1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitstreamWriter.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/UseListOrder.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Support/Program.h" 34 #include "llvm/Support/SHA1.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <cctype> 37 #include <map> 38 using namespace llvm; 39 40 namespace { 41 42 cl::opt<unsigned> 43 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 44 cl::desc("Number of metadatas above which we emit an index " 45 "to enable lazy-loading")); 46 /// These are manifest constants used by the bitcode writer. They do not need to 47 /// be kept in sync with the reader, but need to be consistent within this file. 48 enum { 49 // VALUE_SYMTAB_BLOCK abbrev id's. 50 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 51 VST_ENTRY_7_ABBREV, 52 VST_ENTRY_6_ABBREV, 53 VST_BBENTRY_6_ABBREV, 54 55 // CONSTANTS_BLOCK abbrev id's. 56 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 57 CONSTANTS_INTEGER_ABBREV, 58 CONSTANTS_CE_CAST_Abbrev, 59 CONSTANTS_NULL_Abbrev, 60 61 // FUNCTION_BLOCK abbrev id's. 62 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 63 FUNCTION_INST_BINOP_ABBREV, 64 FUNCTION_INST_BINOP_FLAGS_ABBREV, 65 FUNCTION_INST_CAST_ABBREV, 66 FUNCTION_INST_RET_VOID_ABBREV, 67 FUNCTION_INST_RET_VAL_ABBREV, 68 FUNCTION_INST_UNREACHABLE_ABBREV, 69 FUNCTION_INST_GEP_ABBREV, 70 }; 71 72 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 73 /// file type. 74 class BitcodeWriterBase { 75 protected: 76 /// The stream created and owned by the client. 77 BitstreamWriter &Stream; 78 79 /// Saves the offset of the VSTOffset record that must eventually be 80 /// backpatched with the offset of the actual VST. 81 uint64_t VSTOffsetPlaceholder = 0; 82 83 public: 84 /// Constructs a BitcodeWriterBase object that writes to the provided 85 /// \p Stream. 86 BitcodeWriterBase(BitstreamWriter &Stream) : Stream(Stream) {} 87 88 protected: 89 bool hasVSTOffsetPlaceholder() { return VSTOffsetPlaceholder != 0; } 90 void writeValueSymbolTableForwardDecl(); 91 void writeBitcodeHeader(); 92 }; 93 94 /// Class to manage the bitcode writing for a module. 95 class ModuleBitcodeWriter : public BitcodeWriterBase { 96 /// Pointer to the buffer allocated by caller for bitcode writing. 97 const SmallVectorImpl<char> &Buffer; 98 99 /// The Module to write to bitcode. 100 const Module &M; 101 102 /// Enumerates ids for all values in the module. 103 ValueEnumerator VE; 104 105 /// Optional per-module index to write for ThinLTO. 106 const ModuleSummaryIndex *Index; 107 108 /// True if a module hash record should be written. 109 bool GenerateHash; 110 111 /// If non-null, when GenerateHash is true, the resulting hash is written 112 /// into ModHash. When GenerateHash is false, that specified value 113 /// is used as the hash instead of computing from the generated bitcode. 114 /// Can be used to produce the same module hash for a minimized bitcode 115 /// used just for the thin link as in the regular full bitcode that will 116 /// be used in the backend. 117 ModuleHash *ModHash; 118 119 /// The start bit of the identification block. 120 uint64_t BitcodeStartBit; 121 122 /// Map that holds the correspondence between GUIDs in the summary index, 123 /// that came from indirect call profiles, and a value id generated by this 124 /// class to use in the VST and summary block records. 125 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 126 127 /// Tracks the last value id recorded in the GUIDToValueMap. 128 unsigned GlobalValueId; 129 130 public: 131 /// Constructs a ModuleBitcodeWriter object for the given Module, 132 /// writing to the provided \p Buffer. 133 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 134 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 135 const ModuleSummaryIndex *Index, bool GenerateHash, 136 ModuleHash *ModHash = nullptr) 137 : BitcodeWriterBase(Stream), Buffer(Buffer), M(*M), 138 VE(*M, ShouldPreserveUseListOrder), Index(Index), 139 GenerateHash(GenerateHash), ModHash(ModHash), 140 BitcodeStartBit(Stream.GetCurrentBitNo()) { 141 // Assign ValueIds to any callee values in the index that came from 142 // indirect call profiles and were recorded as a GUID not a Value* 143 // (which would have been assigned an ID by the ValueEnumerator). 144 // The starting ValueId is just after the number of values in the 145 // ValueEnumerator, so that they can be emitted in the VST. 146 GlobalValueId = VE.getValues().size(); 147 if (!Index) 148 return; 149 for (const auto &GUIDSummaryLists : *Index) 150 // Examine all summaries for this GUID. 151 for (auto &Summary : GUIDSummaryLists.second) 152 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 153 // For each call in the function summary, see if the call 154 // is to a GUID (which means it is for an indirect call, 155 // otherwise we would have a Value for it). If so, synthesize 156 // a value id. 157 for (auto &CallEdge : FS->calls()) 158 if (CallEdge.first.isGUID()) 159 assignValueId(CallEdge.first.getGUID()); 160 } 161 162 /// Emit the current module to the bitstream. 163 void write(); 164 165 private: 166 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 167 168 void writeAttributeGroupTable(); 169 void writeAttributeTable(); 170 void writeTypeTable(); 171 void writeComdats(); 172 void writeModuleInfo(); 173 void writeValueAsMetadata(const ValueAsMetadata *MD, 174 SmallVectorImpl<uint64_t> &Record); 175 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 176 unsigned Abbrev); 177 unsigned createDILocationAbbrev(); 178 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 179 unsigned &Abbrev); 180 unsigned createGenericDINodeAbbrev(); 181 void writeGenericDINode(const GenericDINode *N, 182 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 183 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 184 unsigned Abbrev); 185 void writeDIEnumerator(const DIEnumerator *N, 186 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 187 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 188 unsigned Abbrev); 189 void writeDIDerivedType(const DIDerivedType *N, 190 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 191 void writeDICompositeType(const DICompositeType *N, 192 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 193 void writeDISubroutineType(const DISubroutineType *N, 194 SmallVectorImpl<uint64_t> &Record, 195 unsigned Abbrev); 196 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 197 unsigned Abbrev); 198 void writeDICompileUnit(const DICompileUnit *N, 199 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 200 void writeDISubprogram(const DISubprogram *N, 201 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 202 void writeDILexicalBlock(const DILexicalBlock *N, 203 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 204 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 205 SmallVectorImpl<uint64_t> &Record, 206 unsigned Abbrev); 207 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 208 unsigned Abbrev); 209 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 210 unsigned Abbrev); 211 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 212 unsigned Abbrev); 213 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 214 unsigned Abbrev); 215 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 216 SmallVectorImpl<uint64_t> &Record, 217 unsigned Abbrev); 218 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 219 SmallVectorImpl<uint64_t> &Record, 220 unsigned Abbrev); 221 void writeDIGlobalVariable(const DIGlobalVariable *N, 222 SmallVectorImpl<uint64_t> &Record, 223 unsigned Abbrev); 224 void writeDILocalVariable(const DILocalVariable *N, 225 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 226 void writeDIExpression(const DIExpression *N, 227 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 228 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 229 SmallVectorImpl<uint64_t> &Record, 230 unsigned Abbrev); 231 void writeDIObjCProperty(const DIObjCProperty *N, 232 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 233 void writeDIImportedEntity(const DIImportedEntity *N, 234 SmallVectorImpl<uint64_t> &Record, 235 unsigned Abbrev); 236 unsigned createNamedMetadataAbbrev(); 237 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 238 unsigned createMetadataStringsAbbrev(); 239 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 240 SmallVectorImpl<uint64_t> &Record); 241 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 242 SmallVectorImpl<uint64_t> &Record, 243 std::vector<unsigned> *MDAbbrevs = nullptr, 244 std::vector<uint64_t> *IndexPos = nullptr); 245 void writeModuleMetadata(); 246 void writeFunctionMetadata(const Function &F); 247 void writeFunctionMetadataAttachment(const Function &F); 248 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 249 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 250 const GlobalObject &GO); 251 void writeModuleMetadataKinds(); 252 void writeOperandBundleTags(); 253 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 254 void writeModuleConstants(); 255 bool pushValueAndType(const Value *V, unsigned InstID, 256 SmallVectorImpl<unsigned> &Vals); 257 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 258 void pushValue(const Value *V, unsigned InstID, 259 SmallVectorImpl<unsigned> &Vals); 260 void pushValueSigned(const Value *V, unsigned InstID, 261 SmallVectorImpl<uint64_t> &Vals); 262 void writeInstruction(const Instruction &I, unsigned InstID, 263 SmallVectorImpl<unsigned> &Vals); 264 void writeValueSymbolTable( 265 const ValueSymbolTable &VST, bool IsModuleLevel = false, 266 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex = nullptr); 267 void writeUseList(UseListOrder &&Order); 268 void writeUseListBlock(const Function *F); 269 void 270 writeFunction(const Function &F, 271 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 272 void writeBlockInfo(); 273 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 274 GlobalValueSummary *Summary, 275 unsigned ValueID, 276 unsigned FSCallsAbbrev, 277 unsigned FSCallsProfileAbbrev, 278 const Function &F); 279 void writeModuleLevelReferences(const GlobalVariable &V, 280 SmallVector<uint64_t, 64> &NameVals, 281 unsigned FSModRefsAbbrev); 282 void writePerModuleGlobalValueSummary(); 283 void writeModuleHash(size_t BlockStartPos); 284 285 void assignValueId(GlobalValue::GUID ValGUID) { 286 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 287 } 288 unsigned getValueId(GlobalValue::GUID ValGUID) { 289 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 290 // Expect that any GUID value had a value Id assigned by an 291 // earlier call to assignValueId. 292 assert(VMI != GUIDToValueIdMap.end() && 293 "GUID does not have assigned value Id"); 294 return VMI->second; 295 } 296 // Helper to get the valueId for the type of value recorded in VI. 297 unsigned getValueId(ValueInfo VI) { 298 if (VI.isGUID()) 299 return getValueId(VI.getGUID()); 300 return VE.getValueID(VI.getValue()); 301 } 302 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 303 }; 304 305 /// Class to manage the bitcode writing for a combined index. 306 class IndexBitcodeWriter : public BitcodeWriterBase { 307 /// The combined index to write to bitcode. 308 const ModuleSummaryIndex &Index; 309 310 /// When writing a subset of the index for distributed backends, client 311 /// provides a map of modules to the corresponding GUIDs/summaries to write. 312 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 313 314 /// Map that holds the correspondence between the GUID used in the combined 315 /// index and a value id generated by this class to use in references. 316 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 317 318 /// Tracks the last value id recorded in the GUIDToValueMap. 319 unsigned GlobalValueId = 0; 320 321 public: 322 /// Constructs a IndexBitcodeWriter object for the given combined index, 323 /// writing to the provided \p Buffer. When writing a subset of the index 324 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 325 IndexBitcodeWriter(BitstreamWriter &Stream, const ModuleSummaryIndex &Index, 326 const std::map<std::string, GVSummaryMapTy> 327 *ModuleToSummariesForIndex = nullptr) 328 : BitcodeWriterBase(Stream), Index(Index), 329 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 330 // Assign unique value ids to all summaries to be written, for use 331 // in writing out the call graph edges. Save the mapping from GUID 332 // to the new global value id to use when writing those edges, which 333 // are currently saved in the index in terms of GUID. 334 for (const auto &I : *this) 335 GUIDToValueIdMap[I.first] = ++GlobalValueId; 336 } 337 338 /// The below iterator returns the GUID and associated summary. 339 typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo; 340 341 /// Iterator over the value GUID and summaries to be written to bitcode, 342 /// hides the details of whether they are being pulled from the entire 343 /// index or just those in a provided ModuleToSummariesForIndex map. 344 class iterator 345 : public llvm::iterator_facade_base<iterator, std::forward_iterator_tag, 346 GVInfo> { 347 /// Enables access to parent class. 348 const IndexBitcodeWriter &Writer; 349 350 // Iterators used when writing only those summaries in a provided 351 // ModuleToSummariesForIndex map: 352 353 /// Points to the last element in outer ModuleToSummariesForIndex map. 354 std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesBack; 355 /// Iterator on outer ModuleToSummariesForIndex map. 356 std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesIter; 357 /// Iterator on an inner global variable summary map. 358 GVSummaryMapTy::const_iterator ModuleGVSummariesIter; 359 360 // Iterators used when writing all summaries in the index: 361 362 /// Points to the last element in the Index outer GlobalValueMap. 363 const_gvsummary_iterator IndexSummariesBack; 364 /// Iterator on outer GlobalValueMap. 365 const_gvsummary_iterator IndexSummariesIter; 366 /// Iterator on an inner GlobalValueSummaryList. 367 GlobalValueSummaryList::const_iterator IndexGVSummariesIter; 368 369 public: 370 /// Construct iterator from parent \p Writer and indicate if we are 371 /// constructing the end iterator. 372 iterator(const IndexBitcodeWriter &Writer, bool IsAtEnd) : Writer(Writer) { 373 // Set up the appropriate set of iterators given whether we are writing 374 // the full index or just a subset. 375 // Can't setup the Back or inner iterators if the corresponding map 376 // is empty. This will be handled specially in operator== as well. 377 if (Writer.ModuleToSummariesForIndex && 378 !Writer.ModuleToSummariesForIndex->empty()) { 379 for (ModuleSummariesBack = Writer.ModuleToSummariesForIndex->begin(); 380 std::next(ModuleSummariesBack) != 381 Writer.ModuleToSummariesForIndex->end(); 382 ModuleSummariesBack++) 383 ; 384 ModuleSummariesIter = !IsAtEnd 385 ? Writer.ModuleToSummariesForIndex->begin() 386 : ModuleSummariesBack; 387 ModuleGVSummariesIter = !IsAtEnd ? ModuleSummariesIter->second.begin() 388 : ModuleSummariesBack->second.end(); 389 } else if (!Writer.ModuleToSummariesForIndex && 390 Writer.Index.begin() != Writer.Index.end()) { 391 for (IndexSummariesBack = Writer.Index.begin(); 392 std::next(IndexSummariesBack) != Writer.Index.end(); 393 IndexSummariesBack++) 394 ; 395 IndexSummariesIter = 396 !IsAtEnd ? Writer.Index.begin() : IndexSummariesBack; 397 IndexGVSummariesIter = !IsAtEnd ? IndexSummariesIter->second.begin() 398 : IndexSummariesBack->second.end(); 399 } 400 } 401 402 /// Increment the appropriate set of iterators. 403 iterator &operator++() { 404 // First the inner iterator is incremented, then if it is at the end 405 // and there are more outer iterations to go, the inner is reset to 406 // the start of the next inner list. 407 if (Writer.ModuleToSummariesForIndex) { 408 ++ModuleGVSummariesIter; 409 if (ModuleGVSummariesIter == ModuleSummariesIter->second.end() && 410 ModuleSummariesIter != ModuleSummariesBack) { 411 ++ModuleSummariesIter; 412 ModuleGVSummariesIter = ModuleSummariesIter->second.begin(); 413 } 414 } else { 415 ++IndexGVSummariesIter; 416 if (IndexGVSummariesIter == IndexSummariesIter->second.end() && 417 IndexSummariesIter != IndexSummariesBack) { 418 ++IndexSummariesIter; 419 IndexGVSummariesIter = IndexSummariesIter->second.begin(); 420 } 421 } 422 return *this; 423 } 424 425 /// Access the <GUID,GlobalValueSummary*> pair corresponding to the current 426 /// outer and inner iterator positions. 427 GVInfo operator*() { 428 if (Writer.ModuleToSummariesForIndex) 429 return std::make_pair(ModuleGVSummariesIter->first, 430 ModuleGVSummariesIter->second); 431 return std::make_pair(IndexSummariesIter->first, 432 IndexGVSummariesIter->get()); 433 } 434 435 /// Checks if the iterators are equal, with special handling for empty 436 /// indexes. 437 bool operator==(const iterator &RHS) const { 438 if (Writer.ModuleToSummariesForIndex) { 439 // First ensure that both are writing the same subset. 440 if (Writer.ModuleToSummariesForIndex != 441 RHS.Writer.ModuleToSummariesForIndex) 442 return false; 443 // Already determined above that maps are the same, so if one is 444 // empty, they both are. 445 if (Writer.ModuleToSummariesForIndex->empty()) 446 return true; 447 // Ensure the ModuleGVSummariesIter are iterating over the same 448 // container before checking them below. 449 if (ModuleSummariesIter != RHS.ModuleSummariesIter) 450 return false; 451 return ModuleGVSummariesIter == RHS.ModuleGVSummariesIter; 452 } 453 // First ensure RHS also writing the full index, and that both are 454 // writing the same full index. 455 if (RHS.Writer.ModuleToSummariesForIndex || 456 &Writer.Index != &RHS.Writer.Index) 457 return false; 458 // Already determined above that maps are the same, so if one is 459 // empty, they both are. 460 if (Writer.Index.begin() == Writer.Index.end()) 461 return true; 462 // Ensure the IndexGVSummariesIter are iterating over the same 463 // container before checking them below. 464 if (IndexSummariesIter != RHS.IndexSummariesIter) 465 return false; 466 return IndexGVSummariesIter == RHS.IndexGVSummariesIter; 467 } 468 }; 469 470 /// Obtain the start iterator over the summaries to be written. 471 iterator begin() { return iterator(*this, /*IsAtEnd=*/false); } 472 /// Obtain the end iterator over the summaries to be written. 473 iterator end() { return iterator(*this, /*IsAtEnd=*/true); } 474 475 /// Main entry point for writing a combined index to bitcode. 476 void write(); 477 478 private: 479 void writeIndex(); 480 void writeModStrings(); 481 void writeCombinedValueSymbolTable(); 482 void writeCombinedGlobalValueSummary(); 483 484 /// Indicates whether the provided \p ModulePath should be written into 485 /// the module string table, e.g. if full index written or if it is in 486 /// the provided subset. 487 bool doIncludeModule(StringRef ModulePath) { 488 return !ModuleToSummariesForIndex || 489 ModuleToSummariesForIndex->count(ModulePath); 490 } 491 492 bool hasValueId(GlobalValue::GUID ValGUID) { 493 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 494 return VMI != GUIDToValueIdMap.end(); 495 } 496 unsigned getValueId(GlobalValue::GUID ValGUID) { 497 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 498 // If this GUID doesn't have an entry, assign one. 499 if (VMI == GUIDToValueIdMap.end()) { 500 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 501 return GlobalValueId; 502 } else { 503 return VMI->second; 504 } 505 } 506 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 507 }; 508 } // end anonymous namespace 509 510 static unsigned getEncodedCastOpcode(unsigned Opcode) { 511 switch (Opcode) { 512 default: llvm_unreachable("Unknown cast instruction!"); 513 case Instruction::Trunc : return bitc::CAST_TRUNC; 514 case Instruction::ZExt : return bitc::CAST_ZEXT; 515 case Instruction::SExt : return bitc::CAST_SEXT; 516 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 517 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 518 case Instruction::UIToFP : return bitc::CAST_UITOFP; 519 case Instruction::SIToFP : return bitc::CAST_SITOFP; 520 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 521 case Instruction::FPExt : return bitc::CAST_FPEXT; 522 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 523 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 524 case Instruction::BitCast : return bitc::CAST_BITCAST; 525 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 526 } 527 } 528 529 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 530 switch (Opcode) { 531 default: llvm_unreachable("Unknown binary instruction!"); 532 case Instruction::Add: 533 case Instruction::FAdd: return bitc::BINOP_ADD; 534 case Instruction::Sub: 535 case Instruction::FSub: return bitc::BINOP_SUB; 536 case Instruction::Mul: 537 case Instruction::FMul: return bitc::BINOP_MUL; 538 case Instruction::UDiv: return bitc::BINOP_UDIV; 539 case Instruction::FDiv: 540 case Instruction::SDiv: return bitc::BINOP_SDIV; 541 case Instruction::URem: return bitc::BINOP_UREM; 542 case Instruction::FRem: 543 case Instruction::SRem: return bitc::BINOP_SREM; 544 case Instruction::Shl: return bitc::BINOP_SHL; 545 case Instruction::LShr: return bitc::BINOP_LSHR; 546 case Instruction::AShr: return bitc::BINOP_ASHR; 547 case Instruction::And: return bitc::BINOP_AND; 548 case Instruction::Or: return bitc::BINOP_OR; 549 case Instruction::Xor: return bitc::BINOP_XOR; 550 } 551 } 552 553 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 554 switch (Op) { 555 default: llvm_unreachable("Unknown RMW operation!"); 556 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 557 case AtomicRMWInst::Add: return bitc::RMW_ADD; 558 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 559 case AtomicRMWInst::And: return bitc::RMW_AND; 560 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 561 case AtomicRMWInst::Or: return bitc::RMW_OR; 562 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 563 case AtomicRMWInst::Max: return bitc::RMW_MAX; 564 case AtomicRMWInst::Min: return bitc::RMW_MIN; 565 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 566 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 567 } 568 } 569 570 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 571 switch (Ordering) { 572 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 573 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 574 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 575 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 576 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 577 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 578 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 579 } 580 llvm_unreachable("Invalid ordering"); 581 } 582 583 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) { 584 switch (SynchScope) { 585 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 586 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 587 } 588 llvm_unreachable("Invalid synch scope"); 589 } 590 591 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 592 StringRef Str, unsigned AbbrevToUse) { 593 SmallVector<unsigned, 64> Vals; 594 595 // Code: [strchar x N] 596 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 597 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 598 AbbrevToUse = 0; 599 Vals.push_back(Str[i]); 600 } 601 602 // Emit the finished record. 603 Stream.EmitRecord(Code, Vals, AbbrevToUse); 604 } 605 606 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 607 switch (Kind) { 608 case Attribute::Alignment: 609 return bitc::ATTR_KIND_ALIGNMENT; 610 case Attribute::AllocSize: 611 return bitc::ATTR_KIND_ALLOC_SIZE; 612 case Attribute::AlwaysInline: 613 return bitc::ATTR_KIND_ALWAYS_INLINE; 614 case Attribute::ArgMemOnly: 615 return bitc::ATTR_KIND_ARGMEMONLY; 616 case Attribute::Builtin: 617 return bitc::ATTR_KIND_BUILTIN; 618 case Attribute::ByVal: 619 return bitc::ATTR_KIND_BY_VAL; 620 case Attribute::Convergent: 621 return bitc::ATTR_KIND_CONVERGENT; 622 case Attribute::InAlloca: 623 return bitc::ATTR_KIND_IN_ALLOCA; 624 case Attribute::Cold: 625 return bitc::ATTR_KIND_COLD; 626 case Attribute::InaccessibleMemOnly: 627 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 628 case Attribute::InaccessibleMemOrArgMemOnly: 629 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 630 case Attribute::InlineHint: 631 return bitc::ATTR_KIND_INLINE_HINT; 632 case Attribute::InReg: 633 return bitc::ATTR_KIND_IN_REG; 634 case Attribute::JumpTable: 635 return bitc::ATTR_KIND_JUMP_TABLE; 636 case Attribute::MinSize: 637 return bitc::ATTR_KIND_MIN_SIZE; 638 case Attribute::Naked: 639 return bitc::ATTR_KIND_NAKED; 640 case Attribute::Nest: 641 return bitc::ATTR_KIND_NEST; 642 case Attribute::NoAlias: 643 return bitc::ATTR_KIND_NO_ALIAS; 644 case Attribute::NoBuiltin: 645 return bitc::ATTR_KIND_NO_BUILTIN; 646 case Attribute::NoCapture: 647 return bitc::ATTR_KIND_NO_CAPTURE; 648 case Attribute::NoDuplicate: 649 return bitc::ATTR_KIND_NO_DUPLICATE; 650 case Attribute::NoImplicitFloat: 651 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 652 case Attribute::NoInline: 653 return bitc::ATTR_KIND_NO_INLINE; 654 case Attribute::NoRecurse: 655 return bitc::ATTR_KIND_NO_RECURSE; 656 case Attribute::NonLazyBind: 657 return bitc::ATTR_KIND_NON_LAZY_BIND; 658 case Attribute::NonNull: 659 return bitc::ATTR_KIND_NON_NULL; 660 case Attribute::Dereferenceable: 661 return bitc::ATTR_KIND_DEREFERENCEABLE; 662 case Attribute::DereferenceableOrNull: 663 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 664 case Attribute::NoRedZone: 665 return bitc::ATTR_KIND_NO_RED_ZONE; 666 case Attribute::NoReturn: 667 return bitc::ATTR_KIND_NO_RETURN; 668 case Attribute::NoUnwind: 669 return bitc::ATTR_KIND_NO_UNWIND; 670 case Attribute::OptimizeForSize: 671 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 672 case Attribute::OptimizeNone: 673 return bitc::ATTR_KIND_OPTIMIZE_NONE; 674 case Attribute::ReadNone: 675 return bitc::ATTR_KIND_READ_NONE; 676 case Attribute::ReadOnly: 677 return bitc::ATTR_KIND_READ_ONLY; 678 case Attribute::Returned: 679 return bitc::ATTR_KIND_RETURNED; 680 case Attribute::ReturnsTwice: 681 return bitc::ATTR_KIND_RETURNS_TWICE; 682 case Attribute::SExt: 683 return bitc::ATTR_KIND_S_EXT; 684 case Attribute::StackAlignment: 685 return bitc::ATTR_KIND_STACK_ALIGNMENT; 686 case Attribute::StackProtect: 687 return bitc::ATTR_KIND_STACK_PROTECT; 688 case Attribute::StackProtectReq: 689 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 690 case Attribute::StackProtectStrong: 691 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 692 case Attribute::SafeStack: 693 return bitc::ATTR_KIND_SAFESTACK; 694 case Attribute::StructRet: 695 return bitc::ATTR_KIND_STRUCT_RET; 696 case Attribute::SanitizeAddress: 697 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 698 case Attribute::SanitizeThread: 699 return bitc::ATTR_KIND_SANITIZE_THREAD; 700 case Attribute::SanitizeMemory: 701 return bitc::ATTR_KIND_SANITIZE_MEMORY; 702 case Attribute::SwiftError: 703 return bitc::ATTR_KIND_SWIFT_ERROR; 704 case Attribute::SwiftSelf: 705 return bitc::ATTR_KIND_SWIFT_SELF; 706 case Attribute::UWTable: 707 return bitc::ATTR_KIND_UW_TABLE; 708 case Attribute::WriteOnly: 709 return bitc::ATTR_KIND_WRITEONLY; 710 case Attribute::ZExt: 711 return bitc::ATTR_KIND_Z_EXT; 712 case Attribute::EndAttrKinds: 713 llvm_unreachable("Can not encode end-attribute kinds marker."); 714 case Attribute::None: 715 llvm_unreachable("Can not encode none-attribute."); 716 } 717 718 llvm_unreachable("Trying to encode unknown attribute"); 719 } 720 721 void ModuleBitcodeWriter::writeAttributeGroupTable() { 722 const std::vector<AttributeList> &AttrGrps = VE.getAttributeGroups(); 723 if (AttrGrps.empty()) return; 724 725 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 726 727 SmallVector<uint64_t, 64> Record; 728 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 729 AttributeList AS = AttrGrps[i]; 730 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 731 AttributeList A = AS.getSlotAttributes(i); 732 733 Record.push_back(VE.getAttributeGroupID(A)); 734 Record.push_back(AS.getSlotIndex(i)); 735 736 for (AttributeList::iterator I = AS.begin(0), E = AS.end(0); I != E; 737 ++I) { 738 Attribute Attr = *I; 739 if (Attr.isEnumAttribute()) { 740 Record.push_back(0); 741 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 742 } else if (Attr.isIntAttribute()) { 743 Record.push_back(1); 744 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 745 Record.push_back(Attr.getValueAsInt()); 746 } else { 747 StringRef Kind = Attr.getKindAsString(); 748 StringRef Val = Attr.getValueAsString(); 749 750 Record.push_back(Val.empty() ? 3 : 4); 751 Record.append(Kind.begin(), Kind.end()); 752 Record.push_back(0); 753 if (!Val.empty()) { 754 Record.append(Val.begin(), Val.end()); 755 Record.push_back(0); 756 } 757 } 758 } 759 760 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 761 Record.clear(); 762 } 763 } 764 765 Stream.ExitBlock(); 766 } 767 768 void ModuleBitcodeWriter::writeAttributeTable() { 769 const std::vector<AttributeList> &Attrs = VE.getAttributes(); 770 if (Attrs.empty()) return; 771 772 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 773 774 SmallVector<uint64_t, 64> Record; 775 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 776 const AttributeList &A = Attrs[i]; 777 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 778 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 779 780 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 781 Record.clear(); 782 } 783 784 Stream.ExitBlock(); 785 } 786 787 /// WriteTypeTable - Write out the type table for a module. 788 void ModuleBitcodeWriter::writeTypeTable() { 789 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 790 791 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 792 SmallVector<uint64_t, 64> TypeVals; 793 794 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 795 796 // Abbrev for TYPE_CODE_POINTER. 797 auto Abbv = std::make_shared<BitCodeAbbrev>(); 798 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 800 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 801 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 802 803 // Abbrev for TYPE_CODE_FUNCTION. 804 Abbv = std::make_shared<BitCodeAbbrev>(); 805 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 808 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 809 810 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 811 812 // Abbrev for TYPE_CODE_STRUCT_ANON. 813 Abbv = std::make_shared<BitCodeAbbrev>(); 814 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 818 819 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 820 821 // Abbrev for TYPE_CODE_STRUCT_NAME. 822 Abbv = std::make_shared<BitCodeAbbrev>(); 823 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 825 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 826 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 827 828 // Abbrev for TYPE_CODE_STRUCT_NAMED. 829 Abbv = std::make_shared<BitCodeAbbrev>(); 830 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 833 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 834 835 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 836 837 // Abbrev for TYPE_CODE_ARRAY. 838 Abbv = std::make_shared<BitCodeAbbrev>(); 839 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 841 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 842 843 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 844 845 // Emit an entry count so the reader can reserve space. 846 TypeVals.push_back(TypeList.size()); 847 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 848 TypeVals.clear(); 849 850 // Loop over all of the types, emitting each in turn. 851 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 852 Type *T = TypeList[i]; 853 int AbbrevToUse = 0; 854 unsigned Code = 0; 855 856 switch (T->getTypeID()) { 857 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 858 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 859 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 860 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 861 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 862 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 863 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 864 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 865 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 866 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 867 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 868 case Type::IntegerTyID: 869 // INTEGER: [width] 870 Code = bitc::TYPE_CODE_INTEGER; 871 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 872 break; 873 case Type::PointerTyID: { 874 PointerType *PTy = cast<PointerType>(T); 875 // POINTER: [pointee type, address space] 876 Code = bitc::TYPE_CODE_POINTER; 877 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 878 unsigned AddressSpace = PTy->getAddressSpace(); 879 TypeVals.push_back(AddressSpace); 880 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 881 break; 882 } 883 case Type::FunctionTyID: { 884 FunctionType *FT = cast<FunctionType>(T); 885 // FUNCTION: [isvararg, retty, paramty x N] 886 Code = bitc::TYPE_CODE_FUNCTION; 887 TypeVals.push_back(FT->isVarArg()); 888 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 889 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 890 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 891 AbbrevToUse = FunctionAbbrev; 892 break; 893 } 894 case Type::StructTyID: { 895 StructType *ST = cast<StructType>(T); 896 // STRUCT: [ispacked, eltty x N] 897 TypeVals.push_back(ST->isPacked()); 898 // Output all of the element types. 899 for (StructType::element_iterator I = ST->element_begin(), 900 E = ST->element_end(); I != E; ++I) 901 TypeVals.push_back(VE.getTypeID(*I)); 902 903 if (ST->isLiteral()) { 904 Code = bitc::TYPE_CODE_STRUCT_ANON; 905 AbbrevToUse = StructAnonAbbrev; 906 } else { 907 if (ST->isOpaque()) { 908 Code = bitc::TYPE_CODE_OPAQUE; 909 } else { 910 Code = bitc::TYPE_CODE_STRUCT_NAMED; 911 AbbrevToUse = StructNamedAbbrev; 912 } 913 914 // Emit the name if it is present. 915 if (!ST->getName().empty()) 916 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 917 StructNameAbbrev); 918 } 919 break; 920 } 921 case Type::ArrayTyID: { 922 ArrayType *AT = cast<ArrayType>(T); 923 // ARRAY: [numelts, eltty] 924 Code = bitc::TYPE_CODE_ARRAY; 925 TypeVals.push_back(AT->getNumElements()); 926 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 927 AbbrevToUse = ArrayAbbrev; 928 break; 929 } 930 case Type::VectorTyID: { 931 VectorType *VT = cast<VectorType>(T); 932 // VECTOR [numelts, eltty] 933 Code = bitc::TYPE_CODE_VECTOR; 934 TypeVals.push_back(VT->getNumElements()); 935 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 936 break; 937 } 938 } 939 940 // Emit the finished record. 941 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 942 TypeVals.clear(); 943 } 944 945 Stream.ExitBlock(); 946 } 947 948 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 949 switch (Linkage) { 950 case GlobalValue::ExternalLinkage: 951 return 0; 952 case GlobalValue::WeakAnyLinkage: 953 return 16; 954 case GlobalValue::AppendingLinkage: 955 return 2; 956 case GlobalValue::InternalLinkage: 957 return 3; 958 case GlobalValue::LinkOnceAnyLinkage: 959 return 18; 960 case GlobalValue::ExternalWeakLinkage: 961 return 7; 962 case GlobalValue::CommonLinkage: 963 return 8; 964 case GlobalValue::PrivateLinkage: 965 return 9; 966 case GlobalValue::WeakODRLinkage: 967 return 17; 968 case GlobalValue::LinkOnceODRLinkage: 969 return 19; 970 case GlobalValue::AvailableExternallyLinkage: 971 return 12; 972 } 973 llvm_unreachable("Invalid linkage"); 974 } 975 976 static unsigned getEncodedLinkage(const GlobalValue &GV) { 977 return getEncodedLinkage(GV.getLinkage()); 978 } 979 980 // Decode the flags for GlobalValue in the summary 981 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 982 uint64_t RawFlags = 0; 983 984 RawFlags |= Flags.NotEligibleToImport; // bool 985 RawFlags |= (Flags.LiveRoot << 1); 986 // Linkage don't need to be remapped at that time for the summary. Any future 987 // change to the getEncodedLinkage() function will need to be taken into 988 // account here as well. 989 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 990 991 return RawFlags; 992 } 993 994 static unsigned getEncodedVisibility(const GlobalValue &GV) { 995 switch (GV.getVisibility()) { 996 case GlobalValue::DefaultVisibility: return 0; 997 case GlobalValue::HiddenVisibility: return 1; 998 case GlobalValue::ProtectedVisibility: return 2; 999 } 1000 llvm_unreachable("Invalid visibility"); 1001 } 1002 1003 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1004 switch (GV.getDLLStorageClass()) { 1005 case GlobalValue::DefaultStorageClass: return 0; 1006 case GlobalValue::DLLImportStorageClass: return 1; 1007 case GlobalValue::DLLExportStorageClass: return 2; 1008 } 1009 llvm_unreachable("Invalid DLL storage class"); 1010 } 1011 1012 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1013 switch (GV.getThreadLocalMode()) { 1014 case GlobalVariable::NotThreadLocal: return 0; 1015 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1016 case GlobalVariable::LocalDynamicTLSModel: return 2; 1017 case GlobalVariable::InitialExecTLSModel: return 3; 1018 case GlobalVariable::LocalExecTLSModel: return 4; 1019 } 1020 llvm_unreachable("Invalid TLS model"); 1021 } 1022 1023 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1024 switch (C.getSelectionKind()) { 1025 case Comdat::Any: 1026 return bitc::COMDAT_SELECTION_KIND_ANY; 1027 case Comdat::ExactMatch: 1028 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1029 case Comdat::Largest: 1030 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1031 case Comdat::NoDuplicates: 1032 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1033 case Comdat::SameSize: 1034 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1035 } 1036 llvm_unreachable("Invalid selection kind"); 1037 } 1038 1039 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1040 switch (GV.getUnnamedAddr()) { 1041 case GlobalValue::UnnamedAddr::None: return 0; 1042 case GlobalValue::UnnamedAddr::Local: return 2; 1043 case GlobalValue::UnnamedAddr::Global: return 1; 1044 } 1045 llvm_unreachable("Invalid unnamed_addr"); 1046 } 1047 1048 void ModuleBitcodeWriter::writeComdats() { 1049 SmallVector<unsigned, 64> Vals; 1050 for (const Comdat *C : VE.getComdats()) { 1051 // COMDAT: [selection_kind, name] 1052 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1053 size_t Size = C->getName().size(); 1054 assert(isUInt<32>(Size)); 1055 Vals.push_back(Size); 1056 for (char Chr : C->getName()) 1057 Vals.push_back((unsigned char)Chr); 1058 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1059 Vals.clear(); 1060 } 1061 } 1062 1063 /// Write a record that will eventually hold the word offset of the 1064 /// module-level VST. For now the offset is 0, which will be backpatched 1065 /// after the real VST is written. Saves the bit offset to backpatch. 1066 void BitcodeWriterBase::writeValueSymbolTableForwardDecl() { 1067 // Write a placeholder value in for the offset of the real VST, 1068 // which is written after the function blocks so that it can include 1069 // the offset of each function. The placeholder offset will be 1070 // updated when the real VST is written. 1071 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1072 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1073 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1074 // hold the real VST offset. Must use fixed instead of VBR as we don't 1075 // know how many VBR chunks to reserve ahead of time. 1076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1077 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1078 1079 // Emit the placeholder 1080 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1081 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1082 1083 // Compute and save the bit offset to the placeholder, which will be 1084 // patched when the real VST is written. We can simply subtract the 32-bit 1085 // fixed size from the current bit number to get the location to backpatch. 1086 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1087 } 1088 1089 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1090 1091 /// Determine the encoding to use for the given string name and length. 1092 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 1093 bool isChar6 = true; 1094 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 1095 if (isChar6) 1096 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1097 if ((unsigned char)*C & 128) 1098 // don't bother scanning the rest. 1099 return SE_Fixed8; 1100 } 1101 if (isChar6) 1102 return SE_Char6; 1103 else 1104 return SE_Fixed7; 1105 } 1106 1107 /// Emit top-level description of module, including target triple, inline asm, 1108 /// descriptors for global variables, and function prototype info. 1109 /// Returns the bit offset to backpatch with the location of the real VST. 1110 void ModuleBitcodeWriter::writeModuleInfo() { 1111 // Emit various pieces of data attached to a module. 1112 if (!M.getTargetTriple().empty()) 1113 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1114 0 /*TODO*/); 1115 const std::string &DL = M.getDataLayoutStr(); 1116 if (!DL.empty()) 1117 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1118 if (!M.getModuleInlineAsm().empty()) 1119 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1120 0 /*TODO*/); 1121 1122 // Emit information about sections and GC, computing how many there are. Also 1123 // compute the maximum alignment value. 1124 std::map<std::string, unsigned> SectionMap; 1125 std::map<std::string, unsigned> GCMap; 1126 unsigned MaxAlignment = 0; 1127 unsigned MaxGlobalType = 0; 1128 for (const GlobalValue &GV : M.globals()) { 1129 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1130 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1131 if (GV.hasSection()) { 1132 // Give section names unique ID's. 1133 unsigned &Entry = SectionMap[GV.getSection()]; 1134 if (!Entry) { 1135 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1136 0 /*TODO*/); 1137 Entry = SectionMap.size(); 1138 } 1139 } 1140 } 1141 for (const Function &F : M) { 1142 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1143 if (F.hasSection()) { 1144 // Give section names unique ID's. 1145 unsigned &Entry = SectionMap[F.getSection()]; 1146 if (!Entry) { 1147 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1148 0 /*TODO*/); 1149 Entry = SectionMap.size(); 1150 } 1151 } 1152 if (F.hasGC()) { 1153 // Same for GC names. 1154 unsigned &Entry = GCMap[F.getGC()]; 1155 if (!Entry) { 1156 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1157 0 /*TODO*/); 1158 Entry = GCMap.size(); 1159 } 1160 } 1161 } 1162 1163 // Emit abbrev for globals, now that we know # sections and max alignment. 1164 unsigned SimpleGVarAbbrev = 0; 1165 if (!M.global_empty()) { 1166 // Add an abbrev for common globals with no visibility or thread localness. 1167 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1168 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1170 Log2_32_Ceil(MaxGlobalType+1))); 1171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1172 //| explicitType << 1 1173 //| constant 1174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1176 if (MaxAlignment == 0) // Alignment. 1177 Abbv->Add(BitCodeAbbrevOp(0)); 1178 else { 1179 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1181 Log2_32_Ceil(MaxEncAlignment+1))); 1182 } 1183 if (SectionMap.empty()) // Section. 1184 Abbv->Add(BitCodeAbbrevOp(0)); 1185 else 1186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1187 Log2_32_Ceil(SectionMap.size()+1))); 1188 // Don't bother emitting vis + thread local. 1189 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1190 } 1191 1192 // Emit the global variable information. 1193 SmallVector<unsigned, 64> Vals; 1194 for (const GlobalVariable &GV : M.globals()) { 1195 unsigned AbbrevToUse = 0; 1196 1197 // GLOBALVAR: [type, isconst, initid, 1198 // linkage, alignment, section, visibility, threadlocal, 1199 // unnamed_addr, externally_initialized, dllstorageclass, 1200 // comdat] 1201 Vals.push_back(VE.getTypeID(GV.getValueType())); 1202 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1203 Vals.push_back(GV.isDeclaration() ? 0 : 1204 (VE.getValueID(GV.getInitializer()) + 1)); 1205 Vals.push_back(getEncodedLinkage(GV)); 1206 Vals.push_back(Log2_32(GV.getAlignment())+1); 1207 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1208 if (GV.isThreadLocal() || 1209 GV.getVisibility() != GlobalValue::DefaultVisibility || 1210 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1211 GV.isExternallyInitialized() || 1212 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1213 GV.hasComdat()) { 1214 Vals.push_back(getEncodedVisibility(GV)); 1215 Vals.push_back(getEncodedThreadLocalMode(GV)); 1216 Vals.push_back(getEncodedUnnamedAddr(GV)); 1217 Vals.push_back(GV.isExternallyInitialized()); 1218 Vals.push_back(getEncodedDLLStorageClass(GV)); 1219 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1220 } else { 1221 AbbrevToUse = SimpleGVarAbbrev; 1222 } 1223 1224 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1225 Vals.clear(); 1226 } 1227 1228 // Emit the function proto information. 1229 for (const Function &F : M) { 1230 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 1231 // section, visibility, gc, unnamed_addr, prologuedata, 1232 // dllstorageclass, comdat, prefixdata, personalityfn] 1233 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1234 Vals.push_back(F.getCallingConv()); 1235 Vals.push_back(F.isDeclaration()); 1236 Vals.push_back(getEncodedLinkage(F)); 1237 Vals.push_back(VE.getAttributeID(F.getAttributes())); 1238 Vals.push_back(Log2_32(F.getAlignment())+1); 1239 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1240 Vals.push_back(getEncodedVisibility(F)); 1241 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1242 Vals.push_back(getEncodedUnnamedAddr(F)); 1243 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1244 : 0); 1245 Vals.push_back(getEncodedDLLStorageClass(F)); 1246 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1247 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1248 : 0); 1249 Vals.push_back( 1250 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1251 1252 unsigned AbbrevToUse = 0; 1253 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1254 Vals.clear(); 1255 } 1256 1257 // Emit the alias information. 1258 for (const GlobalAlias &A : M.aliases()) { 1259 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass, 1260 // threadlocal, unnamed_addr] 1261 Vals.push_back(VE.getTypeID(A.getValueType())); 1262 Vals.push_back(A.getType()->getAddressSpace()); 1263 Vals.push_back(VE.getValueID(A.getAliasee())); 1264 Vals.push_back(getEncodedLinkage(A)); 1265 Vals.push_back(getEncodedVisibility(A)); 1266 Vals.push_back(getEncodedDLLStorageClass(A)); 1267 Vals.push_back(getEncodedThreadLocalMode(A)); 1268 Vals.push_back(getEncodedUnnamedAddr(A)); 1269 unsigned AbbrevToUse = 0; 1270 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1271 Vals.clear(); 1272 } 1273 1274 // Emit the ifunc information. 1275 for (const GlobalIFunc &I : M.ifuncs()) { 1276 // IFUNC: [ifunc type, address space, resolver val#, linkage, visibility] 1277 Vals.push_back(VE.getTypeID(I.getValueType())); 1278 Vals.push_back(I.getType()->getAddressSpace()); 1279 Vals.push_back(VE.getValueID(I.getResolver())); 1280 Vals.push_back(getEncodedLinkage(I)); 1281 Vals.push_back(getEncodedVisibility(I)); 1282 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1283 Vals.clear(); 1284 } 1285 1286 // Emit the module's source file name. 1287 { 1288 StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(), 1289 M.getSourceFileName().size()); 1290 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1291 if (Bits == SE_Char6) 1292 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1293 else if (Bits == SE_Fixed7) 1294 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1295 1296 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1297 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1298 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1300 Abbv->Add(AbbrevOpToUse); 1301 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1302 1303 for (const auto P : M.getSourceFileName()) 1304 Vals.push_back((unsigned char)P); 1305 1306 // Emit the finished record. 1307 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1308 Vals.clear(); 1309 } 1310 1311 // If we have a VST, write the VSTOFFSET record placeholder. 1312 if (M.getValueSymbolTable().empty()) 1313 return; 1314 writeValueSymbolTableForwardDecl(); 1315 } 1316 1317 static uint64_t getOptimizationFlags(const Value *V) { 1318 uint64_t Flags = 0; 1319 1320 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1321 if (OBO->hasNoSignedWrap()) 1322 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1323 if (OBO->hasNoUnsignedWrap()) 1324 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1325 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1326 if (PEO->isExact()) 1327 Flags |= 1 << bitc::PEO_EXACT; 1328 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1329 if (FPMO->hasUnsafeAlgebra()) 1330 Flags |= FastMathFlags::UnsafeAlgebra; 1331 if (FPMO->hasNoNaNs()) 1332 Flags |= FastMathFlags::NoNaNs; 1333 if (FPMO->hasNoInfs()) 1334 Flags |= FastMathFlags::NoInfs; 1335 if (FPMO->hasNoSignedZeros()) 1336 Flags |= FastMathFlags::NoSignedZeros; 1337 if (FPMO->hasAllowReciprocal()) 1338 Flags |= FastMathFlags::AllowReciprocal; 1339 if (FPMO->hasAllowContract()) 1340 Flags |= FastMathFlags::AllowContract; 1341 } 1342 1343 return Flags; 1344 } 1345 1346 void ModuleBitcodeWriter::writeValueAsMetadata( 1347 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1348 // Mimic an MDNode with a value as one operand. 1349 Value *V = MD->getValue(); 1350 Record.push_back(VE.getTypeID(V->getType())); 1351 Record.push_back(VE.getValueID(V)); 1352 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1353 Record.clear(); 1354 } 1355 1356 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1357 SmallVectorImpl<uint64_t> &Record, 1358 unsigned Abbrev) { 1359 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1360 Metadata *MD = N->getOperand(i); 1361 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1362 "Unexpected function-local metadata"); 1363 Record.push_back(VE.getMetadataOrNullID(MD)); 1364 } 1365 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1366 : bitc::METADATA_NODE, 1367 Record, Abbrev); 1368 Record.clear(); 1369 } 1370 1371 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1372 // Assume the column is usually under 128, and always output the inlined-at 1373 // location (it's never more expensive than building an array size 1). 1374 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1375 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1381 return Stream.EmitAbbrev(std::move(Abbv)); 1382 } 1383 1384 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1385 SmallVectorImpl<uint64_t> &Record, 1386 unsigned &Abbrev) { 1387 if (!Abbrev) 1388 Abbrev = createDILocationAbbrev(); 1389 1390 Record.push_back(N->isDistinct()); 1391 Record.push_back(N->getLine()); 1392 Record.push_back(N->getColumn()); 1393 Record.push_back(VE.getMetadataID(N->getScope())); 1394 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1395 1396 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1397 Record.clear(); 1398 } 1399 1400 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1401 // Assume the column is usually under 128, and always output the inlined-at 1402 // location (it's never more expensive than building an array size 1). 1403 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1404 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1407 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1408 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1409 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1410 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1411 return Stream.EmitAbbrev(std::move(Abbv)); 1412 } 1413 1414 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1415 SmallVectorImpl<uint64_t> &Record, 1416 unsigned &Abbrev) { 1417 if (!Abbrev) 1418 Abbrev = createGenericDINodeAbbrev(); 1419 1420 Record.push_back(N->isDistinct()); 1421 Record.push_back(N->getTag()); 1422 Record.push_back(0); // Per-tag version field; unused for now. 1423 1424 for (auto &I : N->operands()) 1425 Record.push_back(VE.getMetadataOrNullID(I)); 1426 1427 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1428 Record.clear(); 1429 } 1430 1431 static uint64_t rotateSign(int64_t I) { 1432 uint64_t U = I; 1433 return I < 0 ? ~(U << 1) : U << 1; 1434 } 1435 1436 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1437 SmallVectorImpl<uint64_t> &Record, 1438 unsigned Abbrev) { 1439 Record.push_back(N->isDistinct()); 1440 Record.push_back(N->getCount()); 1441 Record.push_back(rotateSign(N->getLowerBound())); 1442 1443 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1444 Record.clear(); 1445 } 1446 1447 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1448 SmallVectorImpl<uint64_t> &Record, 1449 unsigned Abbrev) { 1450 Record.push_back(N->isDistinct()); 1451 Record.push_back(rotateSign(N->getValue())); 1452 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1453 1454 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1455 Record.clear(); 1456 } 1457 1458 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1459 SmallVectorImpl<uint64_t> &Record, 1460 unsigned Abbrev) { 1461 Record.push_back(N->isDistinct()); 1462 Record.push_back(N->getTag()); 1463 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1464 Record.push_back(N->getSizeInBits()); 1465 Record.push_back(N->getAlignInBits()); 1466 Record.push_back(N->getEncoding()); 1467 1468 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1469 Record.clear(); 1470 } 1471 1472 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1473 SmallVectorImpl<uint64_t> &Record, 1474 unsigned Abbrev) { 1475 Record.push_back(N->isDistinct()); 1476 Record.push_back(N->getTag()); 1477 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1478 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1479 Record.push_back(N->getLine()); 1480 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1481 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1482 Record.push_back(N->getSizeInBits()); 1483 Record.push_back(N->getAlignInBits()); 1484 Record.push_back(N->getOffsetInBits()); 1485 Record.push_back(N->getFlags()); 1486 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1487 1488 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1489 // that there is no DWARF address space associated with DIDerivedType. 1490 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1491 Record.push_back(*DWARFAddressSpace + 1); 1492 else 1493 Record.push_back(0); 1494 1495 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1496 Record.clear(); 1497 } 1498 1499 void ModuleBitcodeWriter::writeDICompositeType( 1500 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1501 unsigned Abbrev) { 1502 const unsigned IsNotUsedInOldTypeRef = 0x2; 1503 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1504 Record.push_back(N->getTag()); 1505 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1506 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1507 Record.push_back(N->getLine()); 1508 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1509 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1510 Record.push_back(N->getSizeInBits()); 1511 Record.push_back(N->getAlignInBits()); 1512 Record.push_back(N->getOffsetInBits()); 1513 Record.push_back(N->getFlags()); 1514 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1515 Record.push_back(N->getRuntimeLang()); 1516 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1517 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1518 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1519 1520 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1521 Record.clear(); 1522 } 1523 1524 void ModuleBitcodeWriter::writeDISubroutineType( 1525 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1526 unsigned Abbrev) { 1527 const unsigned HasNoOldTypeRefs = 0x2; 1528 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1529 Record.push_back(N->getFlags()); 1530 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1531 Record.push_back(N->getCC()); 1532 1533 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1534 Record.clear(); 1535 } 1536 1537 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1538 SmallVectorImpl<uint64_t> &Record, 1539 unsigned Abbrev) { 1540 Record.push_back(N->isDistinct()); 1541 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1542 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1543 Record.push_back(N->getChecksumKind()); 1544 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum())); 1545 1546 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1547 Record.clear(); 1548 } 1549 1550 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1551 SmallVectorImpl<uint64_t> &Record, 1552 unsigned Abbrev) { 1553 assert(N->isDistinct() && "Expected distinct compile units"); 1554 Record.push_back(/* IsDistinct */ true); 1555 Record.push_back(N->getSourceLanguage()); 1556 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1557 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1558 Record.push_back(N->isOptimized()); 1559 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1560 Record.push_back(N->getRuntimeVersion()); 1561 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1562 Record.push_back(N->getEmissionKind()); 1563 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1564 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1565 Record.push_back(/* subprograms */ 0); 1566 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1567 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1568 Record.push_back(N->getDWOId()); 1569 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1570 Record.push_back(N->getSplitDebugInlining()); 1571 Record.push_back(N->getDebugInfoForProfiling()); 1572 1573 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1574 Record.clear(); 1575 } 1576 1577 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1578 SmallVectorImpl<uint64_t> &Record, 1579 unsigned Abbrev) { 1580 uint64_t HasUnitFlag = 1 << 1; 1581 Record.push_back(N->isDistinct() | HasUnitFlag); 1582 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1583 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1584 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1585 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1586 Record.push_back(N->getLine()); 1587 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1588 Record.push_back(N->isLocalToUnit()); 1589 Record.push_back(N->isDefinition()); 1590 Record.push_back(N->getScopeLine()); 1591 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1592 Record.push_back(N->getVirtuality()); 1593 Record.push_back(N->getVirtualIndex()); 1594 Record.push_back(N->getFlags()); 1595 Record.push_back(N->isOptimized()); 1596 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1597 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1598 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1599 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1600 Record.push_back(N->getThisAdjustment()); 1601 1602 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1603 Record.clear(); 1604 } 1605 1606 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1607 SmallVectorImpl<uint64_t> &Record, 1608 unsigned Abbrev) { 1609 Record.push_back(N->isDistinct()); 1610 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1611 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1612 Record.push_back(N->getLine()); 1613 Record.push_back(N->getColumn()); 1614 1615 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1616 Record.clear(); 1617 } 1618 1619 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1620 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1621 unsigned Abbrev) { 1622 Record.push_back(N->isDistinct()); 1623 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1624 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1625 Record.push_back(N->getDiscriminator()); 1626 1627 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1628 Record.clear(); 1629 } 1630 1631 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1632 SmallVectorImpl<uint64_t> &Record, 1633 unsigned Abbrev) { 1634 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1635 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1636 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1637 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1638 Record.push_back(N->getLine()); 1639 1640 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1641 Record.clear(); 1642 } 1643 1644 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1645 SmallVectorImpl<uint64_t> &Record, 1646 unsigned Abbrev) { 1647 Record.push_back(N->isDistinct()); 1648 Record.push_back(N->getMacinfoType()); 1649 Record.push_back(N->getLine()); 1650 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1651 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1652 1653 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1654 Record.clear(); 1655 } 1656 1657 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1658 SmallVectorImpl<uint64_t> &Record, 1659 unsigned Abbrev) { 1660 Record.push_back(N->isDistinct()); 1661 Record.push_back(N->getMacinfoType()); 1662 Record.push_back(N->getLine()); 1663 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1664 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1665 1666 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1667 Record.clear(); 1668 } 1669 1670 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1671 SmallVectorImpl<uint64_t> &Record, 1672 unsigned Abbrev) { 1673 Record.push_back(N->isDistinct()); 1674 for (auto &I : N->operands()) 1675 Record.push_back(VE.getMetadataOrNullID(I)); 1676 1677 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1678 Record.clear(); 1679 } 1680 1681 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1682 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1683 unsigned Abbrev) { 1684 Record.push_back(N->isDistinct()); 1685 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1686 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1687 1688 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1689 Record.clear(); 1690 } 1691 1692 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1693 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1694 unsigned Abbrev) { 1695 Record.push_back(N->isDistinct()); 1696 Record.push_back(N->getTag()); 1697 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1698 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1699 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1700 1701 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1702 Record.clear(); 1703 } 1704 1705 void ModuleBitcodeWriter::writeDIGlobalVariable( 1706 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1707 unsigned Abbrev) { 1708 const uint64_t Version = 1 << 1; 1709 Record.push_back((uint64_t)N->isDistinct() | Version); 1710 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1711 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1712 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1713 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1714 Record.push_back(N->getLine()); 1715 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1716 Record.push_back(N->isLocalToUnit()); 1717 Record.push_back(N->isDefinition()); 1718 Record.push_back(/* expr */ 0); 1719 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1720 Record.push_back(N->getAlignInBits()); 1721 1722 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1723 Record.clear(); 1724 } 1725 1726 void ModuleBitcodeWriter::writeDILocalVariable( 1727 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1728 unsigned Abbrev) { 1729 // In order to support all possible bitcode formats in BitcodeReader we need 1730 // to distinguish the following cases: 1731 // 1) Record has no artificial tag (Record[1]), 1732 // has no obsolete inlinedAt field (Record[9]). 1733 // In this case Record size will be 8, HasAlignment flag is false. 1734 // 2) Record has artificial tag (Record[1]), 1735 // has no obsolete inlignedAt field (Record[9]). 1736 // In this case Record size will be 9, HasAlignment flag is false. 1737 // 3) Record has both artificial tag (Record[1]) and 1738 // obsolete inlignedAt field (Record[9]). 1739 // In this case Record size will be 10, HasAlignment flag is false. 1740 // 4) Record has neither artificial tag, nor inlignedAt field, but 1741 // HasAlignment flag is true and Record[8] contains alignment value. 1742 const uint64_t HasAlignmentFlag = 1 << 1; 1743 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1744 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1745 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1746 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1747 Record.push_back(N->getLine()); 1748 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1749 Record.push_back(N->getArg()); 1750 Record.push_back(N->getFlags()); 1751 Record.push_back(N->getAlignInBits()); 1752 1753 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1754 Record.clear(); 1755 } 1756 1757 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1758 SmallVectorImpl<uint64_t> &Record, 1759 unsigned Abbrev) { 1760 Record.reserve(N->getElements().size() + 1); 1761 1762 const uint64_t HasOpFragmentFlag = 1 << 1; 1763 Record.push_back((uint64_t)N->isDistinct() | HasOpFragmentFlag); 1764 Record.append(N->elements_begin(), N->elements_end()); 1765 1766 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1767 Record.clear(); 1768 } 1769 1770 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1771 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1772 unsigned Abbrev) { 1773 Record.push_back(N->isDistinct()); 1774 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1775 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1776 1777 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1778 Record.clear(); 1779 } 1780 1781 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1782 SmallVectorImpl<uint64_t> &Record, 1783 unsigned Abbrev) { 1784 Record.push_back(N->isDistinct()); 1785 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1786 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1787 Record.push_back(N->getLine()); 1788 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1789 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1790 Record.push_back(N->getAttributes()); 1791 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1792 1793 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1794 Record.clear(); 1795 } 1796 1797 void ModuleBitcodeWriter::writeDIImportedEntity( 1798 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1799 unsigned Abbrev) { 1800 Record.push_back(N->isDistinct()); 1801 Record.push_back(N->getTag()); 1802 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1803 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1804 Record.push_back(N->getLine()); 1805 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1806 1807 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1808 Record.clear(); 1809 } 1810 1811 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1812 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1813 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1816 return Stream.EmitAbbrev(std::move(Abbv)); 1817 } 1818 1819 void ModuleBitcodeWriter::writeNamedMetadata( 1820 SmallVectorImpl<uint64_t> &Record) { 1821 if (M.named_metadata_empty()) 1822 return; 1823 1824 unsigned Abbrev = createNamedMetadataAbbrev(); 1825 for (const NamedMDNode &NMD : M.named_metadata()) { 1826 // Write name. 1827 StringRef Str = NMD.getName(); 1828 Record.append(Str.bytes_begin(), Str.bytes_end()); 1829 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1830 Record.clear(); 1831 1832 // Write named metadata operands. 1833 for (const MDNode *N : NMD.operands()) 1834 Record.push_back(VE.getMetadataID(N)); 1835 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1836 Record.clear(); 1837 } 1838 } 1839 1840 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1841 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1842 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1846 return Stream.EmitAbbrev(std::move(Abbv)); 1847 } 1848 1849 /// Write out a record for MDString. 1850 /// 1851 /// All the metadata strings in a metadata block are emitted in a single 1852 /// record. The sizes and strings themselves are shoved into a blob. 1853 void ModuleBitcodeWriter::writeMetadataStrings( 1854 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1855 if (Strings.empty()) 1856 return; 1857 1858 // Start the record with the number of strings. 1859 Record.push_back(bitc::METADATA_STRINGS); 1860 Record.push_back(Strings.size()); 1861 1862 // Emit the sizes of the strings in the blob. 1863 SmallString<256> Blob; 1864 { 1865 BitstreamWriter W(Blob); 1866 for (const Metadata *MD : Strings) 1867 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1868 W.FlushToWord(); 1869 } 1870 1871 // Add the offset to the strings to the record. 1872 Record.push_back(Blob.size()); 1873 1874 // Add the strings to the blob. 1875 for (const Metadata *MD : Strings) 1876 Blob.append(cast<MDString>(MD)->getString()); 1877 1878 // Emit the final record. 1879 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1880 Record.clear(); 1881 } 1882 1883 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1884 enum MetadataAbbrev : unsigned { 1885 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1886 #include "llvm/IR/Metadata.def" 1887 LastPlusOne 1888 }; 1889 1890 void ModuleBitcodeWriter::writeMetadataRecords( 1891 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1892 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1893 if (MDs.empty()) 1894 return; 1895 1896 // Initialize MDNode abbreviations. 1897 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1898 #include "llvm/IR/Metadata.def" 1899 1900 for (const Metadata *MD : MDs) { 1901 if (IndexPos) 1902 IndexPos->push_back(Stream.GetCurrentBitNo()); 1903 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1904 assert(N->isResolved() && "Expected forward references to be resolved"); 1905 1906 switch (N->getMetadataID()) { 1907 default: 1908 llvm_unreachable("Invalid MDNode subclass"); 1909 #define HANDLE_MDNODE_LEAF(CLASS) \ 1910 case Metadata::CLASS##Kind: \ 1911 if (MDAbbrevs) \ 1912 write##CLASS(cast<CLASS>(N), Record, \ 1913 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1914 else \ 1915 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1916 continue; 1917 #include "llvm/IR/Metadata.def" 1918 } 1919 } 1920 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1921 } 1922 } 1923 1924 void ModuleBitcodeWriter::writeModuleMetadata() { 1925 if (!VE.hasMDs() && M.named_metadata_empty()) 1926 return; 1927 1928 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1929 SmallVector<uint64_t, 64> Record; 1930 1931 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1932 // block and load any metadata. 1933 std::vector<unsigned> MDAbbrevs; 1934 1935 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1936 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1937 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1938 createGenericDINodeAbbrev(); 1939 1940 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1941 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1944 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1945 1946 Abbv = std::make_shared<BitCodeAbbrev>(); 1947 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1950 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1951 1952 // Emit MDStrings together upfront. 1953 writeMetadataStrings(VE.getMDStrings(), Record); 1954 1955 // We only emit an index for the metadata record if we have more than a given 1956 // (naive) threshold of metadatas, otherwise it is not worth it. 1957 if (VE.getNonMDStrings().size() > IndexThreshold) { 1958 // Write a placeholder value in for the offset of the metadata index, 1959 // which is written after the records, so that it can include 1960 // the offset of each entry. The placeholder offset will be 1961 // updated after all records are emitted. 1962 uint64_t Vals[] = {0, 0}; 1963 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1964 } 1965 1966 // Compute and save the bit offset to the current position, which will be 1967 // patched when we emit the index later. We can simply subtract the 64-bit 1968 // fixed size from the current bit number to get the location to backpatch. 1969 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1970 1971 // This index will contain the bitpos for each individual record. 1972 std::vector<uint64_t> IndexPos; 1973 IndexPos.reserve(VE.getNonMDStrings().size()); 1974 1975 // Write all the records 1976 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1977 1978 if (VE.getNonMDStrings().size() > IndexThreshold) { 1979 // Now that we have emitted all the records we will emit the index. But 1980 // first 1981 // backpatch the forward reference so that the reader can skip the records 1982 // efficiently. 1983 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 1984 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 1985 1986 // Delta encode the index. 1987 uint64_t PreviousValue = IndexOffsetRecordBitPos; 1988 for (auto &Elt : IndexPos) { 1989 auto EltDelta = Elt - PreviousValue; 1990 PreviousValue = Elt; 1991 Elt = EltDelta; 1992 } 1993 // Emit the index record. 1994 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 1995 IndexPos.clear(); 1996 } 1997 1998 // Write the named metadata now. 1999 writeNamedMetadata(Record); 2000 2001 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2002 SmallVector<uint64_t, 4> Record; 2003 Record.push_back(VE.getValueID(&GO)); 2004 pushGlobalMetadataAttachment(Record, GO); 2005 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2006 }; 2007 for (const Function &F : M) 2008 if (F.isDeclaration() && F.hasMetadata()) 2009 AddDeclAttachedMetadata(F); 2010 // FIXME: Only store metadata for declarations here, and move data for global 2011 // variable definitions to a separate block (PR28134). 2012 for (const GlobalVariable &GV : M.globals()) 2013 if (GV.hasMetadata()) 2014 AddDeclAttachedMetadata(GV); 2015 2016 Stream.ExitBlock(); 2017 } 2018 2019 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2020 if (!VE.hasMDs()) 2021 return; 2022 2023 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2024 SmallVector<uint64_t, 64> Record; 2025 writeMetadataStrings(VE.getMDStrings(), Record); 2026 writeMetadataRecords(VE.getNonMDStrings(), Record); 2027 Stream.ExitBlock(); 2028 } 2029 2030 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2031 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2032 // [n x [id, mdnode]] 2033 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2034 GO.getAllMetadata(MDs); 2035 for (const auto &I : MDs) { 2036 Record.push_back(I.first); 2037 Record.push_back(VE.getMetadataID(I.second)); 2038 } 2039 } 2040 2041 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2042 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2043 2044 SmallVector<uint64_t, 64> Record; 2045 2046 if (F.hasMetadata()) { 2047 pushGlobalMetadataAttachment(Record, F); 2048 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2049 Record.clear(); 2050 } 2051 2052 // Write metadata attachments 2053 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2054 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2055 for (const BasicBlock &BB : F) 2056 for (const Instruction &I : BB) { 2057 MDs.clear(); 2058 I.getAllMetadataOtherThanDebugLoc(MDs); 2059 2060 // If no metadata, ignore instruction. 2061 if (MDs.empty()) continue; 2062 2063 Record.push_back(VE.getInstructionID(&I)); 2064 2065 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2066 Record.push_back(MDs[i].first); 2067 Record.push_back(VE.getMetadataID(MDs[i].second)); 2068 } 2069 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2070 Record.clear(); 2071 } 2072 2073 Stream.ExitBlock(); 2074 } 2075 2076 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2077 SmallVector<uint64_t, 64> Record; 2078 2079 // Write metadata kinds 2080 // METADATA_KIND - [n x [id, name]] 2081 SmallVector<StringRef, 8> Names; 2082 M.getMDKindNames(Names); 2083 2084 if (Names.empty()) return; 2085 2086 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2087 2088 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2089 Record.push_back(MDKindID); 2090 StringRef KName = Names[MDKindID]; 2091 Record.append(KName.begin(), KName.end()); 2092 2093 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2094 Record.clear(); 2095 } 2096 2097 Stream.ExitBlock(); 2098 } 2099 2100 void ModuleBitcodeWriter::writeOperandBundleTags() { 2101 // Write metadata kinds 2102 // 2103 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2104 // 2105 // OPERAND_BUNDLE_TAG - [strchr x N] 2106 2107 SmallVector<StringRef, 8> Tags; 2108 M.getOperandBundleTags(Tags); 2109 2110 if (Tags.empty()) 2111 return; 2112 2113 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2114 2115 SmallVector<uint64_t, 64> Record; 2116 2117 for (auto Tag : Tags) { 2118 Record.append(Tag.begin(), Tag.end()); 2119 2120 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2121 Record.clear(); 2122 } 2123 2124 Stream.ExitBlock(); 2125 } 2126 2127 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2128 if ((int64_t)V >= 0) 2129 Vals.push_back(V << 1); 2130 else 2131 Vals.push_back((-V << 1) | 1); 2132 } 2133 2134 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2135 bool isGlobal) { 2136 if (FirstVal == LastVal) return; 2137 2138 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2139 2140 unsigned AggregateAbbrev = 0; 2141 unsigned String8Abbrev = 0; 2142 unsigned CString7Abbrev = 0; 2143 unsigned CString6Abbrev = 0; 2144 // If this is a constant pool for the module, emit module-specific abbrevs. 2145 if (isGlobal) { 2146 // Abbrev for CST_CODE_AGGREGATE. 2147 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2148 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2151 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2152 2153 // Abbrev for CST_CODE_STRING. 2154 Abbv = std::make_shared<BitCodeAbbrev>(); 2155 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2158 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2159 // Abbrev for CST_CODE_CSTRING. 2160 Abbv = std::make_shared<BitCodeAbbrev>(); 2161 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2164 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2165 // Abbrev for CST_CODE_CSTRING. 2166 Abbv = std::make_shared<BitCodeAbbrev>(); 2167 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2170 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2171 } 2172 2173 SmallVector<uint64_t, 64> Record; 2174 2175 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2176 Type *LastTy = nullptr; 2177 for (unsigned i = FirstVal; i != LastVal; ++i) { 2178 const Value *V = Vals[i].first; 2179 // If we need to switch types, do so now. 2180 if (V->getType() != LastTy) { 2181 LastTy = V->getType(); 2182 Record.push_back(VE.getTypeID(LastTy)); 2183 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2184 CONSTANTS_SETTYPE_ABBREV); 2185 Record.clear(); 2186 } 2187 2188 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2189 Record.push_back(unsigned(IA->hasSideEffects()) | 2190 unsigned(IA->isAlignStack()) << 1 | 2191 unsigned(IA->getDialect()&1) << 2); 2192 2193 // Add the asm string. 2194 const std::string &AsmStr = IA->getAsmString(); 2195 Record.push_back(AsmStr.size()); 2196 Record.append(AsmStr.begin(), AsmStr.end()); 2197 2198 // Add the constraint string. 2199 const std::string &ConstraintStr = IA->getConstraintString(); 2200 Record.push_back(ConstraintStr.size()); 2201 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2202 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2203 Record.clear(); 2204 continue; 2205 } 2206 const Constant *C = cast<Constant>(V); 2207 unsigned Code = -1U; 2208 unsigned AbbrevToUse = 0; 2209 if (C->isNullValue()) { 2210 Code = bitc::CST_CODE_NULL; 2211 } else if (isa<UndefValue>(C)) { 2212 Code = bitc::CST_CODE_UNDEF; 2213 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2214 if (IV->getBitWidth() <= 64) { 2215 uint64_t V = IV->getSExtValue(); 2216 emitSignedInt64(Record, V); 2217 Code = bitc::CST_CODE_INTEGER; 2218 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2219 } else { // Wide integers, > 64 bits in size. 2220 // We have an arbitrary precision integer value to write whose 2221 // bit width is > 64. However, in canonical unsigned integer 2222 // format it is likely that the high bits are going to be zero. 2223 // So, we only write the number of active words. 2224 unsigned NWords = IV->getValue().getActiveWords(); 2225 const uint64_t *RawWords = IV->getValue().getRawData(); 2226 for (unsigned i = 0; i != NWords; ++i) { 2227 emitSignedInt64(Record, RawWords[i]); 2228 } 2229 Code = bitc::CST_CODE_WIDE_INTEGER; 2230 } 2231 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2232 Code = bitc::CST_CODE_FLOAT; 2233 Type *Ty = CFP->getType(); 2234 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2235 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2236 } else if (Ty->isX86_FP80Ty()) { 2237 // api needed to prevent premature destruction 2238 // bits are not in the same order as a normal i80 APInt, compensate. 2239 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2240 const uint64_t *p = api.getRawData(); 2241 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2242 Record.push_back(p[0] & 0xffffLL); 2243 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2244 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2245 const uint64_t *p = api.getRawData(); 2246 Record.push_back(p[0]); 2247 Record.push_back(p[1]); 2248 } else { 2249 assert (0 && "Unknown FP type!"); 2250 } 2251 } else if (isa<ConstantDataSequential>(C) && 2252 cast<ConstantDataSequential>(C)->isString()) { 2253 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2254 // Emit constant strings specially. 2255 unsigned NumElts = Str->getNumElements(); 2256 // If this is a null-terminated string, use the denser CSTRING encoding. 2257 if (Str->isCString()) { 2258 Code = bitc::CST_CODE_CSTRING; 2259 --NumElts; // Don't encode the null, which isn't allowed by char6. 2260 } else { 2261 Code = bitc::CST_CODE_STRING; 2262 AbbrevToUse = String8Abbrev; 2263 } 2264 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2265 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2266 for (unsigned i = 0; i != NumElts; ++i) { 2267 unsigned char V = Str->getElementAsInteger(i); 2268 Record.push_back(V); 2269 isCStr7 &= (V & 128) == 0; 2270 if (isCStrChar6) 2271 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2272 } 2273 2274 if (isCStrChar6) 2275 AbbrevToUse = CString6Abbrev; 2276 else if (isCStr7) 2277 AbbrevToUse = CString7Abbrev; 2278 } else if (const ConstantDataSequential *CDS = 2279 dyn_cast<ConstantDataSequential>(C)) { 2280 Code = bitc::CST_CODE_DATA; 2281 Type *EltTy = CDS->getType()->getElementType(); 2282 if (isa<IntegerType>(EltTy)) { 2283 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2284 Record.push_back(CDS->getElementAsInteger(i)); 2285 } else { 2286 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2287 Record.push_back( 2288 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2289 } 2290 } else if (isa<ConstantAggregate>(C)) { 2291 Code = bitc::CST_CODE_AGGREGATE; 2292 for (const Value *Op : C->operands()) 2293 Record.push_back(VE.getValueID(Op)); 2294 AbbrevToUse = AggregateAbbrev; 2295 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2296 switch (CE->getOpcode()) { 2297 default: 2298 if (Instruction::isCast(CE->getOpcode())) { 2299 Code = bitc::CST_CODE_CE_CAST; 2300 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2301 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2302 Record.push_back(VE.getValueID(C->getOperand(0))); 2303 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2304 } else { 2305 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2306 Code = bitc::CST_CODE_CE_BINOP; 2307 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2308 Record.push_back(VE.getValueID(C->getOperand(0))); 2309 Record.push_back(VE.getValueID(C->getOperand(1))); 2310 uint64_t Flags = getOptimizationFlags(CE); 2311 if (Flags != 0) 2312 Record.push_back(Flags); 2313 } 2314 break; 2315 case Instruction::GetElementPtr: { 2316 Code = bitc::CST_CODE_CE_GEP; 2317 const auto *GO = cast<GEPOperator>(C); 2318 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2319 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2320 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2321 Record.push_back((*Idx << 1) | GO->isInBounds()); 2322 } else if (GO->isInBounds()) 2323 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2324 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2325 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2326 Record.push_back(VE.getValueID(C->getOperand(i))); 2327 } 2328 break; 2329 } 2330 case Instruction::Select: 2331 Code = bitc::CST_CODE_CE_SELECT; 2332 Record.push_back(VE.getValueID(C->getOperand(0))); 2333 Record.push_back(VE.getValueID(C->getOperand(1))); 2334 Record.push_back(VE.getValueID(C->getOperand(2))); 2335 break; 2336 case Instruction::ExtractElement: 2337 Code = bitc::CST_CODE_CE_EXTRACTELT; 2338 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2339 Record.push_back(VE.getValueID(C->getOperand(0))); 2340 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2341 Record.push_back(VE.getValueID(C->getOperand(1))); 2342 break; 2343 case Instruction::InsertElement: 2344 Code = bitc::CST_CODE_CE_INSERTELT; 2345 Record.push_back(VE.getValueID(C->getOperand(0))); 2346 Record.push_back(VE.getValueID(C->getOperand(1))); 2347 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2348 Record.push_back(VE.getValueID(C->getOperand(2))); 2349 break; 2350 case Instruction::ShuffleVector: 2351 // If the return type and argument types are the same, this is a 2352 // standard shufflevector instruction. If the types are different, 2353 // then the shuffle is widening or truncating the input vectors, and 2354 // the argument type must also be encoded. 2355 if (C->getType() == C->getOperand(0)->getType()) { 2356 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2357 } else { 2358 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2359 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2360 } 2361 Record.push_back(VE.getValueID(C->getOperand(0))); 2362 Record.push_back(VE.getValueID(C->getOperand(1))); 2363 Record.push_back(VE.getValueID(C->getOperand(2))); 2364 break; 2365 case Instruction::ICmp: 2366 case Instruction::FCmp: 2367 Code = bitc::CST_CODE_CE_CMP; 2368 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2369 Record.push_back(VE.getValueID(C->getOperand(0))); 2370 Record.push_back(VE.getValueID(C->getOperand(1))); 2371 Record.push_back(CE->getPredicate()); 2372 break; 2373 } 2374 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2375 Code = bitc::CST_CODE_BLOCKADDRESS; 2376 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2377 Record.push_back(VE.getValueID(BA->getFunction())); 2378 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2379 } else { 2380 #ifndef NDEBUG 2381 C->dump(); 2382 #endif 2383 llvm_unreachable("Unknown constant!"); 2384 } 2385 Stream.EmitRecord(Code, Record, AbbrevToUse); 2386 Record.clear(); 2387 } 2388 2389 Stream.ExitBlock(); 2390 } 2391 2392 void ModuleBitcodeWriter::writeModuleConstants() { 2393 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2394 2395 // Find the first constant to emit, which is the first non-globalvalue value. 2396 // We know globalvalues have been emitted by WriteModuleInfo. 2397 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2398 if (!isa<GlobalValue>(Vals[i].first)) { 2399 writeConstants(i, Vals.size(), true); 2400 return; 2401 } 2402 } 2403 } 2404 2405 /// pushValueAndType - The file has to encode both the value and type id for 2406 /// many values, because we need to know what type to create for forward 2407 /// references. However, most operands are not forward references, so this type 2408 /// field is not needed. 2409 /// 2410 /// This function adds V's value ID to Vals. If the value ID is higher than the 2411 /// instruction ID, then it is a forward reference, and it also includes the 2412 /// type ID. The value ID that is written is encoded relative to the InstID. 2413 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2414 SmallVectorImpl<unsigned> &Vals) { 2415 unsigned ValID = VE.getValueID(V); 2416 // Make encoding relative to the InstID. 2417 Vals.push_back(InstID - ValID); 2418 if (ValID >= InstID) { 2419 Vals.push_back(VE.getTypeID(V->getType())); 2420 return true; 2421 } 2422 return false; 2423 } 2424 2425 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2426 unsigned InstID) { 2427 SmallVector<unsigned, 64> Record; 2428 LLVMContext &C = CS.getInstruction()->getContext(); 2429 2430 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2431 const auto &Bundle = CS.getOperandBundleAt(i); 2432 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2433 2434 for (auto &Input : Bundle.Inputs) 2435 pushValueAndType(Input, InstID, Record); 2436 2437 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2438 Record.clear(); 2439 } 2440 } 2441 2442 /// pushValue - Like pushValueAndType, but where the type of the value is 2443 /// omitted (perhaps it was already encoded in an earlier operand). 2444 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2445 SmallVectorImpl<unsigned> &Vals) { 2446 unsigned ValID = VE.getValueID(V); 2447 Vals.push_back(InstID - ValID); 2448 } 2449 2450 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2451 SmallVectorImpl<uint64_t> &Vals) { 2452 unsigned ValID = VE.getValueID(V); 2453 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2454 emitSignedInt64(Vals, diff); 2455 } 2456 2457 /// WriteInstruction - Emit an instruction to the specified stream. 2458 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2459 unsigned InstID, 2460 SmallVectorImpl<unsigned> &Vals) { 2461 unsigned Code = 0; 2462 unsigned AbbrevToUse = 0; 2463 VE.setInstructionID(&I); 2464 switch (I.getOpcode()) { 2465 default: 2466 if (Instruction::isCast(I.getOpcode())) { 2467 Code = bitc::FUNC_CODE_INST_CAST; 2468 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2469 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2470 Vals.push_back(VE.getTypeID(I.getType())); 2471 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2472 } else { 2473 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2474 Code = bitc::FUNC_CODE_INST_BINOP; 2475 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2476 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2477 pushValue(I.getOperand(1), InstID, Vals); 2478 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2479 uint64_t Flags = getOptimizationFlags(&I); 2480 if (Flags != 0) { 2481 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2482 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2483 Vals.push_back(Flags); 2484 } 2485 } 2486 break; 2487 2488 case Instruction::GetElementPtr: { 2489 Code = bitc::FUNC_CODE_INST_GEP; 2490 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2491 auto &GEPInst = cast<GetElementPtrInst>(I); 2492 Vals.push_back(GEPInst.isInBounds()); 2493 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2494 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2495 pushValueAndType(I.getOperand(i), InstID, Vals); 2496 break; 2497 } 2498 case Instruction::ExtractValue: { 2499 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2500 pushValueAndType(I.getOperand(0), InstID, Vals); 2501 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2502 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2503 break; 2504 } 2505 case Instruction::InsertValue: { 2506 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2507 pushValueAndType(I.getOperand(0), InstID, Vals); 2508 pushValueAndType(I.getOperand(1), InstID, Vals); 2509 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2510 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2511 break; 2512 } 2513 case Instruction::Select: 2514 Code = bitc::FUNC_CODE_INST_VSELECT; 2515 pushValueAndType(I.getOperand(1), InstID, Vals); 2516 pushValue(I.getOperand(2), InstID, Vals); 2517 pushValueAndType(I.getOperand(0), InstID, Vals); 2518 break; 2519 case Instruction::ExtractElement: 2520 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2521 pushValueAndType(I.getOperand(0), InstID, Vals); 2522 pushValueAndType(I.getOperand(1), InstID, Vals); 2523 break; 2524 case Instruction::InsertElement: 2525 Code = bitc::FUNC_CODE_INST_INSERTELT; 2526 pushValueAndType(I.getOperand(0), InstID, Vals); 2527 pushValue(I.getOperand(1), InstID, Vals); 2528 pushValueAndType(I.getOperand(2), InstID, Vals); 2529 break; 2530 case Instruction::ShuffleVector: 2531 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2532 pushValueAndType(I.getOperand(0), InstID, Vals); 2533 pushValue(I.getOperand(1), InstID, Vals); 2534 pushValue(I.getOperand(2), InstID, Vals); 2535 break; 2536 case Instruction::ICmp: 2537 case Instruction::FCmp: { 2538 // compare returning Int1Ty or vector of Int1Ty 2539 Code = bitc::FUNC_CODE_INST_CMP2; 2540 pushValueAndType(I.getOperand(0), InstID, Vals); 2541 pushValue(I.getOperand(1), InstID, Vals); 2542 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2543 uint64_t Flags = getOptimizationFlags(&I); 2544 if (Flags != 0) 2545 Vals.push_back(Flags); 2546 break; 2547 } 2548 2549 case Instruction::Ret: 2550 { 2551 Code = bitc::FUNC_CODE_INST_RET; 2552 unsigned NumOperands = I.getNumOperands(); 2553 if (NumOperands == 0) 2554 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2555 else if (NumOperands == 1) { 2556 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2557 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2558 } else { 2559 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2560 pushValueAndType(I.getOperand(i), InstID, Vals); 2561 } 2562 } 2563 break; 2564 case Instruction::Br: 2565 { 2566 Code = bitc::FUNC_CODE_INST_BR; 2567 const BranchInst &II = cast<BranchInst>(I); 2568 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2569 if (II.isConditional()) { 2570 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2571 pushValue(II.getCondition(), InstID, Vals); 2572 } 2573 } 2574 break; 2575 case Instruction::Switch: 2576 { 2577 Code = bitc::FUNC_CODE_INST_SWITCH; 2578 const SwitchInst &SI = cast<SwitchInst>(I); 2579 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2580 pushValue(SI.getCondition(), InstID, Vals); 2581 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2582 for (SwitchInst::ConstCaseIt Case : SI.cases()) { 2583 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2584 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2585 } 2586 } 2587 break; 2588 case Instruction::IndirectBr: 2589 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2590 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2591 // Encode the address operand as relative, but not the basic blocks. 2592 pushValue(I.getOperand(0), InstID, Vals); 2593 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2594 Vals.push_back(VE.getValueID(I.getOperand(i))); 2595 break; 2596 2597 case Instruction::Invoke: { 2598 const InvokeInst *II = cast<InvokeInst>(&I); 2599 const Value *Callee = II->getCalledValue(); 2600 FunctionType *FTy = II->getFunctionType(); 2601 2602 if (II->hasOperandBundles()) 2603 writeOperandBundles(II, InstID); 2604 2605 Code = bitc::FUNC_CODE_INST_INVOKE; 2606 2607 Vals.push_back(VE.getAttributeID(II->getAttributes())); 2608 Vals.push_back(II->getCallingConv() | 1 << 13); 2609 Vals.push_back(VE.getValueID(II->getNormalDest())); 2610 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2611 Vals.push_back(VE.getTypeID(FTy)); 2612 pushValueAndType(Callee, InstID, Vals); 2613 2614 // Emit value #'s for the fixed parameters. 2615 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2616 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2617 2618 // Emit type/value pairs for varargs params. 2619 if (FTy->isVarArg()) { 2620 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2621 i != e; ++i) 2622 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2623 } 2624 break; 2625 } 2626 case Instruction::Resume: 2627 Code = bitc::FUNC_CODE_INST_RESUME; 2628 pushValueAndType(I.getOperand(0), InstID, Vals); 2629 break; 2630 case Instruction::CleanupRet: { 2631 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2632 const auto &CRI = cast<CleanupReturnInst>(I); 2633 pushValue(CRI.getCleanupPad(), InstID, Vals); 2634 if (CRI.hasUnwindDest()) 2635 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2636 break; 2637 } 2638 case Instruction::CatchRet: { 2639 Code = bitc::FUNC_CODE_INST_CATCHRET; 2640 const auto &CRI = cast<CatchReturnInst>(I); 2641 pushValue(CRI.getCatchPad(), InstID, Vals); 2642 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2643 break; 2644 } 2645 case Instruction::CleanupPad: 2646 case Instruction::CatchPad: { 2647 const auto &FuncletPad = cast<FuncletPadInst>(I); 2648 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2649 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2650 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2651 2652 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2653 Vals.push_back(NumArgOperands); 2654 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2655 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2656 break; 2657 } 2658 case Instruction::CatchSwitch: { 2659 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2660 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2661 2662 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2663 2664 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2665 Vals.push_back(NumHandlers); 2666 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2667 Vals.push_back(VE.getValueID(CatchPadBB)); 2668 2669 if (CatchSwitch.hasUnwindDest()) 2670 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2671 break; 2672 } 2673 case Instruction::Unreachable: 2674 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2675 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2676 break; 2677 2678 case Instruction::PHI: { 2679 const PHINode &PN = cast<PHINode>(I); 2680 Code = bitc::FUNC_CODE_INST_PHI; 2681 // With the newer instruction encoding, forward references could give 2682 // negative valued IDs. This is most common for PHIs, so we use 2683 // signed VBRs. 2684 SmallVector<uint64_t, 128> Vals64; 2685 Vals64.push_back(VE.getTypeID(PN.getType())); 2686 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2687 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2688 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2689 } 2690 // Emit a Vals64 vector and exit. 2691 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2692 Vals64.clear(); 2693 return; 2694 } 2695 2696 case Instruction::LandingPad: { 2697 const LandingPadInst &LP = cast<LandingPadInst>(I); 2698 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2699 Vals.push_back(VE.getTypeID(LP.getType())); 2700 Vals.push_back(LP.isCleanup()); 2701 Vals.push_back(LP.getNumClauses()); 2702 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2703 if (LP.isCatch(I)) 2704 Vals.push_back(LandingPadInst::Catch); 2705 else 2706 Vals.push_back(LandingPadInst::Filter); 2707 pushValueAndType(LP.getClause(I), InstID, Vals); 2708 } 2709 break; 2710 } 2711 2712 case Instruction::Alloca: { 2713 Code = bitc::FUNC_CODE_INST_ALLOCA; 2714 const AllocaInst &AI = cast<AllocaInst>(I); 2715 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2716 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2717 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2718 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2719 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2720 "not enough bits for maximum alignment"); 2721 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2722 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2723 AlignRecord |= 1 << 6; 2724 AlignRecord |= AI.isSwiftError() << 7; 2725 Vals.push_back(AlignRecord); 2726 break; 2727 } 2728 2729 case Instruction::Load: 2730 if (cast<LoadInst>(I).isAtomic()) { 2731 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2732 pushValueAndType(I.getOperand(0), InstID, Vals); 2733 } else { 2734 Code = bitc::FUNC_CODE_INST_LOAD; 2735 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2736 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2737 } 2738 Vals.push_back(VE.getTypeID(I.getType())); 2739 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2740 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2741 if (cast<LoadInst>(I).isAtomic()) { 2742 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2743 Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2744 } 2745 break; 2746 case Instruction::Store: 2747 if (cast<StoreInst>(I).isAtomic()) 2748 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2749 else 2750 Code = bitc::FUNC_CODE_INST_STORE; 2751 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2752 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2753 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2754 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2755 if (cast<StoreInst>(I).isAtomic()) { 2756 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2757 Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2758 } 2759 break; 2760 case Instruction::AtomicCmpXchg: 2761 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2762 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2763 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2764 pushValue(I.getOperand(2), InstID, Vals); // newval. 2765 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2766 Vals.push_back( 2767 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2768 Vals.push_back( 2769 getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope())); 2770 Vals.push_back( 2771 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2772 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2773 break; 2774 case Instruction::AtomicRMW: 2775 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2776 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2777 pushValue(I.getOperand(1), InstID, Vals); // val. 2778 Vals.push_back( 2779 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2780 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2781 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2782 Vals.push_back( 2783 getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope())); 2784 break; 2785 case Instruction::Fence: 2786 Code = bitc::FUNC_CODE_INST_FENCE; 2787 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2788 Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2789 break; 2790 case Instruction::Call: { 2791 const CallInst &CI = cast<CallInst>(I); 2792 FunctionType *FTy = CI.getFunctionType(); 2793 2794 if (CI.hasOperandBundles()) 2795 writeOperandBundles(&CI, InstID); 2796 2797 Code = bitc::FUNC_CODE_INST_CALL; 2798 2799 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 2800 2801 unsigned Flags = getOptimizationFlags(&I); 2802 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2803 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2804 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2805 1 << bitc::CALL_EXPLICIT_TYPE | 2806 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2807 unsigned(Flags != 0) << bitc::CALL_FMF); 2808 if (Flags != 0) 2809 Vals.push_back(Flags); 2810 2811 Vals.push_back(VE.getTypeID(FTy)); 2812 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2813 2814 // Emit value #'s for the fixed parameters. 2815 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2816 // Check for labels (can happen with asm labels). 2817 if (FTy->getParamType(i)->isLabelTy()) 2818 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2819 else 2820 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2821 } 2822 2823 // Emit type/value pairs for varargs params. 2824 if (FTy->isVarArg()) { 2825 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2826 i != e; ++i) 2827 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2828 } 2829 break; 2830 } 2831 case Instruction::VAArg: 2832 Code = bitc::FUNC_CODE_INST_VAARG; 2833 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2834 pushValue(I.getOperand(0), InstID, Vals); // valist. 2835 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2836 break; 2837 } 2838 2839 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2840 Vals.clear(); 2841 } 2842 2843 /// Emit names for globals/functions etc. \p IsModuleLevel is true when 2844 /// we are writing the module-level VST, where we are including a function 2845 /// bitcode index and need to backpatch the VST forward declaration record. 2846 void ModuleBitcodeWriter::writeValueSymbolTable( 2847 const ValueSymbolTable &VST, bool IsModuleLevel, 2848 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex) { 2849 if (VST.empty()) { 2850 // writeValueSymbolTableForwardDecl should have returned early as 2851 // well. Ensure this handling remains in sync by asserting that 2852 // the placeholder offset is not set. 2853 assert(!IsModuleLevel || !hasVSTOffsetPlaceholder()); 2854 return; 2855 } 2856 2857 if (IsModuleLevel && hasVSTOffsetPlaceholder()) { 2858 // Get the offset of the VST we are writing, and backpatch it into 2859 // the VST forward declaration record. 2860 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2861 // The BitcodeStartBit was the stream offset of the identification block. 2862 VSTOffset -= bitcodeStartBit(); 2863 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2864 // Note that we add 1 here because the offset is relative to one word 2865 // before the start of the identification block, which was historically 2866 // always the start of the regular bitcode header. 2867 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2868 } 2869 2870 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2871 2872 // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY 2873 // records, which are not used in the per-function VSTs. 2874 unsigned FnEntry8BitAbbrev; 2875 unsigned FnEntry7BitAbbrev; 2876 unsigned FnEntry6BitAbbrev; 2877 unsigned GUIDEntryAbbrev; 2878 if (IsModuleLevel && hasVSTOffsetPlaceholder()) { 2879 // 8-bit fixed-width VST_CODE_FNENTRY function strings. 2880 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2881 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2882 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2883 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2885 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2886 FnEntry8BitAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2887 2888 // 7-bit fixed width VST_CODE_FNENTRY function strings. 2889 Abbv = std::make_shared<BitCodeAbbrev>(); 2890 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2891 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2893 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2894 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2895 FnEntry7BitAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2896 2897 // 6-bit char6 VST_CODE_FNENTRY function strings. 2898 Abbv = std::make_shared<BitCodeAbbrev>(); 2899 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2902 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2903 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2904 FnEntry6BitAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2905 2906 // FIXME: Change the name of this record as it is now used by 2907 // the per-module index as well. 2908 Abbv = std::make_shared<BitCodeAbbrev>(); 2909 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 2910 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2911 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 2912 GUIDEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2913 } 2914 2915 // FIXME: Set up the abbrev, we know how many values there are! 2916 // FIXME: We know if the type names can use 7-bit ascii. 2917 SmallVector<uint64_t, 64> NameVals; 2918 2919 for (const ValueName &Name : VST) { 2920 // Figure out the encoding to use for the name. 2921 StringEncoding Bits = 2922 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2923 2924 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2925 NameVals.push_back(VE.getValueID(Name.getValue())); 2926 2927 Function *F = dyn_cast<Function>(Name.getValue()); 2928 if (!F) { 2929 // If value is an alias, need to get the aliased base object to 2930 // see if it is a function. 2931 auto *GA = dyn_cast<GlobalAlias>(Name.getValue()); 2932 if (GA && GA->getBaseObject()) 2933 F = dyn_cast<Function>(GA->getBaseObject()); 2934 } 2935 2936 // VST_CODE_ENTRY: [valueid, namechar x N] 2937 // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N] 2938 // VST_CODE_BBENTRY: [bbid, namechar x N] 2939 unsigned Code; 2940 if (isa<BasicBlock>(Name.getValue())) { 2941 Code = bitc::VST_CODE_BBENTRY; 2942 if (Bits == SE_Char6) 2943 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2944 } else if (F && !F->isDeclaration()) { 2945 // Must be the module-level VST, where we pass in the Index and 2946 // have a VSTOffsetPlaceholder. The function-level VST should not 2947 // contain any Function symbols. 2948 assert(FunctionToBitcodeIndex); 2949 assert(hasVSTOffsetPlaceholder()); 2950 2951 // Save the word offset of the function (from the start of the 2952 // actual bitcode written to the stream). 2953 uint64_t BitcodeIndex = (*FunctionToBitcodeIndex)[F] - bitcodeStartBit(); 2954 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2955 // Note that we add 1 here because the offset is relative to one word 2956 // before the start of the identification block, which was historically 2957 // always the start of the regular bitcode header. 2958 NameVals.push_back(BitcodeIndex / 32 + 1); 2959 2960 Code = bitc::VST_CODE_FNENTRY; 2961 AbbrevToUse = FnEntry8BitAbbrev; 2962 if (Bits == SE_Char6) 2963 AbbrevToUse = FnEntry6BitAbbrev; 2964 else if (Bits == SE_Fixed7) 2965 AbbrevToUse = FnEntry7BitAbbrev; 2966 } else { 2967 Code = bitc::VST_CODE_ENTRY; 2968 if (Bits == SE_Char6) 2969 AbbrevToUse = VST_ENTRY_6_ABBREV; 2970 else if (Bits == SE_Fixed7) 2971 AbbrevToUse = VST_ENTRY_7_ABBREV; 2972 } 2973 2974 for (const auto P : Name.getKey()) 2975 NameVals.push_back((unsigned char)P); 2976 2977 // Emit the finished record. 2978 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2979 NameVals.clear(); 2980 } 2981 // Emit any GUID valueIDs created for indirect call edges into the 2982 // module-level VST. 2983 if (IsModuleLevel && hasVSTOffsetPlaceholder()) 2984 for (const auto &GI : valueIds()) { 2985 NameVals.push_back(GI.second); 2986 NameVals.push_back(GI.first); 2987 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, 2988 GUIDEntryAbbrev); 2989 NameVals.clear(); 2990 } 2991 Stream.ExitBlock(); 2992 } 2993 2994 /// Emit function names and summary offsets for the combined index 2995 /// used by ThinLTO. 2996 void IndexBitcodeWriter::writeCombinedValueSymbolTable() { 2997 assert(hasVSTOffsetPlaceholder() && "Expected non-zero VSTOffsetPlaceholder"); 2998 // Get the offset of the VST we are writing, and backpatch it into 2999 // the VST forward declaration record. 3000 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3001 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3002 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 3003 3004 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3005 3006 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3007 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 3008 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3009 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 3010 unsigned EntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3011 3012 SmallVector<uint64_t, 64> NameVals; 3013 for (const auto &GVI : valueIds()) { 3014 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 3015 NameVals.push_back(GVI.second); 3016 NameVals.push_back(GVI.first); 3017 3018 // Emit the finished record. 3019 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev); 3020 NameVals.clear(); 3021 } 3022 Stream.ExitBlock(); 3023 } 3024 3025 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3026 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3027 unsigned Code; 3028 if (isa<BasicBlock>(Order.V)) 3029 Code = bitc::USELIST_CODE_BB; 3030 else 3031 Code = bitc::USELIST_CODE_DEFAULT; 3032 3033 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3034 Record.push_back(VE.getValueID(Order.V)); 3035 Stream.EmitRecord(Code, Record); 3036 } 3037 3038 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3039 assert(VE.shouldPreserveUseListOrder() && 3040 "Expected to be preserving use-list order"); 3041 3042 auto hasMore = [&]() { 3043 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3044 }; 3045 if (!hasMore()) 3046 // Nothing to do. 3047 return; 3048 3049 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3050 while (hasMore()) { 3051 writeUseList(std::move(VE.UseListOrders.back())); 3052 VE.UseListOrders.pop_back(); 3053 } 3054 Stream.ExitBlock(); 3055 } 3056 3057 /// Emit a function body to the module stream. 3058 void ModuleBitcodeWriter::writeFunction( 3059 const Function &F, 3060 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3061 // Save the bitcode index of the start of this function block for recording 3062 // in the VST. 3063 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3064 3065 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3066 VE.incorporateFunction(F); 3067 3068 SmallVector<unsigned, 64> Vals; 3069 3070 // Emit the number of basic blocks, so the reader can create them ahead of 3071 // time. 3072 Vals.push_back(VE.getBasicBlocks().size()); 3073 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3074 Vals.clear(); 3075 3076 // If there are function-local constants, emit them now. 3077 unsigned CstStart, CstEnd; 3078 VE.getFunctionConstantRange(CstStart, CstEnd); 3079 writeConstants(CstStart, CstEnd, false); 3080 3081 // If there is function-local metadata, emit it now. 3082 writeFunctionMetadata(F); 3083 3084 // Keep a running idea of what the instruction ID is. 3085 unsigned InstID = CstEnd; 3086 3087 bool NeedsMetadataAttachment = F.hasMetadata(); 3088 3089 DILocation *LastDL = nullptr; 3090 // Finally, emit all the instructions, in order. 3091 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3092 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3093 I != E; ++I) { 3094 writeInstruction(*I, InstID, Vals); 3095 3096 if (!I->getType()->isVoidTy()) 3097 ++InstID; 3098 3099 // If the instruction has metadata, write a metadata attachment later. 3100 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3101 3102 // If the instruction has a debug location, emit it. 3103 DILocation *DL = I->getDebugLoc(); 3104 if (!DL) 3105 continue; 3106 3107 if (DL == LastDL) { 3108 // Just repeat the same debug loc as last time. 3109 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3110 continue; 3111 } 3112 3113 Vals.push_back(DL->getLine()); 3114 Vals.push_back(DL->getColumn()); 3115 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3116 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3117 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3118 Vals.clear(); 3119 3120 LastDL = DL; 3121 } 3122 3123 // Emit names for all the instructions etc. 3124 if (auto *Symtab = F.getValueSymbolTable()) 3125 writeValueSymbolTable(*Symtab); 3126 3127 if (NeedsMetadataAttachment) 3128 writeFunctionMetadataAttachment(F); 3129 if (VE.shouldPreserveUseListOrder()) 3130 writeUseListBlock(&F); 3131 VE.purgeFunction(); 3132 Stream.ExitBlock(); 3133 } 3134 3135 // Emit blockinfo, which defines the standard abbreviations etc. 3136 void ModuleBitcodeWriter::writeBlockInfo() { 3137 // We only want to emit block info records for blocks that have multiple 3138 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3139 // Other blocks can define their abbrevs inline. 3140 Stream.EnterBlockInfoBlock(); 3141 3142 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3143 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3148 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3149 VST_ENTRY_8_ABBREV) 3150 llvm_unreachable("Unexpected abbrev ordering!"); 3151 } 3152 3153 { // 7-bit fixed width VST_CODE_ENTRY strings. 3154 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3155 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3159 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3160 VST_ENTRY_7_ABBREV) 3161 llvm_unreachable("Unexpected abbrev ordering!"); 3162 } 3163 { // 6-bit char6 VST_CODE_ENTRY strings. 3164 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3165 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3169 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3170 VST_ENTRY_6_ABBREV) 3171 llvm_unreachable("Unexpected abbrev ordering!"); 3172 } 3173 { // 6-bit char6 VST_CODE_BBENTRY strings. 3174 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3175 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3179 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3180 VST_BBENTRY_6_ABBREV) 3181 llvm_unreachable("Unexpected abbrev ordering!"); 3182 } 3183 3184 3185 3186 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3187 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3188 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3190 VE.computeBitsRequiredForTypeIndicies())); 3191 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3192 CONSTANTS_SETTYPE_ABBREV) 3193 llvm_unreachable("Unexpected abbrev ordering!"); 3194 } 3195 3196 { // INTEGER abbrev for CONSTANTS_BLOCK. 3197 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3198 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3199 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3200 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3201 CONSTANTS_INTEGER_ABBREV) 3202 llvm_unreachable("Unexpected abbrev ordering!"); 3203 } 3204 3205 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3206 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3207 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3208 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3210 VE.computeBitsRequiredForTypeIndicies())); 3211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3212 3213 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3214 CONSTANTS_CE_CAST_Abbrev) 3215 llvm_unreachable("Unexpected abbrev ordering!"); 3216 } 3217 { // NULL abbrev for CONSTANTS_BLOCK. 3218 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3219 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3220 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3221 CONSTANTS_NULL_Abbrev) 3222 llvm_unreachable("Unexpected abbrev ordering!"); 3223 } 3224 3225 // FIXME: This should only use space for first class types! 3226 3227 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3228 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3229 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3230 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3232 VE.computeBitsRequiredForTypeIndicies())); 3233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3235 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3236 FUNCTION_INST_LOAD_ABBREV) 3237 llvm_unreachable("Unexpected abbrev ordering!"); 3238 } 3239 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3240 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3241 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3242 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3243 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3245 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3246 FUNCTION_INST_BINOP_ABBREV) 3247 llvm_unreachable("Unexpected abbrev ordering!"); 3248 } 3249 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3250 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3251 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3252 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3253 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3254 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3255 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3256 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3257 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3258 llvm_unreachable("Unexpected abbrev ordering!"); 3259 } 3260 { // INST_CAST abbrev for FUNCTION_BLOCK. 3261 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3262 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3263 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3264 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3265 VE.computeBitsRequiredForTypeIndicies())); 3266 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3267 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3268 FUNCTION_INST_CAST_ABBREV) 3269 llvm_unreachable("Unexpected abbrev ordering!"); 3270 } 3271 3272 { // INST_RET abbrev for FUNCTION_BLOCK. 3273 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3274 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3275 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3276 FUNCTION_INST_RET_VOID_ABBREV) 3277 llvm_unreachable("Unexpected abbrev ordering!"); 3278 } 3279 { // INST_RET abbrev for FUNCTION_BLOCK. 3280 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3281 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3283 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3284 FUNCTION_INST_RET_VAL_ABBREV) 3285 llvm_unreachable("Unexpected abbrev ordering!"); 3286 } 3287 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3288 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3289 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3290 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3291 FUNCTION_INST_UNREACHABLE_ABBREV) 3292 llvm_unreachable("Unexpected abbrev ordering!"); 3293 } 3294 { 3295 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3296 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3299 Log2_32_Ceil(VE.getTypes().size() + 1))); 3300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3302 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3303 FUNCTION_INST_GEP_ABBREV) 3304 llvm_unreachable("Unexpected abbrev ordering!"); 3305 } 3306 3307 Stream.ExitBlock(); 3308 } 3309 3310 /// Write the module path strings, currently only used when generating 3311 /// a combined index file. 3312 void IndexBitcodeWriter::writeModStrings() { 3313 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3314 3315 // TODO: See which abbrev sizes we actually need to emit 3316 3317 // 8-bit fixed-width MST_ENTRY strings. 3318 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3319 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3323 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3324 3325 // 7-bit fixed width MST_ENTRY strings. 3326 Abbv = std::make_shared<BitCodeAbbrev>(); 3327 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3331 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3332 3333 // 6-bit char6 MST_ENTRY strings. 3334 Abbv = std::make_shared<BitCodeAbbrev>(); 3335 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3339 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3340 3341 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3342 Abbv = std::make_shared<BitCodeAbbrev>(); 3343 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3349 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3350 3351 SmallVector<unsigned, 64> Vals; 3352 for (const auto &MPSE : Index.modulePaths()) { 3353 if (!doIncludeModule(MPSE.getKey())) 3354 continue; 3355 StringEncoding Bits = 3356 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 3357 unsigned AbbrevToUse = Abbrev8Bit; 3358 if (Bits == SE_Char6) 3359 AbbrevToUse = Abbrev6Bit; 3360 else if (Bits == SE_Fixed7) 3361 AbbrevToUse = Abbrev7Bit; 3362 3363 Vals.push_back(MPSE.getValue().first); 3364 3365 for (const auto P : MPSE.getKey()) 3366 Vals.push_back((unsigned char)P); 3367 3368 // Emit the finished record. 3369 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3370 3371 Vals.clear(); 3372 // Emit an optional hash for the module now 3373 auto &Hash = MPSE.getValue().second; 3374 bool AllZero = true; // Detect if the hash is empty, and do not generate it 3375 for (auto Val : Hash) { 3376 if (Val) 3377 AllZero = false; 3378 Vals.push_back(Val); 3379 } 3380 if (!AllZero) { 3381 // Emit the hash record. 3382 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3383 } 3384 3385 Vals.clear(); 3386 } 3387 Stream.ExitBlock(); 3388 } 3389 3390 /// Write the function type metadata related records that need to appear before 3391 /// a function summary entry (whether per-module or combined). 3392 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3393 FunctionSummary *FS) { 3394 if (!FS->type_tests().empty()) 3395 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3396 3397 SmallVector<uint64_t, 64> Record; 3398 3399 auto WriteVFuncIdVec = [&](uint64_t Ty, 3400 ArrayRef<FunctionSummary::VFuncId> VFs) { 3401 if (VFs.empty()) 3402 return; 3403 Record.clear(); 3404 for (auto &VF : VFs) { 3405 Record.push_back(VF.GUID); 3406 Record.push_back(VF.Offset); 3407 } 3408 Stream.EmitRecord(Ty, Record); 3409 }; 3410 3411 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3412 FS->type_test_assume_vcalls()); 3413 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3414 FS->type_checked_load_vcalls()); 3415 3416 auto WriteConstVCallVec = [&](uint64_t Ty, 3417 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3418 for (auto &VC : VCs) { 3419 Record.clear(); 3420 Record.push_back(VC.VFunc.GUID); 3421 Record.push_back(VC.VFunc.Offset); 3422 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3423 Stream.EmitRecord(Ty, Record); 3424 } 3425 }; 3426 3427 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3428 FS->type_test_assume_const_vcalls()); 3429 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3430 FS->type_checked_load_const_vcalls()); 3431 } 3432 3433 // Helper to emit a single function summary record. 3434 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord( 3435 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3436 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3437 const Function &F) { 3438 NameVals.push_back(ValueID); 3439 3440 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3441 writeFunctionTypeMetadataRecords(Stream, FS); 3442 3443 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3444 NameVals.push_back(FS->instCount()); 3445 NameVals.push_back(FS->refs().size()); 3446 3447 for (auto &RI : FS->refs()) 3448 NameVals.push_back(VE.getValueID(RI.getValue())); 3449 3450 bool HasProfileData = F.getEntryCount().hasValue(); 3451 for (auto &ECI : FS->calls()) { 3452 NameVals.push_back(getValueId(ECI.first)); 3453 if (HasProfileData) 3454 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3455 } 3456 3457 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3458 unsigned Code = 3459 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3460 3461 // Emit the finished record. 3462 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3463 NameVals.clear(); 3464 } 3465 3466 // Collect the global value references in the given variable's initializer, 3467 // and emit them in a summary record. 3468 void ModuleBitcodeWriter::writeModuleLevelReferences( 3469 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3470 unsigned FSModRefsAbbrev) { 3471 auto Summaries = 3472 Index->findGlobalValueSummaryList(GlobalValue::getGUID(V.getName())); 3473 if (Summaries == Index->end()) { 3474 // Only declarations should not have a summary (a declaration might however 3475 // have a summary if the def was in module level asm). 3476 assert(V.isDeclaration()); 3477 return; 3478 } 3479 auto *Summary = Summaries->second.front().get(); 3480 NameVals.push_back(VE.getValueID(&V)); 3481 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3482 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3483 3484 unsigned SizeBeforeRefs = NameVals.size(); 3485 for (auto &RI : VS->refs()) 3486 NameVals.push_back(VE.getValueID(RI.getValue())); 3487 // Sort the refs for determinism output, the vector returned by FS->refs() has 3488 // been initialized from a DenseSet. 3489 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3490 3491 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3492 FSModRefsAbbrev); 3493 NameVals.clear(); 3494 } 3495 3496 // Current version for the summary. 3497 // This is bumped whenever we introduce changes in the way some record are 3498 // interpreted, like flags for instance. 3499 static const uint64_t INDEX_VERSION = 3; 3500 3501 /// Emit the per-module summary section alongside the rest of 3502 /// the module's bitcode. 3503 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() { 3504 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 3505 3506 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3507 3508 if (Index->begin() == Index->end()) { 3509 Stream.ExitBlock(); 3510 return; 3511 } 3512 3513 // Abbrev for FS_PERMODULE. 3514 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3515 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3517 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3518 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3519 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3520 // numrefs x valueid, n x (valueid) 3521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3523 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3524 3525 // Abbrev for FS_PERMODULE_PROFILE. 3526 Abbv = std::make_shared<BitCodeAbbrev>(); 3527 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3532 // numrefs x valueid, n x (valueid, hotness) 3533 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3534 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3535 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3536 3537 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3538 Abbv = std::make_shared<BitCodeAbbrev>(); 3539 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3540 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3541 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3542 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3543 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3544 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3545 3546 // Abbrev for FS_ALIAS. 3547 Abbv = std::make_shared<BitCodeAbbrev>(); 3548 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3550 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3552 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3553 3554 SmallVector<uint64_t, 64> NameVals; 3555 // Iterate over the list of functions instead of the Index to 3556 // ensure the ordering is stable. 3557 for (const Function &F : M) { 3558 // Summary emission does not support anonymous functions, they have to 3559 // renamed using the anonymous function renaming pass. 3560 if (!F.hasName()) 3561 report_fatal_error("Unexpected anonymous function when writing summary"); 3562 3563 auto Summaries = 3564 Index->findGlobalValueSummaryList(GlobalValue::getGUID(F.getName())); 3565 if (Summaries == Index->end()) { 3566 // Only declarations should not have a summary (a declaration might 3567 // however have a summary if the def was in module level asm). 3568 assert(F.isDeclaration()); 3569 continue; 3570 } 3571 auto *Summary = Summaries->second.front().get(); 3572 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3573 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3574 } 3575 3576 // Capture references from GlobalVariable initializers, which are outside 3577 // of a function scope. 3578 for (const GlobalVariable &G : M.globals()) 3579 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3580 3581 for (const GlobalAlias &A : M.aliases()) { 3582 auto *Aliasee = A.getBaseObject(); 3583 if (!Aliasee->hasName()) 3584 // Nameless function don't have an entry in the summary, skip it. 3585 continue; 3586 auto AliasId = VE.getValueID(&A); 3587 auto AliaseeId = VE.getValueID(Aliasee); 3588 NameVals.push_back(AliasId); 3589 auto *Summary = Index->getGlobalValueSummary(A); 3590 AliasSummary *AS = cast<AliasSummary>(Summary); 3591 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3592 NameVals.push_back(AliaseeId); 3593 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3594 NameVals.clear(); 3595 } 3596 3597 Stream.ExitBlock(); 3598 } 3599 3600 /// Emit the combined summary section into the combined index file. 3601 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3602 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3603 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3604 3605 // Abbrev for FS_COMBINED. 3606 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3607 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3608 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3610 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3611 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3612 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3613 // numrefs x valueid, n x (valueid) 3614 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3616 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3617 3618 // Abbrev for FS_COMBINED_PROFILE. 3619 Abbv = std::make_shared<BitCodeAbbrev>(); 3620 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3621 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3622 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3623 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3624 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3625 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3626 // numrefs x valueid, n x (valueid, hotness) 3627 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3628 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3629 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3630 3631 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3632 Abbv = std::make_shared<BitCodeAbbrev>(); 3633 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3635 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3637 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3639 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3640 3641 // Abbrev for FS_COMBINED_ALIAS. 3642 Abbv = std::make_shared<BitCodeAbbrev>(); 3643 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3644 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3645 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3646 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3648 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3649 3650 // The aliases are emitted as a post-pass, and will point to the value 3651 // id of the aliasee. Save them in a vector for post-processing. 3652 SmallVector<AliasSummary *, 64> Aliases; 3653 3654 // Save the value id for each summary for alias emission. 3655 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3656 3657 SmallVector<uint64_t, 64> NameVals; 3658 3659 // For local linkage, we also emit the original name separately 3660 // immediately after the record. 3661 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3662 if (!GlobalValue::isLocalLinkage(S.linkage())) 3663 return; 3664 NameVals.push_back(S.getOriginalName()); 3665 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3666 NameVals.clear(); 3667 }; 3668 3669 for (const auto &I : *this) { 3670 GlobalValueSummary *S = I.second; 3671 assert(S); 3672 3673 assert(hasValueId(I.first)); 3674 unsigned ValueId = getValueId(I.first); 3675 SummaryToValueIdMap[S] = ValueId; 3676 3677 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3678 // Will process aliases as a post-pass because the reader wants all 3679 // global to be loaded first. 3680 Aliases.push_back(AS); 3681 continue; 3682 } 3683 3684 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3685 NameVals.push_back(ValueId); 3686 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3687 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3688 for (auto &RI : VS->refs()) { 3689 NameVals.push_back(getValueId(RI.getGUID())); 3690 } 3691 3692 // Emit the finished record. 3693 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3694 FSModRefsAbbrev); 3695 NameVals.clear(); 3696 MaybeEmitOriginalName(*S); 3697 continue; 3698 } 3699 3700 auto *FS = cast<FunctionSummary>(S); 3701 writeFunctionTypeMetadataRecords(Stream, FS); 3702 3703 NameVals.push_back(ValueId); 3704 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3705 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3706 NameVals.push_back(FS->instCount()); 3707 NameVals.push_back(FS->refs().size()); 3708 3709 for (auto &RI : FS->refs()) { 3710 NameVals.push_back(getValueId(RI.getGUID())); 3711 } 3712 3713 bool HasProfileData = false; 3714 for (auto &EI : FS->calls()) { 3715 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown; 3716 if (HasProfileData) 3717 break; 3718 } 3719 3720 for (auto &EI : FS->calls()) { 3721 // If this GUID doesn't have a value id, it doesn't have a function 3722 // summary and we don't need to record any calls to it. 3723 GlobalValue::GUID GUID = EI.first.getGUID(); 3724 if (!hasValueId(GUID)) { 3725 // For SamplePGO, the indirect call targets for local functions will 3726 // have its original name annotated in profile. We try to find the 3727 // corresponding PGOFuncName as the GUID. 3728 GUID = Index.getGUIDFromOriginalID(GUID); 3729 if (GUID == 0 || !hasValueId(GUID)) 3730 continue; 3731 } 3732 NameVals.push_back(getValueId(GUID)); 3733 if (HasProfileData) 3734 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3735 } 3736 3737 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3738 unsigned Code = 3739 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3740 3741 // Emit the finished record. 3742 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3743 NameVals.clear(); 3744 MaybeEmitOriginalName(*S); 3745 } 3746 3747 for (auto *AS : Aliases) { 3748 auto AliasValueId = SummaryToValueIdMap[AS]; 3749 assert(AliasValueId); 3750 NameVals.push_back(AliasValueId); 3751 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3752 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3753 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3754 assert(AliaseeValueId); 3755 NameVals.push_back(AliaseeValueId); 3756 3757 // Emit the finished record. 3758 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3759 NameVals.clear(); 3760 MaybeEmitOriginalName(*AS); 3761 } 3762 3763 Stream.ExitBlock(); 3764 } 3765 3766 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3767 /// current llvm version, and a record for the epoch number. 3768 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3769 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3770 3771 // Write the "user readable" string identifying the bitcode producer 3772 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3773 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3776 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3777 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3778 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3779 3780 // Write the epoch version 3781 Abbv = std::make_shared<BitCodeAbbrev>(); 3782 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3784 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3785 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3786 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3787 Stream.ExitBlock(); 3788 } 3789 3790 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3791 // Emit the module's hash. 3792 // MODULE_CODE_HASH: [5*i32] 3793 if (GenerateHash) { 3794 SHA1 Hasher; 3795 uint32_t Vals[5]; 3796 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3797 Buffer.size() - BlockStartPos)); 3798 StringRef Hash = Hasher.result(); 3799 for (int Pos = 0; Pos < 20; Pos += 4) { 3800 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3801 } 3802 3803 // Emit the finished record. 3804 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3805 3806 if (ModHash) 3807 // Save the written hash value. 3808 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash)); 3809 } else if (ModHash) 3810 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 3811 } 3812 3813 void ModuleBitcodeWriter::write() { 3814 writeIdentificationBlock(Stream); 3815 3816 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3817 size_t BlockStartPos = Buffer.size(); 3818 3819 SmallVector<unsigned, 1> Vals; 3820 unsigned CurVersion = 1; 3821 Vals.push_back(CurVersion); 3822 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3823 3824 // Emit blockinfo, which defines the standard abbreviations etc. 3825 writeBlockInfo(); 3826 3827 // Emit information about attribute groups. 3828 writeAttributeGroupTable(); 3829 3830 // Emit information about parameter attributes. 3831 writeAttributeTable(); 3832 3833 // Emit information describing all of the types in the module. 3834 writeTypeTable(); 3835 3836 writeComdats(); 3837 3838 // Emit top-level description of module, including target triple, inline asm, 3839 // descriptors for global variables, and function prototype info. 3840 writeModuleInfo(); 3841 3842 // Emit constants. 3843 writeModuleConstants(); 3844 3845 // Emit metadata kind names. 3846 writeModuleMetadataKinds(); 3847 3848 // Emit metadata. 3849 writeModuleMetadata(); 3850 3851 // Emit module-level use-lists. 3852 if (VE.shouldPreserveUseListOrder()) 3853 writeUseListBlock(nullptr); 3854 3855 writeOperandBundleTags(); 3856 3857 // Emit function bodies. 3858 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3859 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3860 if (!F->isDeclaration()) 3861 writeFunction(*F, FunctionToBitcodeIndex); 3862 3863 // Need to write after the above call to WriteFunction which populates 3864 // the summary information in the index. 3865 if (Index) 3866 writePerModuleGlobalValueSummary(); 3867 3868 writeValueSymbolTable(M.getValueSymbolTable(), 3869 /* IsModuleLevel */ true, &FunctionToBitcodeIndex); 3870 3871 writeModuleHash(BlockStartPos); 3872 3873 Stream.ExitBlock(); 3874 } 3875 3876 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3877 uint32_t &Position) { 3878 support::endian::write32le(&Buffer[Position], Value); 3879 Position += 4; 3880 } 3881 3882 /// If generating a bc file on darwin, we have to emit a 3883 /// header and trailer to make it compatible with the system archiver. To do 3884 /// this we emit the following header, and then emit a trailer that pads the 3885 /// file out to be a multiple of 16 bytes. 3886 /// 3887 /// struct bc_header { 3888 /// uint32_t Magic; // 0x0B17C0DE 3889 /// uint32_t Version; // Version, currently always 0. 3890 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3891 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3892 /// uint32_t CPUType; // CPU specifier. 3893 /// ... potentially more later ... 3894 /// }; 3895 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3896 const Triple &TT) { 3897 unsigned CPUType = ~0U; 3898 3899 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3900 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3901 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3902 // specific constants here because they are implicitly part of the Darwin ABI. 3903 enum { 3904 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3905 DARWIN_CPU_TYPE_X86 = 7, 3906 DARWIN_CPU_TYPE_ARM = 12, 3907 DARWIN_CPU_TYPE_POWERPC = 18 3908 }; 3909 3910 Triple::ArchType Arch = TT.getArch(); 3911 if (Arch == Triple::x86_64) 3912 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3913 else if (Arch == Triple::x86) 3914 CPUType = DARWIN_CPU_TYPE_X86; 3915 else if (Arch == Triple::ppc) 3916 CPUType = DARWIN_CPU_TYPE_POWERPC; 3917 else if (Arch == Triple::ppc64) 3918 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3919 else if (Arch == Triple::arm || Arch == Triple::thumb) 3920 CPUType = DARWIN_CPU_TYPE_ARM; 3921 3922 // Traditional Bitcode starts after header. 3923 assert(Buffer.size() >= BWH_HeaderSize && 3924 "Expected header size to be reserved"); 3925 unsigned BCOffset = BWH_HeaderSize; 3926 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3927 3928 // Write the magic and version. 3929 unsigned Position = 0; 3930 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3931 writeInt32ToBuffer(0, Buffer, Position); // Version. 3932 writeInt32ToBuffer(BCOffset, Buffer, Position); 3933 writeInt32ToBuffer(BCSize, Buffer, Position); 3934 writeInt32ToBuffer(CPUType, Buffer, Position); 3935 3936 // If the file is not a multiple of 16 bytes, insert dummy padding. 3937 while (Buffer.size() & 15) 3938 Buffer.push_back(0); 3939 } 3940 3941 /// Helper to write the header common to all bitcode files. 3942 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3943 // Emit the file header. 3944 Stream.Emit((unsigned)'B', 8); 3945 Stream.Emit((unsigned)'C', 8); 3946 Stream.Emit(0x0, 4); 3947 Stream.Emit(0xC, 4); 3948 Stream.Emit(0xE, 4); 3949 Stream.Emit(0xD, 4); 3950 } 3951 3952 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3953 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3954 writeBitcodeHeader(*Stream); 3955 } 3956 3957 BitcodeWriter::~BitcodeWriter() = default; 3958 3959 void BitcodeWriter::writeModule(const Module *M, 3960 bool ShouldPreserveUseListOrder, 3961 const ModuleSummaryIndex *Index, 3962 bool GenerateHash, ModuleHash *ModHash) { 3963 ModuleBitcodeWriter ModuleWriter(M, Buffer, *Stream, 3964 ShouldPreserveUseListOrder, Index, 3965 GenerateHash, ModHash); 3966 ModuleWriter.write(); 3967 } 3968 3969 /// WriteBitcodeToFile - Write the specified module to the specified output 3970 /// stream. 3971 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3972 bool ShouldPreserveUseListOrder, 3973 const ModuleSummaryIndex *Index, 3974 bool GenerateHash, ModuleHash *ModHash) { 3975 SmallVector<char, 0> Buffer; 3976 Buffer.reserve(256*1024); 3977 3978 // If this is darwin or another generic macho target, reserve space for the 3979 // header. 3980 Triple TT(M->getTargetTriple()); 3981 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3982 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3983 3984 BitcodeWriter Writer(Buffer); 3985 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 3986 ModHash); 3987 3988 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3989 emitDarwinBCHeaderAndTrailer(Buffer, TT); 3990 3991 // Write the generated bitstream to "Out". 3992 Out.write((char*)&Buffer.front(), Buffer.size()); 3993 } 3994 3995 void IndexBitcodeWriter::write() { 3996 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3997 3998 SmallVector<unsigned, 1> Vals; 3999 unsigned CurVersion = 1; 4000 Vals.push_back(CurVersion); 4001 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 4002 4003 // If we have a VST, write the VSTOFFSET record placeholder. 4004 writeValueSymbolTableForwardDecl(); 4005 4006 // Write the module paths in the combined index. 4007 writeModStrings(); 4008 4009 // Write the summary combined index records. 4010 writeCombinedGlobalValueSummary(); 4011 4012 // Need a special VST writer for the combined index (we don't have a 4013 // real VST and real values when this is invoked). 4014 writeCombinedValueSymbolTable(); 4015 4016 Stream.ExitBlock(); 4017 } 4018 4019 // Write the specified module summary index to the given raw output stream, 4020 // where it will be written in a new bitcode block. This is used when 4021 // writing the combined index file for ThinLTO. When writing a subset of the 4022 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4023 void llvm::WriteIndexToFile( 4024 const ModuleSummaryIndex &Index, raw_ostream &Out, 4025 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4026 SmallVector<char, 0> Buffer; 4027 Buffer.reserve(256 * 1024); 4028 4029 BitstreamWriter Stream(Buffer); 4030 writeBitcodeHeader(Stream); 4031 4032 IndexBitcodeWriter IndexWriter(Stream, Index, ModuleToSummariesForIndex); 4033 IndexWriter.write(); 4034 4035 Out.write((char *)&Buffer.front(), Buffer.size()); 4036 } 4037