1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/TypeSymbolTable.h" 24 #include "llvm/ValueSymbolTable.h" 25 #include "llvm/Support/MathExtras.h" 26 using namespace llvm; 27 28 /// These are manifest constants used by the bitcode writer. They do not need to 29 /// be kept in sync with the reader, but need to be consistent within this file. 30 enum { 31 CurVersion = 0, 32 33 // VALUE_SYMTAB_BLOCK abbrev id's. 34 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 35 VST_ENTRY_7_ABBREV, 36 VST_ENTRY_6_ABBREV, 37 VST_BBENTRY_6_ABBREV, 38 39 // CONSTANTS_BLOCK abbrev id's. 40 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 41 CONSTANTS_INTEGER_ABBREV, 42 CONSTANTS_CE_CAST_Abbrev, 43 CONSTANTS_NULL_Abbrev, 44 45 // FUNCTION_BLOCK abbrev id's. 46 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 47 FUNCTION_INST_BINOP_ABBREV, 48 FUNCTION_INST_CAST_ABBREV, 49 FUNCTION_INST_RET_VOID_ABBREV, 50 FUNCTION_INST_RET_VAL_ABBREV, 51 FUNCTION_INST_UNREACHABLE_ABBREV 52 }; 53 54 55 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 56 switch (Opcode) { 57 default: assert(0 && "Unknown cast instruction!"); 58 case Instruction::Trunc : return bitc::CAST_TRUNC; 59 case Instruction::ZExt : return bitc::CAST_ZEXT; 60 case Instruction::SExt : return bitc::CAST_SEXT; 61 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 62 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 63 case Instruction::UIToFP : return bitc::CAST_UITOFP; 64 case Instruction::SIToFP : return bitc::CAST_SITOFP; 65 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 66 case Instruction::FPExt : return bitc::CAST_FPEXT; 67 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 68 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 69 case Instruction::BitCast : return bitc::CAST_BITCAST; 70 } 71 } 72 73 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 74 switch (Opcode) { 75 default: assert(0 && "Unknown binary instruction!"); 76 case Instruction::Add: return bitc::BINOP_ADD; 77 case Instruction::Sub: return bitc::BINOP_SUB; 78 case Instruction::Mul: return bitc::BINOP_MUL; 79 case Instruction::UDiv: return bitc::BINOP_UDIV; 80 case Instruction::FDiv: 81 case Instruction::SDiv: return bitc::BINOP_SDIV; 82 case Instruction::URem: return bitc::BINOP_UREM; 83 case Instruction::FRem: 84 case Instruction::SRem: return bitc::BINOP_SREM; 85 case Instruction::Shl: return bitc::BINOP_SHL; 86 case Instruction::LShr: return bitc::BINOP_LSHR; 87 case Instruction::AShr: return bitc::BINOP_ASHR; 88 case Instruction::And: return bitc::BINOP_AND; 89 case Instruction::Or: return bitc::BINOP_OR; 90 case Instruction::Xor: return bitc::BINOP_XOR; 91 } 92 } 93 94 95 96 static void WriteStringRecord(unsigned Code, const std::string &Str, 97 unsigned AbbrevToUse, BitstreamWriter &Stream) { 98 SmallVector<unsigned, 64> Vals; 99 100 // Code: [strchar x N] 101 for (unsigned i = 0, e = Str.size(); i != e; ++i) 102 Vals.push_back(Str[i]); 103 104 // Emit the finished record. 105 Stream.EmitRecord(Code, Vals, AbbrevToUse); 106 } 107 108 // Emit information about parameter attributes. 109 static void WriteParamAttrTable(const ValueEnumerator &VE, 110 BitstreamWriter &Stream) { 111 const std::vector<PAListPtr> &Attrs = VE.getParamAttrs(); 112 if (Attrs.empty()) return; 113 114 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 115 116 SmallVector<uint64_t, 64> Record; 117 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 118 const PAListPtr &A = Attrs[i]; 119 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 120 const ParamAttrsWithIndex &PAWI = A.getSlot(i); 121 Record.push_back(PAWI.Index); 122 Record.push_back(PAWI.Attrs); 123 } 124 125 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 126 Record.clear(); 127 } 128 129 Stream.ExitBlock(); 130 } 131 132 /// WriteTypeTable - Write out the type table for a module. 133 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 134 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 135 136 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 137 SmallVector<uint64_t, 64> TypeVals; 138 139 // Abbrev for TYPE_CODE_POINTER. 140 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 141 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 143 Log2_32_Ceil(VE.getTypes().size()+1))); 144 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 145 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 146 147 // Abbrev for TYPE_CODE_FUNCTION. 148 Abbv = new BitCodeAbbrev(); 149 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 151 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 154 Log2_32_Ceil(VE.getTypes().size()+1))); 155 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 156 157 // Abbrev for TYPE_CODE_STRUCT. 158 Abbv = new BitCodeAbbrev(); 159 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 163 Log2_32_Ceil(VE.getTypes().size()+1))); 164 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 165 166 // Abbrev for TYPE_CODE_ARRAY. 167 Abbv = new BitCodeAbbrev(); 168 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 171 Log2_32_Ceil(VE.getTypes().size()+1))); 172 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 173 174 // Emit an entry count so the reader can reserve space. 175 TypeVals.push_back(TypeList.size()); 176 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 177 TypeVals.clear(); 178 179 // Loop over all of the types, emitting each in turn. 180 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 181 const Type *T = TypeList[i].first; 182 int AbbrevToUse = 0; 183 unsigned Code = 0; 184 185 switch (T->getTypeID()) { 186 default: assert(0 && "Unknown type!"); 187 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 188 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 189 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 190 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 191 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 192 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 193 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 194 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 195 case Type::IntegerTyID: 196 // INTEGER: [width] 197 Code = bitc::TYPE_CODE_INTEGER; 198 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 199 break; 200 case Type::PointerTyID: { 201 const PointerType *PTy = cast<PointerType>(T); 202 // POINTER: [pointee type, address space] 203 Code = bitc::TYPE_CODE_POINTER; 204 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 205 unsigned AddressSpace = PTy->getAddressSpace(); 206 TypeVals.push_back(AddressSpace); 207 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 208 break; 209 } 210 case Type::FunctionTyID: { 211 const FunctionType *FT = cast<FunctionType>(T); 212 // FUNCTION: [isvararg, attrid, retty, paramty x N] 213 Code = bitc::TYPE_CODE_FUNCTION; 214 TypeVals.push_back(FT->isVarArg()); 215 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 216 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 217 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 218 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 219 AbbrevToUse = FunctionAbbrev; 220 break; 221 } 222 case Type::StructTyID: { 223 const StructType *ST = cast<StructType>(T); 224 // STRUCT: [ispacked, eltty x N] 225 Code = bitc::TYPE_CODE_STRUCT; 226 TypeVals.push_back(ST->isPacked()); 227 // Output all of the element types. 228 for (StructType::element_iterator I = ST->element_begin(), 229 E = ST->element_end(); I != E; ++I) 230 TypeVals.push_back(VE.getTypeID(*I)); 231 AbbrevToUse = StructAbbrev; 232 break; 233 } 234 case Type::ArrayTyID: { 235 const ArrayType *AT = cast<ArrayType>(T); 236 // ARRAY: [numelts, eltty] 237 Code = bitc::TYPE_CODE_ARRAY; 238 TypeVals.push_back(AT->getNumElements()); 239 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 240 AbbrevToUse = ArrayAbbrev; 241 break; 242 } 243 case Type::VectorTyID: { 244 const VectorType *VT = cast<VectorType>(T); 245 // VECTOR [numelts, eltty] 246 Code = bitc::TYPE_CODE_VECTOR; 247 TypeVals.push_back(VT->getNumElements()); 248 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 249 break; 250 } 251 } 252 253 // Emit the finished record. 254 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 255 TypeVals.clear(); 256 } 257 258 Stream.ExitBlock(); 259 } 260 261 static unsigned getEncodedLinkage(const GlobalValue *GV) { 262 switch (GV->getLinkage()) { 263 default: assert(0 && "Invalid linkage!"); 264 case GlobalValue::GhostLinkage: // Map ghost linkage onto external. 265 case GlobalValue::ExternalLinkage: return 0; 266 case GlobalValue::WeakLinkage: return 1; 267 case GlobalValue::AppendingLinkage: return 2; 268 case GlobalValue::InternalLinkage: return 3; 269 case GlobalValue::LinkOnceLinkage: return 4; 270 case GlobalValue::DLLImportLinkage: return 5; 271 case GlobalValue::DLLExportLinkage: return 6; 272 case GlobalValue::ExternalWeakLinkage: return 7; 273 case GlobalValue::CommonLinkage: return 8; 274 } 275 } 276 277 static unsigned getEncodedVisibility(const GlobalValue *GV) { 278 switch (GV->getVisibility()) { 279 default: assert(0 && "Invalid visibility!"); 280 case GlobalValue::DefaultVisibility: return 0; 281 case GlobalValue::HiddenVisibility: return 1; 282 case GlobalValue::ProtectedVisibility: return 2; 283 } 284 } 285 286 // Emit top-level description of module, including target triple, inline asm, 287 // descriptors for global variables, and function prototype info. 288 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 289 BitstreamWriter &Stream) { 290 // Emit the list of dependent libraries for the Module. 291 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 292 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 293 294 // Emit various pieces of data attached to a module. 295 if (!M->getTargetTriple().empty()) 296 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 297 0/*TODO*/, Stream); 298 if (!M->getDataLayout().empty()) 299 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 300 0/*TODO*/, Stream); 301 if (!M->getModuleInlineAsm().empty()) 302 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 303 0/*TODO*/, Stream); 304 305 // Emit information about sections and collectors, computing how many there 306 // are. Also compute the maximum alignment value. 307 std::map<std::string, unsigned> SectionMap; 308 std::map<std::string, unsigned> CollectorMap; 309 unsigned MaxAlignment = 0; 310 unsigned MaxGlobalType = 0; 311 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 312 GV != E; ++GV) { 313 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 314 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 315 316 if (!GV->hasSection()) continue; 317 // Give section names unique ID's. 318 unsigned &Entry = SectionMap[GV->getSection()]; 319 if (Entry != 0) continue; 320 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 321 0/*TODO*/, Stream); 322 Entry = SectionMap.size(); 323 } 324 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 325 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 326 if (F->hasSection()) { 327 // Give section names unique ID's. 328 unsigned &Entry = SectionMap[F->getSection()]; 329 if (!Entry) { 330 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 331 0/*TODO*/, Stream); 332 Entry = SectionMap.size(); 333 } 334 } 335 if (F->hasCollector()) { 336 // Same for collector names. 337 unsigned &Entry = CollectorMap[F->getCollector()]; 338 if (!Entry) { 339 WriteStringRecord(bitc::MODULE_CODE_COLLECTORNAME, F->getCollector(), 340 0/*TODO*/, Stream); 341 Entry = CollectorMap.size(); 342 } 343 } 344 } 345 346 // Emit abbrev for globals, now that we know # sections and max alignment. 347 unsigned SimpleGVarAbbrev = 0; 348 if (!M->global_empty()) { 349 // Add an abbrev for common globals with no visibility or thread localness. 350 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 351 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 353 Log2_32_Ceil(MaxGlobalType+1))); 354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 357 if (MaxAlignment == 0) // Alignment. 358 Abbv->Add(BitCodeAbbrevOp(0)); 359 else { 360 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 362 Log2_32_Ceil(MaxEncAlignment+1))); 363 } 364 if (SectionMap.empty()) // Section. 365 Abbv->Add(BitCodeAbbrevOp(0)); 366 else 367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 368 Log2_32_Ceil(SectionMap.size()+1))); 369 // Don't bother emitting vis + thread local. 370 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 371 } 372 373 // Emit the global variable information. 374 SmallVector<unsigned, 64> Vals; 375 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 376 GV != E; ++GV) { 377 unsigned AbbrevToUse = 0; 378 379 // GLOBALVAR: [type, isconst, initid, 380 // linkage, alignment, section, visibility, threadlocal] 381 Vals.push_back(VE.getTypeID(GV->getType())); 382 Vals.push_back(GV->isConstant()); 383 Vals.push_back(GV->isDeclaration() ? 0 : 384 (VE.getValueID(GV->getInitializer()) + 1)); 385 Vals.push_back(getEncodedLinkage(GV)); 386 Vals.push_back(Log2_32(GV->getAlignment())+1); 387 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 388 if (GV->isThreadLocal() || 389 GV->getVisibility() != GlobalValue::DefaultVisibility) { 390 Vals.push_back(getEncodedVisibility(GV)); 391 Vals.push_back(GV->isThreadLocal()); 392 } else { 393 AbbrevToUse = SimpleGVarAbbrev; 394 } 395 396 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 397 Vals.clear(); 398 } 399 400 // Emit the function proto information. 401 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 402 // FUNCTION: [type, callingconv, isproto, paramattr, 403 // linkage, alignment, section, visibility, collector] 404 Vals.push_back(VE.getTypeID(F->getType())); 405 Vals.push_back(F->getCallingConv()); 406 Vals.push_back(F->isDeclaration()); 407 Vals.push_back(getEncodedLinkage(F)); 408 Vals.push_back(VE.getParamAttrID(F->getParamAttrs())); 409 Vals.push_back(Log2_32(F->getAlignment())+1); 410 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 411 Vals.push_back(getEncodedVisibility(F)); 412 Vals.push_back(F->hasCollector() ? CollectorMap[F->getCollector()] : 0); 413 414 unsigned AbbrevToUse = 0; 415 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 416 Vals.clear(); 417 } 418 419 420 // Emit the alias information. 421 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 422 AI != E; ++AI) { 423 Vals.push_back(VE.getTypeID(AI->getType())); 424 Vals.push_back(VE.getValueID(AI->getAliasee())); 425 Vals.push_back(getEncodedLinkage(AI)); 426 Vals.push_back(getEncodedVisibility(AI)); 427 unsigned AbbrevToUse = 0; 428 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 429 Vals.clear(); 430 } 431 } 432 433 434 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 435 const ValueEnumerator &VE, 436 BitstreamWriter &Stream, bool isGlobal) { 437 if (FirstVal == LastVal) return; 438 439 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 440 441 unsigned AggregateAbbrev = 0; 442 unsigned String8Abbrev = 0; 443 unsigned CString7Abbrev = 0; 444 unsigned CString6Abbrev = 0; 445 // If this is a constant pool for the module, emit module-specific abbrevs. 446 if (isGlobal) { 447 // Abbrev for CST_CODE_AGGREGATE. 448 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 449 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 452 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 453 454 // Abbrev for CST_CODE_STRING. 455 Abbv = new BitCodeAbbrev(); 456 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 459 String8Abbrev = Stream.EmitAbbrev(Abbv); 460 // Abbrev for CST_CODE_CSTRING. 461 Abbv = new BitCodeAbbrev(); 462 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 465 CString7Abbrev = Stream.EmitAbbrev(Abbv); 466 // Abbrev for CST_CODE_CSTRING. 467 Abbv = new BitCodeAbbrev(); 468 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 471 CString6Abbrev = Stream.EmitAbbrev(Abbv); 472 } 473 474 SmallVector<uint64_t, 64> Record; 475 476 const ValueEnumerator::ValueList &Vals = VE.getValues(); 477 const Type *LastTy = 0; 478 for (unsigned i = FirstVal; i != LastVal; ++i) { 479 const Value *V = Vals[i].first; 480 // If we need to switch types, do so now. 481 if (V->getType() != LastTy) { 482 LastTy = V->getType(); 483 Record.push_back(VE.getTypeID(LastTy)); 484 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 485 CONSTANTS_SETTYPE_ABBREV); 486 Record.clear(); 487 } 488 489 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 490 Record.push_back(unsigned(IA->hasSideEffects())); 491 492 // Add the asm string. 493 const std::string &AsmStr = IA->getAsmString(); 494 Record.push_back(AsmStr.size()); 495 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 496 Record.push_back(AsmStr[i]); 497 498 // Add the constraint string. 499 const std::string &ConstraintStr = IA->getConstraintString(); 500 Record.push_back(ConstraintStr.size()); 501 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 502 Record.push_back(ConstraintStr[i]); 503 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 504 Record.clear(); 505 continue; 506 } 507 const Constant *C = cast<Constant>(V); 508 unsigned Code = -1U; 509 unsigned AbbrevToUse = 0; 510 if (C->isNullValue()) { 511 Code = bitc::CST_CODE_NULL; 512 } else if (isa<UndefValue>(C)) { 513 Code = bitc::CST_CODE_UNDEF; 514 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 515 if (IV->getBitWidth() <= 64) { 516 int64_t V = IV->getSExtValue(); 517 if (V >= 0) 518 Record.push_back(V << 1); 519 else 520 Record.push_back((-V << 1) | 1); 521 Code = bitc::CST_CODE_INTEGER; 522 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 523 } else { // Wide integers, > 64 bits in size. 524 // We have an arbitrary precision integer value to write whose 525 // bit width is > 64. However, in canonical unsigned integer 526 // format it is likely that the high bits are going to be zero. 527 // So, we only write the number of active words. 528 unsigned NWords = IV->getValue().getActiveWords(); 529 const uint64_t *RawWords = IV->getValue().getRawData(); 530 for (unsigned i = 0; i != NWords; ++i) { 531 int64_t V = RawWords[i]; 532 if (V >= 0) 533 Record.push_back(V << 1); 534 else 535 Record.push_back((-V << 1) | 1); 536 } 537 Code = bitc::CST_CODE_WIDE_INTEGER; 538 } 539 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 540 Code = bitc::CST_CODE_FLOAT; 541 const Type *Ty = CFP->getType(); 542 if (Ty == Type::FloatTy || Ty == Type::DoubleTy) { 543 Record.push_back(CFP->getValueAPF().convertToAPInt().getZExtValue()); 544 } else if (Ty == Type::X86_FP80Ty) { 545 // api needed to prevent premature destruction 546 APInt api = CFP->getValueAPF().convertToAPInt(); 547 const uint64_t *p = api.getRawData(); 548 Record.push_back(p[0]); 549 Record.push_back((uint16_t)p[1]); 550 } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) { 551 APInt api = CFP->getValueAPF().convertToAPInt(); 552 const uint64_t *p = api.getRawData(); 553 Record.push_back(p[0]); 554 Record.push_back(p[1]); 555 } else { 556 assert (0 && "Unknown FP type!"); 557 } 558 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 559 // Emit constant strings specially. 560 unsigned NumOps = C->getNumOperands(); 561 // If this is a null-terminated string, use the denser CSTRING encoding. 562 if (C->getOperand(NumOps-1)->isNullValue()) { 563 Code = bitc::CST_CODE_CSTRING; 564 --NumOps; // Don't encode the null, which isn't allowed by char6. 565 } else { 566 Code = bitc::CST_CODE_STRING; 567 AbbrevToUse = String8Abbrev; 568 } 569 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 570 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 571 for (unsigned i = 0; i != NumOps; ++i) { 572 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue(); 573 Record.push_back(V); 574 isCStr7 &= (V & 128) == 0; 575 if (isCStrChar6) 576 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 577 } 578 579 if (isCStrChar6) 580 AbbrevToUse = CString6Abbrev; 581 else if (isCStr7) 582 AbbrevToUse = CString7Abbrev; 583 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 584 isa<ConstantVector>(V)) { 585 Code = bitc::CST_CODE_AGGREGATE; 586 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 587 Record.push_back(VE.getValueID(C->getOperand(i))); 588 AbbrevToUse = AggregateAbbrev; 589 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 590 switch (CE->getOpcode()) { 591 default: 592 if (Instruction::isCast(CE->getOpcode())) { 593 Code = bitc::CST_CODE_CE_CAST; 594 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 595 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 596 Record.push_back(VE.getValueID(C->getOperand(0))); 597 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 598 } else { 599 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 600 Code = bitc::CST_CODE_CE_BINOP; 601 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 602 Record.push_back(VE.getValueID(C->getOperand(0))); 603 Record.push_back(VE.getValueID(C->getOperand(1))); 604 } 605 break; 606 case Instruction::GetElementPtr: 607 Code = bitc::CST_CODE_CE_GEP; 608 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 609 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 610 Record.push_back(VE.getValueID(C->getOperand(i))); 611 } 612 break; 613 case Instruction::ExtractValue: { 614 Code = bitc::CST_CODE_CE_EXTRACTVAL; 615 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 616 Record.push_back(VE.getValueID(C->getOperand(0))); 617 const SmallVector<unsigned, 4> &Indices = CE->getIndices(); 618 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 619 Record.push_back(Indices[i]); 620 break; 621 } 622 case Instruction::InsertValue: { 623 Code = bitc::CST_CODE_CE_INSERTVAL; 624 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 625 Record.push_back(VE.getValueID(C->getOperand(0))); 626 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 627 Record.push_back(VE.getValueID(C->getOperand(1))); 628 const SmallVector<unsigned, 4> &Indices = CE->getIndices(); 629 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 630 Record.push_back(Indices[i]); 631 break; 632 } 633 case Instruction::Select: 634 Code = bitc::CST_CODE_CE_SELECT; 635 Record.push_back(VE.getValueID(C->getOperand(0))); 636 Record.push_back(VE.getValueID(C->getOperand(1))); 637 Record.push_back(VE.getValueID(C->getOperand(2))); 638 break; 639 case Instruction::ExtractElement: 640 Code = bitc::CST_CODE_CE_EXTRACTELT; 641 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 642 Record.push_back(VE.getValueID(C->getOperand(0))); 643 Record.push_back(VE.getValueID(C->getOperand(1))); 644 break; 645 case Instruction::InsertElement: 646 Code = bitc::CST_CODE_CE_INSERTELT; 647 Record.push_back(VE.getValueID(C->getOperand(0))); 648 Record.push_back(VE.getValueID(C->getOperand(1))); 649 Record.push_back(VE.getValueID(C->getOperand(2))); 650 break; 651 case Instruction::ShuffleVector: 652 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 653 Record.push_back(VE.getValueID(C->getOperand(0))); 654 Record.push_back(VE.getValueID(C->getOperand(1))); 655 Record.push_back(VE.getValueID(C->getOperand(2))); 656 break; 657 case Instruction::ICmp: 658 case Instruction::FCmp: 659 case Instruction::VICmp: 660 case Instruction::VFCmp: 661 Code = bitc::CST_CODE_CE_CMP; 662 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 663 Record.push_back(VE.getValueID(C->getOperand(0))); 664 Record.push_back(VE.getValueID(C->getOperand(1))); 665 Record.push_back(CE->getPredicate()); 666 break; 667 } 668 } else { 669 assert(0 && "Unknown constant!"); 670 } 671 Stream.EmitRecord(Code, Record, AbbrevToUse); 672 Record.clear(); 673 } 674 675 Stream.ExitBlock(); 676 } 677 678 static void WriteModuleConstants(const ValueEnumerator &VE, 679 BitstreamWriter &Stream) { 680 const ValueEnumerator::ValueList &Vals = VE.getValues(); 681 682 // Find the first constant to emit, which is the first non-globalvalue value. 683 // We know globalvalues have been emitted by WriteModuleInfo. 684 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 685 if (!isa<GlobalValue>(Vals[i].first)) { 686 WriteConstants(i, Vals.size(), VE, Stream, true); 687 return; 688 } 689 } 690 } 691 692 /// PushValueAndType - The file has to encode both the value and type id for 693 /// many values, because we need to know what type to create for forward 694 /// references. However, most operands are not forward references, so this type 695 /// field is not needed. 696 /// 697 /// This function adds V's value ID to Vals. If the value ID is higher than the 698 /// instruction ID, then it is a forward reference, and it also includes the 699 /// type ID. 700 static bool PushValueAndType(Value *V, unsigned InstID, 701 SmallVector<unsigned, 64> &Vals, 702 ValueEnumerator &VE) { 703 unsigned ValID = VE.getValueID(V); 704 Vals.push_back(ValID); 705 if (ValID >= InstID) { 706 Vals.push_back(VE.getTypeID(V->getType())); 707 return true; 708 } 709 return false; 710 } 711 712 /// WriteInstruction - Emit an instruction to the specified stream. 713 static void WriteInstruction(const Instruction &I, unsigned InstID, 714 ValueEnumerator &VE, BitstreamWriter &Stream, 715 SmallVector<unsigned, 64> &Vals) { 716 unsigned Code = 0; 717 unsigned AbbrevToUse = 0; 718 switch (I.getOpcode()) { 719 default: 720 if (Instruction::isCast(I.getOpcode())) { 721 Code = bitc::FUNC_CODE_INST_CAST; 722 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 723 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 724 Vals.push_back(VE.getTypeID(I.getType())); 725 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 726 } else { 727 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 728 Code = bitc::FUNC_CODE_INST_BINOP; 729 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 730 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 731 Vals.push_back(VE.getValueID(I.getOperand(1))); 732 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 733 } 734 break; 735 736 case Instruction::GetElementPtr: 737 Code = bitc::FUNC_CODE_INST_GEP; 738 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 739 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 740 break; 741 case Instruction::ExtractValue: { 742 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 743 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 744 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 745 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 746 Vals.push_back(*i); 747 break; 748 } 749 case Instruction::InsertValue: { 750 Code = bitc::FUNC_CODE_INST_INSERTVAL; 751 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 752 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 753 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 754 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 755 Vals.push_back(*i); 756 break; 757 } 758 case Instruction::Select: 759 Code = bitc::FUNC_CODE_INST_SELECT; 760 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 761 Vals.push_back(VE.getValueID(I.getOperand(2))); 762 Vals.push_back(VE.getValueID(I.getOperand(0))); 763 break; 764 case Instruction::ExtractElement: 765 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 766 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 767 Vals.push_back(VE.getValueID(I.getOperand(1))); 768 break; 769 case Instruction::InsertElement: 770 Code = bitc::FUNC_CODE_INST_INSERTELT; 771 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 772 Vals.push_back(VE.getValueID(I.getOperand(1))); 773 Vals.push_back(VE.getValueID(I.getOperand(2))); 774 break; 775 case Instruction::ShuffleVector: 776 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 777 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 778 Vals.push_back(VE.getValueID(I.getOperand(1))); 779 Vals.push_back(VE.getValueID(I.getOperand(2))); 780 break; 781 case Instruction::ICmp: 782 case Instruction::FCmp: 783 case Instruction::VICmp: 784 case Instruction::VFCmp: 785 Code = bitc::FUNC_CODE_INST_CMP; 786 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 787 Vals.push_back(VE.getValueID(I.getOperand(1))); 788 Vals.push_back(cast<CmpInst>(I).getPredicate()); 789 break; 790 case Instruction::GetResult: 791 Code = bitc::FUNC_CODE_INST_GETRESULT; 792 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 793 Vals.push_back(cast<GetResultInst>(I).getIndex()); 794 break; 795 796 case Instruction::Ret: 797 { 798 Code = bitc::FUNC_CODE_INST_RET; 799 unsigned NumOperands = I.getNumOperands(); 800 if (NumOperands == 0) 801 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 802 else if (NumOperands == 1) { 803 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 804 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 805 } else { 806 for (unsigned i = 0, e = NumOperands; i != e; ++i) 807 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 808 } 809 } 810 break; 811 case Instruction::Br: 812 Code = bitc::FUNC_CODE_INST_BR; 813 Vals.push_back(VE.getValueID(I.getOperand(0))); 814 if (cast<BranchInst>(I).isConditional()) { 815 Vals.push_back(VE.getValueID(I.getOperand(1))); 816 Vals.push_back(VE.getValueID(I.getOperand(2))); 817 } 818 break; 819 case Instruction::Switch: 820 Code = bitc::FUNC_CODE_INST_SWITCH; 821 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 822 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 823 Vals.push_back(VE.getValueID(I.getOperand(i))); 824 break; 825 case Instruction::Invoke: { 826 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 827 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 828 Code = bitc::FUNC_CODE_INST_INVOKE; 829 830 const InvokeInst *II = cast<InvokeInst>(&I); 831 Vals.push_back(VE.getParamAttrID(II->getParamAttrs())); 832 Vals.push_back(II->getCallingConv()); 833 Vals.push_back(VE.getValueID(I.getOperand(1))); // normal dest 834 Vals.push_back(VE.getValueID(I.getOperand(2))); // unwind dest 835 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee 836 837 // Emit value #'s for the fixed parameters. 838 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 839 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 840 841 // Emit type/value pairs for varargs params. 842 if (FTy->isVarArg()) { 843 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); 844 i != e; ++i) 845 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 846 } 847 break; 848 } 849 case Instruction::Unwind: 850 Code = bitc::FUNC_CODE_INST_UNWIND; 851 break; 852 case Instruction::Unreachable: 853 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 854 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 855 break; 856 857 case Instruction::PHI: 858 Code = bitc::FUNC_CODE_INST_PHI; 859 Vals.push_back(VE.getTypeID(I.getType())); 860 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 861 Vals.push_back(VE.getValueID(I.getOperand(i))); 862 break; 863 864 case Instruction::Malloc: 865 Code = bitc::FUNC_CODE_INST_MALLOC; 866 Vals.push_back(VE.getTypeID(I.getType())); 867 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 868 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); 869 break; 870 871 case Instruction::Free: 872 Code = bitc::FUNC_CODE_INST_FREE; 873 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 874 break; 875 876 case Instruction::Alloca: 877 Code = bitc::FUNC_CODE_INST_ALLOCA; 878 Vals.push_back(VE.getTypeID(I.getType())); 879 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 880 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 881 break; 882 883 case Instruction::Load: 884 Code = bitc::FUNC_CODE_INST_LOAD; 885 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 886 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 887 888 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 889 Vals.push_back(cast<LoadInst>(I).isVolatile()); 890 break; 891 case Instruction::Store: 892 Code = bitc::FUNC_CODE_INST_STORE2; 893 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 894 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 895 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 896 Vals.push_back(cast<StoreInst>(I).isVolatile()); 897 break; 898 case Instruction::Call: { 899 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 900 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 901 902 Code = bitc::FUNC_CODE_INST_CALL; 903 904 const CallInst *CI = cast<CallInst>(&I); 905 Vals.push_back(VE.getParamAttrID(CI->getParamAttrs())); 906 Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall())); 907 PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee 908 909 // Emit value #'s for the fixed parameters. 910 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 911 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 912 913 // Emit type/value pairs for varargs params. 914 if (FTy->isVarArg()) { 915 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 916 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 917 i != e; ++i) 918 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs 919 } 920 break; 921 } 922 case Instruction::VAArg: 923 Code = bitc::FUNC_CODE_INST_VAARG; 924 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 925 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 926 Vals.push_back(VE.getTypeID(I.getType())); // restype. 927 break; 928 } 929 930 Stream.EmitRecord(Code, Vals, AbbrevToUse); 931 Vals.clear(); 932 } 933 934 // Emit names for globals/functions etc. 935 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 936 const ValueEnumerator &VE, 937 BitstreamWriter &Stream) { 938 if (VST.empty()) return; 939 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 940 941 // FIXME: Set up the abbrev, we know how many values there are! 942 // FIXME: We know if the type names can use 7-bit ascii. 943 SmallVector<unsigned, 64> NameVals; 944 945 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 946 SI != SE; ++SI) { 947 948 const ValueName &Name = *SI; 949 950 // Figure out the encoding to use for the name. 951 bool is7Bit = true; 952 bool isChar6 = true; 953 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 954 C != E; ++C) { 955 if (isChar6) 956 isChar6 = BitCodeAbbrevOp::isChar6(*C); 957 if ((unsigned char)*C & 128) { 958 is7Bit = false; 959 break; // don't bother scanning the rest. 960 } 961 } 962 963 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 964 965 // VST_ENTRY: [valueid, namechar x N] 966 // VST_BBENTRY: [bbid, namechar x N] 967 unsigned Code; 968 if (isa<BasicBlock>(SI->getValue())) { 969 Code = bitc::VST_CODE_BBENTRY; 970 if (isChar6) 971 AbbrevToUse = VST_BBENTRY_6_ABBREV; 972 } else { 973 Code = bitc::VST_CODE_ENTRY; 974 if (isChar6) 975 AbbrevToUse = VST_ENTRY_6_ABBREV; 976 else if (is7Bit) 977 AbbrevToUse = VST_ENTRY_7_ABBREV; 978 } 979 980 NameVals.push_back(VE.getValueID(SI->getValue())); 981 for (const char *P = Name.getKeyData(), 982 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 983 NameVals.push_back((unsigned char)*P); 984 985 // Emit the finished record. 986 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 987 NameVals.clear(); 988 } 989 Stream.ExitBlock(); 990 } 991 992 /// WriteFunction - Emit a function body to the module stream. 993 static void WriteFunction(const Function &F, ValueEnumerator &VE, 994 BitstreamWriter &Stream) { 995 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 996 VE.incorporateFunction(F); 997 998 SmallVector<unsigned, 64> Vals; 999 1000 // Emit the number of basic blocks, so the reader can create them ahead of 1001 // time. 1002 Vals.push_back(VE.getBasicBlocks().size()); 1003 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1004 Vals.clear(); 1005 1006 // If there are function-local constants, emit them now. 1007 unsigned CstStart, CstEnd; 1008 VE.getFunctionConstantRange(CstStart, CstEnd); 1009 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1010 1011 // Keep a running idea of what the instruction ID is. 1012 unsigned InstID = CstEnd; 1013 1014 // Finally, emit all the instructions, in order. 1015 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1016 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1017 I != E; ++I) { 1018 WriteInstruction(*I, InstID, VE, Stream, Vals); 1019 if (I->getType() != Type::VoidTy) 1020 ++InstID; 1021 } 1022 1023 // Emit names for all the instructions etc. 1024 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1025 1026 VE.purgeFunction(); 1027 Stream.ExitBlock(); 1028 } 1029 1030 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 1031 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 1032 const ValueEnumerator &VE, 1033 BitstreamWriter &Stream) { 1034 if (TST.empty()) return; 1035 1036 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 1037 1038 // 7-bit fixed width VST_CODE_ENTRY strings. 1039 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1040 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1041 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1042 Log2_32_Ceil(VE.getTypes().size()+1))); 1043 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1044 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1045 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 1046 1047 SmallVector<unsigned, 64> NameVals; 1048 1049 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 1050 TI != TE; ++TI) { 1051 // TST_ENTRY: [typeid, namechar x N] 1052 NameVals.push_back(VE.getTypeID(TI->second)); 1053 1054 const std::string &Str = TI->first; 1055 bool is7Bit = true; 1056 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 1057 NameVals.push_back((unsigned char)Str[i]); 1058 if (Str[i] & 128) 1059 is7Bit = false; 1060 } 1061 1062 // Emit the finished record. 1063 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1064 NameVals.clear(); 1065 } 1066 1067 Stream.ExitBlock(); 1068 } 1069 1070 // Emit blockinfo, which defines the standard abbreviations etc. 1071 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1072 // We only want to emit block info records for blocks that have multiple 1073 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1074 // blocks can defined their abbrevs inline. 1075 Stream.EnterBlockInfoBlock(2); 1076 1077 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1078 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1080 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1081 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1082 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1083 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1084 Abbv) != VST_ENTRY_8_ABBREV) 1085 assert(0 && "Unexpected abbrev ordering!"); 1086 } 1087 1088 { // 7-bit fixed width VST_ENTRY strings. 1089 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1090 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1094 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1095 Abbv) != VST_ENTRY_7_ABBREV) 1096 assert(0 && "Unexpected abbrev ordering!"); 1097 } 1098 { // 6-bit char6 VST_ENTRY strings. 1099 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1100 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1103 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1104 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1105 Abbv) != VST_ENTRY_6_ABBREV) 1106 assert(0 && "Unexpected abbrev ordering!"); 1107 } 1108 { // 6-bit char6 VST_BBENTRY strings. 1109 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1110 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1113 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1114 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1115 Abbv) != VST_BBENTRY_6_ABBREV) 1116 assert(0 && "Unexpected abbrev ordering!"); 1117 } 1118 1119 1120 1121 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1122 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1123 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1124 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1125 Log2_32_Ceil(VE.getTypes().size()+1))); 1126 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1127 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1128 assert(0 && "Unexpected abbrev ordering!"); 1129 } 1130 1131 { // INTEGER abbrev for CONSTANTS_BLOCK. 1132 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1133 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1134 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1135 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1136 Abbv) != CONSTANTS_INTEGER_ABBREV) 1137 assert(0 && "Unexpected abbrev ordering!"); 1138 } 1139 1140 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1141 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1142 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1145 Log2_32_Ceil(VE.getTypes().size()+1))); 1146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1147 1148 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1149 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1150 assert(0 && "Unexpected abbrev ordering!"); 1151 } 1152 { // NULL abbrev for CONSTANTS_BLOCK. 1153 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1154 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1155 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1156 Abbv) != CONSTANTS_NULL_Abbrev) 1157 assert(0 && "Unexpected abbrev ordering!"); 1158 } 1159 1160 // FIXME: This should only use space for first class types! 1161 1162 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1163 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1164 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1168 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1169 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1170 assert(0 && "Unexpected abbrev ordering!"); 1171 } 1172 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1173 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1174 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1178 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1179 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1180 assert(0 && "Unexpected abbrev ordering!"); 1181 } 1182 { // INST_CAST abbrev for FUNCTION_BLOCK. 1183 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1184 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1185 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1187 Log2_32_Ceil(VE.getTypes().size()+1))); 1188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1189 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1190 Abbv) != FUNCTION_INST_CAST_ABBREV) 1191 assert(0 && "Unexpected abbrev ordering!"); 1192 } 1193 1194 { // INST_RET abbrev for FUNCTION_BLOCK. 1195 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1196 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1197 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1198 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1199 assert(0 && "Unexpected abbrev ordering!"); 1200 } 1201 { // INST_RET abbrev for FUNCTION_BLOCK. 1202 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1203 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1205 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1206 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1207 assert(0 && "Unexpected abbrev ordering!"); 1208 } 1209 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1210 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1211 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1212 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1213 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1214 assert(0 && "Unexpected abbrev ordering!"); 1215 } 1216 1217 Stream.ExitBlock(); 1218 } 1219 1220 1221 /// WriteModule - Emit the specified module to the bitstream. 1222 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1223 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1224 1225 // Emit the version number if it is non-zero. 1226 if (CurVersion) { 1227 SmallVector<unsigned, 1> Vals; 1228 Vals.push_back(CurVersion); 1229 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1230 } 1231 1232 // Analyze the module, enumerating globals, functions, etc. 1233 ValueEnumerator VE(M); 1234 1235 // Emit blockinfo, which defines the standard abbreviations etc. 1236 WriteBlockInfo(VE, Stream); 1237 1238 // Emit information about parameter attributes. 1239 WriteParamAttrTable(VE, Stream); 1240 1241 // Emit information describing all of the types in the module. 1242 WriteTypeTable(VE, Stream); 1243 1244 // Emit top-level description of module, including target triple, inline asm, 1245 // descriptors for global variables, and function prototype info. 1246 WriteModuleInfo(M, VE, Stream); 1247 1248 // Emit constants. 1249 WriteModuleConstants(VE, Stream); 1250 1251 // If we have any aggregate values in the value table, purge them - these can 1252 // only be used to initialize global variables. Doing so makes the value 1253 // namespace smaller for code in functions. 1254 int NumNonAggregates = VE.PurgeAggregateValues(); 1255 if (NumNonAggregates != -1) { 1256 SmallVector<unsigned, 1> Vals; 1257 Vals.push_back(NumNonAggregates); 1258 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals); 1259 } 1260 1261 // Emit function bodies. 1262 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1263 if (!I->isDeclaration()) 1264 WriteFunction(*I, VE, Stream); 1265 1266 // Emit the type symbol table information. 1267 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1268 1269 // Emit names for globals/functions etc. 1270 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1271 1272 Stream.ExitBlock(); 1273 } 1274 1275 1276 /// WriteBitcodeToFile - Write the specified module to the specified output 1277 /// stream. 1278 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { 1279 std::vector<unsigned char> Buffer; 1280 BitstreamWriter Stream(Buffer); 1281 1282 Buffer.reserve(256*1024); 1283 1284 // Emit the file header. 1285 Stream.Emit((unsigned)'B', 8); 1286 Stream.Emit((unsigned)'C', 8); 1287 Stream.Emit(0x0, 4); 1288 Stream.Emit(0xC, 4); 1289 Stream.Emit(0xE, 4); 1290 Stream.Emit(0xD, 4); 1291 1292 // Emit the module. 1293 WriteModule(M, Stream); 1294 1295 // Write the generated bitstream to "Out". 1296 Out.write((char*)&Buffer.front(), Buffer.size()); 1297 1298 // Make sure it hits disk now. 1299 Out.flush(); 1300 } 1301