xref: /llvm-project/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp (revision c9cb4fc761cd78d3a04feb211d363e91933a8e08)
1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Bitcode writer implementation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Bitcode/BitcodeWriter.h"
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/Bitcode/BitcodeCommon.h"
29 #include "llvm/Bitcode/BitcodeReader.h"
30 #include "llvm/Bitcode/LLVMBitCodes.h"
31 #include "llvm/Bitstream/BitCodes.h"
32 #include "llvm/Bitstream/BitstreamWriter.h"
33 #include "llvm/Config/llvm-config.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/Comdat.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DebugInfoMetadata.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalAlias.h"
44 #include "llvm/IR/GlobalIFunc.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ModuleSummaryIndex.h"
56 #include "llvm/IR/Operator.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/UseListOrder.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/IR/ValueSymbolTable.h"
61 #include "llvm/MC/StringTableBuilder.h"
62 #include "llvm/MC/TargetRegistry.h"
63 #include "llvm/Object/IRSymtab.h"
64 #include "llvm/Support/AtomicOrdering.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Endian.h"
68 #include "llvm/Support/Error.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/SHA1.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstddef>
76 #include <cstdint>
77 #include <iterator>
78 #include <map>
79 #include <memory>
80 #include <optional>
81 #include <string>
82 #include <utility>
83 #include <vector>
84 
85 using namespace llvm;
86 
87 static cl::opt<unsigned>
88     IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
89                    cl::desc("Number of metadatas above which we emit an index "
90                             "to enable lazy-loading"));
91 static cl::opt<uint32_t> FlushThreshold(
92     "bitcode-flush-threshold", cl::Hidden, cl::init(512),
93     cl::desc("The threshold (unit M) for flushing LLVM bitcode."));
94 
95 static cl::opt<bool> WriteRelBFToSummary(
96     "write-relbf-to-summary", cl::Hidden, cl::init(false),
97     cl::desc("Write relative block frequency to function summary "));
98 
99 namespace llvm {
100 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
101 }
102 
103 namespace {
104 
105 /// These are manifest constants used by the bitcode writer. They do not need to
106 /// be kept in sync with the reader, but need to be consistent within this file.
107 enum {
108   // VALUE_SYMTAB_BLOCK abbrev id's.
109   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
110   VST_ENTRY_7_ABBREV,
111   VST_ENTRY_6_ABBREV,
112   VST_BBENTRY_6_ABBREV,
113 
114   // CONSTANTS_BLOCK abbrev id's.
115   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
116   CONSTANTS_INTEGER_ABBREV,
117   CONSTANTS_CE_CAST_Abbrev,
118   CONSTANTS_NULL_Abbrev,
119 
120   // FUNCTION_BLOCK abbrev id's.
121   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
122   FUNCTION_INST_UNOP_ABBREV,
123   FUNCTION_INST_UNOP_FLAGS_ABBREV,
124   FUNCTION_INST_BINOP_ABBREV,
125   FUNCTION_INST_BINOP_FLAGS_ABBREV,
126   FUNCTION_INST_CAST_ABBREV,
127   FUNCTION_INST_RET_VOID_ABBREV,
128   FUNCTION_INST_RET_VAL_ABBREV,
129   FUNCTION_INST_UNREACHABLE_ABBREV,
130   FUNCTION_INST_GEP_ABBREV,
131 };
132 
133 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
134 /// file type.
135 class BitcodeWriterBase {
136 protected:
137   /// The stream created and owned by the client.
138   BitstreamWriter &Stream;
139 
140   StringTableBuilder &StrtabBuilder;
141 
142 public:
143   /// Constructs a BitcodeWriterBase object that writes to the provided
144   /// \p Stream.
145   BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
146       : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
147 
148 protected:
149   void writeModuleVersion();
150 };
151 
152 void BitcodeWriterBase::writeModuleVersion() {
153   // VERSION: [version#]
154   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
155 }
156 
157 /// Base class to manage the module bitcode writing, currently subclassed for
158 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
159 class ModuleBitcodeWriterBase : public BitcodeWriterBase {
160 protected:
161   /// The Module to write to bitcode.
162   const Module &M;
163 
164   /// Enumerates ids for all values in the module.
165   ValueEnumerator VE;
166 
167   /// Optional per-module index to write for ThinLTO.
168   const ModuleSummaryIndex *Index;
169 
170   /// Map that holds the correspondence between GUIDs in the summary index,
171   /// that came from indirect call profiles, and a value id generated by this
172   /// class to use in the VST and summary block records.
173   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
174 
175   /// Tracks the last value id recorded in the GUIDToValueMap.
176   unsigned GlobalValueId;
177 
178   /// Saves the offset of the VSTOffset record that must eventually be
179   /// backpatched with the offset of the actual VST.
180   uint64_t VSTOffsetPlaceholder = 0;
181 
182 public:
183   /// Constructs a ModuleBitcodeWriterBase object for the given Module,
184   /// writing to the provided \p Buffer.
185   ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
186                           BitstreamWriter &Stream,
187                           bool ShouldPreserveUseListOrder,
188                           const ModuleSummaryIndex *Index)
189       : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
190         VE(M, ShouldPreserveUseListOrder), Index(Index) {
191     // Assign ValueIds to any callee values in the index that came from
192     // indirect call profiles and were recorded as a GUID not a Value*
193     // (which would have been assigned an ID by the ValueEnumerator).
194     // The starting ValueId is just after the number of values in the
195     // ValueEnumerator, so that they can be emitted in the VST.
196     GlobalValueId = VE.getValues().size();
197     if (!Index)
198       return;
199     for (const auto &GUIDSummaryLists : *Index)
200       // Examine all summaries for this GUID.
201       for (auto &Summary : GUIDSummaryLists.second.SummaryList)
202         if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
203           // For each call in the function summary, see if the call
204           // is to a GUID (which means it is for an indirect call,
205           // otherwise we would have a Value for it). If so, synthesize
206           // a value id.
207           for (auto &CallEdge : FS->calls())
208             if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
209               assignValueId(CallEdge.first.getGUID());
210   }
211 
212 protected:
213   void writePerModuleGlobalValueSummary();
214 
215 private:
216   void writePerModuleFunctionSummaryRecord(
217       SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
218       unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
219       unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F);
220   void writeModuleLevelReferences(const GlobalVariable &V,
221                                   SmallVector<uint64_t, 64> &NameVals,
222                                   unsigned FSModRefsAbbrev,
223                                   unsigned FSModVTableRefsAbbrev);
224 
225   void assignValueId(GlobalValue::GUID ValGUID) {
226     GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
227   }
228 
229   unsigned getValueId(GlobalValue::GUID ValGUID) {
230     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
231     // Expect that any GUID value had a value Id assigned by an
232     // earlier call to assignValueId.
233     assert(VMI != GUIDToValueIdMap.end() &&
234            "GUID does not have assigned value Id");
235     return VMI->second;
236   }
237 
238   // Helper to get the valueId for the type of value recorded in VI.
239   unsigned getValueId(ValueInfo VI) {
240     if (!VI.haveGVs() || !VI.getValue())
241       return getValueId(VI.getGUID());
242     return VE.getValueID(VI.getValue());
243   }
244 
245   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
246 };
247 
248 /// Class to manage the bitcode writing for a module.
249 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
250   /// Pointer to the buffer allocated by caller for bitcode writing.
251   const SmallVectorImpl<char> &Buffer;
252 
253   /// True if a module hash record should be written.
254   bool GenerateHash;
255 
256   /// If non-null, when GenerateHash is true, the resulting hash is written
257   /// into ModHash.
258   ModuleHash *ModHash;
259 
260   SHA1 Hasher;
261 
262   /// The start bit of the identification block.
263   uint64_t BitcodeStartBit;
264 
265 public:
266   /// Constructs a ModuleBitcodeWriter object for the given Module,
267   /// writing to the provided \p Buffer.
268   ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
269                       StringTableBuilder &StrtabBuilder,
270                       BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
271                       const ModuleSummaryIndex *Index, bool GenerateHash,
272                       ModuleHash *ModHash = nullptr)
273       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
274                                 ShouldPreserveUseListOrder, Index),
275         Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
276         BitcodeStartBit(Stream.GetCurrentBitNo()) {}
277 
278   /// Emit the current module to the bitstream.
279   void write();
280 
281 private:
282   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
283 
284   size_t addToStrtab(StringRef Str);
285 
286   void writeAttributeGroupTable();
287   void writeAttributeTable();
288   void writeTypeTable();
289   void writeComdats();
290   void writeValueSymbolTableForwardDecl();
291   void writeModuleInfo();
292   void writeValueAsMetadata(const ValueAsMetadata *MD,
293                             SmallVectorImpl<uint64_t> &Record);
294   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
295                     unsigned Abbrev);
296   unsigned createDILocationAbbrev();
297   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
298                        unsigned &Abbrev);
299   unsigned createGenericDINodeAbbrev();
300   void writeGenericDINode(const GenericDINode *N,
301                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
302   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
303                        unsigned Abbrev);
304   void writeDIGenericSubrange(const DIGenericSubrange *N,
305                               SmallVectorImpl<uint64_t> &Record,
306                               unsigned Abbrev);
307   void writeDIEnumerator(const DIEnumerator *N,
308                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
309   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
310                         unsigned Abbrev);
311   void writeDIStringType(const DIStringType *N,
312                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
313   void writeDIDerivedType(const DIDerivedType *N,
314                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
315   void writeDICompositeType(const DICompositeType *N,
316                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
317   void writeDISubroutineType(const DISubroutineType *N,
318                              SmallVectorImpl<uint64_t> &Record,
319                              unsigned Abbrev);
320   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
321                    unsigned Abbrev);
322   void writeDICompileUnit(const DICompileUnit *N,
323                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
324   void writeDISubprogram(const DISubprogram *N,
325                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
326   void writeDILexicalBlock(const DILexicalBlock *N,
327                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
328   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
329                                SmallVectorImpl<uint64_t> &Record,
330                                unsigned Abbrev);
331   void writeDICommonBlock(const DICommonBlock *N,
332                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
333   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
334                         unsigned Abbrev);
335   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
336                     unsigned Abbrev);
337   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
338                         unsigned Abbrev);
339   void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record,
340                       unsigned Abbrev);
341   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
342                      unsigned Abbrev);
343   void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record,
344                        unsigned Abbrev);
345   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
346                                     SmallVectorImpl<uint64_t> &Record,
347                                     unsigned Abbrev);
348   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
349                                      SmallVectorImpl<uint64_t> &Record,
350                                      unsigned Abbrev);
351   void writeDIGlobalVariable(const DIGlobalVariable *N,
352                              SmallVectorImpl<uint64_t> &Record,
353                              unsigned Abbrev);
354   void writeDILocalVariable(const DILocalVariable *N,
355                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
356   void writeDILabel(const DILabel *N,
357                     SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
358   void writeDIExpression(const DIExpression *N,
359                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
360   void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
361                                        SmallVectorImpl<uint64_t> &Record,
362                                        unsigned Abbrev);
363   void writeDIObjCProperty(const DIObjCProperty *N,
364                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
365   void writeDIImportedEntity(const DIImportedEntity *N,
366                              SmallVectorImpl<uint64_t> &Record,
367                              unsigned Abbrev);
368   unsigned createNamedMetadataAbbrev();
369   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
370   unsigned createMetadataStringsAbbrev();
371   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
372                             SmallVectorImpl<uint64_t> &Record);
373   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
374                             SmallVectorImpl<uint64_t> &Record,
375                             std::vector<unsigned> *MDAbbrevs = nullptr,
376                             std::vector<uint64_t> *IndexPos = nullptr);
377   void writeModuleMetadata();
378   void writeFunctionMetadata(const Function &F);
379   void writeFunctionMetadataAttachment(const Function &F);
380   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
381                                     const GlobalObject &GO);
382   void writeModuleMetadataKinds();
383   void writeOperandBundleTags();
384   void writeSyncScopeNames();
385   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
386   void writeModuleConstants();
387   bool pushValueAndType(const Value *V, unsigned InstID,
388                         SmallVectorImpl<unsigned> &Vals);
389   void writeOperandBundles(const CallBase &CB, unsigned InstID);
390   void pushValue(const Value *V, unsigned InstID,
391                  SmallVectorImpl<unsigned> &Vals);
392   void pushValueSigned(const Value *V, unsigned InstID,
393                        SmallVectorImpl<uint64_t> &Vals);
394   void writeInstruction(const Instruction &I, unsigned InstID,
395                         SmallVectorImpl<unsigned> &Vals);
396   void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
397   void writeGlobalValueSymbolTable(
398       DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
399   void writeUseList(UseListOrder &&Order);
400   void writeUseListBlock(const Function *F);
401   void
402   writeFunction(const Function &F,
403                 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
404   void writeBlockInfo();
405   void writeModuleHash(size_t BlockStartPos);
406 
407   unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
408     return unsigned(SSID);
409   }
410 
411   unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
412 };
413 
414 /// Class to manage the bitcode writing for a combined index.
415 class IndexBitcodeWriter : public BitcodeWriterBase {
416   /// The combined index to write to bitcode.
417   const ModuleSummaryIndex &Index;
418 
419   /// When writing a subset of the index for distributed backends, client
420   /// provides a map of modules to the corresponding GUIDs/summaries to write.
421   const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
422 
423   /// Map that holds the correspondence between the GUID used in the combined
424   /// index and a value id generated by this class to use in references.
425   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
426 
427   // The sorted stack id indices actually used in the summary entries being
428   // written, which will be a subset of those in the full index in the case of
429   // distributed indexes.
430   std::vector<unsigned> StackIdIndices;
431 
432   /// Tracks the last value id recorded in the GUIDToValueMap.
433   unsigned GlobalValueId = 0;
434 
435 public:
436   /// Constructs a IndexBitcodeWriter object for the given combined index,
437   /// writing to the provided \p Buffer. When writing a subset of the index
438   /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
439   IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
440                      const ModuleSummaryIndex &Index,
441                      const std::map<std::string, GVSummaryMapTy>
442                          *ModuleToSummariesForIndex = nullptr)
443       : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
444         ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
445     // Assign unique value ids to all summaries to be written, for use
446     // in writing out the call graph edges. Save the mapping from GUID
447     // to the new global value id to use when writing those edges, which
448     // are currently saved in the index in terms of GUID.
449     forEachSummary([&](GVInfo I, bool IsAliasee) {
450       GUIDToValueIdMap[I.first] = ++GlobalValueId;
451       if (IsAliasee)
452         return;
453       auto *FS = dyn_cast<FunctionSummary>(I.second);
454       if (!FS)
455         return;
456       // Record all stack id indices actually used in the summary entries being
457       // written, so that we can compact them in the case of distributed ThinLTO
458       // indexes.
459       for (auto &CI : FS->callsites())
460         for (auto Idx : CI.StackIdIndices)
461           StackIdIndices.push_back(Idx);
462       for (auto &AI : FS->allocs())
463         for (auto &MIB : AI.MIBs)
464           for (auto Idx : MIB.StackIdIndices)
465             StackIdIndices.push_back(Idx);
466     });
467     llvm::sort(StackIdIndices);
468     StackIdIndices.erase(
469         std::unique(StackIdIndices.begin(), StackIdIndices.end()),
470         StackIdIndices.end());
471   }
472 
473   /// The below iterator returns the GUID and associated summary.
474   using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
475 
476   /// Calls the callback for each value GUID and summary to be written to
477   /// bitcode. This hides the details of whether they are being pulled from the
478   /// entire index or just those in a provided ModuleToSummariesForIndex map.
479   template<typename Functor>
480   void forEachSummary(Functor Callback) {
481     if (ModuleToSummariesForIndex) {
482       for (auto &M : *ModuleToSummariesForIndex)
483         for (auto &Summary : M.second) {
484           Callback(Summary, false);
485           // Ensure aliasee is handled, e.g. for assigning a valueId,
486           // even if we are not importing the aliasee directly (the
487           // imported alias will contain a copy of aliasee).
488           if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
489             Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
490         }
491     } else {
492       for (auto &Summaries : Index)
493         for (auto &Summary : Summaries.second.SummaryList)
494           Callback({Summaries.first, Summary.get()}, false);
495     }
496   }
497 
498   /// Calls the callback for each entry in the modulePaths StringMap that
499   /// should be written to the module path string table. This hides the details
500   /// of whether they are being pulled from the entire index or just those in a
501   /// provided ModuleToSummariesForIndex map.
502   template <typename Functor> void forEachModule(Functor Callback) {
503     if (ModuleToSummariesForIndex) {
504       for (const auto &M : *ModuleToSummariesForIndex) {
505         const auto &MPI = Index.modulePaths().find(M.first);
506         if (MPI == Index.modulePaths().end()) {
507           // This should only happen if the bitcode file was empty, in which
508           // case we shouldn't be importing (the ModuleToSummariesForIndex
509           // would only include the module we are writing and index for).
510           assert(ModuleToSummariesForIndex->size() == 1);
511           continue;
512         }
513         Callback(*MPI);
514       }
515     } else {
516       for (const auto &MPSE : Index.modulePaths())
517         Callback(MPSE);
518     }
519   }
520 
521   /// Main entry point for writing a combined index to bitcode.
522   void write();
523 
524 private:
525   void writeModStrings();
526   void writeCombinedGlobalValueSummary();
527 
528   std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
529     auto VMI = GUIDToValueIdMap.find(ValGUID);
530     if (VMI == GUIDToValueIdMap.end())
531       return std::nullopt;
532     return VMI->second;
533   }
534 
535   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
536 };
537 
538 } // end anonymous namespace
539 
540 static unsigned getEncodedCastOpcode(unsigned Opcode) {
541   switch (Opcode) {
542   default: llvm_unreachable("Unknown cast instruction!");
543   case Instruction::Trunc   : return bitc::CAST_TRUNC;
544   case Instruction::ZExt    : return bitc::CAST_ZEXT;
545   case Instruction::SExt    : return bitc::CAST_SEXT;
546   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
547   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
548   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
549   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
550   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
551   case Instruction::FPExt   : return bitc::CAST_FPEXT;
552   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
553   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
554   case Instruction::BitCast : return bitc::CAST_BITCAST;
555   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
556   }
557 }
558 
559 static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
560   switch (Opcode) {
561   default: llvm_unreachable("Unknown binary instruction!");
562   case Instruction::FNeg: return bitc::UNOP_FNEG;
563   }
564 }
565 
566 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
567   switch (Opcode) {
568   default: llvm_unreachable("Unknown binary instruction!");
569   case Instruction::Add:
570   case Instruction::FAdd: return bitc::BINOP_ADD;
571   case Instruction::Sub:
572   case Instruction::FSub: return bitc::BINOP_SUB;
573   case Instruction::Mul:
574   case Instruction::FMul: return bitc::BINOP_MUL;
575   case Instruction::UDiv: return bitc::BINOP_UDIV;
576   case Instruction::FDiv:
577   case Instruction::SDiv: return bitc::BINOP_SDIV;
578   case Instruction::URem: return bitc::BINOP_UREM;
579   case Instruction::FRem:
580   case Instruction::SRem: return bitc::BINOP_SREM;
581   case Instruction::Shl:  return bitc::BINOP_SHL;
582   case Instruction::LShr: return bitc::BINOP_LSHR;
583   case Instruction::AShr: return bitc::BINOP_ASHR;
584   case Instruction::And:  return bitc::BINOP_AND;
585   case Instruction::Or:   return bitc::BINOP_OR;
586   case Instruction::Xor:  return bitc::BINOP_XOR;
587   }
588 }
589 
590 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
591   switch (Op) {
592   default: llvm_unreachable("Unknown RMW operation!");
593   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
594   case AtomicRMWInst::Add: return bitc::RMW_ADD;
595   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
596   case AtomicRMWInst::And: return bitc::RMW_AND;
597   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
598   case AtomicRMWInst::Or: return bitc::RMW_OR;
599   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
600   case AtomicRMWInst::Max: return bitc::RMW_MAX;
601   case AtomicRMWInst::Min: return bitc::RMW_MIN;
602   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
603   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
604   case AtomicRMWInst::FAdd: return bitc::RMW_FADD;
605   case AtomicRMWInst::FSub: return bitc::RMW_FSUB;
606   case AtomicRMWInst::FMax: return bitc::RMW_FMAX;
607   case AtomicRMWInst::FMin: return bitc::RMW_FMIN;
608   }
609 }
610 
611 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
612   switch (Ordering) {
613   case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
614   case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
615   case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
616   case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
617   case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
618   case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
619   case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
620   }
621   llvm_unreachable("Invalid ordering");
622 }
623 
624 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
625                               StringRef Str, unsigned AbbrevToUse) {
626   SmallVector<unsigned, 64> Vals;
627 
628   // Code: [strchar x N]
629   for (char C : Str) {
630     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C))
631       AbbrevToUse = 0;
632     Vals.push_back(C);
633   }
634 
635   // Emit the finished record.
636   Stream.EmitRecord(Code, Vals, AbbrevToUse);
637 }
638 
639 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
640   switch (Kind) {
641   case Attribute::Alignment:
642     return bitc::ATTR_KIND_ALIGNMENT;
643   case Attribute::AllocAlign:
644     return bitc::ATTR_KIND_ALLOC_ALIGN;
645   case Attribute::AllocSize:
646     return bitc::ATTR_KIND_ALLOC_SIZE;
647   case Attribute::AlwaysInline:
648     return bitc::ATTR_KIND_ALWAYS_INLINE;
649   case Attribute::Builtin:
650     return bitc::ATTR_KIND_BUILTIN;
651   case Attribute::ByVal:
652     return bitc::ATTR_KIND_BY_VAL;
653   case Attribute::Convergent:
654     return bitc::ATTR_KIND_CONVERGENT;
655   case Attribute::InAlloca:
656     return bitc::ATTR_KIND_IN_ALLOCA;
657   case Attribute::Cold:
658     return bitc::ATTR_KIND_COLD;
659   case Attribute::DisableSanitizerInstrumentation:
660     return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION;
661   case Attribute::FnRetThunkExtern:
662     return bitc::ATTR_KIND_FNRETTHUNK_EXTERN;
663   case Attribute::Hot:
664     return bitc::ATTR_KIND_HOT;
665   case Attribute::ElementType:
666     return bitc::ATTR_KIND_ELEMENTTYPE;
667   case Attribute::InlineHint:
668     return bitc::ATTR_KIND_INLINE_HINT;
669   case Attribute::InReg:
670     return bitc::ATTR_KIND_IN_REG;
671   case Attribute::JumpTable:
672     return bitc::ATTR_KIND_JUMP_TABLE;
673   case Attribute::MinSize:
674     return bitc::ATTR_KIND_MIN_SIZE;
675   case Attribute::AllocatedPointer:
676     return bitc::ATTR_KIND_ALLOCATED_POINTER;
677   case Attribute::AllocKind:
678     return bitc::ATTR_KIND_ALLOC_KIND;
679   case Attribute::Memory:
680     return bitc::ATTR_KIND_MEMORY;
681   case Attribute::Naked:
682     return bitc::ATTR_KIND_NAKED;
683   case Attribute::Nest:
684     return bitc::ATTR_KIND_NEST;
685   case Attribute::NoAlias:
686     return bitc::ATTR_KIND_NO_ALIAS;
687   case Attribute::NoBuiltin:
688     return bitc::ATTR_KIND_NO_BUILTIN;
689   case Attribute::NoCallback:
690     return bitc::ATTR_KIND_NO_CALLBACK;
691   case Attribute::NoCapture:
692     return bitc::ATTR_KIND_NO_CAPTURE;
693   case Attribute::NoDuplicate:
694     return bitc::ATTR_KIND_NO_DUPLICATE;
695   case Attribute::NoFree:
696     return bitc::ATTR_KIND_NOFREE;
697   case Attribute::NoImplicitFloat:
698     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
699   case Attribute::NoInline:
700     return bitc::ATTR_KIND_NO_INLINE;
701   case Attribute::NoRecurse:
702     return bitc::ATTR_KIND_NO_RECURSE;
703   case Attribute::NoMerge:
704     return bitc::ATTR_KIND_NO_MERGE;
705   case Attribute::NonLazyBind:
706     return bitc::ATTR_KIND_NON_LAZY_BIND;
707   case Attribute::NonNull:
708     return bitc::ATTR_KIND_NON_NULL;
709   case Attribute::Dereferenceable:
710     return bitc::ATTR_KIND_DEREFERENCEABLE;
711   case Attribute::DereferenceableOrNull:
712     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
713   case Attribute::NoRedZone:
714     return bitc::ATTR_KIND_NO_RED_ZONE;
715   case Attribute::NoReturn:
716     return bitc::ATTR_KIND_NO_RETURN;
717   case Attribute::NoSync:
718     return bitc::ATTR_KIND_NOSYNC;
719   case Attribute::NoCfCheck:
720     return bitc::ATTR_KIND_NOCF_CHECK;
721   case Attribute::NoProfile:
722     return bitc::ATTR_KIND_NO_PROFILE;
723   case Attribute::SkipProfile:
724     return bitc::ATTR_KIND_SKIP_PROFILE;
725   case Attribute::NoUnwind:
726     return bitc::ATTR_KIND_NO_UNWIND;
727   case Attribute::NoSanitizeBounds:
728     return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS;
729   case Attribute::NoSanitizeCoverage:
730     return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE;
731   case Attribute::NullPointerIsValid:
732     return bitc::ATTR_KIND_NULL_POINTER_IS_VALID;
733   case Attribute::OptForFuzzing:
734     return bitc::ATTR_KIND_OPT_FOR_FUZZING;
735   case Attribute::OptimizeForSize:
736     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
737   case Attribute::OptimizeNone:
738     return bitc::ATTR_KIND_OPTIMIZE_NONE;
739   case Attribute::ReadNone:
740     return bitc::ATTR_KIND_READ_NONE;
741   case Attribute::ReadOnly:
742     return bitc::ATTR_KIND_READ_ONLY;
743   case Attribute::Returned:
744     return bitc::ATTR_KIND_RETURNED;
745   case Attribute::ReturnsTwice:
746     return bitc::ATTR_KIND_RETURNS_TWICE;
747   case Attribute::SExt:
748     return bitc::ATTR_KIND_S_EXT;
749   case Attribute::Speculatable:
750     return bitc::ATTR_KIND_SPECULATABLE;
751   case Attribute::StackAlignment:
752     return bitc::ATTR_KIND_STACK_ALIGNMENT;
753   case Attribute::StackProtect:
754     return bitc::ATTR_KIND_STACK_PROTECT;
755   case Attribute::StackProtectReq:
756     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
757   case Attribute::StackProtectStrong:
758     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
759   case Attribute::SafeStack:
760     return bitc::ATTR_KIND_SAFESTACK;
761   case Attribute::ShadowCallStack:
762     return bitc::ATTR_KIND_SHADOWCALLSTACK;
763   case Attribute::StrictFP:
764     return bitc::ATTR_KIND_STRICT_FP;
765   case Attribute::StructRet:
766     return bitc::ATTR_KIND_STRUCT_RET;
767   case Attribute::SanitizeAddress:
768     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
769   case Attribute::SanitizeHWAddress:
770     return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
771   case Attribute::SanitizeThread:
772     return bitc::ATTR_KIND_SANITIZE_THREAD;
773   case Attribute::SanitizeMemory:
774     return bitc::ATTR_KIND_SANITIZE_MEMORY;
775   case Attribute::SpeculativeLoadHardening:
776     return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
777   case Attribute::SwiftError:
778     return bitc::ATTR_KIND_SWIFT_ERROR;
779   case Attribute::SwiftSelf:
780     return bitc::ATTR_KIND_SWIFT_SELF;
781   case Attribute::SwiftAsync:
782     return bitc::ATTR_KIND_SWIFT_ASYNC;
783   case Attribute::UWTable:
784     return bitc::ATTR_KIND_UW_TABLE;
785   case Attribute::VScaleRange:
786     return bitc::ATTR_KIND_VSCALE_RANGE;
787   case Attribute::WillReturn:
788     return bitc::ATTR_KIND_WILLRETURN;
789   case Attribute::WriteOnly:
790     return bitc::ATTR_KIND_WRITEONLY;
791   case Attribute::ZExt:
792     return bitc::ATTR_KIND_Z_EXT;
793   case Attribute::ImmArg:
794     return bitc::ATTR_KIND_IMMARG;
795   case Attribute::SanitizeMemTag:
796     return bitc::ATTR_KIND_SANITIZE_MEMTAG;
797   case Attribute::Preallocated:
798     return bitc::ATTR_KIND_PREALLOCATED;
799   case Attribute::NoUndef:
800     return bitc::ATTR_KIND_NOUNDEF;
801   case Attribute::ByRef:
802     return bitc::ATTR_KIND_BYREF;
803   case Attribute::MustProgress:
804     return bitc::ATTR_KIND_MUSTPROGRESS;
805   case Attribute::PresplitCoroutine:
806     return bitc::ATTR_KIND_PRESPLIT_COROUTINE;
807   case Attribute::EndAttrKinds:
808     llvm_unreachable("Can not encode end-attribute kinds marker.");
809   case Attribute::None:
810     llvm_unreachable("Can not encode none-attribute.");
811   case Attribute::EmptyKey:
812   case Attribute::TombstoneKey:
813     llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
814   }
815 
816   llvm_unreachable("Trying to encode unknown attribute");
817 }
818 
819 void ModuleBitcodeWriter::writeAttributeGroupTable() {
820   const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
821       VE.getAttributeGroups();
822   if (AttrGrps.empty()) return;
823 
824   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
825 
826   SmallVector<uint64_t, 64> Record;
827   for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
828     unsigned AttrListIndex = Pair.first;
829     AttributeSet AS = Pair.second;
830     Record.push_back(VE.getAttributeGroupID(Pair));
831     Record.push_back(AttrListIndex);
832 
833     for (Attribute Attr : AS) {
834       if (Attr.isEnumAttribute()) {
835         Record.push_back(0);
836         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
837       } else if (Attr.isIntAttribute()) {
838         Record.push_back(1);
839         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
840         Record.push_back(Attr.getValueAsInt());
841       } else if (Attr.isStringAttribute()) {
842         StringRef Kind = Attr.getKindAsString();
843         StringRef Val = Attr.getValueAsString();
844 
845         Record.push_back(Val.empty() ? 3 : 4);
846         Record.append(Kind.begin(), Kind.end());
847         Record.push_back(0);
848         if (!Val.empty()) {
849           Record.append(Val.begin(), Val.end());
850           Record.push_back(0);
851         }
852       } else {
853         assert(Attr.isTypeAttribute());
854         Type *Ty = Attr.getValueAsType();
855         Record.push_back(Ty ? 6 : 5);
856         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
857         if (Ty)
858           Record.push_back(VE.getTypeID(Attr.getValueAsType()));
859       }
860     }
861 
862     Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
863     Record.clear();
864   }
865 
866   Stream.ExitBlock();
867 }
868 
869 void ModuleBitcodeWriter::writeAttributeTable() {
870   const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
871   if (Attrs.empty()) return;
872 
873   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
874 
875   SmallVector<uint64_t, 64> Record;
876   for (const AttributeList &AL : Attrs) {
877     for (unsigned i : AL.indexes()) {
878       AttributeSet AS = AL.getAttributes(i);
879       if (AS.hasAttributes())
880         Record.push_back(VE.getAttributeGroupID({i, AS}));
881     }
882 
883     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
884     Record.clear();
885   }
886 
887   Stream.ExitBlock();
888 }
889 
890 /// WriteTypeTable - Write out the type table for a module.
891 void ModuleBitcodeWriter::writeTypeTable() {
892   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
893 
894   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
895   SmallVector<uint64_t, 64> TypeVals;
896 
897   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
898 
899   // Abbrev for TYPE_CODE_POINTER.
900   auto Abbv = std::make_shared<BitCodeAbbrev>();
901   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
902   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
903   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
904   unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
905 
906   // Abbrev for TYPE_CODE_OPAQUE_POINTER.
907   Abbv = std::make_shared<BitCodeAbbrev>();
908   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER));
909   Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
910   unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
911 
912   // Abbrev for TYPE_CODE_FUNCTION.
913   Abbv = std::make_shared<BitCodeAbbrev>();
914   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
915   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
916   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
917   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
918   unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
919 
920   // Abbrev for TYPE_CODE_STRUCT_ANON.
921   Abbv = std::make_shared<BitCodeAbbrev>();
922   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
923   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
924   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
925   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
926   unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
927 
928   // Abbrev for TYPE_CODE_STRUCT_NAME.
929   Abbv = std::make_shared<BitCodeAbbrev>();
930   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
931   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
932   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
933   unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
934 
935   // Abbrev for TYPE_CODE_STRUCT_NAMED.
936   Abbv = std::make_shared<BitCodeAbbrev>();
937   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
938   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
939   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
940   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
941   unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
942 
943   // Abbrev for TYPE_CODE_ARRAY.
944   Abbv = std::make_shared<BitCodeAbbrev>();
945   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
946   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
947   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
948   unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
949 
950   // Emit an entry count so the reader can reserve space.
951   TypeVals.push_back(TypeList.size());
952   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
953   TypeVals.clear();
954 
955   // Loop over all of the types, emitting each in turn.
956   for (Type *T : TypeList) {
957     int AbbrevToUse = 0;
958     unsigned Code = 0;
959 
960     switch (T->getTypeID()) {
961     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
962     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
963     case Type::BFloatTyID:    Code = bitc::TYPE_CODE_BFLOAT;    break;
964     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
965     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
966     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
967     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
968     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
969     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
970     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
971     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
972     case Type::X86_AMXTyID:   Code = bitc::TYPE_CODE_X86_AMX;   break;
973     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
974     case Type::IntegerTyID:
975       // INTEGER: [width]
976       Code = bitc::TYPE_CODE_INTEGER;
977       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
978       break;
979     case Type::PointerTyID: {
980       PointerType *PTy = cast<PointerType>(T);
981       unsigned AddressSpace = PTy->getAddressSpace();
982       if (PTy->isOpaque()) {
983         // OPAQUE_POINTER: [address space]
984         Code = bitc::TYPE_CODE_OPAQUE_POINTER;
985         TypeVals.push_back(AddressSpace);
986         if (AddressSpace == 0)
987           AbbrevToUse = OpaquePtrAbbrev;
988       } else {
989         // POINTER: [pointee type, address space]
990         Code = bitc::TYPE_CODE_POINTER;
991         TypeVals.push_back(VE.getTypeID(PTy->getNonOpaquePointerElementType()));
992         TypeVals.push_back(AddressSpace);
993         if (AddressSpace == 0)
994           AbbrevToUse = PtrAbbrev;
995       }
996       break;
997     }
998     case Type::FunctionTyID: {
999       FunctionType *FT = cast<FunctionType>(T);
1000       // FUNCTION: [isvararg, retty, paramty x N]
1001       Code = bitc::TYPE_CODE_FUNCTION;
1002       TypeVals.push_back(FT->isVarArg());
1003       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
1004       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
1005         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
1006       AbbrevToUse = FunctionAbbrev;
1007       break;
1008     }
1009     case Type::StructTyID: {
1010       StructType *ST = cast<StructType>(T);
1011       // STRUCT: [ispacked, eltty x N]
1012       TypeVals.push_back(ST->isPacked());
1013       // Output all of the element types.
1014       for (Type *ET : ST->elements())
1015         TypeVals.push_back(VE.getTypeID(ET));
1016 
1017       if (ST->isLiteral()) {
1018         Code = bitc::TYPE_CODE_STRUCT_ANON;
1019         AbbrevToUse = StructAnonAbbrev;
1020       } else {
1021         if (ST->isOpaque()) {
1022           Code = bitc::TYPE_CODE_OPAQUE;
1023         } else {
1024           Code = bitc::TYPE_CODE_STRUCT_NAMED;
1025           AbbrevToUse = StructNamedAbbrev;
1026         }
1027 
1028         // Emit the name if it is present.
1029         if (!ST->getName().empty())
1030           writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
1031                             StructNameAbbrev);
1032       }
1033       break;
1034     }
1035     case Type::ArrayTyID: {
1036       ArrayType *AT = cast<ArrayType>(T);
1037       // ARRAY: [numelts, eltty]
1038       Code = bitc::TYPE_CODE_ARRAY;
1039       TypeVals.push_back(AT->getNumElements());
1040       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
1041       AbbrevToUse = ArrayAbbrev;
1042       break;
1043     }
1044     case Type::FixedVectorTyID:
1045     case Type::ScalableVectorTyID: {
1046       VectorType *VT = cast<VectorType>(T);
1047       // VECTOR [numelts, eltty] or
1048       //        [numelts, eltty, scalable]
1049       Code = bitc::TYPE_CODE_VECTOR;
1050       TypeVals.push_back(VT->getElementCount().getKnownMinValue());
1051       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
1052       if (isa<ScalableVectorType>(VT))
1053         TypeVals.push_back(true);
1054       break;
1055     }
1056     case Type::TypedPointerTyID:
1057       llvm_unreachable("Typed pointers cannot be added to IR modules");
1058     }
1059 
1060     // Emit the finished record.
1061     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
1062     TypeVals.clear();
1063   }
1064 
1065   Stream.ExitBlock();
1066 }
1067 
1068 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
1069   switch (Linkage) {
1070   case GlobalValue::ExternalLinkage:
1071     return 0;
1072   case GlobalValue::WeakAnyLinkage:
1073     return 16;
1074   case GlobalValue::AppendingLinkage:
1075     return 2;
1076   case GlobalValue::InternalLinkage:
1077     return 3;
1078   case GlobalValue::LinkOnceAnyLinkage:
1079     return 18;
1080   case GlobalValue::ExternalWeakLinkage:
1081     return 7;
1082   case GlobalValue::CommonLinkage:
1083     return 8;
1084   case GlobalValue::PrivateLinkage:
1085     return 9;
1086   case GlobalValue::WeakODRLinkage:
1087     return 17;
1088   case GlobalValue::LinkOnceODRLinkage:
1089     return 19;
1090   case GlobalValue::AvailableExternallyLinkage:
1091     return 12;
1092   }
1093   llvm_unreachable("Invalid linkage");
1094 }
1095 
1096 static unsigned getEncodedLinkage(const GlobalValue &GV) {
1097   return getEncodedLinkage(GV.getLinkage());
1098 }
1099 
1100 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
1101   uint64_t RawFlags = 0;
1102   RawFlags |= Flags.ReadNone;
1103   RawFlags |= (Flags.ReadOnly << 1);
1104   RawFlags |= (Flags.NoRecurse << 2);
1105   RawFlags |= (Flags.ReturnDoesNotAlias << 3);
1106   RawFlags |= (Flags.NoInline << 4);
1107   RawFlags |= (Flags.AlwaysInline << 5);
1108   RawFlags |= (Flags.NoUnwind << 6);
1109   RawFlags |= (Flags.MayThrow << 7);
1110   RawFlags |= (Flags.HasUnknownCall << 8);
1111   RawFlags |= (Flags.MustBeUnreachable << 9);
1112   return RawFlags;
1113 }
1114 
1115 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags
1116 // in BitcodeReader.cpp.
1117 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
1118   uint64_t RawFlags = 0;
1119 
1120   RawFlags |= Flags.NotEligibleToImport; // bool
1121   RawFlags |= (Flags.Live << 1);
1122   RawFlags |= (Flags.DSOLocal << 2);
1123   RawFlags |= (Flags.CanAutoHide << 3);
1124 
1125   // Linkage don't need to be remapped at that time for the summary. Any future
1126   // change to the getEncodedLinkage() function will need to be taken into
1127   // account here as well.
1128   RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
1129 
1130   RawFlags |= (Flags.Visibility << 8); // 2 bits
1131 
1132   return RawFlags;
1133 }
1134 
1135 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
1136   uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) |
1137                       (Flags.Constant << 2) | Flags.VCallVisibility << 3;
1138   return RawFlags;
1139 }
1140 
1141 static unsigned getEncodedVisibility(const GlobalValue &GV) {
1142   switch (GV.getVisibility()) {
1143   case GlobalValue::DefaultVisibility:   return 0;
1144   case GlobalValue::HiddenVisibility:    return 1;
1145   case GlobalValue::ProtectedVisibility: return 2;
1146   }
1147   llvm_unreachable("Invalid visibility");
1148 }
1149 
1150 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1151   switch (GV.getDLLStorageClass()) {
1152   case GlobalValue::DefaultStorageClass:   return 0;
1153   case GlobalValue::DLLImportStorageClass: return 1;
1154   case GlobalValue::DLLExportStorageClass: return 2;
1155   }
1156   llvm_unreachable("Invalid DLL storage class");
1157 }
1158 
1159 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1160   switch (GV.getThreadLocalMode()) {
1161     case GlobalVariable::NotThreadLocal:         return 0;
1162     case GlobalVariable::GeneralDynamicTLSModel: return 1;
1163     case GlobalVariable::LocalDynamicTLSModel:   return 2;
1164     case GlobalVariable::InitialExecTLSModel:    return 3;
1165     case GlobalVariable::LocalExecTLSModel:      return 4;
1166   }
1167   llvm_unreachable("Invalid TLS model");
1168 }
1169 
1170 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1171   switch (C.getSelectionKind()) {
1172   case Comdat::Any:
1173     return bitc::COMDAT_SELECTION_KIND_ANY;
1174   case Comdat::ExactMatch:
1175     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1176   case Comdat::Largest:
1177     return bitc::COMDAT_SELECTION_KIND_LARGEST;
1178   case Comdat::NoDeduplicate:
1179     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1180   case Comdat::SameSize:
1181     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1182   }
1183   llvm_unreachable("Invalid selection kind");
1184 }
1185 
1186 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1187   switch (GV.getUnnamedAddr()) {
1188   case GlobalValue::UnnamedAddr::None:   return 0;
1189   case GlobalValue::UnnamedAddr::Local:  return 2;
1190   case GlobalValue::UnnamedAddr::Global: return 1;
1191   }
1192   llvm_unreachable("Invalid unnamed_addr");
1193 }
1194 
1195 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1196   if (GenerateHash)
1197     Hasher.update(Str);
1198   return StrtabBuilder.add(Str);
1199 }
1200 
1201 void ModuleBitcodeWriter::writeComdats() {
1202   SmallVector<unsigned, 64> Vals;
1203   for (const Comdat *C : VE.getComdats()) {
1204     // COMDAT: [strtab offset, strtab size, selection_kind]
1205     Vals.push_back(addToStrtab(C->getName()));
1206     Vals.push_back(C->getName().size());
1207     Vals.push_back(getEncodedComdatSelectionKind(*C));
1208     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1209     Vals.clear();
1210   }
1211 }
1212 
1213 /// Write a record that will eventually hold the word offset of the
1214 /// module-level VST. For now the offset is 0, which will be backpatched
1215 /// after the real VST is written. Saves the bit offset to backpatch.
1216 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1217   // Write a placeholder value in for the offset of the real VST,
1218   // which is written after the function blocks so that it can include
1219   // the offset of each function. The placeholder offset will be
1220   // updated when the real VST is written.
1221   auto Abbv = std::make_shared<BitCodeAbbrev>();
1222   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1223   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1224   // hold the real VST offset. Must use fixed instead of VBR as we don't
1225   // know how many VBR chunks to reserve ahead of time.
1226   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1227   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1228 
1229   // Emit the placeholder
1230   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1231   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1232 
1233   // Compute and save the bit offset to the placeholder, which will be
1234   // patched when the real VST is written. We can simply subtract the 32-bit
1235   // fixed size from the current bit number to get the location to backpatch.
1236   VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1237 }
1238 
1239 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1240 
1241 /// Determine the encoding to use for the given string name and length.
1242 static StringEncoding getStringEncoding(StringRef Str) {
1243   bool isChar6 = true;
1244   for (char C : Str) {
1245     if (isChar6)
1246       isChar6 = BitCodeAbbrevOp::isChar6(C);
1247     if ((unsigned char)C & 128)
1248       // don't bother scanning the rest.
1249       return SE_Fixed8;
1250   }
1251   if (isChar6)
1252     return SE_Char6;
1253   return SE_Fixed7;
1254 }
1255 
1256 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned),
1257               "Sanitizer Metadata is too large for naive serialization.");
1258 static unsigned
1259 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) {
1260   return Meta.NoAddress | (Meta.NoHWAddress << 1) |
1261          (Meta.Memtag << 2) | (Meta.IsDynInit << 3);
1262 }
1263 
1264 /// Emit top-level description of module, including target triple, inline asm,
1265 /// descriptors for global variables, and function prototype info.
1266 /// Returns the bit offset to backpatch with the location of the real VST.
1267 void ModuleBitcodeWriter::writeModuleInfo() {
1268   // Emit various pieces of data attached to a module.
1269   if (!M.getTargetTriple().empty())
1270     writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1271                       0 /*TODO*/);
1272   const std::string &DL = M.getDataLayoutStr();
1273   if (!DL.empty())
1274     writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1275   if (!M.getModuleInlineAsm().empty())
1276     writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1277                       0 /*TODO*/);
1278 
1279   // Emit information about sections and GC, computing how many there are. Also
1280   // compute the maximum alignment value.
1281   std::map<std::string, unsigned> SectionMap;
1282   std::map<std::string, unsigned> GCMap;
1283   MaybeAlign MaxAlignment;
1284   unsigned MaxGlobalType = 0;
1285   const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
1286     if (A)
1287       MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
1288   };
1289   for (const GlobalVariable &GV : M.globals()) {
1290     UpdateMaxAlignment(GV.getAlign());
1291     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1292     if (GV.hasSection()) {
1293       // Give section names unique ID's.
1294       unsigned &Entry = SectionMap[std::string(GV.getSection())];
1295       if (!Entry) {
1296         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1297                           0 /*TODO*/);
1298         Entry = SectionMap.size();
1299       }
1300     }
1301   }
1302   for (const Function &F : M) {
1303     UpdateMaxAlignment(F.getAlign());
1304     if (F.hasSection()) {
1305       // Give section names unique ID's.
1306       unsigned &Entry = SectionMap[std::string(F.getSection())];
1307       if (!Entry) {
1308         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1309                           0 /*TODO*/);
1310         Entry = SectionMap.size();
1311       }
1312     }
1313     if (F.hasGC()) {
1314       // Same for GC names.
1315       unsigned &Entry = GCMap[F.getGC()];
1316       if (!Entry) {
1317         writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1318                           0 /*TODO*/);
1319         Entry = GCMap.size();
1320       }
1321     }
1322   }
1323 
1324   // Emit abbrev for globals, now that we know # sections and max alignment.
1325   unsigned SimpleGVarAbbrev = 0;
1326   if (!M.global_empty()) {
1327     // Add an abbrev for common globals with no visibility or thread localness.
1328     auto Abbv = std::make_shared<BitCodeAbbrev>();
1329     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1330     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1331     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1332     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1333                               Log2_32_Ceil(MaxGlobalType+1)));
1334     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1335                                                            //| explicitType << 1
1336                                                            //| constant
1337     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1338     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1339     if (!MaxAlignment)                                     // Alignment.
1340       Abbv->Add(BitCodeAbbrevOp(0));
1341     else {
1342       unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
1343       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1344                                Log2_32_Ceil(MaxEncAlignment+1)));
1345     }
1346     if (SectionMap.empty())                                    // Section.
1347       Abbv->Add(BitCodeAbbrevOp(0));
1348     else
1349       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1350                                Log2_32_Ceil(SectionMap.size()+1)));
1351     // Don't bother emitting vis + thread local.
1352     SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1353   }
1354 
1355   SmallVector<unsigned, 64> Vals;
1356   // Emit the module's source file name.
1357   {
1358     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1359     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1360     if (Bits == SE_Char6)
1361       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1362     else if (Bits == SE_Fixed7)
1363       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1364 
1365     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1366     auto Abbv = std::make_shared<BitCodeAbbrev>();
1367     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1368     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1369     Abbv->Add(AbbrevOpToUse);
1370     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1371 
1372     for (const auto P : M.getSourceFileName())
1373       Vals.push_back((unsigned char)P);
1374 
1375     // Emit the finished record.
1376     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1377     Vals.clear();
1378   }
1379 
1380   // Emit the global variable information.
1381   for (const GlobalVariable &GV : M.globals()) {
1382     unsigned AbbrevToUse = 0;
1383 
1384     // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1385     //             linkage, alignment, section, visibility, threadlocal,
1386     //             unnamed_addr, externally_initialized, dllstorageclass,
1387     //             comdat, attributes, DSO_Local, GlobalSanitizer]
1388     Vals.push_back(addToStrtab(GV.getName()));
1389     Vals.push_back(GV.getName().size());
1390     Vals.push_back(VE.getTypeID(GV.getValueType()));
1391     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1392     Vals.push_back(GV.isDeclaration() ? 0 :
1393                    (VE.getValueID(GV.getInitializer()) + 1));
1394     Vals.push_back(getEncodedLinkage(GV));
1395     Vals.push_back(getEncodedAlign(GV.getAlign()));
1396     Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
1397                                    : 0);
1398     if (GV.isThreadLocal() ||
1399         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1400         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1401         GV.isExternallyInitialized() ||
1402         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1403         GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() ||
1404         GV.hasPartition() || GV.hasSanitizerMetadata()) {
1405       Vals.push_back(getEncodedVisibility(GV));
1406       Vals.push_back(getEncodedThreadLocalMode(GV));
1407       Vals.push_back(getEncodedUnnamedAddr(GV));
1408       Vals.push_back(GV.isExternallyInitialized());
1409       Vals.push_back(getEncodedDLLStorageClass(GV));
1410       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1411 
1412       auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1413       Vals.push_back(VE.getAttributeListID(AL));
1414 
1415       Vals.push_back(GV.isDSOLocal());
1416       Vals.push_back(addToStrtab(GV.getPartition()));
1417       Vals.push_back(GV.getPartition().size());
1418 
1419       Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata(
1420                                                       GV.getSanitizerMetadata())
1421                                                 : 0));
1422     } else {
1423       AbbrevToUse = SimpleGVarAbbrev;
1424     }
1425 
1426     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1427     Vals.clear();
1428   }
1429 
1430   // Emit the function proto information.
1431   for (const Function &F : M) {
1432     // FUNCTION:  [strtab offset, strtab size, type, callingconv, isproto,
1433     //             linkage, paramattrs, alignment, section, visibility, gc,
1434     //             unnamed_addr, prologuedata, dllstorageclass, comdat,
1435     //             prefixdata, personalityfn, DSO_Local, addrspace]
1436     Vals.push_back(addToStrtab(F.getName()));
1437     Vals.push_back(F.getName().size());
1438     Vals.push_back(VE.getTypeID(F.getFunctionType()));
1439     Vals.push_back(F.getCallingConv());
1440     Vals.push_back(F.isDeclaration());
1441     Vals.push_back(getEncodedLinkage(F));
1442     Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1443     Vals.push_back(getEncodedAlign(F.getAlign()));
1444     Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
1445                                   : 0);
1446     Vals.push_back(getEncodedVisibility(F));
1447     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1448     Vals.push_back(getEncodedUnnamedAddr(F));
1449     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1450                                        : 0);
1451     Vals.push_back(getEncodedDLLStorageClass(F));
1452     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1453     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1454                                      : 0);
1455     Vals.push_back(
1456         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1457 
1458     Vals.push_back(F.isDSOLocal());
1459     Vals.push_back(F.getAddressSpace());
1460     Vals.push_back(addToStrtab(F.getPartition()));
1461     Vals.push_back(F.getPartition().size());
1462 
1463     unsigned AbbrevToUse = 0;
1464     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1465     Vals.clear();
1466   }
1467 
1468   // Emit the alias information.
1469   for (const GlobalAlias &A : M.aliases()) {
1470     // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1471     //         visibility, dllstorageclass, threadlocal, unnamed_addr,
1472     //         DSO_Local]
1473     Vals.push_back(addToStrtab(A.getName()));
1474     Vals.push_back(A.getName().size());
1475     Vals.push_back(VE.getTypeID(A.getValueType()));
1476     Vals.push_back(A.getType()->getAddressSpace());
1477     Vals.push_back(VE.getValueID(A.getAliasee()));
1478     Vals.push_back(getEncodedLinkage(A));
1479     Vals.push_back(getEncodedVisibility(A));
1480     Vals.push_back(getEncodedDLLStorageClass(A));
1481     Vals.push_back(getEncodedThreadLocalMode(A));
1482     Vals.push_back(getEncodedUnnamedAddr(A));
1483     Vals.push_back(A.isDSOLocal());
1484     Vals.push_back(addToStrtab(A.getPartition()));
1485     Vals.push_back(A.getPartition().size());
1486 
1487     unsigned AbbrevToUse = 0;
1488     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1489     Vals.clear();
1490   }
1491 
1492   // Emit the ifunc information.
1493   for (const GlobalIFunc &I : M.ifuncs()) {
1494     // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1495     //         val#, linkage, visibility, DSO_Local]
1496     Vals.push_back(addToStrtab(I.getName()));
1497     Vals.push_back(I.getName().size());
1498     Vals.push_back(VE.getTypeID(I.getValueType()));
1499     Vals.push_back(I.getType()->getAddressSpace());
1500     Vals.push_back(VE.getValueID(I.getResolver()));
1501     Vals.push_back(getEncodedLinkage(I));
1502     Vals.push_back(getEncodedVisibility(I));
1503     Vals.push_back(I.isDSOLocal());
1504     Vals.push_back(addToStrtab(I.getPartition()));
1505     Vals.push_back(I.getPartition().size());
1506     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1507     Vals.clear();
1508   }
1509 
1510   writeValueSymbolTableForwardDecl();
1511 }
1512 
1513 static uint64_t getOptimizationFlags(const Value *V) {
1514   uint64_t Flags = 0;
1515 
1516   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1517     if (OBO->hasNoSignedWrap())
1518       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1519     if (OBO->hasNoUnsignedWrap())
1520       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1521   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1522     if (PEO->isExact())
1523       Flags |= 1 << bitc::PEO_EXACT;
1524   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1525     if (FPMO->hasAllowReassoc())
1526       Flags |= bitc::AllowReassoc;
1527     if (FPMO->hasNoNaNs())
1528       Flags |= bitc::NoNaNs;
1529     if (FPMO->hasNoInfs())
1530       Flags |= bitc::NoInfs;
1531     if (FPMO->hasNoSignedZeros())
1532       Flags |= bitc::NoSignedZeros;
1533     if (FPMO->hasAllowReciprocal())
1534       Flags |= bitc::AllowReciprocal;
1535     if (FPMO->hasAllowContract())
1536       Flags |= bitc::AllowContract;
1537     if (FPMO->hasApproxFunc())
1538       Flags |= bitc::ApproxFunc;
1539   }
1540 
1541   return Flags;
1542 }
1543 
1544 void ModuleBitcodeWriter::writeValueAsMetadata(
1545     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1546   // Mimic an MDNode with a value as one operand.
1547   Value *V = MD->getValue();
1548   Record.push_back(VE.getTypeID(V->getType()));
1549   Record.push_back(VE.getValueID(V));
1550   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1551   Record.clear();
1552 }
1553 
1554 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1555                                        SmallVectorImpl<uint64_t> &Record,
1556                                        unsigned Abbrev) {
1557   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1558     Metadata *MD = N->getOperand(i);
1559     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1560            "Unexpected function-local metadata");
1561     Record.push_back(VE.getMetadataOrNullID(MD));
1562   }
1563   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1564                                     : bitc::METADATA_NODE,
1565                     Record, Abbrev);
1566   Record.clear();
1567 }
1568 
1569 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1570   // Assume the column is usually under 128, and always output the inlined-at
1571   // location (it's never more expensive than building an array size 1).
1572   auto Abbv = std::make_shared<BitCodeAbbrev>();
1573   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1574   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1575   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1576   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1577   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1578   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1579   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1580   return Stream.EmitAbbrev(std::move(Abbv));
1581 }
1582 
1583 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1584                                           SmallVectorImpl<uint64_t> &Record,
1585                                           unsigned &Abbrev) {
1586   if (!Abbrev)
1587     Abbrev = createDILocationAbbrev();
1588 
1589   Record.push_back(N->isDistinct());
1590   Record.push_back(N->getLine());
1591   Record.push_back(N->getColumn());
1592   Record.push_back(VE.getMetadataID(N->getScope()));
1593   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1594   Record.push_back(N->isImplicitCode());
1595 
1596   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1597   Record.clear();
1598 }
1599 
1600 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1601   // Assume the column is usually under 128, and always output the inlined-at
1602   // location (it's never more expensive than building an array size 1).
1603   auto Abbv = std::make_shared<BitCodeAbbrev>();
1604   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1605   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1606   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1607   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1608   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1609   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1610   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1611   return Stream.EmitAbbrev(std::move(Abbv));
1612 }
1613 
1614 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1615                                              SmallVectorImpl<uint64_t> &Record,
1616                                              unsigned &Abbrev) {
1617   if (!Abbrev)
1618     Abbrev = createGenericDINodeAbbrev();
1619 
1620   Record.push_back(N->isDistinct());
1621   Record.push_back(N->getTag());
1622   Record.push_back(0); // Per-tag version field; unused for now.
1623 
1624   for (auto &I : N->operands())
1625     Record.push_back(VE.getMetadataOrNullID(I));
1626 
1627   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1628   Record.clear();
1629 }
1630 
1631 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1632                                           SmallVectorImpl<uint64_t> &Record,
1633                                           unsigned Abbrev) {
1634   const uint64_t Version = 2 << 1;
1635   Record.push_back((uint64_t)N->isDistinct() | Version);
1636   Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1637   Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1638   Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1639   Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1640 
1641   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1642   Record.clear();
1643 }
1644 
1645 void ModuleBitcodeWriter::writeDIGenericSubrange(
1646     const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record,
1647     unsigned Abbrev) {
1648   Record.push_back((uint64_t)N->isDistinct());
1649   Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1650   Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1651   Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1652   Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1653 
1654   Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev);
1655   Record.clear();
1656 }
1657 
1658 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
1659   if ((int64_t)V >= 0)
1660     Vals.push_back(V << 1);
1661   else
1662     Vals.push_back((-V << 1) | 1);
1663 }
1664 
1665 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) {
1666   // We have an arbitrary precision integer value to write whose
1667   // bit width is > 64. However, in canonical unsigned integer
1668   // format it is likely that the high bits are going to be zero.
1669   // So, we only write the number of active words.
1670   unsigned NumWords = A.getActiveWords();
1671   const uint64_t *RawData = A.getRawData();
1672   for (unsigned i = 0; i < NumWords; i++)
1673     emitSignedInt64(Vals, RawData[i]);
1674 }
1675 
1676 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1677                                             SmallVectorImpl<uint64_t> &Record,
1678                                             unsigned Abbrev) {
1679   const uint64_t IsBigInt = 1 << 2;
1680   Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct());
1681   Record.push_back(N->getValue().getBitWidth());
1682   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1683   emitWideAPInt(Record, N->getValue());
1684 
1685   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1686   Record.clear();
1687 }
1688 
1689 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1690                                            SmallVectorImpl<uint64_t> &Record,
1691                                            unsigned Abbrev) {
1692   Record.push_back(N->isDistinct());
1693   Record.push_back(N->getTag());
1694   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1695   Record.push_back(N->getSizeInBits());
1696   Record.push_back(N->getAlignInBits());
1697   Record.push_back(N->getEncoding());
1698   Record.push_back(N->getFlags());
1699 
1700   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1701   Record.clear();
1702 }
1703 
1704 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N,
1705                                             SmallVectorImpl<uint64_t> &Record,
1706                                             unsigned Abbrev) {
1707   Record.push_back(N->isDistinct());
1708   Record.push_back(N->getTag());
1709   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1710   Record.push_back(VE.getMetadataOrNullID(N->getStringLength()));
1711   Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp()));
1712   Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp()));
1713   Record.push_back(N->getSizeInBits());
1714   Record.push_back(N->getAlignInBits());
1715   Record.push_back(N->getEncoding());
1716 
1717   Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev);
1718   Record.clear();
1719 }
1720 
1721 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1722                                              SmallVectorImpl<uint64_t> &Record,
1723                                              unsigned Abbrev) {
1724   Record.push_back(N->isDistinct());
1725   Record.push_back(N->getTag());
1726   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1727   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1728   Record.push_back(N->getLine());
1729   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1730   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1731   Record.push_back(N->getSizeInBits());
1732   Record.push_back(N->getAlignInBits());
1733   Record.push_back(N->getOffsetInBits());
1734   Record.push_back(N->getFlags());
1735   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1736 
1737   // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1738   // that there is no DWARF address space associated with DIDerivedType.
1739   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1740     Record.push_back(*DWARFAddressSpace + 1);
1741   else
1742     Record.push_back(0);
1743 
1744   Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1745 
1746   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1747   Record.clear();
1748 }
1749 
1750 void ModuleBitcodeWriter::writeDICompositeType(
1751     const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1752     unsigned Abbrev) {
1753   const unsigned IsNotUsedInOldTypeRef = 0x2;
1754   Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1755   Record.push_back(N->getTag());
1756   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1757   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1758   Record.push_back(N->getLine());
1759   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1760   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1761   Record.push_back(N->getSizeInBits());
1762   Record.push_back(N->getAlignInBits());
1763   Record.push_back(N->getOffsetInBits());
1764   Record.push_back(N->getFlags());
1765   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1766   Record.push_back(N->getRuntimeLang());
1767   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1768   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1769   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1770   Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1771   Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation()));
1772   Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated()));
1773   Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated()));
1774   Record.push_back(VE.getMetadataOrNullID(N->getRawRank()));
1775   Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1776 
1777   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1778   Record.clear();
1779 }
1780 
1781 void ModuleBitcodeWriter::writeDISubroutineType(
1782     const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1783     unsigned Abbrev) {
1784   const unsigned HasNoOldTypeRefs = 0x2;
1785   Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1786   Record.push_back(N->getFlags());
1787   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1788   Record.push_back(N->getCC());
1789 
1790   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1791   Record.clear();
1792 }
1793 
1794 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1795                                       SmallVectorImpl<uint64_t> &Record,
1796                                       unsigned Abbrev) {
1797   Record.push_back(N->isDistinct());
1798   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1799   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1800   if (N->getRawChecksum()) {
1801     Record.push_back(N->getRawChecksum()->Kind);
1802     Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1803   } else {
1804     // Maintain backwards compatibility with the old internal representation of
1805     // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1806     Record.push_back(0);
1807     Record.push_back(VE.getMetadataOrNullID(nullptr));
1808   }
1809   auto Source = N->getRawSource();
1810   if (Source)
1811     Record.push_back(VE.getMetadataOrNullID(Source));
1812 
1813   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1814   Record.clear();
1815 }
1816 
1817 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1818                                              SmallVectorImpl<uint64_t> &Record,
1819                                              unsigned Abbrev) {
1820   assert(N->isDistinct() && "Expected distinct compile units");
1821   Record.push_back(/* IsDistinct */ true);
1822   Record.push_back(N->getSourceLanguage());
1823   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1824   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1825   Record.push_back(N->isOptimized());
1826   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1827   Record.push_back(N->getRuntimeVersion());
1828   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1829   Record.push_back(N->getEmissionKind());
1830   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1831   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1832   Record.push_back(/* subprograms */ 0);
1833   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1834   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1835   Record.push_back(N->getDWOId());
1836   Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1837   Record.push_back(N->getSplitDebugInlining());
1838   Record.push_back(N->getDebugInfoForProfiling());
1839   Record.push_back((unsigned)N->getNameTableKind());
1840   Record.push_back(N->getRangesBaseAddress());
1841   Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot()));
1842   Record.push_back(VE.getMetadataOrNullID(N->getRawSDK()));
1843 
1844   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1845   Record.clear();
1846 }
1847 
1848 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1849                                             SmallVectorImpl<uint64_t> &Record,
1850                                             unsigned Abbrev) {
1851   const uint64_t HasUnitFlag = 1 << 1;
1852   const uint64_t HasSPFlagsFlag = 1 << 2;
1853   Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
1854   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1855   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1856   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1857   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1858   Record.push_back(N->getLine());
1859   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1860   Record.push_back(N->getScopeLine());
1861   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1862   Record.push_back(N->getSPFlags());
1863   Record.push_back(N->getVirtualIndex());
1864   Record.push_back(N->getFlags());
1865   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1866   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1867   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1868   Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1869   Record.push_back(N->getThisAdjustment());
1870   Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1871   Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1872   Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName()));
1873 
1874   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1875   Record.clear();
1876 }
1877 
1878 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1879                                               SmallVectorImpl<uint64_t> &Record,
1880                                               unsigned Abbrev) {
1881   Record.push_back(N->isDistinct());
1882   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1883   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1884   Record.push_back(N->getLine());
1885   Record.push_back(N->getColumn());
1886 
1887   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1888   Record.clear();
1889 }
1890 
1891 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1892     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1893     unsigned Abbrev) {
1894   Record.push_back(N->isDistinct());
1895   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1896   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1897   Record.push_back(N->getDiscriminator());
1898 
1899   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1900   Record.clear();
1901 }
1902 
1903 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N,
1904                                              SmallVectorImpl<uint64_t> &Record,
1905                                              unsigned Abbrev) {
1906   Record.push_back(N->isDistinct());
1907   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1908   Record.push_back(VE.getMetadataOrNullID(N->getDecl()));
1909   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1910   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1911   Record.push_back(N->getLineNo());
1912 
1913   Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev);
1914   Record.clear();
1915 }
1916 
1917 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1918                                            SmallVectorImpl<uint64_t> &Record,
1919                                            unsigned Abbrev) {
1920   Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1921   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1922   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1923 
1924   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1925   Record.clear();
1926 }
1927 
1928 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1929                                        SmallVectorImpl<uint64_t> &Record,
1930                                        unsigned Abbrev) {
1931   Record.push_back(N->isDistinct());
1932   Record.push_back(N->getMacinfoType());
1933   Record.push_back(N->getLine());
1934   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1935   Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1936 
1937   Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1938   Record.clear();
1939 }
1940 
1941 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1942                                            SmallVectorImpl<uint64_t> &Record,
1943                                            unsigned Abbrev) {
1944   Record.push_back(N->isDistinct());
1945   Record.push_back(N->getMacinfoType());
1946   Record.push_back(N->getLine());
1947   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1948   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1949 
1950   Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1951   Record.clear();
1952 }
1953 
1954 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N,
1955                                          SmallVectorImpl<uint64_t> &Record,
1956                                          unsigned Abbrev) {
1957   Record.reserve(N->getArgs().size());
1958   for (ValueAsMetadata *MD : N->getArgs())
1959     Record.push_back(VE.getMetadataID(MD));
1960 
1961   Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev);
1962   Record.clear();
1963 }
1964 
1965 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1966                                         SmallVectorImpl<uint64_t> &Record,
1967                                         unsigned Abbrev) {
1968   Record.push_back(N->isDistinct());
1969   for (auto &I : N->operands())
1970     Record.push_back(VE.getMetadataOrNullID(I));
1971   Record.push_back(N->getLineNo());
1972   Record.push_back(N->getIsDecl());
1973 
1974   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1975   Record.clear();
1976 }
1977 
1978 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N,
1979                                           SmallVectorImpl<uint64_t> &Record,
1980                                           unsigned Abbrev) {
1981   // There are no arguments for this metadata type.
1982   Record.push_back(N->isDistinct());
1983   Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev);
1984   Record.clear();
1985 }
1986 
1987 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1988     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1989     unsigned Abbrev) {
1990   Record.push_back(N->isDistinct());
1991   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1992   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1993   Record.push_back(N->isDefault());
1994 
1995   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1996   Record.clear();
1997 }
1998 
1999 void ModuleBitcodeWriter::writeDITemplateValueParameter(
2000     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
2001     unsigned Abbrev) {
2002   Record.push_back(N->isDistinct());
2003   Record.push_back(N->getTag());
2004   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2005   Record.push_back(VE.getMetadataOrNullID(N->getType()));
2006   Record.push_back(N->isDefault());
2007   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
2008 
2009   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
2010   Record.clear();
2011 }
2012 
2013 void ModuleBitcodeWriter::writeDIGlobalVariable(
2014     const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
2015     unsigned Abbrev) {
2016   const uint64_t Version = 2 << 1;
2017   Record.push_back((uint64_t)N->isDistinct() | Version);
2018   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2019   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2020   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
2021   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2022   Record.push_back(N->getLine());
2023   Record.push_back(VE.getMetadataOrNullID(N->getType()));
2024   Record.push_back(N->isLocalToUnit());
2025   Record.push_back(N->isDefinition());
2026   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
2027   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
2028   Record.push_back(N->getAlignInBits());
2029   Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
2030 
2031   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
2032   Record.clear();
2033 }
2034 
2035 void ModuleBitcodeWriter::writeDILocalVariable(
2036     const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
2037     unsigned Abbrev) {
2038   // In order to support all possible bitcode formats in BitcodeReader we need
2039   // to distinguish the following cases:
2040   // 1) Record has no artificial tag (Record[1]),
2041   //   has no obsolete inlinedAt field (Record[9]).
2042   //   In this case Record size will be 8, HasAlignment flag is false.
2043   // 2) Record has artificial tag (Record[1]),
2044   //   has no obsolete inlignedAt field (Record[9]).
2045   //   In this case Record size will be 9, HasAlignment flag is false.
2046   // 3) Record has both artificial tag (Record[1]) and
2047   //   obsolete inlignedAt field (Record[9]).
2048   //   In this case Record size will be 10, HasAlignment flag is false.
2049   // 4) Record has neither artificial tag, nor inlignedAt field, but
2050   //   HasAlignment flag is true and Record[8] contains alignment value.
2051   const uint64_t HasAlignmentFlag = 1 << 1;
2052   Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
2053   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2054   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2055   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2056   Record.push_back(N->getLine());
2057   Record.push_back(VE.getMetadataOrNullID(N->getType()));
2058   Record.push_back(N->getArg());
2059   Record.push_back(N->getFlags());
2060   Record.push_back(N->getAlignInBits());
2061   Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
2062 
2063   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
2064   Record.clear();
2065 }
2066 
2067 void ModuleBitcodeWriter::writeDILabel(
2068     const DILabel *N, SmallVectorImpl<uint64_t> &Record,
2069     unsigned Abbrev) {
2070   Record.push_back((uint64_t)N->isDistinct());
2071   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2072   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2073   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2074   Record.push_back(N->getLine());
2075 
2076   Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
2077   Record.clear();
2078 }
2079 
2080 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
2081                                             SmallVectorImpl<uint64_t> &Record,
2082                                             unsigned Abbrev) {
2083   Record.reserve(N->getElements().size() + 1);
2084   const uint64_t Version = 3 << 1;
2085   Record.push_back((uint64_t)N->isDistinct() | Version);
2086   Record.append(N->elements_begin(), N->elements_end());
2087 
2088   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
2089   Record.clear();
2090 }
2091 
2092 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
2093     const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
2094     unsigned Abbrev) {
2095   Record.push_back(N->isDistinct());
2096   Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
2097   Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
2098 
2099   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
2100   Record.clear();
2101 }
2102 
2103 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
2104                                               SmallVectorImpl<uint64_t> &Record,
2105                                               unsigned Abbrev) {
2106   Record.push_back(N->isDistinct());
2107   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2108   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2109   Record.push_back(N->getLine());
2110   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
2111   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
2112   Record.push_back(N->getAttributes());
2113   Record.push_back(VE.getMetadataOrNullID(N->getType()));
2114 
2115   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
2116   Record.clear();
2117 }
2118 
2119 void ModuleBitcodeWriter::writeDIImportedEntity(
2120     const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
2121     unsigned Abbrev) {
2122   Record.push_back(N->isDistinct());
2123   Record.push_back(N->getTag());
2124   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2125   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
2126   Record.push_back(N->getLine());
2127   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2128   Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
2129   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
2130 
2131   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
2132   Record.clear();
2133 }
2134 
2135 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
2136   auto Abbv = std::make_shared<BitCodeAbbrev>();
2137   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
2138   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2139   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2140   return Stream.EmitAbbrev(std::move(Abbv));
2141 }
2142 
2143 void ModuleBitcodeWriter::writeNamedMetadata(
2144     SmallVectorImpl<uint64_t> &Record) {
2145   if (M.named_metadata_empty())
2146     return;
2147 
2148   unsigned Abbrev = createNamedMetadataAbbrev();
2149   for (const NamedMDNode &NMD : M.named_metadata()) {
2150     // Write name.
2151     StringRef Str = NMD.getName();
2152     Record.append(Str.bytes_begin(), Str.bytes_end());
2153     Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
2154     Record.clear();
2155 
2156     // Write named metadata operands.
2157     for (const MDNode *N : NMD.operands())
2158       Record.push_back(VE.getMetadataID(N));
2159     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
2160     Record.clear();
2161   }
2162 }
2163 
2164 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
2165   auto Abbv = std::make_shared<BitCodeAbbrev>();
2166   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
2167   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
2168   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
2169   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
2170   return Stream.EmitAbbrev(std::move(Abbv));
2171 }
2172 
2173 /// Write out a record for MDString.
2174 ///
2175 /// All the metadata strings in a metadata block are emitted in a single
2176 /// record.  The sizes and strings themselves are shoved into a blob.
2177 void ModuleBitcodeWriter::writeMetadataStrings(
2178     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
2179   if (Strings.empty())
2180     return;
2181 
2182   // Start the record with the number of strings.
2183   Record.push_back(bitc::METADATA_STRINGS);
2184   Record.push_back(Strings.size());
2185 
2186   // Emit the sizes of the strings in the blob.
2187   SmallString<256> Blob;
2188   {
2189     BitstreamWriter W(Blob);
2190     for (const Metadata *MD : Strings)
2191       W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
2192     W.FlushToWord();
2193   }
2194 
2195   // Add the offset to the strings to the record.
2196   Record.push_back(Blob.size());
2197 
2198   // Add the strings to the blob.
2199   for (const Metadata *MD : Strings)
2200     Blob.append(cast<MDString>(MD)->getString());
2201 
2202   // Emit the final record.
2203   Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
2204   Record.clear();
2205 }
2206 
2207 // Generates an enum to use as an index in the Abbrev array of Metadata record.
2208 enum MetadataAbbrev : unsigned {
2209 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
2210 #include "llvm/IR/Metadata.def"
2211   LastPlusOne
2212 };
2213 
2214 void ModuleBitcodeWriter::writeMetadataRecords(
2215     ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
2216     std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
2217   if (MDs.empty())
2218     return;
2219 
2220   // Initialize MDNode abbreviations.
2221 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
2222 #include "llvm/IR/Metadata.def"
2223 
2224   for (const Metadata *MD : MDs) {
2225     if (IndexPos)
2226       IndexPos->push_back(Stream.GetCurrentBitNo());
2227     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2228       assert(N->isResolved() && "Expected forward references to be resolved");
2229 
2230       switch (N->getMetadataID()) {
2231       default:
2232         llvm_unreachable("Invalid MDNode subclass");
2233 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
2234   case Metadata::CLASS##Kind:                                                  \
2235     if (MDAbbrevs)                                                             \
2236       write##CLASS(cast<CLASS>(N), Record,                                     \
2237                    (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
2238     else                                                                       \
2239       write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
2240     continue;
2241 #include "llvm/IR/Metadata.def"
2242       }
2243     }
2244     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
2245   }
2246 }
2247 
2248 void ModuleBitcodeWriter::writeModuleMetadata() {
2249   if (!VE.hasMDs() && M.named_metadata_empty())
2250     return;
2251 
2252   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
2253   SmallVector<uint64_t, 64> Record;
2254 
2255   // Emit all abbrevs upfront, so that the reader can jump in the middle of the
2256   // block and load any metadata.
2257   std::vector<unsigned> MDAbbrevs;
2258 
2259   MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
2260   MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
2261   MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
2262       createGenericDINodeAbbrev();
2263 
2264   auto Abbv = std::make_shared<BitCodeAbbrev>();
2265   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
2266   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2267   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2268   unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2269 
2270   Abbv = std::make_shared<BitCodeAbbrev>();
2271   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
2272   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2273   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2274   unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2275 
2276   // Emit MDStrings together upfront.
2277   writeMetadataStrings(VE.getMDStrings(), Record);
2278 
2279   // We only emit an index for the metadata record if we have more than a given
2280   // (naive) threshold of metadatas, otherwise it is not worth it.
2281   if (VE.getNonMDStrings().size() > IndexThreshold) {
2282     // Write a placeholder value in for the offset of the metadata index,
2283     // which is written after the records, so that it can include
2284     // the offset of each entry. The placeholder offset will be
2285     // updated after all records are emitted.
2286     uint64_t Vals[] = {0, 0};
2287     Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2288   }
2289 
2290   // Compute and save the bit offset to the current position, which will be
2291   // patched when we emit the index later. We can simply subtract the 64-bit
2292   // fixed size from the current bit number to get the location to backpatch.
2293   uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2294 
2295   // This index will contain the bitpos for each individual record.
2296   std::vector<uint64_t> IndexPos;
2297   IndexPos.reserve(VE.getNonMDStrings().size());
2298 
2299   // Write all the records
2300   writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2301 
2302   if (VE.getNonMDStrings().size() > IndexThreshold) {
2303     // Now that we have emitted all the records we will emit the index. But
2304     // first
2305     // backpatch the forward reference so that the reader can skip the records
2306     // efficiently.
2307     Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2308                            Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2309 
2310     // Delta encode the index.
2311     uint64_t PreviousValue = IndexOffsetRecordBitPos;
2312     for (auto &Elt : IndexPos) {
2313       auto EltDelta = Elt - PreviousValue;
2314       PreviousValue = Elt;
2315       Elt = EltDelta;
2316     }
2317     // Emit the index record.
2318     Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2319     IndexPos.clear();
2320   }
2321 
2322   // Write the named metadata now.
2323   writeNamedMetadata(Record);
2324 
2325   auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2326     SmallVector<uint64_t, 4> Record;
2327     Record.push_back(VE.getValueID(&GO));
2328     pushGlobalMetadataAttachment(Record, GO);
2329     Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2330   };
2331   for (const Function &F : M)
2332     if (F.isDeclaration() && F.hasMetadata())
2333       AddDeclAttachedMetadata(F);
2334   // FIXME: Only store metadata for declarations here, and move data for global
2335   // variable definitions to a separate block (PR28134).
2336   for (const GlobalVariable &GV : M.globals())
2337     if (GV.hasMetadata())
2338       AddDeclAttachedMetadata(GV);
2339 
2340   Stream.ExitBlock();
2341 }
2342 
2343 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2344   if (!VE.hasMDs())
2345     return;
2346 
2347   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2348   SmallVector<uint64_t, 64> Record;
2349   writeMetadataStrings(VE.getMDStrings(), Record);
2350   writeMetadataRecords(VE.getNonMDStrings(), Record);
2351   Stream.ExitBlock();
2352 }
2353 
2354 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2355     SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2356   // [n x [id, mdnode]]
2357   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2358   GO.getAllMetadata(MDs);
2359   for (const auto &I : MDs) {
2360     Record.push_back(I.first);
2361     Record.push_back(VE.getMetadataID(I.second));
2362   }
2363 }
2364 
2365 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2366   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2367 
2368   SmallVector<uint64_t, 64> Record;
2369 
2370   if (F.hasMetadata()) {
2371     pushGlobalMetadataAttachment(Record, F);
2372     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2373     Record.clear();
2374   }
2375 
2376   // Write metadata attachments
2377   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2378   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2379   for (const BasicBlock &BB : F)
2380     for (const Instruction &I : BB) {
2381       MDs.clear();
2382       I.getAllMetadataOtherThanDebugLoc(MDs);
2383 
2384       // If no metadata, ignore instruction.
2385       if (MDs.empty()) continue;
2386 
2387       Record.push_back(VE.getInstructionID(&I));
2388 
2389       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2390         Record.push_back(MDs[i].first);
2391         Record.push_back(VE.getMetadataID(MDs[i].second));
2392       }
2393       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2394       Record.clear();
2395     }
2396 
2397   Stream.ExitBlock();
2398 }
2399 
2400 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2401   SmallVector<uint64_t, 64> Record;
2402 
2403   // Write metadata kinds
2404   // METADATA_KIND - [n x [id, name]]
2405   SmallVector<StringRef, 8> Names;
2406   M.getMDKindNames(Names);
2407 
2408   if (Names.empty()) return;
2409 
2410   Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2411 
2412   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2413     Record.push_back(MDKindID);
2414     StringRef KName = Names[MDKindID];
2415     Record.append(KName.begin(), KName.end());
2416 
2417     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2418     Record.clear();
2419   }
2420 
2421   Stream.ExitBlock();
2422 }
2423 
2424 void ModuleBitcodeWriter::writeOperandBundleTags() {
2425   // Write metadata kinds
2426   //
2427   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2428   //
2429   // OPERAND_BUNDLE_TAG - [strchr x N]
2430 
2431   SmallVector<StringRef, 8> Tags;
2432   M.getOperandBundleTags(Tags);
2433 
2434   if (Tags.empty())
2435     return;
2436 
2437   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2438 
2439   SmallVector<uint64_t, 64> Record;
2440 
2441   for (auto Tag : Tags) {
2442     Record.append(Tag.begin(), Tag.end());
2443 
2444     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2445     Record.clear();
2446   }
2447 
2448   Stream.ExitBlock();
2449 }
2450 
2451 void ModuleBitcodeWriter::writeSyncScopeNames() {
2452   SmallVector<StringRef, 8> SSNs;
2453   M.getContext().getSyncScopeNames(SSNs);
2454   if (SSNs.empty())
2455     return;
2456 
2457   Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2458 
2459   SmallVector<uint64_t, 64> Record;
2460   for (auto SSN : SSNs) {
2461     Record.append(SSN.begin(), SSN.end());
2462     Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2463     Record.clear();
2464   }
2465 
2466   Stream.ExitBlock();
2467 }
2468 
2469 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2470                                          bool isGlobal) {
2471   if (FirstVal == LastVal) return;
2472 
2473   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2474 
2475   unsigned AggregateAbbrev = 0;
2476   unsigned String8Abbrev = 0;
2477   unsigned CString7Abbrev = 0;
2478   unsigned CString6Abbrev = 0;
2479   // If this is a constant pool for the module, emit module-specific abbrevs.
2480   if (isGlobal) {
2481     // Abbrev for CST_CODE_AGGREGATE.
2482     auto Abbv = std::make_shared<BitCodeAbbrev>();
2483     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2484     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2485     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2486     AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2487 
2488     // Abbrev for CST_CODE_STRING.
2489     Abbv = std::make_shared<BitCodeAbbrev>();
2490     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2491     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2492     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2493     String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2494     // Abbrev for CST_CODE_CSTRING.
2495     Abbv = std::make_shared<BitCodeAbbrev>();
2496     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2497     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2498     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2499     CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2500     // Abbrev for CST_CODE_CSTRING.
2501     Abbv = std::make_shared<BitCodeAbbrev>();
2502     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2503     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2504     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2505     CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2506   }
2507 
2508   SmallVector<uint64_t, 64> Record;
2509 
2510   const ValueEnumerator::ValueList &Vals = VE.getValues();
2511   Type *LastTy = nullptr;
2512   for (unsigned i = FirstVal; i != LastVal; ++i) {
2513     const Value *V = Vals[i].first;
2514     // If we need to switch types, do so now.
2515     if (V->getType() != LastTy) {
2516       LastTy = V->getType();
2517       Record.push_back(VE.getTypeID(LastTy));
2518       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2519                         CONSTANTS_SETTYPE_ABBREV);
2520       Record.clear();
2521     }
2522 
2523     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2524       Record.push_back(VE.getTypeID(IA->getFunctionType()));
2525       Record.push_back(
2526           unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 |
2527           unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3);
2528 
2529       // Add the asm string.
2530       const std::string &AsmStr = IA->getAsmString();
2531       Record.push_back(AsmStr.size());
2532       Record.append(AsmStr.begin(), AsmStr.end());
2533 
2534       // Add the constraint string.
2535       const std::string &ConstraintStr = IA->getConstraintString();
2536       Record.push_back(ConstraintStr.size());
2537       Record.append(ConstraintStr.begin(), ConstraintStr.end());
2538       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2539       Record.clear();
2540       continue;
2541     }
2542     const Constant *C = cast<Constant>(V);
2543     unsigned Code = -1U;
2544     unsigned AbbrevToUse = 0;
2545     if (C->isNullValue()) {
2546       Code = bitc::CST_CODE_NULL;
2547     } else if (isa<PoisonValue>(C)) {
2548       Code = bitc::CST_CODE_POISON;
2549     } else if (isa<UndefValue>(C)) {
2550       Code = bitc::CST_CODE_UNDEF;
2551     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2552       if (IV->getBitWidth() <= 64) {
2553         uint64_t V = IV->getSExtValue();
2554         emitSignedInt64(Record, V);
2555         Code = bitc::CST_CODE_INTEGER;
2556         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2557       } else {                             // Wide integers, > 64 bits in size.
2558         emitWideAPInt(Record, IV->getValue());
2559         Code = bitc::CST_CODE_WIDE_INTEGER;
2560       }
2561     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2562       Code = bitc::CST_CODE_FLOAT;
2563       Type *Ty = CFP->getType();
2564       if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() ||
2565           Ty->isDoubleTy()) {
2566         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2567       } else if (Ty->isX86_FP80Ty()) {
2568         // api needed to prevent premature destruction
2569         // bits are not in the same order as a normal i80 APInt, compensate.
2570         APInt api = CFP->getValueAPF().bitcastToAPInt();
2571         const uint64_t *p = api.getRawData();
2572         Record.push_back((p[1] << 48) | (p[0] >> 16));
2573         Record.push_back(p[0] & 0xffffLL);
2574       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2575         APInt api = CFP->getValueAPF().bitcastToAPInt();
2576         const uint64_t *p = api.getRawData();
2577         Record.push_back(p[0]);
2578         Record.push_back(p[1]);
2579       } else {
2580         assert(0 && "Unknown FP type!");
2581       }
2582     } else if (isa<ConstantDataSequential>(C) &&
2583                cast<ConstantDataSequential>(C)->isString()) {
2584       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2585       // Emit constant strings specially.
2586       unsigned NumElts = Str->getNumElements();
2587       // If this is a null-terminated string, use the denser CSTRING encoding.
2588       if (Str->isCString()) {
2589         Code = bitc::CST_CODE_CSTRING;
2590         --NumElts;  // Don't encode the null, which isn't allowed by char6.
2591       } else {
2592         Code = bitc::CST_CODE_STRING;
2593         AbbrevToUse = String8Abbrev;
2594       }
2595       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2596       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2597       for (unsigned i = 0; i != NumElts; ++i) {
2598         unsigned char V = Str->getElementAsInteger(i);
2599         Record.push_back(V);
2600         isCStr7 &= (V & 128) == 0;
2601         if (isCStrChar6)
2602           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2603       }
2604 
2605       if (isCStrChar6)
2606         AbbrevToUse = CString6Abbrev;
2607       else if (isCStr7)
2608         AbbrevToUse = CString7Abbrev;
2609     } else if (const ConstantDataSequential *CDS =
2610                   dyn_cast<ConstantDataSequential>(C)) {
2611       Code = bitc::CST_CODE_DATA;
2612       Type *EltTy = CDS->getElementType();
2613       if (isa<IntegerType>(EltTy)) {
2614         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2615           Record.push_back(CDS->getElementAsInteger(i));
2616       } else {
2617         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2618           Record.push_back(
2619               CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2620       }
2621     } else if (isa<ConstantAggregate>(C)) {
2622       Code = bitc::CST_CODE_AGGREGATE;
2623       for (const Value *Op : C->operands())
2624         Record.push_back(VE.getValueID(Op));
2625       AbbrevToUse = AggregateAbbrev;
2626     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2627       switch (CE->getOpcode()) {
2628       default:
2629         if (Instruction::isCast(CE->getOpcode())) {
2630           Code = bitc::CST_CODE_CE_CAST;
2631           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2632           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2633           Record.push_back(VE.getValueID(C->getOperand(0)));
2634           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2635         } else {
2636           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2637           Code = bitc::CST_CODE_CE_BINOP;
2638           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2639           Record.push_back(VE.getValueID(C->getOperand(0)));
2640           Record.push_back(VE.getValueID(C->getOperand(1)));
2641           uint64_t Flags = getOptimizationFlags(CE);
2642           if (Flags != 0)
2643             Record.push_back(Flags);
2644         }
2645         break;
2646       case Instruction::FNeg: {
2647         assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
2648         Code = bitc::CST_CODE_CE_UNOP;
2649         Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
2650         Record.push_back(VE.getValueID(C->getOperand(0)));
2651         uint64_t Flags = getOptimizationFlags(CE);
2652         if (Flags != 0)
2653           Record.push_back(Flags);
2654         break;
2655       }
2656       case Instruction::GetElementPtr: {
2657         Code = bitc::CST_CODE_CE_GEP;
2658         const auto *GO = cast<GEPOperator>(C);
2659         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2660         if (std::optional<unsigned> Idx = GO->getInRangeIndex()) {
2661           Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2662           Record.push_back((*Idx << 1) | GO->isInBounds());
2663         } else if (GO->isInBounds())
2664           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2665         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2666           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2667           Record.push_back(VE.getValueID(C->getOperand(i)));
2668         }
2669         break;
2670       }
2671       case Instruction::Select:
2672         Code = bitc::CST_CODE_CE_SELECT;
2673         Record.push_back(VE.getValueID(C->getOperand(0)));
2674         Record.push_back(VE.getValueID(C->getOperand(1)));
2675         Record.push_back(VE.getValueID(C->getOperand(2)));
2676         break;
2677       case Instruction::ExtractElement:
2678         Code = bitc::CST_CODE_CE_EXTRACTELT;
2679         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2680         Record.push_back(VE.getValueID(C->getOperand(0)));
2681         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2682         Record.push_back(VE.getValueID(C->getOperand(1)));
2683         break;
2684       case Instruction::InsertElement:
2685         Code = bitc::CST_CODE_CE_INSERTELT;
2686         Record.push_back(VE.getValueID(C->getOperand(0)));
2687         Record.push_back(VE.getValueID(C->getOperand(1)));
2688         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2689         Record.push_back(VE.getValueID(C->getOperand(2)));
2690         break;
2691       case Instruction::ShuffleVector:
2692         // If the return type and argument types are the same, this is a
2693         // standard shufflevector instruction.  If the types are different,
2694         // then the shuffle is widening or truncating the input vectors, and
2695         // the argument type must also be encoded.
2696         if (C->getType() == C->getOperand(0)->getType()) {
2697           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2698         } else {
2699           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2700           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2701         }
2702         Record.push_back(VE.getValueID(C->getOperand(0)));
2703         Record.push_back(VE.getValueID(C->getOperand(1)));
2704         Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode()));
2705         break;
2706       case Instruction::ICmp:
2707       case Instruction::FCmp:
2708         Code = bitc::CST_CODE_CE_CMP;
2709         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2710         Record.push_back(VE.getValueID(C->getOperand(0)));
2711         Record.push_back(VE.getValueID(C->getOperand(1)));
2712         Record.push_back(CE->getPredicate());
2713         break;
2714       }
2715     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2716       Code = bitc::CST_CODE_BLOCKADDRESS;
2717       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2718       Record.push_back(VE.getValueID(BA->getFunction()));
2719       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2720     } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) {
2721       Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT;
2722       Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType()));
2723       Record.push_back(VE.getValueID(Equiv->getGlobalValue()));
2724     } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) {
2725       Code = bitc::CST_CODE_NO_CFI_VALUE;
2726       Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType()));
2727       Record.push_back(VE.getValueID(NC->getGlobalValue()));
2728     } else {
2729 #ifndef NDEBUG
2730       C->dump();
2731 #endif
2732       llvm_unreachable("Unknown constant!");
2733     }
2734     Stream.EmitRecord(Code, Record, AbbrevToUse);
2735     Record.clear();
2736   }
2737 
2738   Stream.ExitBlock();
2739 }
2740 
2741 void ModuleBitcodeWriter::writeModuleConstants() {
2742   const ValueEnumerator::ValueList &Vals = VE.getValues();
2743 
2744   // Find the first constant to emit, which is the first non-globalvalue value.
2745   // We know globalvalues have been emitted by WriteModuleInfo.
2746   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2747     if (!isa<GlobalValue>(Vals[i].first)) {
2748       writeConstants(i, Vals.size(), true);
2749       return;
2750     }
2751   }
2752 }
2753 
2754 /// pushValueAndType - The file has to encode both the value and type id for
2755 /// many values, because we need to know what type to create for forward
2756 /// references.  However, most operands are not forward references, so this type
2757 /// field is not needed.
2758 ///
2759 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2760 /// instruction ID, then it is a forward reference, and it also includes the
2761 /// type ID.  The value ID that is written is encoded relative to the InstID.
2762 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2763                                            SmallVectorImpl<unsigned> &Vals) {
2764   unsigned ValID = VE.getValueID(V);
2765   // Make encoding relative to the InstID.
2766   Vals.push_back(InstID - ValID);
2767   if (ValID >= InstID) {
2768     Vals.push_back(VE.getTypeID(V->getType()));
2769     return true;
2770   }
2771   return false;
2772 }
2773 
2774 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS,
2775                                               unsigned InstID) {
2776   SmallVector<unsigned, 64> Record;
2777   LLVMContext &C = CS.getContext();
2778 
2779   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2780     const auto &Bundle = CS.getOperandBundleAt(i);
2781     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2782 
2783     for (auto &Input : Bundle.Inputs)
2784       pushValueAndType(Input, InstID, Record);
2785 
2786     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2787     Record.clear();
2788   }
2789 }
2790 
2791 /// pushValue - Like pushValueAndType, but where the type of the value is
2792 /// omitted (perhaps it was already encoded in an earlier operand).
2793 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2794                                     SmallVectorImpl<unsigned> &Vals) {
2795   unsigned ValID = VE.getValueID(V);
2796   Vals.push_back(InstID - ValID);
2797 }
2798 
2799 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2800                                           SmallVectorImpl<uint64_t> &Vals) {
2801   unsigned ValID = VE.getValueID(V);
2802   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2803   emitSignedInt64(Vals, diff);
2804 }
2805 
2806 /// WriteInstruction - Emit an instruction to the specified stream.
2807 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2808                                            unsigned InstID,
2809                                            SmallVectorImpl<unsigned> &Vals) {
2810   unsigned Code = 0;
2811   unsigned AbbrevToUse = 0;
2812   VE.setInstructionID(&I);
2813   switch (I.getOpcode()) {
2814   default:
2815     if (Instruction::isCast(I.getOpcode())) {
2816       Code = bitc::FUNC_CODE_INST_CAST;
2817       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2818         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2819       Vals.push_back(VE.getTypeID(I.getType()));
2820       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2821     } else {
2822       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2823       Code = bitc::FUNC_CODE_INST_BINOP;
2824       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2825         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2826       pushValue(I.getOperand(1), InstID, Vals);
2827       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2828       uint64_t Flags = getOptimizationFlags(&I);
2829       if (Flags != 0) {
2830         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2831           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2832         Vals.push_back(Flags);
2833       }
2834     }
2835     break;
2836   case Instruction::FNeg: {
2837     Code = bitc::FUNC_CODE_INST_UNOP;
2838     if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2839       AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
2840     Vals.push_back(getEncodedUnaryOpcode(I.getOpcode()));
2841     uint64_t Flags = getOptimizationFlags(&I);
2842     if (Flags != 0) {
2843       if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
2844         AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
2845       Vals.push_back(Flags);
2846     }
2847     break;
2848   }
2849   case Instruction::GetElementPtr: {
2850     Code = bitc::FUNC_CODE_INST_GEP;
2851     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2852     auto &GEPInst = cast<GetElementPtrInst>(I);
2853     Vals.push_back(GEPInst.isInBounds());
2854     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2855     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2856       pushValueAndType(I.getOperand(i), InstID, Vals);
2857     break;
2858   }
2859   case Instruction::ExtractValue: {
2860     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2861     pushValueAndType(I.getOperand(0), InstID, Vals);
2862     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2863     Vals.append(EVI->idx_begin(), EVI->idx_end());
2864     break;
2865   }
2866   case Instruction::InsertValue: {
2867     Code = bitc::FUNC_CODE_INST_INSERTVAL;
2868     pushValueAndType(I.getOperand(0), InstID, Vals);
2869     pushValueAndType(I.getOperand(1), InstID, Vals);
2870     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2871     Vals.append(IVI->idx_begin(), IVI->idx_end());
2872     break;
2873   }
2874   case Instruction::Select: {
2875     Code = bitc::FUNC_CODE_INST_VSELECT;
2876     pushValueAndType(I.getOperand(1), InstID, Vals);
2877     pushValue(I.getOperand(2), InstID, Vals);
2878     pushValueAndType(I.getOperand(0), InstID, Vals);
2879     uint64_t Flags = getOptimizationFlags(&I);
2880     if (Flags != 0)
2881       Vals.push_back(Flags);
2882     break;
2883   }
2884   case Instruction::ExtractElement:
2885     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2886     pushValueAndType(I.getOperand(0), InstID, Vals);
2887     pushValueAndType(I.getOperand(1), InstID, Vals);
2888     break;
2889   case Instruction::InsertElement:
2890     Code = bitc::FUNC_CODE_INST_INSERTELT;
2891     pushValueAndType(I.getOperand(0), InstID, Vals);
2892     pushValue(I.getOperand(1), InstID, Vals);
2893     pushValueAndType(I.getOperand(2), InstID, Vals);
2894     break;
2895   case Instruction::ShuffleVector:
2896     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2897     pushValueAndType(I.getOperand(0), InstID, Vals);
2898     pushValue(I.getOperand(1), InstID, Vals);
2899     pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID,
2900               Vals);
2901     break;
2902   case Instruction::ICmp:
2903   case Instruction::FCmp: {
2904     // compare returning Int1Ty or vector of Int1Ty
2905     Code = bitc::FUNC_CODE_INST_CMP2;
2906     pushValueAndType(I.getOperand(0), InstID, Vals);
2907     pushValue(I.getOperand(1), InstID, Vals);
2908     Vals.push_back(cast<CmpInst>(I).getPredicate());
2909     uint64_t Flags = getOptimizationFlags(&I);
2910     if (Flags != 0)
2911       Vals.push_back(Flags);
2912     break;
2913   }
2914 
2915   case Instruction::Ret:
2916     {
2917       Code = bitc::FUNC_CODE_INST_RET;
2918       unsigned NumOperands = I.getNumOperands();
2919       if (NumOperands == 0)
2920         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2921       else if (NumOperands == 1) {
2922         if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2923           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2924       } else {
2925         for (unsigned i = 0, e = NumOperands; i != e; ++i)
2926           pushValueAndType(I.getOperand(i), InstID, Vals);
2927       }
2928     }
2929     break;
2930   case Instruction::Br:
2931     {
2932       Code = bitc::FUNC_CODE_INST_BR;
2933       const BranchInst &II = cast<BranchInst>(I);
2934       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2935       if (II.isConditional()) {
2936         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2937         pushValue(II.getCondition(), InstID, Vals);
2938       }
2939     }
2940     break;
2941   case Instruction::Switch:
2942     {
2943       Code = bitc::FUNC_CODE_INST_SWITCH;
2944       const SwitchInst &SI = cast<SwitchInst>(I);
2945       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2946       pushValue(SI.getCondition(), InstID, Vals);
2947       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2948       for (auto Case : SI.cases()) {
2949         Vals.push_back(VE.getValueID(Case.getCaseValue()));
2950         Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2951       }
2952     }
2953     break;
2954   case Instruction::IndirectBr:
2955     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2956     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2957     // Encode the address operand as relative, but not the basic blocks.
2958     pushValue(I.getOperand(0), InstID, Vals);
2959     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2960       Vals.push_back(VE.getValueID(I.getOperand(i)));
2961     break;
2962 
2963   case Instruction::Invoke: {
2964     const InvokeInst *II = cast<InvokeInst>(&I);
2965     const Value *Callee = II->getCalledOperand();
2966     FunctionType *FTy = II->getFunctionType();
2967 
2968     if (II->hasOperandBundles())
2969       writeOperandBundles(*II, InstID);
2970 
2971     Code = bitc::FUNC_CODE_INST_INVOKE;
2972 
2973     Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2974     Vals.push_back(II->getCallingConv() | 1 << 13);
2975     Vals.push_back(VE.getValueID(II->getNormalDest()));
2976     Vals.push_back(VE.getValueID(II->getUnwindDest()));
2977     Vals.push_back(VE.getTypeID(FTy));
2978     pushValueAndType(Callee, InstID, Vals);
2979 
2980     // Emit value #'s for the fixed parameters.
2981     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2982       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2983 
2984     // Emit type/value pairs for varargs params.
2985     if (FTy->isVarArg()) {
2986       for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i)
2987         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2988     }
2989     break;
2990   }
2991   case Instruction::Resume:
2992     Code = bitc::FUNC_CODE_INST_RESUME;
2993     pushValueAndType(I.getOperand(0), InstID, Vals);
2994     break;
2995   case Instruction::CleanupRet: {
2996     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2997     const auto &CRI = cast<CleanupReturnInst>(I);
2998     pushValue(CRI.getCleanupPad(), InstID, Vals);
2999     if (CRI.hasUnwindDest())
3000       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
3001     break;
3002   }
3003   case Instruction::CatchRet: {
3004     Code = bitc::FUNC_CODE_INST_CATCHRET;
3005     const auto &CRI = cast<CatchReturnInst>(I);
3006     pushValue(CRI.getCatchPad(), InstID, Vals);
3007     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
3008     break;
3009   }
3010   case Instruction::CleanupPad:
3011   case Instruction::CatchPad: {
3012     const auto &FuncletPad = cast<FuncletPadInst>(I);
3013     Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
3014                                          : bitc::FUNC_CODE_INST_CLEANUPPAD;
3015     pushValue(FuncletPad.getParentPad(), InstID, Vals);
3016 
3017     unsigned NumArgOperands = FuncletPad.arg_size();
3018     Vals.push_back(NumArgOperands);
3019     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
3020       pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
3021     break;
3022   }
3023   case Instruction::CatchSwitch: {
3024     Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
3025     const auto &CatchSwitch = cast<CatchSwitchInst>(I);
3026 
3027     pushValue(CatchSwitch.getParentPad(), InstID, Vals);
3028 
3029     unsigned NumHandlers = CatchSwitch.getNumHandlers();
3030     Vals.push_back(NumHandlers);
3031     for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
3032       Vals.push_back(VE.getValueID(CatchPadBB));
3033 
3034     if (CatchSwitch.hasUnwindDest())
3035       Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
3036     break;
3037   }
3038   case Instruction::CallBr: {
3039     const CallBrInst *CBI = cast<CallBrInst>(&I);
3040     const Value *Callee = CBI->getCalledOperand();
3041     FunctionType *FTy = CBI->getFunctionType();
3042 
3043     if (CBI->hasOperandBundles())
3044       writeOperandBundles(*CBI, InstID);
3045 
3046     Code = bitc::FUNC_CODE_INST_CALLBR;
3047 
3048     Vals.push_back(VE.getAttributeListID(CBI->getAttributes()));
3049 
3050     Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV |
3051                    1 << bitc::CALL_EXPLICIT_TYPE);
3052 
3053     Vals.push_back(VE.getValueID(CBI->getDefaultDest()));
3054     Vals.push_back(CBI->getNumIndirectDests());
3055     for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
3056       Vals.push_back(VE.getValueID(CBI->getIndirectDest(i)));
3057 
3058     Vals.push_back(VE.getTypeID(FTy));
3059     pushValueAndType(Callee, InstID, Vals);
3060 
3061     // Emit value #'s for the fixed parameters.
3062     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3063       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
3064 
3065     // Emit type/value pairs for varargs params.
3066     if (FTy->isVarArg()) {
3067       for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i)
3068         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
3069     }
3070     break;
3071   }
3072   case Instruction::Unreachable:
3073     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
3074     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
3075     break;
3076 
3077   case Instruction::PHI: {
3078     const PHINode &PN = cast<PHINode>(I);
3079     Code = bitc::FUNC_CODE_INST_PHI;
3080     // With the newer instruction encoding, forward references could give
3081     // negative valued IDs.  This is most common for PHIs, so we use
3082     // signed VBRs.
3083     SmallVector<uint64_t, 128> Vals64;
3084     Vals64.push_back(VE.getTypeID(PN.getType()));
3085     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
3086       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
3087       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
3088     }
3089 
3090     uint64_t Flags = getOptimizationFlags(&I);
3091     if (Flags != 0)
3092       Vals64.push_back(Flags);
3093 
3094     // Emit a Vals64 vector and exit.
3095     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
3096     Vals64.clear();
3097     return;
3098   }
3099 
3100   case Instruction::LandingPad: {
3101     const LandingPadInst &LP = cast<LandingPadInst>(I);
3102     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
3103     Vals.push_back(VE.getTypeID(LP.getType()));
3104     Vals.push_back(LP.isCleanup());
3105     Vals.push_back(LP.getNumClauses());
3106     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
3107       if (LP.isCatch(I))
3108         Vals.push_back(LandingPadInst::Catch);
3109       else
3110         Vals.push_back(LandingPadInst::Filter);
3111       pushValueAndType(LP.getClause(I), InstID, Vals);
3112     }
3113     break;
3114   }
3115 
3116   case Instruction::Alloca: {
3117     Code = bitc::FUNC_CODE_INST_ALLOCA;
3118     const AllocaInst &AI = cast<AllocaInst>(I);
3119     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
3120     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
3121     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
3122     using APV = AllocaPackedValues;
3123     unsigned Record = 0;
3124     unsigned EncodedAlign = getEncodedAlign(AI.getAlign());
3125     Bitfield::set<APV::AlignLower>(
3126         Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1));
3127     Bitfield::set<APV::AlignUpper>(Record,
3128                                    EncodedAlign >> APV::AlignLower::Bits);
3129     Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca());
3130     Bitfield::set<APV::ExplicitType>(Record, true);
3131     Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError());
3132     Vals.push_back(Record);
3133 
3134     unsigned AS = AI.getAddressSpace();
3135     if (AS != M.getDataLayout().getAllocaAddrSpace())
3136       Vals.push_back(AS);
3137     break;
3138   }
3139 
3140   case Instruction::Load:
3141     if (cast<LoadInst>(I).isAtomic()) {
3142       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
3143       pushValueAndType(I.getOperand(0), InstID, Vals);
3144     } else {
3145       Code = bitc::FUNC_CODE_INST_LOAD;
3146       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
3147         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
3148     }
3149     Vals.push_back(VE.getTypeID(I.getType()));
3150     Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign()));
3151     Vals.push_back(cast<LoadInst>(I).isVolatile());
3152     if (cast<LoadInst>(I).isAtomic()) {
3153       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
3154       Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
3155     }
3156     break;
3157   case Instruction::Store:
3158     if (cast<StoreInst>(I).isAtomic())
3159       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
3160     else
3161       Code = bitc::FUNC_CODE_INST_STORE;
3162     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
3163     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
3164     Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign()));
3165     Vals.push_back(cast<StoreInst>(I).isVolatile());
3166     if (cast<StoreInst>(I).isAtomic()) {
3167       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
3168       Vals.push_back(
3169           getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
3170     }
3171     break;
3172   case Instruction::AtomicCmpXchg:
3173     Code = bitc::FUNC_CODE_INST_CMPXCHG;
3174     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3175     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
3176     pushValue(I.getOperand(2), InstID, Vals);        // newval.
3177     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
3178     Vals.push_back(
3179         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
3180     Vals.push_back(
3181         getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
3182     Vals.push_back(
3183         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
3184     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
3185     Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign()));
3186     break;
3187   case Instruction::AtomicRMW:
3188     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
3189     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3190     pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val
3191     Vals.push_back(
3192         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
3193     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
3194     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
3195     Vals.push_back(
3196         getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
3197     Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign()));
3198     break;
3199   case Instruction::Fence:
3200     Code = bitc::FUNC_CODE_INST_FENCE;
3201     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
3202     Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
3203     break;
3204   case Instruction::Call: {
3205     const CallInst &CI = cast<CallInst>(I);
3206     FunctionType *FTy = CI.getFunctionType();
3207 
3208     if (CI.hasOperandBundles())
3209       writeOperandBundles(CI, InstID);
3210 
3211     Code = bitc::FUNC_CODE_INST_CALL;
3212 
3213     Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
3214 
3215     unsigned Flags = getOptimizationFlags(&I);
3216     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
3217                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
3218                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
3219                    1 << bitc::CALL_EXPLICIT_TYPE |
3220                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
3221                    unsigned(Flags != 0) << bitc::CALL_FMF);
3222     if (Flags != 0)
3223       Vals.push_back(Flags);
3224 
3225     Vals.push_back(VE.getTypeID(FTy));
3226     pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
3227 
3228     // Emit value #'s for the fixed parameters.
3229     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3230       // Check for labels (can happen with asm labels).
3231       if (FTy->getParamType(i)->isLabelTy())
3232         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
3233       else
3234         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
3235     }
3236 
3237     // Emit type/value pairs for varargs params.
3238     if (FTy->isVarArg()) {
3239       for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i)
3240         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
3241     }
3242     break;
3243   }
3244   case Instruction::VAArg:
3245     Code = bitc::FUNC_CODE_INST_VAARG;
3246     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
3247     pushValue(I.getOperand(0), InstID, Vals);                   // valist.
3248     Vals.push_back(VE.getTypeID(I.getType())); // restype.
3249     break;
3250   case Instruction::Freeze:
3251     Code = bitc::FUNC_CODE_INST_FREEZE;
3252     pushValueAndType(I.getOperand(0), InstID, Vals);
3253     break;
3254   }
3255 
3256   Stream.EmitRecord(Code, Vals, AbbrevToUse);
3257   Vals.clear();
3258 }
3259 
3260 /// Write a GlobalValue VST to the module. The purpose of this data structure is
3261 /// to allow clients to efficiently find the function body.
3262 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
3263   DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3264   // Get the offset of the VST we are writing, and backpatch it into
3265   // the VST forward declaration record.
3266   uint64_t VSTOffset = Stream.GetCurrentBitNo();
3267   // The BitcodeStartBit was the stream offset of the identification block.
3268   VSTOffset -= bitcodeStartBit();
3269   assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
3270   // Note that we add 1 here because the offset is relative to one word
3271   // before the start of the identification block, which was historically
3272   // always the start of the regular bitcode header.
3273   Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
3274 
3275   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3276 
3277   auto Abbv = std::make_shared<BitCodeAbbrev>();
3278   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
3279   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3280   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
3281   unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3282 
3283   for (const Function &F : M) {
3284     uint64_t Record[2];
3285 
3286     if (F.isDeclaration())
3287       continue;
3288 
3289     Record[0] = VE.getValueID(&F);
3290 
3291     // Save the word offset of the function (from the start of the
3292     // actual bitcode written to the stream).
3293     uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
3294     assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
3295     // Note that we add 1 here because the offset is relative to one word
3296     // before the start of the identification block, which was historically
3297     // always the start of the regular bitcode header.
3298     Record[1] = BitcodeIndex / 32 + 1;
3299 
3300     Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
3301   }
3302 
3303   Stream.ExitBlock();
3304 }
3305 
3306 /// Emit names for arguments, instructions and basic blocks in a function.
3307 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
3308     const ValueSymbolTable &VST) {
3309   if (VST.empty())
3310     return;
3311 
3312   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3313 
3314   // FIXME: Set up the abbrev, we know how many values there are!
3315   // FIXME: We know if the type names can use 7-bit ascii.
3316   SmallVector<uint64_t, 64> NameVals;
3317 
3318   for (const ValueName &Name : VST) {
3319     // Figure out the encoding to use for the name.
3320     StringEncoding Bits = getStringEncoding(Name.getKey());
3321 
3322     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
3323     NameVals.push_back(VE.getValueID(Name.getValue()));
3324 
3325     // VST_CODE_ENTRY:   [valueid, namechar x N]
3326     // VST_CODE_BBENTRY: [bbid, namechar x N]
3327     unsigned Code;
3328     if (isa<BasicBlock>(Name.getValue())) {
3329       Code = bitc::VST_CODE_BBENTRY;
3330       if (Bits == SE_Char6)
3331         AbbrevToUse = VST_BBENTRY_6_ABBREV;
3332     } else {
3333       Code = bitc::VST_CODE_ENTRY;
3334       if (Bits == SE_Char6)
3335         AbbrevToUse = VST_ENTRY_6_ABBREV;
3336       else if (Bits == SE_Fixed7)
3337         AbbrevToUse = VST_ENTRY_7_ABBREV;
3338     }
3339 
3340     for (const auto P : Name.getKey())
3341       NameVals.push_back((unsigned char)P);
3342 
3343     // Emit the finished record.
3344     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
3345     NameVals.clear();
3346   }
3347 
3348   Stream.ExitBlock();
3349 }
3350 
3351 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3352   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3353   unsigned Code;
3354   if (isa<BasicBlock>(Order.V))
3355     Code = bitc::USELIST_CODE_BB;
3356   else
3357     Code = bitc::USELIST_CODE_DEFAULT;
3358 
3359   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3360   Record.push_back(VE.getValueID(Order.V));
3361   Stream.EmitRecord(Code, Record);
3362 }
3363 
3364 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3365   assert(VE.shouldPreserveUseListOrder() &&
3366          "Expected to be preserving use-list order");
3367 
3368   auto hasMore = [&]() {
3369     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3370   };
3371   if (!hasMore())
3372     // Nothing to do.
3373     return;
3374 
3375   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3376   while (hasMore()) {
3377     writeUseList(std::move(VE.UseListOrders.back()));
3378     VE.UseListOrders.pop_back();
3379   }
3380   Stream.ExitBlock();
3381 }
3382 
3383 /// Emit a function body to the module stream.
3384 void ModuleBitcodeWriter::writeFunction(
3385     const Function &F,
3386     DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3387   // Save the bitcode index of the start of this function block for recording
3388   // in the VST.
3389   FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3390 
3391   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3392   VE.incorporateFunction(F);
3393 
3394   SmallVector<unsigned, 64> Vals;
3395 
3396   // Emit the number of basic blocks, so the reader can create them ahead of
3397   // time.
3398   Vals.push_back(VE.getBasicBlocks().size());
3399   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3400   Vals.clear();
3401 
3402   // If there are function-local constants, emit them now.
3403   unsigned CstStart, CstEnd;
3404   VE.getFunctionConstantRange(CstStart, CstEnd);
3405   writeConstants(CstStart, CstEnd, false);
3406 
3407   // If there is function-local metadata, emit it now.
3408   writeFunctionMetadata(F);
3409 
3410   // Keep a running idea of what the instruction ID is.
3411   unsigned InstID = CstEnd;
3412 
3413   bool NeedsMetadataAttachment = F.hasMetadata();
3414 
3415   DILocation *LastDL = nullptr;
3416   SmallSetVector<Function *, 4> BlockAddressUsers;
3417 
3418   // Finally, emit all the instructions, in order.
3419   for (const BasicBlock &BB : F) {
3420     for (const Instruction &I : BB) {
3421       writeInstruction(I, InstID, Vals);
3422 
3423       if (!I.getType()->isVoidTy())
3424         ++InstID;
3425 
3426       // If the instruction has metadata, write a metadata attachment later.
3427       NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc();
3428 
3429       // If the instruction has a debug location, emit it.
3430       DILocation *DL = I.getDebugLoc();
3431       if (!DL)
3432         continue;
3433 
3434       if (DL == LastDL) {
3435         // Just repeat the same debug loc as last time.
3436         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3437         continue;
3438       }
3439 
3440       Vals.push_back(DL->getLine());
3441       Vals.push_back(DL->getColumn());
3442       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3443       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3444       Vals.push_back(DL->isImplicitCode());
3445       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3446       Vals.clear();
3447 
3448       LastDL = DL;
3449     }
3450 
3451     if (BlockAddress *BA = BlockAddress::lookup(&BB)) {
3452       SmallVector<Value *> Worklist{BA};
3453       SmallPtrSet<Value *, 8> Visited{BA};
3454       while (!Worklist.empty()) {
3455         Value *V = Worklist.pop_back_val();
3456         for (User *U : V->users()) {
3457           if (auto *I = dyn_cast<Instruction>(U)) {
3458             Function *P = I->getFunction();
3459             if (P != &F)
3460               BlockAddressUsers.insert(P);
3461           } else if (isa<Constant>(U) && !isa<GlobalValue>(U) &&
3462                      Visited.insert(U).second)
3463             Worklist.push_back(U);
3464         }
3465       }
3466     }
3467   }
3468 
3469   if (!BlockAddressUsers.empty()) {
3470     Vals.resize(BlockAddressUsers.size());
3471     for (auto I : llvm::enumerate(BlockAddressUsers))
3472       Vals[I.index()] = VE.getValueID(I.value());
3473     Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals);
3474     Vals.clear();
3475   }
3476 
3477   // Emit names for all the instructions etc.
3478   if (auto *Symtab = F.getValueSymbolTable())
3479     writeFunctionLevelValueSymbolTable(*Symtab);
3480 
3481   if (NeedsMetadataAttachment)
3482     writeFunctionMetadataAttachment(F);
3483   if (VE.shouldPreserveUseListOrder())
3484     writeUseListBlock(&F);
3485   VE.purgeFunction();
3486   Stream.ExitBlock();
3487 }
3488 
3489 // Emit blockinfo, which defines the standard abbreviations etc.
3490 void ModuleBitcodeWriter::writeBlockInfo() {
3491   // We only want to emit block info records for blocks that have multiple
3492   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3493   // Other blocks can define their abbrevs inline.
3494   Stream.EnterBlockInfoBlock();
3495 
3496   { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3497     auto Abbv = std::make_shared<BitCodeAbbrev>();
3498     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3499     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3500     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3501     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3502     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3503         VST_ENTRY_8_ABBREV)
3504       llvm_unreachable("Unexpected abbrev ordering!");
3505   }
3506 
3507   { // 7-bit fixed width VST_CODE_ENTRY strings.
3508     auto Abbv = std::make_shared<BitCodeAbbrev>();
3509     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3510     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3511     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3512     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3513     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3514         VST_ENTRY_7_ABBREV)
3515       llvm_unreachable("Unexpected abbrev ordering!");
3516   }
3517   { // 6-bit char6 VST_CODE_ENTRY strings.
3518     auto Abbv = std::make_shared<BitCodeAbbrev>();
3519     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3520     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3521     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3522     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3523     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3524         VST_ENTRY_6_ABBREV)
3525       llvm_unreachable("Unexpected abbrev ordering!");
3526   }
3527   { // 6-bit char6 VST_CODE_BBENTRY strings.
3528     auto Abbv = std::make_shared<BitCodeAbbrev>();
3529     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3530     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3531     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3532     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3533     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3534         VST_BBENTRY_6_ABBREV)
3535       llvm_unreachable("Unexpected abbrev ordering!");
3536   }
3537 
3538   { // SETTYPE abbrev for CONSTANTS_BLOCK.
3539     auto Abbv = std::make_shared<BitCodeAbbrev>();
3540     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3541     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3542                               VE.computeBitsRequiredForTypeIndicies()));
3543     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3544         CONSTANTS_SETTYPE_ABBREV)
3545       llvm_unreachable("Unexpected abbrev ordering!");
3546   }
3547 
3548   { // INTEGER abbrev for CONSTANTS_BLOCK.
3549     auto Abbv = std::make_shared<BitCodeAbbrev>();
3550     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3551     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3552     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3553         CONSTANTS_INTEGER_ABBREV)
3554       llvm_unreachable("Unexpected abbrev ordering!");
3555   }
3556 
3557   { // CE_CAST abbrev for CONSTANTS_BLOCK.
3558     auto Abbv = std::make_shared<BitCodeAbbrev>();
3559     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3560     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
3561     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
3562                               VE.computeBitsRequiredForTypeIndicies()));
3563     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
3564 
3565     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3566         CONSTANTS_CE_CAST_Abbrev)
3567       llvm_unreachable("Unexpected abbrev ordering!");
3568   }
3569   { // NULL abbrev for CONSTANTS_BLOCK.
3570     auto Abbv = std::make_shared<BitCodeAbbrev>();
3571     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3572     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3573         CONSTANTS_NULL_Abbrev)
3574       llvm_unreachable("Unexpected abbrev ordering!");
3575   }
3576 
3577   // FIXME: This should only use space for first class types!
3578 
3579   { // INST_LOAD abbrev for FUNCTION_BLOCK.
3580     auto Abbv = std::make_shared<BitCodeAbbrev>();
3581     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3582     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3583     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3584                               VE.computeBitsRequiredForTypeIndicies()));
3585     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3586     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3587     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3588         FUNCTION_INST_LOAD_ABBREV)
3589       llvm_unreachable("Unexpected abbrev ordering!");
3590   }
3591   { // INST_UNOP abbrev for FUNCTION_BLOCK.
3592     auto Abbv = std::make_shared<BitCodeAbbrev>();
3593     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3594     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3595     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3596     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3597         FUNCTION_INST_UNOP_ABBREV)
3598       llvm_unreachable("Unexpected abbrev ordering!");
3599   }
3600   { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3601     auto Abbv = std::make_shared<BitCodeAbbrev>();
3602     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3603     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3604     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3605     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3606     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3607         FUNCTION_INST_UNOP_FLAGS_ABBREV)
3608       llvm_unreachable("Unexpected abbrev ordering!");
3609   }
3610   { // INST_BINOP abbrev for FUNCTION_BLOCK.
3611     auto Abbv = std::make_shared<BitCodeAbbrev>();
3612     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3613     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3614     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3615     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3616     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3617         FUNCTION_INST_BINOP_ABBREV)
3618       llvm_unreachable("Unexpected abbrev ordering!");
3619   }
3620   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3621     auto Abbv = std::make_shared<BitCodeAbbrev>();
3622     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3623     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3624     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3625     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3626     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3627     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3628         FUNCTION_INST_BINOP_FLAGS_ABBREV)
3629       llvm_unreachable("Unexpected abbrev ordering!");
3630   }
3631   { // INST_CAST abbrev for FUNCTION_BLOCK.
3632     auto Abbv = std::make_shared<BitCodeAbbrev>();
3633     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3634     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
3635     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
3636                               VE.computeBitsRequiredForTypeIndicies()));
3637     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
3638     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3639         FUNCTION_INST_CAST_ABBREV)
3640       llvm_unreachable("Unexpected abbrev ordering!");
3641   }
3642 
3643   { // INST_RET abbrev for FUNCTION_BLOCK.
3644     auto Abbv = std::make_shared<BitCodeAbbrev>();
3645     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3646     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3647         FUNCTION_INST_RET_VOID_ABBREV)
3648       llvm_unreachable("Unexpected abbrev ordering!");
3649   }
3650   { // INST_RET abbrev for FUNCTION_BLOCK.
3651     auto Abbv = std::make_shared<BitCodeAbbrev>();
3652     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3653     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3654     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3655         FUNCTION_INST_RET_VAL_ABBREV)
3656       llvm_unreachable("Unexpected abbrev ordering!");
3657   }
3658   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3659     auto Abbv = std::make_shared<BitCodeAbbrev>();
3660     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3661     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3662         FUNCTION_INST_UNREACHABLE_ABBREV)
3663       llvm_unreachable("Unexpected abbrev ordering!");
3664   }
3665   {
3666     auto Abbv = std::make_shared<BitCodeAbbrev>();
3667     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3668     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3669     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3670                               Log2_32_Ceil(VE.getTypes().size() + 1)));
3671     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3672     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3673     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3674         FUNCTION_INST_GEP_ABBREV)
3675       llvm_unreachable("Unexpected abbrev ordering!");
3676   }
3677 
3678   Stream.ExitBlock();
3679 }
3680 
3681 /// Write the module path strings, currently only used when generating
3682 /// a combined index file.
3683 void IndexBitcodeWriter::writeModStrings() {
3684   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3685 
3686   // TODO: See which abbrev sizes we actually need to emit
3687 
3688   // 8-bit fixed-width MST_ENTRY strings.
3689   auto Abbv = std::make_shared<BitCodeAbbrev>();
3690   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3691   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3692   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3693   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3694   unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3695 
3696   // 7-bit fixed width MST_ENTRY strings.
3697   Abbv = std::make_shared<BitCodeAbbrev>();
3698   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3699   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3700   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3701   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3702   unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3703 
3704   // 6-bit char6 MST_ENTRY strings.
3705   Abbv = std::make_shared<BitCodeAbbrev>();
3706   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3707   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3708   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3709   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3710   unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3711 
3712   // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3713   Abbv = std::make_shared<BitCodeAbbrev>();
3714   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3715   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3716   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3717   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3718   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3719   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3720   unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3721 
3722   SmallVector<unsigned, 64> Vals;
3723   forEachModule(
3724       [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) {
3725         StringRef Key = MPSE.getKey();
3726         const auto &Value = MPSE.getValue();
3727         StringEncoding Bits = getStringEncoding(Key);
3728         unsigned AbbrevToUse = Abbrev8Bit;
3729         if (Bits == SE_Char6)
3730           AbbrevToUse = Abbrev6Bit;
3731         else if (Bits == SE_Fixed7)
3732           AbbrevToUse = Abbrev7Bit;
3733 
3734         Vals.push_back(Value.first);
3735         Vals.append(Key.begin(), Key.end());
3736 
3737         // Emit the finished record.
3738         Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3739 
3740         // Emit an optional hash for the module now
3741         const auto &Hash = Value.second;
3742         if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3743           Vals.assign(Hash.begin(), Hash.end());
3744           // Emit the hash record.
3745           Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3746         }
3747 
3748         Vals.clear();
3749       });
3750   Stream.ExitBlock();
3751 }
3752 
3753 /// Write the function type metadata related records that need to appear before
3754 /// a function summary entry (whether per-module or combined).
3755 template <typename Fn>
3756 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
3757                                              FunctionSummary *FS,
3758                                              Fn GetValueID) {
3759   if (!FS->type_tests().empty())
3760     Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3761 
3762   SmallVector<uint64_t, 64> Record;
3763 
3764   auto WriteVFuncIdVec = [&](uint64_t Ty,
3765                              ArrayRef<FunctionSummary::VFuncId> VFs) {
3766     if (VFs.empty())
3767       return;
3768     Record.clear();
3769     for (auto &VF : VFs) {
3770       Record.push_back(VF.GUID);
3771       Record.push_back(VF.Offset);
3772     }
3773     Stream.EmitRecord(Ty, Record);
3774   };
3775 
3776   WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3777                   FS->type_test_assume_vcalls());
3778   WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3779                   FS->type_checked_load_vcalls());
3780 
3781   auto WriteConstVCallVec = [&](uint64_t Ty,
3782                                 ArrayRef<FunctionSummary::ConstVCall> VCs) {
3783     for (auto &VC : VCs) {
3784       Record.clear();
3785       Record.push_back(VC.VFunc.GUID);
3786       Record.push_back(VC.VFunc.Offset);
3787       llvm::append_range(Record, VC.Args);
3788       Stream.EmitRecord(Ty, Record);
3789     }
3790   };
3791 
3792   WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3793                      FS->type_test_assume_const_vcalls());
3794   WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3795                      FS->type_checked_load_const_vcalls());
3796 
3797   auto WriteRange = [&](ConstantRange Range) {
3798     Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
3799     assert(Range.getLower().getNumWords() == 1);
3800     assert(Range.getUpper().getNumWords() == 1);
3801     emitSignedInt64(Record, *Range.getLower().getRawData());
3802     emitSignedInt64(Record, *Range.getUpper().getRawData());
3803   };
3804 
3805   if (!FS->paramAccesses().empty()) {
3806     Record.clear();
3807     for (auto &Arg : FS->paramAccesses()) {
3808       size_t UndoSize = Record.size();
3809       Record.push_back(Arg.ParamNo);
3810       WriteRange(Arg.Use);
3811       Record.push_back(Arg.Calls.size());
3812       for (auto &Call : Arg.Calls) {
3813         Record.push_back(Call.ParamNo);
3814         std::optional<unsigned> ValueID = GetValueID(Call.Callee);
3815         if (!ValueID) {
3816           // If ValueID is unknown we can't drop just this call, we must drop
3817           // entire parameter.
3818           Record.resize(UndoSize);
3819           break;
3820         }
3821         Record.push_back(*ValueID);
3822         WriteRange(Call.Offsets);
3823       }
3824     }
3825     if (!Record.empty())
3826       Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record);
3827   }
3828 }
3829 
3830 /// Collect type IDs from type tests used by function.
3831 static void
3832 getReferencedTypeIds(FunctionSummary *FS,
3833                      std::set<GlobalValue::GUID> &ReferencedTypeIds) {
3834   if (!FS->type_tests().empty())
3835     for (auto &TT : FS->type_tests())
3836       ReferencedTypeIds.insert(TT);
3837 
3838   auto GetReferencedTypesFromVFuncIdVec =
3839       [&](ArrayRef<FunctionSummary::VFuncId> VFs) {
3840         for (auto &VF : VFs)
3841           ReferencedTypeIds.insert(VF.GUID);
3842       };
3843 
3844   GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
3845   GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
3846 
3847   auto GetReferencedTypesFromConstVCallVec =
3848       [&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
3849         for (auto &VC : VCs)
3850           ReferencedTypeIds.insert(VC.VFunc.GUID);
3851       };
3852 
3853   GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
3854   GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
3855 }
3856 
3857 static void writeWholeProgramDevirtResolutionByArg(
3858     SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
3859     const WholeProgramDevirtResolution::ByArg &ByArg) {
3860   NameVals.push_back(args.size());
3861   llvm::append_range(NameVals, args);
3862 
3863   NameVals.push_back(ByArg.TheKind);
3864   NameVals.push_back(ByArg.Info);
3865   NameVals.push_back(ByArg.Byte);
3866   NameVals.push_back(ByArg.Bit);
3867 }
3868 
3869 static void writeWholeProgramDevirtResolution(
3870     SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3871     uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
3872   NameVals.push_back(Id);
3873 
3874   NameVals.push_back(Wpd.TheKind);
3875   NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
3876   NameVals.push_back(Wpd.SingleImplName.size());
3877 
3878   NameVals.push_back(Wpd.ResByArg.size());
3879   for (auto &A : Wpd.ResByArg)
3880     writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
3881 }
3882 
3883 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
3884                                      StringTableBuilder &StrtabBuilder,
3885                                      const std::string &Id,
3886                                      const TypeIdSummary &Summary) {
3887   NameVals.push_back(StrtabBuilder.add(Id));
3888   NameVals.push_back(Id.size());
3889 
3890   NameVals.push_back(Summary.TTRes.TheKind);
3891   NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
3892   NameVals.push_back(Summary.TTRes.AlignLog2);
3893   NameVals.push_back(Summary.TTRes.SizeM1);
3894   NameVals.push_back(Summary.TTRes.BitMask);
3895   NameVals.push_back(Summary.TTRes.InlineBits);
3896 
3897   for (auto &W : Summary.WPDRes)
3898     writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
3899                                       W.second);
3900 }
3901 
3902 static void writeTypeIdCompatibleVtableSummaryRecord(
3903     SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3904     const std::string &Id, const TypeIdCompatibleVtableInfo &Summary,
3905     ValueEnumerator &VE) {
3906   NameVals.push_back(StrtabBuilder.add(Id));
3907   NameVals.push_back(Id.size());
3908 
3909   for (auto &P : Summary) {
3910     NameVals.push_back(P.AddressPointOffset);
3911     NameVals.push_back(VE.getValueID(P.VTableVI.getValue()));
3912   }
3913 }
3914 
3915 static void writeFunctionHeapProfileRecords(
3916     BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev,
3917     unsigned AllocAbbrev, bool PerModule,
3918     std::function<unsigned(const ValueInfo &VI)> GetValueID,
3919     std::function<unsigned(unsigned)> GetStackIndex) {
3920   SmallVector<uint64_t> Record;
3921 
3922   for (auto &CI : FS->callsites()) {
3923     Record.clear();
3924     // Per module callsite clones should always have a single entry of
3925     // value 0.
3926     assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0));
3927     Record.push_back(GetValueID(CI.Callee));
3928     if (!PerModule) {
3929       Record.push_back(CI.StackIdIndices.size());
3930       Record.push_back(CI.Clones.size());
3931     }
3932     for (auto Id : CI.StackIdIndices)
3933       Record.push_back(GetStackIndex(Id));
3934     if (!PerModule) {
3935       for (auto V : CI.Clones)
3936         Record.push_back(V);
3937     }
3938     Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO
3939                                 : bitc::FS_COMBINED_CALLSITE_INFO,
3940                       Record, CallsiteAbbrev);
3941   }
3942 
3943   for (auto &AI : FS->allocs()) {
3944     Record.clear();
3945     // Per module alloc versions should always have a single entry of
3946     // value 0.
3947     assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0));
3948     if (!PerModule) {
3949       Record.push_back(AI.MIBs.size());
3950       Record.push_back(AI.Versions.size());
3951     }
3952     for (auto &MIB : AI.MIBs) {
3953       Record.push_back((uint8_t)MIB.AllocType);
3954       Record.push_back(MIB.StackIdIndices.size());
3955       for (auto Id : MIB.StackIdIndices)
3956         Record.push_back(GetStackIndex(Id));
3957     }
3958     if (!PerModule) {
3959       for (auto V : AI.Versions)
3960         Record.push_back(V);
3961     }
3962     Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO
3963                                 : bitc::FS_COMBINED_ALLOC_INFO,
3964                       Record, AllocAbbrev);
3965   }
3966 }
3967 
3968 // Helper to emit a single function summary record.
3969 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
3970     SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3971     unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3972     unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F) {
3973   NameVals.push_back(ValueID);
3974 
3975   FunctionSummary *FS = cast<FunctionSummary>(Summary);
3976 
3977   writeFunctionTypeMetadataRecords(
3978       Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> {
3979         return {VE.getValueID(VI.getValue())};
3980       });
3981 
3982   writeFunctionHeapProfileRecords(
3983       Stream, FS, CallsiteAbbrev, AllocAbbrev,
3984       /*PerModule*/ true,
3985       /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); },
3986       /*GetStackIndex*/ [&](unsigned I) { return I; });
3987 
3988   auto SpecialRefCnts = FS->specialRefCounts();
3989   NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3990   NameVals.push_back(FS->instCount());
3991   NameVals.push_back(getEncodedFFlags(FS->fflags()));
3992   NameVals.push_back(FS->refs().size());
3993   NameVals.push_back(SpecialRefCnts.first);  // rorefcnt
3994   NameVals.push_back(SpecialRefCnts.second); // worefcnt
3995 
3996   for (auto &RI : FS->refs())
3997     NameVals.push_back(VE.getValueID(RI.getValue()));
3998 
3999   bool HasProfileData =
4000       F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None;
4001   for (auto &ECI : FS->calls()) {
4002     NameVals.push_back(getValueId(ECI.first));
4003     if (HasProfileData)
4004       NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
4005     else if (WriteRelBFToSummary)
4006       NameVals.push_back(ECI.second.RelBlockFreq);
4007   }
4008 
4009   unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
4010   unsigned Code =
4011       (HasProfileData ? bitc::FS_PERMODULE_PROFILE
4012                       : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF
4013                                              : bitc::FS_PERMODULE));
4014 
4015   // Emit the finished record.
4016   Stream.EmitRecord(Code, NameVals, FSAbbrev);
4017   NameVals.clear();
4018 }
4019 
4020 // Collect the global value references in the given variable's initializer,
4021 // and emit them in a summary record.
4022 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
4023     const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
4024     unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) {
4025   auto VI = Index->getValueInfo(V.getGUID());
4026   if (!VI || VI.getSummaryList().empty()) {
4027     // Only declarations should not have a summary (a declaration might however
4028     // have a summary if the def was in module level asm).
4029     assert(V.isDeclaration());
4030     return;
4031   }
4032   auto *Summary = VI.getSummaryList()[0].get();
4033   NameVals.push_back(VE.getValueID(&V));
4034   GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
4035   NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4036   NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4037 
4038   auto VTableFuncs = VS->vTableFuncs();
4039   if (!VTableFuncs.empty())
4040     NameVals.push_back(VS->refs().size());
4041 
4042   unsigned SizeBeforeRefs = NameVals.size();
4043   for (auto &RI : VS->refs())
4044     NameVals.push_back(VE.getValueID(RI.getValue()));
4045   // Sort the refs for determinism output, the vector returned by FS->refs() has
4046   // been initialized from a DenseSet.
4047   llvm::sort(drop_begin(NameVals, SizeBeforeRefs));
4048 
4049   if (VTableFuncs.empty())
4050     Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
4051                       FSModRefsAbbrev);
4052   else {
4053     // VTableFuncs pairs should already be sorted by offset.
4054     for (auto &P : VTableFuncs) {
4055       NameVals.push_back(VE.getValueID(P.FuncVI.getValue()));
4056       NameVals.push_back(P.VTableOffset);
4057     }
4058 
4059     Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals,
4060                       FSModVTableRefsAbbrev);
4061   }
4062   NameVals.clear();
4063 }
4064 
4065 /// Emit the per-module summary section alongside the rest of
4066 /// the module's bitcode.
4067 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
4068   // By default we compile with ThinLTO if the module has a summary, but the
4069   // client can request full LTO with a module flag.
4070   bool IsThinLTO = true;
4071   if (auto *MD =
4072           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
4073     IsThinLTO = MD->getZExtValue();
4074   Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
4075                                  : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
4076                        4);
4077 
4078   Stream.EmitRecord(
4079       bitc::FS_VERSION,
4080       ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4081 
4082   // Write the index flags.
4083   uint64_t Flags = 0;
4084   // Bits 1-3 are set only in the combined index, skip them.
4085   if (Index->enableSplitLTOUnit())
4086     Flags |= 0x8;
4087   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
4088 
4089   if (Index->begin() == Index->end()) {
4090     Stream.ExitBlock();
4091     return;
4092   }
4093 
4094   for (const auto &GVI : valueIds()) {
4095     Stream.EmitRecord(bitc::FS_VALUE_GUID,
4096                       ArrayRef<uint64_t>{GVI.second, GVI.first});
4097   }
4098 
4099   if (!Index->stackIds().empty()) {
4100     auto StackIdAbbv = std::make_shared<BitCodeAbbrev>();
4101     StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS));
4102     // numids x stackid
4103     StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4104     StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4105     unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv));
4106     Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId);
4107   }
4108 
4109   // Abbrev for FS_PERMODULE_PROFILE.
4110   auto Abbv = std::make_shared<BitCodeAbbrev>();
4111   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
4112   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4113   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4114   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4115   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4116   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4117   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4118   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4119   // numrefs x valueid, n x (valueid, hotness)
4120   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4121   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4122   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4123 
4124   // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF.
4125   Abbv = std::make_shared<BitCodeAbbrev>();
4126   if (WriteRelBFToSummary)
4127     Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
4128   else
4129     Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
4130   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4131   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4132   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4133   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4134   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4135   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4136   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4137   // numrefs x valueid, n x (valueid [, rel_block_freq])
4138   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4139   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4140   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4141 
4142   // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
4143   Abbv = std::make_shared<BitCodeAbbrev>();
4144   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
4145   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4146   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4147   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
4148   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4149   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4150 
4151   // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
4152   Abbv = std::make_shared<BitCodeAbbrev>();
4153   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS));
4154   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4155   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4156   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4157   // numrefs x valueid, n x (valueid , offset)
4158   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4159   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4160   unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4161 
4162   // Abbrev for FS_ALIAS.
4163   Abbv = std::make_shared<BitCodeAbbrev>();
4164   Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
4165   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4166   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4167   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4168   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4169 
4170   // Abbrev for FS_TYPE_ID_METADATA
4171   Abbv = std::make_shared<BitCodeAbbrev>();
4172   Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA));
4173   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index
4174   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length
4175   // n x (valueid , offset)
4176   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4177   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4178   unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4179 
4180   Abbv = std::make_shared<BitCodeAbbrev>();
4181   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO));
4182   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4183   // n x stackidindex
4184   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4185   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4186   unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4187 
4188   Abbv = std::make_shared<BitCodeAbbrev>();
4189   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO));
4190   // n x (alloc type, numstackids, numstackids x stackidindex)
4191   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4192   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4193   unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4194 
4195   SmallVector<uint64_t, 64> NameVals;
4196   // Iterate over the list of functions instead of the Index to
4197   // ensure the ordering is stable.
4198   for (const Function &F : M) {
4199     // Summary emission does not support anonymous functions, they have to
4200     // renamed using the anonymous function renaming pass.
4201     if (!F.hasName())
4202       report_fatal_error("Unexpected anonymous function when writing summary");
4203 
4204     ValueInfo VI = Index->getValueInfo(F.getGUID());
4205     if (!VI || VI.getSummaryList().empty()) {
4206       // Only declarations should not have a summary (a declaration might
4207       // however have a summary if the def was in module level asm).
4208       assert(F.isDeclaration());
4209       continue;
4210     }
4211     auto *Summary = VI.getSummaryList()[0].get();
4212     writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
4213                                         FSCallsAbbrev, FSCallsProfileAbbrev,
4214                                         CallsiteAbbrev, AllocAbbrev, F);
4215   }
4216 
4217   // Capture references from GlobalVariable initializers, which are outside
4218   // of a function scope.
4219   for (const GlobalVariable &G : M.globals())
4220     writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev,
4221                                FSModVTableRefsAbbrev);
4222 
4223   for (const GlobalAlias &A : M.aliases()) {
4224     auto *Aliasee = A.getAliaseeObject();
4225     // Skip ifunc and nameless functions which don't have an entry in the
4226     // summary.
4227     if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee))
4228       continue;
4229     auto AliasId = VE.getValueID(&A);
4230     auto AliaseeId = VE.getValueID(Aliasee);
4231     NameVals.push_back(AliasId);
4232     auto *Summary = Index->getGlobalValueSummary(A);
4233     AliasSummary *AS = cast<AliasSummary>(Summary);
4234     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4235     NameVals.push_back(AliaseeId);
4236     Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
4237     NameVals.clear();
4238   }
4239 
4240   for (auto &S : Index->typeIdCompatibleVtableMap()) {
4241     writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first,
4242                                              S.second, VE);
4243     Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals,
4244                       TypeIdCompatibleVtableAbbrev);
4245     NameVals.clear();
4246   }
4247 
4248   Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4249                     ArrayRef<uint64_t>{Index->getBlockCount()});
4250 
4251   Stream.ExitBlock();
4252 }
4253 
4254 /// Emit the combined summary section into the combined index file.
4255 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
4256   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4);
4257   Stream.EmitRecord(
4258       bitc::FS_VERSION,
4259       ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4260 
4261   // Write the index flags.
4262   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()});
4263 
4264   for (const auto &GVI : valueIds()) {
4265     Stream.EmitRecord(bitc::FS_VALUE_GUID,
4266                       ArrayRef<uint64_t>{GVI.second, GVI.first});
4267   }
4268 
4269   if (!StackIdIndices.empty()) {
4270     auto StackIdAbbv = std::make_shared<BitCodeAbbrev>();
4271     StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS));
4272     // numids x stackid
4273     StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4274     StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4275     unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv));
4276     // Write the stack ids used by this index, which will be a subset of those in
4277     // the full index in the case of distributed indexes.
4278     std::vector<uint64_t> StackIds;
4279     for (auto &I : StackIdIndices)
4280       StackIds.push_back(Index.getStackIdAtIndex(I));
4281     Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId);
4282   }
4283 
4284   // Abbrev for FS_COMBINED.
4285   auto Abbv = std::make_shared<BitCodeAbbrev>();
4286   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
4287   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4288   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4289   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4290   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4291   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4292   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount
4293   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4294   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4295   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4296   // numrefs x valueid, n x (valueid)
4297   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4298   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4299   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4300 
4301   // Abbrev for FS_COMBINED_PROFILE.
4302   Abbv = std::make_shared<BitCodeAbbrev>();
4303   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
4304   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4305   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4306   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4307   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4308   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4309   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount
4310   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4311   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4312   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4313   // numrefs x valueid, n x (valueid, hotness)
4314   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4315   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4316   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4317 
4318   // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
4319   Abbv = std::make_shared<BitCodeAbbrev>();
4320   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
4321   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4322   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4323   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4324   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
4325   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4326   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4327 
4328   // Abbrev for FS_COMBINED_ALIAS.
4329   Abbv = std::make_shared<BitCodeAbbrev>();
4330   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
4331   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4332   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4333   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4334   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4335   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4336 
4337   Abbv = std::make_shared<BitCodeAbbrev>();
4338   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO));
4339   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4340   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices
4341   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver
4342   // numstackindices x stackidindex, numver x version
4343   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4344   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4345   unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4346 
4347   Abbv = std::make_shared<BitCodeAbbrev>();
4348   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO));
4349   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib
4350   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver
4351   // nummib x (alloc type, numstackids, numstackids x stackidindex),
4352   // numver x version
4353   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4354   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4355   unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4356 
4357   // The aliases are emitted as a post-pass, and will point to the value
4358   // id of the aliasee. Save them in a vector for post-processing.
4359   SmallVector<AliasSummary *, 64> Aliases;
4360 
4361   // Save the value id for each summary for alias emission.
4362   DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
4363 
4364   SmallVector<uint64_t, 64> NameVals;
4365 
4366   // Set that will be populated during call to writeFunctionTypeMetadataRecords
4367   // with the type ids referenced by this index file.
4368   std::set<GlobalValue::GUID> ReferencedTypeIds;
4369 
4370   // For local linkage, we also emit the original name separately
4371   // immediately after the record.
4372   auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
4373     // We don't need to emit the original name if we are writing the index for
4374     // distributed backends (in which case ModuleToSummariesForIndex is
4375     // non-null). The original name is only needed during the thin link, since
4376     // for SamplePGO the indirect call targets for local functions have
4377     // have the original name annotated in profile.
4378     // Continue to emit it when writing out the entire combined index, which is
4379     // used in testing the thin link via llvm-lto.
4380     if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage()))
4381       return;
4382     NameVals.push_back(S.getOriginalName());
4383     Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
4384     NameVals.clear();
4385   };
4386 
4387   std::set<GlobalValue::GUID> DefOrUseGUIDs;
4388   forEachSummary([&](GVInfo I, bool IsAliasee) {
4389     GlobalValueSummary *S = I.second;
4390     assert(S);
4391     DefOrUseGUIDs.insert(I.first);
4392     for (const ValueInfo &VI : S->refs())
4393       DefOrUseGUIDs.insert(VI.getGUID());
4394 
4395     auto ValueId = getValueId(I.first);
4396     assert(ValueId);
4397     SummaryToValueIdMap[S] = *ValueId;
4398 
4399     // If this is invoked for an aliasee, we want to record the above
4400     // mapping, but then not emit a summary entry (if the aliasee is
4401     // to be imported, we will invoke this separately with IsAliasee=false).
4402     if (IsAliasee)
4403       return;
4404 
4405     if (auto *AS = dyn_cast<AliasSummary>(S)) {
4406       // Will process aliases as a post-pass because the reader wants all
4407       // global to be loaded first.
4408       Aliases.push_back(AS);
4409       return;
4410     }
4411 
4412     if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
4413       NameVals.push_back(*ValueId);
4414       NameVals.push_back(Index.getModuleId(VS->modulePath()));
4415       NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4416       NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4417       for (auto &RI : VS->refs()) {
4418         auto RefValueId = getValueId(RI.getGUID());
4419         if (!RefValueId)
4420           continue;
4421         NameVals.push_back(*RefValueId);
4422       }
4423 
4424       // Emit the finished record.
4425       Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
4426                         FSModRefsAbbrev);
4427       NameVals.clear();
4428       MaybeEmitOriginalName(*S);
4429       return;
4430     }
4431 
4432     auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> {
4433       if (!VI)
4434         return std::nullopt;
4435       return getValueId(VI.getGUID());
4436     };
4437 
4438     auto *FS = cast<FunctionSummary>(S);
4439     writeFunctionTypeMetadataRecords(Stream, FS, GetValueId);
4440     getReferencedTypeIds(FS, ReferencedTypeIds);
4441 
4442     writeFunctionHeapProfileRecords(
4443         Stream, FS, CallsiteAbbrev, AllocAbbrev,
4444         /*PerModule*/ false,
4445         /*GetValueId*/ [&](const ValueInfo &VI) -> unsigned {
4446           std::optional<unsigned> ValueID = GetValueId(VI);
4447           // This can happen in shared index files for distributed ThinLTO if
4448           // the callee function summary is not included. Record 0 which we
4449           // will have to deal with conservatively when doing any kind of
4450           // validation in the ThinLTO backends.
4451           if (!ValueID)
4452             return 0;
4453           return *ValueID;
4454         },
4455         /*GetStackIndex*/ [&](unsigned I) {
4456           // Get the corresponding index into the list of StackIdIndices
4457           // actually being written for this combined index (which may be a
4458           // subset in the case of distributed indexes).
4459           auto Lower = llvm::lower_bound(StackIdIndices, I);
4460           return std::distance(StackIdIndices.begin(), Lower);
4461         });
4462 
4463     NameVals.push_back(*ValueId);
4464     NameVals.push_back(Index.getModuleId(FS->modulePath()));
4465     NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
4466     NameVals.push_back(FS->instCount());
4467     NameVals.push_back(getEncodedFFlags(FS->fflags()));
4468     NameVals.push_back(FS->entryCount());
4469 
4470     // Fill in below
4471     NameVals.push_back(0); // numrefs
4472     NameVals.push_back(0); // rorefcnt
4473     NameVals.push_back(0); // worefcnt
4474 
4475     unsigned Count = 0, RORefCnt = 0, WORefCnt = 0;
4476     for (auto &RI : FS->refs()) {
4477       auto RefValueId = getValueId(RI.getGUID());
4478       if (!RefValueId)
4479         continue;
4480       NameVals.push_back(*RefValueId);
4481       if (RI.isReadOnly())
4482         RORefCnt++;
4483       else if (RI.isWriteOnly())
4484         WORefCnt++;
4485       Count++;
4486     }
4487     NameVals[6] = Count;
4488     NameVals[7] = RORefCnt;
4489     NameVals[8] = WORefCnt;
4490 
4491     bool HasProfileData = false;
4492     for (auto &EI : FS->calls()) {
4493       HasProfileData |=
4494           EI.second.getHotness() != CalleeInfo::HotnessType::Unknown;
4495       if (HasProfileData)
4496         break;
4497     }
4498 
4499     for (auto &EI : FS->calls()) {
4500       // If this GUID doesn't have a value id, it doesn't have a function
4501       // summary and we don't need to record any calls to it.
4502       std::optional<unsigned> CallValueId = GetValueId(EI.first);
4503       if (!CallValueId)
4504         continue;
4505       NameVals.push_back(*CallValueId);
4506       if (HasProfileData)
4507         NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
4508     }
4509 
4510     unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
4511     unsigned Code =
4512         (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
4513 
4514     // Emit the finished record.
4515     Stream.EmitRecord(Code, NameVals, FSAbbrev);
4516     NameVals.clear();
4517     MaybeEmitOriginalName(*S);
4518   });
4519 
4520   for (auto *AS : Aliases) {
4521     auto AliasValueId = SummaryToValueIdMap[AS];
4522     assert(AliasValueId);
4523     NameVals.push_back(AliasValueId);
4524     NameVals.push_back(Index.getModuleId(AS->modulePath()));
4525     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4526     auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
4527     assert(AliaseeValueId);
4528     NameVals.push_back(AliaseeValueId);
4529 
4530     // Emit the finished record.
4531     Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
4532     NameVals.clear();
4533     MaybeEmitOriginalName(*AS);
4534 
4535     if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
4536       getReferencedTypeIds(FS, ReferencedTypeIds);
4537   }
4538 
4539   if (!Index.cfiFunctionDefs().empty()) {
4540     for (auto &S : Index.cfiFunctionDefs()) {
4541       if (DefOrUseGUIDs.count(
4542               GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4543         NameVals.push_back(StrtabBuilder.add(S));
4544         NameVals.push_back(S.size());
4545       }
4546     }
4547     if (!NameVals.empty()) {
4548       Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
4549       NameVals.clear();
4550     }
4551   }
4552 
4553   if (!Index.cfiFunctionDecls().empty()) {
4554     for (auto &S : Index.cfiFunctionDecls()) {
4555       if (DefOrUseGUIDs.count(
4556               GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4557         NameVals.push_back(StrtabBuilder.add(S));
4558         NameVals.push_back(S.size());
4559       }
4560     }
4561     if (!NameVals.empty()) {
4562       Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
4563       NameVals.clear();
4564     }
4565   }
4566 
4567   // Walk the GUIDs that were referenced, and write the
4568   // corresponding type id records.
4569   for (auto &T : ReferencedTypeIds) {
4570     auto TidIter = Index.typeIds().equal_range(T);
4571     for (auto It = TidIter.first; It != TidIter.second; ++It) {
4572       writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first,
4573                                It->second.second);
4574       Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
4575       NameVals.clear();
4576     }
4577   }
4578 
4579   Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4580                     ArrayRef<uint64_t>{Index.getBlockCount()});
4581 
4582   Stream.ExitBlock();
4583 }
4584 
4585 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
4586 /// current llvm version, and a record for the epoch number.
4587 static void writeIdentificationBlock(BitstreamWriter &Stream) {
4588   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
4589 
4590   // Write the "user readable" string identifying the bitcode producer
4591   auto Abbv = std::make_shared<BitCodeAbbrev>();
4592   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
4593   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4594   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
4595   auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4596   writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
4597                     "LLVM" LLVM_VERSION_STRING, StringAbbrev);
4598 
4599   // Write the epoch version
4600   Abbv = std::make_shared<BitCodeAbbrev>();
4601   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
4602   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4603   auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4604   constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}};
4605   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
4606   Stream.ExitBlock();
4607 }
4608 
4609 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
4610   // Emit the module's hash.
4611   // MODULE_CODE_HASH: [5*i32]
4612   if (GenerateHash) {
4613     uint32_t Vals[5];
4614     Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
4615                                     Buffer.size() - BlockStartPos));
4616     std::array<uint8_t, 20> Hash = Hasher.result();
4617     for (int Pos = 0; Pos < 20; Pos += 4) {
4618       Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
4619     }
4620 
4621     // Emit the finished record.
4622     Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
4623 
4624     if (ModHash)
4625       // Save the written hash value.
4626       llvm::copy(Vals, std::begin(*ModHash));
4627   }
4628 }
4629 
4630 void ModuleBitcodeWriter::write() {
4631   writeIdentificationBlock(Stream);
4632 
4633   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4634   size_t BlockStartPos = Buffer.size();
4635 
4636   writeModuleVersion();
4637 
4638   // Emit blockinfo, which defines the standard abbreviations etc.
4639   writeBlockInfo();
4640 
4641   // Emit information describing all of the types in the module.
4642   writeTypeTable();
4643 
4644   // Emit information about attribute groups.
4645   writeAttributeGroupTable();
4646 
4647   // Emit information about parameter attributes.
4648   writeAttributeTable();
4649 
4650   writeComdats();
4651 
4652   // Emit top-level description of module, including target triple, inline asm,
4653   // descriptors for global variables, and function prototype info.
4654   writeModuleInfo();
4655 
4656   // Emit constants.
4657   writeModuleConstants();
4658 
4659   // Emit metadata kind names.
4660   writeModuleMetadataKinds();
4661 
4662   // Emit metadata.
4663   writeModuleMetadata();
4664 
4665   // Emit module-level use-lists.
4666   if (VE.shouldPreserveUseListOrder())
4667     writeUseListBlock(nullptr);
4668 
4669   writeOperandBundleTags();
4670   writeSyncScopeNames();
4671 
4672   // Emit function bodies.
4673   DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
4674   for (const Function &F : M)
4675     if (!F.isDeclaration())
4676       writeFunction(F, FunctionToBitcodeIndex);
4677 
4678   // Need to write after the above call to WriteFunction which populates
4679   // the summary information in the index.
4680   if (Index)
4681     writePerModuleGlobalValueSummary();
4682 
4683   writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
4684 
4685   writeModuleHash(BlockStartPos);
4686 
4687   Stream.ExitBlock();
4688 }
4689 
4690 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
4691                                uint32_t &Position) {
4692   support::endian::write32le(&Buffer[Position], Value);
4693   Position += 4;
4694 }
4695 
4696 /// If generating a bc file on darwin, we have to emit a
4697 /// header and trailer to make it compatible with the system archiver.  To do
4698 /// this we emit the following header, and then emit a trailer that pads the
4699 /// file out to be a multiple of 16 bytes.
4700 ///
4701 /// struct bc_header {
4702 ///   uint32_t Magic;         // 0x0B17C0DE
4703 ///   uint32_t Version;       // Version, currently always 0.
4704 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4705 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
4706 ///   uint32_t CPUType;       // CPU specifier.
4707 ///   ... potentially more later ...
4708 /// };
4709 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
4710                                          const Triple &TT) {
4711   unsigned CPUType = ~0U;
4712 
4713   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4714   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4715   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
4716   // specific constants here because they are implicitly part of the Darwin ABI.
4717   enum {
4718     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
4719     DARWIN_CPU_TYPE_X86        = 7,
4720     DARWIN_CPU_TYPE_ARM        = 12,
4721     DARWIN_CPU_TYPE_POWERPC    = 18
4722   };
4723 
4724   Triple::ArchType Arch = TT.getArch();
4725   if (Arch == Triple::x86_64)
4726     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4727   else if (Arch == Triple::x86)
4728     CPUType = DARWIN_CPU_TYPE_X86;
4729   else if (Arch == Triple::ppc)
4730     CPUType = DARWIN_CPU_TYPE_POWERPC;
4731   else if (Arch == Triple::ppc64)
4732     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4733   else if (Arch == Triple::arm || Arch == Triple::thumb)
4734     CPUType = DARWIN_CPU_TYPE_ARM;
4735 
4736   // Traditional Bitcode starts after header.
4737   assert(Buffer.size() >= BWH_HeaderSize &&
4738          "Expected header size to be reserved");
4739   unsigned BCOffset = BWH_HeaderSize;
4740   unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4741 
4742   // Write the magic and version.
4743   unsigned Position = 0;
4744   writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4745   writeInt32ToBuffer(0, Buffer, Position); // Version.
4746   writeInt32ToBuffer(BCOffset, Buffer, Position);
4747   writeInt32ToBuffer(BCSize, Buffer, Position);
4748   writeInt32ToBuffer(CPUType, Buffer, Position);
4749 
4750   // If the file is not a multiple of 16 bytes, insert dummy padding.
4751   while (Buffer.size() & 15)
4752     Buffer.push_back(0);
4753 }
4754 
4755 /// Helper to write the header common to all bitcode files.
4756 static void writeBitcodeHeader(BitstreamWriter &Stream) {
4757   // Emit the file header.
4758   Stream.Emit((unsigned)'B', 8);
4759   Stream.Emit((unsigned)'C', 8);
4760   Stream.Emit(0x0, 4);
4761   Stream.Emit(0xC, 4);
4762   Stream.Emit(0xE, 4);
4763   Stream.Emit(0xD, 4);
4764 }
4765 
4766 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS)
4767     : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) {
4768   writeBitcodeHeader(*Stream);
4769 }
4770 
4771 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
4772 
4773 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
4774   Stream->EnterSubblock(Block, 3);
4775 
4776   auto Abbv = std::make_shared<BitCodeAbbrev>();
4777   Abbv->Add(BitCodeAbbrevOp(Record));
4778   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4779   auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
4780 
4781   Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
4782 
4783   Stream->ExitBlock();
4784 }
4785 
4786 void BitcodeWriter::writeSymtab() {
4787   assert(!WroteStrtab && !WroteSymtab);
4788 
4789   // If any module has module-level inline asm, we will require a registered asm
4790   // parser for the target so that we can create an accurate symbol table for
4791   // the module.
4792   for (Module *M : Mods) {
4793     if (M->getModuleInlineAsm().empty())
4794       continue;
4795 
4796     std::string Err;
4797     const Triple TT(M->getTargetTriple());
4798     const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
4799     if (!T || !T->hasMCAsmParser())
4800       return;
4801   }
4802 
4803   WroteSymtab = true;
4804   SmallVector<char, 0> Symtab;
4805   // The irsymtab::build function may be unable to create a symbol table if the
4806   // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4807   // table is not required for correctness, but we still want to be able to
4808   // write malformed modules to bitcode files, so swallow the error.
4809   if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
4810     consumeError(std::move(E));
4811     return;
4812   }
4813 
4814   writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
4815             {Symtab.data(), Symtab.size()});
4816 }
4817 
4818 void BitcodeWriter::writeStrtab() {
4819   assert(!WroteStrtab);
4820 
4821   std::vector<char> Strtab;
4822   StrtabBuilder.finalizeInOrder();
4823   Strtab.resize(StrtabBuilder.getSize());
4824   StrtabBuilder.write((uint8_t *)Strtab.data());
4825 
4826   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
4827             {Strtab.data(), Strtab.size()});
4828 
4829   WroteStrtab = true;
4830 }
4831 
4832 void BitcodeWriter::copyStrtab(StringRef Strtab) {
4833   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
4834   WroteStrtab = true;
4835 }
4836 
4837 void BitcodeWriter::writeModule(const Module &M,
4838                                 bool ShouldPreserveUseListOrder,
4839                                 const ModuleSummaryIndex *Index,
4840                                 bool GenerateHash, ModuleHash *ModHash) {
4841   assert(!WroteStrtab);
4842 
4843   // The Mods vector is used by irsymtab::build, which requires non-const
4844   // Modules in case it needs to materialize metadata. But the bitcode writer
4845   // requires that the module is materialized, so we can cast to non-const here,
4846   // after checking that it is in fact materialized.
4847   assert(M.isMaterialized());
4848   Mods.push_back(const_cast<Module *>(&M));
4849 
4850   ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
4851                                    ShouldPreserveUseListOrder, Index,
4852                                    GenerateHash, ModHash);
4853   ModuleWriter.write();
4854 }
4855 
4856 void BitcodeWriter::writeIndex(
4857     const ModuleSummaryIndex *Index,
4858     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4859   IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
4860                                  ModuleToSummariesForIndex);
4861   IndexWriter.write();
4862 }
4863 
4864 /// Write the specified module to the specified output stream.
4865 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
4866                               bool ShouldPreserveUseListOrder,
4867                               const ModuleSummaryIndex *Index,
4868                               bool GenerateHash, ModuleHash *ModHash) {
4869   SmallVector<char, 0> Buffer;
4870   Buffer.reserve(256*1024);
4871 
4872   // If this is darwin or another generic macho target, reserve space for the
4873   // header.
4874   Triple TT(M.getTargetTriple());
4875   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4876     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
4877 
4878   BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out));
4879   Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
4880                      ModHash);
4881   Writer.writeSymtab();
4882   Writer.writeStrtab();
4883 
4884   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4885     emitDarwinBCHeaderAndTrailer(Buffer, TT);
4886 
4887   // Write the generated bitstream to "Out".
4888   if (!Buffer.empty())
4889     Out.write((char *)&Buffer.front(), Buffer.size());
4890 }
4891 
4892 void IndexBitcodeWriter::write() {
4893   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4894 
4895   writeModuleVersion();
4896 
4897   // Write the module paths in the combined index.
4898   writeModStrings();
4899 
4900   // Write the summary combined index records.
4901   writeCombinedGlobalValueSummary();
4902 
4903   Stream.ExitBlock();
4904 }
4905 
4906 // Write the specified module summary index to the given raw output stream,
4907 // where it will be written in a new bitcode block. This is used when
4908 // writing the combined index file for ThinLTO. When writing a subset of the
4909 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
4910 void llvm::writeIndexToFile(
4911     const ModuleSummaryIndex &Index, raw_ostream &Out,
4912     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4913   SmallVector<char, 0> Buffer;
4914   Buffer.reserve(256 * 1024);
4915 
4916   BitcodeWriter Writer(Buffer);
4917   Writer.writeIndex(&Index, ModuleToSummariesForIndex);
4918   Writer.writeStrtab();
4919 
4920   Out.write((char *)&Buffer.front(), Buffer.size());
4921 }
4922 
4923 namespace {
4924 
4925 /// Class to manage the bitcode writing for a thin link bitcode file.
4926 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
4927   /// ModHash is for use in ThinLTO incremental build, generated while writing
4928   /// the module bitcode file.
4929   const ModuleHash *ModHash;
4930 
4931 public:
4932   ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
4933                         BitstreamWriter &Stream,
4934                         const ModuleSummaryIndex &Index,
4935                         const ModuleHash &ModHash)
4936       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
4937                                 /*ShouldPreserveUseListOrder=*/false, &Index),
4938         ModHash(&ModHash) {}
4939 
4940   void write();
4941 
4942 private:
4943   void writeSimplifiedModuleInfo();
4944 };
4945 
4946 } // end anonymous namespace
4947 
4948 // This function writes a simpilified module info for thin link bitcode file.
4949 // It only contains the source file name along with the name(the offset and
4950 // size in strtab) and linkage for global values. For the global value info
4951 // entry, in order to keep linkage at offset 5, there are three zeros used
4952 // as padding.
4953 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
4954   SmallVector<unsigned, 64> Vals;
4955   // Emit the module's source file name.
4956   {
4957     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
4958     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
4959     if (Bits == SE_Char6)
4960       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
4961     else if (Bits == SE_Fixed7)
4962       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
4963 
4964     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4965     auto Abbv = std::make_shared<BitCodeAbbrev>();
4966     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
4967     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4968     Abbv->Add(AbbrevOpToUse);
4969     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4970 
4971     for (const auto P : M.getSourceFileName())
4972       Vals.push_back((unsigned char)P);
4973 
4974     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
4975     Vals.clear();
4976   }
4977 
4978   // Emit the global variable information.
4979   for (const GlobalVariable &GV : M.globals()) {
4980     // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
4981     Vals.push_back(StrtabBuilder.add(GV.getName()));
4982     Vals.push_back(GV.getName().size());
4983     Vals.push_back(0);
4984     Vals.push_back(0);
4985     Vals.push_back(0);
4986     Vals.push_back(getEncodedLinkage(GV));
4987 
4988     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
4989     Vals.clear();
4990   }
4991 
4992   // Emit the function proto information.
4993   for (const Function &F : M) {
4994     // FUNCTION:  [strtab offset, strtab size, 0, 0, 0, linkage]
4995     Vals.push_back(StrtabBuilder.add(F.getName()));
4996     Vals.push_back(F.getName().size());
4997     Vals.push_back(0);
4998     Vals.push_back(0);
4999     Vals.push_back(0);
5000     Vals.push_back(getEncodedLinkage(F));
5001 
5002     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
5003     Vals.clear();
5004   }
5005 
5006   // Emit the alias information.
5007   for (const GlobalAlias &A : M.aliases()) {
5008     // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
5009     Vals.push_back(StrtabBuilder.add(A.getName()));
5010     Vals.push_back(A.getName().size());
5011     Vals.push_back(0);
5012     Vals.push_back(0);
5013     Vals.push_back(0);
5014     Vals.push_back(getEncodedLinkage(A));
5015 
5016     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
5017     Vals.clear();
5018   }
5019 
5020   // Emit the ifunc information.
5021   for (const GlobalIFunc &I : M.ifuncs()) {
5022     // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
5023     Vals.push_back(StrtabBuilder.add(I.getName()));
5024     Vals.push_back(I.getName().size());
5025     Vals.push_back(0);
5026     Vals.push_back(0);
5027     Vals.push_back(0);
5028     Vals.push_back(getEncodedLinkage(I));
5029 
5030     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
5031     Vals.clear();
5032   }
5033 }
5034 
5035 void ThinLinkBitcodeWriter::write() {
5036   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
5037 
5038   writeModuleVersion();
5039 
5040   writeSimplifiedModuleInfo();
5041 
5042   writePerModuleGlobalValueSummary();
5043 
5044   // Write module hash.
5045   Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
5046 
5047   Stream.ExitBlock();
5048 }
5049 
5050 void BitcodeWriter::writeThinLinkBitcode(const Module &M,
5051                                          const ModuleSummaryIndex &Index,
5052                                          const ModuleHash &ModHash) {
5053   assert(!WroteStrtab);
5054 
5055   // The Mods vector is used by irsymtab::build, which requires non-const
5056   // Modules in case it needs to materialize metadata. But the bitcode writer
5057   // requires that the module is materialized, so we can cast to non-const here,
5058   // after checking that it is in fact materialized.
5059   assert(M.isMaterialized());
5060   Mods.push_back(const_cast<Module *>(&M));
5061 
5062   ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
5063                                        ModHash);
5064   ThinLinkWriter.write();
5065 }
5066 
5067 // Write the specified thin link bitcode file to the given raw output stream,
5068 // where it will be written in a new bitcode block. This is used when
5069 // writing the per-module index file for ThinLTO.
5070 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
5071                                       const ModuleSummaryIndex &Index,
5072                                       const ModuleHash &ModHash) {
5073   SmallVector<char, 0> Buffer;
5074   Buffer.reserve(256 * 1024);
5075 
5076   BitcodeWriter Writer(Buffer);
5077   Writer.writeThinLinkBitcode(M, Index, ModHash);
5078   Writer.writeSymtab();
5079   Writer.writeStrtab();
5080 
5081   Out.write((char *)&Buffer.front(), Buffer.size());
5082 }
5083 
5084 static const char *getSectionNameForBitcode(const Triple &T) {
5085   switch (T.getObjectFormat()) {
5086   case Triple::MachO:
5087     return "__LLVM,__bitcode";
5088   case Triple::COFF:
5089   case Triple::ELF:
5090   case Triple::Wasm:
5091   case Triple::UnknownObjectFormat:
5092     return ".llvmbc";
5093   case Triple::GOFF:
5094     llvm_unreachable("GOFF is not yet implemented");
5095     break;
5096   case Triple::SPIRV:
5097     llvm_unreachable("SPIRV is not yet implemented");
5098     break;
5099   case Triple::XCOFF:
5100     llvm_unreachable("XCOFF is not yet implemented");
5101     break;
5102   case Triple::DXContainer:
5103     llvm_unreachable("DXContainer is not yet implemented");
5104     break;
5105   }
5106   llvm_unreachable("Unimplemented ObjectFormatType");
5107 }
5108 
5109 static const char *getSectionNameForCommandline(const Triple &T) {
5110   switch (T.getObjectFormat()) {
5111   case Triple::MachO:
5112     return "__LLVM,__cmdline";
5113   case Triple::COFF:
5114   case Triple::ELF:
5115   case Triple::Wasm:
5116   case Triple::UnknownObjectFormat:
5117     return ".llvmcmd";
5118   case Triple::GOFF:
5119     llvm_unreachable("GOFF is not yet implemented");
5120     break;
5121   case Triple::SPIRV:
5122     llvm_unreachable("SPIRV is not yet implemented");
5123     break;
5124   case Triple::XCOFF:
5125     llvm_unreachable("XCOFF is not yet implemented");
5126     break;
5127   case Triple::DXContainer:
5128     llvm_unreachable("DXC is not yet implemented");
5129     break;
5130   }
5131   llvm_unreachable("Unimplemented ObjectFormatType");
5132 }
5133 
5134 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf,
5135                                 bool EmbedBitcode, bool EmbedCmdline,
5136                                 const std::vector<uint8_t> &CmdArgs) {
5137   // Save llvm.compiler.used and remove it.
5138   SmallVector<Constant *, 2> UsedArray;
5139   SmallVector<GlobalValue *, 4> UsedGlobals;
5140   Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0);
5141   GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true);
5142   for (auto *GV : UsedGlobals) {
5143     if (GV->getName() != "llvm.embedded.module" &&
5144         GV->getName() != "llvm.cmdline")
5145       UsedArray.push_back(
5146           ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5147   }
5148   if (Used)
5149     Used->eraseFromParent();
5150 
5151   // Embed the bitcode for the llvm module.
5152   std::string Data;
5153   ArrayRef<uint8_t> ModuleData;
5154   Triple T(M.getTargetTriple());
5155 
5156   if (EmbedBitcode) {
5157     if (Buf.getBufferSize() == 0 ||
5158         !isBitcode((const unsigned char *)Buf.getBufferStart(),
5159                    (const unsigned char *)Buf.getBufferEnd())) {
5160       // If the input is LLVM Assembly, bitcode is produced by serializing
5161       // the module. Use-lists order need to be preserved in this case.
5162       llvm::raw_string_ostream OS(Data);
5163       llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true);
5164       ModuleData =
5165           ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
5166     } else
5167       // If the input is LLVM bitcode, write the input byte stream directly.
5168       ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
5169                                      Buf.getBufferSize());
5170   }
5171   llvm::Constant *ModuleConstant =
5172       llvm::ConstantDataArray::get(M.getContext(), ModuleData);
5173   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
5174       M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
5175       ModuleConstant);
5176   GV->setSection(getSectionNameForBitcode(T));
5177   // Set alignment to 1 to prevent padding between two contributions from input
5178   // sections after linking.
5179   GV->setAlignment(Align(1));
5180   UsedArray.push_back(
5181       ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5182   if (llvm::GlobalVariable *Old =
5183           M.getGlobalVariable("llvm.embedded.module", true)) {
5184     assert(Old->hasZeroLiveUses() &&
5185            "llvm.embedded.module can only be used once in llvm.compiler.used");
5186     GV->takeName(Old);
5187     Old->eraseFromParent();
5188   } else {
5189     GV->setName("llvm.embedded.module");
5190   }
5191 
5192   // Skip if only bitcode needs to be embedded.
5193   if (EmbedCmdline) {
5194     // Embed command-line options.
5195     ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()),
5196                               CmdArgs.size());
5197     llvm::Constant *CmdConstant =
5198         llvm::ConstantDataArray::get(M.getContext(), CmdData);
5199     GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true,
5200                                   llvm::GlobalValue::PrivateLinkage,
5201                                   CmdConstant);
5202     GV->setSection(getSectionNameForCommandline(T));
5203     GV->setAlignment(Align(1));
5204     UsedArray.push_back(
5205         ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5206     if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) {
5207       assert(Old->hasZeroLiveUses() &&
5208              "llvm.cmdline can only be used once in llvm.compiler.used");
5209       GV->takeName(Old);
5210       Old->eraseFromParent();
5211     } else {
5212       GV->setName("llvm.cmdline");
5213     }
5214   }
5215 
5216   if (UsedArray.empty())
5217     return;
5218 
5219   // Recreate llvm.compiler.used.
5220   ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size());
5221   auto *NewUsed = new GlobalVariable(
5222       M, ATy, false, llvm::GlobalValue::AppendingLinkage,
5223       llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
5224   NewUsed->setSection("llvm.metadata");
5225 }
5226