1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/StringExtras.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/Bitcode/ReaderWriter.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/UseListOrder.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Support/Program.h" 34 #include "llvm/Support/SHA1.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <cctype> 37 #include <map> 38 using namespace llvm; 39 40 namespace { 41 /// These are manifest constants used by the bitcode writer. They do not need to 42 /// be kept in sync with the reader, but need to be consistent within this file. 43 enum { 44 // VALUE_SYMTAB_BLOCK abbrev id's. 45 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 46 VST_ENTRY_7_ABBREV, 47 VST_ENTRY_6_ABBREV, 48 VST_BBENTRY_6_ABBREV, 49 50 // CONSTANTS_BLOCK abbrev id's. 51 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 CONSTANTS_INTEGER_ABBREV, 53 CONSTANTS_CE_CAST_Abbrev, 54 CONSTANTS_NULL_Abbrev, 55 56 // FUNCTION_BLOCK abbrev id's. 57 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 58 FUNCTION_INST_BINOP_ABBREV, 59 FUNCTION_INST_BINOP_FLAGS_ABBREV, 60 FUNCTION_INST_CAST_ABBREV, 61 FUNCTION_INST_RET_VOID_ABBREV, 62 FUNCTION_INST_RET_VAL_ABBREV, 63 FUNCTION_INST_UNREACHABLE_ABBREV, 64 FUNCTION_INST_GEP_ABBREV, 65 }; 66 67 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 68 /// file type. Owns the BitstreamWriter, and includes the main entry point for 69 /// writing. 70 class BitcodeWriter { 71 protected: 72 /// Pointer to the buffer allocated by caller for bitcode writing. 73 const SmallVectorImpl<char> &Buffer; 74 75 /// The stream created and owned by the BitodeWriter. 76 BitstreamWriter Stream; 77 78 /// Saves the offset of the VSTOffset record that must eventually be 79 /// backpatched with the offset of the actual VST. 80 uint64_t VSTOffsetPlaceholder = 0; 81 82 public: 83 /// Constructs a BitcodeWriter object, and initializes a BitstreamRecord, 84 /// writing to the provided \p Buffer. 85 BitcodeWriter(SmallVectorImpl<char> &Buffer) 86 : Buffer(Buffer), Stream(Buffer) {} 87 88 virtual ~BitcodeWriter() = default; 89 90 /// Main entry point to write the bitcode file, which writes the bitcode 91 /// header and will then invoke the virtual writeBlocks() method. 92 void write(); 93 94 private: 95 /// Derived classes must implement this to write the corresponding blocks for 96 /// that bitcode file type. 97 virtual void writeBlocks() = 0; 98 99 protected: 100 bool hasVSTOffsetPlaceholder() { return VSTOffsetPlaceholder != 0; } 101 void writeValueSymbolTableForwardDecl(); 102 void writeBitcodeHeader(); 103 }; 104 105 /// Class to manage the bitcode writing for a module. 106 class ModuleBitcodeWriter : public BitcodeWriter { 107 /// The Module to write to bitcode. 108 const Module &M; 109 110 /// Enumerates ids for all values in the module. 111 ValueEnumerator VE; 112 113 /// Optional per-module index to write for ThinLTO. 114 const ModuleSummaryIndex *Index; 115 116 /// True if a module hash record should be written. 117 bool GenerateHash; 118 119 /// The start bit of the module block, for use in generating a module hash 120 uint64_t BitcodeStartBit = 0; 121 122 /// Map that holds the correspondence between GUIDs in the summary index, 123 /// that came from indirect call profiles, and a value id generated by this 124 /// class to use in the VST and summary block records. 125 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 126 127 /// Tracks the last value id recorded in the GUIDToValueMap. 128 unsigned GlobalValueId; 129 130 public: 131 /// Constructs a ModuleBitcodeWriter object for the given Module, 132 /// writing to the provided \p Buffer. 133 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 134 bool ShouldPreserveUseListOrder, 135 const ModuleSummaryIndex *Index, bool GenerateHash) 136 : BitcodeWriter(Buffer), M(*M), VE(*M, ShouldPreserveUseListOrder), 137 Index(Index), GenerateHash(GenerateHash) { 138 // Save the start bit of the actual bitcode, in case there is space 139 // saved at the start for the darwin header above. The reader stream 140 // will start at the bitcode, and we need the offset of the VST 141 // to line up. 142 BitcodeStartBit = Stream.GetCurrentBitNo(); 143 144 // Assign ValueIds to any callee values in the index that came from 145 // indirect call profiles and were recorded as a GUID not a Value* 146 // (which would have been assigned an ID by the ValueEnumerator). 147 // The starting ValueId is just after the number of values in the 148 // ValueEnumerator, so that they can be emitted in the VST. 149 GlobalValueId = VE.getValues().size(); 150 if (!Index) 151 return; 152 for (const auto &GUIDSummaryLists : *Index) 153 // Examine all summaries for this GUID. 154 for (auto &Summary : GUIDSummaryLists.second) 155 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 156 // For each call in the function summary, see if the call 157 // is to a GUID (which means it is for an indirect call, 158 // otherwise we would have a Value for it). If so, synthesize 159 // a value id. 160 for (auto &CallEdge : FS->calls()) 161 if (CallEdge.first.isGUID()) 162 assignValueId(CallEdge.first.getGUID()); 163 } 164 165 private: 166 /// Main entry point for writing a module to bitcode, invoked by 167 /// BitcodeWriter::write() after it writes the header. 168 void writeBlocks() override; 169 170 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 171 /// current llvm version, and a record for the epoch number. 172 void writeIdentificationBlock(); 173 174 /// Emit the current module to the bitstream. 175 void writeModule(); 176 177 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 178 179 void writeStringRecord(unsigned Code, StringRef Str, unsigned AbbrevToUse); 180 void writeAttributeGroupTable(); 181 void writeAttributeTable(); 182 void writeTypeTable(); 183 void writeComdats(); 184 void writeModuleInfo(); 185 void writeValueAsMetadata(const ValueAsMetadata *MD, 186 SmallVectorImpl<uint64_t> &Record); 187 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 188 unsigned Abbrev); 189 unsigned createDILocationAbbrev(); 190 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 191 unsigned &Abbrev); 192 unsigned createGenericDINodeAbbrev(); 193 void writeGenericDINode(const GenericDINode *N, 194 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 195 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 196 unsigned Abbrev); 197 void writeDIEnumerator(const DIEnumerator *N, 198 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 199 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 200 unsigned Abbrev); 201 void writeDIDerivedType(const DIDerivedType *N, 202 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 203 void writeDICompositeType(const DICompositeType *N, 204 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 205 void writeDISubroutineType(const DISubroutineType *N, 206 SmallVectorImpl<uint64_t> &Record, 207 unsigned Abbrev); 208 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 209 unsigned Abbrev); 210 void writeDICompileUnit(const DICompileUnit *N, 211 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 212 void writeDISubprogram(const DISubprogram *N, 213 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 214 void writeDILexicalBlock(const DILexicalBlock *N, 215 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 216 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 217 SmallVectorImpl<uint64_t> &Record, 218 unsigned Abbrev); 219 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 220 unsigned Abbrev); 221 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 222 unsigned Abbrev); 223 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 224 unsigned Abbrev); 225 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 226 unsigned Abbrev); 227 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 228 SmallVectorImpl<uint64_t> &Record, 229 unsigned Abbrev); 230 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 231 SmallVectorImpl<uint64_t> &Record, 232 unsigned Abbrev); 233 void writeDIGlobalVariable(const DIGlobalVariable *N, 234 SmallVectorImpl<uint64_t> &Record, 235 unsigned Abbrev); 236 void writeDILocalVariable(const DILocalVariable *N, 237 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 238 void writeDIExpression(const DIExpression *N, 239 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 240 void writeDIObjCProperty(const DIObjCProperty *N, 241 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 242 void writeDIImportedEntity(const DIImportedEntity *N, 243 SmallVectorImpl<uint64_t> &Record, 244 unsigned Abbrev); 245 unsigned createNamedMetadataAbbrev(); 246 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 247 unsigned createMetadataStringsAbbrev(); 248 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 249 SmallVectorImpl<uint64_t> &Record); 250 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 251 SmallVectorImpl<uint64_t> &Record); 252 void writeModuleMetadata(); 253 void writeFunctionMetadata(const Function &F); 254 void writeFunctionMetadataAttachment(const Function &F); 255 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 256 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 257 const GlobalObject &GO); 258 void writeModuleMetadataKinds(); 259 void writeOperandBundleTags(); 260 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 261 void writeModuleConstants(); 262 bool pushValueAndType(const Value *V, unsigned InstID, 263 SmallVectorImpl<unsigned> &Vals); 264 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 265 void pushValue(const Value *V, unsigned InstID, 266 SmallVectorImpl<unsigned> &Vals); 267 void pushValueSigned(const Value *V, unsigned InstID, 268 SmallVectorImpl<uint64_t> &Vals); 269 void writeInstruction(const Instruction &I, unsigned InstID, 270 SmallVectorImpl<unsigned> &Vals); 271 void writeValueSymbolTable( 272 const ValueSymbolTable &VST, bool IsModuleLevel = false, 273 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex = nullptr); 274 void writeUseList(UseListOrder &&Order); 275 void writeUseListBlock(const Function *F); 276 void 277 writeFunction(const Function &F, 278 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 279 void writeBlockInfo(); 280 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 281 GlobalValueSummary *Summary, 282 unsigned ValueID, 283 unsigned FSCallsAbbrev, 284 unsigned FSCallsProfileAbbrev, 285 const Function &F); 286 void writeModuleLevelReferences(const GlobalVariable &V, 287 SmallVector<uint64_t, 64> &NameVals, 288 unsigned FSModRefsAbbrev); 289 void writePerModuleGlobalValueSummary(); 290 void writeModuleHash(size_t BlockStartPos); 291 292 void assignValueId(GlobalValue::GUID ValGUID) { 293 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 294 } 295 unsigned getValueId(GlobalValue::GUID ValGUID) { 296 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 297 // Expect that any GUID value had a value Id assigned by an 298 // earlier call to assignValueId. 299 assert(VMI != GUIDToValueIdMap.end() && 300 "GUID does not have assigned value Id"); 301 return VMI->second; 302 } 303 // Helper to get the valueId for the type of value recorded in VI. 304 unsigned getValueId(ValueInfo VI) { 305 if (VI.isGUID()) 306 return getValueId(VI.getGUID()); 307 return VE.getValueID(VI.getValue()); 308 } 309 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 310 }; 311 312 /// Class to manage the bitcode writing for a combined index. 313 class IndexBitcodeWriter : public BitcodeWriter { 314 /// The combined index to write to bitcode. 315 const ModuleSummaryIndex &Index; 316 317 /// When writing a subset of the index for distributed backends, client 318 /// provides a map of modules to the corresponding GUIDs/summaries to write. 319 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 320 321 /// Map that holds the correspondence between the GUID used in the combined 322 /// index and a value id generated by this class to use in references. 323 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 324 325 /// Tracks the last value id recorded in the GUIDToValueMap. 326 unsigned GlobalValueId = 0; 327 328 public: 329 /// Constructs a IndexBitcodeWriter object for the given combined index, 330 /// writing to the provided \p Buffer. When writing a subset of the index 331 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 332 IndexBitcodeWriter(SmallVectorImpl<char> &Buffer, 333 const ModuleSummaryIndex &Index, 334 const std::map<std::string, GVSummaryMapTy> 335 *ModuleToSummariesForIndex = nullptr) 336 : BitcodeWriter(Buffer), Index(Index), 337 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 338 // Assign unique value ids to all summaries to be written, for use 339 // in writing out the call graph edges. Save the mapping from GUID 340 // to the new global value id to use when writing those edges, which 341 // are currently saved in the index in terms of GUID. 342 for (const auto &I : *this) 343 GUIDToValueIdMap[I.first] = ++GlobalValueId; 344 } 345 346 /// The below iterator returns the GUID and associated summary. 347 typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo; 348 349 /// Iterator over the value GUID and summaries to be written to bitcode, 350 /// hides the details of whether they are being pulled from the entire 351 /// index or just those in a provided ModuleToSummariesForIndex map. 352 class iterator 353 : public llvm::iterator_facade_base<iterator, std::forward_iterator_tag, 354 GVInfo> { 355 /// Enables access to parent class. 356 const IndexBitcodeWriter &Writer; 357 358 // Iterators used when writing only those summaries in a provided 359 // ModuleToSummariesForIndex map: 360 361 /// Points to the last element in outer ModuleToSummariesForIndex map. 362 std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesBack; 363 /// Iterator on outer ModuleToSummariesForIndex map. 364 std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesIter; 365 /// Iterator on an inner global variable summary map. 366 GVSummaryMapTy::const_iterator ModuleGVSummariesIter; 367 368 // Iterators used when writing all summaries in the index: 369 370 /// Points to the last element in the Index outer GlobalValueMap. 371 const_gvsummary_iterator IndexSummariesBack; 372 /// Iterator on outer GlobalValueMap. 373 const_gvsummary_iterator IndexSummariesIter; 374 /// Iterator on an inner GlobalValueSummaryList. 375 GlobalValueSummaryList::const_iterator IndexGVSummariesIter; 376 377 public: 378 /// Construct iterator from parent \p Writer and indicate if we are 379 /// constructing the end iterator. 380 iterator(const IndexBitcodeWriter &Writer, bool IsAtEnd) : Writer(Writer) { 381 // Set up the appropriate set of iterators given whether we are writing 382 // the full index or just a subset. 383 // Can't setup the Back or inner iterators if the corresponding map 384 // is empty. This will be handled specially in operator== as well. 385 if (Writer.ModuleToSummariesForIndex && 386 !Writer.ModuleToSummariesForIndex->empty()) { 387 for (ModuleSummariesBack = Writer.ModuleToSummariesForIndex->begin(); 388 std::next(ModuleSummariesBack) != 389 Writer.ModuleToSummariesForIndex->end(); 390 ModuleSummariesBack++) 391 ; 392 ModuleSummariesIter = !IsAtEnd 393 ? Writer.ModuleToSummariesForIndex->begin() 394 : ModuleSummariesBack; 395 ModuleGVSummariesIter = !IsAtEnd ? ModuleSummariesIter->second.begin() 396 : ModuleSummariesBack->second.end(); 397 } else if (!Writer.ModuleToSummariesForIndex && 398 Writer.Index.begin() != Writer.Index.end()) { 399 for (IndexSummariesBack = Writer.Index.begin(); 400 std::next(IndexSummariesBack) != Writer.Index.end(); 401 IndexSummariesBack++) 402 ; 403 IndexSummariesIter = 404 !IsAtEnd ? Writer.Index.begin() : IndexSummariesBack; 405 IndexGVSummariesIter = !IsAtEnd ? IndexSummariesIter->second.begin() 406 : IndexSummariesBack->second.end(); 407 } 408 } 409 410 /// Increment the appropriate set of iterators. 411 iterator &operator++() { 412 // First the inner iterator is incremented, then if it is at the end 413 // and there are more outer iterations to go, the inner is reset to 414 // the start of the next inner list. 415 if (Writer.ModuleToSummariesForIndex) { 416 ++ModuleGVSummariesIter; 417 if (ModuleGVSummariesIter == ModuleSummariesIter->second.end() && 418 ModuleSummariesIter != ModuleSummariesBack) { 419 ++ModuleSummariesIter; 420 ModuleGVSummariesIter = ModuleSummariesIter->second.begin(); 421 } 422 } else { 423 ++IndexGVSummariesIter; 424 if (IndexGVSummariesIter == IndexSummariesIter->second.end() && 425 IndexSummariesIter != IndexSummariesBack) { 426 ++IndexSummariesIter; 427 IndexGVSummariesIter = IndexSummariesIter->second.begin(); 428 } 429 } 430 return *this; 431 } 432 433 /// Access the <GUID,GlobalValueSummary*> pair corresponding to the current 434 /// outer and inner iterator positions. 435 GVInfo operator*() { 436 if (Writer.ModuleToSummariesForIndex) 437 return std::make_pair(ModuleGVSummariesIter->first, 438 ModuleGVSummariesIter->second); 439 return std::make_pair(IndexSummariesIter->first, 440 IndexGVSummariesIter->get()); 441 } 442 443 /// Checks if the iterators are equal, with special handling for empty 444 /// indexes. 445 bool operator==(const iterator &RHS) const { 446 if (Writer.ModuleToSummariesForIndex) { 447 // First ensure that both are writing the same subset. 448 if (Writer.ModuleToSummariesForIndex != 449 RHS.Writer.ModuleToSummariesForIndex) 450 return false; 451 // Already determined above that maps are the same, so if one is 452 // empty, they both are. 453 if (Writer.ModuleToSummariesForIndex->empty()) 454 return true; 455 // Ensure the ModuleGVSummariesIter are iterating over the same 456 // container before checking them below. 457 if (ModuleSummariesIter != RHS.ModuleSummariesIter) 458 return false; 459 return ModuleGVSummariesIter == RHS.ModuleGVSummariesIter; 460 } 461 // First ensure RHS also writing the full index, and that both are 462 // writing the same full index. 463 if (RHS.Writer.ModuleToSummariesForIndex || 464 &Writer.Index != &RHS.Writer.Index) 465 return false; 466 // Already determined above that maps are the same, so if one is 467 // empty, they both are. 468 if (Writer.Index.begin() == Writer.Index.end()) 469 return true; 470 // Ensure the IndexGVSummariesIter are iterating over the same 471 // container before checking them below. 472 if (IndexSummariesIter != RHS.IndexSummariesIter) 473 return false; 474 return IndexGVSummariesIter == RHS.IndexGVSummariesIter; 475 } 476 }; 477 478 /// Obtain the start iterator over the summaries to be written. 479 iterator begin() { return iterator(*this, /*IsAtEnd=*/false); } 480 /// Obtain the end iterator over the summaries to be written. 481 iterator end() { return iterator(*this, /*IsAtEnd=*/true); } 482 483 private: 484 /// Main entry point for writing a combined index to bitcode, invoked by 485 /// BitcodeWriter::write() after it writes the header. 486 void writeBlocks() override; 487 488 void writeIndex(); 489 void writeModStrings(); 490 void writeCombinedValueSymbolTable(); 491 void writeCombinedGlobalValueSummary(); 492 493 /// Indicates whether the provided \p ModulePath should be written into 494 /// the module string table, e.g. if full index written or if it is in 495 /// the provided subset. 496 bool doIncludeModule(StringRef ModulePath) { 497 return !ModuleToSummariesForIndex || 498 ModuleToSummariesForIndex->count(ModulePath); 499 } 500 501 bool hasValueId(GlobalValue::GUID ValGUID) { 502 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 503 return VMI != GUIDToValueIdMap.end(); 504 } 505 unsigned getValueId(GlobalValue::GUID ValGUID) { 506 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 507 // If this GUID doesn't have an entry, assign one. 508 if (VMI == GUIDToValueIdMap.end()) { 509 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 510 return GlobalValueId; 511 } else { 512 return VMI->second; 513 } 514 } 515 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 516 }; 517 } // end anonymous namespace 518 519 static unsigned getEncodedCastOpcode(unsigned Opcode) { 520 switch (Opcode) { 521 default: llvm_unreachable("Unknown cast instruction!"); 522 case Instruction::Trunc : return bitc::CAST_TRUNC; 523 case Instruction::ZExt : return bitc::CAST_ZEXT; 524 case Instruction::SExt : return bitc::CAST_SEXT; 525 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 526 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 527 case Instruction::UIToFP : return bitc::CAST_UITOFP; 528 case Instruction::SIToFP : return bitc::CAST_SITOFP; 529 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 530 case Instruction::FPExt : return bitc::CAST_FPEXT; 531 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 532 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 533 case Instruction::BitCast : return bitc::CAST_BITCAST; 534 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 535 } 536 } 537 538 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 539 switch (Opcode) { 540 default: llvm_unreachable("Unknown binary instruction!"); 541 case Instruction::Add: 542 case Instruction::FAdd: return bitc::BINOP_ADD; 543 case Instruction::Sub: 544 case Instruction::FSub: return bitc::BINOP_SUB; 545 case Instruction::Mul: 546 case Instruction::FMul: return bitc::BINOP_MUL; 547 case Instruction::UDiv: return bitc::BINOP_UDIV; 548 case Instruction::FDiv: 549 case Instruction::SDiv: return bitc::BINOP_SDIV; 550 case Instruction::URem: return bitc::BINOP_UREM; 551 case Instruction::FRem: 552 case Instruction::SRem: return bitc::BINOP_SREM; 553 case Instruction::Shl: return bitc::BINOP_SHL; 554 case Instruction::LShr: return bitc::BINOP_LSHR; 555 case Instruction::AShr: return bitc::BINOP_ASHR; 556 case Instruction::And: return bitc::BINOP_AND; 557 case Instruction::Or: return bitc::BINOP_OR; 558 case Instruction::Xor: return bitc::BINOP_XOR; 559 } 560 } 561 562 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 563 switch (Op) { 564 default: llvm_unreachable("Unknown RMW operation!"); 565 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 566 case AtomicRMWInst::Add: return bitc::RMW_ADD; 567 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 568 case AtomicRMWInst::And: return bitc::RMW_AND; 569 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 570 case AtomicRMWInst::Or: return bitc::RMW_OR; 571 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 572 case AtomicRMWInst::Max: return bitc::RMW_MAX; 573 case AtomicRMWInst::Min: return bitc::RMW_MIN; 574 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 575 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 576 } 577 } 578 579 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 580 switch (Ordering) { 581 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 582 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 583 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 584 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 585 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 586 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 587 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 588 } 589 llvm_unreachable("Invalid ordering"); 590 } 591 592 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) { 593 switch (SynchScope) { 594 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 595 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 596 } 597 llvm_unreachable("Invalid synch scope"); 598 } 599 600 void ModuleBitcodeWriter::writeStringRecord(unsigned Code, StringRef Str, 601 unsigned AbbrevToUse) { 602 SmallVector<unsigned, 64> Vals; 603 604 // Code: [strchar x N] 605 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 606 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 607 AbbrevToUse = 0; 608 Vals.push_back(Str[i]); 609 } 610 611 // Emit the finished record. 612 Stream.EmitRecord(Code, Vals, AbbrevToUse); 613 } 614 615 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 616 switch (Kind) { 617 case Attribute::Alignment: 618 return bitc::ATTR_KIND_ALIGNMENT; 619 case Attribute::AllocSize: 620 return bitc::ATTR_KIND_ALLOC_SIZE; 621 case Attribute::AlwaysInline: 622 return bitc::ATTR_KIND_ALWAYS_INLINE; 623 case Attribute::ArgMemOnly: 624 return bitc::ATTR_KIND_ARGMEMONLY; 625 case Attribute::Builtin: 626 return bitc::ATTR_KIND_BUILTIN; 627 case Attribute::ByVal: 628 return bitc::ATTR_KIND_BY_VAL; 629 case Attribute::Convergent: 630 return bitc::ATTR_KIND_CONVERGENT; 631 case Attribute::InAlloca: 632 return bitc::ATTR_KIND_IN_ALLOCA; 633 case Attribute::Cold: 634 return bitc::ATTR_KIND_COLD; 635 case Attribute::InaccessibleMemOnly: 636 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 637 case Attribute::InaccessibleMemOrArgMemOnly: 638 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 639 case Attribute::InlineHint: 640 return bitc::ATTR_KIND_INLINE_HINT; 641 case Attribute::InReg: 642 return bitc::ATTR_KIND_IN_REG; 643 case Attribute::JumpTable: 644 return bitc::ATTR_KIND_JUMP_TABLE; 645 case Attribute::MinSize: 646 return bitc::ATTR_KIND_MIN_SIZE; 647 case Attribute::Naked: 648 return bitc::ATTR_KIND_NAKED; 649 case Attribute::Nest: 650 return bitc::ATTR_KIND_NEST; 651 case Attribute::NoAlias: 652 return bitc::ATTR_KIND_NO_ALIAS; 653 case Attribute::NoBuiltin: 654 return bitc::ATTR_KIND_NO_BUILTIN; 655 case Attribute::NoCapture: 656 return bitc::ATTR_KIND_NO_CAPTURE; 657 case Attribute::NoDuplicate: 658 return bitc::ATTR_KIND_NO_DUPLICATE; 659 case Attribute::NoImplicitFloat: 660 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 661 case Attribute::NoInline: 662 return bitc::ATTR_KIND_NO_INLINE; 663 case Attribute::NoRecurse: 664 return bitc::ATTR_KIND_NO_RECURSE; 665 case Attribute::NonLazyBind: 666 return bitc::ATTR_KIND_NON_LAZY_BIND; 667 case Attribute::NonNull: 668 return bitc::ATTR_KIND_NON_NULL; 669 case Attribute::Dereferenceable: 670 return bitc::ATTR_KIND_DEREFERENCEABLE; 671 case Attribute::DereferenceableOrNull: 672 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 673 case Attribute::NoRedZone: 674 return bitc::ATTR_KIND_NO_RED_ZONE; 675 case Attribute::NoReturn: 676 return bitc::ATTR_KIND_NO_RETURN; 677 case Attribute::NoUnwind: 678 return bitc::ATTR_KIND_NO_UNWIND; 679 case Attribute::OptimizeForSize: 680 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 681 case Attribute::OptimizeNone: 682 return bitc::ATTR_KIND_OPTIMIZE_NONE; 683 case Attribute::ReadNone: 684 return bitc::ATTR_KIND_READ_NONE; 685 case Attribute::ReadOnly: 686 return bitc::ATTR_KIND_READ_ONLY; 687 case Attribute::Returned: 688 return bitc::ATTR_KIND_RETURNED; 689 case Attribute::ReturnsTwice: 690 return bitc::ATTR_KIND_RETURNS_TWICE; 691 case Attribute::SExt: 692 return bitc::ATTR_KIND_S_EXT; 693 case Attribute::StackAlignment: 694 return bitc::ATTR_KIND_STACK_ALIGNMENT; 695 case Attribute::StackProtect: 696 return bitc::ATTR_KIND_STACK_PROTECT; 697 case Attribute::StackProtectReq: 698 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 699 case Attribute::StackProtectStrong: 700 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 701 case Attribute::SafeStack: 702 return bitc::ATTR_KIND_SAFESTACK; 703 case Attribute::StructRet: 704 return bitc::ATTR_KIND_STRUCT_RET; 705 case Attribute::SanitizeAddress: 706 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 707 case Attribute::SanitizeThread: 708 return bitc::ATTR_KIND_SANITIZE_THREAD; 709 case Attribute::SanitizeMemory: 710 return bitc::ATTR_KIND_SANITIZE_MEMORY; 711 case Attribute::SwiftError: 712 return bitc::ATTR_KIND_SWIFT_ERROR; 713 case Attribute::SwiftSelf: 714 return bitc::ATTR_KIND_SWIFT_SELF; 715 case Attribute::UWTable: 716 return bitc::ATTR_KIND_UW_TABLE; 717 case Attribute::WriteOnly: 718 return bitc::ATTR_KIND_WRITEONLY; 719 case Attribute::ZExt: 720 return bitc::ATTR_KIND_Z_EXT; 721 case Attribute::EndAttrKinds: 722 llvm_unreachable("Can not encode end-attribute kinds marker."); 723 case Attribute::None: 724 llvm_unreachable("Can not encode none-attribute."); 725 } 726 727 llvm_unreachable("Trying to encode unknown attribute"); 728 } 729 730 void ModuleBitcodeWriter::writeAttributeGroupTable() { 731 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 732 if (AttrGrps.empty()) return; 733 734 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 735 736 SmallVector<uint64_t, 64> Record; 737 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 738 AttributeSet AS = AttrGrps[i]; 739 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 740 AttributeSet A = AS.getSlotAttributes(i); 741 742 Record.push_back(VE.getAttributeGroupID(A)); 743 Record.push_back(AS.getSlotIndex(i)); 744 745 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 746 I != E; ++I) { 747 Attribute Attr = *I; 748 if (Attr.isEnumAttribute()) { 749 Record.push_back(0); 750 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 751 } else if (Attr.isIntAttribute()) { 752 Record.push_back(1); 753 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 754 Record.push_back(Attr.getValueAsInt()); 755 } else { 756 StringRef Kind = Attr.getKindAsString(); 757 StringRef Val = Attr.getValueAsString(); 758 759 Record.push_back(Val.empty() ? 3 : 4); 760 Record.append(Kind.begin(), Kind.end()); 761 Record.push_back(0); 762 if (!Val.empty()) { 763 Record.append(Val.begin(), Val.end()); 764 Record.push_back(0); 765 } 766 } 767 } 768 769 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 770 Record.clear(); 771 } 772 } 773 774 Stream.ExitBlock(); 775 } 776 777 void ModuleBitcodeWriter::writeAttributeTable() { 778 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 779 if (Attrs.empty()) return; 780 781 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 782 783 SmallVector<uint64_t, 64> Record; 784 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 785 const AttributeSet &A = Attrs[i]; 786 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 787 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 788 789 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 790 Record.clear(); 791 } 792 793 Stream.ExitBlock(); 794 } 795 796 /// WriteTypeTable - Write out the type table for a module. 797 void ModuleBitcodeWriter::writeTypeTable() { 798 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 799 800 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 801 SmallVector<uint64_t, 64> TypeVals; 802 803 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 804 805 // Abbrev for TYPE_CODE_POINTER. 806 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 807 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 808 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 809 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 810 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 811 812 // Abbrev for TYPE_CODE_FUNCTION. 813 Abbv = new BitCodeAbbrev(); 814 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 818 819 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 820 821 // Abbrev for TYPE_CODE_STRUCT_ANON. 822 Abbv = new BitCodeAbbrev(); 823 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 825 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 826 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 827 828 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 829 830 // Abbrev for TYPE_CODE_STRUCT_NAME. 831 Abbv = new BitCodeAbbrev(); 832 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 833 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 834 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 835 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 836 837 // Abbrev for TYPE_CODE_STRUCT_NAMED. 838 Abbv = new BitCodeAbbrev(); 839 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 841 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 843 844 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 845 846 // Abbrev for TYPE_CODE_ARRAY. 847 Abbv = new BitCodeAbbrev(); 848 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 849 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 850 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 851 852 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 853 854 // Emit an entry count so the reader can reserve space. 855 TypeVals.push_back(TypeList.size()); 856 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 857 TypeVals.clear(); 858 859 // Loop over all of the types, emitting each in turn. 860 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 861 Type *T = TypeList[i]; 862 int AbbrevToUse = 0; 863 unsigned Code = 0; 864 865 switch (T->getTypeID()) { 866 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 867 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 868 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 869 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 870 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 871 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 872 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 873 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 874 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 875 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 876 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 877 case Type::IntegerTyID: 878 // INTEGER: [width] 879 Code = bitc::TYPE_CODE_INTEGER; 880 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 881 break; 882 case Type::PointerTyID: { 883 PointerType *PTy = cast<PointerType>(T); 884 // POINTER: [pointee type, address space] 885 Code = bitc::TYPE_CODE_POINTER; 886 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 887 unsigned AddressSpace = PTy->getAddressSpace(); 888 TypeVals.push_back(AddressSpace); 889 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 890 break; 891 } 892 case Type::FunctionTyID: { 893 FunctionType *FT = cast<FunctionType>(T); 894 // FUNCTION: [isvararg, retty, paramty x N] 895 Code = bitc::TYPE_CODE_FUNCTION; 896 TypeVals.push_back(FT->isVarArg()); 897 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 898 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 899 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 900 AbbrevToUse = FunctionAbbrev; 901 break; 902 } 903 case Type::StructTyID: { 904 StructType *ST = cast<StructType>(T); 905 // STRUCT: [ispacked, eltty x N] 906 TypeVals.push_back(ST->isPacked()); 907 // Output all of the element types. 908 for (StructType::element_iterator I = ST->element_begin(), 909 E = ST->element_end(); I != E; ++I) 910 TypeVals.push_back(VE.getTypeID(*I)); 911 912 if (ST->isLiteral()) { 913 Code = bitc::TYPE_CODE_STRUCT_ANON; 914 AbbrevToUse = StructAnonAbbrev; 915 } else { 916 if (ST->isOpaque()) { 917 Code = bitc::TYPE_CODE_OPAQUE; 918 } else { 919 Code = bitc::TYPE_CODE_STRUCT_NAMED; 920 AbbrevToUse = StructNamedAbbrev; 921 } 922 923 // Emit the name if it is present. 924 if (!ST->getName().empty()) 925 writeStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 926 StructNameAbbrev); 927 } 928 break; 929 } 930 case Type::ArrayTyID: { 931 ArrayType *AT = cast<ArrayType>(T); 932 // ARRAY: [numelts, eltty] 933 Code = bitc::TYPE_CODE_ARRAY; 934 TypeVals.push_back(AT->getNumElements()); 935 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 936 AbbrevToUse = ArrayAbbrev; 937 break; 938 } 939 case Type::VectorTyID: { 940 VectorType *VT = cast<VectorType>(T); 941 // VECTOR [numelts, eltty] 942 Code = bitc::TYPE_CODE_VECTOR; 943 TypeVals.push_back(VT->getNumElements()); 944 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 945 break; 946 } 947 } 948 949 // Emit the finished record. 950 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 951 TypeVals.clear(); 952 } 953 954 Stream.ExitBlock(); 955 } 956 957 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 958 switch (Linkage) { 959 case GlobalValue::ExternalLinkage: 960 return 0; 961 case GlobalValue::WeakAnyLinkage: 962 return 16; 963 case GlobalValue::AppendingLinkage: 964 return 2; 965 case GlobalValue::InternalLinkage: 966 return 3; 967 case GlobalValue::LinkOnceAnyLinkage: 968 return 18; 969 case GlobalValue::ExternalWeakLinkage: 970 return 7; 971 case GlobalValue::CommonLinkage: 972 return 8; 973 case GlobalValue::PrivateLinkage: 974 return 9; 975 case GlobalValue::WeakODRLinkage: 976 return 17; 977 case GlobalValue::LinkOnceODRLinkage: 978 return 19; 979 case GlobalValue::AvailableExternallyLinkage: 980 return 12; 981 } 982 llvm_unreachable("Invalid linkage"); 983 } 984 985 static unsigned getEncodedLinkage(const GlobalValue &GV) { 986 return getEncodedLinkage(GV.getLinkage()); 987 } 988 989 // Decode the flags for GlobalValue in the summary 990 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 991 uint64_t RawFlags = 0; 992 993 RawFlags |= Flags.HasSection; // bool 994 RawFlags |= (Flags.IsNotViableToInline << 1); 995 // Linkage don't need to be remapped at that time for the summary. Any future 996 // change to the getEncodedLinkage() function will need to be taken into 997 // account here as well. 998 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 999 1000 return RawFlags; 1001 } 1002 1003 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1004 switch (GV.getVisibility()) { 1005 case GlobalValue::DefaultVisibility: return 0; 1006 case GlobalValue::HiddenVisibility: return 1; 1007 case GlobalValue::ProtectedVisibility: return 2; 1008 } 1009 llvm_unreachable("Invalid visibility"); 1010 } 1011 1012 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1013 switch (GV.getDLLStorageClass()) { 1014 case GlobalValue::DefaultStorageClass: return 0; 1015 case GlobalValue::DLLImportStorageClass: return 1; 1016 case GlobalValue::DLLExportStorageClass: return 2; 1017 } 1018 llvm_unreachable("Invalid DLL storage class"); 1019 } 1020 1021 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1022 switch (GV.getThreadLocalMode()) { 1023 case GlobalVariable::NotThreadLocal: return 0; 1024 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1025 case GlobalVariable::LocalDynamicTLSModel: return 2; 1026 case GlobalVariable::InitialExecTLSModel: return 3; 1027 case GlobalVariable::LocalExecTLSModel: return 4; 1028 } 1029 llvm_unreachable("Invalid TLS model"); 1030 } 1031 1032 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1033 switch (C.getSelectionKind()) { 1034 case Comdat::Any: 1035 return bitc::COMDAT_SELECTION_KIND_ANY; 1036 case Comdat::ExactMatch: 1037 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1038 case Comdat::Largest: 1039 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1040 case Comdat::NoDuplicates: 1041 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1042 case Comdat::SameSize: 1043 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1044 } 1045 llvm_unreachable("Invalid selection kind"); 1046 } 1047 1048 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1049 switch (GV.getUnnamedAddr()) { 1050 case GlobalValue::UnnamedAddr::None: return 0; 1051 case GlobalValue::UnnamedAddr::Local: return 2; 1052 case GlobalValue::UnnamedAddr::Global: return 1; 1053 } 1054 llvm_unreachable("Invalid unnamed_addr"); 1055 } 1056 1057 void ModuleBitcodeWriter::writeComdats() { 1058 SmallVector<unsigned, 64> Vals; 1059 for (const Comdat *C : VE.getComdats()) { 1060 // COMDAT: [selection_kind, name] 1061 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1062 size_t Size = C->getName().size(); 1063 assert(isUInt<32>(Size)); 1064 Vals.push_back(Size); 1065 for (char Chr : C->getName()) 1066 Vals.push_back((unsigned char)Chr); 1067 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1068 Vals.clear(); 1069 } 1070 } 1071 1072 /// Write a record that will eventually hold the word offset of the 1073 /// module-level VST. For now the offset is 0, which will be backpatched 1074 /// after the real VST is written. Saves the bit offset to backpatch. 1075 void BitcodeWriter::writeValueSymbolTableForwardDecl() { 1076 // Write a placeholder value in for the offset of the real VST, 1077 // which is written after the function blocks so that it can include 1078 // the offset of each function. The placeholder offset will be 1079 // updated when the real VST is written. 1080 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1081 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1082 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1083 // hold the real VST offset. Must use fixed instead of VBR as we don't 1084 // know how many VBR chunks to reserve ahead of time. 1085 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1086 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv); 1087 1088 // Emit the placeholder 1089 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1090 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1091 1092 // Compute and save the bit offset to the placeholder, which will be 1093 // patched when the real VST is written. We can simply subtract the 32-bit 1094 // fixed size from the current bit number to get the location to backpatch. 1095 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1096 } 1097 1098 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1099 1100 /// Determine the encoding to use for the given string name and length. 1101 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 1102 bool isChar6 = true; 1103 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 1104 if (isChar6) 1105 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1106 if ((unsigned char)*C & 128) 1107 // don't bother scanning the rest. 1108 return SE_Fixed8; 1109 } 1110 if (isChar6) 1111 return SE_Char6; 1112 else 1113 return SE_Fixed7; 1114 } 1115 1116 /// Emit top-level description of module, including target triple, inline asm, 1117 /// descriptors for global variables, and function prototype info. 1118 /// Returns the bit offset to backpatch with the location of the real VST. 1119 void ModuleBitcodeWriter::writeModuleInfo() { 1120 // Emit various pieces of data attached to a module. 1121 if (!M.getTargetTriple().empty()) 1122 writeStringRecord(bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1123 0 /*TODO*/); 1124 const std::string &DL = M.getDataLayoutStr(); 1125 if (!DL.empty()) 1126 writeStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1127 if (!M.getModuleInlineAsm().empty()) 1128 writeStringRecord(bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1129 0 /*TODO*/); 1130 1131 // Emit information about sections and GC, computing how many there are. Also 1132 // compute the maximum alignment value. 1133 std::map<std::string, unsigned> SectionMap; 1134 std::map<std::string, unsigned> GCMap; 1135 unsigned MaxAlignment = 0; 1136 unsigned MaxGlobalType = 0; 1137 for (const GlobalValue &GV : M.globals()) { 1138 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1139 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1140 if (GV.hasSection()) { 1141 // Give section names unique ID's. 1142 unsigned &Entry = SectionMap[GV.getSection()]; 1143 if (!Entry) { 1144 writeStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1145 0 /*TODO*/); 1146 Entry = SectionMap.size(); 1147 } 1148 } 1149 } 1150 for (const Function &F : M) { 1151 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1152 if (F.hasSection()) { 1153 // Give section names unique ID's. 1154 unsigned &Entry = SectionMap[F.getSection()]; 1155 if (!Entry) { 1156 writeStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1157 0 /*TODO*/); 1158 Entry = SectionMap.size(); 1159 } 1160 } 1161 if (F.hasGC()) { 1162 // Same for GC names. 1163 unsigned &Entry = GCMap[F.getGC()]; 1164 if (!Entry) { 1165 writeStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 0 /*TODO*/); 1166 Entry = GCMap.size(); 1167 } 1168 } 1169 } 1170 1171 // Emit abbrev for globals, now that we know # sections and max alignment. 1172 unsigned SimpleGVarAbbrev = 0; 1173 if (!M.global_empty()) { 1174 // Add an abbrev for common globals with no visibility or thread localness. 1175 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1176 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1178 Log2_32_Ceil(MaxGlobalType+1))); 1179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1180 //| explicitType << 1 1181 //| constant 1182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1184 if (MaxAlignment == 0) // Alignment. 1185 Abbv->Add(BitCodeAbbrevOp(0)); 1186 else { 1187 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1189 Log2_32_Ceil(MaxEncAlignment+1))); 1190 } 1191 if (SectionMap.empty()) // Section. 1192 Abbv->Add(BitCodeAbbrevOp(0)); 1193 else 1194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1195 Log2_32_Ceil(SectionMap.size()+1))); 1196 // Don't bother emitting vis + thread local. 1197 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 1198 } 1199 1200 // Emit the global variable information. 1201 SmallVector<unsigned, 64> Vals; 1202 for (const GlobalVariable &GV : M.globals()) { 1203 unsigned AbbrevToUse = 0; 1204 1205 // GLOBALVAR: [type, isconst, initid, 1206 // linkage, alignment, section, visibility, threadlocal, 1207 // unnamed_addr, externally_initialized, dllstorageclass, 1208 // comdat] 1209 Vals.push_back(VE.getTypeID(GV.getValueType())); 1210 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1211 Vals.push_back(GV.isDeclaration() ? 0 : 1212 (VE.getValueID(GV.getInitializer()) + 1)); 1213 Vals.push_back(getEncodedLinkage(GV)); 1214 Vals.push_back(Log2_32(GV.getAlignment())+1); 1215 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1216 if (GV.isThreadLocal() || 1217 GV.getVisibility() != GlobalValue::DefaultVisibility || 1218 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1219 GV.isExternallyInitialized() || 1220 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1221 GV.hasComdat()) { 1222 Vals.push_back(getEncodedVisibility(GV)); 1223 Vals.push_back(getEncodedThreadLocalMode(GV)); 1224 Vals.push_back(getEncodedUnnamedAddr(GV)); 1225 Vals.push_back(GV.isExternallyInitialized()); 1226 Vals.push_back(getEncodedDLLStorageClass(GV)); 1227 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1228 } else { 1229 AbbrevToUse = SimpleGVarAbbrev; 1230 } 1231 1232 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1233 Vals.clear(); 1234 } 1235 1236 // Emit the function proto information. 1237 for (const Function &F : M) { 1238 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 1239 // section, visibility, gc, unnamed_addr, prologuedata, 1240 // dllstorageclass, comdat, prefixdata, personalityfn] 1241 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1242 Vals.push_back(F.getCallingConv()); 1243 Vals.push_back(F.isDeclaration()); 1244 Vals.push_back(getEncodedLinkage(F)); 1245 Vals.push_back(VE.getAttributeID(F.getAttributes())); 1246 Vals.push_back(Log2_32(F.getAlignment())+1); 1247 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1248 Vals.push_back(getEncodedVisibility(F)); 1249 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1250 Vals.push_back(getEncodedUnnamedAddr(F)); 1251 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1252 : 0); 1253 Vals.push_back(getEncodedDLLStorageClass(F)); 1254 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1255 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1256 : 0); 1257 Vals.push_back( 1258 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1259 1260 unsigned AbbrevToUse = 0; 1261 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1262 Vals.clear(); 1263 } 1264 1265 // Emit the alias information. 1266 for (const GlobalAlias &A : M.aliases()) { 1267 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass, 1268 // threadlocal, unnamed_addr] 1269 Vals.push_back(VE.getTypeID(A.getValueType())); 1270 Vals.push_back(A.getType()->getAddressSpace()); 1271 Vals.push_back(VE.getValueID(A.getAliasee())); 1272 Vals.push_back(getEncodedLinkage(A)); 1273 Vals.push_back(getEncodedVisibility(A)); 1274 Vals.push_back(getEncodedDLLStorageClass(A)); 1275 Vals.push_back(getEncodedThreadLocalMode(A)); 1276 Vals.push_back(getEncodedUnnamedAddr(A)); 1277 unsigned AbbrevToUse = 0; 1278 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1279 Vals.clear(); 1280 } 1281 1282 // Emit the ifunc information. 1283 for (const GlobalIFunc &I : M.ifuncs()) { 1284 // IFUNC: [ifunc type, address space, resolver val#, linkage, visibility] 1285 Vals.push_back(VE.getTypeID(I.getValueType())); 1286 Vals.push_back(I.getType()->getAddressSpace()); 1287 Vals.push_back(VE.getValueID(I.getResolver())); 1288 Vals.push_back(getEncodedLinkage(I)); 1289 Vals.push_back(getEncodedVisibility(I)); 1290 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1291 Vals.clear(); 1292 } 1293 1294 // Emit the module's source file name. 1295 { 1296 StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(), 1297 M.getSourceFileName().size()); 1298 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1299 if (Bits == SE_Char6) 1300 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1301 else if (Bits == SE_Fixed7) 1302 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1303 1304 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1305 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1306 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1307 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1308 Abbv->Add(AbbrevOpToUse); 1309 unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv); 1310 1311 for (const auto P : M.getSourceFileName()) 1312 Vals.push_back((unsigned char)P); 1313 1314 // Emit the finished record. 1315 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1316 Vals.clear(); 1317 } 1318 1319 // If we have a VST, write the VSTOFFSET record placeholder. 1320 if (M.getValueSymbolTable().empty()) 1321 return; 1322 writeValueSymbolTableForwardDecl(); 1323 } 1324 1325 static uint64_t getOptimizationFlags(const Value *V) { 1326 uint64_t Flags = 0; 1327 1328 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1329 if (OBO->hasNoSignedWrap()) 1330 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1331 if (OBO->hasNoUnsignedWrap()) 1332 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1333 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1334 if (PEO->isExact()) 1335 Flags |= 1 << bitc::PEO_EXACT; 1336 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1337 if (FPMO->hasUnsafeAlgebra()) 1338 Flags |= FastMathFlags::UnsafeAlgebra; 1339 if (FPMO->hasNoNaNs()) 1340 Flags |= FastMathFlags::NoNaNs; 1341 if (FPMO->hasNoInfs()) 1342 Flags |= FastMathFlags::NoInfs; 1343 if (FPMO->hasNoSignedZeros()) 1344 Flags |= FastMathFlags::NoSignedZeros; 1345 if (FPMO->hasAllowReciprocal()) 1346 Flags |= FastMathFlags::AllowReciprocal; 1347 } 1348 1349 return Flags; 1350 } 1351 1352 void ModuleBitcodeWriter::writeValueAsMetadata( 1353 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1354 // Mimic an MDNode with a value as one operand. 1355 Value *V = MD->getValue(); 1356 Record.push_back(VE.getTypeID(V->getType())); 1357 Record.push_back(VE.getValueID(V)); 1358 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1359 Record.clear(); 1360 } 1361 1362 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1363 SmallVectorImpl<uint64_t> &Record, 1364 unsigned Abbrev) { 1365 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1366 Metadata *MD = N->getOperand(i); 1367 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1368 "Unexpected function-local metadata"); 1369 Record.push_back(VE.getMetadataOrNullID(MD)); 1370 } 1371 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1372 : bitc::METADATA_NODE, 1373 Record, Abbrev); 1374 Record.clear(); 1375 } 1376 1377 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1378 // Assume the column is usually under 128, and always output the inlined-at 1379 // location (it's never more expensive than building an array size 1). 1380 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1381 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1387 return Stream.EmitAbbrev(Abbv); 1388 } 1389 1390 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1391 SmallVectorImpl<uint64_t> &Record, 1392 unsigned &Abbrev) { 1393 if (!Abbrev) 1394 Abbrev = createDILocationAbbrev(); 1395 1396 Record.push_back(N->isDistinct()); 1397 Record.push_back(N->getLine()); 1398 Record.push_back(N->getColumn()); 1399 Record.push_back(VE.getMetadataID(N->getScope())); 1400 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1401 1402 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1403 Record.clear(); 1404 } 1405 1406 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1407 // Assume the column is usually under 128, and always output the inlined-at 1408 // location (it's never more expensive than building an array size 1). 1409 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1410 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1411 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1412 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1413 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1417 return Stream.EmitAbbrev(Abbv); 1418 } 1419 1420 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1421 SmallVectorImpl<uint64_t> &Record, 1422 unsigned &Abbrev) { 1423 if (!Abbrev) 1424 Abbrev = createGenericDINodeAbbrev(); 1425 1426 Record.push_back(N->isDistinct()); 1427 Record.push_back(N->getTag()); 1428 Record.push_back(0); // Per-tag version field; unused for now. 1429 1430 for (auto &I : N->operands()) 1431 Record.push_back(VE.getMetadataOrNullID(I)); 1432 1433 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1434 Record.clear(); 1435 } 1436 1437 static uint64_t rotateSign(int64_t I) { 1438 uint64_t U = I; 1439 return I < 0 ? ~(U << 1) : U << 1; 1440 } 1441 1442 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1443 SmallVectorImpl<uint64_t> &Record, 1444 unsigned Abbrev) { 1445 Record.push_back(N->isDistinct()); 1446 Record.push_back(N->getCount()); 1447 Record.push_back(rotateSign(N->getLowerBound())); 1448 1449 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1450 Record.clear(); 1451 } 1452 1453 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1454 SmallVectorImpl<uint64_t> &Record, 1455 unsigned Abbrev) { 1456 Record.push_back(N->isDistinct()); 1457 Record.push_back(rotateSign(N->getValue())); 1458 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1459 1460 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1461 Record.clear(); 1462 } 1463 1464 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1465 SmallVectorImpl<uint64_t> &Record, 1466 unsigned Abbrev) { 1467 Record.push_back(N->isDistinct()); 1468 Record.push_back(N->getTag()); 1469 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1470 Record.push_back(N->getSizeInBits()); 1471 Record.push_back(N->getAlignInBits()); 1472 Record.push_back(N->getEncoding()); 1473 1474 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1475 Record.clear(); 1476 } 1477 1478 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1479 SmallVectorImpl<uint64_t> &Record, 1480 unsigned Abbrev) { 1481 Record.push_back(N->isDistinct()); 1482 Record.push_back(N->getTag()); 1483 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1484 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1485 Record.push_back(N->getLine()); 1486 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1487 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1488 Record.push_back(N->getSizeInBits()); 1489 Record.push_back(N->getAlignInBits()); 1490 Record.push_back(N->getOffsetInBits()); 1491 Record.push_back(N->getFlags()); 1492 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1493 1494 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1495 Record.clear(); 1496 } 1497 1498 void ModuleBitcodeWriter::writeDICompositeType( 1499 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1500 unsigned Abbrev) { 1501 const unsigned IsNotUsedInOldTypeRef = 0x2; 1502 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1503 Record.push_back(N->getTag()); 1504 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1505 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1506 Record.push_back(N->getLine()); 1507 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1508 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1509 Record.push_back(N->getSizeInBits()); 1510 Record.push_back(N->getAlignInBits()); 1511 Record.push_back(N->getOffsetInBits()); 1512 Record.push_back(N->getFlags()); 1513 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1514 Record.push_back(N->getRuntimeLang()); 1515 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1516 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1517 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1518 1519 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1520 Record.clear(); 1521 } 1522 1523 void ModuleBitcodeWriter::writeDISubroutineType( 1524 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1525 unsigned Abbrev) { 1526 const unsigned HasNoOldTypeRefs = 0x2; 1527 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1528 Record.push_back(N->getFlags()); 1529 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1530 Record.push_back(N->getCC()); 1531 1532 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1533 Record.clear(); 1534 } 1535 1536 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1537 SmallVectorImpl<uint64_t> &Record, 1538 unsigned Abbrev) { 1539 Record.push_back(N->isDistinct()); 1540 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1541 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1542 1543 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1544 Record.clear(); 1545 } 1546 1547 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1548 SmallVectorImpl<uint64_t> &Record, 1549 unsigned Abbrev) { 1550 assert(N->isDistinct() && "Expected distinct compile units"); 1551 Record.push_back(/* IsDistinct */ true); 1552 Record.push_back(N->getSourceLanguage()); 1553 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1554 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1555 Record.push_back(N->isOptimized()); 1556 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1557 Record.push_back(N->getRuntimeVersion()); 1558 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1559 Record.push_back(N->getEmissionKind()); 1560 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1561 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1562 Record.push_back(/* subprograms */ 0); 1563 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1564 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1565 Record.push_back(N->getDWOId()); 1566 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1567 1568 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1569 Record.clear(); 1570 } 1571 1572 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1573 SmallVectorImpl<uint64_t> &Record, 1574 unsigned Abbrev) { 1575 uint64_t HasUnitFlag = 1 << 1; 1576 Record.push_back(N->isDistinct() | HasUnitFlag); 1577 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1578 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1579 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1580 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1581 Record.push_back(N->getLine()); 1582 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1583 Record.push_back(N->isLocalToUnit()); 1584 Record.push_back(N->isDefinition()); 1585 Record.push_back(N->getScopeLine()); 1586 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1587 Record.push_back(N->getVirtuality()); 1588 Record.push_back(N->getVirtualIndex()); 1589 Record.push_back(N->getFlags()); 1590 Record.push_back(N->isOptimized()); 1591 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1592 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1593 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1594 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1595 Record.push_back(N->getThisAdjustment()); 1596 1597 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1598 Record.clear(); 1599 } 1600 1601 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1602 SmallVectorImpl<uint64_t> &Record, 1603 unsigned Abbrev) { 1604 Record.push_back(N->isDistinct()); 1605 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1606 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1607 Record.push_back(N->getLine()); 1608 Record.push_back(N->getColumn()); 1609 1610 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1611 Record.clear(); 1612 } 1613 1614 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1615 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1616 unsigned Abbrev) { 1617 Record.push_back(N->isDistinct()); 1618 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1619 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1620 Record.push_back(N->getDiscriminator()); 1621 1622 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1623 Record.clear(); 1624 } 1625 1626 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1627 SmallVectorImpl<uint64_t> &Record, 1628 unsigned Abbrev) { 1629 Record.push_back(N->isDistinct()); 1630 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1631 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1632 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1633 Record.push_back(N->getLine()); 1634 1635 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1636 Record.clear(); 1637 } 1638 1639 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1640 SmallVectorImpl<uint64_t> &Record, 1641 unsigned Abbrev) { 1642 Record.push_back(N->isDistinct()); 1643 Record.push_back(N->getMacinfoType()); 1644 Record.push_back(N->getLine()); 1645 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1646 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1647 1648 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1649 Record.clear(); 1650 } 1651 1652 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1653 SmallVectorImpl<uint64_t> &Record, 1654 unsigned Abbrev) { 1655 Record.push_back(N->isDistinct()); 1656 Record.push_back(N->getMacinfoType()); 1657 Record.push_back(N->getLine()); 1658 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1659 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1660 1661 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1662 Record.clear(); 1663 } 1664 1665 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1666 SmallVectorImpl<uint64_t> &Record, 1667 unsigned Abbrev) { 1668 Record.push_back(N->isDistinct()); 1669 for (auto &I : N->operands()) 1670 Record.push_back(VE.getMetadataOrNullID(I)); 1671 1672 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1673 Record.clear(); 1674 } 1675 1676 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1677 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1678 unsigned Abbrev) { 1679 Record.push_back(N->isDistinct()); 1680 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1681 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1682 1683 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1684 Record.clear(); 1685 } 1686 1687 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1688 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1689 unsigned Abbrev) { 1690 Record.push_back(N->isDistinct()); 1691 Record.push_back(N->getTag()); 1692 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1693 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1694 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1695 1696 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1697 Record.clear(); 1698 } 1699 1700 void ModuleBitcodeWriter::writeDIGlobalVariable( 1701 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1702 unsigned Abbrev) { 1703 Record.push_back(N->isDistinct()); 1704 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1705 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1706 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1707 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1708 Record.push_back(N->getLine()); 1709 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1710 Record.push_back(N->isLocalToUnit()); 1711 Record.push_back(N->isDefinition()); 1712 Record.push_back(VE.getMetadataOrNullID(N->getRawVariable())); 1713 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1714 1715 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1716 Record.clear(); 1717 } 1718 1719 void ModuleBitcodeWriter::writeDILocalVariable( 1720 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1721 unsigned Abbrev) { 1722 Record.push_back(N->isDistinct()); 1723 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1724 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1725 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1726 Record.push_back(N->getLine()); 1727 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1728 Record.push_back(N->getArg()); 1729 Record.push_back(N->getFlags()); 1730 1731 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1732 Record.clear(); 1733 } 1734 1735 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1736 SmallVectorImpl<uint64_t> &Record, 1737 unsigned Abbrev) { 1738 Record.reserve(N->getElements().size() + 1); 1739 1740 Record.push_back(N->isDistinct()); 1741 Record.append(N->elements_begin(), N->elements_end()); 1742 1743 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1744 Record.clear(); 1745 } 1746 1747 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1748 SmallVectorImpl<uint64_t> &Record, 1749 unsigned Abbrev) { 1750 Record.push_back(N->isDistinct()); 1751 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1752 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1753 Record.push_back(N->getLine()); 1754 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1755 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1756 Record.push_back(N->getAttributes()); 1757 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1758 1759 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1760 Record.clear(); 1761 } 1762 1763 void ModuleBitcodeWriter::writeDIImportedEntity( 1764 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1765 unsigned Abbrev) { 1766 Record.push_back(N->isDistinct()); 1767 Record.push_back(N->getTag()); 1768 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1769 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1770 Record.push_back(N->getLine()); 1771 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1772 1773 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1774 Record.clear(); 1775 } 1776 1777 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1778 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1779 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1780 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1782 return Stream.EmitAbbrev(Abbv); 1783 } 1784 1785 void ModuleBitcodeWriter::writeNamedMetadata( 1786 SmallVectorImpl<uint64_t> &Record) { 1787 if (M.named_metadata_empty()) 1788 return; 1789 1790 unsigned Abbrev = createNamedMetadataAbbrev(); 1791 for (const NamedMDNode &NMD : M.named_metadata()) { 1792 // Write name. 1793 StringRef Str = NMD.getName(); 1794 Record.append(Str.bytes_begin(), Str.bytes_end()); 1795 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1796 Record.clear(); 1797 1798 // Write named metadata operands. 1799 for (const MDNode *N : NMD.operands()) 1800 Record.push_back(VE.getMetadataID(N)); 1801 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1802 Record.clear(); 1803 } 1804 } 1805 1806 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1807 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1808 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1809 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1810 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1811 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1812 return Stream.EmitAbbrev(Abbv); 1813 } 1814 1815 /// Write out a record for MDString. 1816 /// 1817 /// All the metadata strings in a metadata block are emitted in a single 1818 /// record. The sizes and strings themselves are shoved into a blob. 1819 void ModuleBitcodeWriter::writeMetadataStrings( 1820 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1821 if (Strings.empty()) 1822 return; 1823 1824 // Start the record with the number of strings. 1825 Record.push_back(bitc::METADATA_STRINGS); 1826 Record.push_back(Strings.size()); 1827 1828 // Emit the sizes of the strings in the blob. 1829 SmallString<256> Blob; 1830 { 1831 BitstreamWriter W(Blob); 1832 for (const Metadata *MD : Strings) 1833 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1834 W.FlushToWord(); 1835 } 1836 1837 // Add the offset to the strings to the record. 1838 Record.push_back(Blob.size()); 1839 1840 // Add the strings to the blob. 1841 for (const Metadata *MD : Strings) 1842 Blob.append(cast<MDString>(MD)->getString()); 1843 1844 // Emit the final record. 1845 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1846 Record.clear(); 1847 } 1848 1849 void ModuleBitcodeWriter::writeMetadataRecords( 1850 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record) { 1851 if (MDs.empty()) 1852 return; 1853 1854 // Initialize MDNode abbreviations. 1855 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1856 #include "llvm/IR/Metadata.def" 1857 1858 for (const Metadata *MD : MDs) { 1859 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1860 assert(N->isResolved() && "Expected forward references to be resolved"); 1861 1862 switch (N->getMetadataID()) { 1863 default: 1864 llvm_unreachable("Invalid MDNode subclass"); 1865 #define HANDLE_MDNODE_LEAF(CLASS) \ 1866 case Metadata::CLASS##Kind: \ 1867 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1868 continue; 1869 #include "llvm/IR/Metadata.def" 1870 } 1871 } 1872 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1873 } 1874 } 1875 1876 void ModuleBitcodeWriter::writeModuleMetadata() { 1877 if (!VE.hasMDs() && M.named_metadata_empty()) 1878 return; 1879 1880 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1881 SmallVector<uint64_t, 64> Record; 1882 writeMetadataStrings(VE.getMDStrings(), Record); 1883 writeMetadataRecords(VE.getNonMDStrings(), Record); 1884 writeNamedMetadata(Record); 1885 1886 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 1887 SmallVector<uint64_t, 4> Record; 1888 Record.push_back(VE.getValueID(&GO)); 1889 pushGlobalMetadataAttachment(Record, GO); 1890 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 1891 }; 1892 for (const Function &F : M) 1893 if (F.isDeclaration() && F.hasMetadata()) 1894 AddDeclAttachedMetadata(F); 1895 // FIXME: Only store metadata for declarations here, and move data for global 1896 // variable definitions to a separate block (PR28134). 1897 for (const GlobalVariable &GV : M.globals()) 1898 if (GV.hasMetadata()) 1899 AddDeclAttachedMetadata(GV); 1900 1901 Stream.ExitBlock(); 1902 } 1903 1904 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 1905 if (!VE.hasMDs()) 1906 return; 1907 1908 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1909 SmallVector<uint64_t, 64> Record; 1910 writeMetadataStrings(VE.getMDStrings(), Record); 1911 writeMetadataRecords(VE.getNonMDStrings(), Record); 1912 Stream.ExitBlock(); 1913 } 1914 1915 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 1916 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 1917 // [n x [id, mdnode]] 1918 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1919 GO.getAllMetadata(MDs); 1920 for (const auto &I : MDs) { 1921 Record.push_back(I.first); 1922 Record.push_back(VE.getMetadataID(I.second)); 1923 } 1924 } 1925 1926 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 1927 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1928 1929 SmallVector<uint64_t, 64> Record; 1930 1931 if (F.hasMetadata()) { 1932 pushGlobalMetadataAttachment(Record, F); 1933 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1934 Record.clear(); 1935 } 1936 1937 // Write metadata attachments 1938 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1939 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1940 for (const BasicBlock &BB : F) 1941 for (const Instruction &I : BB) { 1942 MDs.clear(); 1943 I.getAllMetadataOtherThanDebugLoc(MDs); 1944 1945 // If no metadata, ignore instruction. 1946 if (MDs.empty()) continue; 1947 1948 Record.push_back(VE.getInstructionID(&I)); 1949 1950 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1951 Record.push_back(MDs[i].first); 1952 Record.push_back(VE.getMetadataID(MDs[i].second)); 1953 } 1954 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1955 Record.clear(); 1956 } 1957 1958 Stream.ExitBlock(); 1959 } 1960 1961 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 1962 SmallVector<uint64_t, 64> Record; 1963 1964 // Write metadata kinds 1965 // METADATA_KIND - [n x [id, name]] 1966 SmallVector<StringRef, 8> Names; 1967 M.getMDKindNames(Names); 1968 1969 if (Names.empty()) return; 1970 1971 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 1972 1973 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1974 Record.push_back(MDKindID); 1975 StringRef KName = Names[MDKindID]; 1976 Record.append(KName.begin(), KName.end()); 1977 1978 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1979 Record.clear(); 1980 } 1981 1982 Stream.ExitBlock(); 1983 } 1984 1985 void ModuleBitcodeWriter::writeOperandBundleTags() { 1986 // Write metadata kinds 1987 // 1988 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 1989 // 1990 // OPERAND_BUNDLE_TAG - [strchr x N] 1991 1992 SmallVector<StringRef, 8> Tags; 1993 M.getOperandBundleTags(Tags); 1994 1995 if (Tags.empty()) 1996 return; 1997 1998 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 1999 2000 SmallVector<uint64_t, 64> Record; 2001 2002 for (auto Tag : Tags) { 2003 Record.append(Tag.begin(), Tag.end()); 2004 2005 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2006 Record.clear(); 2007 } 2008 2009 Stream.ExitBlock(); 2010 } 2011 2012 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2013 if ((int64_t)V >= 0) 2014 Vals.push_back(V << 1); 2015 else 2016 Vals.push_back((-V << 1) | 1); 2017 } 2018 2019 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2020 bool isGlobal) { 2021 if (FirstVal == LastVal) return; 2022 2023 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2024 2025 unsigned AggregateAbbrev = 0; 2026 unsigned String8Abbrev = 0; 2027 unsigned CString7Abbrev = 0; 2028 unsigned CString6Abbrev = 0; 2029 // If this is a constant pool for the module, emit module-specific abbrevs. 2030 if (isGlobal) { 2031 // Abbrev for CST_CODE_AGGREGATE. 2032 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2033 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2034 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2035 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2036 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 2037 2038 // Abbrev for CST_CODE_STRING. 2039 Abbv = new BitCodeAbbrev(); 2040 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2041 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2042 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2043 String8Abbrev = Stream.EmitAbbrev(Abbv); 2044 // Abbrev for CST_CODE_CSTRING. 2045 Abbv = new BitCodeAbbrev(); 2046 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2047 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2048 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2049 CString7Abbrev = Stream.EmitAbbrev(Abbv); 2050 // Abbrev for CST_CODE_CSTRING. 2051 Abbv = new BitCodeAbbrev(); 2052 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2055 CString6Abbrev = Stream.EmitAbbrev(Abbv); 2056 } 2057 2058 SmallVector<uint64_t, 64> Record; 2059 2060 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2061 Type *LastTy = nullptr; 2062 for (unsigned i = FirstVal; i != LastVal; ++i) { 2063 const Value *V = Vals[i].first; 2064 // If we need to switch types, do so now. 2065 if (V->getType() != LastTy) { 2066 LastTy = V->getType(); 2067 Record.push_back(VE.getTypeID(LastTy)); 2068 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2069 CONSTANTS_SETTYPE_ABBREV); 2070 Record.clear(); 2071 } 2072 2073 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2074 Record.push_back(unsigned(IA->hasSideEffects()) | 2075 unsigned(IA->isAlignStack()) << 1 | 2076 unsigned(IA->getDialect()&1) << 2); 2077 2078 // Add the asm string. 2079 const std::string &AsmStr = IA->getAsmString(); 2080 Record.push_back(AsmStr.size()); 2081 Record.append(AsmStr.begin(), AsmStr.end()); 2082 2083 // Add the constraint string. 2084 const std::string &ConstraintStr = IA->getConstraintString(); 2085 Record.push_back(ConstraintStr.size()); 2086 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2087 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2088 Record.clear(); 2089 continue; 2090 } 2091 const Constant *C = cast<Constant>(V); 2092 unsigned Code = -1U; 2093 unsigned AbbrevToUse = 0; 2094 if (C->isNullValue()) { 2095 Code = bitc::CST_CODE_NULL; 2096 } else if (isa<UndefValue>(C)) { 2097 Code = bitc::CST_CODE_UNDEF; 2098 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2099 if (IV->getBitWidth() <= 64) { 2100 uint64_t V = IV->getSExtValue(); 2101 emitSignedInt64(Record, V); 2102 Code = bitc::CST_CODE_INTEGER; 2103 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2104 } else { // Wide integers, > 64 bits in size. 2105 // We have an arbitrary precision integer value to write whose 2106 // bit width is > 64. However, in canonical unsigned integer 2107 // format it is likely that the high bits are going to be zero. 2108 // So, we only write the number of active words. 2109 unsigned NWords = IV->getValue().getActiveWords(); 2110 const uint64_t *RawWords = IV->getValue().getRawData(); 2111 for (unsigned i = 0; i != NWords; ++i) { 2112 emitSignedInt64(Record, RawWords[i]); 2113 } 2114 Code = bitc::CST_CODE_WIDE_INTEGER; 2115 } 2116 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2117 Code = bitc::CST_CODE_FLOAT; 2118 Type *Ty = CFP->getType(); 2119 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2120 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2121 } else if (Ty->isX86_FP80Ty()) { 2122 // api needed to prevent premature destruction 2123 // bits are not in the same order as a normal i80 APInt, compensate. 2124 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2125 const uint64_t *p = api.getRawData(); 2126 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2127 Record.push_back(p[0] & 0xffffLL); 2128 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2129 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2130 const uint64_t *p = api.getRawData(); 2131 Record.push_back(p[0]); 2132 Record.push_back(p[1]); 2133 } else { 2134 assert (0 && "Unknown FP type!"); 2135 } 2136 } else if (isa<ConstantDataSequential>(C) && 2137 cast<ConstantDataSequential>(C)->isString()) { 2138 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2139 // Emit constant strings specially. 2140 unsigned NumElts = Str->getNumElements(); 2141 // If this is a null-terminated string, use the denser CSTRING encoding. 2142 if (Str->isCString()) { 2143 Code = bitc::CST_CODE_CSTRING; 2144 --NumElts; // Don't encode the null, which isn't allowed by char6. 2145 } else { 2146 Code = bitc::CST_CODE_STRING; 2147 AbbrevToUse = String8Abbrev; 2148 } 2149 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2150 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2151 for (unsigned i = 0; i != NumElts; ++i) { 2152 unsigned char V = Str->getElementAsInteger(i); 2153 Record.push_back(V); 2154 isCStr7 &= (V & 128) == 0; 2155 if (isCStrChar6) 2156 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2157 } 2158 2159 if (isCStrChar6) 2160 AbbrevToUse = CString6Abbrev; 2161 else if (isCStr7) 2162 AbbrevToUse = CString7Abbrev; 2163 } else if (const ConstantDataSequential *CDS = 2164 dyn_cast<ConstantDataSequential>(C)) { 2165 Code = bitc::CST_CODE_DATA; 2166 Type *EltTy = CDS->getType()->getElementType(); 2167 if (isa<IntegerType>(EltTy)) { 2168 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2169 Record.push_back(CDS->getElementAsInteger(i)); 2170 } else { 2171 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2172 Record.push_back( 2173 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2174 } 2175 } else if (isa<ConstantAggregate>(C)) { 2176 Code = bitc::CST_CODE_AGGREGATE; 2177 for (const Value *Op : C->operands()) 2178 Record.push_back(VE.getValueID(Op)); 2179 AbbrevToUse = AggregateAbbrev; 2180 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2181 switch (CE->getOpcode()) { 2182 default: 2183 if (Instruction::isCast(CE->getOpcode())) { 2184 Code = bitc::CST_CODE_CE_CAST; 2185 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2186 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2187 Record.push_back(VE.getValueID(C->getOperand(0))); 2188 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2189 } else { 2190 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2191 Code = bitc::CST_CODE_CE_BINOP; 2192 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2193 Record.push_back(VE.getValueID(C->getOperand(0))); 2194 Record.push_back(VE.getValueID(C->getOperand(1))); 2195 uint64_t Flags = getOptimizationFlags(CE); 2196 if (Flags != 0) 2197 Record.push_back(Flags); 2198 } 2199 break; 2200 case Instruction::GetElementPtr: { 2201 Code = bitc::CST_CODE_CE_GEP; 2202 const auto *GO = cast<GEPOperator>(C); 2203 if (GO->isInBounds()) 2204 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2205 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2206 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2207 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2208 Record.push_back(VE.getValueID(C->getOperand(i))); 2209 } 2210 break; 2211 } 2212 case Instruction::Select: 2213 Code = bitc::CST_CODE_CE_SELECT; 2214 Record.push_back(VE.getValueID(C->getOperand(0))); 2215 Record.push_back(VE.getValueID(C->getOperand(1))); 2216 Record.push_back(VE.getValueID(C->getOperand(2))); 2217 break; 2218 case Instruction::ExtractElement: 2219 Code = bitc::CST_CODE_CE_EXTRACTELT; 2220 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2221 Record.push_back(VE.getValueID(C->getOperand(0))); 2222 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2223 Record.push_back(VE.getValueID(C->getOperand(1))); 2224 break; 2225 case Instruction::InsertElement: 2226 Code = bitc::CST_CODE_CE_INSERTELT; 2227 Record.push_back(VE.getValueID(C->getOperand(0))); 2228 Record.push_back(VE.getValueID(C->getOperand(1))); 2229 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2230 Record.push_back(VE.getValueID(C->getOperand(2))); 2231 break; 2232 case Instruction::ShuffleVector: 2233 // If the return type and argument types are the same, this is a 2234 // standard shufflevector instruction. If the types are different, 2235 // then the shuffle is widening or truncating the input vectors, and 2236 // the argument type must also be encoded. 2237 if (C->getType() == C->getOperand(0)->getType()) { 2238 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2239 } else { 2240 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2241 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2242 } 2243 Record.push_back(VE.getValueID(C->getOperand(0))); 2244 Record.push_back(VE.getValueID(C->getOperand(1))); 2245 Record.push_back(VE.getValueID(C->getOperand(2))); 2246 break; 2247 case Instruction::ICmp: 2248 case Instruction::FCmp: 2249 Code = bitc::CST_CODE_CE_CMP; 2250 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2251 Record.push_back(VE.getValueID(C->getOperand(0))); 2252 Record.push_back(VE.getValueID(C->getOperand(1))); 2253 Record.push_back(CE->getPredicate()); 2254 break; 2255 } 2256 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2257 Code = bitc::CST_CODE_BLOCKADDRESS; 2258 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2259 Record.push_back(VE.getValueID(BA->getFunction())); 2260 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2261 } else { 2262 #ifndef NDEBUG 2263 C->dump(); 2264 #endif 2265 llvm_unreachable("Unknown constant!"); 2266 } 2267 Stream.EmitRecord(Code, Record, AbbrevToUse); 2268 Record.clear(); 2269 } 2270 2271 Stream.ExitBlock(); 2272 } 2273 2274 void ModuleBitcodeWriter::writeModuleConstants() { 2275 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2276 2277 // Find the first constant to emit, which is the first non-globalvalue value. 2278 // We know globalvalues have been emitted by WriteModuleInfo. 2279 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2280 if (!isa<GlobalValue>(Vals[i].first)) { 2281 writeConstants(i, Vals.size(), true); 2282 return; 2283 } 2284 } 2285 } 2286 2287 /// pushValueAndType - The file has to encode both the value and type id for 2288 /// many values, because we need to know what type to create for forward 2289 /// references. However, most operands are not forward references, so this type 2290 /// field is not needed. 2291 /// 2292 /// This function adds V's value ID to Vals. If the value ID is higher than the 2293 /// instruction ID, then it is a forward reference, and it also includes the 2294 /// type ID. The value ID that is written is encoded relative to the InstID. 2295 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2296 SmallVectorImpl<unsigned> &Vals) { 2297 unsigned ValID = VE.getValueID(V); 2298 // Make encoding relative to the InstID. 2299 Vals.push_back(InstID - ValID); 2300 if (ValID >= InstID) { 2301 Vals.push_back(VE.getTypeID(V->getType())); 2302 return true; 2303 } 2304 return false; 2305 } 2306 2307 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2308 unsigned InstID) { 2309 SmallVector<unsigned, 64> Record; 2310 LLVMContext &C = CS.getInstruction()->getContext(); 2311 2312 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2313 const auto &Bundle = CS.getOperandBundleAt(i); 2314 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2315 2316 for (auto &Input : Bundle.Inputs) 2317 pushValueAndType(Input, InstID, Record); 2318 2319 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2320 Record.clear(); 2321 } 2322 } 2323 2324 /// pushValue - Like pushValueAndType, but where the type of the value is 2325 /// omitted (perhaps it was already encoded in an earlier operand). 2326 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2327 SmallVectorImpl<unsigned> &Vals) { 2328 unsigned ValID = VE.getValueID(V); 2329 Vals.push_back(InstID - ValID); 2330 } 2331 2332 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2333 SmallVectorImpl<uint64_t> &Vals) { 2334 unsigned ValID = VE.getValueID(V); 2335 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2336 emitSignedInt64(Vals, diff); 2337 } 2338 2339 /// WriteInstruction - Emit an instruction to the specified stream. 2340 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2341 unsigned InstID, 2342 SmallVectorImpl<unsigned> &Vals) { 2343 unsigned Code = 0; 2344 unsigned AbbrevToUse = 0; 2345 VE.setInstructionID(&I); 2346 switch (I.getOpcode()) { 2347 default: 2348 if (Instruction::isCast(I.getOpcode())) { 2349 Code = bitc::FUNC_CODE_INST_CAST; 2350 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2351 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2352 Vals.push_back(VE.getTypeID(I.getType())); 2353 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2354 } else { 2355 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2356 Code = bitc::FUNC_CODE_INST_BINOP; 2357 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2358 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2359 pushValue(I.getOperand(1), InstID, Vals); 2360 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2361 uint64_t Flags = getOptimizationFlags(&I); 2362 if (Flags != 0) { 2363 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2364 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2365 Vals.push_back(Flags); 2366 } 2367 } 2368 break; 2369 2370 case Instruction::GetElementPtr: { 2371 Code = bitc::FUNC_CODE_INST_GEP; 2372 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2373 auto &GEPInst = cast<GetElementPtrInst>(I); 2374 Vals.push_back(GEPInst.isInBounds()); 2375 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2376 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2377 pushValueAndType(I.getOperand(i), InstID, Vals); 2378 break; 2379 } 2380 case Instruction::ExtractValue: { 2381 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2382 pushValueAndType(I.getOperand(0), InstID, Vals); 2383 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2384 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2385 break; 2386 } 2387 case Instruction::InsertValue: { 2388 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2389 pushValueAndType(I.getOperand(0), InstID, Vals); 2390 pushValueAndType(I.getOperand(1), InstID, Vals); 2391 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2392 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2393 break; 2394 } 2395 case Instruction::Select: 2396 Code = bitc::FUNC_CODE_INST_VSELECT; 2397 pushValueAndType(I.getOperand(1), InstID, Vals); 2398 pushValue(I.getOperand(2), InstID, Vals); 2399 pushValueAndType(I.getOperand(0), InstID, Vals); 2400 break; 2401 case Instruction::ExtractElement: 2402 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2403 pushValueAndType(I.getOperand(0), InstID, Vals); 2404 pushValueAndType(I.getOperand(1), InstID, Vals); 2405 break; 2406 case Instruction::InsertElement: 2407 Code = bitc::FUNC_CODE_INST_INSERTELT; 2408 pushValueAndType(I.getOperand(0), InstID, Vals); 2409 pushValue(I.getOperand(1), InstID, Vals); 2410 pushValueAndType(I.getOperand(2), InstID, Vals); 2411 break; 2412 case Instruction::ShuffleVector: 2413 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2414 pushValueAndType(I.getOperand(0), InstID, Vals); 2415 pushValue(I.getOperand(1), InstID, Vals); 2416 pushValue(I.getOperand(2), InstID, Vals); 2417 break; 2418 case Instruction::ICmp: 2419 case Instruction::FCmp: { 2420 // compare returning Int1Ty or vector of Int1Ty 2421 Code = bitc::FUNC_CODE_INST_CMP2; 2422 pushValueAndType(I.getOperand(0), InstID, Vals); 2423 pushValue(I.getOperand(1), InstID, Vals); 2424 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2425 uint64_t Flags = getOptimizationFlags(&I); 2426 if (Flags != 0) 2427 Vals.push_back(Flags); 2428 break; 2429 } 2430 2431 case Instruction::Ret: 2432 { 2433 Code = bitc::FUNC_CODE_INST_RET; 2434 unsigned NumOperands = I.getNumOperands(); 2435 if (NumOperands == 0) 2436 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2437 else if (NumOperands == 1) { 2438 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2439 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2440 } else { 2441 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2442 pushValueAndType(I.getOperand(i), InstID, Vals); 2443 } 2444 } 2445 break; 2446 case Instruction::Br: 2447 { 2448 Code = bitc::FUNC_CODE_INST_BR; 2449 const BranchInst &II = cast<BranchInst>(I); 2450 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2451 if (II.isConditional()) { 2452 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2453 pushValue(II.getCondition(), InstID, Vals); 2454 } 2455 } 2456 break; 2457 case Instruction::Switch: 2458 { 2459 Code = bitc::FUNC_CODE_INST_SWITCH; 2460 const SwitchInst &SI = cast<SwitchInst>(I); 2461 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2462 pushValue(SI.getCondition(), InstID, Vals); 2463 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2464 for (SwitchInst::ConstCaseIt Case : SI.cases()) { 2465 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2466 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2467 } 2468 } 2469 break; 2470 case Instruction::IndirectBr: 2471 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2472 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2473 // Encode the address operand as relative, but not the basic blocks. 2474 pushValue(I.getOperand(0), InstID, Vals); 2475 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2476 Vals.push_back(VE.getValueID(I.getOperand(i))); 2477 break; 2478 2479 case Instruction::Invoke: { 2480 const InvokeInst *II = cast<InvokeInst>(&I); 2481 const Value *Callee = II->getCalledValue(); 2482 FunctionType *FTy = II->getFunctionType(); 2483 2484 if (II->hasOperandBundles()) 2485 writeOperandBundles(II, InstID); 2486 2487 Code = bitc::FUNC_CODE_INST_INVOKE; 2488 2489 Vals.push_back(VE.getAttributeID(II->getAttributes())); 2490 Vals.push_back(II->getCallingConv() | 1 << 13); 2491 Vals.push_back(VE.getValueID(II->getNormalDest())); 2492 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2493 Vals.push_back(VE.getTypeID(FTy)); 2494 pushValueAndType(Callee, InstID, Vals); 2495 2496 // Emit value #'s for the fixed parameters. 2497 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2498 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2499 2500 // Emit type/value pairs for varargs params. 2501 if (FTy->isVarArg()) { 2502 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 2503 i != e; ++i) 2504 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2505 } 2506 break; 2507 } 2508 case Instruction::Resume: 2509 Code = bitc::FUNC_CODE_INST_RESUME; 2510 pushValueAndType(I.getOperand(0), InstID, Vals); 2511 break; 2512 case Instruction::CleanupRet: { 2513 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2514 const auto &CRI = cast<CleanupReturnInst>(I); 2515 pushValue(CRI.getCleanupPad(), InstID, Vals); 2516 if (CRI.hasUnwindDest()) 2517 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2518 break; 2519 } 2520 case Instruction::CatchRet: { 2521 Code = bitc::FUNC_CODE_INST_CATCHRET; 2522 const auto &CRI = cast<CatchReturnInst>(I); 2523 pushValue(CRI.getCatchPad(), InstID, Vals); 2524 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2525 break; 2526 } 2527 case Instruction::CleanupPad: 2528 case Instruction::CatchPad: { 2529 const auto &FuncletPad = cast<FuncletPadInst>(I); 2530 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2531 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2532 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2533 2534 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2535 Vals.push_back(NumArgOperands); 2536 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2537 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2538 break; 2539 } 2540 case Instruction::CatchSwitch: { 2541 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2542 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2543 2544 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2545 2546 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2547 Vals.push_back(NumHandlers); 2548 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2549 Vals.push_back(VE.getValueID(CatchPadBB)); 2550 2551 if (CatchSwitch.hasUnwindDest()) 2552 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2553 break; 2554 } 2555 case Instruction::Unreachable: 2556 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2557 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2558 break; 2559 2560 case Instruction::PHI: { 2561 const PHINode &PN = cast<PHINode>(I); 2562 Code = bitc::FUNC_CODE_INST_PHI; 2563 // With the newer instruction encoding, forward references could give 2564 // negative valued IDs. This is most common for PHIs, so we use 2565 // signed VBRs. 2566 SmallVector<uint64_t, 128> Vals64; 2567 Vals64.push_back(VE.getTypeID(PN.getType())); 2568 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2569 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2570 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2571 } 2572 // Emit a Vals64 vector and exit. 2573 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2574 Vals64.clear(); 2575 return; 2576 } 2577 2578 case Instruction::LandingPad: { 2579 const LandingPadInst &LP = cast<LandingPadInst>(I); 2580 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2581 Vals.push_back(VE.getTypeID(LP.getType())); 2582 Vals.push_back(LP.isCleanup()); 2583 Vals.push_back(LP.getNumClauses()); 2584 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2585 if (LP.isCatch(I)) 2586 Vals.push_back(LandingPadInst::Catch); 2587 else 2588 Vals.push_back(LandingPadInst::Filter); 2589 pushValueAndType(LP.getClause(I), InstID, Vals); 2590 } 2591 break; 2592 } 2593 2594 case Instruction::Alloca: { 2595 Code = bitc::FUNC_CODE_INST_ALLOCA; 2596 const AllocaInst &AI = cast<AllocaInst>(I); 2597 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2598 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2599 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2600 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2601 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2602 "not enough bits for maximum alignment"); 2603 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2604 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2605 AlignRecord |= 1 << 6; 2606 AlignRecord |= AI.isSwiftError() << 7; 2607 Vals.push_back(AlignRecord); 2608 break; 2609 } 2610 2611 case Instruction::Load: 2612 if (cast<LoadInst>(I).isAtomic()) { 2613 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2614 pushValueAndType(I.getOperand(0), InstID, Vals); 2615 } else { 2616 Code = bitc::FUNC_CODE_INST_LOAD; 2617 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2618 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2619 } 2620 Vals.push_back(VE.getTypeID(I.getType())); 2621 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2622 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2623 if (cast<LoadInst>(I).isAtomic()) { 2624 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2625 Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2626 } 2627 break; 2628 case Instruction::Store: 2629 if (cast<StoreInst>(I).isAtomic()) 2630 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2631 else 2632 Code = bitc::FUNC_CODE_INST_STORE; 2633 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2634 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2635 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2636 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2637 if (cast<StoreInst>(I).isAtomic()) { 2638 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2639 Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2640 } 2641 break; 2642 case Instruction::AtomicCmpXchg: 2643 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2644 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2645 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2646 pushValue(I.getOperand(2), InstID, Vals); // newval. 2647 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2648 Vals.push_back( 2649 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2650 Vals.push_back( 2651 getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope())); 2652 Vals.push_back( 2653 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2654 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2655 break; 2656 case Instruction::AtomicRMW: 2657 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2658 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2659 pushValue(I.getOperand(1), InstID, Vals); // val. 2660 Vals.push_back( 2661 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2662 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2663 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2664 Vals.push_back( 2665 getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope())); 2666 break; 2667 case Instruction::Fence: 2668 Code = bitc::FUNC_CODE_INST_FENCE; 2669 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2670 Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2671 break; 2672 case Instruction::Call: { 2673 const CallInst &CI = cast<CallInst>(I); 2674 FunctionType *FTy = CI.getFunctionType(); 2675 2676 if (CI.hasOperandBundles()) 2677 writeOperandBundles(&CI, InstID); 2678 2679 Code = bitc::FUNC_CODE_INST_CALL; 2680 2681 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 2682 2683 unsigned Flags = getOptimizationFlags(&I); 2684 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2685 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2686 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2687 1 << bitc::CALL_EXPLICIT_TYPE | 2688 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2689 unsigned(Flags != 0) << bitc::CALL_FMF); 2690 if (Flags != 0) 2691 Vals.push_back(Flags); 2692 2693 Vals.push_back(VE.getTypeID(FTy)); 2694 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2695 2696 // Emit value #'s for the fixed parameters. 2697 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2698 // Check for labels (can happen with asm labels). 2699 if (FTy->getParamType(i)->isLabelTy()) 2700 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2701 else 2702 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2703 } 2704 2705 // Emit type/value pairs for varargs params. 2706 if (FTy->isVarArg()) { 2707 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2708 i != e; ++i) 2709 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2710 } 2711 break; 2712 } 2713 case Instruction::VAArg: 2714 Code = bitc::FUNC_CODE_INST_VAARG; 2715 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2716 pushValue(I.getOperand(0), InstID, Vals); // valist. 2717 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2718 break; 2719 } 2720 2721 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2722 Vals.clear(); 2723 } 2724 2725 /// Emit names for globals/functions etc. \p IsModuleLevel is true when 2726 /// we are writing the module-level VST, where we are including a function 2727 /// bitcode index and need to backpatch the VST forward declaration record. 2728 void ModuleBitcodeWriter::writeValueSymbolTable( 2729 const ValueSymbolTable &VST, bool IsModuleLevel, 2730 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex) { 2731 if (VST.empty()) { 2732 // writeValueSymbolTableForwardDecl should have returned early as 2733 // well. Ensure this handling remains in sync by asserting that 2734 // the placeholder offset is not set. 2735 assert(!IsModuleLevel || !hasVSTOffsetPlaceholder()); 2736 return; 2737 } 2738 2739 if (IsModuleLevel && hasVSTOffsetPlaceholder()) { 2740 // Get the offset of the VST we are writing, and backpatch it into 2741 // the VST forward declaration record. 2742 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2743 // The BitcodeStartBit was the stream offset of the actual bitcode 2744 // (e.g. excluding any initial darwin header). 2745 VSTOffset -= bitcodeStartBit(); 2746 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2747 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2748 } 2749 2750 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2751 2752 // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY 2753 // records, which are not used in the per-function VSTs. 2754 unsigned FnEntry8BitAbbrev; 2755 unsigned FnEntry7BitAbbrev; 2756 unsigned FnEntry6BitAbbrev; 2757 unsigned GUIDEntryAbbrev; 2758 if (IsModuleLevel && hasVSTOffsetPlaceholder()) { 2759 // 8-bit fixed-width VST_CODE_FNENTRY function strings. 2760 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2761 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2762 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2763 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2764 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2765 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2766 FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv); 2767 2768 // 7-bit fixed width VST_CODE_FNENTRY function strings. 2769 Abbv = new BitCodeAbbrev(); 2770 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2771 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2773 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2775 FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv); 2776 2777 // 6-bit char6 VST_CODE_FNENTRY function strings. 2778 Abbv = new BitCodeAbbrev(); 2779 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2780 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2784 FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv); 2785 2786 // FIXME: Change the name of this record as it is now used by 2787 // the per-module index as well. 2788 Abbv = new BitCodeAbbrev(); 2789 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 2790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 2792 GUIDEntryAbbrev = Stream.EmitAbbrev(Abbv); 2793 } 2794 2795 // FIXME: Set up the abbrev, we know how many values there are! 2796 // FIXME: We know if the type names can use 7-bit ascii. 2797 SmallVector<uint64_t, 64> NameVals; 2798 2799 for (const ValueName &Name : VST) { 2800 // Figure out the encoding to use for the name. 2801 StringEncoding Bits = 2802 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2803 2804 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2805 NameVals.push_back(VE.getValueID(Name.getValue())); 2806 2807 Function *F = dyn_cast<Function>(Name.getValue()); 2808 if (!F) { 2809 // If value is an alias, need to get the aliased base object to 2810 // see if it is a function. 2811 auto *GA = dyn_cast<GlobalAlias>(Name.getValue()); 2812 if (GA && GA->getBaseObject()) 2813 F = dyn_cast<Function>(GA->getBaseObject()); 2814 } 2815 2816 // VST_CODE_ENTRY: [valueid, namechar x N] 2817 // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N] 2818 // VST_CODE_BBENTRY: [bbid, namechar x N] 2819 unsigned Code; 2820 if (isa<BasicBlock>(Name.getValue())) { 2821 Code = bitc::VST_CODE_BBENTRY; 2822 if (Bits == SE_Char6) 2823 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2824 } else if (F && !F->isDeclaration()) { 2825 // Must be the module-level VST, where we pass in the Index and 2826 // have a VSTOffsetPlaceholder. The function-level VST should not 2827 // contain any Function symbols. 2828 assert(FunctionToBitcodeIndex); 2829 assert(hasVSTOffsetPlaceholder()); 2830 2831 // Save the word offset of the function (from the start of the 2832 // actual bitcode written to the stream). 2833 uint64_t BitcodeIndex = (*FunctionToBitcodeIndex)[F] - bitcodeStartBit(); 2834 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2835 NameVals.push_back(BitcodeIndex / 32); 2836 2837 Code = bitc::VST_CODE_FNENTRY; 2838 AbbrevToUse = FnEntry8BitAbbrev; 2839 if (Bits == SE_Char6) 2840 AbbrevToUse = FnEntry6BitAbbrev; 2841 else if (Bits == SE_Fixed7) 2842 AbbrevToUse = FnEntry7BitAbbrev; 2843 } else { 2844 Code = bitc::VST_CODE_ENTRY; 2845 if (Bits == SE_Char6) 2846 AbbrevToUse = VST_ENTRY_6_ABBREV; 2847 else if (Bits == SE_Fixed7) 2848 AbbrevToUse = VST_ENTRY_7_ABBREV; 2849 } 2850 2851 for (const auto P : Name.getKey()) 2852 NameVals.push_back((unsigned char)P); 2853 2854 // Emit the finished record. 2855 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2856 NameVals.clear(); 2857 } 2858 // Emit any GUID valueIDs created for indirect call edges into the 2859 // module-level VST. 2860 if (IsModuleLevel && hasVSTOffsetPlaceholder()) 2861 for (const auto &GI : valueIds()) { 2862 NameVals.push_back(GI.second); 2863 NameVals.push_back(GI.first); 2864 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, 2865 GUIDEntryAbbrev); 2866 NameVals.clear(); 2867 } 2868 Stream.ExitBlock(); 2869 } 2870 2871 /// Emit function names and summary offsets for the combined index 2872 /// used by ThinLTO. 2873 void IndexBitcodeWriter::writeCombinedValueSymbolTable() { 2874 assert(hasVSTOffsetPlaceholder() && "Expected non-zero VSTOffsetPlaceholder"); 2875 // Get the offset of the VST we are writing, and backpatch it into 2876 // the VST forward declaration record. 2877 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2878 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2879 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2880 2881 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2882 2883 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2884 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 2885 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2886 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 2887 unsigned EntryAbbrev = Stream.EmitAbbrev(Abbv); 2888 2889 SmallVector<uint64_t, 64> NameVals; 2890 for (const auto &GVI : valueIds()) { 2891 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 2892 NameVals.push_back(GVI.second); 2893 NameVals.push_back(GVI.first); 2894 2895 // Emit the finished record. 2896 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev); 2897 NameVals.clear(); 2898 } 2899 Stream.ExitBlock(); 2900 } 2901 2902 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 2903 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2904 unsigned Code; 2905 if (isa<BasicBlock>(Order.V)) 2906 Code = bitc::USELIST_CODE_BB; 2907 else 2908 Code = bitc::USELIST_CODE_DEFAULT; 2909 2910 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2911 Record.push_back(VE.getValueID(Order.V)); 2912 Stream.EmitRecord(Code, Record); 2913 } 2914 2915 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 2916 assert(VE.shouldPreserveUseListOrder() && 2917 "Expected to be preserving use-list order"); 2918 2919 auto hasMore = [&]() { 2920 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2921 }; 2922 if (!hasMore()) 2923 // Nothing to do. 2924 return; 2925 2926 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2927 while (hasMore()) { 2928 writeUseList(std::move(VE.UseListOrders.back())); 2929 VE.UseListOrders.pop_back(); 2930 } 2931 Stream.ExitBlock(); 2932 } 2933 2934 /// Emit a function body to the module stream. 2935 void ModuleBitcodeWriter::writeFunction( 2936 const Function &F, 2937 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2938 // Save the bitcode index of the start of this function block for recording 2939 // in the VST. 2940 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 2941 2942 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2943 VE.incorporateFunction(F); 2944 2945 SmallVector<unsigned, 64> Vals; 2946 2947 // Emit the number of basic blocks, so the reader can create them ahead of 2948 // time. 2949 Vals.push_back(VE.getBasicBlocks().size()); 2950 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2951 Vals.clear(); 2952 2953 // If there are function-local constants, emit them now. 2954 unsigned CstStart, CstEnd; 2955 VE.getFunctionConstantRange(CstStart, CstEnd); 2956 writeConstants(CstStart, CstEnd, false); 2957 2958 // If there is function-local metadata, emit it now. 2959 writeFunctionMetadata(F); 2960 2961 // Keep a running idea of what the instruction ID is. 2962 unsigned InstID = CstEnd; 2963 2964 bool NeedsMetadataAttachment = F.hasMetadata(); 2965 2966 DILocation *LastDL = nullptr; 2967 // Finally, emit all the instructions, in order. 2968 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2969 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2970 I != E; ++I) { 2971 writeInstruction(*I, InstID, Vals); 2972 2973 if (!I->getType()->isVoidTy()) 2974 ++InstID; 2975 2976 // If the instruction has metadata, write a metadata attachment later. 2977 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2978 2979 // If the instruction has a debug location, emit it. 2980 DILocation *DL = I->getDebugLoc(); 2981 if (!DL) 2982 continue; 2983 2984 if (DL == LastDL) { 2985 // Just repeat the same debug loc as last time. 2986 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2987 continue; 2988 } 2989 2990 Vals.push_back(DL->getLine()); 2991 Vals.push_back(DL->getColumn()); 2992 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2993 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2994 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2995 Vals.clear(); 2996 2997 LastDL = DL; 2998 } 2999 3000 // Emit names for all the instructions etc. 3001 writeValueSymbolTable(F.getValueSymbolTable()); 3002 3003 if (NeedsMetadataAttachment) 3004 writeFunctionMetadataAttachment(F); 3005 if (VE.shouldPreserveUseListOrder()) 3006 writeUseListBlock(&F); 3007 VE.purgeFunction(); 3008 Stream.ExitBlock(); 3009 } 3010 3011 // Emit blockinfo, which defines the standard abbreviations etc. 3012 void ModuleBitcodeWriter::writeBlockInfo() { 3013 // We only want to emit block info records for blocks that have multiple 3014 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3015 // Other blocks can define their abbrevs inline. 3016 Stream.EnterBlockInfoBlock(2); 3017 3018 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3019 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3020 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3021 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3022 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3023 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3024 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3025 VST_ENTRY_8_ABBREV) 3026 llvm_unreachable("Unexpected abbrev ordering!"); 3027 } 3028 3029 { // 7-bit fixed width VST_CODE_ENTRY strings. 3030 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3031 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3032 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3033 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3034 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3035 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3036 VST_ENTRY_7_ABBREV) 3037 llvm_unreachable("Unexpected abbrev ordering!"); 3038 } 3039 { // 6-bit char6 VST_CODE_ENTRY strings. 3040 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3041 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3042 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3043 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3044 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3045 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3046 VST_ENTRY_6_ABBREV) 3047 llvm_unreachable("Unexpected abbrev ordering!"); 3048 } 3049 { // 6-bit char6 VST_CODE_BBENTRY strings. 3050 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3051 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3055 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3056 VST_BBENTRY_6_ABBREV) 3057 llvm_unreachable("Unexpected abbrev ordering!"); 3058 } 3059 3060 3061 3062 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3063 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3064 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3066 VE.computeBitsRequiredForTypeIndicies())); 3067 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3068 CONSTANTS_SETTYPE_ABBREV) 3069 llvm_unreachable("Unexpected abbrev ordering!"); 3070 } 3071 3072 { // INTEGER abbrev for CONSTANTS_BLOCK. 3073 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3074 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3076 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3077 CONSTANTS_INTEGER_ABBREV) 3078 llvm_unreachable("Unexpected abbrev ordering!"); 3079 } 3080 3081 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3082 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3083 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3085 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3086 VE.computeBitsRequiredForTypeIndicies())); 3087 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3088 3089 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3090 CONSTANTS_CE_CAST_Abbrev) 3091 llvm_unreachable("Unexpected abbrev ordering!"); 3092 } 3093 { // NULL abbrev for CONSTANTS_BLOCK. 3094 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3095 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3096 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3097 CONSTANTS_NULL_Abbrev) 3098 llvm_unreachable("Unexpected abbrev ordering!"); 3099 } 3100 3101 // FIXME: This should only use space for first class types! 3102 3103 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3104 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3105 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3106 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3107 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3108 VE.computeBitsRequiredForTypeIndicies())); 3109 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3110 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3111 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3112 FUNCTION_INST_LOAD_ABBREV) 3113 llvm_unreachable("Unexpected abbrev ordering!"); 3114 } 3115 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3116 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3117 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3118 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3119 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3120 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3121 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3122 FUNCTION_INST_BINOP_ABBREV) 3123 llvm_unreachable("Unexpected abbrev ordering!"); 3124 } 3125 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3126 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3127 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3132 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3133 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3134 llvm_unreachable("Unexpected abbrev ordering!"); 3135 } 3136 { // INST_CAST abbrev for FUNCTION_BLOCK. 3137 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3138 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3140 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3141 VE.computeBitsRequiredForTypeIndicies())); 3142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3143 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3144 FUNCTION_INST_CAST_ABBREV) 3145 llvm_unreachable("Unexpected abbrev ordering!"); 3146 } 3147 3148 { // INST_RET abbrev for FUNCTION_BLOCK. 3149 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3150 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3151 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3152 FUNCTION_INST_RET_VOID_ABBREV) 3153 llvm_unreachable("Unexpected abbrev ordering!"); 3154 } 3155 { // INST_RET abbrev for FUNCTION_BLOCK. 3156 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3157 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3159 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3160 FUNCTION_INST_RET_VAL_ABBREV) 3161 llvm_unreachable("Unexpected abbrev ordering!"); 3162 } 3163 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3164 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3165 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3166 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3167 FUNCTION_INST_UNREACHABLE_ABBREV) 3168 llvm_unreachable("Unexpected abbrev ordering!"); 3169 } 3170 { 3171 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3172 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3175 Log2_32_Ceil(VE.getTypes().size() + 1))); 3176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3178 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3179 FUNCTION_INST_GEP_ABBREV) 3180 llvm_unreachable("Unexpected abbrev ordering!"); 3181 } 3182 3183 Stream.ExitBlock(); 3184 } 3185 3186 /// Write the module path strings, currently only used when generating 3187 /// a combined index file. 3188 void IndexBitcodeWriter::writeModStrings() { 3189 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3190 3191 // TODO: See which abbrev sizes we actually need to emit 3192 3193 // 8-bit fixed-width MST_ENTRY strings. 3194 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3195 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3199 unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv); 3200 3201 // 7-bit fixed width MST_ENTRY strings. 3202 Abbv = new BitCodeAbbrev(); 3203 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3205 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3206 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3207 unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv); 3208 3209 // 6-bit char6 MST_ENTRY strings. 3210 Abbv = new BitCodeAbbrev(); 3211 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3215 unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv); 3216 3217 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3218 Abbv = new BitCodeAbbrev(); 3219 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3222 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3224 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3225 unsigned AbbrevHash = Stream.EmitAbbrev(Abbv); 3226 3227 SmallVector<unsigned, 64> Vals; 3228 for (const auto &MPSE : Index.modulePaths()) { 3229 if (!doIncludeModule(MPSE.getKey())) 3230 continue; 3231 StringEncoding Bits = 3232 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 3233 unsigned AbbrevToUse = Abbrev8Bit; 3234 if (Bits == SE_Char6) 3235 AbbrevToUse = Abbrev6Bit; 3236 else if (Bits == SE_Fixed7) 3237 AbbrevToUse = Abbrev7Bit; 3238 3239 Vals.push_back(MPSE.getValue().first); 3240 3241 for (const auto P : MPSE.getKey()) 3242 Vals.push_back((unsigned char)P); 3243 3244 // Emit the finished record. 3245 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3246 3247 Vals.clear(); 3248 // Emit an optional hash for the module now 3249 auto &Hash = MPSE.getValue().second; 3250 bool AllZero = true; // Detect if the hash is empty, and do not generate it 3251 for (auto Val : Hash) { 3252 if (Val) 3253 AllZero = false; 3254 Vals.push_back(Val); 3255 } 3256 if (!AllZero) { 3257 // Emit the hash record. 3258 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3259 } 3260 3261 Vals.clear(); 3262 } 3263 Stream.ExitBlock(); 3264 } 3265 3266 // Helper to emit a single function summary record. 3267 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord( 3268 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3269 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3270 const Function &F) { 3271 NameVals.push_back(ValueID); 3272 3273 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3274 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3275 NameVals.push_back(FS->instCount()); 3276 NameVals.push_back(FS->refs().size()); 3277 3278 unsigned SizeBeforeRefs = NameVals.size(); 3279 for (auto &RI : FS->refs()) 3280 NameVals.push_back(VE.getValueID(RI.getValue())); 3281 // Sort the refs for determinism output, the vector returned by FS->refs() has 3282 // been initialized from a DenseSet. 3283 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3284 3285 std::vector<FunctionSummary::EdgeTy> Calls = FS->calls(); 3286 std::sort(Calls.begin(), Calls.end(), 3287 [this](const FunctionSummary::EdgeTy &L, 3288 const FunctionSummary::EdgeTy &R) { 3289 return getValueId(L.first) < getValueId(R.first); 3290 }); 3291 bool HasProfileData = F.getEntryCount().hasValue(); 3292 for (auto &ECI : Calls) { 3293 NameVals.push_back(getValueId(ECI.first)); 3294 assert(ECI.second.CallsiteCount > 0 && "Expected at least one callsite"); 3295 NameVals.push_back(ECI.second.CallsiteCount); 3296 if (HasProfileData) 3297 NameVals.push_back(ECI.second.ProfileCount); 3298 } 3299 3300 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3301 unsigned Code = 3302 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3303 3304 // Emit the finished record. 3305 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3306 NameVals.clear(); 3307 } 3308 3309 // Collect the global value references in the given variable's initializer, 3310 // and emit them in a summary record. 3311 void ModuleBitcodeWriter::writeModuleLevelReferences( 3312 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3313 unsigned FSModRefsAbbrev) { 3314 // Only interested in recording variable defs in the summary. 3315 if (V.isDeclaration()) 3316 return; 3317 NameVals.push_back(VE.getValueID(&V)); 3318 NameVals.push_back(getEncodedGVSummaryFlags(V)); 3319 auto *Summary = Index->getGlobalValueSummary(V); 3320 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3321 3322 unsigned SizeBeforeRefs = NameVals.size(); 3323 for (auto &RI : VS->refs()) 3324 NameVals.push_back(VE.getValueID(RI.getValue())); 3325 // Sort the refs for determinism output, the vector returned by FS->refs() has 3326 // been initialized from a DenseSet. 3327 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3328 3329 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3330 FSModRefsAbbrev); 3331 NameVals.clear(); 3332 } 3333 3334 // Current version for the summary. 3335 // This is bumped whenever we introduce changes in the way some record are 3336 // interpreted, like flags for instance. 3337 static const uint64_t INDEX_VERSION = 1; 3338 3339 /// Emit the per-module summary section alongside the rest of 3340 /// the module's bitcode. 3341 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() { 3342 if (Index->begin() == Index->end()) 3343 return; 3344 3345 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 3346 3347 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3348 3349 // Abbrev for FS_PERMODULE. 3350 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3351 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3356 // numrefs x valueid, n x (valueid, callsitecount) 3357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3359 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 3360 3361 // Abbrev for FS_PERMODULE_PROFILE. 3362 Abbv = new BitCodeAbbrev(); 3363 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3368 // numrefs x valueid, n x (valueid, callsitecount, profilecount) 3369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3371 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 3372 3373 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3374 Abbv = new BitCodeAbbrev(); 3375 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3380 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 3381 3382 // Abbrev for FS_ALIAS. 3383 Abbv = new BitCodeAbbrev(); 3384 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3388 unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv); 3389 3390 SmallVector<uint64_t, 64> NameVals; 3391 // Iterate over the list of functions instead of the Index to 3392 // ensure the ordering is stable. 3393 for (const Function &F : M) { 3394 if (F.isDeclaration()) 3395 continue; 3396 // Summary emission does not support anonymous functions, they have to 3397 // renamed using the anonymous function renaming pass. 3398 if (!F.hasName()) 3399 report_fatal_error("Unexpected anonymous function when writing summary"); 3400 3401 auto *Summary = Index->getGlobalValueSummary(F); 3402 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3403 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3404 } 3405 3406 // Capture references from GlobalVariable initializers, which are outside 3407 // of a function scope. 3408 for (const GlobalVariable &G : M.globals()) 3409 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3410 3411 for (const GlobalAlias &A : M.aliases()) { 3412 auto *Aliasee = A.getBaseObject(); 3413 if (!Aliasee->hasName()) 3414 // Nameless function don't have an entry in the summary, skip it. 3415 continue; 3416 auto AliasId = VE.getValueID(&A); 3417 auto AliaseeId = VE.getValueID(Aliasee); 3418 NameVals.push_back(AliasId); 3419 NameVals.push_back(getEncodedGVSummaryFlags(A)); 3420 NameVals.push_back(AliaseeId); 3421 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3422 NameVals.clear(); 3423 } 3424 3425 Stream.ExitBlock(); 3426 } 3427 3428 /// Emit the combined summary section into the combined index file. 3429 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3430 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3431 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3432 3433 // Abbrev for FS_COMBINED. 3434 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3435 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3441 // numrefs x valueid, n x (valueid, callsitecount) 3442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3443 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3444 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 3445 3446 // Abbrev for FS_COMBINED_PROFILE. 3447 Abbv = new BitCodeAbbrev(); 3448 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3454 // numrefs x valueid, n x (valueid, callsitecount, profilecount) 3455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3457 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 3458 3459 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3460 Abbv = new BitCodeAbbrev(); 3461 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3467 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 3468 3469 // Abbrev for FS_COMBINED_ALIAS. 3470 Abbv = new BitCodeAbbrev(); 3471 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3474 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3475 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3476 unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv); 3477 3478 // The aliases are emitted as a post-pass, and will point to the value 3479 // id of the aliasee. Save them in a vector for post-processing. 3480 SmallVector<AliasSummary *, 64> Aliases; 3481 3482 // Save the value id for each summary for alias emission. 3483 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3484 3485 SmallVector<uint64_t, 64> NameVals; 3486 3487 // For local linkage, we also emit the original name separately 3488 // immediately after the record. 3489 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3490 if (!GlobalValue::isLocalLinkage(S.linkage())) 3491 return; 3492 NameVals.push_back(S.getOriginalName()); 3493 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3494 NameVals.clear(); 3495 }; 3496 3497 for (const auto &I : *this) { 3498 GlobalValueSummary *S = I.second; 3499 assert(S); 3500 3501 assert(hasValueId(I.first)); 3502 unsigned ValueId = getValueId(I.first); 3503 SummaryToValueIdMap[S] = ValueId; 3504 3505 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3506 // Will process aliases as a post-pass because the reader wants all 3507 // global to be loaded first. 3508 Aliases.push_back(AS); 3509 continue; 3510 } 3511 3512 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3513 NameVals.push_back(ValueId); 3514 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3515 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3516 for (auto &RI : VS->refs()) { 3517 NameVals.push_back(getValueId(RI.getGUID())); 3518 } 3519 3520 // Emit the finished record. 3521 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3522 FSModRefsAbbrev); 3523 NameVals.clear(); 3524 MaybeEmitOriginalName(*S); 3525 continue; 3526 } 3527 3528 auto *FS = cast<FunctionSummary>(S); 3529 NameVals.push_back(ValueId); 3530 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3531 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3532 NameVals.push_back(FS->instCount()); 3533 NameVals.push_back(FS->refs().size()); 3534 3535 for (auto &RI : FS->refs()) { 3536 NameVals.push_back(getValueId(RI.getGUID())); 3537 } 3538 3539 bool HasProfileData = false; 3540 for (auto &EI : FS->calls()) { 3541 HasProfileData |= EI.second.ProfileCount != 0; 3542 if (HasProfileData) 3543 break; 3544 } 3545 3546 for (auto &EI : FS->calls()) { 3547 // If this GUID doesn't have a value id, it doesn't have a function 3548 // summary and we don't need to record any calls to it. 3549 if (!hasValueId(EI.first.getGUID())) 3550 continue; 3551 NameVals.push_back(getValueId(EI.first.getGUID())); 3552 assert(EI.second.CallsiteCount > 0 && "Expected at least one callsite"); 3553 NameVals.push_back(EI.second.CallsiteCount); 3554 if (HasProfileData) 3555 NameVals.push_back(EI.second.ProfileCount); 3556 } 3557 3558 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3559 unsigned Code = 3560 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3561 3562 // Emit the finished record. 3563 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3564 NameVals.clear(); 3565 MaybeEmitOriginalName(*S); 3566 } 3567 3568 for (auto *AS : Aliases) { 3569 auto AliasValueId = SummaryToValueIdMap[AS]; 3570 assert(AliasValueId); 3571 NameVals.push_back(AliasValueId); 3572 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3573 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3574 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3575 assert(AliaseeValueId); 3576 NameVals.push_back(AliaseeValueId); 3577 3578 // Emit the finished record. 3579 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3580 NameVals.clear(); 3581 MaybeEmitOriginalName(*AS); 3582 } 3583 3584 Stream.ExitBlock(); 3585 } 3586 3587 void ModuleBitcodeWriter::writeIdentificationBlock() { 3588 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3589 3590 // Write the "user readable" string identifying the bitcode producer 3591 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3592 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3595 auto StringAbbrev = Stream.EmitAbbrev(Abbv); 3596 writeStringRecord(bitc::IDENTIFICATION_CODE_STRING, 3597 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3598 3599 // Write the epoch version 3600 Abbv = new BitCodeAbbrev(); 3601 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3603 auto EpochAbbrev = Stream.EmitAbbrev(Abbv); 3604 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3605 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3606 Stream.ExitBlock(); 3607 } 3608 3609 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3610 // Emit the module's hash. 3611 // MODULE_CODE_HASH: [5*i32] 3612 SHA1 Hasher; 3613 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3614 Buffer.size() - BlockStartPos)); 3615 auto Hash = Hasher.result(); 3616 SmallVector<uint64_t, 20> Vals; 3617 auto LShift = [&](unsigned char Val, unsigned Amount) 3618 -> uint64_t { return ((uint64_t)Val) << Amount; }; 3619 for (int Pos = 0; Pos < 20; Pos += 4) { 3620 uint32_t SubHash = LShift(Hash[Pos + 0], 24); 3621 SubHash |= LShift(Hash[Pos + 1], 16) | LShift(Hash[Pos + 2], 8) | 3622 (unsigned)(unsigned char)Hash[Pos + 3]; 3623 Vals.push_back(SubHash); 3624 } 3625 3626 // Emit the finished record. 3627 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3628 } 3629 3630 void BitcodeWriter::write() { 3631 // Emit the file header first. 3632 writeBitcodeHeader(); 3633 3634 writeBlocks(); 3635 } 3636 3637 void ModuleBitcodeWriter::writeBlocks() { 3638 writeIdentificationBlock(); 3639 writeModule(); 3640 } 3641 3642 void IndexBitcodeWriter::writeBlocks() { 3643 // Index contains only a single outer (module) block. 3644 writeIndex(); 3645 } 3646 3647 void ModuleBitcodeWriter::writeModule() { 3648 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3649 size_t BlockStartPos = Buffer.size(); 3650 3651 SmallVector<unsigned, 1> Vals; 3652 unsigned CurVersion = 1; 3653 Vals.push_back(CurVersion); 3654 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3655 3656 // Emit blockinfo, which defines the standard abbreviations etc. 3657 writeBlockInfo(); 3658 3659 // Emit information about attribute groups. 3660 writeAttributeGroupTable(); 3661 3662 // Emit information about parameter attributes. 3663 writeAttributeTable(); 3664 3665 // Emit information describing all of the types in the module. 3666 writeTypeTable(); 3667 3668 writeComdats(); 3669 3670 // Emit top-level description of module, including target triple, inline asm, 3671 // descriptors for global variables, and function prototype info. 3672 writeModuleInfo(); 3673 3674 // Emit constants. 3675 writeModuleConstants(); 3676 3677 // Emit metadata kind names. 3678 writeModuleMetadataKinds(); 3679 3680 // Emit metadata. 3681 writeModuleMetadata(); 3682 3683 // Emit module-level use-lists. 3684 if (VE.shouldPreserveUseListOrder()) 3685 writeUseListBlock(nullptr); 3686 3687 writeOperandBundleTags(); 3688 3689 // Emit function bodies. 3690 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3691 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3692 if (!F->isDeclaration()) 3693 writeFunction(*F, FunctionToBitcodeIndex); 3694 3695 // Need to write after the above call to WriteFunction which populates 3696 // the summary information in the index. 3697 if (Index) 3698 writePerModuleGlobalValueSummary(); 3699 3700 writeValueSymbolTable(M.getValueSymbolTable(), 3701 /* IsModuleLevel */ true, &FunctionToBitcodeIndex); 3702 3703 if (GenerateHash) { 3704 writeModuleHash(BlockStartPos); 3705 } 3706 3707 Stream.ExitBlock(); 3708 } 3709 3710 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3711 uint32_t &Position) { 3712 support::endian::write32le(&Buffer[Position], Value); 3713 Position += 4; 3714 } 3715 3716 /// If generating a bc file on darwin, we have to emit a 3717 /// header and trailer to make it compatible with the system archiver. To do 3718 /// this we emit the following header, and then emit a trailer that pads the 3719 /// file out to be a multiple of 16 bytes. 3720 /// 3721 /// struct bc_header { 3722 /// uint32_t Magic; // 0x0B17C0DE 3723 /// uint32_t Version; // Version, currently always 0. 3724 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3725 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3726 /// uint32_t CPUType; // CPU specifier. 3727 /// ... potentially more later ... 3728 /// }; 3729 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3730 const Triple &TT) { 3731 unsigned CPUType = ~0U; 3732 3733 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3734 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3735 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3736 // specific constants here because they are implicitly part of the Darwin ABI. 3737 enum { 3738 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3739 DARWIN_CPU_TYPE_X86 = 7, 3740 DARWIN_CPU_TYPE_ARM = 12, 3741 DARWIN_CPU_TYPE_POWERPC = 18 3742 }; 3743 3744 Triple::ArchType Arch = TT.getArch(); 3745 if (Arch == Triple::x86_64) 3746 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3747 else if (Arch == Triple::x86) 3748 CPUType = DARWIN_CPU_TYPE_X86; 3749 else if (Arch == Triple::ppc) 3750 CPUType = DARWIN_CPU_TYPE_POWERPC; 3751 else if (Arch == Triple::ppc64) 3752 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3753 else if (Arch == Triple::arm || Arch == Triple::thumb) 3754 CPUType = DARWIN_CPU_TYPE_ARM; 3755 3756 // Traditional Bitcode starts after header. 3757 assert(Buffer.size() >= BWH_HeaderSize && 3758 "Expected header size to be reserved"); 3759 unsigned BCOffset = BWH_HeaderSize; 3760 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3761 3762 // Write the magic and version. 3763 unsigned Position = 0; 3764 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3765 writeInt32ToBuffer(0, Buffer, Position); // Version. 3766 writeInt32ToBuffer(BCOffset, Buffer, Position); 3767 writeInt32ToBuffer(BCSize, Buffer, Position); 3768 writeInt32ToBuffer(CPUType, Buffer, Position); 3769 3770 // If the file is not a multiple of 16 bytes, insert dummy padding. 3771 while (Buffer.size() & 15) 3772 Buffer.push_back(0); 3773 } 3774 3775 /// Helper to write the header common to all bitcode files. 3776 void BitcodeWriter::writeBitcodeHeader() { 3777 // Emit the file header. 3778 Stream.Emit((unsigned)'B', 8); 3779 Stream.Emit((unsigned)'C', 8); 3780 Stream.Emit(0x0, 4); 3781 Stream.Emit(0xC, 4); 3782 Stream.Emit(0xE, 4); 3783 Stream.Emit(0xD, 4); 3784 } 3785 3786 /// WriteBitcodeToFile - Write the specified module to the specified output 3787 /// stream. 3788 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3789 bool ShouldPreserveUseListOrder, 3790 const ModuleSummaryIndex *Index, 3791 bool GenerateHash) { 3792 SmallVector<char, 0> Buffer; 3793 Buffer.reserve(256*1024); 3794 3795 // If this is darwin or another generic macho target, reserve space for the 3796 // header. 3797 Triple TT(M->getTargetTriple()); 3798 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3799 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3800 3801 // Emit the module into the buffer. 3802 ModuleBitcodeWriter ModuleWriter(M, Buffer, ShouldPreserveUseListOrder, Index, 3803 GenerateHash); 3804 ModuleWriter.write(); 3805 3806 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3807 emitDarwinBCHeaderAndTrailer(Buffer, TT); 3808 3809 // Write the generated bitstream to "Out". 3810 Out.write((char*)&Buffer.front(), Buffer.size()); 3811 } 3812 3813 void IndexBitcodeWriter::writeIndex() { 3814 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3815 3816 SmallVector<unsigned, 1> Vals; 3817 unsigned CurVersion = 1; 3818 Vals.push_back(CurVersion); 3819 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3820 3821 // If we have a VST, write the VSTOFFSET record placeholder. 3822 writeValueSymbolTableForwardDecl(); 3823 3824 // Write the module paths in the combined index. 3825 writeModStrings(); 3826 3827 // Write the summary combined index records. 3828 writeCombinedGlobalValueSummary(); 3829 3830 // Need a special VST writer for the combined index (we don't have a 3831 // real VST and real values when this is invoked). 3832 writeCombinedValueSymbolTable(); 3833 3834 Stream.ExitBlock(); 3835 } 3836 3837 // Write the specified module summary index to the given raw output stream, 3838 // where it will be written in a new bitcode block. This is used when 3839 // writing the combined index file for ThinLTO. When writing a subset of the 3840 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 3841 void llvm::WriteIndexToFile( 3842 const ModuleSummaryIndex &Index, raw_ostream &Out, 3843 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 3844 SmallVector<char, 0> Buffer; 3845 Buffer.reserve(256 * 1024); 3846 3847 IndexBitcodeWriter IndexWriter(Buffer, Index, ModuleToSummariesForIndex); 3848 IndexWriter.write(); 3849 3850 Out.write((char *)&Buffer.front(), Buffer.size()); 3851 } 3852