1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by Chris Lattner and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Instructions.h" 21 #include "llvm/Module.h" 22 #include "llvm/ParameterAttributes.h" 23 #include "llvm/TypeSymbolTable.h" 24 #include "llvm/ValueSymbolTable.h" 25 #include "llvm/Support/MathExtras.h" 26 using namespace llvm; 27 28 /// These are manifest constants used by the bitcode writer. They do not need to 29 /// be kept in sync with the reader, but need to be consistent within this file. 30 enum { 31 CurVersion = 0, 32 33 // VALUE_SYMTAB_BLOCK abbrev id's. 34 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 35 VST_ENTRY_7_ABBREV, 36 VST_ENTRY_6_ABBREV, 37 VST_BBENTRY_6_ABBREV, 38 39 // CONSTANTS_BLOCK abbrev id's. 40 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 41 CONSTANTS_INTEGER_ABBREV, 42 CONSTANTS_CE_CAST_Abbrev, 43 CONSTANTS_NULL_Abbrev, 44 45 // FUNCTION_BLOCK abbrev id's. 46 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 47 FUNCTION_INST_RET_VOID_ABBREV, 48 FUNCTION_INST_RET_VAL_ABBREV, 49 FUNCTION_INST_UNREACHABLE_ABBREV 50 }; 51 52 53 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 54 switch (Opcode) { 55 default: assert(0 && "Unknown cast instruction!"); 56 case Instruction::Trunc : return bitc::CAST_TRUNC; 57 case Instruction::ZExt : return bitc::CAST_ZEXT; 58 case Instruction::SExt : return bitc::CAST_SEXT; 59 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 60 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 61 case Instruction::UIToFP : return bitc::CAST_UITOFP; 62 case Instruction::SIToFP : return bitc::CAST_SITOFP; 63 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 64 case Instruction::FPExt : return bitc::CAST_FPEXT; 65 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 66 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 67 case Instruction::BitCast : return bitc::CAST_BITCAST; 68 } 69 } 70 71 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 72 switch (Opcode) { 73 default: assert(0 && "Unknown binary instruction!"); 74 case Instruction::Add: return bitc::BINOP_ADD; 75 case Instruction::Sub: return bitc::BINOP_SUB; 76 case Instruction::Mul: return bitc::BINOP_MUL; 77 case Instruction::UDiv: return bitc::BINOP_UDIV; 78 case Instruction::FDiv: 79 case Instruction::SDiv: return bitc::BINOP_SDIV; 80 case Instruction::URem: return bitc::BINOP_UREM; 81 case Instruction::FRem: 82 case Instruction::SRem: return bitc::BINOP_SREM; 83 case Instruction::Shl: return bitc::BINOP_SHL; 84 case Instruction::LShr: return bitc::BINOP_LSHR; 85 case Instruction::AShr: return bitc::BINOP_ASHR; 86 case Instruction::And: return bitc::BINOP_AND; 87 case Instruction::Or: return bitc::BINOP_OR; 88 case Instruction::Xor: return bitc::BINOP_XOR; 89 } 90 } 91 92 93 94 static void WriteStringRecord(unsigned Code, const std::string &Str, 95 unsigned AbbrevToUse, BitstreamWriter &Stream) { 96 SmallVector<unsigned, 64> Vals; 97 98 // Code: [strchar x N] 99 for (unsigned i = 0, e = Str.size(); i != e; ++i) 100 Vals.push_back(Str[i]); 101 102 // Emit the finished record. 103 Stream.EmitRecord(Code, Vals, AbbrevToUse); 104 } 105 106 // Emit information about parameter attributes. 107 static void WriteParamAttrTable(const ValueEnumerator &VE, 108 BitstreamWriter &Stream) { 109 const std::vector<const ParamAttrsList*> &Attrs = VE.getParamAttrs(); 110 if (Attrs.empty()) return; 111 112 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 113 114 SmallVector<uint64_t, 64> Record; 115 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 116 const ParamAttrsList *A = Attrs[i]; 117 for (unsigned op = 0, e = A->size(); op != e; ++op) { 118 Record.push_back(A->getParamIndex(op)); 119 Record.push_back(A->getParamAttrsAtIndex(op)); 120 } 121 122 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 123 Record.clear(); 124 } 125 126 Stream.ExitBlock(); 127 } 128 129 /// WriteTypeTable - Write out the type table for a module. 130 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 131 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 132 133 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 134 SmallVector<uint64_t, 64> TypeVals; 135 136 // Abbrev for TYPE_CODE_POINTER. 137 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 138 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 140 Log2_32_Ceil(VE.getTypes().size()+1))); 141 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 142 143 // Abbrev for TYPE_CODE_FUNCTION. 144 Abbv = new BitCodeAbbrev(); 145 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 148 Log2_32_Ceil(VE.getParamAttrs().size()+1))); 149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 151 Log2_32_Ceil(VE.getTypes().size()+1))); 152 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 153 154 // Abbrev for TYPE_CODE_STRUCT. 155 Abbv = new BitCodeAbbrev(); 156 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 160 Log2_32_Ceil(VE.getTypes().size()+1))); 161 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 162 163 // Abbrev for TYPE_CODE_ARRAY. 164 Abbv = new BitCodeAbbrev(); 165 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 168 Log2_32_Ceil(VE.getTypes().size()+1))); 169 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 170 171 // Emit an entry count so the reader can reserve space. 172 TypeVals.push_back(TypeList.size()); 173 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 174 TypeVals.clear(); 175 176 // Loop over all of the types, emitting each in turn. 177 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 178 const Type *T = TypeList[i].first; 179 int AbbrevToUse = 0; 180 unsigned Code = 0; 181 182 switch (T->getTypeID()) { 183 case Type::PackedStructTyID: // FIXME: Delete Type::PackedStructTyID. 184 default: assert(0 && "Unknown type!"); 185 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 186 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 187 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 188 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 189 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 190 case Type::IntegerTyID: 191 // INTEGER: [width] 192 Code = bitc::TYPE_CODE_INTEGER; 193 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 194 break; 195 case Type::PointerTyID: 196 // POINTER: [pointee type] 197 Code = bitc::TYPE_CODE_POINTER; 198 TypeVals.push_back(VE.getTypeID(cast<PointerType>(T)->getElementType())); 199 AbbrevToUse = PtrAbbrev; 200 break; 201 202 case Type::FunctionTyID: { 203 const FunctionType *FT = cast<FunctionType>(T); 204 // FUNCTION: [isvararg, attrid, retty, paramty x N] 205 Code = bitc::TYPE_CODE_FUNCTION; 206 TypeVals.push_back(FT->isVarArg()); 207 TypeVals.push_back(VE.getParamAttrID(FT->getParamAttrs())); 208 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 209 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 210 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 211 AbbrevToUse = FunctionAbbrev; 212 break; 213 } 214 case Type::StructTyID: { 215 const StructType *ST = cast<StructType>(T); 216 // STRUCT: [ispacked, eltty x N] 217 Code = bitc::TYPE_CODE_STRUCT; 218 TypeVals.push_back(ST->isPacked()); 219 // Output all of the element types. 220 for (StructType::element_iterator I = ST->element_begin(), 221 E = ST->element_end(); I != E; ++I) 222 TypeVals.push_back(VE.getTypeID(*I)); 223 AbbrevToUse = StructAbbrev; 224 break; 225 } 226 case Type::ArrayTyID: { 227 const ArrayType *AT = cast<ArrayType>(T); 228 // ARRAY: [numelts, eltty] 229 Code = bitc::TYPE_CODE_ARRAY; 230 TypeVals.push_back(AT->getNumElements()); 231 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 232 AbbrevToUse = ArrayAbbrev; 233 break; 234 } 235 case Type::VectorTyID: { 236 const VectorType *VT = cast<VectorType>(T); 237 // VECTOR [numelts, eltty] 238 Code = bitc::TYPE_CODE_VECTOR; 239 TypeVals.push_back(VT->getNumElements()); 240 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 241 break; 242 } 243 } 244 245 // Emit the finished record. 246 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 247 TypeVals.clear(); 248 } 249 250 Stream.ExitBlock(); 251 } 252 253 static unsigned getEncodedLinkage(const GlobalValue *GV) { 254 switch (GV->getLinkage()) { 255 default: assert(0 && "Invalid linkage!"); 256 case GlobalValue::ExternalLinkage: return 0; 257 case GlobalValue::WeakLinkage: return 1; 258 case GlobalValue::AppendingLinkage: return 2; 259 case GlobalValue::InternalLinkage: return 3; 260 case GlobalValue::LinkOnceLinkage: return 4; 261 case GlobalValue::DLLImportLinkage: return 5; 262 case GlobalValue::DLLExportLinkage: return 6; 263 case GlobalValue::ExternalWeakLinkage: return 7; 264 } 265 } 266 267 static unsigned getEncodedVisibility(const GlobalValue *GV) { 268 switch (GV->getVisibility()) { 269 default: assert(0 && "Invalid visibility!"); 270 case GlobalValue::DefaultVisibility: return 0; 271 case GlobalValue::HiddenVisibility: return 1; 272 case GlobalValue::ProtectedVisibility: return 2; 273 } 274 } 275 276 // Emit top-level description of module, including target triple, inline asm, 277 // descriptors for global variables, and function prototype info. 278 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 279 BitstreamWriter &Stream) { 280 // Emit the list of dependent libraries for the Module. 281 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 282 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 283 284 // Emit various pieces of data attached to a module. 285 if (!M->getTargetTriple().empty()) 286 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 287 0/*TODO*/, Stream); 288 if (!M->getDataLayout().empty()) 289 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 290 0/*TODO*/, Stream); 291 if (!M->getModuleInlineAsm().empty()) 292 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 293 0/*TODO*/, Stream); 294 295 // Emit information about sections, computing how many there are. Also 296 // compute the maximum alignment value. 297 std::map<std::string, unsigned> SectionMap; 298 unsigned MaxAlignment = 0; 299 unsigned MaxGlobalType = 0; 300 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 301 GV != E; ++GV) { 302 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 303 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 304 305 if (!GV->hasSection()) continue; 306 // Give section names unique ID's. 307 unsigned &Entry = SectionMap[GV->getSection()]; 308 if (Entry != 0) continue; 309 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 310 0/*TODO*/, Stream); 311 Entry = SectionMap.size(); 312 } 313 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 314 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 315 if (!F->hasSection()) continue; 316 // Give section names unique ID's. 317 unsigned &Entry = SectionMap[F->getSection()]; 318 if (Entry != 0) continue; 319 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 320 0/*TODO*/, Stream); 321 Entry = SectionMap.size(); 322 } 323 324 // Emit abbrev for globals, now that we know # sections and max alignment. 325 unsigned SimpleGVarAbbrev = 0; 326 if (!M->global_empty()) { 327 // Add an abbrev for common globals with no visibility or thread localness. 328 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 329 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 331 Log2_32_Ceil(MaxGlobalType+1))); 332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Linkage. 335 if (MaxAlignment == 0) // Alignment. 336 Abbv->Add(BitCodeAbbrevOp(0)); 337 else { 338 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 340 Log2_32_Ceil(MaxEncAlignment+1))); 341 } 342 if (SectionMap.empty()) // Section. 343 Abbv->Add(BitCodeAbbrevOp(0)); 344 else 345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 346 Log2_32_Ceil(SectionMap.size()+1))); 347 // Don't bother emitting vis + thread local. 348 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 349 } 350 351 // Emit the global variable information. 352 SmallVector<unsigned, 64> Vals; 353 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 354 GV != E; ++GV) { 355 unsigned AbbrevToUse = 0; 356 357 // GLOBALVAR: [type, isconst, initid, 358 // linkage, alignment, section, visibility, threadlocal] 359 Vals.push_back(VE.getTypeID(GV->getType())); 360 Vals.push_back(GV->isConstant()); 361 Vals.push_back(GV->isDeclaration() ? 0 : 362 (VE.getValueID(GV->getInitializer()) + 1)); 363 Vals.push_back(getEncodedLinkage(GV)); 364 Vals.push_back(Log2_32(GV->getAlignment())+1); 365 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 366 if (GV->isThreadLocal() || 367 GV->getVisibility() != GlobalValue::DefaultVisibility) { 368 Vals.push_back(getEncodedVisibility(GV)); 369 Vals.push_back(GV->isThreadLocal()); 370 } else { 371 AbbrevToUse = SimpleGVarAbbrev; 372 } 373 374 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 375 Vals.clear(); 376 } 377 378 // Emit the function proto information. 379 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 380 // FUNCTION: [type, callingconv, isproto, linkage, alignment, section, 381 // visibility] 382 Vals.push_back(VE.getTypeID(F->getType())); 383 Vals.push_back(F->getCallingConv()); 384 Vals.push_back(F->isDeclaration()); 385 Vals.push_back(getEncodedLinkage(F)); 386 Vals.push_back(Log2_32(F->getAlignment())+1); 387 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 388 Vals.push_back(getEncodedVisibility(F)); 389 390 unsigned AbbrevToUse = 0; 391 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 392 Vals.clear(); 393 } 394 395 396 // Emit the alias information. 397 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 398 AI != E; ++AI) { 399 Vals.push_back(VE.getTypeID(AI->getType())); 400 Vals.push_back(VE.getValueID(AI->getAliasee())); 401 Vals.push_back(getEncodedLinkage(AI)); 402 unsigned AbbrevToUse = 0; 403 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 404 Vals.clear(); 405 } 406 } 407 408 409 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 410 const ValueEnumerator &VE, 411 BitstreamWriter &Stream, bool isGlobal) { 412 if (FirstVal == LastVal) return; 413 414 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 415 416 unsigned AggregateAbbrev = 0; 417 unsigned String8Abbrev = 0; 418 unsigned CString7Abbrev = 0; 419 unsigned CString6Abbrev = 0; 420 // If this is a constant pool for the module, emit module-specific abbrevs. 421 if (isGlobal) { 422 // Abbrev for CST_CODE_AGGREGATE. 423 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 424 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 425 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 427 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 428 429 // Abbrev for CST_CODE_STRING. 430 Abbv = new BitCodeAbbrev(); 431 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 432 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 433 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 434 String8Abbrev = Stream.EmitAbbrev(Abbv); 435 // Abbrev for CST_CODE_CSTRING. 436 Abbv = new BitCodeAbbrev(); 437 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 440 CString7Abbrev = Stream.EmitAbbrev(Abbv); 441 // Abbrev for CST_CODE_CSTRING. 442 Abbv = new BitCodeAbbrev(); 443 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 446 CString6Abbrev = Stream.EmitAbbrev(Abbv); 447 } 448 449 // FIXME: Install and use abbrevs to reduce size. Install them globally so 450 // they don't need to be reemitted for each function body. 451 452 SmallVector<uint64_t, 64> Record; 453 454 const ValueEnumerator::ValueList &Vals = VE.getValues(); 455 const Type *LastTy = 0; 456 for (unsigned i = FirstVal; i != LastVal; ++i) { 457 const Value *V = Vals[i].first; 458 // If we need to switch types, do so now. 459 if (V->getType() != LastTy) { 460 LastTy = V->getType(); 461 Record.push_back(VE.getTypeID(LastTy)); 462 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 463 CONSTANTS_SETTYPE_ABBREV); 464 Record.clear(); 465 } 466 467 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 468 assert(0 && IA && "FIXME: Inline asm writing unimp!"); 469 continue; 470 } 471 const Constant *C = cast<Constant>(V); 472 unsigned Code = -1U; 473 unsigned AbbrevToUse = 0; 474 if (C->isNullValue()) { 475 Code = bitc::CST_CODE_NULL; 476 } else if (isa<UndefValue>(C)) { 477 Code = bitc::CST_CODE_UNDEF; 478 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 479 if (IV->getBitWidth() <= 64) { 480 int64_t V = IV->getSExtValue(); 481 if (V >= 0) 482 Record.push_back(V << 1); 483 else 484 Record.push_back((-V << 1) | 1); 485 Code = bitc::CST_CODE_INTEGER; 486 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 487 } else { // Wide integers, > 64 bits in size. 488 // We have an arbitrary precision integer value to write whose 489 // bit width is > 64. However, in canonical unsigned integer 490 // format it is likely that the high bits are going to be zero. 491 // So, we only write the number of active words. 492 unsigned NWords = IV->getValue().getActiveWords(); 493 const uint64_t *RawWords = IV->getValue().getRawData(); 494 for (unsigned i = 0; i != NWords; ++i) { 495 int64_t V = RawWords[i]; 496 if (V >= 0) 497 Record.push_back(V << 1); 498 else 499 Record.push_back((-V << 1) | 1); 500 } 501 Code = bitc::CST_CODE_WIDE_INTEGER; 502 } 503 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 504 Code = bitc::CST_CODE_FLOAT; 505 if (CFP->getType() == Type::FloatTy) { 506 Record.push_back(FloatToBits((float)CFP->getValue())); 507 } else { 508 assert (CFP->getType() == Type::DoubleTy && "Unknown FP type!"); 509 Record.push_back(DoubleToBits((double)CFP->getValue())); 510 } 511 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 512 // Emit constant strings specially. 513 unsigned NumOps = C->getNumOperands(); 514 // If this is a null-terminated string, use the denser CSTRING encoding. 515 if (C->getOperand(NumOps-1)->isNullValue()) { 516 Code = bitc::CST_CODE_CSTRING; 517 --NumOps; // Don't encode the null, which isn't allowed by char6. 518 } else { 519 Code = bitc::CST_CODE_STRING; 520 AbbrevToUse = String8Abbrev; 521 } 522 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 523 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 524 for (unsigned i = 0; i != NumOps; ++i) { 525 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue(); 526 Record.push_back(V); 527 isCStr7 &= (V & 128) == 0; 528 if (isCStrChar6) 529 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 530 } 531 532 if (isCStrChar6) 533 AbbrevToUse = CString6Abbrev; 534 else if (isCStr7) 535 AbbrevToUse = CString7Abbrev; 536 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 537 isa<ConstantVector>(V)) { 538 Code = bitc::CST_CODE_AGGREGATE; 539 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 540 Record.push_back(VE.getValueID(C->getOperand(i))); 541 AbbrevToUse = AggregateAbbrev; 542 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 543 switch (CE->getOpcode()) { 544 default: 545 if (Instruction::isCast(CE->getOpcode())) { 546 Code = bitc::CST_CODE_CE_CAST; 547 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 548 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 549 Record.push_back(VE.getValueID(C->getOperand(0))); 550 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 551 } else { 552 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 553 Code = bitc::CST_CODE_CE_BINOP; 554 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 555 Record.push_back(VE.getValueID(C->getOperand(0))); 556 Record.push_back(VE.getValueID(C->getOperand(1))); 557 } 558 break; 559 case Instruction::GetElementPtr: 560 Code = bitc::CST_CODE_CE_GEP; 561 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 562 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 563 Record.push_back(VE.getValueID(C->getOperand(i))); 564 } 565 break; 566 case Instruction::Select: 567 Code = bitc::CST_CODE_CE_SELECT; 568 Record.push_back(VE.getValueID(C->getOperand(0))); 569 Record.push_back(VE.getValueID(C->getOperand(1))); 570 Record.push_back(VE.getValueID(C->getOperand(2))); 571 break; 572 case Instruction::ExtractElement: 573 Code = bitc::CST_CODE_CE_EXTRACTELT; 574 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 575 Record.push_back(VE.getValueID(C->getOperand(0))); 576 Record.push_back(VE.getValueID(C->getOperand(1))); 577 break; 578 case Instruction::InsertElement: 579 Code = bitc::CST_CODE_CE_INSERTELT; 580 Record.push_back(VE.getValueID(C->getOperand(0))); 581 Record.push_back(VE.getValueID(C->getOperand(1))); 582 Record.push_back(VE.getValueID(C->getOperand(2))); 583 break; 584 case Instruction::ShuffleVector: 585 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 586 Record.push_back(VE.getValueID(C->getOperand(0))); 587 Record.push_back(VE.getValueID(C->getOperand(1))); 588 Record.push_back(VE.getValueID(C->getOperand(2))); 589 break; 590 case Instruction::ICmp: 591 case Instruction::FCmp: 592 Code = bitc::CST_CODE_CE_CMP; 593 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 594 Record.push_back(VE.getValueID(C->getOperand(0))); 595 Record.push_back(VE.getValueID(C->getOperand(1))); 596 Record.push_back(CE->getPredicate()); 597 break; 598 } 599 } else { 600 assert(0 && "Unknown constant!"); 601 } 602 Stream.EmitRecord(Code, Record, AbbrevToUse); 603 Record.clear(); 604 } 605 606 Stream.ExitBlock(); 607 } 608 609 static void WriteModuleConstants(const ValueEnumerator &VE, 610 BitstreamWriter &Stream) { 611 const ValueEnumerator::ValueList &Vals = VE.getValues(); 612 613 // Find the first constant to emit, which is the first non-globalvalue value. 614 // We know globalvalues have been emitted by WriteModuleInfo. 615 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 616 if (!isa<GlobalValue>(Vals[i].first)) { 617 WriteConstants(i, Vals.size(), VE, Stream, true); 618 return; 619 } 620 } 621 } 622 623 /// PushValueAndType - The file has to encode both the value and type id for 624 /// many values, because we need to know what type to create for forward 625 /// references. However, most operands are not forward references, so this type 626 /// field is not needed. 627 /// 628 /// This function adds V's value ID to Vals. If the value ID is higher than the 629 /// instruction ID, then it is a forward reference, and it also includes the 630 /// type ID. 631 static bool PushValueAndType(Value *V, unsigned InstID, 632 SmallVector<unsigned, 64> &Vals, 633 ValueEnumerator &VE) { 634 unsigned ValID = VE.getValueID(V); 635 Vals.push_back(ValID); 636 if (ValID >= InstID) { 637 Vals.push_back(VE.getTypeID(V->getType())); 638 return true; 639 } 640 return false; 641 } 642 643 /// WriteInstruction - Emit an instruction to the specified stream. 644 static void WriteInstruction(const Instruction &I, unsigned InstID, 645 ValueEnumerator &VE, BitstreamWriter &Stream, 646 SmallVector<unsigned, 64> &Vals) { 647 unsigned Code = 0; 648 unsigned AbbrevToUse = 0; 649 switch (I.getOpcode()) { 650 default: 651 if (Instruction::isCast(I.getOpcode())) { 652 Code = bitc::FUNC_CODE_INST_CAST; 653 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 654 Vals.push_back(VE.getTypeID(I.getType())); 655 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 656 } else { 657 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 658 Code = bitc::FUNC_CODE_INST_BINOP; 659 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 660 Vals.push_back(VE.getValueID(I.getOperand(1))); 661 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 662 } 663 break; 664 665 case Instruction::GetElementPtr: 666 Code = bitc::FUNC_CODE_INST_GEP; 667 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 668 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 669 break; 670 case Instruction::Select: 671 Code = bitc::FUNC_CODE_INST_SELECT; 672 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 673 Vals.push_back(VE.getValueID(I.getOperand(2))); 674 Vals.push_back(VE.getValueID(I.getOperand(0))); 675 break; 676 case Instruction::ExtractElement: 677 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 678 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 679 Vals.push_back(VE.getValueID(I.getOperand(1))); 680 break; 681 case Instruction::InsertElement: 682 Code = bitc::FUNC_CODE_INST_INSERTELT; 683 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 684 Vals.push_back(VE.getValueID(I.getOperand(1))); 685 Vals.push_back(VE.getValueID(I.getOperand(2))); 686 break; 687 case Instruction::ShuffleVector: 688 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 689 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 690 Vals.push_back(VE.getValueID(I.getOperand(1))); 691 Vals.push_back(VE.getValueID(I.getOperand(2))); 692 break; 693 case Instruction::ICmp: 694 case Instruction::FCmp: 695 Code = bitc::FUNC_CODE_INST_CMP; 696 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 697 Vals.push_back(VE.getValueID(I.getOperand(1))); 698 Vals.push_back(cast<CmpInst>(I).getPredicate()); 699 break; 700 701 case Instruction::Ret: 702 Code = bitc::FUNC_CODE_INST_RET; 703 if (!I.getNumOperands()) 704 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 705 else if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 706 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 707 break; 708 case Instruction::Br: 709 Code = bitc::FUNC_CODE_INST_BR; 710 Vals.push_back(VE.getValueID(I.getOperand(0))); 711 if (cast<BranchInst>(I).isConditional()) { 712 Vals.push_back(VE.getValueID(I.getOperand(1))); 713 Vals.push_back(VE.getValueID(I.getOperand(2))); 714 } 715 break; 716 case Instruction::Switch: 717 Code = bitc::FUNC_CODE_INST_SWITCH; 718 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 719 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 720 Vals.push_back(VE.getValueID(I.getOperand(i))); 721 break; 722 case Instruction::Invoke: { 723 Code = bitc::FUNC_CODE_INST_INVOKE; 724 Vals.push_back(cast<InvokeInst>(I).getCallingConv()); 725 Vals.push_back(VE.getValueID(I.getOperand(1))); // normal dest 726 Vals.push_back(VE.getValueID(I.getOperand(2))); // unwind dest 727 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee 728 729 // Emit value #'s for the fixed parameters. 730 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 731 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 732 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 733 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 734 735 // Emit type/value pairs for varargs params. 736 if (FTy->isVarArg()) { 737 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); 738 i != e; ++i) 739 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 740 } 741 break; 742 } 743 case Instruction::Unwind: 744 Code = bitc::FUNC_CODE_INST_UNWIND; 745 break; 746 case Instruction::Unreachable: 747 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 748 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 749 break; 750 751 case Instruction::PHI: 752 Code = bitc::FUNC_CODE_INST_PHI; 753 Vals.push_back(VE.getTypeID(I.getType())); 754 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 755 Vals.push_back(VE.getValueID(I.getOperand(i))); 756 break; 757 758 case Instruction::Malloc: 759 Code = bitc::FUNC_CODE_INST_MALLOC; 760 Vals.push_back(VE.getTypeID(I.getType())); 761 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 762 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); 763 break; 764 765 case Instruction::Free: 766 Code = bitc::FUNC_CODE_INST_FREE; 767 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 768 break; 769 770 case Instruction::Alloca: 771 Code = bitc::FUNC_CODE_INST_ALLOCA; 772 Vals.push_back(VE.getTypeID(I.getType())); 773 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 774 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 775 break; 776 777 case Instruction::Load: 778 Code = bitc::FUNC_CODE_INST_LOAD; 779 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 780 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 781 782 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 783 Vals.push_back(cast<LoadInst>(I).isVolatile()); 784 break; 785 case Instruction::Store: 786 Code = bitc::FUNC_CODE_INST_STORE; 787 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // val. 788 Vals.push_back(VE.getValueID(I.getOperand(1))); // ptr. 789 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 790 Vals.push_back(cast<StoreInst>(I).isVolatile()); 791 break; 792 case Instruction::Call: { 793 Code = bitc::FUNC_CODE_INST_CALL; 794 Vals.push_back((cast<CallInst>(I).getCallingConv() << 1) | 795 cast<CallInst>(I).isTailCall()); 796 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // Callee 797 798 // Emit value #'s for the fixed parameters. 799 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 800 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 801 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 802 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 803 804 // Emit type/value pairs for varargs params. 805 if (FTy->isVarArg()) { 806 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 807 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 808 i != e; ++i) 809 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs 810 } 811 break; 812 } 813 case Instruction::VAArg: 814 Code = bitc::FUNC_CODE_INST_VAARG; 815 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 816 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 817 Vals.push_back(VE.getTypeID(I.getType())); // restype. 818 break; 819 } 820 821 Stream.EmitRecord(Code, Vals, AbbrevToUse); 822 Vals.clear(); 823 } 824 825 // Emit names for globals/functions etc. 826 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 827 const ValueEnumerator &VE, 828 BitstreamWriter &Stream) { 829 if (VST.empty()) return; 830 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 831 832 // FIXME: Set up the abbrev, we know how many values there are! 833 // FIXME: We know if the type names can use 7-bit ascii. 834 SmallVector<unsigned, 64> NameVals; 835 836 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 837 SI != SE; ++SI) { 838 839 const ValueName &Name = *SI; 840 841 // Figure out the encoding to use for the name. 842 bool is7Bit = true; 843 bool isChar6 = true; 844 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 845 C != E; ++C) { 846 if (isChar6) 847 isChar6 = BitCodeAbbrevOp::isChar6(*C); 848 if ((unsigned char)*C & 128) { 849 is7Bit = false; 850 break; // don't bother scanning the rest. 851 } 852 } 853 854 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 855 856 // VST_ENTRY: [valueid, namechar x N] 857 // VST_BBENTRY: [bbid, namechar x N] 858 unsigned Code; 859 if (isa<BasicBlock>(SI->getValue())) { 860 Code = bitc::VST_CODE_BBENTRY; 861 if (isChar6) 862 AbbrevToUse = VST_BBENTRY_6_ABBREV; 863 } else { 864 Code = bitc::VST_CODE_ENTRY; 865 if (isChar6) 866 AbbrevToUse = VST_ENTRY_6_ABBREV; 867 else if (is7Bit) 868 AbbrevToUse = VST_ENTRY_7_ABBREV; 869 } 870 871 NameVals.push_back(VE.getValueID(SI->getValue())); 872 for (const char *P = Name.getKeyData(), 873 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 874 NameVals.push_back((unsigned char)*P); 875 876 // Emit the finished record. 877 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 878 NameVals.clear(); 879 } 880 Stream.ExitBlock(); 881 } 882 883 /// WriteFunction - Emit a function body to the module stream. 884 static void WriteFunction(const Function &F, ValueEnumerator &VE, 885 BitstreamWriter &Stream) { 886 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 3); 887 VE.incorporateFunction(F); 888 889 SmallVector<unsigned, 64> Vals; 890 891 // Emit the number of basic blocks, so the reader can create them ahead of 892 // time. 893 Vals.push_back(VE.getBasicBlocks().size()); 894 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 895 Vals.clear(); 896 897 // FIXME: Function attributes? 898 899 // If there are function-local constants, emit them now. 900 unsigned CstStart, CstEnd; 901 VE.getFunctionConstantRange(CstStart, CstEnd); 902 WriteConstants(CstStart, CstEnd, VE, Stream, false); 903 904 // Keep a running idea of what the instruction ID is. 905 unsigned InstID = CstEnd; 906 907 // Finally, emit all the instructions, in order. 908 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 909 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 910 I != E; ++I) { 911 WriteInstruction(*I, InstID, VE, Stream, Vals); 912 if (I->getType() != Type::VoidTy) 913 ++InstID; 914 } 915 916 // Emit names for all the instructions etc. 917 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 918 919 VE.purgeFunction(); 920 Stream.ExitBlock(); 921 } 922 923 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 924 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 925 const ValueEnumerator &VE, 926 BitstreamWriter &Stream) { 927 if (TST.empty()) return; 928 929 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 930 931 // 7-bit fixed width VST_CODE_ENTRY strings. 932 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 933 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 934 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 935 Log2_32_Ceil(VE.getTypes().size()+1))); 936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 938 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 939 940 SmallVector<unsigned, 64> NameVals; 941 942 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 943 TI != TE; ++TI) { 944 // TST_ENTRY: [typeid, namechar x N] 945 NameVals.push_back(VE.getTypeID(TI->second)); 946 947 const std::string &Str = TI->first; 948 bool is7Bit = true; 949 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 950 NameVals.push_back((unsigned char)Str[i]); 951 if (Str[i] & 128) 952 is7Bit = false; 953 } 954 955 // Emit the finished record. 956 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 957 NameVals.clear(); 958 } 959 960 Stream.ExitBlock(); 961 } 962 963 // Emit blockinfo, which defines the standard abbreviations etc. 964 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 965 // We only want to emit block info records for blocks that have multiple 966 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 967 // blocks can defined their abbrevs inline. 968 Stream.EnterBlockInfoBlock(2); 969 970 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 971 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 976 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 977 Abbv) != VST_ENTRY_8_ABBREV) 978 assert(0 && "Unexpected abbrev ordering!"); 979 } 980 981 { // 7-bit fixed width VST_ENTRY strings. 982 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 983 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 984 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 985 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 986 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 987 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 988 Abbv) != VST_ENTRY_7_ABBREV) 989 assert(0 && "Unexpected abbrev ordering!"); 990 } 991 { // 6-bit char6 VST_ENTRY strings. 992 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 993 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 994 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 995 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 996 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 997 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 998 Abbv) != VST_ENTRY_6_ABBREV) 999 assert(0 && "Unexpected abbrev ordering!"); 1000 } 1001 { // 6-bit char6 VST_BBENTRY strings. 1002 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1003 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1006 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1007 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1008 Abbv) != VST_BBENTRY_6_ABBREV) 1009 assert(0 && "Unexpected abbrev ordering!"); 1010 } 1011 1012 1013 1014 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1015 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1016 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1017 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1018 Log2_32_Ceil(VE.getTypes().size()+1))); 1019 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1020 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1021 assert(0 && "Unexpected abbrev ordering!"); 1022 } 1023 1024 { // INTEGER abbrev for CONSTANTS_BLOCK. 1025 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1026 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1027 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1028 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1029 Abbv) != CONSTANTS_INTEGER_ABBREV) 1030 assert(0 && "Unexpected abbrev ordering!"); 1031 } 1032 1033 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1034 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1035 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1036 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1037 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1038 Log2_32_Ceil(VE.getTypes().size()+1))); 1039 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1040 1041 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1042 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1043 assert(0 && "Unexpected abbrev ordering!"); 1044 } 1045 { // NULL abbrev for CONSTANTS_BLOCK. 1046 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1047 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1048 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1049 Abbv) != CONSTANTS_NULL_Abbrev) 1050 assert(0 && "Unexpected abbrev ordering!"); 1051 } 1052 1053 // FIXME: This should only use space for first class types! 1054 1055 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1056 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1057 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1059 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1061 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1062 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1063 assert(0 && "Unexpected abbrev ordering!"); 1064 } 1065 { // INST_RET abbrev for FUNCTION_BLOCK. 1066 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1067 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1068 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1069 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1070 assert(0 && "Unexpected abbrev ordering!"); 1071 } 1072 { // INST_RET abbrev for FUNCTION_BLOCK. 1073 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1074 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1076 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1077 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1078 assert(0 && "Unexpected abbrev ordering!"); 1079 } 1080 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1081 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1082 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1083 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1084 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1085 assert(0 && "Unexpected abbrev ordering!"); 1086 } 1087 1088 Stream.ExitBlock(); 1089 } 1090 1091 1092 /// WriteModule - Emit the specified module to the bitstream. 1093 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1094 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1095 1096 // Emit the version number if it is non-zero. 1097 if (CurVersion) { 1098 SmallVector<unsigned, 1> Vals; 1099 Vals.push_back(CurVersion); 1100 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1101 } 1102 1103 // Analyze the module, enumerating globals, functions, etc. 1104 ValueEnumerator VE(M); 1105 1106 // Emit blockinfo, which defines the standard abbreviations etc. 1107 WriteBlockInfo(VE, Stream); 1108 1109 // Emit information about parameter attributes. 1110 WriteParamAttrTable(VE, Stream); 1111 1112 // Emit information describing all of the types in the module. 1113 WriteTypeTable(VE, Stream); 1114 1115 // Emit top-level description of module, including target triple, inline asm, 1116 // descriptors for global variables, and function prototype info. 1117 WriteModuleInfo(M, VE, Stream); 1118 1119 // Emit constants. 1120 WriteModuleConstants(VE, Stream); 1121 1122 // If we have any aggregate values in the value table, purge them - these can 1123 // only be used to initialize global variables. Doing so makes the value 1124 // namespace smaller for code in functions. 1125 int NumNonAggregates = VE.PurgeAggregateValues(); 1126 if (NumNonAggregates != -1) { 1127 SmallVector<unsigned, 1> Vals; 1128 Vals.push_back(NumNonAggregates); 1129 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals); 1130 } 1131 1132 // Emit function bodies. 1133 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1134 if (!I->isDeclaration()) 1135 WriteFunction(*I, VE, Stream); 1136 1137 // Emit the type symbol table information. 1138 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1139 1140 // Emit names for globals/functions etc. 1141 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1142 1143 Stream.ExitBlock(); 1144 } 1145 1146 1147 /// WriteBitcodeToFile - Write the specified module to the specified output 1148 /// stream. 1149 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { 1150 std::vector<unsigned char> Buffer; 1151 BitstreamWriter Stream(Buffer); 1152 1153 Buffer.reserve(256*1024); 1154 1155 // Emit the file header. 1156 Stream.Emit((unsigned)'B', 8); 1157 Stream.Emit((unsigned)'C', 8); 1158 Stream.Emit(0x0, 4); 1159 Stream.Emit(0xC, 4); 1160 Stream.Emit(0xE, 4); 1161 Stream.Emit(0xD, 4); 1162 1163 // Emit the module. 1164 WriteModule(M, Stream); 1165 1166 // Write the generated bitstream to "Out". 1167 Out.write((char*)&Buffer.front(), Buffer.size()); 1168 } 1169