207     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3208                               VE.computeBitsRequiredForTypeIndicies()));
3209     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3210         CONSTANTS_SETTYPE_ABBREV)
3211       llvm_unreachable("Unexpected abbrev ordering!");
3212   }
3213 
3214   { // INTEGER abbrev for CONSTANTS_BLOCK.
3215     auto Abbv = std::make_shared<BitCodeAbbrev>();
3216     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3217     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3218     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3219         CONSTANTS_INTEGER_ABBREV)
3220       llvm_unreachable("Unexpected abbrev ordering!");
3221   }
3222 
3223   { // CE_CAST abbrev for CONSTANTS_BLOCK.
3224     auto Abbv = std::make_shared<BitCodeAbbrev>();
3225     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3226     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
3227     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
3228                               VE.computeBitsRequiredForTypeIndicies()));
3229     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
3230 
3231     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3232         CONSTANTS_CE_CAST_Abbrev)
3233       llvm_unreachable("Unexpected abbrev ordering!");
3234   }
3235   { // NULL abbrev for CONSTANTS_BLOCK.
3236     auto Abbv = std::make_shared<BitCodeAbbrev>();
3237     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3238     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3239         CONSTANTS_NULL_Abbrev)
3240       llvm_unreachable("Unexpected abbrev ordering!");
3241   }
3242 
3243   // FIXME: This should only use space for first class types!
3244 
3245   { // INST_LOAD abbrev for FUNCTION_BLOCK.
3246     auto Abbv = std::make_shared<BitCodeAbbrev>();
3247     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3248     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3249     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3250                               VE.computeBitsRequiredForTypeIndicies()));
3251     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3252     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3253     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3254         FUNCTION_INST_LOAD_ABBREV)
3255       llvm_unreachable("Unexpected abbrev ordering!");
3256   }
3257   { // INST_UNOP abbrev for FUNCTION_BLOCK.
3258     auto Abbv = std::make_shared<BitCodeAbbrev>();
3259     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3260     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3261     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3262     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3263         FUNCTION_INST_UNOP_ABBREV)
3264       llvm_unreachable("Unexpected abbrev ordering!");
3265   }
3266   { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3267     auto Abbv = std::make_shared<BitCodeAbbrev>();
3268     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3269     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3270     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3271     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3272     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3273         FUNCTION_INST_UNOP_FLAGS_ABBREV)
3274       llvm_unreachable("Unexpected abbrev ordering!");
3275   }
3276   { // INST_BINOP abbrev for FUNCTION_BLOCK.
3277     auto Abbv = std::make_shared<BitCodeAbbrev>();
3278     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3279     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3280     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3281     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3282     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3283         FUNCTION_INST_BINOP_ABBREV)
3284       llvm_unreachable("Unexpected abbrev ordering!");
3285   }
3286   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3287     auto Abbv = std::make_shared<BitCodeAbbrev>();
3288     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3289     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3290     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3291     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3292     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3293     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3294         FUNCTION_INST_BINOP_FLAGS_ABBREV)
3295       llvm_unreachable("Unexpected abbrev ordering!");
3296   }
3297   { // INST_CAST abbrev for FUNCTION_BLOCK.
3298     auto Abbv = std::make_shared<BitCodeAbbrev>();
3299     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3300     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
3301     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
3302                               VE.computeBitsRequiredForTypeIndicies()));
3303     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
3304     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3305         FUNCTION_INST_CAST_ABBREV)
3306       llvm_unreachable("Unexpected abbrev ordering!");
3307   }
3308 
3309   { // INST_RET abbrev for FUNCTION_BLOCK.
3310     auto Abbv = std::make_shared<BitCodeAbbrev>();
3311     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3312     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3313         FUNCTION_INST_RET_VOID_ABBREV)
3314       llvm_unreachable("Unexpected abbrev ordering!");
3315   }
3316   { // INST_RET abbrev for FUNCTION_BLOCK.
3317     auto Abbv = std::make_shared<BitCodeAbbrev>();
3318     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3319     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3320     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3321         FUNCTION_INST_RET_VAL_ABBREV)
3322       llvm_unreachable("Unexpected abbrev ordering!");
3323   }
3324   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3325     auto Abbv = std::make_shared<BitCodeAbbrev>();
3326     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3327     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3328         FUNCTION_INST_UNREACHABLE_ABBREV)
3329       llvm_unreachable("Unexpected abbrev ordering!");
3330   }
3331   {
3332     auto Abbv = std::make_shared<BitCodeAbbrev>();
3333     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3334     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3335     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3336                               Log2_32_Ceil(VE.getTypes().size() + 1)));
3337     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3338     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3339     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3340         FUNCTION_INST_GEP_ABBREV)
3341       llvm_unreachable("Unexpected abbrev ordering!");
3342   }
3343 
3344   Stream.ExitBlock();
3345 }
3346 
3347 /// Write the module path strings, currently only used when generating
3348 /// a combined index file.
3349 void IndexBitcodeWriter::writeModStrings() {
3350   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3351 
3352   // TODO: See which abbrev sizes we actually need to emit
3353 
3354   // 8-bit fixed-width MST_ENTRY strings.
3355   auto Abbv = std::make_shared<BitCodeAbbrev>();
3356   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3357   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3358   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3359   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3360   unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3361 
3362   // 7-bit fixed width MST_ENTRY strings.
3363   Abbv = std::make_shared<BitCodeAbbrev>();
3364   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3365   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3366   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3367   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3368   unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3369 
3370   // 6-bit char6 MST_ENTRY strings.
3371   Abbv = std::make_shared<BitCodeAbbrev>();
3372   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3373   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3374   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3375   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3376   unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3377 
3378   // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3379   Abbv = std::make_shared<BitCodeAbbrev>();
3380   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3381   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3382   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3383   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3384   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3385   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3386   unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3387 
3388   SmallVector<unsigned, 64> Vals;
3389   forEachModule(
3390       [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) {
3391         StringRef Key = MPSE.getKey();
3392         const auto &Value = MPSE.getValue();
3393         StringEncoding Bits = getStringEncoding(Key);
3394         unsigned AbbrevToUse = Abbrev8Bit;
3395         if (Bits == SE_Char6)
3396           AbbrevToUse = Abbrev6Bit;
3397         else if (Bits == SE_Fixed7)
3398           AbbrevToUse = Abbrev7Bit;
3399 
3400         Vals.push_back(Value.first);
3401         Vals.append(Key.begin(), Key.end());
3402 
3403         // Emit the finished record.
3404         Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3405 
3406         // Emit an optional hash for the module now
3407         const auto &Hash = Value.second;
3408         if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3409           Vals.assign(Hash.begin(), Hash.end());
3410           // Emit the hash record.
3411           Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3412         }
3413 
3414         Vals.clear();
3415       });
3416   Stream.ExitBlock();
3417 }
3418 
3419 /// Write the function type metadata related records that need to appear before
3420 /// a function summary entry (whether per-module or combined).
3421 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
3422                                              FunctionSummary *FS) {
3423   if (!FS->type_tests().empty())
3424     Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3425 
3426   SmallVector<uint64_t, 64> Record;
3427 
3428   auto WriteVFuncIdVec = [&](uint64_t Ty,
3429                              ArrayRef<FunctionSummary::VFuncId> VFs) {
3430     if (VFs.empty())
3431       return;
3432     Record.clear();
3433     for (auto &VF : VFs) {
3434       Record.push_back(VF.GUID);
3435       Record.push_back(VF.Offset);
3436     }
3437     Stream.EmitRecord(Ty, Record);
3438   };
3439 
3440   WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3441                   FS->type_test_assume_vcalls());
3442   WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3443                   FS->type_checked_load_vcalls());
3444 
3445   auto WriteConstVCallVec = [&](uint64_t Ty,
3446                                 ArrayRef<FunctionSummary::ConstVCall> VCs) {
3447     for (auto &VC : VCs) {
3448       Record.clear();
3449       Record.push_back(VC.VFunc.GUID);
3450       Record.push_back(VC.VFunc.Offset);
3451       Record.insert(Record.end(), VC.Args.begin(), VC.Args.end());
3452       Stream.EmitRecord(Ty, Record);
3453     }
3454   };
3455 
3456   WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3457                      FS->type_test_assume_const_vcalls());
3458   WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3459                      FS->type_checked_load_const_vcalls());
3460 }
3461 
3462 /// Collect type IDs from type tests used by function.
3463 static void
3464 getReferencedTypeIds(FunctionSummary *FS,
3465                      std::set<GlobalValue::GUID> &ReferencedTypeIds) {
3466   if (!FS->type_tests().empty())
3467     for (auto &TT : FS->type_tests())
3468       ReferencedTypeIds.insert(TT);
3469 
3470   auto GetReferencedTypesFromVFuncIdVec =
3471       [&](ArrayRef<FunctionSummary::VFuncId> VFs) {
3472         for (auto &VF : VFs)
3473           ReferencedTypeIds.insert(VF.GUID);
3474       };
3475 
3476   GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
3477   GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
3478 
3479   auto GetReferencedTypesFromConstVCallVec =
3480       [&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
3481         for (auto &VC : VCs)
3482           ReferencedTypeIds.insert(VC.VFunc.GUID);
3483       };
3484 
3485   GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
3486   GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
3487 }
3488 
3489 static void writeWholeProgramDevirtResolutionByArg(
3490     SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
3491     const WholeProgramDevirtResolution::ByArg &ByArg) {
3492   NameVals.push_back(args.size());
3493   NameVals.insert(NameVals.end(), args.begin(), args.end());
3494 
3495   NameVals.push_back(ByArg.TheKind);
3496   NameVals.push_back(ByArg.Info);
3497   NameVals.push_back(ByArg.Byte);
3498   NameVals.push_back(ByArg.Bit);
3499 }
3500 
3501 static void writeWholeProgramDevirtResolution(
3502     SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3503     uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
3504   NameVals.push_back(Id);
3505 
3506   NameVals.push_back(Wpd.TheKind);
3507   NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
3508   NameVals.push_back(Wpd.SingleImplName.size());
3509 
3510   NameVals.push_back(Wpd.ResByArg.size());
3511   for (auto &A : Wpd.ResByArg)
3512     writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
3513 }
3514 
3515 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
3516                                      StringTableBuilder &StrtabBuilder,
3517                                      const std::string &Id,
3518                                      const TypeIdSummary &Summary) {
3519   NameVals.push_back(StrtabBuilder.add(Id));
3520   NameVals.push_back(Id.size());
3521 
3522   NameVals.push_back(Summary.TTRes.TheKind);
3523   NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
3524   NameVals.push_back(Summary.TTRes.AlignLog2);
3525   NameVals.push_back(Summary.TTRes.SizeM1);
3526   NameVals.push_back(Summary.TTRes.BitMask);
3527   NameVals.push_back(Summary.TTRes.InlineBits);
3528 
3529   for (auto &W : Summary.WPDRes)
3530     writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
3531                                       W.second);
3532 }
3533 
3534 // Helper to emit a single function summary record.
3535 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
3536     SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3537     unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3538     const Function &F) {
3539   NameVals.push_back(ValueID);
3540 
3541   FunctionSummary *FS = cast<FunctionSummary>(Summary);
3542   writeFunctionTypeMetadataRecords(Stream, FS);
3543 
3544   NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3545   NameVals.push_back(FS->instCount());
3546   NameVals.push_back(getEncodedFFlags(FS->fflags()));
3547   NameVals.push_back(FS->refs().size());
3548   NameVals.push_back(FS->immutableRefCount());
3549 
3550   for (auto &RI : FS->refs())
3551     NameVals.push_back(VE.getValueID(RI.getValue()));
3552 
3553   bool HasProfileData =
3554       F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None;
3555   for (auto &ECI : FS->calls()) {
3556     NameVals.push_back(getValueId(ECI.first));
3557     if (HasProfileData)
3558       NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
3559     else if (WriteRelBFToSummary)
3560       NameVals.push_back(ECI.second.RelBlockFreq);
3561   }
3562 
3563   unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3564   unsigned Code =
3565       (HasProfileData ? bitc::FS_PERMODULE_PROFILE
3566                       : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF
3567                                              : bitc::FS_PERMODULE));
3568 
3569   // Emit the finished record.
3570   Stream.EmitRecord(Code, NameVals, FSAbbrev);
3571   NameVals.clear();
3572 }
3573 
3574 // Collect the global value references in the given variable's initializer,
3575 // and emit them in a summary record.
3576 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
3577     const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3578     unsigned FSModRefsAbbrev) {
3579   auto VI = Index->getValueInfo(V.getGUID());
3580   if (!VI || VI.getSummaryList().empty()) {
3581     // Only declarations should not have a summary (a declaration might however
3582     // have a summary if the def was in module level asm).
3583     assert(V.isDeclaration());
3584     return;
3585   }
3586   auto *Summary = VI.getSummaryList()[0].get();
3587   NameVals.push_back(VE.getValueID(&V));
3588   GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3589   NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3590   NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
3591 
3592   unsigned SizeBeforeRefs = NameVals.size();
3593   for (auto &RI : VS->refs())
3594     NameVals.push_back(VE.getValueID(RI.getValue()));
3595   // Sort the refs for determinism output, the vector returned by FS->refs() has
3596   // been initialized from a DenseSet.
3597   llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3598 
3599   Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
3600                     FSModRefsAbbrev);
3601   NameVals.clear();
3602 }
3603 
3604 // Current version for the summary.
3605 // This is bumped whenever we introduce changes in the way some record are
3606 // interpreted, like flags for instance.
3607 static const uint64_t INDEX_VERSION = 6;
3608 
3609 /// Emit the per-module summary section alongside the rest of
3610 /// the module's bitcode.
3611 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
3612   // By default we compile with ThinLTO if the module has a summary, but the
3613   // client can request full LTO with a module flag.
3614   bool IsThinLTO = true;
3615   if (auto *MD =
3616           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
3617     IsThinLTO = MD->getZExtValue();
3618   Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
3619                                  : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
3620                        4);
3621 
3622   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3623 
3624   // Write the index flags.
3625   uint64_t Flags = 0;
3626   // Bits 1-3 are set only in the combined index, skip them.
3627   if (Index->enableSplitLTOUnit())
3628     Flags |= 0x8;
3629   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
3630 
3631   if (Index->begin() == Index->end()) {
3632     Stream.ExitBlock();
3633     return;
3634   }
3635 
3636   for (const auto &GVI : valueIds()) {
3637     Stream.EmitRecord(bitc::FS_VALUE_GUID,
3638                       ArrayRef<uint64_t>{GVI.second, GVI.first});
3639   }
3640 
3641   // Abbrev for FS_PERMODULE_PROFILE.
3642   auto Abbv = std::make_shared<BitCodeAbbrev>();
3643   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
3644   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3645   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3646   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3647   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3648   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3649   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // immutablerefcnt
3650   // numrefs x valueid, n x (valueid, hotness)
3651   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3652   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3653   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3654 
3655   // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF.
3656   Abbv = std::make_shared<BitCodeAbbrev>();
3657   if (WriteRelBFToSummary)
3658     Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
3659   else
3660     Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3661   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3662   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3663   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3664   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3665   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3666   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // immutablerefcnt
3667   // numrefs x valueid, n x (valueid [, rel_block_freq])
3668   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3669   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3670   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3671 
3672   // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3673   Abbv = std::make_shared<BitCodeAbbrev>();
3674   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
3675   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3676   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3677   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
3678   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3679   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3680 
3681   // Abbrev for FS_ALIAS.
3682   Abbv = std::make_shared<BitCodeAbbrev>();
3683   Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3684   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3685   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3686   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3687   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3688 
3689   SmallVector<uint64_t, 64> NameVals;
3690   // Iterate over the list of functions instead of the Index to
3691   // ensure the ordering is stable.
3692   for (const Function &F : M) {
3693     // Summary emission does not support anonymous functions, they have to
3694     // renamed using the anonymous function renaming pass.
3695     if (!F.hasName())
3696       report_fatal_error("Unexpected anonymous function when writing summary");
3697 
3698     ValueInfo VI = Index->getValueInfo(F.getGUID());
3699     if (!VI || VI.getSummaryList().empty()) {
3700       // Only declarations should not have a summary (a declaration might
3701       // however have a summary if the def was in module level asm).
3702       assert(F.isDeclaration());
3703       continue;
3704     }
3705     auto *Summary = VI.getSummaryList()[0].get();
3706     writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
3707                                         FSCallsAbbrev, FSCallsProfileAbbrev, F);
3708   }
3709 
3710   // Capture references from GlobalVariable initializers, which are outside
3711   // of a function scope.
3712   for (const GlobalVariable &G : M.globals())
3713     writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev);
3714 
3715   for (const GlobalAlias &A : M.aliases()) {
3716     auto *Aliasee = A.getBaseObject();
3717     if (!Aliasee->hasName())
3718       // Nameless function don't have an entry in the summary, skip it.
3719       continue;
3720     auto AliasId = VE.getValueID(&A);
3721     auto AliaseeId = VE.getValueID(Aliasee);
3722     NameVals.push_back(AliasId);
3723     auto *Summary = Index->getGlobalValueSummary(A);
3724     AliasSummary *AS = cast<AliasSummary>(Summary);
3725     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3726     NameVals.push_back(AliaseeId);
3727     Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
3728     NameVals.clear();
3729   }
3730 
3731   Stream.ExitBlock();
3732 }
3733 
3734 /// Emit the combined summary section into the combined index file.
3735 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
3736   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
3737   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3738 
3739   // Write the index flags.
3740   uint64_t Flags = 0;
3741   if (Index.withGlobalValueDeadStripping())
3742     Flags |= 0x1;
3743   if (Index.skipModuleByDistributedBackend())
3744     Flags |= 0x2;
3745   if (Index.hasSyntheticEntryCounts())
3746     Flags |= 0x4;
3747   if (Index.enableSplitLTOUnit())
3748     Flags |= 0x8;
3749   if (Index.partiallySplitLTOUnits())
3750     Flags |= 0x10;
3751   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
3752 
3753   for (const auto &GVI : valueIds()) {
3754     Stream.EmitRecord(bitc::FS_VALUE_GUID,
3755                       ArrayRef<uint64_t>{GVI.second, GVI.first});
3756   }
3757 
3758   // Abbrev for FS_COMBINED.
3759   auto Abbv = std::make_shared<BitCodeAbbrev>();
3760   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
3761   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3762   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3763   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3764   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3765   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3766   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount
3767   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3768   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // immutablerefcnt
3769   // numrefs x valueid, n x (valueid)
3770   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3771   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3772   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3773 
3774   // Abbrev for FS_COMBINED_PROFILE.
3775   Abbv = std::make_shared<BitCodeAbbrev>();
3776   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
3777   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3778   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3779   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3780   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3781   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3782   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3783   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // immutablerefcnt
3784   // numrefs x valueid, n x (valueid, hotness)
3785   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3786   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3787   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3788 
3789   // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
3790   Abbv = std::make_shared<BitCodeAbbrev>();
3791   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
3792   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3793   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3794   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3795   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
3796   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3797   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3798 
3799   // Abbrev for FS_COMBINED_ALIAS.
3800   Abbv = std::make_shared<BitCodeAbbrev>();
3801   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
3802   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3803   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3804   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3805   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3806   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3807 
3808   // The aliases are emitted as a post-pass, and will point to the value
3809   // id of the aliasee. Save them in a vector for post-processing.
3810   SmallVector<AliasSummary *, 64> Aliases;
3811 
3812   // Save the value id for each summary for alias emission.
3813   DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
3814 
3815   SmallVector<uint64_t, 64> NameVals;
3816 
3817   // Set that will be populated during call to writeFunctionTypeMetadataRecords
3818   // with the type ids referenced by this index file.
3819   std::set<GlobalValue::GUID> ReferencedTypeIds;
3820 
3821   // For local linkage, we also emit the original name separately
3822   // immediately after the record.
3823   auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
3824     if (!GlobalValue::isLocalLinkage(S.linkage()))
3825       return;
3826     NameVals.push_back(S.getOriginalName());
3827     Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
3828     NameVals.clear();
3829   };
3830 
3831   forEachSummary([&](GVInfo I, bool IsAliasee) {
3832     GlobalValueSummary *S = I.second;
3833     assert(S);
3834 
3835     auto ValueId = getValueId(I.first);
3836     assert(ValueId);
3837     SummaryToValueIdMap[S] = *ValueId;
3838 
3839     // If this is invoked for an aliasee, we want to record the above
3840     // mapping, but then not emit a summary entry (if the aliasee is
3841     // to be imported, we will invoke this separately with IsAliasee=false).
3842     if (IsAliasee)
3843       return;
3844 
3845     if (auto *AS = dyn_cast<AliasSummary>(S)) {
3846       // Will process aliases as a post-pass because the reader wants all
3847       // global to be loaded first.
3848       Aliases.push_back(AS);
3849       return;
3850     }
3851 
3852     if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
3853       NameVals.push_back(*ValueId);
3854       NameVals.push_back(Index.getModuleId(VS->modulePath()));
3855       NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3856       NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
3857       for (auto &RI : VS->refs()) {
3858         auto RefValueId = getValueId(RI.getGUID());
3859         if (!RefValueId)
3860           continue;
3861         NameVals.push_back(*RefValueId);
3862       }
3863 
3864       // Emit the finished record.
3865       Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
3866                         FSModRefsAbbrev);
3867       NameVals.clear();
3868       MaybeEmitOriginalName(*S);
3869       return;
3870     }
3871 
3872     auto *FS = cast<FunctionSummary>(S);
3873     writeFunctionTypeMetadataRecords(Stream, FS);
3874     getReferencedTypeIds(FS, ReferencedTypeIds);
3875 
3876     NameVals.push_back(*ValueId);
3877     NameVals.push_back(Index.getModuleId(FS->modulePath()));
3878     NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3879     NameVals.push_back(FS->instCount());
3880     NameVals.push_back(getEncodedFFlags(FS->fflags()));
3881     NameVals.push_back(FS->entryCount());
3882 
3883     // Fill in below
3884     NameVals.push_back(0); // numrefs
3885     NameVals.push_back(0); // immutablerefcnt
3886 
3887     unsigned Count = 0, ImmutableRefCnt = 0;
3888     for (auto &RI : FS->refs()) {
3889       auto RefValueId = getValueId(RI.getGUID());
3890       if (!RefValueId)
3891         continue;
3892       NameVals.push_back(*RefValueId);
3893       if (RI.isReadOnly())
3894         ImmutableRefCnt++;
3895       Count++;
3896     }
3897     NameVals[6] = Count;
3898     NameVals[7] = ImmutableRefCnt;
3899 
3900     bool HasProfileData = false;
3901     for (auto &EI : FS->calls()) {
3902       HasProfileData |=
3903           EI.second.getHotness() != CalleeInfo::HotnessType::Unknown;
3904       if (HasProfileData)
3905         break;
3906     }
3907 
3908     for (auto &EI : FS->calls()) {
3909       // If this GUID doesn't have a value id, it doesn't have a function
3910       // summary and we don't need to record any calls to it.
3911       GlobalValue::GUID GUID = EI.first.getGUID();
3912       auto CallValueId = getValueId(GUID);
3913       if (!CallValueId) {
3914         // For SamplePGO, the indirect call targets for local functions will
3915         // have its original name annotated in profile. We try to find the
3916         // corresponding PGOFuncName as the GUID.
3917         GUID = Index.getGUIDFromOriginalID(GUID);
3918         if (GUID == 0)
3919           continue;
3920         CallValueId = getValueId(GUID);
3921         if (!CallValueId)
3922           continue;
3923         // The mapping from OriginalId to GUID may return a GUID
3924         // that corresponds to a static variable. Filter it out here.
3925         // This can happen when
3926         // 1) There is a call to a library function which does not have
3927         // a CallValidId;
3928         // 2) There is a static variable with the  OriginalGUID identical
3929         // to the GUID of the library function in 1);
3930         // When this happens, the logic for SamplePGO kicks in and
3931         // the static variable in 2) will be found, which needs to be
3932         // filtered out.
3933         auto *GVSum = Index.getGlobalValueSummary(GUID, false);
3934         if (GVSum &&
3935             GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind)
3936           continue;
3937       }
3938       NameVals.push_back(*CallValueId);
3939       if (HasProfileData)
3940         NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
3941     }
3942 
3943     unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3944     unsigned Code =
3945         (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
3946 
3947     // Emit the finished record.
3948     Stream.EmitRecord(Code, NameVals, FSAbbrev);
3949     NameVals.clear();
3950     MaybeEmitOriginalName(*S);
3951   });
3952 
3953   for (auto *AS : Aliases) {
3954     auto AliasValueId = SummaryToValueIdMap[AS];
3955     assert(AliasValueId);
3956     NameVals.push_back(AliasValueId);
3957     NameVals.push_back(Index.getModuleId(AS->modulePath()));
3958     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3959     auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
3960     assert(AliaseeValueId);
3961     NameVals.push_back(AliaseeValueId);
3962 
3963     // Emit the finished record.
3964     Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
3965     NameVals.clear();
3966     MaybeEmitOriginalName(*AS);
3967 
3968     if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
3969       getReferencedTypeIds(FS, ReferencedTypeIds);
3970   }
3971 
3972   if (!Index.cfiFunctionDefs().empty()) {
3973     for (auto &S : Index.cfiFunctionDefs()) {
3974       NameVals.push_back(StrtabBuilder.add(S));
3975       NameVals.push_back(S.size());
3976     }
3977     Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
3978     NameVals.clear();
3979   }
3980 
3981   if (!Index.cfiFunctionDecls().empty()) {
3982     for (auto &S : Index.cfiFunctionDecls()) {
3983       NameVals.push_back(StrtabBuilder.add(S));
3984       NameVals.push_back(S.size());
3985     }
3986     Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
3987     NameVals.clear();
3988   }
3989 
3990   // Walk the GUIDs that were referenced, and write the
3991   // corresponding type id records.
3992   for (auto &T : ReferencedTypeIds) {
3993     auto TidIter = Index.typeIds().equal_range(T);
3994     for (auto It = TidIter.first; It != TidIter.second; ++It) {
3995       writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first,
3996                                It->second.second);
3997       Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
3998       NameVals.clear();
3999     }
4000   }
4001 
4002   Stream.ExitBlock();
4003 }
4004 
4005 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
4006 /// current llvm version, and a record for the epoch number.
4007 static void writeIdentificationBlock(BitstreamWriter &Stream) {
4008   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
4009 
4010   // Write the "user readable" string identifying the bitcode producer
4011   auto Abbv = std::make_shared<BitCodeAbbrev>();
4012   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
4013   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4014   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
4015   auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4016   writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
4017                     "LLVM" LLVM_VERSION_STRING, StringAbbrev);
4018 
4019   // Write the epoch version
4020   Abbv = std::make_shared<BitCodeAbbrev>();
4021   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
4022   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4023   auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4024   SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
4025   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
4026   Stream.ExitBlock();
4027 }
4028 
4029 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
4030   // Emit the module's hash.
4031   // MODULE_CODE_HASH: [5*i32]
4032   if (GenerateHash) {
4033     uint32_t Vals[5];
4034     Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
4035                                     Buffer.size() - BlockStartPos));
4036     StringRef Hash = Hasher.result();
4037     for (int Pos = 0; Pos < 20; Pos += 4) {
4038       Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
4039     }
4040 
4041     // Emit the finished record.
4042     Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
4043 
4044     if (ModHash)
4045       // Save the written hash value.
4046       llvm::copy(Vals, std::begin(*ModHash));
4047   }
4048 }
4049 
4050 void ModuleBitcodeWriter::write() {
4051   writeIdentificationBlock(Stream);
4052 
4053   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4054   size_t BlockStartPos = Buffer.size();
4055 
4056   writeModuleVersion();
4057 
4058   // Emit blockinfo, which defines the standard abbreviations etc.
4059   writeBlockInfo();
4060 
4061   // Emit information about attribute groups.
4062   writeAttributeGroupTable();
4063 
4064   // Emit information about parameter attributes.
4065   writeAttributeTable();
4066 
4067   // Emit information describing all of the types in the module.
4068   writeTypeTable();
4069 
4070   writeComdats();
4071 
4072   // Emit top-level description of module, including target triple, inline asm,
4073   // descriptors for global variables, and function prototype info.
4074   writeModuleInfo();
4075 
4076   // Emit constants.
4077   writeModuleConstants();
4078 
4079   // Emit metadata kind names.
4080   writeModuleMetadataKinds();
4081 
4082   // Emit metadata.
4083   writeModuleMetadata();
4084 
4085   // Emit module-level use-lists.
4086   if (VE.shouldPreserveUseListOrder())
4087     writeUseListBlock(nullptr);
4088 
4089   writeOperandBundleTags();
4090   writeSyncScopeNames();
4091 
4092   // Emit function bodies.
4093   DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
4094   for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
4095     if (!F->isDeclaration())
4096       writeFunction(*F, FunctionToBitcodeIndex);
4097 
4098   // Need to write after the above call to WriteFunction which populates
4099   // the summary information in the index.
4100   if (Index)
4101     writePerModuleGlobalValueSummary();
4102 
4103   writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
4104 
4105   writeModuleHash(BlockStartPos);
4106 
4107   Stream.ExitBlock();
4108 }
4109 
4110 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
4111                                uint32_t &Position) {
4112   support::endian::write32le(&Buffer[Position], Value);
4113   Position += 4;
4114 }
4115 
4116 /// If generating a bc file on darwin, we have to emit a
4117 /// header and trailer to make it compatible with the system archiver.  To do
4118 /// this we emit the following header, and then emit a trailer that pads the
4119 /// file out to be a multiple of 16 bytes.
4120 ///
4121 /// struct bc_header {
4122 ///   uint32_t Magic;         // 0x0B17C0DE
4123 ///   uint32_t Version;       // Version, currently always 0.
4124 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4125 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
4126 ///   uint32_t CPUType;       // CPU specifier.
4127 ///   ... potentially more later ...
4128 /// };
4129 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
4130                                          const Triple &TT) {
4131   unsigned CPUType = ~0U;
4132 
4133   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4134   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4135   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
4136   // specific constants here because they are implicitly part of the Darwin ABI.
4137   enum {
4138     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
4139     DARWIN_CPU_TYPE_X86        = 7,
4140     DARWIN_CPU_TYPE_ARM        = 12,
4141     DARWIN_CPU_TYPE_POWERPC    = 18
4142   };
4143 
4144   Triple::ArchType Arch = TT.getArch();
4145   if (Arch == Triple::x86_64)
4146     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4147   else if (Arch == Triple::x86)
4148     CPUType = DARWIN_CPU_TYPE_X86;
4149   else if (Arch == Triple::ppc)
4150     CPUType = DARWIN_CPU_TYPE_POWERPC;
4151   else if (Arch == Triple::ppc64)
4152     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4153   else if (Arch == Triple::arm || Arch == Triple::thumb)
4154     CPUType = DARWIN_CPU_TYPE_ARM;
4155 
4156   // Traditional Bitcode starts after header.
4157   assert(Buffer.size() >= BWH_HeaderSize &&
4158          "Expected header size to be reserved");
4159   unsigned BCOffset = BWH_HeaderSize;
4160   unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4161 
4162   // Write the magic and version.
4163   unsigned Position = 0;
4164   writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4165   writeInt32ToBuffer(0, Buffer, Position); // Version.
4166   writeInt32ToBuffer(BCOffset, Buffer, Position);
4167   writeInt32ToBuffer(BCSize, Buffer, Position);
4168   writeInt32ToBuffer(CPUType, Buffer, Position);
4169 
4170   // If the file is not a multiple of 16 bytes, insert dummy padding.
4171   while (Buffer.size() & 15)
4172     Buffer.push_back(0);
4173 }
4174 
4175 /// Helper to write the header common to all bitcode files.
4176 static void writeBitcodeHeader(BitstreamWriter &Stream) {
4177   // Emit the file header.
4178   Stream.Emit((unsigned)'B', 8);
4179   Stream.Emit((unsigned)'C', 8);
4180   Stream.Emit(0x0, 4);
4181   Stream.Emit(0xC, 4);
4182   Stream.Emit(0xE, 4);
4183   Stream.Emit(0xD, 4);
4184 }
4185 
4186 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
4187     : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) {
4188   writeBitcodeHeader(*Stream);
4189 }
4190 
4191 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
4192 
4193 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
4194   Stream->EnterSubblock(Block, 3);
4195 
4196   auto Abbv = std::make_shared<BitCodeAbbrev>();
4197   Abbv->Add(BitCodeAbbrevOp(Record));
4198   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4199   auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
4200 
4201   Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
4202 
4203   Stream->ExitBlock();
4204 }
4205 
4206 void BitcodeWriter::writeSymtab() {
4207   assert(!WroteStrtab && !WroteSymtab);
4208 
4209   // If any module has module-level inline asm, we will require a registered asm
4210   // parser for the target so that we can create an accurate symbol table for
4211   // the module.
4212   for (Module *M : Mods) {
4213     if (M->getModuleInlineAsm().empty())
4214       continue;
4215 
4216     std::string Err;
4217     const Triple TT(M->getTargetTriple());
4218     const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
4219     if (!T || !T->hasMCAsmParser())
4220       return;
4221   }
4222 
4223   WroteSymtab = true;
4224   SmallVector<char, 0> Symtab;
4225   // The irsymtab::build function may be unable to create a symbol table if the
4226   // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4227   // table is not required for correctness, but we still want to be able to
4228   // write malformed modules to bitcode files, so swallow the error.
4229   if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
4230     consumeError(std::move(E));
4231     return;
4232   }
4233 
4234   writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
4235             {Symtab.data(), Symtab.size()});
4236 }
4237 
4238 void BitcodeWriter::writeStrtab() {
4239   assert(!WroteStrtab);
4240 
4241   std::vector<char> Strtab;
4242   StrtabBuilder.finalizeInOrder();
4243   Strtab.resize(StrtabBuilder.getSize());
4244   StrtabBuilder.write((uint8_t *)Strtab.data());
4245 
4246   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
4247             {Strtab.data(), Strtab.size()});
4248 
4249   WroteStrtab = true;
4250 }
4251 
4252 void BitcodeWriter::copyStrtab(StringRef Strtab) {
4253   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
4254   WroteStrtab = true;
4255 }
4256 
4257 void BitcodeWriter::writeModule(const Module &M,
4258                                 bool ShouldPreserveUseListOrder,
4259                                 const ModuleSummaryIndex *Index,
4260                                 bool GenerateHash, ModuleHash *ModHash) {
4261   assert(!WroteStrtab);
4262 
4263   // The Mods vector is used by irsymtab::build, which requires non-const
4264   // Modules in case it needs to materialize metadata. But the bitcode writer
4265   // requires that the module is materialized, so we can cast to non-const here,
4266   // after checking that it is in fact materialized.
4267   assert(M.isMaterialized());
4268   Mods.push_back(const_cast<Module *>(&M));
4269 
4270   ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
4271                                    ShouldPreserveUseListOrder, Index,
4272                                    GenerateHash, ModHash);
4273   ModuleWriter.write();
4274 }
4275 
4276 void BitcodeWriter::writeIndex(
4277     const ModuleSummaryIndex *Index,
4278     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4279   IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
4280                                  ModuleToSummariesForIndex);
4281   IndexWriter.write();
4282 }
4283 
4284 /// Write the specified module to the specified output stream.
4285 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
4286                               bool ShouldPreserveUseListOrder,
4287                               const ModuleSummaryIndex *Index,
4288                               bool GenerateHash, ModuleHash *ModHash) {
4289   SmallVector<char, 0> Buffer;
4290   Buffer.reserve(256*1024);
4291 
4292   // If this is darwin or another generic macho target, reserve space for the
4293   // header.
4294   Triple TT(M.getTargetTriple());
4295   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4296     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
4297 
4298   BitcodeWriter Writer(Buffer);
4299   Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
4300                      ModHash);
4301   Writer.writeSymtab();
4302   Writer.writeStrtab();
4303 
4304   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4305     emitDarwinBCHeaderAndTrailer(Buffer, TT);
4306 
4307   // Write the generated bitstream to "Out".
4308   Out.write((char*)&Buffer.front(), Buffer.size());
4309 }
4310 
4311 void IndexBitcodeWriter::write() {
4312   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4313 
4314   writeModuleVersion();
4315 
4316   // Write the module paths in the combined index.
4317   writeModStrings();
4318 
4319   // Write the summary combined index records.
4320   writeCombinedGlobalValueSummary();
4321 
4322   Stream.ExitBlock();
4323 }
4324 
4325 // Write the specified module summary index to the given raw output stream,
4326 // where it will be written in a new bitcode block. This is used when
4327 // writing the combined index file for ThinLTO. When writing a subset of the
4328 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
4329 void llvm::WriteIndexToFile(
4330     const ModuleSummaryIndex &Index, raw_ostream &Out,
4331     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4332   SmallVector<char, 0> Buffer;
4333   Buffer.reserve(256 * 1024);
4334 
4335   BitcodeWriter Writer(Buffer);
4336   Writer.writeIndex(&Index, ModuleToSummariesForIndex);
4337   Writer.writeStrtab();
4338 
4339   Out.write((char *)&Buffer.front(), Buffer.size());
4340 }
4341 
4342 namespace {
4343 
4344 /// Class to manage the bitcode writing for a thin link bitcode file.
4345 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
4346   /// ModHash is for use in ThinLTO incremental build, generated while writing
4347   /// the module bitcode file.
4348   const ModuleHash *ModHash;
4349 
4350 public:
4351   ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
4352                         BitstreamWriter &Stream,
4353                         const ModuleSummaryIndex &Index,
4354                         const ModuleHash &ModHash)
4355       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
4356                                 /*ShouldPreserveUseListOrder=*/false, &Index),
4357         ModHash(&ModHash) {}
4358 
4359   void write();
4360 
4361 private:
4362   void writeSimplifiedModuleInfo();
4363 };
4364 
4365 } // end anonymous namespace
4366 
4367 // This function writes a simpilified module info for thin link bitcode file.
4368 // It only contains the source file name along with the name(the offset and
4369 // size in strtab) and linkage for global values. For the global value info
4370 // entry, in order to keep linkage at offset 5, there are three zeros used
4371 // as padding.
4372 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
4373   SmallVector<unsigned, 64> Vals;
4374   // Emit the module's source file name.
4375   {
4376     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
4377     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
4378     if (Bits == SE_Char6)
4379       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
4380     else if (Bits == SE_Fixed7)
4381       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
4382 
4383     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4384     auto Abbv = std::make_shared<BitCodeAbbrev>();
4385     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
4386     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4387     Abbv->Add(AbbrevOpToUse);
4388     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4389 
4390     for (const auto P : M.getSourceFileName())
4391       Vals.push_back((unsigned char)P);
4392 
4393     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
4394     Vals.clear();
4395   }
4396 
4397   // Emit the global variable information.
4398   for (const GlobalVariable &GV : M.globals()) {
4399     // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
4400     Vals.push_back(StrtabBuilder.add(GV.getName()));
4401     Vals.push_back(GV.getName().size());
4402     Vals.push_back(0);
4403     Vals.push_back(0);
4404     Vals.push_back(0);
4405     Vals.push_back(getEncodedLinkage(GV));
4406 
4407     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
4408     Vals.clear();
4409   }
4410 
4411   // Emit the function proto information.
4412   for (const Function &F : M) {
4413     // FUNCTION:  [strtab offset, strtab size, 0, 0, 0, linkage]
4414     Vals.push_back(StrtabBuilder.add(F.getName()));
4415     Vals.push_back(F.getName().size());
4416     Vals.push_back(0);
4417     Vals.push_back(0);
4418     Vals.push_back(0);
4419     Vals.push_back(getEncodedLinkage(F));
4420 
4421     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
4422     Vals.clear();
4423   }
4424 
4425   // Emit the alias information.
4426   for (const GlobalAlias &A : M.aliases()) {
4427     // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
4428     Vals.push_back(StrtabBuilder.add(A.getName()));
4429     Vals.push_back(A.getName().size());
4430     Vals.push_back(0);
4431     Vals.push_back(0);
4432     Vals.push_back(0);
4433     Vals.push_back(getEncodedLinkage(A));
4434 
4435     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
4436     Vals.clear();
4437   }
4438 
4439   // Emit the ifunc information.
4440   for (const GlobalIFunc &I : M.ifuncs()) {
4441     // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
4442     Vals.push_back(StrtabBuilder.add(I.getName()));
4443     Vals.push_back(I.getName().size());
4444     Vals.push_back(0);
4445     Vals.push_back(0);
4446     Vals.push_back(0);
4447     Vals.push_back(getEncodedLinkage(I));
4448 
4449     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
4450     Vals.clear();
4451   }
4452 }
4453 
4454 void ThinLinkBitcodeWriter::write() {
4455   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4456 
4457   writeModuleVersion();
4458 
4459   writeSimplifiedModuleInfo();
4460 
4461   writePerModuleGlobalValueSummary();
4462 
4463   // Write module hash.
4464   Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
4465 
4466   Stream.ExitBlock();
4467 }
4468 
4469 void BitcodeWriter::writeThinLinkBitcode(const Module &M,
4470                                          const ModuleSummaryIndex &Index,
4471                                          const ModuleHash &ModHash) {
4472   assert(!WroteStrtab);
4473 
4474   // The Mods vector is used by irsymtab::build, which requires non-const
4475   // Modules in case it needs to materialize metadata. But the bitcode writer
4476   // requires that the module is materialized, so we can cast to non-const here,
4477   // after checking that it is in fact materialized.
4478   assert(M.isMaterialized());
4479   Mods.push_back(const_cast<Module *>(&M));
4480 
4481   ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
4482                                        ModHash);
4483   ThinLinkWriter.write();
4484 }
4485 
4486 // Write the specified thin link bitcode file to the given raw output stream,
4487 // where it will be written in a new bitcode block. This is used when
4488 // writing the per-module index file for ThinLTO.
4489 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
4490                                       const ModuleSummaryIndex &Index,
4491                                       const ModuleHash &ModHash) {
4492   SmallVector<char, 0> Buffer;
4493   Buffer.reserve(256 * 1024);
4494 
4495   BitcodeWriter Writer(Buffer);
4496   Writer.writeThinLinkBitcode(M, Index, ModHash);
4497   Writer.writeSymtab();
4498   Writer.writeStrtab();
4499 
4500   Out.write((char *)&Buffer.front(), Buffer.size());
4501 }
4502