1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/TypeSymbolTable.h" 24 #include "llvm/ValueSymbolTable.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/Streams.h" 27 #include "llvm/System/Program.h" 28 using namespace llvm; 29 30 /// These are manifest constants used by the bitcode writer. They do not need to 31 /// be kept in sync with the reader, but need to be consistent within this file. 32 enum { 33 CurVersion = 0, 34 35 // VALUE_SYMTAB_BLOCK abbrev id's. 36 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 37 VST_ENTRY_7_ABBREV, 38 VST_ENTRY_6_ABBREV, 39 VST_BBENTRY_6_ABBREV, 40 41 // CONSTANTS_BLOCK abbrev id's. 42 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 43 CONSTANTS_INTEGER_ABBREV, 44 CONSTANTS_CE_CAST_Abbrev, 45 CONSTANTS_NULL_Abbrev, 46 47 // FUNCTION_BLOCK abbrev id's. 48 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 49 FUNCTION_INST_BINOP_ABBREV, 50 FUNCTION_INST_CAST_ABBREV, 51 FUNCTION_INST_RET_VOID_ABBREV, 52 FUNCTION_INST_RET_VAL_ABBREV, 53 FUNCTION_INST_UNREACHABLE_ABBREV 54 }; 55 56 57 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 58 switch (Opcode) { 59 default: assert(0 && "Unknown cast instruction!"); 60 case Instruction::Trunc : return bitc::CAST_TRUNC; 61 case Instruction::ZExt : return bitc::CAST_ZEXT; 62 case Instruction::SExt : return bitc::CAST_SEXT; 63 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 64 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 65 case Instruction::UIToFP : return bitc::CAST_UITOFP; 66 case Instruction::SIToFP : return bitc::CAST_SITOFP; 67 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 68 case Instruction::FPExt : return bitc::CAST_FPEXT; 69 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 70 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 71 case Instruction::BitCast : return bitc::CAST_BITCAST; 72 } 73 } 74 75 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 76 switch (Opcode) { 77 default: assert(0 && "Unknown binary instruction!"); 78 case Instruction::Add: return bitc::BINOP_ADD; 79 case Instruction::Sub: return bitc::BINOP_SUB; 80 case Instruction::Mul: return bitc::BINOP_MUL; 81 case Instruction::UDiv: return bitc::BINOP_UDIV; 82 case Instruction::FDiv: 83 case Instruction::SDiv: return bitc::BINOP_SDIV; 84 case Instruction::URem: return bitc::BINOP_UREM; 85 case Instruction::FRem: 86 case Instruction::SRem: return bitc::BINOP_SREM; 87 case Instruction::Shl: return bitc::BINOP_SHL; 88 case Instruction::LShr: return bitc::BINOP_LSHR; 89 case Instruction::AShr: return bitc::BINOP_ASHR; 90 case Instruction::And: return bitc::BINOP_AND; 91 case Instruction::Or: return bitc::BINOP_OR; 92 case Instruction::Xor: return bitc::BINOP_XOR; 93 } 94 } 95 96 97 98 static void WriteStringRecord(unsigned Code, const std::string &Str, 99 unsigned AbbrevToUse, BitstreamWriter &Stream) { 100 SmallVector<unsigned, 64> Vals; 101 102 // Code: [strchar x N] 103 for (unsigned i = 0, e = Str.size(); i != e; ++i) 104 Vals.push_back(Str[i]); 105 106 // Emit the finished record. 107 Stream.EmitRecord(Code, Vals, AbbrevToUse); 108 } 109 110 // Emit information about parameter attributes. 111 static void WriteParamAttrTable(const ValueEnumerator &VE, 112 BitstreamWriter &Stream) { 113 const std::vector<PAListPtr> &Attrs = VE.getParamAttrs(); 114 if (Attrs.empty()) return; 115 116 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 117 118 SmallVector<uint64_t, 64> Record; 119 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 120 const PAListPtr &A = Attrs[i]; 121 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 122 const ParamAttrsWithIndex &PAWI = A.getSlot(i); 123 Record.push_back(PAWI.Index); 124 Record.push_back(PAWI.Attrs); 125 } 126 127 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 128 Record.clear(); 129 } 130 131 Stream.ExitBlock(); 132 } 133 134 /// WriteTypeTable - Write out the type table for a module. 135 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 136 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 137 138 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 139 SmallVector<uint64_t, 64> TypeVals; 140 141 // Abbrev for TYPE_CODE_POINTER. 142 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 143 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 145 Log2_32_Ceil(VE.getTypes().size()+1))); 146 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 147 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 148 149 // Abbrev for TYPE_CODE_FUNCTION. 150 Abbv = new BitCodeAbbrev(); 151 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 153 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 156 Log2_32_Ceil(VE.getTypes().size()+1))); 157 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 158 159 // Abbrev for TYPE_CODE_STRUCT. 160 Abbv = new BitCodeAbbrev(); 161 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 165 Log2_32_Ceil(VE.getTypes().size()+1))); 166 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 167 168 // Abbrev for TYPE_CODE_ARRAY. 169 Abbv = new BitCodeAbbrev(); 170 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 173 Log2_32_Ceil(VE.getTypes().size()+1))); 174 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 175 176 // Emit an entry count so the reader can reserve space. 177 TypeVals.push_back(TypeList.size()); 178 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 179 TypeVals.clear(); 180 181 // Loop over all of the types, emitting each in turn. 182 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 183 const Type *T = TypeList[i].first; 184 int AbbrevToUse = 0; 185 unsigned Code = 0; 186 187 switch (T->getTypeID()) { 188 default: assert(0 && "Unknown type!"); 189 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 190 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 191 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 192 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 193 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 194 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 195 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 196 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 197 case Type::IntegerTyID: 198 // INTEGER: [width] 199 Code = bitc::TYPE_CODE_INTEGER; 200 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 201 break; 202 case Type::PointerTyID: { 203 const PointerType *PTy = cast<PointerType>(T); 204 // POINTER: [pointee type, address space] 205 Code = bitc::TYPE_CODE_POINTER; 206 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 207 unsigned AddressSpace = PTy->getAddressSpace(); 208 TypeVals.push_back(AddressSpace); 209 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 210 break; 211 } 212 case Type::FunctionTyID: { 213 const FunctionType *FT = cast<FunctionType>(T); 214 // FUNCTION: [isvararg, attrid, retty, paramty x N] 215 Code = bitc::TYPE_CODE_FUNCTION; 216 TypeVals.push_back(FT->isVarArg()); 217 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 218 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 219 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 220 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 221 AbbrevToUse = FunctionAbbrev; 222 break; 223 } 224 case Type::StructTyID: { 225 const StructType *ST = cast<StructType>(T); 226 // STRUCT: [ispacked, eltty x N] 227 Code = bitc::TYPE_CODE_STRUCT; 228 TypeVals.push_back(ST->isPacked()); 229 // Output all of the element types. 230 for (StructType::element_iterator I = ST->element_begin(), 231 E = ST->element_end(); I != E; ++I) 232 TypeVals.push_back(VE.getTypeID(*I)); 233 AbbrevToUse = StructAbbrev; 234 break; 235 } 236 case Type::ArrayTyID: { 237 const ArrayType *AT = cast<ArrayType>(T); 238 // ARRAY: [numelts, eltty] 239 Code = bitc::TYPE_CODE_ARRAY; 240 TypeVals.push_back(AT->getNumElements()); 241 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 242 AbbrevToUse = ArrayAbbrev; 243 break; 244 } 245 case Type::VectorTyID: { 246 const VectorType *VT = cast<VectorType>(T); 247 // VECTOR [numelts, eltty] 248 Code = bitc::TYPE_CODE_VECTOR; 249 TypeVals.push_back(VT->getNumElements()); 250 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 251 break; 252 } 253 } 254 255 // Emit the finished record. 256 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 257 TypeVals.clear(); 258 } 259 260 Stream.ExitBlock(); 261 } 262 263 static unsigned getEncodedLinkage(const GlobalValue *GV) { 264 switch (GV->getLinkage()) { 265 default: assert(0 && "Invalid linkage!"); 266 case GlobalValue::GhostLinkage: // Map ghost linkage onto external. 267 case GlobalValue::ExternalLinkage: return 0; 268 case GlobalValue::WeakLinkage: return 1; 269 case GlobalValue::AppendingLinkage: return 2; 270 case GlobalValue::InternalLinkage: return 3; 271 case GlobalValue::LinkOnceLinkage: return 4; 272 case GlobalValue::DLLImportLinkage: return 5; 273 case GlobalValue::DLLExportLinkage: return 6; 274 case GlobalValue::ExternalWeakLinkage: return 7; 275 case GlobalValue::CommonLinkage: return 8; 276 } 277 } 278 279 static unsigned getEncodedVisibility(const GlobalValue *GV) { 280 switch (GV->getVisibility()) { 281 default: assert(0 && "Invalid visibility!"); 282 case GlobalValue::DefaultVisibility: return 0; 283 case GlobalValue::HiddenVisibility: return 1; 284 case GlobalValue::ProtectedVisibility: return 2; 285 } 286 } 287 288 // Emit top-level description of module, including target triple, inline asm, 289 // descriptors for global variables, and function prototype info. 290 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 291 BitstreamWriter &Stream) { 292 // Emit the list of dependent libraries for the Module. 293 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 294 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 295 296 // Emit various pieces of data attached to a module. 297 if (!M->getTargetTriple().empty()) 298 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 299 0/*TODO*/, Stream); 300 if (!M->getDataLayout().empty()) 301 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 302 0/*TODO*/, Stream); 303 if (!M->getModuleInlineAsm().empty()) 304 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 305 0/*TODO*/, Stream); 306 307 // Emit information about sections and GC, computing how many there are. Also 308 // compute the maximum alignment value. 309 std::map<std::string, unsigned> SectionMap; 310 std::map<std::string, unsigned> GCMap; 311 unsigned MaxAlignment = 0; 312 unsigned MaxGlobalType = 0; 313 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 314 GV != E; ++GV) { 315 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 316 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 317 318 if (!GV->hasSection()) continue; 319 // Give section names unique ID's. 320 unsigned &Entry = SectionMap[GV->getSection()]; 321 if (Entry != 0) continue; 322 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 323 0/*TODO*/, Stream); 324 Entry = SectionMap.size(); 325 } 326 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 327 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 328 if (F->hasSection()) { 329 // Give section names unique ID's. 330 unsigned &Entry = SectionMap[F->getSection()]; 331 if (!Entry) { 332 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 333 0/*TODO*/, Stream); 334 Entry = SectionMap.size(); 335 } 336 } 337 if (F->hasGC()) { 338 // Same for GC names. 339 unsigned &Entry = GCMap[F->getGC()]; 340 if (!Entry) { 341 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 342 0/*TODO*/, Stream); 343 Entry = GCMap.size(); 344 } 345 } 346 } 347 348 // Emit abbrev for globals, now that we know # sections and max alignment. 349 unsigned SimpleGVarAbbrev = 0; 350 if (!M->global_empty()) { 351 // Add an abbrev for common globals with no visibility or thread localness. 352 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 353 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 355 Log2_32_Ceil(MaxGlobalType+1))); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 359 if (MaxAlignment == 0) // Alignment. 360 Abbv->Add(BitCodeAbbrevOp(0)); 361 else { 362 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 364 Log2_32_Ceil(MaxEncAlignment+1))); 365 } 366 if (SectionMap.empty()) // Section. 367 Abbv->Add(BitCodeAbbrevOp(0)); 368 else 369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 370 Log2_32_Ceil(SectionMap.size()+1))); 371 // Don't bother emitting vis + thread local. 372 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 373 } 374 375 // Emit the global variable information. 376 SmallVector<unsigned, 64> Vals; 377 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 378 GV != E; ++GV) { 379 unsigned AbbrevToUse = 0; 380 381 // GLOBALVAR: [type, isconst, initid, 382 // linkage, alignment, section, visibility, threadlocal] 383 Vals.push_back(VE.getTypeID(GV->getType())); 384 Vals.push_back(GV->isConstant()); 385 Vals.push_back(GV->isDeclaration() ? 0 : 386 (VE.getValueID(GV->getInitializer()) + 1)); 387 Vals.push_back(getEncodedLinkage(GV)); 388 Vals.push_back(Log2_32(GV->getAlignment())+1); 389 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 390 if (GV->isThreadLocal() || 391 GV->getVisibility() != GlobalValue::DefaultVisibility) { 392 Vals.push_back(getEncodedVisibility(GV)); 393 Vals.push_back(GV->isThreadLocal()); 394 } else { 395 AbbrevToUse = SimpleGVarAbbrev; 396 } 397 398 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 399 Vals.clear(); 400 } 401 402 // Emit the function proto information. 403 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 404 // FUNCTION: [type, callingconv, isproto, paramattr, 405 // linkage, alignment, section, visibility, gc] 406 Vals.push_back(VE.getTypeID(F->getType())); 407 Vals.push_back(F->getCallingConv()); 408 Vals.push_back(F->isDeclaration()); 409 Vals.push_back(getEncodedLinkage(F)); 410 Vals.push_back(VE.getParamAttrID(F->getParamAttrs())); 411 Vals.push_back(Log2_32(F->getAlignment())+1); 412 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 413 Vals.push_back(getEncodedVisibility(F)); 414 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 415 Vals.push_back(F->getNotes()); 416 417 unsigned AbbrevToUse = 0; 418 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 419 Vals.clear(); 420 } 421 422 423 // Emit the alias information. 424 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 425 AI != E; ++AI) { 426 Vals.push_back(VE.getTypeID(AI->getType())); 427 Vals.push_back(VE.getValueID(AI->getAliasee())); 428 Vals.push_back(getEncodedLinkage(AI)); 429 Vals.push_back(getEncodedVisibility(AI)); 430 unsigned AbbrevToUse = 0; 431 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 432 Vals.clear(); 433 } 434 } 435 436 437 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 438 const ValueEnumerator &VE, 439 BitstreamWriter &Stream, bool isGlobal) { 440 if (FirstVal == LastVal) return; 441 442 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 443 444 unsigned AggregateAbbrev = 0; 445 unsigned String8Abbrev = 0; 446 unsigned CString7Abbrev = 0; 447 unsigned CString6Abbrev = 0; 448 // If this is a constant pool for the module, emit module-specific abbrevs. 449 if (isGlobal) { 450 // Abbrev for CST_CODE_AGGREGATE. 451 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 452 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 455 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 456 457 // Abbrev for CST_CODE_STRING. 458 Abbv = new BitCodeAbbrev(); 459 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 462 String8Abbrev = Stream.EmitAbbrev(Abbv); 463 // Abbrev for CST_CODE_CSTRING. 464 Abbv = new BitCodeAbbrev(); 465 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 468 CString7Abbrev = Stream.EmitAbbrev(Abbv); 469 // Abbrev for CST_CODE_CSTRING. 470 Abbv = new BitCodeAbbrev(); 471 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 474 CString6Abbrev = Stream.EmitAbbrev(Abbv); 475 } 476 477 SmallVector<uint64_t, 64> Record; 478 479 const ValueEnumerator::ValueList &Vals = VE.getValues(); 480 const Type *LastTy = 0; 481 for (unsigned i = FirstVal; i != LastVal; ++i) { 482 const Value *V = Vals[i].first; 483 // If we need to switch types, do so now. 484 if (V->getType() != LastTy) { 485 LastTy = V->getType(); 486 Record.push_back(VE.getTypeID(LastTy)); 487 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 488 CONSTANTS_SETTYPE_ABBREV); 489 Record.clear(); 490 } 491 492 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 493 Record.push_back(unsigned(IA->hasSideEffects())); 494 495 // Add the asm string. 496 const std::string &AsmStr = IA->getAsmString(); 497 Record.push_back(AsmStr.size()); 498 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 499 Record.push_back(AsmStr[i]); 500 501 // Add the constraint string. 502 const std::string &ConstraintStr = IA->getConstraintString(); 503 Record.push_back(ConstraintStr.size()); 504 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 505 Record.push_back(ConstraintStr[i]); 506 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 507 Record.clear(); 508 continue; 509 } 510 const Constant *C = cast<Constant>(V); 511 unsigned Code = -1U; 512 unsigned AbbrevToUse = 0; 513 if (C->isNullValue()) { 514 Code = bitc::CST_CODE_NULL; 515 } else if (isa<UndefValue>(C)) { 516 Code = bitc::CST_CODE_UNDEF; 517 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 518 if (IV->getBitWidth() <= 64) { 519 int64_t V = IV->getSExtValue(); 520 if (V >= 0) 521 Record.push_back(V << 1); 522 else 523 Record.push_back((-V << 1) | 1); 524 Code = bitc::CST_CODE_INTEGER; 525 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 526 } else { // Wide integers, > 64 bits in size. 527 // We have an arbitrary precision integer value to write whose 528 // bit width is > 64. However, in canonical unsigned integer 529 // format it is likely that the high bits are going to be zero. 530 // So, we only write the number of active words. 531 unsigned NWords = IV->getValue().getActiveWords(); 532 const uint64_t *RawWords = IV->getValue().getRawData(); 533 for (unsigned i = 0; i != NWords; ++i) { 534 int64_t V = RawWords[i]; 535 if (V >= 0) 536 Record.push_back(V << 1); 537 else 538 Record.push_back((-V << 1) | 1); 539 } 540 Code = bitc::CST_CODE_WIDE_INTEGER; 541 } 542 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 543 Code = bitc::CST_CODE_FLOAT; 544 const Type *Ty = CFP->getType(); 545 if (Ty == Type::FloatTy || Ty == Type::DoubleTy) { 546 Record.push_back(CFP->getValueAPF().convertToAPInt().getZExtValue()); 547 } else if (Ty == Type::X86_FP80Ty) { 548 // api needed to prevent premature destruction 549 APInt api = CFP->getValueAPF().convertToAPInt(); 550 const uint64_t *p = api.getRawData(); 551 Record.push_back(p[0]); 552 Record.push_back((uint16_t)p[1]); 553 } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) { 554 APInt api = CFP->getValueAPF().convertToAPInt(); 555 const uint64_t *p = api.getRawData(); 556 Record.push_back(p[0]); 557 Record.push_back(p[1]); 558 } else { 559 assert (0 && "Unknown FP type!"); 560 } 561 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 562 // Emit constant strings specially. 563 unsigned NumOps = C->getNumOperands(); 564 // If this is a null-terminated string, use the denser CSTRING encoding. 565 if (C->getOperand(NumOps-1)->isNullValue()) { 566 Code = bitc::CST_CODE_CSTRING; 567 --NumOps; // Don't encode the null, which isn't allowed by char6. 568 } else { 569 Code = bitc::CST_CODE_STRING; 570 AbbrevToUse = String8Abbrev; 571 } 572 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 573 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 574 for (unsigned i = 0; i != NumOps; ++i) { 575 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue(); 576 Record.push_back(V); 577 isCStr7 &= (V & 128) == 0; 578 if (isCStrChar6) 579 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 580 } 581 582 if (isCStrChar6) 583 AbbrevToUse = CString6Abbrev; 584 else if (isCStr7) 585 AbbrevToUse = CString7Abbrev; 586 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 587 isa<ConstantVector>(V)) { 588 Code = bitc::CST_CODE_AGGREGATE; 589 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 590 Record.push_back(VE.getValueID(C->getOperand(i))); 591 AbbrevToUse = AggregateAbbrev; 592 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 593 switch (CE->getOpcode()) { 594 default: 595 if (Instruction::isCast(CE->getOpcode())) { 596 Code = bitc::CST_CODE_CE_CAST; 597 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 598 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 599 Record.push_back(VE.getValueID(C->getOperand(0))); 600 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 601 } else { 602 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 603 Code = bitc::CST_CODE_CE_BINOP; 604 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 605 Record.push_back(VE.getValueID(C->getOperand(0))); 606 Record.push_back(VE.getValueID(C->getOperand(1))); 607 } 608 break; 609 case Instruction::GetElementPtr: 610 Code = bitc::CST_CODE_CE_GEP; 611 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 612 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 613 Record.push_back(VE.getValueID(C->getOperand(i))); 614 } 615 break; 616 case Instruction::Select: 617 Code = bitc::CST_CODE_CE_SELECT; 618 Record.push_back(VE.getValueID(C->getOperand(0))); 619 Record.push_back(VE.getValueID(C->getOperand(1))); 620 Record.push_back(VE.getValueID(C->getOperand(2))); 621 break; 622 case Instruction::ExtractElement: 623 Code = bitc::CST_CODE_CE_EXTRACTELT; 624 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 625 Record.push_back(VE.getValueID(C->getOperand(0))); 626 Record.push_back(VE.getValueID(C->getOperand(1))); 627 break; 628 case Instruction::InsertElement: 629 Code = bitc::CST_CODE_CE_INSERTELT; 630 Record.push_back(VE.getValueID(C->getOperand(0))); 631 Record.push_back(VE.getValueID(C->getOperand(1))); 632 Record.push_back(VE.getValueID(C->getOperand(2))); 633 break; 634 case Instruction::ShuffleVector: 635 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 636 Record.push_back(VE.getValueID(C->getOperand(0))); 637 Record.push_back(VE.getValueID(C->getOperand(1))); 638 Record.push_back(VE.getValueID(C->getOperand(2))); 639 break; 640 case Instruction::ICmp: 641 case Instruction::FCmp: 642 case Instruction::VICmp: 643 case Instruction::VFCmp: 644 Code = bitc::CST_CODE_CE_CMP; 645 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 646 Record.push_back(VE.getValueID(C->getOperand(0))); 647 Record.push_back(VE.getValueID(C->getOperand(1))); 648 Record.push_back(CE->getPredicate()); 649 break; 650 } 651 } else { 652 assert(0 && "Unknown constant!"); 653 } 654 Stream.EmitRecord(Code, Record, AbbrevToUse); 655 Record.clear(); 656 } 657 658 Stream.ExitBlock(); 659 } 660 661 static void WriteModuleConstants(const ValueEnumerator &VE, 662 BitstreamWriter &Stream) { 663 const ValueEnumerator::ValueList &Vals = VE.getValues(); 664 665 // Find the first constant to emit, which is the first non-globalvalue value. 666 // We know globalvalues have been emitted by WriteModuleInfo. 667 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 668 if (!isa<GlobalValue>(Vals[i].first)) { 669 WriteConstants(i, Vals.size(), VE, Stream, true); 670 return; 671 } 672 } 673 } 674 675 /// PushValueAndType - The file has to encode both the value and type id for 676 /// many values, because we need to know what type to create for forward 677 /// references. However, most operands are not forward references, so this type 678 /// field is not needed. 679 /// 680 /// This function adds V's value ID to Vals. If the value ID is higher than the 681 /// instruction ID, then it is a forward reference, and it also includes the 682 /// type ID. 683 static bool PushValueAndType(Value *V, unsigned InstID, 684 SmallVector<unsigned, 64> &Vals, 685 ValueEnumerator &VE) { 686 unsigned ValID = VE.getValueID(V); 687 Vals.push_back(ValID); 688 if (ValID >= InstID) { 689 Vals.push_back(VE.getTypeID(V->getType())); 690 return true; 691 } 692 return false; 693 } 694 695 /// WriteInstruction - Emit an instruction to the specified stream. 696 static void WriteInstruction(const Instruction &I, unsigned InstID, 697 ValueEnumerator &VE, BitstreamWriter &Stream, 698 SmallVector<unsigned, 64> &Vals) { 699 unsigned Code = 0; 700 unsigned AbbrevToUse = 0; 701 switch (I.getOpcode()) { 702 default: 703 if (Instruction::isCast(I.getOpcode())) { 704 Code = bitc::FUNC_CODE_INST_CAST; 705 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 706 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 707 Vals.push_back(VE.getTypeID(I.getType())); 708 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 709 } else { 710 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 711 Code = bitc::FUNC_CODE_INST_BINOP; 712 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 713 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 714 Vals.push_back(VE.getValueID(I.getOperand(1))); 715 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 716 } 717 break; 718 719 case Instruction::GetElementPtr: 720 Code = bitc::FUNC_CODE_INST_GEP; 721 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 722 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 723 break; 724 case Instruction::ExtractValue: { 725 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 726 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 727 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 728 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 729 Vals.push_back(*i); 730 break; 731 } 732 case Instruction::InsertValue: { 733 Code = bitc::FUNC_CODE_INST_INSERTVAL; 734 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 735 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 736 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 737 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 738 Vals.push_back(*i); 739 break; 740 } 741 case Instruction::Select: 742 Code = bitc::FUNC_CODE_INST_SELECT; 743 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 744 Vals.push_back(VE.getValueID(I.getOperand(2))); 745 Vals.push_back(VE.getValueID(I.getOperand(0))); 746 break; 747 case Instruction::ExtractElement: 748 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 749 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 750 Vals.push_back(VE.getValueID(I.getOperand(1))); 751 break; 752 case Instruction::InsertElement: 753 Code = bitc::FUNC_CODE_INST_INSERTELT; 754 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 755 Vals.push_back(VE.getValueID(I.getOperand(1))); 756 Vals.push_back(VE.getValueID(I.getOperand(2))); 757 break; 758 case Instruction::ShuffleVector: 759 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 760 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 761 Vals.push_back(VE.getValueID(I.getOperand(1))); 762 Vals.push_back(VE.getValueID(I.getOperand(2))); 763 break; 764 case Instruction::ICmp: 765 case Instruction::FCmp: 766 case Instruction::VICmp: 767 case Instruction::VFCmp: 768 Code = bitc::FUNC_CODE_INST_CMP; 769 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 770 Vals.push_back(VE.getValueID(I.getOperand(1))); 771 Vals.push_back(cast<CmpInst>(I).getPredicate()); 772 break; 773 774 case Instruction::Ret: 775 { 776 Code = bitc::FUNC_CODE_INST_RET; 777 unsigned NumOperands = I.getNumOperands(); 778 if (NumOperands == 0) 779 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 780 else if (NumOperands == 1) { 781 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 782 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 783 } else { 784 for (unsigned i = 0, e = NumOperands; i != e; ++i) 785 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 786 } 787 } 788 break; 789 case Instruction::Br: 790 Code = bitc::FUNC_CODE_INST_BR; 791 Vals.push_back(VE.getValueID(I.getOperand(0))); 792 if (cast<BranchInst>(I).isConditional()) { 793 Vals.push_back(VE.getValueID(I.getOperand(1))); 794 Vals.push_back(VE.getValueID(I.getOperand(2))); 795 } 796 break; 797 case Instruction::Switch: 798 Code = bitc::FUNC_CODE_INST_SWITCH; 799 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 800 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 801 Vals.push_back(VE.getValueID(I.getOperand(i))); 802 break; 803 case Instruction::Invoke: { 804 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 805 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 806 Code = bitc::FUNC_CODE_INST_INVOKE; 807 808 const InvokeInst *II = cast<InvokeInst>(&I); 809 Vals.push_back(VE.getParamAttrID(II->getParamAttrs())); 810 Vals.push_back(II->getCallingConv()); 811 Vals.push_back(VE.getValueID(I.getOperand(1))); // normal dest 812 Vals.push_back(VE.getValueID(I.getOperand(2))); // unwind dest 813 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee 814 815 // Emit value #'s for the fixed parameters. 816 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 817 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 818 819 // Emit type/value pairs for varargs params. 820 if (FTy->isVarArg()) { 821 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); 822 i != e; ++i) 823 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 824 } 825 break; 826 } 827 case Instruction::Unwind: 828 Code = bitc::FUNC_CODE_INST_UNWIND; 829 break; 830 case Instruction::Unreachable: 831 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 832 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 833 break; 834 835 case Instruction::PHI: 836 Code = bitc::FUNC_CODE_INST_PHI; 837 Vals.push_back(VE.getTypeID(I.getType())); 838 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 839 Vals.push_back(VE.getValueID(I.getOperand(i))); 840 break; 841 842 case Instruction::Malloc: 843 Code = bitc::FUNC_CODE_INST_MALLOC; 844 Vals.push_back(VE.getTypeID(I.getType())); 845 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 846 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); 847 break; 848 849 case Instruction::Free: 850 Code = bitc::FUNC_CODE_INST_FREE; 851 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 852 break; 853 854 case Instruction::Alloca: 855 Code = bitc::FUNC_CODE_INST_ALLOCA; 856 Vals.push_back(VE.getTypeID(I.getType())); 857 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 858 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 859 break; 860 861 case Instruction::Load: 862 Code = bitc::FUNC_CODE_INST_LOAD; 863 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 864 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 865 866 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 867 Vals.push_back(cast<LoadInst>(I).isVolatile()); 868 break; 869 case Instruction::Store: 870 Code = bitc::FUNC_CODE_INST_STORE2; 871 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 872 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 873 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 874 Vals.push_back(cast<StoreInst>(I).isVolatile()); 875 break; 876 case Instruction::Call: { 877 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 878 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 879 880 Code = bitc::FUNC_CODE_INST_CALL; 881 882 const CallInst *CI = cast<CallInst>(&I); 883 Vals.push_back(VE.getParamAttrID(CI->getParamAttrs())); 884 Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall())); 885 PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee 886 887 // Emit value #'s for the fixed parameters. 888 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 889 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 890 891 // Emit type/value pairs for varargs params. 892 if (FTy->isVarArg()) { 893 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 894 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 895 i != e; ++i) 896 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs 897 } 898 break; 899 } 900 case Instruction::VAArg: 901 Code = bitc::FUNC_CODE_INST_VAARG; 902 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 903 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 904 Vals.push_back(VE.getTypeID(I.getType())); // restype. 905 break; 906 } 907 908 Stream.EmitRecord(Code, Vals, AbbrevToUse); 909 Vals.clear(); 910 } 911 912 // Emit names for globals/functions etc. 913 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 914 const ValueEnumerator &VE, 915 BitstreamWriter &Stream) { 916 if (VST.empty()) return; 917 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 918 919 // FIXME: Set up the abbrev, we know how many values there are! 920 // FIXME: We know if the type names can use 7-bit ascii. 921 SmallVector<unsigned, 64> NameVals; 922 923 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 924 SI != SE; ++SI) { 925 926 const ValueName &Name = *SI; 927 928 // Figure out the encoding to use for the name. 929 bool is7Bit = true; 930 bool isChar6 = true; 931 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 932 C != E; ++C) { 933 if (isChar6) 934 isChar6 = BitCodeAbbrevOp::isChar6(*C); 935 if ((unsigned char)*C & 128) { 936 is7Bit = false; 937 break; // don't bother scanning the rest. 938 } 939 } 940 941 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 942 943 // VST_ENTRY: [valueid, namechar x N] 944 // VST_BBENTRY: [bbid, namechar x N] 945 unsigned Code; 946 if (isa<BasicBlock>(SI->getValue())) { 947 Code = bitc::VST_CODE_BBENTRY; 948 if (isChar6) 949 AbbrevToUse = VST_BBENTRY_6_ABBREV; 950 } else { 951 Code = bitc::VST_CODE_ENTRY; 952 if (isChar6) 953 AbbrevToUse = VST_ENTRY_6_ABBREV; 954 else if (is7Bit) 955 AbbrevToUse = VST_ENTRY_7_ABBREV; 956 } 957 958 NameVals.push_back(VE.getValueID(SI->getValue())); 959 for (const char *P = Name.getKeyData(), 960 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 961 NameVals.push_back((unsigned char)*P); 962 963 // Emit the finished record. 964 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 965 NameVals.clear(); 966 } 967 Stream.ExitBlock(); 968 } 969 970 /// WriteFunction - Emit a function body to the module stream. 971 static void WriteFunction(const Function &F, ValueEnumerator &VE, 972 BitstreamWriter &Stream) { 973 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 974 VE.incorporateFunction(F); 975 976 SmallVector<unsigned, 64> Vals; 977 978 // Emit the number of basic blocks, so the reader can create them ahead of 979 // time. 980 Vals.push_back(VE.getBasicBlocks().size()); 981 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 982 Vals.clear(); 983 984 // If there are function-local constants, emit them now. 985 unsigned CstStart, CstEnd; 986 VE.getFunctionConstantRange(CstStart, CstEnd); 987 WriteConstants(CstStart, CstEnd, VE, Stream, false); 988 989 // Keep a running idea of what the instruction ID is. 990 unsigned InstID = CstEnd; 991 992 // Finally, emit all the instructions, in order. 993 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 994 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 995 I != E; ++I) { 996 WriteInstruction(*I, InstID, VE, Stream, Vals); 997 if (I->getType() != Type::VoidTy) 998 ++InstID; 999 } 1000 1001 // Emit names for all the instructions etc. 1002 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1003 1004 VE.purgeFunction(); 1005 Stream.ExitBlock(); 1006 } 1007 1008 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 1009 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 1010 const ValueEnumerator &VE, 1011 BitstreamWriter &Stream) { 1012 if (TST.empty()) return; 1013 1014 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 1015 1016 // 7-bit fixed width VST_CODE_ENTRY strings. 1017 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1018 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1019 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1020 Log2_32_Ceil(VE.getTypes().size()+1))); 1021 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1022 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1023 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 1024 1025 SmallVector<unsigned, 64> NameVals; 1026 1027 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 1028 TI != TE; ++TI) { 1029 // TST_ENTRY: [typeid, namechar x N] 1030 NameVals.push_back(VE.getTypeID(TI->second)); 1031 1032 const std::string &Str = TI->first; 1033 bool is7Bit = true; 1034 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 1035 NameVals.push_back((unsigned char)Str[i]); 1036 if (Str[i] & 128) 1037 is7Bit = false; 1038 } 1039 1040 // Emit the finished record. 1041 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1042 NameVals.clear(); 1043 } 1044 1045 Stream.ExitBlock(); 1046 } 1047 1048 // Emit blockinfo, which defines the standard abbreviations etc. 1049 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1050 // We only want to emit block info records for blocks that have multiple 1051 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1052 // blocks can defined their abbrevs inline. 1053 Stream.EnterBlockInfoBlock(2); 1054 1055 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1056 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1057 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1059 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1061 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1062 Abbv) != VST_ENTRY_8_ABBREV) 1063 assert(0 && "Unexpected abbrev ordering!"); 1064 } 1065 1066 { // 7-bit fixed width VST_ENTRY strings. 1067 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1068 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1072 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1073 Abbv) != VST_ENTRY_7_ABBREV) 1074 assert(0 && "Unexpected abbrev ordering!"); 1075 } 1076 { // 6-bit char6 VST_ENTRY strings. 1077 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1078 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1080 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1081 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1082 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1083 Abbv) != VST_ENTRY_6_ABBREV) 1084 assert(0 && "Unexpected abbrev ordering!"); 1085 } 1086 { // 6-bit char6 VST_BBENTRY strings. 1087 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1088 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1089 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1092 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1093 Abbv) != VST_BBENTRY_6_ABBREV) 1094 assert(0 && "Unexpected abbrev ordering!"); 1095 } 1096 1097 1098 1099 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1100 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1101 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1103 Log2_32_Ceil(VE.getTypes().size()+1))); 1104 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1105 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1106 assert(0 && "Unexpected abbrev ordering!"); 1107 } 1108 1109 { // INTEGER abbrev for CONSTANTS_BLOCK. 1110 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1111 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1113 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1114 Abbv) != CONSTANTS_INTEGER_ABBREV) 1115 assert(0 && "Unexpected abbrev ordering!"); 1116 } 1117 1118 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1119 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1120 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1121 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1122 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1123 Log2_32_Ceil(VE.getTypes().size()+1))); 1124 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1125 1126 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1127 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1128 assert(0 && "Unexpected abbrev ordering!"); 1129 } 1130 { // NULL abbrev for CONSTANTS_BLOCK. 1131 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1132 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1133 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1134 Abbv) != CONSTANTS_NULL_Abbrev) 1135 assert(0 && "Unexpected abbrev ordering!"); 1136 } 1137 1138 // FIXME: This should only use space for first class types! 1139 1140 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1141 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1142 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1146 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1147 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1148 assert(0 && "Unexpected abbrev ordering!"); 1149 } 1150 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1151 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1152 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1156 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1157 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1158 assert(0 && "Unexpected abbrev ordering!"); 1159 } 1160 { // INST_CAST abbrev for FUNCTION_BLOCK. 1161 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1162 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1165 Log2_32_Ceil(VE.getTypes().size()+1))); 1166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1167 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1168 Abbv) != FUNCTION_INST_CAST_ABBREV) 1169 assert(0 && "Unexpected abbrev ordering!"); 1170 } 1171 1172 { // INST_RET abbrev for FUNCTION_BLOCK. 1173 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1174 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1175 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1176 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1177 assert(0 && "Unexpected abbrev ordering!"); 1178 } 1179 { // INST_RET abbrev for FUNCTION_BLOCK. 1180 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1181 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1183 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1184 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1185 assert(0 && "Unexpected abbrev ordering!"); 1186 } 1187 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1188 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1189 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1190 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1191 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1192 assert(0 && "Unexpected abbrev ordering!"); 1193 } 1194 1195 Stream.ExitBlock(); 1196 } 1197 1198 1199 /// WriteModule - Emit the specified module to the bitstream. 1200 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1201 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1202 1203 // Emit the version number if it is non-zero. 1204 if (CurVersion) { 1205 SmallVector<unsigned, 1> Vals; 1206 Vals.push_back(CurVersion); 1207 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1208 } 1209 1210 // Analyze the module, enumerating globals, functions, etc. 1211 ValueEnumerator VE(M); 1212 1213 // Emit blockinfo, which defines the standard abbreviations etc. 1214 WriteBlockInfo(VE, Stream); 1215 1216 // Emit information about parameter attributes. 1217 WriteParamAttrTable(VE, Stream); 1218 1219 // Emit information describing all of the types in the module. 1220 WriteTypeTable(VE, Stream); 1221 1222 // Emit top-level description of module, including target triple, inline asm, 1223 // descriptors for global variables, and function prototype info. 1224 WriteModuleInfo(M, VE, Stream); 1225 1226 // Emit constants. 1227 WriteModuleConstants(VE, Stream); 1228 1229 // If we have any aggregate values in the value table, purge them - these can 1230 // only be used to initialize global variables. Doing so makes the value 1231 // namespace smaller for code in functions. 1232 int NumNonAggregates = VE.PurgeAggregateValues(); 1233 if (NumNonAggregates != -1) { 1234 SmallVector<unsigned, 1> Vals; 1235 Vals.push_back(NumNonAggregates); 1236 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals); 1237 } 1238 1239 // Emit function bodies. 1240 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1241 if (!I->isDeclaration()) 1242 WriteFunction(*I, VE, Stream); 1243 1244 // Emit the type symbol table information. 1245 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1246 1247 // Emit names for globals/functions etc. 1248 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1249 1250 Stream.ExitBlock(); 1251 } 1252 1253 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1254 /// header and trailer to make it compatible with the system archiver. To do 1255 /// this we emit the following header, and then emit a trailer that pads the 1256 /// file out to be a multiple of 16 bytes. 1257 /// 1258 /// struct bc_header { 1259 /// uint32_t Magic; // 0x0B17C0DE 1260 /// uint32_t Version; // Version, currently always 0. 1261 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1262 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1263 /// uint32_t CPUType; // CPU specifier. 1264 /// ... potentially more later ... 1265 /// }; 1266 enum { 1267 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1268 DarwinBCHeaderSize = 5*4 1269 }; 1270 1271 static void EmitDarwinBCHeader(BitstreamWriter &Stream, 1272 const std::string &TT) { 1273 unsigned CPUType = ~0U; 1274 1275 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*. The CPUType is a 1276 // magic number from /usr/include/mach/machine.h. It is ok to reproduce the 1277 // specific constants here because they are implicitly part of the Darwin ABI. 1278 enum { 1279 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1280 DARWIN_CPU_TYPE_X86 = 7, 1281 DARWIN_CPU_TYPE_POWERPC = 18 1282 }; 1283 1284 if (TT.find("x86_64-") == 0) 1285 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1286 else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' && 1287 TT[4] == '-' && TT[1] - '3' < 6) 1288 CPUType = DARWIN_CPU_TYPE_X86; 1289 else if (TT.find("powerpc-") == 0) 1290 CPUType = DARWIN_CPU_TYPE_POWERPC; 1291 else if (TT.find("powerpc64-") == 0) 1292 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1293 1294 // Traditional Bitcode starts after header. 1295 unsigned BCOffset = DarwinBCHeaderSize; 1296 1297 Stream.Emit(0x0B17C0DE, 32); 1298 Stream.Emit(0 , 32); // Version. 1299 Stream.Emit(BCOffset , 32); 1300 Stream.Emit(0 , 32); // Filled in later. 1301 Stream.Emit(CPUType , 32); 1302 } 1303 1304 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and 1305 /// finalize the header. 1306 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { 1307 // Update the size field in the header. 1308 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); 1309 1310 // If the file is not a multiple of 16 bytes, insert dummy padding. 1311 while (BufferSize & 15) { 1312 Stream.Emit(0, 8); 1313 ++BufferSize; 1314 } 1315 } 1316 1317 1318 /// WriteBitcodeToFile - Write the specified module to the specified output 1319 /// stream. 1320 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { 1321 std::vector<unsigned char> Buffer; 1322 BitstreamWriter Stream(Buffer); 1323 1324 Buffer.reserve(256*1024); 1325 1326 // If this is darwin, emit a file header and trailer if needed. 1327 bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos; 1328 if (isDarwin) 1329 EmitDarwinBCHeader(Stream, M->getTargetTriple()); 1330 1331 // Emit the file header. 1332 Stream.Emit((unsigned)'B', 8); 1333 Stream.Emit((unsigned)'C', 8); 1334 Stream.Emit(0x0, 4); 1335 Stream.Emit(0xC, 4); 1336 Stream.Emit(0xE, 4); 1337 Stream.Emit(0xD, 4); 1338 1339 // Emit the module. 1340 WriteModule(M, Stream); 1341 1342 if (isDarwin) 1343 EmitDarwinBCTrailer(Stream, Buffer.size()); 1344 1345 1346 // If writing to stdout, set binary mode. 1347 if (llvm::cout == Out) 1348 sys::Program::ChangeStdoutToBinary(); 1349 1350 // Write the generated bitstream to "Out". 1351 Out.write((char*)&Buffer.front(), Buffer.size()); 1352 1353 // Make sure it hits disk now. 1354 Out.flush(); 1355 } 1356