1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitstreamWriter.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/UseListOrder.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/MC/StringTableBuilder.h" 32 #include "llvm/Object/IRSymtab.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/Program.h" 36 #include "llvm/Support/SHA1.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <cctype> 40 #include <map> 41 using namespace llvm; 42 43 namespace { 44 45 cl::opt<unsigned> 46 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 47 cl::desc("Number of metadatas above which we emit an index " 48 "to enable lazy-loading")); 49 /// These are manifest constants used by the bitcode writer. They do not need to 50 /// be kept in sync with the reader, but need to be consistent within this file. 51 enum { 52 // VALUE_SYMTAB_BLOCK abbrev id's. 53 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 VST_ENTRY_7_ABBREV, 55 VST_ENTRY_6_ABBREV, 56 VST_BBENTRY_6_ABBREV, 57 58 // CONSTANTS_BLOCK abbrev id's. 59 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 60 CONSTANTS_INTEGER_ABBREV, 61 CONSTANTS_CE_CAST_Abbrev, 62 CONSTANTS_NULL_Abbrev, 63 64 // FUNCTION_BLOCK abbrev id's. 65 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 66 FUNCTION_INST_BINOP_ABBREV, 67 FUNCTION_INST_BINOP_FLAGS_ABBREV, 68 FUNCTION_INST_CAST_ABBREV, 69 FUNCTION_INST_RET_VOID_ABBREV, 70 FUNCTION_INST_RET_VAL_ABBREV, 71 FUNCTION_INST_UNREACHABLE_ABBREV, 72 FUNCTION_INST_GEP_ABBREV, 73 }; 74 75 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 76 /// file type. 77 class BitcodeWriterBase { 78 protected: 79 /// The stream created and owned by the client. 80 BitstreamWriter &Stream; 81 82 StringTableBuilder &StrtabBuilder; 83 84 public: 85 /// Constructs a BitcodeWriterBase object that writes to the provided 86 /// \p Stream. 87 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 88 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 89 90 protected: 91 void writeBitcodeHeader(); 92 void writeModuleVersion(); 93 }; 94 95 void BitcodeWriterBase::writeModuleVersion() { 96 // VERSION: [version#] 97 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 98 } 99 100 /// Class to manage the bitcode writing for a module. 101 class ModuleBitcodeWriter : public BitcodeWriterBase { 102 /// Pointer to the buffer allocated by caller for bitcode writing. 103 const SmallVectorImpl<char> &Buffer; 104 105 /// The Module to write to bitcode. 106 const Module &M; 107 108 /// Enumerates ids for all values in the module. 109 ValueEnumerator VE; 110 111 /// Optional per-module index to write for ThinLTO. 112 const ModuleSummaryIndex *Index; 113 114 /// True if a module hash record should be written. 115 bool GenerateHash; 116 117 SHA1 Hasher; 118 119 /// If non-null, when GenerateHash is true, the resulting hash is written 120 /// into ModHash. When GenerateHash is false, that specified value 121 /// is used as the hash instead of computing from the generated bitcode. 122 /// Can be used to produce the same module hash for a minimized bitcode 123 /// used just for the thin link as in the regular full bitcode that will 124 /// be used in the backend. 125 ModuleHash *ModHash; 126 127 /// The start bit of the identification block. 128 uint64_t BitcodeStartBit; 129 130 /// Map that holds the correspondence between GUIDs in the summary index, 131 /// that came from indirect call profiles, and a value id generated by this 132 /// class to use in the VST and summary block records. 133 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 134 135 /// Tracks the last value id recorded in the GUIDToValueMap. 136 unsigned GlobalValueId; 137 138 /// Saves the offset of the VSTOffset record that must eventually be 139 /// backpatched with the offset of the actual VST. 140 uint64_t VSTOffsetPlaceholder = 0; 141 142 public: 143 /// Constructs a ModuleBitcodeWriter object for the given Module, 144 /// writing to the provided \p Buffer. 145 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 146 StringTableBuilder &StrtabBuilder, 147 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 148 const ModuleSummaryIndex *Index, bool GenerateHash, 149 ModuleHash *ModHash = nullptr) 150 : BitcodeWriterBase(Stream, StrtabBuilder), Buffer(Buffer), M(*M), 151 VE(*M, ShouldPreserveUseListOrder), Index(Index), 152 GenerateHash(GenerateHash), ModHash(ModHash), 153 BitcodeStartBit(Stream.GetCurrentBitNo()) { 154 // Assign ValueIds to any callee values in the index that came from 155 // indirect call profiles and were recorded as a GUID not a Value* 156 // (which would have been assigned an ID by the ValueEnumerator). 157 // The starting ValueId is just after the number of values in the 158 // ValueEnumerator, so that they can be emitted in the VST. 159 GlobalValueId = VE.getValues().size(); 160 if (!Index) 161 return; 162 for (const auto &GUIDSummaryLists : *Index) 163 // Examine all summaries for this GUID. 164 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 165 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 166 // For each call in the function summary, see if the call 167 // is to a GUID (which means it is for an indirect call, 168 // otherwise we would have a Value for it). If so, synthesize 169 // a value id. 170 for (auto &CallEdge : FS->calls()) 171 if (!CallEdge.first.getValue()) 172 assignValueId(CallEdge.first.getGUID()); 173 } 174 175 /// Emit the current module to the bitstream. 176 void write(); 177 178 private: 179 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 180 181 size_t addToStrtab(StringRef Str); 182 183 void writeAttributeGroupTable(); 184 void writeAttributeTable(); 185 void writeTypeTable(); 186 void writeComdats(); 187 void writeValueSymbolTableForwardDecl(); 188 void writeModuleInfo(); 189 void writeValueAsMetadata(const ValueAsMetadata *MD, 190 SmallVectorImpl<uint64_t> &Record); 191 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 192 unsigned Abbrev); 193 unsigned createDILocationAbbrev(); 194 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 195 unsigned &Abbrev); 196 unsigned createGenericDINodeAbbrev(); 197 void writeGenericDINode(const GenericDINode *N, 198 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 199 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 200 unsigned Abbrev); 201 void writeDIEnumerator(const DIEnumerator *N, 202 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 203 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 204 unsigned Abbrev); 205 void writeDIDerivedType(const DIDerivedType *N, 206 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 207 void writeDICompositeType(const DICompositeType *N, 208 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 209 void writeDISubroutineType(const DISubroutineType *N, 210 SmallVectorImpl<uint64_t> &Record, 211 unsigned Abbrev); 212 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 213 unsigned Abbrev); 214 void writeDICompileUnit(const DICompileUnit *N, 215 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 216 void writeDISubprogram(const DISubprogram *N, 217 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 218 void writeDILexicalBlock(const DILexicalBlock *N, 219 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 220 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 221 SmallVectorImpl<uint64_t> &Record, 222 unsigned Abbrev); 223 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 224 unsigned Abbrev); 225 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 226 unsigned Abbrev); 227 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 228 unsigned Abbrev); 229 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 230 unsigned Abbrev); 231 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 232 SmallVectorImpl<uint64_t> &Record, 233 unsigned Abbrev); 234 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 235 SmallVectorImpl<uint64_t> &Record, 236 unsigned Abbrev); 237 void writeDIGlobalVariable(const DIGlobalVariable *N, 238 SmallVectorImpl<uint64_t> &Record, 239 unsigned Abbrev); 240 void writeDILocalVariable(const DILocalVariable *N, 241 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 242 void writeDIExpression(const DIExpression *N, 243 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 244 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 245 SmallVectorImpl<uint64_t> &Record, 246 unsigned Abbrev); 247 void writeDIObjCProperty(const DIObjCProperty *N, 248 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 249 void writeDIImportedEntity(const DIImportedEntity *N, 250 SmallVectorImpl<uint64_t> &Record, 251 unsigned Abbrev); 252 unsigned createNamedMetadataAbbrev(); 253 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 254 unsigned createMetadataStringsAbbrev(); 255 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 256 SmallVectorImpl<uint64_t> &Record); 257 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 258 SmallVectorImpl<uint64_t> &Record, 259 std::vector<unsigned> *MDAbbrevs = nullptr, 260 std::vector<uint64_t> *IndexPos = nullptr); 261 void writeModuleMetadata(); 262 void writeFunctionMetadata(const Function &F); 263 void writeFunctionMetadataAttachment(const Function &F); 264 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 265 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 266 const GlobalObject &GO); 267 void writeModuleMetadataKinds(); 268 void writeOperandBundleTags(); 269 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 270 void writeModuleConstants(); 271 bool pushValueAndType(const Value *V, unsigned InstID, 272 SmallVectorImpl<unsigned> &Vals); 273 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 274 void pushValue(const Value *V, unsigned InstID, 275 SmallVectorImpl<unsigned> &Vals); 276 void pushValueSigned(const Value *V, unsigned InstID, 277 SmallVectorImpl<uint64_t> &Vals); 278 void writeInstruction(const Instruction &I, unsigned InstID, 279 SmallVectorImpl<unsigned> &Vals); 280 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 281 void writeGlobalValueSymbolTable( 282 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 283 void writeUseList(UseListOrder &&Order); 284 void writeUseListBlock(const Function *F); 285 void 286 writeFunction(const Function &F, 287 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 288 void writeBlockInfo(); 289 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 290 GlobalValueSummary *Summary, 291 unsigned ValueID, 292 unsigned FSCallsAbbrev, 293 unsigned FSCallsProfileAbbrev, 294 const Function &F); 295 void writeModuleLevelReferences(const GlobalVariable &V, 296 SmallVector<uint64_t, 64> &NameVals, 297 unsigned FSModRefsAbbrev); 298 void writePerModuleGlobalValueSummary(); 299 void writeModuleHash(size_t BlockStartPos); 300 301 void assignValueId(GlobalValue::GUID ValGUID) { 302 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 303 } 304 unsigned getValueId(GlobalValue::GUID ValGUID) { 305 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 306 // Expect that any GUID value had a value Id assigned by an 307 // earlier call to assignValueId. 308 assert(VMI != GUIDToValueIdMap.end() && 309 "GUID does not have assigned value Id"); 310 return VMI->second; 311 } 312 // Helper to get the valueId for the type of value recorded in VI. 313 unsigned getValueId(ValueInfo VI) { 314 if (!VI.getValue()) 315 return getValueId(VI.getGUID()); 316 return VE.getValueID(VI.getValue()); 317 } 318 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 319 }; 320 321 /// Class to manage the bitcode writing for a combined index. 322 class IndexBitcodeWriter : public BitcodeWriterBase { 323 /// The combined index to write to bitcode. 324 const ModuleSummaryIndex &Index; 325 326 /// When writing a subset of the index for distributed backends, client 327 /// provides a map of modules to the corresponding GUIDs/summaries to write. 328 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 329 330 /// Map that holds the correspondence between the GUID used in the combined 331 /// index and a value id generated by this class to use in references. 332 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 333 334 /// Tracks the last value id recorded in the GUIDToValueMap. 335 unsigned GlobalValueId = 0; 336 337 public: 338 /// Constructs a IndexBitcodeWriter object for the given combined index, 339 /// writing to the provided \p Buffer. When writing a subset of the index 340 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 341 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 342 const ModuleSummaryIndex &Index, 343 const std::map<std::string, GVSummaryMapTy> 344 *ModuleToSummariesForIndex = nullptr) 345 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 346 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 347 // Assign unique value ids to all summaries to be written, for use 348 // in writing out the call graph edges. Save the mapping from GUID 349 // to the new global value id to use when writing those edges, which 350 // are currently saved in the index in terms of GUID. 351 forEachSummary([&](GVInfo I) { 352 GUIDToValueIdMap[I.first] = ++GlobalValueId; 353 }); 354 } 355 356 /// The below iterator returns the GUID and associated summary. 357 typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo; 358 359 /// Calls the callback for each value GUID and summary to be written to 360 /// bitcode. This hides the details of whether they are being pulled from the 361 /// entire index or just those in a provided ModuleToSummariesForIndex map. 362 template<typename Functor> 363 void forEachSummary(Functor Callback) { 364 if (ModuleToSummariesForIndex) { 365 for (auto &M : *ModuleToSummariesForIndex) 366 for (auto &Summary : M.second) 367 Callback(Summary); 368 } else { 369 for (auto &Summaries : Index) 370 for (auto &Summary : Summaries.second.SummaryList) 371 Callback({Summaries.first, Summary.get()}); 372 } 373 } 374 375 /// Calls the callback for each entry in the modulePaths StringMap that 376 /// should be written to the module path string table. This hides the details 377 /// of whether they are being pulled from the entire index or just those in a 378 /// provided ModuleToSummariesForIndex map. 379 template <typename Functor> void forEachModule(Functor Callback) { 380 if (ModuleToSummariesForIndex) { 381 for (const auto &M : *ModuleToSummariesForIndex) { 382 const auto &MPI = Index.modulePaths().find(M.first); 383 if (MPI == Index.modulePaths().end()) { 384 // This should only happen if the bitcode file was empty, in which 385 // case we shouldn't be importing (the ModuleToSummariesForIndex 386 // would only include the module we are writing and index for). 387 assert(ModuleToSummariesForIndex->size() == 1); 388 continue; 389 } 390 Callback(*MPI); 391 } 392 } else { 393 for (const auto &MPSE : Index.modulePaths()) 394 Callback(MPSE); 395 } 396 } 397 398 /// Main entry point for writing a combined index to bitcode. 399 void write(); 400 401 private: 402 void writeModStrings(); 403 void writeCombinedGlobalValueSummary(); 404 405 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 406 auto VMI = GUIDToValueIdMap.find(ValGUID); 407 if (VMI == GUIDToValueIdMap.end()) 408 return None; 409 return VMI->second; 410 } 411 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 412 }; 413 } // end anonymous namespace 414 415 static unsigned getEncodedCastOpcode(unsigned Opcode) { 416 switch (Opcode) { 417 default: llvm_unreachable("Unknown cast instruction!"); 418 case Instruction::Trunc : return bitc::CAST_TRUNC; 419 case Instruction::ZExt : return bitc::CAST_ZEXT; 420 case Instruction::SExt : return bitc::CAST_SEXT; 421 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 422 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 423 case Instruction::UIToFP : return bitc::CAST_UITOFP; 424 case Instruction::SIToFP : return bitc::CAST_SITOFP; 425 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 426 case Instruction::FPExt : return bitc::CAST_FPEXT; 427 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 428 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 429 case Instruction::BitCast : return bitc::CAST_BITCAST; 430 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 431 } 432 } 433 434 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 435 switch (Opcode) { 436 default: llvm_unreachable("Unknown binary instruction!"); 437 case Instruction::Add: 438 case Instruction::FAdd: return bitc::BINOP_ADD; 439 case Instruction::Sub: 440 case Instruction::FSub: return bitc::BINOP_SUB; 441 case Instruction::Mul: 442 case Instruction::FMul: return bitc::BINOP_MUL; 443 case Instruction::UDiv: return bitc::BINOP_UDIV; 444 case Instruction::FDiv: 445 case Instruction::SDiv: return bitc::BINOP_SDIV; 446 case Instruction::URem: return bitc::BINOP_UREM; 447 case Instruction::FRem: 448 case Instruction::SRem: return bitc::BINOP_SREM; 449 case Instruction::Shl: return bitc::BINOP_SHL; 450 case Instruction::LShr: return bitc::BINOP_LSHR; 451 case Instruction::AShr: return bitc::BINOP_ASHR; 452 case Instruction::And: return bitc::BINOP_AND; 453 case Instruction::Or: return bitc::BINOP_OR; 454 case Instruction::Xor: return bitc::BINOP_XOR; 455 } 456 } 457 458 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 459 switch (Op) { 460 default: llvm_unreachable("Unknown RMW operation!"); 461 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 462 case AtomicRMWInst::Add: return bitc::RMW_ADD; 463 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 464 case AtomicRMWInst::And: return bitc::RMW_AND; 465 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 466 case AtomicRMWInst::Or: return bitc::RMW_OR; 467 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 468 case AtomicRMWInst::Max: return bitc::RMW_MAX; 469 case AtomicRMWInst::Min: return bitc::RMW_MIN; 470 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 471 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 472 } 473 } 474 475 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 476 switch (Ordering) { 477 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 478 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 479 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 480 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 481 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 482 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 483 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 484 } 485 llvm_unreachable("Invalid ordering"); 486 } 487 488 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) { 489 switch (SynchScope) { 490 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 491 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 492 } 493 llvm_unreachable("Invalid synch scope"); 494 } 495 496 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 497 StringRef Str, unsigned AbbrevToUse) { 498 SmallVector<unsigned, 64> Vals; 499 500 // Code: [strchar x N] 501 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 502 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 503 AbbrevToUse = 0; 504 Vals.push_back(Str[i]); 505 } 506 507 // Emit the finished record. 508 Stream.EmitRecord(Code, Vals, AbbrevToUse); 509 } 510 511 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 512 switch (Kind) { 513 case Attribute::Alignment: 514 return bitc::ATTR_KIND_ALIGNMENT; 515 case Attribute::AllocSize: 516 return bitc::ATTR_KIND_ALLOC_SIZE; 517 case Attribute::AlwaysInline: 518 return bitc::ATTR_KIND_ALWAYS_INLINE; 519 case Attribute::ArgMemOnly: 520 return bitc::ATTR_KIND_ARGMEMONLY; 521 case Attribute::Builtin: 522 return bitc::ATTR_KIND_BUILTIN; 523 case Attribute::ByVal: 524 return bitc::ATTR_KIND_BY_VAL; 525 case Attribute::Convergent: 526 return bitc::ATTR_KIND_CONVERGENT; 527 case Attribute::InAlloca: 528 return bitc::ATTR_KIND_IN_ALLOCA; 529 case Attribute::Cold: 530 return bitc::ATTR_KIND_COLD; 531 case Attribute::InaccessibleMemOnly: 532 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 533 case Attribute::InaccessibleMemOrArgMemOnly: 534 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 535 case Attribute::InlineHint: 536 return bitc::ATTR_KIND_INLINE_HINT; 537 case Attribute::InReg: 538 return bitc::ATTR_KIND_IN_REG; 539 case Attribute::JumpTable: 540 return bitc::ATTR_KIND_JUMP_TABLE; 541 case Attribute::MinSize: 542 return bitc::ATTR_KIND_MIN_SIZE; 543 case Attribute::Naked: 544 return bitc::ATTR_KIND_NAKED; 545 case Attribute::Nest: 546 return bitc::ATTR_KIND_NEST; 547 case Attribute::NoAlias: 548 return bitc::ATTR_KIND_NO_ALIAS; 549 case Attribute::NoBuiltin: 550 return bitc::ATTR_KIND_NO_BUILTIN; 551 case Attribute::NoCapture: 552 return bitc::ATTR_KIND_NO_CAPTURE; 553 case Attribute::NoDuplicate: 554 return bitc::ATTR_KIND_NO_DUPLICATE; 555 case Attribute::NoImplicitFloat: 556 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 557 case Attribute::NoInline: 558 return bitc::ATTR_KIND_NO_INLINE; 559 case Attribute::NoRecurse: 560 return bitc::ATTR_KIND_NO_RECURSE; 561 case Attribute::NonLazyBind: 562 return bitc::ATTR_KIND_NON_LAZY_BIND; 563 case Attribute::NonNull: 564 return bitc::ATTR_KIND_NON_NULL; 565 case Attribute::Dereferenceable: 566 return bitc::ATTR_KIND_DEREFERENCEABLE; 567 case Attribute::DereferenceableOrNull: 568 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 569 case Attribute::NoRedZone: 570 return bitc::ATTR_KIND_NO_RED_ZONE; 571 case Attribute::NoReturn: 572 return bitc::ATTR_KIND_NO_RETURN; 573 case Attribute::NoUnwind: 574 return bitc::ATTR_KIND_NO_UNWIND; 575 case Attribute::OptimizeForSize: 576 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 577 case Attribute::OptimizeNone: 578 return bitc::ATTR_KIND_OPTIMIZE_NONE; 579 case Attribute::ReadNone: 580 return bitc::ATTR_KIND_READ_NONE; 581 case Attribute::ReadOnly: 582 return bitc::ATTR_KIND_READ_ONLY; 583 case Attribute::Returned: 584 return bitc::ATTR_KIND_RETURNED; 585 case Attribute::ReturnsTwice: 586 return bitc::ATTR_KIND_RETURNS_TWICE; 587 case Attribute::SExt: 588 return bitc::ATTR_KIND_S_EXT; 589 case Attribute::Speculatable: 590 return bitc::ATTR_KIND_SPECULATABLE; 591 case Attribute::StackAlignment: 592 return bitc::ATTR_KIND_STACK_ALIGNMENT; 593 case Attribute::StackProtect: 594 return bitc::ATTR_KIND_STACK_PROTECT; 595 case Attribute::StackProtectReq: 596 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 597 case Attribute::StackProtectStrong: 598 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 599 case Attribute::SafeStack: 600 return bitc::ATTR_KIND_SAFESTACK; 601 case Attribute::StructRet: 602 return bitc::ATTR_KIND_STRUCT_RET; 603 case Attribute::SanitizeAddress: 604 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 605 case Attribute::SanitizeThread: 606 return bitc::ATTR_KIND_SANITIZE_THREAD; 607 case Attribute::SanitizeMemory: 608 return bitc::ATTR_KIND_SANITIZE_MEMORY; 609 case Attribute::SwiftError: 610 return bitc::ATTR_KIND_SWIFT_ERROR; 611 case Attribute::SwiftSelf: 612 return bitc::ATTR_KIND_SWIFT_SELF; 613 case Attribute::UWTable: 614 return bitc::ATTR_KIND_UW_TABLE; 615 case Attribute::WriteOnly: 616 return bitc::ATTR_KIND_WRITEONLY; 617 case Attribute::ZExt: 618 return bitc::ATTR_KIND_Z_EXT; 619 case Attribute::EndAttrKinds: 620 llvm_unreachable("Can not encode end-attribute kinds marker."); 621 case Attribute::None: 622 llvm_unreachable("Can not encode none-attribute."); 623 } 624 625 llvm_unreachable("Trying to encode unknown attribute"); 626 } 627 628 void ModuleBitcodeWriter::writeAttributeGroupTable() { 629 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 630 VE.getAttributeGroups(); 631 if (AttrGrps.empty()) return; 632 633 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 634 635 SmallVector<uint64_t, 64> Record; 636 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 637 unsigned AttrListIndex = Pair.first; 638 AttributeSet AS = Pair.second; 639 Record.push_back(VE.getAttributeGroupID(Pair)); 640 Record.push_back(AttrListIndex); 641 642 for (Attribute Attr : AS) { 643 if (Attr.isEnumAttribute()) { 644 Record.push_back(0); 645 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 646 } else if (Attr.isIntAttribute()) { 647 Record.push_back(1); 648 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 649 Record.push_back(Attr.getValueAsInt()); 650 } else { 651 StringRef Kind = Attr.getKindAsString(); 652 StringRef Val = Attr.getValueAsString(); 653 654 Record.push_back(Val.empty() ? 3 : 4); 655 Record.append(Kind.begin(), Kind.end()); 656 Record.push_back(0); 657 if (!Val.empty()) { 658 Record.append(Val.begin(), Val.end()); 659 Record.push_back(0); 660 } 661 } 662 } 663 664 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 665 Record.clear(); 666 } 667 668 Stream.ExitBlock(); 669 } 670 671 void ModuleBitcodeWriter::writeAttributeTable() { 672 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 673 if (Attrs.empty()) return; 674 675 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 676 677 SmallVector<uint64_t, 64> Record; 678 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 679 AttributeList AL = Attrs[i]; 680 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 681 AttributeSet AS = AL.getAttributes(i); 682 if (AS.hasAttributes()) 683 Record.push_back(VE.getAttributeGroupID({i, AS})); 684 } 685 686 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 687 Record.clear(); 688 } 689 690 Stream.ExitBlock(); 691 } 692 693 /// WriteTypeTable - Write out the type table for a module. 694 void ModuleBitcodeWriter::writeTypeTable() { 695 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 696 697 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 698 SmallVector<uint64_t, 64> TypeVals; 699 700 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 701 702 // Abbrev for TYPE_CODE_POINTER. 703 auto Abbv = std::make_shared<BitCodeAbbrev>(); 704 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 705 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 706 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 707 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 708 709 // Abbrev for TYPE_CODE_FUNCTION. 710 Abbv = std::make_shared<BitCodeAbbrev>(); 711 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 715 716 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 717 718 // Abbrev for TYPE_CODE_STRUCT_ANON. 719 Abbv = std::make_shared<BitCodeAbbrev>(); 720 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 721 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 722 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 723 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 724 725 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 726 727 // Abbrev for TYPE_CODE_STRUCT_NAME. 728 Abbv = std::make_shared<BitCodeAbbrev>(); 729 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 732 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 733 734 // Abbrev for TYPE_CODE_STRUCT_NAMED. 735 Abbv = std::make_shared<BitCodeAbbrev>(); 736 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 737 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 738 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 739 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 740 741 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 742 743 // Abbrev for TYPE_CODE_ARRAY. 744 Abbv = std::make_shared<BitCodeAbbrev>(); 745 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 746 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 747 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 748 749 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 750 751 // Emit an entry count so the reader can reserve space. 752 TypeVals.push_back(TypeList.size()); 753 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 754 TypeVals.clear(); 755 756 // Loop over all of the types, emitting each in turn. 757 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 758 Type *T = TypeList[i]; 759 int AbbrevToUse = 0; 760 unsigned Code = 0; 761 762 switch (T->getTypeID()) { 763 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 764 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 765 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 766 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 767 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 768 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 769 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 770 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 771 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 772 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 773 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 774 case Type::IntegerTyID: 775 // INTEGER: [width] 776 Code = bitc::TYPE_CODE_INTEGER; 777 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 778 break; 779 case Type::PointerTyID: { 780 PointerType *PTy = cast<PointerType>(T); 781 // POINTER: [pointee type, address space] 782 Code = bitc::TYPE_CODE_POINTER; 783 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 784 unsigned AddressSpace = PTy->getAddressSpace(); 785 TypeVals.push_back(AddressSpace); 786 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 787 break; 788 } 789 case Type::FunctionTyID: { 790 FunctionType *FT = cast<FunctionType>(T); 791 // FUNCTION: [isvararg, retty, paramty x N] 792 Code = bitc::TYPE_CODE_FUNCTION; 793 TypeVals.push_back(FT->isVarArg()); 794 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 795 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 796 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 797 AbbrevToUse = FunctionAbbrev; 798 break; 799 } 800 case Type::StructTyID: { 801 StructType *ST = cast<StructType>(T); 802 // STRUCT: [ispacked, eltty x N] 803 TypeVals.push_back(ST->isPacked()); 804 // Output all of the element types. 805 for (StructType::element_iterator I = ST->element_begin(), 806 E = ST->element_end(); I != E; ++I) 807 TypeVals.push_back(VE.getTypeID(*I)); 808 809 if (ST->isLiteral()) { 810 Code = bitc::TYPE_CODE_STRUCT_ANON; 811 AbbrevToUse = StructAnonAbbrev; 812 } else { 813 if (ST->isOpaque()) { 814 Code = bitc::TYPE_CODE_OPAQUE; 815 } else { 816 Code = bitc::TYPE_CODE_STRUCT_NAMED; 817 AbbrevToUse = StructNamedAbbrev; 818 } 819 820 // Emit the name if it is present. 821 if (!ST->getName().empty()) 822 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 823 StructNameAbbrev); 824 } 825 break; 826 } 827 case Type::ArrayTyID: { 828 ArrayType *AT = cast<ArrayType>(T); 829 // ARRAY: [numelts, eltty] 830 Code = bitc::TYPE_CODE_ARRAY; 831 TypeVals.push_back(AT->getNumElements()); 832 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 833 AbbrevToUse = ArrayAbbrev; 834 break; 835 } 836 case Type::VectorTyID: { 837 VectorType *VT = cast<VectorType>(T); 838 // VECTOR [numelts, eltty] 839 Code = bitc::TYPE_CODE_VECTOR; 840 TypeVals.push_back(VT->getNumElements()); 841 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 842 break; 843 } 844 } 845 846 // Emit the finished record. 847 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 848 TypeVals.clear(); 849 } 850 851 Stream.ExitBlock(); 852 } 853 854 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 855 switch (Linkage) { 856 case GlobalValue::ExternalLinkage: 857 return 0; 858 case GlobalValue::WeakAnyLinkage: 859 return 16; 860 case GlobalValue::AppendingLinkage: 861 return 2; 862 case GlobalValue::InternalLinkage: 863 return 3; 864 case GlobalValue::LinkOnceAnyLinkage: 865 return 18; 866 case GlobalValue::ExternalWeakLinkage: 867 return 7; 868 case GlobalValue::CommonLinkage: 869 return 8; 870 case GlobalValue::PrivateLinkage: 871 return 9; 872 case GlobalValue::WeakODRLinkage: 873 return 17; 874 case GlobalValue::LinkOnceODRLinkage: 875 return 19; 876 case GlobalValue::AvailableExternallyLinkage: 877 return 12; 878 } 879 llvm_unreachable("Invalid linkage"); 880 } 881 882 static unsigned getEncodedLinkage(const GlobalValue &GV) { 883 return getEncodedLinkage(GV.getLinkage()); 884 } 885 886 // Decode the flags for GlobalValue in the summary 887 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 888 uint64_t RawFlags = 0; 889 890 RawFlags |= Flags.NotEligibleToImport; // bool 891 RawFlags |= (Flags.Live << 1); 892 // Linkage don't need to be remapped at that time for the summary. Any future 893 // change to the getEncodedLinkage() function will need to be taken into 894 // account here as well. 895 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 896 897 return RawFlags; 898 } 899 900 static unsigned getEncodedVisibility(const GlobalValue &GV) { 901 switch (GV.getVisibility()) { 902 case GlobalValue::DefaultVisibility: return 0; 903 case GlobalValue::HiddenVisibility: return 1; 904 case GlobalValue::ProtectedVisibility: return 2; 905 } 906 llvm_unreachable("Invalid visibility"); 907 } 908 909 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 910 switch (GV.getDLLStorageClass()) { 911 case GlobalValue::DefaultStorageClass: return 0; 912 case GlobalValue::DLLImportStorageClass: return 1; 913 case GlobalValue::DLLExportStorageClass: return 2; 914 } 915 llvm_unreachable("Invalid DLL storage class"); 916 } 917 918 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 919 switch (GV.getThreadLocalMode()) { 920 case GlobalVariable::NotThreadLocal: return 0; 921 case GlobalVariable::GeneralDynamicTLSModel: return 1; 922 case GlobalVariable::LocalDynamicTLSModel: return 2; 923 case GlobalVariable::InitialExecTLSModel: return 3; 924 case GlobalVariable::LocalExecTLSModel: return 4; 925 } 926 llvm_unreachable("Invalid TLS model"); 927 } 928 929 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 930 switch (C.getSelectionKind()) { 931 case Comdat::Any: 932 return bitc::COMDAT_SELECTION_KIND_ANY; 933 case Comdat::ExactMatch: 934 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 935 case Comdat::Largest: 936 return bitc::COMDAT_SELECTION_KIND_LARGEST; 937 case Comdat::NoDuplicates: 938 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 939 case Comdat::SameSize: 940 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 941 } 942 llvm_unreachable("Invalid selection kind"); 943 } 944 945 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 946 switch (GV.getUnnamedAddr()) { 947 case GlobalValue::UnnamedAddr::None: return 0; 948 case GlobalValue::UnnamedAddr::Local: return 2; 949 case GlobalValue::UnnamedAddr::Global: return 1; 950 } 951 llvm_unreachable("Invalid unnamed_addr"); 952 } 953 954 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 955 if (GenerateHash) 956 Hasher.update(Str); 957 return StrtabBuilder.add(Str); 958 } 959 960 void ModuleBitcodeWriter::writeComdats() { 961 SmallVector<unsigned, 64> Vals; 962 for (const Comdat *C : VE.getComdats()) { 963 // COMDAT: [strtab offset, strtab size, selection_kind] 964 Vals.push_back(addToStrtab(C->getName())); 965 Vals.push_back(C->getName().size()); 966 Vals.push_back(getEncodedComdatSelectionKind(*C)); 967 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 968 Vals.clear(); 969 } 970 } 971 972 /// Write a record that will eventually hold the word offset of the 973 /// module-level VST. For now the offset is 0, which will be backpatched 974 /// after the real VST is written. Saves the bit offset to backpatch. 975 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 976 // Write a placeholder value in for the offset of the real VST, 977 // which is written after the function blocks so that it can include 978 // the offset of each function. The placeholder offset will be 979 // updated when the real VST is written. 980 auto Abbv = std::make_shared<BitCodeAbbrev>(); 981 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 982 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 983 // hold the real VST offset. Must use fixed instead of VBR as we don't 984 // know how many VBR chunks to reserve ahead of time. 985 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 986 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 987 988 // Emit the placeholder 989 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 990 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 991 992 // Compute and save the bit offset to the placeholder, which will be 993 // patched when the real VST is written. We can simply subtract the 32-bit 994 // fixed size from the current bit number to get the location to backpatch. 995 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 996 } 997 998 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 999 1000 /// Determine the encoding to use for the given string name and length. 1001 static StringEncoding getStringEncoding(StringRef Str) { 1002 bool isChar6 = true; 1003 for (char C : Str) { 1004 if (isChar6) 1005 isChar6 = BitCodeAbbrevOp::isChar6(C); 1006 if ((unsigned char)C & 128) 1007 // don't bother scanning the rest. 1008 return SE_Fixed8; 1009 } 1010 if (isChar6) 1011 return SE_Char6; 1012 return SE_Fixed7; 1013 } 1014 1015 /// Emit top-level description of module, including target triple, inline asm, 1016 /// descriptors for global variables, and function prototype info. 1017 /// Returns the bit offset to backpatch with the location of the real VST. 1018 void ModuleBitcodeWriter::writeModuleInfo() { 1019 // Emit various pieces of data attached to a module. 1020 if (!M.getTargetTriple().empty()) 1021 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1022 0 /*TODO*/); 1023 const std::string &DL = M.getDataLayoutStr(); 1024 if (!DL.empty()) 1025 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1026 if (!M.getModuleInlineAsm().empty()) 1027 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1028 0 /*TODO*/); 1029 1030 // Emit information about sections and GC, computing how many there are. Also 1031 // compute the maximum alignment value. 1032 std::map<std::string, unsigned> SectionMap; 1033 std::map<std::string, unsigned> GCMap; 1034 unsigned MaxAlignment = 0; 1035 unsigned MaxGlobalType = 0; 1036 for (const GlobalValue &GV : M.globals()) { 1037 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1038 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1039 if (GV.hasSection()) { 1040 // Give section names unique ID's. 1041 unsigned &Entry = SectionMap[GV.getSection()]; 1042 if (!Entry) { 1043 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1044 0 /*TODO*/); 1045 Entry = SectionMap.size(); 1046 } 1047 } 1048 } 1049 for (const Function &F : M) { 1050 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1051 if (F.hasSection()) { 1052 // Give section names unique ID's. 1053 unsigned &Entry = SectionMap[F.getSection()]; 1054 if (!Entry) { 1055 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1056 0 /*TODO*/); 1057 Entry = SectionMap.size(); 1058 } 1059 } 1060 if (F.hasGC()) { 1061 // Same for GC names. 1062 unsigned &Entry = GCMap[F.getGC()]; 1063 if (!Entry) { 1064 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1065 0 /*TODO*/); 1066 Entry = GCMap.size(); 1067 } 1068 } 1069 } 1070 1071 // Emit abbrev for globals, now that we know # sections and max alignment. 1072 unsigned SimpleGVarAbbrev = 0; 1073 if (!M.global_empty()) { 1074 // Add an abbrev for common globals with no visibility or thread localness. 1075 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1076 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1080 Log2_32_Ceil(MaxGlobalType+1))); 1081 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1082 //| explicitType << 1 1083 //| constant 1084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1085 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1086 if (MaxAlignment == 0) // Alignment. 1087 Abbv->Add(BitCodeAbbrevOp(0)); 1088 else { 1089 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1091 Log2_32_Ceil(MaxEncAlignment+1))); 1092 } 1093 if (SectionMap.empty()) // Section. 1094 Abbv->Add(BitCodeAbbrevOp(0)); 1095 else 1096 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1097 Log2_32_Ceil(SectionMap.size()+1))); 1098 // Don't bother emitting vis + thread local. 1099 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1100 } 1101 1102 SmallVector<unsigned, 64> Vals; 1103 // Emit the module's source file name. 1104 { 1105 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1106 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1107 if (Bits == SE_Char6) 1108 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1109 else if (Bits == SE_Fixed7) 1110 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1111 1112 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1113 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1114 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1115 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1116 Abbv->Add(AbbrevOpToUse); 1117 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1118 1119 for (const auto P : M.getSourceFileName()) 1120 Vals.push_back((unsigned char)P); 1121 1122 // Emit the finished record. 1123 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1124 Vals.clear(); 1125 } 1126 1127 // Emit the global variable information. 1128 for (const GlobalVariable &GV : M.globals()) { 1129 unsigned AbbrevToUse = 0; 1130 1131 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1132 // linkage, alignment, section, visibility, threadlocal, 1133 // unnamed_addr, externally_initialized, dllstorageclass, 1134 // comdat, attributes] 1135 Vals.push_back(addToStrtab(GV.getName())); 1136 Vals.push_back(GV.getName().size()); 1137 Vals.push_back(VE.getTypeID(GV.getValueType())); 1138 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1139 Vals.push_back(GV.isDeclaration() ? 0 : 1140 (VE.getValueID(GV.getInitializer()) + 1)); 1141 Vals.push_back(getEncodedLinkage(GV)); 1142 Vals.push_back(Log2_32(GV.getAlignment())+1); 1143 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1144 if (GV.isThreadLocal() || 1145 GV.getVisibility() != GlobalValue::DefaultVisibility || 1146 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1147 GV.isExternallyInitialized() || 1148 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1149 GV.hasComdat() || 1150 GV.hasAttributes()) { 1151 Vals.push_back(getEncodedVisibility(GV)); 1152 Vals.push_back(getEncodedThreadLocalMode(GV)); 1153 Vals.push_back(getEncodedUnnamedAddr(GV)); 1154 Vals.push_back(GV.isExternallyInitialized()); 1155 Vals.push_back(getEncodedDLLStorageClass(GV)); 1156 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1157 1158 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1159 Vals.push_back(VE.getAttributeListID(AL)); 1160 } else { 1161 AbbrevToUse = SimpleGVarAbbrev; 1162 } 1163 1164 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1165 Vals.clear(); 1166 } 1167 1168 // Emit the function proto information. 1169 for (const Function &F : M) { 1170 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1171 // linkage, paramattrs, alignment, section, visibility, gc, 1172 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1173 // prefixdata, personalityfn] 1174 Vals.push_back(addToStrtab(F.getName())); 1175 Vals.push_back(F.getName().size()); 1176 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1177 Vals.push_back(F.getCallingConv()); 1178 Vals.push_back(F.isDeclaration()); 1179 Vals.push_back(getEncodedLinkage(F)); 1180 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1181 Vals.push_back(Log2_32(F.getAlignment())+1); 1182 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1183 Vals.push_back(getEncodedVisibility(F)); 1184 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1185 Vals.push_back(getEncodedUnnamedAddr(F)); 1186 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1187 : 0); 1188 Vals.push_back(getEncodedDLLStorageClass(F)); 1189 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1190 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1191 : 0); 1192 Vals.push_back( 1193 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1194 1195 unsigned AbbrevToUse = 0; 1196 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1197 Vals.clear(); 1198 } 1199 1200 // Emit the alias information. 1201 for (const GlobalAlias &A : M.aliases()) { 1202 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1203 // visibility, dllstorageclass, threadlocal, unnamed_addr] 1204 Vals.push_back(addToStrtab(A.getName())); 1205 Vals.push_back(A.getName().size()); 1206 Vals.push_back(VE.getTypeID(A.getValueType())); 1207 Vals.push_back(A.getType()->getAddressSpace()); 1208 Vals.push_back(VE.getValueID(A.getAliasee())); 1209 Vals.push_back(getEncodedLinkage(A)); 1210 Vals.push_back(getEncodedVisibility(A)); 1211 Vals.push_back(getEncodedDLLStorageClass(A)); 1212 Vals.push_back(getEncodedThreadLocalMode(A)); 1213 Vals.push_back(getEncodedUnnamedAddr(A)); 1214 unsigned AbbrevToUse = 0; 1215 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1216 Vals.clear(); 1217 } 1218 1219 // Emit the ifunc information. 1220 for (const GlobalIFunc &I : M.ifuncs()) { 1221 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1222 // val#, linkage, visibility] 1223 Vals.push_back(addToStrtab(I.getName())); 1224 Vals.push_back(I.getName().size()); 1225 Vals.push_back(VE.getTypeID(I.getValueType())); 1226 Vals.push_back(I.getType()->getAddressSpace()); 1227 Vals.push_back(VE.getValueID(I.getResolver())); 1228 Vals.push_back(getEncodedLinkage(I)); 1229 Vals.push_back(getEncodedVisibility(I)); 1230 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1231 Vals.clear(); 1232 } 1233 1234 writeValueSymbolTableForwardDecl(); 1235 } 1236 1237 static uint64_t getOptimizationFlags(const Value *V) { 1238 uint64_t Flags = 0; 1239 1240 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1241 if (OBO->hasNoSignedWrap()) 1242 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1243 if (OBO->hasNoUnsignedWrap()) 1244 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1245 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1246 if (PEO->isExact()) 1247 Flags |= 1 << bitc::PEO_EXACT; 1248 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1249 if (FPMO->hasUnsafeAlgebra()) 1250 Flags |= FastMathFlags::UnsafeAlgebra; 1251 if (FPMO->hasNoNaNs()) 1252 Flags |= FastMathFlags::NoNaNs; 1253 if (FPMO->hasNoInfs()) 1254 Flags |= FastMathFlags::NoInfs; 1255 if (FPMO->hasNoSignedZeros()) 1256 Flags |= FastMathFlags::NoSignedZeros; 1257 if (FPMO->hasAllowReciprocal()) 1258 Flags |= FastMathFlags::AllowReciprocal; 1259 if (FPMO->hasAllowContract()) 1260 Flags |= FastMathFlags::AllowContract; 1261 } 1262 1263 return Flags; 1264 } 1265 1266 void ModuleBitcodeWriter::writeValueAsMetadata( 1267 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1268 // Mimic an MDNode with a value as one operand. 1269 Value *V = MD->getValue(); 1270 Record.push_back(VE.getTypeID(V->getType())); 1271 Record.push_back(VE.getValueID(V)); 1272 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1273 Record.clear(); 1274 } 1275 1276 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1277 SmallVectorImpl<uint64_t> &Record, 1278 unsigned Abbrev) { 1279 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1280 Metadata *MD = N->getOperand(i); 1281 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1282 "Unexpected function-local metadata"); 1283 Record.push_back(VE.getMetadataOrNullID(MD)); 1284 } 1285 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1286 : bitc::METADATA_NODE, 1287 Record, Abbrev); 1288 Record.clear(); 1289 } 1290 1291 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1292 // Assume the column is usually under 128, and always output the inlined-at 1293 // location (it's never more expensive than building an array size 1). 1294 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1295 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1301 return Stream.EmitAbbrev(std::move(Abbv)); 1302 } 1303 1304 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1305 SmallVectorImpl<uint64_t> &Record, 1306 unsigned &Abbrev) { 1307 if (!Abbrev) 1308 Abbrev = createDILocationAbbrev(); 1309 1310 Record.push_back(N->isDistinct()); 1311 Record.push_back(N->getLine()); 1312 Record.push_back(N->getColumn()); 1313 Record.push_back(VE.getMetadataID(N->getScope())); 1314 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1315 1316 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1317 Record.clear(); 1318 } 1319 1320 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1321 // Assume the column is usually under 128, and always output the inlined-at 1322 // location (it's never more expensive than building an array size 1). 1323 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1324 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1331 return Stream.EmitAbbrev(std::move(Abbv)); 1332 } 1333 1334 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1335 SmallVectorImpl<uint64_t> &Record, 1336 unsigned &Abbrev) { 1337 if (!Abbrev) 1338 Abbrev = createGenericDINodeAbbrev(); 1339 1340 Record.push_back(N->isDistinct()); 1341 Record.push_back(N->getTag()); 1342 Record.push_back(0); // Per-tag version field; unused for now. 1343 1344 for (auto &I : N->operands()) 1345 Record.push_back(VE.getMetadataOrNullID(I)); 1346 1347 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1348 Record.clear(); 1349 } 1350 1351 static uint64_t rotateSign(int64_t I) { 1352 uint64_t U = I; 1353 return I < 0 ? ~(U << 1) : U << 1; 1354 } 1355 1356 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1357 SmallVectorImpl<uint64_t> &Record, 1358 unsigned Abbrev) { 1359 Record.push_back(N->isDistinct()); 1360 Record.push_back(N->getCount()); 1361 Record.push_back(rotateSign(N->getLowerBound())); 1362 1363 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1364 Record.clear(); 1365 } 1366 1367 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1368 SmallVectorImpl<uint64_t> &Record, 1369 unsigned Abbrev) { 1370 Record.push_back(N->isDistinct()); 1371 Record.push_back(rotateSign(N->getValue())); 1372 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1373 1374 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1375 Record.clear(); 1376 } 1377 1378 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1379 SmallVectorImpl<uint64_t> &Record, 1380 unsigned Abbrev) { 1381 Record.push_back(N->isDistinct()); 1382 Record.push_back(N->getTag()); 1383 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1384 Record.push_back(N->getSizeInBits()); 1385 Record.push_back(N->getAlignInBits()); 1386 Record.push_back(N->getEncoding()); 1387 1388 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1389 Record.clear(); 1390 } 1391 1392 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1393 SmallVectorImpl<uint64_t> &Record, 1394 unsigned Abbrev) { 1395 Record.push_back(N->isDistinct()); 1396 Record.push_back(N->getTag()); 1397 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1398 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1399 Record.push_back(N->getLine()); 1400 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1401 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1402 Record.push_back(N->getSizeInBits()); 1403 Record.push_back(N->getAlignInBits()); 1404 Record.push_back(N->getOffsetInBits()); 1405 Record.push_back(N->getFlags()); 1406 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1407 1408 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1409 // that there is no DWARF address space associated with DIDerivedType. 1410 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1411 Record.push_back(*DWARFAddressSpace + 1); 1412 else 1413 Record.push_back(0); 1414 1415 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1416 Record.clear(); 1417 } 1418 1419 void ModuleBitcodeWriter::writeDICompositeType( 1420 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1421 unsigned Abbrev) { 1422 const unsigned IsNotUsedInOldTypeRef = 0x2; 1423 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1424 Record.push_back(N->getTag()); 1425 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1426 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1427 Record.push_back(N->getLine()); 1428 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1429 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1430 Record.push_back(N->getSizeInBits()); 1431 Record.push_back(N->getAlignInBits()); 1432 Record.push_back(N->getOffsetInBits()); 1433 Record.push_back(N->getFlags()); 1434 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1435 Record.push_back(N->getRuntimeLang()); 1436 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1437 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1438 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1439 1440 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1441 Record.clear(); 1442 } 1443 1444 void ModuleBitcodeWriter::writeDISubroutineType( 1445 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1446 unsigned Abbrev) { 1447 const unsigned HasNoOldTypeRefs = 0x2; 1448 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1449 Record.push_back(N->getFlags()); 1450 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1451 Record.push_back(N->getCC()); 1452 1453 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1454 Record.clear(); 1455 } 1456 1457 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1458 SmallVectorImpl<uint64_t> &Record, 1459 unsigned Abbrev) { 1460 Record.push_back(N->isDistinct()); 1461 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1462 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1463 Record.push_back(N->getChecksumKind()); 1464 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum())); 1465 1466 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1467 Record.clear(); 1468 } 1469 1470 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1471 SmallVectorImpl<uint64_t> &Record, 1472 unsigned Abbrev) { 1473 assert(N->isDistinct() && "Expected distinct compile units"); 1474 Record.push_back(/* IsDistinct */ true); 1475 Record.push_back(N->getSourceLanguage()); 1476 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1477 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1478 Record.push_back(N->isOptimized()); 1479 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1480 Record.push_back(N->getRuntimeVersion()); 1481 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1482 Record.push_back(N->getEmissionKind()); 1483 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1484 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1485 Record.push_back(/* subprograms */ 0); 1486 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1487 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1488 Record.push_back(N->getDWOId()); 1489 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1490 Record.push_back(N->getSplitDebugInlining()); 1491 Record.push_back(N->getDebugInfoForProfiling()); 1492 1493 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1494 Record.clear(); 1495 } 1496 1497 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1498 SmallVectorImpl<uint64_t> &Record, 1499 unsigned Abbrev) { 1500 uint64_t HasUnitFlag = 1 << 1; 1501 Record.push_back(N->isDistinct() | HasUnitFlag); 1502 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1503 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1504 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1505 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1506 Record.push_back(N->getLine()); 1507 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1508 Record.push_back(N->isLocalToUnit()); 1509 Record.push_back(N->isDefinition()); 1510 Record.push_back(N->getScopeLine()); 1511 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1512 Record.push_back(N->getVirtuality()); 1513 Record.push_back(N->getVirtualIndex()); 1514 Record.push_back(N->getFlags()); 1515 Record.push_back(N->isOptimized()); 1516 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1517 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1518 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1519 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1520 Record.push_back(N->getThisAdjustment()); 1521 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1522 1523 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1524 Record.clear(); 1525 } 1526 1527 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1528 SmallVectorImpl<uint64_t> &Record, 1529 unsigned Abbrev) { 1530 Record.push_back(N->isDistinct()); 1531 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1532 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1533 Record.push_back(N->getLine()); 1534 Record.push_back(N->getColumn()); 1535 1536 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1537 Record.clear(); 1538 } 1539 1540 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1541 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1542 unsigned Abbrev) { 1543 Record.push_back(N->isDistinct()); 1544 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1545 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1546 Record.push_back(N->getDiscriminator()); 1547 1548 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1549 Record.clear(); 1550 } 1551 1552 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1553 SmallVectorImpl<uint64_t> &Record, 1554 unsigned Abbrev) { 1555 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1556 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1557 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1558 1559 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1560 Record.clear(); 1561 } 1562 1563 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1564 SmallVectorImpl<uint64_t> &Record, 1565 unsigned Abbrev) { 1566 Record.push_back(N->isDistinct()); 1567 Record.push_back(N->getMacinfoType()); 1568 Record.push_back(N->getLine()); 1569 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1570 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1571 1572 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1573 Record.clear(); 1574 } 1575 1576 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1577 SmallVectorImpl<uint64_t> &Record, 1578 unsigned Abbrev) { 1579 Record.push_back(N->isDistinct()); 1580 Record.push_back(N->getMacinfoType()); 1581 Record.push_back(N->getLine()); 1582 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1583 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1584 1585 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1586 Record.clear(); 1587 } 1588 1589 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1590 SmallVectorImpl<uint64_t> &Record, 1591 unsigned Abbrev) { 1592 Record.push_back(N->isDistinct()); 1593 for (auto &I : N->operands()) 1594 Record.push_back(VE.getMetadataOrNullID(I)); 1595 1596 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1597 Record.clear(); 1598 } 1599 1600 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1601 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1602 unsigned Abbrev) { 1603 Record.push_back(N->isDistinct()); 1604 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1605 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1606 1607 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1608 Record.clear(); 1609 } 1610 1611 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1612 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1613 unsigned Abbrev) { 1614 Record.push_back(N->isDistinct()); 1615 Record.push_back(N->getTag()); 1616 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1617 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1618 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1619 1620 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1621 Record.clear(); 1622 } 1623 1624 void ModuleBitcodeWriter::writeDIGlobalVariable( 1625 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1626 unsigned Abbrev) { 1627 const uint64_t Version = 1 << 1; 1628 Record.push_back((uint64_t)N->isDistinct() | Version); 1629 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1630 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1631 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1632 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1633 Record.push_back(N->getLine()); 1634 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1635 Record.push_back(N->isLocalToUnit()); 1636 Record.push_back(N->isDefinition()); 1637 Record.push_back(/* expr */ 0); 1638 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1639 Record.push_back(N->getAlignInBits()); 1640 1641 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1642 Record.clear(); 1643 } 1644 1645 void ModuleBitcodeWriter::writeDILocalVariable( 1646 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1647 unsigned Abbrev) { 1648 // In order to support all possible bitcode formats in BitcodeReader we need 1649 // to distinguish the following cases: 1650 // 1) Record has no artificial tag (Record[1]), 1651 // has no obsolete inlinedAt field (Record[9]). 1652 // In this case Record size will be 8, HasAlignment flag is false. 1653 // 2) Record has artificial tag (Record[1]), 1654 // has no obsolete inlignedAt field (Record[9]). 1655 // In this case Record size will be 9, HasAlignment flag is false. 1656 // 3) Record has both artificial tag (Record[1]) and 1657 // obsolete inlignedAt field (Record[9]). 1658 // In this case Record size will be 10, HasAlignment flag is false. 1659 // 4) Record has neither artificial tag, nor inlignedAt field, but 1660 // HasAlignment flag is true and Record[8] contains alignment value. 1661 const uint64_t HasAlignmentFlag = 1 << 1; 1662 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1663 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1664 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1665 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1666 Record.push_back(N->getLine()); 1667 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1668 Record.push_back(N->getArg()); 1669 Record.push_back(N->getFlags()); 1670 Record.push_back(N->getAlignInBits()); 1671 1672 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1673 Record.clear(); 1674 } 1675 1676 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1677 SmallVectorImpl<uint64_t> &Record, 1678 unsigned Abbrev) { 1679 Record.reserve(N->getElements().size() + 1); 1680 const uint64_t Version = 3 << 1; 1681 Record.push_back((uint64_t)N->isDistinct() | Version); 1682 Record.append(N->elements_begin(), N->elements_end()); 1683 1684 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1685 Record.clear(); 1686 } 1687 1688 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1689 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1690 unsigned Abbrev) { 1691 Record.push_back(N->isDistinct()); 1692 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1693 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1694 1695 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1696 Record.clear(); 1697 } 1698 1699 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1700 SmallVectorImpl<uint64_t> &Record, 1701 unsigned Abbrev) { 1702 Record.push_back(N->isDistinct()); 1703 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1704 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1705 Record.push_back(N->getLine()); 1706 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1707 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1708 Record.push_back(N->getAttributes()); 1709 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1710 1711 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1712 Record.clear(); 1713 } 1714 1715 void ModuleBitcodeWriter::writeDIImportedEntity( 1716 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1717 unsigned Abbrev) { 1718 Record.push_back(N->isDistinct()); 1719 Record.push_back(N->getTag()); 1720 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1721 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1722 Record.push_back(N->getLine()); 1723 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1724 1725 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1726 Record.clear(); 1727 } 1728 1729 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1730 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1731 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1732 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1734 return Stream.EmitAbbrev(std::move(Abbv)); 1735 } 1736 1737 void ModuleBitcodeWriter::writeNamedMetadata( 1738 SmallVectorImpl<uint64_t> &Record) { 1739 if (M.named_metadata_empty()) 1740 return; 1741 1742 unsigned Abbrev = createNamedMetadataAbbrev(); 1743 for (const NamedMDNode &NMD : M.named_metadata()) { 1744 // Write name. 1745 StringRef Str = NMD.getName(); 1746 Record.append(Str.bytes_begin(), Str.bytes_end()); 1747 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1748 Record.clear(); 1749 1750 // Write named metadata operands. 1751 for (const MDNode *N : NMD.operands()) 1752 Record.push_back(VE.getMetadataID(N)); 1753 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1754 Record.clear(); 1755 } 1756 } 1757 1758 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1759 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1760 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1761 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1762 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1763 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1764 return Stream.EmitAbbrev(std::move(Abbv)); 1765 } 1766 1767 /// Write out a record for MDString. 1768 /// 1769 /// All the metadata strings in a metadata block are emitted in a single 1770 /// record. The sizes and strings themselves are shoved into a blob. 1771 void ModuleBitcodeWriter::writeMetadataStrings( 1772 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1773 if (Strings.empty()) 1774 return; 1775 1776 // Start the record with the number of strings. 1777 Record.push_back(bitc::METADATA_STRINGS); 1778 Record.push_back(Strings.size()); 1779 1780 // Emit the sizes of the strings in the blob. 1781 SmallString<256> Blob; 1782 { 1783 BitstreamWriter W(Blob); 1784 for (const Metadata *MD : Strings) 1785 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1786 W.FlushToWord(); 1787 } 1788 1789 // Add the offset to the strings to the record. 1790 Record.push_back(Blob.size()); 1791 1792 // Add the strings to the blob. 1793 for (const Metadata *MD : Strings) 1794 Blob.append(cast<MDString>(MD)->getString()); 1795 1796 // Emit the final record. 1797 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1798 Record.clear(); 1799 } 1800 1801 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1802 enum MetadataAbbrev : unsigned { 1803 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1804 #include "llvm/IR/Metadata.def" 1805 LastPlusOne 1806 }; 1807 1808 void ModuleBitcodeWriter::writeMetadataRecords( 1809 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1810 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1811 if (MDs.empty()) 1812 return; 1813 1814 // Initialize MDNode abbreviations. 1815 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1816 #include "llvm/IR/Metadata.def" 1817 1818 for (const Metadata *MD : MDs) { 1819 if (IndexPos) 1820 IndexPos->push_back(Stream.GetCurrentBitNo()); 1821 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1822 assert(N->isResolved() && "Expected forward references to be resolved"); 1823 1824 switch (N->getMetadataID()) { 1825 default: 1826 llvm_unreachable("Invalid MDNode subclass"); 1827 #define HANDLE_MDNODE_LEAF(CLASS) \ 1828 case Metadata::CLASS##Kind: \ 1829 if (MDAbbrevs) \ 1830 write##CLASS(cast<CLASS>(N), Record, \ 1831 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1832 else \ 1833 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1834 continue; 1835 #include "llvm/IR/Metadata.def" 1836 } 1837 } 1838 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1839 } 1840 } 1841 1842 void ModuleBitcodeWriter::writeModuleMetadata() { 1843 if (!VE.hasMDs() && M.named_metadata_empty()) 1844 return; 1845 1846 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1847 SmallVector<uint64_t, 64> Record; 1848 1849 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1850 // block and load any metadata. 1851 std::vector<unsigned> MDAbbrevs; 1852 1853 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1854 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1855 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1856 createGenericDINodeAbbrev(); 1857 1858 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1859 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1862 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1863 1864 Abbv = std::make_shared<BitCodeAbbrev>(); 1865 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1866 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1867 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1868 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1869 1870 // Emit MDStrings together upfront. 1871 writeMetadataStrings(VE.getMDStrings(), Record); 1872 1873 // We only emit an index for the metadata record if we have more than a given 1874 // (naive) threshold of metadatas, otherwise it is not worth it. 1875 if (VE.getNonMDStrings().size() > IndexThreshold) { 1876 // Write a placeholder value in for the offset of the metadata index, 1877 // which is written after the records, so that it can include 1878 // the offset of each entry. The placeholder offset will be 1879 // updated after all records are emitted. 1880 uint64_t Vals[] = {0, 0}; 1881 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1882 } 1883 1884 // Compute and save the bit offset to the current position, which will be 1885 // patched when we emit the index later. We can simply subtract the 64-bit 1886 // fixed size from the current bit number to get the location to backpatch. 1887 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1888 1889 // This index will contain the bitpos for each individual record. 1890 std::vector<uint64_t> IndexPos; 1891 IndexPos.reserve(VE.getNonMDStrings().size()); 1892 1893 // Write all the records 1894 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1895 1896 if (VE.getNonMDStrings().size() > IndexThreshold) { 1897 // Now that we have emitted all the records we will emit the index. But 1898 // first 1899 // backpatch the forward reference so that the reader can skip the records 1900 // efficiently. 1901 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 1902 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 1903 1904 // Delta encode the index. 1905 uint64_t PreviousValue = IndexOffsetRecordBitPos; 1906 for (auto &Elt : IndexPos) { 1907 auto EltDelta = Elt - PreviousValue; 1908 PreviousValue = Elt; 1909 Elt = EltDelta; 1910 } 1911 // Emit the index record. 1912 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 1913 IndexPos.clear(); 1914 } 1915 1916 // Write the named metadata now. 1917 writeNamedMetadata(Record); 1918 1919 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 1920 SmallVector<uint64_t, 4> Record; 1921 Record.push_back(VE.getValueID(&GO)); 1922 pushGlobalMetadataAttachment(Record, GO); 1923 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 1924 }; 1925 for (const Function &F : M) 1926 if (F.isDeclaration() && F.hasMetadata()) 1927 AddDeclAttachedMetadata(F); 1928 // FIXME: Only store metadata for declarations here, and move data for global 1929 // variable definitions to a separate block (PR28134). 1930 for (const GlobalVariable &GV : M.globals()) 1931 if (GV.hasMetadata()) 1932 AddDeclAttachedMetadata(GV); 1933 1934 Stream.ExitBlock(); 1935 } 1936 1937 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 1938 if (!VE.hasMDs()) 1939 return; 1940 1941 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1942 SmallVector<uint64_t, 64> Record; 1943 writeMetadataStrings(VE.getMDStrings(), Record); 1944 writeMetadataRecords(VE.getNonMDStrings(), Record); 1945 Stream.ExitBlock(); 1946 } 1947 1948 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 1949 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 1950 // [n x [id, mdnode]] 1951 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1952 GO.getAllMetadata(MDs); 1953 for (const auto &I : MDs) { 1954 Record.push_back(I.first); 1955 Record.push_back(VE.getMetadataID(I.second)); 1956 } 1957 } 1958 1959 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 1960 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1961 1962 SmallVector<uint64_t, 64> Record; 1963 1964 if (F.hasMetadata()) { 1965 pushGlobalMetadataAttachment(Record, F); 1966 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1967 Record.clear(); 1968 } 1969 1970 // Write metadata attachments 1971 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1972 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1973 for (const BasicBlock &BB : F) 1974 for (const Instruction &I : BB) { 1975 MDs.clear(); 1976 I.getAllMetadataOtherThanDebugLoc(MDs); 1977 1978 // If no metadata, ignore instruction. 1979 if (MDs.empty()) continue; 1980 1981 Record.push_back(VE.getInstructionID(&I)); 1982 1983 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1984 Record.push_back(MDs[i].first); 1985 Record.push_back(VE.getMetadataID(MDs[i].second)); 1986 } 1987 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1988 Record.clear(); 1989 } 1990 1991 Stream.ExitBlock(); 1992 } 1993 1994 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 1995 SmallVector<uint64_t, 64> Record; 1996 1997 // Write metadata kinds 1998 // METADATA_KIND - [n x [id, name]] 1999 SmallVector<StringRef, 8> Names; 2000 M.getMDKindNames(Names); 2001 2002 if (Names.empty()) return; 2003 2004 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2005 2006 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2007 Record.push_back(MDKindID); 2008 StringRef KName = Names[MDKindID]; 2009 Record.append(KName.begin(), KName.end()); 2010 2011 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2012 Record.clear(); 2013 } 2014 2015 Stream.ExitBlock(); 2016 } 2017 2018 void ModuleBitcodeWriter::writeOperandBundleTags() { 2019 // Write metadata kinds 2020 // 2021 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2022 // 2023 // OPERAND_BUNDLE_TAG - [strchr x N] 2024 2025 SmallVector<StringRef, 8> Tags; 2026 M.getOperandBundleTags(Tags); 2027 2028 if (Tags.empty()) 2029 return; 2030 2031 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2032 2033 SmallVector<uint64_t, 64> Record; 2034 2035 for (auto Tag : Tags) { 2036 Record.append(Tag.begin(), Tag.end()); 2037 2038 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2039 Record.clear(); 2040 } 2041 2042 Stream.ExitBlock(); 2043 } 2044 2045 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2046 if ((int64_t)V >= 0) 2047 Vals.push_back(V << 1); 2048 else 2049 Vals.push_back((-V << 1) | 1); 2050 } 2051 2052 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2053 bool isGlobal) { 2054 if (FirstVal == LastVal) return; 2055 2056 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2057 2058 unsigned AggregateAbbrev = 0; 2059 unsigned String8Abbrev = 0; 2060 unsigned CString7Abbrev = 0; 2061 unsigned CString6Abbrev = 0; 2062 // If this is a constant pool for the module, emit module-specific abbrevs. 2063 if (isGlobal) { 2064 // Abbrev for CST_CODE_AGGREGATE. 2065 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2066 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2068 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2069 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2070 2071 // Abbrev for CST_CODE_STRING. 2072 Abbv = std::make_shared<BitCodeAbbrev>(); 2073 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2076 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2077 // Abbrev for CST_CODE_CSTRING. 2078 Abbv = std::make_shared<BitCodeAbbrev>(); 2079 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2080 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2081 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2082 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2083 // Abbrev for CST_CODE_CSTRING. 2084 Abbv = std::make_shared<BitCodeAbbrev>(); 2085 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2086 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2087 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2088 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2089 } 2090 2091 SmallVector<uint64_t, 64> Record; 2092 2093 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2094 Type *LastTy = nullptr; 2095 for (unsigned i = FirstVal; i != LastVal; ++i) { 2096 const Value *V = Vals[i].first; 2097 // If we need to switch types, do so now. 2098 if (V->getType() != LastTy) { 2099 LastTy = V->getType(); 2100 Record.push_back(VE.getTypeID(LastTy)); 2101 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2102 CONSTANTS_SETTYPE_ABBREV); 2103 Record.clear(); 2104 } 2105 2106 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2107 Record.push_back(unsigned(IA->hasSideEffects()) | 2108 unsigned(IA->isAlignStack()) << 1 | 2109 unsigned(IA->getDialect()&1) << 2); 2110 2111 // Add the asm string. 2112 const std::string &AsmStr = IA->getAsmString(); 2113 Record.push_back(AsmStr.size()); 2114 Record.append(AsmStr.begin(), AsmStr.end()); 2115 2116 // Add the constraint string. 2117 const std::string &ConstraintStr = IA->getConstraintString(); 2118 Record.push_back(ConstraintStr.size()); 2119 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2120 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2121 Record.clear(); 2122 continue; 2123 } 2124 const Constant *C = cast<Constant>(V); 2125 unsigned Code = -1U; 2126 unsigned AbbrevToUse = 0; 2127 if (C->isNullValue()) { 2128 Code = bitc::CST_CODE_NULL; 2129 } else if (isa<UndefValue>(C)) { 2130 Code = bitc::CST_CODE_UNDEF; 2131 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2132 if (IV->getBitWidth() <= 64) { 2133 uint64_t V = IV->getSExtValue(); 2134 emitSignedInt64(Record, V); 2135 Code = bitc::CST_CODE_INTEGER; 2136 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2137 } else { // Wide integers, > 64 bits in size. 2138 // We have an arbitrary precision integer value to write whose 2139 // bit width is > 64. However, in canonical unsigned integer 2140 // format it is likely that the high bits are going to be zero. 2141 // So, we only write the number of active words. 2142 unsigned NWords = IV->getValue().getActiveWords(); 2143 const uint64_t *RawWords = IV->getValue().getRawData(); 2144 for (unsigned i = 0; i != NWords; ++i) { 2145 emitSignedInt64(Record, RawWords[i]); 2146 } 2147 Code = bitc::CST_CODE_WIDE_INTEGER; 2148 } 2149 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2150 Code = bitc::CST_CODE_FLOAT; 2151 Type *Ty = CFP->getType(); 2152 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2153 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2154 } else if (Ty->isX86_FP80Ty()) { 2155 // api needed to prevent premature destruction 2156 // bits are not in the same order as a normal i80 APInt, compensate. 2157 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2158 const uint64_t *p = api.getRawData(); 2159 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2160 Record.push_back(p[0] & 0xffffLL); 2161 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2162 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2163 const uint64_t *p = api.getRawData(); 2164 Record.push_back(p[0]); 2165 Record.push_back(p[1]); 2166 } else { 2167 assert (0 && "Unknown FP type!"); 2168 } 2169 } else if (isa<ConstantDataSequential>(C) && 2170 cast<ConstantDataSequential>(C)->isString()) { 2171 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2172 // Emit constant strings specially. 2173 unsigned NumElts = Str->getNumElements(); 2174 // If this is a null-terminated string, use the denser CSTRING encoding. 2175 if (Str->isCString()) { 2176 Code = bitc::CST_CODE_CSTRING; 2177 --NumElts; // Don't encode the null, which isn't allowed by char6. 2178 } else { 2179 Code = bitc::CST_CODE_STRING; 2180 AbbrevToUse = String8Abbrev; 2181 } 2182 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2183 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2184 for (unsigned i = 0; i != NumElts; ++i) { 2185 unsigned char V = Str->getElementAsInteger(i); 2186 Record.push_back(V); 2187 isCStr7 &= (V & 128) == 0; 2188 if (isCStrChar6) 2189 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2190 } 2191 2192 if (isCStrChar6) 2193 AbbrevToUse = CString6Abbrev; 2194 else if (isCStr7) 2195 AbbrevToUse = CString7Abbrev; 2196 } else if (const ConstantDataSequential *CDS = 2197 dyn_cast<ConstantDataSequential>(C)) { 2198 Code = bitc::CST_CODE_DATA; 2199 Type *EltTy = CDS->getType()->getElementType(); 2200 if (isa<IntegerType>(EltTy)) { 2201 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2202 Record.push_back(CDS->getElementAsInteger(i)); 2203 } else { 2204 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2205 Record.push_back( 2206 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2207 } 2208 } else if (isa<ConstantAggregate>(C)) { 2209 Code = bitc::CST_CODE_AGGREGATE; 2210 for (const Value *Op : C->operands()) 2211 Record.push_back(VE.getValueID(Op)); 2212 AbbrevToUse = AggregateAbbrev; 2213 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2214 switch (CE->getOpcode()) { 2215 default: 2216 if (Instruction::isCast(CE->getOpcode())) { 2217 Code = bitc::CST_CODE_CE_CAST; 2218 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2219 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2220 Record.push_back(VE.getValueID(C->getOperand(0))); 2221 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2222 } else { 2223 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2224 Code = bitc::CST_CODE_CE_BINOP; 2225 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2226 Record.push_back(VE.getValueID(C->getOperand(0))); 2227 Record.push_back(VE.getValueID(C->getOperand(1))); 2228 uint64_t Flags = getOptimizationFlags(CE); 2229 if (Flags != 0) 2230 Record.push_back(Flags); 2231 } 2232 break; 2233 case Instruction::GetElementPtr: { 2234 Code = bitc::CST_CODE_CE_GEP; 2235 const auto *GO = cast<GEPOperator>(C); 2236 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2237 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2238 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2239 Record.push_back((*Idx << 1) | GO->isInBounds()); 2240 } else if (GO->isInBounds()) 2241 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2242 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2243 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2244 Record.push_back(VE.getValueID(C->getOperand(i))); 2245 } 2246 break; 2247 } 2248 case Instruction::Select: 2249 Code = bitc::CST_CODE_CE_SELECT; 2250 Record.push_back(VE.getValueID(C->getOperand(0))); 2251 Record.push_back(VE.getValueID(C->getOperand(1))); 2252 Record.push_back(VE.getValueID(C->getOperand(2))); 2253 break; 2254 case Instruction::ExtractElement: 2255 Code = bitc::CST_CODE_CE_EXTRACTELT; 2256 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2257 Record.push_back(VE.getValueID(C->getOperand(0))); 2258 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2259 Record.push_back(VE.getValueID(C->getOperand(1))); 2260 break; 2261 case Instruction::InsertElement: 2262 Code = bitc::CST_CODE_CE_INSERTELT; 2263 Record.push_back(VE.getValueID(C->getOperand(0))); 2264 Record.push_back(VE.getValueID(C->getOperand(1))); 2265 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2266 Record.push_back(VE.getValueID(C->getOperand(2))); 2267 break; 2268 case Instruction::ShuffleVector: 2269 // If the return type and argument types are the same, this is a 2270 // standard shufflevector instruction. If the types are different, 2271 // then the shuffle is widening or truncating the input vectors, and 2272 // the argument type must also be encoded. 2273 if (C->getType() == C->getOperand(0)->getType()) { 2274 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2275 } else { 2276 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2277 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2278 } 2279 Record.push_back(VE.getValueID(C->getOperand(0))); 2280 Record.push_back(VE.getValueID(C->getOperand(1))); 2281 Record.push_back(VE.getValueID(C->getOperand(2))); 2282 break; 2283 case Instruction::ICmp: 2284 case Instruction::FCmp: 2285 Code = bitc::CST_CODE_CE_CMP; 2286 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2287 Record.push_back(VE.getValueID(C->getOperand(0))); 2288 Record.push_back(VE.getValueID(C->getOperand(1))); 2289 Record.push_back(CE->getPredicate()); 2290 break; 2291 } 2292 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2293 Code = bitc::CST_CODE_BLOCKADDRESS; 2294 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2295 Record.push_back(VE.getValueID(BA->getFunction())); 2296 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2297 } else { 2298 #ifndef NDEBUG 2299 C->dump(); 2300 #endif 2301 llvm_unreachable("Unknown constant!"); 2302 } 2303 Stream.EmitRecord(Code, Record, AbbrevToUse); 2304 Record.clear(); 2305 } 2306 2307 Stream.ExitBlock(); 2308 } 2309 2310 void ModuleBitcodeWriter::writeModuleConstants() { 2311 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2312 2313 // Find the first constant to emit, which is the first non-globalvalue value. 2314 // We know globalvalues have been emitted by WriteModuleInfo. 2315 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2316 if (!isa<GlobalValue>(Vals[i].first)) { 2317 writeConstants(i, Vals.size(), true); 2318 return; 2319 } 2320 } 2321 } 2322 2323 /// pushValueAndType - The file has to encode both the value and type id for 2324 /// many values, because we need to know what type to create for forward 2325 /// references. However, most operands are not forward references, so this type 2326 /// field is not needed. 2327 /// 2328 /// This function adds V's value ID to Vals. If the value ID is higher than the 2329 /// instruction ID, then it is a forward reference, and it also includes the 2330 /// type ID. The value ID that is written is encoded relative to the InstID. 2331 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2332 SmallVectorImpl<unsigned> &Vals) { 2333 unsigned ValID = VE.getValueID(V); 2334 // Make encoding relative to the InstID. 2335 Vals.push_back(InstID - ValID); 2336 if (ValID >= InstID) { 2337 Vals.push_back(VE.getTypeID(V->getType())); 2338 return true; 2339 } 2340 return false; 2341 } 2342 2343 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2344 unsigned InstID) { 2345 SmallVector<unsigned, 64> Record; 2346 LLVMContext &C = CS.getInstruction()->getContext(); 2347 2348 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2349 const auto &Bundle = CS.getOperandBundleAt(i); 2350 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2351 2352 for (auto &Input : Bundle.Inputs) 2353 pushValueAndType(Input, InstID, Record); 2354 2355 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2356 Record.clear(); 2357 } 2358 } 2359 2360 /// pushValue - Like pushValueAndType, but where the type of the value is 2361 /// omitted (perhaps it was already encoded in an earlier operand). 2362 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2363 SmallVectorImpl<unsigned> &Vals) { 2364 unsigned ValID = VE.getValueID(V); 2365 Vals.push_back(InstID - ValID); 2366 } 2367 2368 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2369 SmallVectorImpl<uint64_t> &Vals) { 2370 unsigned ValID = VE.getValueID(V); 2371 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2372 emitSignedInt64(Vals, diff); 2373 } 2374 2375 /// WriteInstruction - Emit an instruction to the specified stream. 2376 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2377 unsigned InstID, 2378 SmallVectorImpl<unsigned> &Vals) { 2379 unsigned Code = 0; 2380 unsigned AbbrevToUse = 0; 2381 VE.setInstructionID(&I); 2382 switch (I.getOpcode()) { 2383 default: 2384 if (Instruction::isCast(I.getOpcode())) { 2385 Code = bitc::FUNC_CODE_INST_CAST; 2386 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2387 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2388 Vals.push_back(VE.getTypeID(I.getType())); 2389 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2390 } else { 2391 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2392 Code = bitc::FUNC_CODE_INST_BINOP; 2393 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2394 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2395 pushValue(I.getOperand(1), InstID, Vals); 2396 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2397 uint64_t Flags = getOptimizationFlags(&I); 2398 if (Flags != 0) { 2399 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2400 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2401 Vals.push_back(Flags); 2402 } 2403 } 2404 break; 2405 2406 case Instruction::GetElementPtr: { 2407 Code = bitc::FUNC_CODE_INST_GEP; 2408 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2409 auto &GEPInst = cast<GetElementPtrInst>(I); 2410 Vals.push_back(GEPInst.isInBounds()); 2411 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2412 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2413 pushValueAndType(I.getOperand(i), InstID, Vals); 2414 break; 2415 } 2416 case Instruction::ExtractValue: { 2417 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2418 pushValueAndType(I.getOperand(0), InstID, Vals); 2419 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2420 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2421 break; 2422 } 2423 case Instruction::InsertValue: { 2424 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2425 pushValueAndType(I.getOperand(0), InstID, Vals); 2426 pushValueAndType(I.getOperand(1), InstID, Vals); 2427 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2428 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2429 break; 2430 } 2431 case Instruction::Select: 2432 Code = bitc::FUNC_CODE_INST_VSELECT; 2433 pushValueAndType(I.getOperand(1), InstID, Vals); 2434 pushValue(I.getOperand(2), InstID, Vals); 2435 pushValueAndType(I.getOperand(0), InstID, Vals); 2436 break; 2437 case Instruction::ExtractElement: 2438 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2439 pushValueAndType(I.getOperand(0), InstID, Vals); 2440 pushValueAndType(I.getOperand(1), InstID, Vals); 2441 break; 2442 case Instruction::InsertElement: 2443 Code = bitc::FUNC_CODE_INST_INSERTELT; 2444 pushValueAndType(I.getOperand(0), InstID, Vals); 2445 pushValue(I.getOperand(1), InstID, Vals); 2446 pushValueAndType(I.getOperand(2), InstID, Vals); 2447 break; 2448 case Instruction::ShuffleVector: 2449 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2450 pushValueAndType(I.getOperand(0), InstID, Vals); 2451 pushValue(I.getOperand(1), InstID, Vals); 2452 pushValue(I.getOperand(2), InstID, Vals); 2453 break; 2454 case Instruction::ICmp: 2455 case Instruction::FCmp: { 2456 // compare returning Int1Ty or vector of Int1Ty 2457 Code = bitc::FUNC_CODE_INST_CMP2; 2458 pushValueAndType(I.getOperand(0), InstID, Vals); 2459 pushValue(I.getOperand(1), InstID, Vals); 2460 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2461 uint64_t Flags = getOptimizationFlags(&I); 2462 if (Flags != 0) 2463 Vals.push_back(Flags); 2464 break; 2465 } 2466 2467 case Instruction::Ret: 2468 { 2469 Code = bitc::FUNC_CODE_INST_RET; 2470 unsigned NumOperands = I.getNumOperands(); 2471 if (NumOperands == 0) 2472 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2473 else if (NumOperands == 1) { 2474 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2475 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2476 } else { 2477 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2478 pushValueAndType(I.getOperand(i), InstID, Vals); 2479 } 2480 } 2481 break; 2482 case Instruction::Br: 2483 { 2484 Code = bitc::FUNC_CODE_INST_BR; 2485 const BranchInst &II = cast<BranchInst>(I); 2486 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2487 if (II.isConditional()) { 2488 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2489 pushValue(II.getCondition(), InstID, Vals); 2490 } 2491 } 2492 break; 2493 case Instruction::Switch: 2494 { 2495 Code = bitc::FUNC_CODE_INST_SWITCH; 2496 const SwitchInst &SI = cast<SwitchInst>(I); 2497 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2498 pushValue(SI.getCondition(), InstID, Vals); 2499 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2500 for (auto Case : SI.cases()) { 2501 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2502 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2503 } 2504 } 2505 break; 2506 case Instruction::IndirectBr: 2507 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2508 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2509 // Encode the address operand as relative, but not the basic blocks. 2510 pushValue(I.getOperand(0), InstID, Vals); 2511 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2512 Vals.push_back(VE.getValueID(I.getOperand(i))); 2513 break; 2514 2515 case Instruction::Invoke: { 2516 const InvokeInst *II = cast<InvokeInst>(&I); 2517 const Value *Callee = II->getCalledValue(); 2518 FunctionType *FTy = II->getFunctionType(); 2519 2520 if (II->hasOperandBundles()) 2521 writeOperandBundles(II, InstID); 2522 2523 Code = bitc::FUNC_CODE_INST_INVOKE; 2524 2525 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2526 Vals.push_back(II->getCallingConv() | 1 << 13); 2527 Vals.push_back(VE.getValueID(II->getNormalDest())); 2528 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2529 Vals.push_back(VE.getTypeID(FTy)); 2530 pushValueAndType(Callee, InstID, Vals); 2531 2532 // Emit value #'s for the fixed parameters. 2533 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2534 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2535 2536 // Emit type/value pairs for varargs params. 2537 if (FTy->isVarArg()) { 2538 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2539 i != e; ++i) 2540 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2541 } 2542 break; 2543 } 2544 case Instruction::Resume: 2545 Code = bitc::FUNC_CODE_INST_RESUME; 2546 pushValueAndType(I.getOperand(0), InstID, Vals); 2547 break; 2548 case Instruction::CleanupRet: { 2549 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2550 const auto &CRI = cast<CleanupReturnInst>(I); 2551 pushValue(CRI.getCleanupPad(), InstID, Vals); 2552 if (CRI.hasUnwindDest()) 2553 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2554 break; 2555 } 2556 case Instruction::CatchRet: { 2557 Code = bitc::FUNC_CODE_INST_CATCHRET; 2558 const auto &CRI = cast<CatchReturnInst>(I); 2559 pushValue(CRI.getCatchPad(), InstID, Vals); 2560 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2561 break; 2562 } 2563 case Instruction::CleanupPad: 2564 case Instruction::CatchPad: { 2565 const auto &FuncletPad = cast<FuncletPadInst>(I); 2566 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2567 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2568 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2569 2570 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2571 Vals.push_back(NumArgOperands); 2572 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2573 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2574 break; 2575 } 2576 case Instruction::CatchSwitch: { 2577 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2578 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2579 2580 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2581 2582 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2583 Vals.push_back(NumHandlers); 2584 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2585 Vals.push_back(VE.getValueID(CatchPadBB)); 2586 2587 if (CatchSwitch.hasUnwindDest()) 2588 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2589 break; 2590 } 2591 case Instruction::Unreachable: 2592 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2593 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2594 break; 2595 2596 case Instruction::PHI: { 2597 const PHINode &PN = cast<PHINode>(I); 2598 Code = bitc::FUNC_CODE_INST_PHI; 2599 // With the newer instruction encoding, forward references could give 2600 // negative valued IDs. This is most common for PHIs, so we use 2601 // signed VBRs. 2602 SmallVector<uint64_t, 128> Vals64; 2603 Vals64.push_back(VE.getTypeID(PN.getType())); 2604 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2605 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2606 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2607 } 2608 // Emit a Vals64 vector and exit. 2609 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2610 Vals64.clear(); 2611 return; 2612 } 2613 2614 case Instruction::LandingPad: { 2615 const LandingPadInst &LP = cast<LandingPadInst>(I); 2616 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2617 Vals.push_back(VE.getTypeID(LP.getType())); 2618 Vals.push_back(LP.isCleanup()); 2619 Vals.push_back(LP.getNumClauses()); 2620 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2621 if (LP.isCatch(I)) 2622 Vals.push_back(LandingPadInst::Catch); 2623 else 2624 Vals.push_back(LandingPadInst::Filter); 2625 pushValueAndType(LP.getClause(I), InstID, Vals); 2626 } 2627 break; 2628 } 2629 2630 case Instruction::Alloca: { 2631 Code = bitc::FUNC_CODE_INST_ALLOCA; 2632 const AllocaInst &AI = cast<AllocaInst>(I); 2633 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2634 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2635 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2636 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2637 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2638 "not enough bits for maximum alignment"); 2639 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2640 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2641 AlignRecord |= 1 << 6; 2642 AlignRecord |= AI.isSwiftError() << 7; 2643 Vals.push_back(AlignRecord); 2644 break; 2645 } 2646 2647 case Instruction::Load: 2648 if (cast<LoadInst>(I).isAtomic()) { 2649 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2650 pushValueAndType(I.getOperand(0), InstID, Vals); 2651 } else { 2652 Code = bitc::FUNC_CODE_INST_LOAD; 2653 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2654 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2655 } 2656 Vals.push_back(VE.getTypeID(I.getType())); 2657 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2658 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2659 if (cast<LoadInst>(I).isAtomic()) { 2660 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2661 Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2662 } 2663 break; 2664 case Instruction::Store: 2665 if (cast<StoreInst>(I).isAtomic()) 2666 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2667 else 2668 Code = bitc::FUNC_CODE_INST_STORE; 2669 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2670 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2671 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2672 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2673 if (cast<StoreInst>(I).isAtomic()) { 2674 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2675 Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2676 } 2677 break; 2678 case Instruction::AtomicCmpXchg: 2679 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2680 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2681 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2682 pushValue(I.getOperand(2), InstID, Vals); // newval. 2683 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2684 Vals.push_back( 2685 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2686 Vals.push_back( 2687 getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope())); 2688 Vals.push_back( 2689 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2690 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2691 break; 2692 case Instruction::AtomicRMW: 2693 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2694 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2695 pushValue(I.getOperand(1), InstID, Vals); // val. 2696 Vals.push_back( 2697 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2698 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2699 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2700 Vals.push_back( 2701 getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope())); 2702 break; 2703 case Instruction::Fence: 2704 Code = bitc::FUNC_CODE_INST_FENCE; 2705 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2706 Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2707 break; 2708 case Instruction::Call: { 2709 const CallInst &CI = cast<CallInst>(I); 2710 FunctionType *FTy = CI.getFunctionType(); 2711 2712 if (CI.hasOperandBundles()) 2713 writeOperandBundles(&CI, InstID); 2714 2715 Code = bitc::FUNC_CODE_INST_CALL; 2716 2717 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2718 2719 unsigned Flags = getOptimizationFlags(&I); 2720 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2721 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2722 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2723 1 << bitc::CALL_EXPLICIT_TYPE | 2724 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2725 unsigned(Flags != 0) << bitc::CALL_FMF); 2726 if (Flags != 0) 2727 Vals.push_back(Flags); 2728 2729 Vals.push_back(VE.getTypeID(FTy)); 2730 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2731 2732 // Emit value #'s for the fixed parameters. 2733 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2734 // Check for labels (can happen with asm labels). 2735 if (FTy->getParamType(i)->isLabelTy()) 2736 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2737 else 2738 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2739 } 2740 2741 // Emit type/value pairs for varargs params. 2742 if (FTy->isVarArg()) { 2743 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2744 i != e; ++i) 2745 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2746 } 2747 break; 2748 } 2749 case Instruction::VAArg: 2750 Code = bitc::FUNC_CODE_INST_VAARG; 2751 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2752 pushValue(I.getOperand(0), InstID, Vals); // valist. 2753 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2754 break; 2755 } 2756 2757 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2758 Vals.clear(); 2759 } 2760 2761 /// Write a GlobalValue VST to the module. The purpose of this data structure is 2762 /// to allow clients to efficiently find the function body. 2763 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 2764 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2765 // Get the offset of the VST we are writing, and backpatch it into 2766 // the VST forward declaration record. 2767 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2768 // The BitcodeStartBit was the stream offset of the identification block. 2769 VSTOffset -= bitcodeStartBit(); 2770 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2771 // Note that we add 1 here because the offset is relative to one word 2772 // before the start of the identification block, which was historically 2773 // always the start of the regular bitcode header. 2774 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2775 2776 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2777 2778 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2779 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2780 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2782 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2783 2784 for (const Function &F : M) { 2785 uint64_t Record[2]; 2786 2787 if (F.isDeclaration()) 2788 continue; 2789 2790 Record[0] = VE.getValueID(&F); 2791 2792 // Save the word offset of the function (from the start of the 2793 // actual bitcode written to the stream). 2794 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 2795 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2796 // Note that we add 1 here because the offset is relative to one word 2797 // before the start of the identification block, which was historically 2798 // always the start of the regular bitcode header. 2799 Record[1] = BitcodeIndex / 32 + 1; 2800 2801 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 2802 } 2803 2804 Stream.ExitBlock(); 2805 } 2806 2807 /// Emit names for arguments, instructions and basic blocks in a function. 2808 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 2809 const ValueSymbolTable &VST) { 2810 if (VST.empty()) 2811 return; 2812 2813 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2814 2815 // FIXME: Set up the abbrev, we know how many values there are! 2816 // FIXME: We know if the type names can use 7-bit ascii. 2817 SmallVector<uint64_t, 64> NameVals; 2818 2819 for (const ValueName &Name : VST) { 2820 // Figure out the encoding to use for the name. 2821 StringEncoding Bits = getStringEncoding(Name.getKey()); 2822 2823 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2824 NameVals.push_back(VE.getValueID(Name.getValue())); 2825 2826 // VST_CODE_ENTRY: [valueid, namechar x N] 2827 // VST_CODE_BBENTRY: [bbid, namechar x N] 2828 unsigned Code; 2829 if (isa<BasicBlock>(Name.getValue())) { 2830 Code = bitc::VST_CODE_BBENTRY; 2831 if (Bits == SE_Char6) 2832 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2833 } else { 2834 Code = bitc::VST_CODE_ENTRY; 2835 if (Bits == SE_Char6) 2836 AbbrevToUse = VST_ENTRY_6_ABBREV; 2837 else if (Bits == SE_Fixed7) 2838 AbbrevToUse = VST_ENTRY_7_ABBREV; 2839 } 2840 2841 for (const auto P : Name.getKey()) 2842 NameVals.push_back((unsigned char)P); 2843 2844 // Emit the finished record. 2845 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2846 NameVals.clear(); 2847 } 2848 2849 Stream.ExitBlock(); 2850 } 2851 2852 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 2853 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2854 unsigned Code; 2855 if (isa<BasicBlock>(Order.V)) 2856 Code = bitc::USELIST_CODE_BB; 2857 else 2858 Code = bitc::USELIST_CODE_DEFAULT; 2859 2860 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2861 Record.push_back(VE.getValueID(Order.V)); 2862 Stream.EmitRecord(Code, Record); 2863 } 2864 2865 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 2866 assert(VE.shouldPreserveUseListOrder() && 2867 "Expected to be preserving use-list order"); 2868 2869 auto hasMore = [&]() { 2870 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2871 }; 2872 if (!hasMore()) 2873 // Nothing to do. 2874 return; 2875 2876 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2877 while (hasMore()) { 2878 writeUseList(std::move(VE.UseListOrders.back())); 2879 VE.UseListOrders.pop_back(); 2880 } 2881 Stream.ExitBlock(); 2882 } 2883 2884 /// Emit a function body to the module stream. 2885 void ModuleBitcodeWriter::writeFunction( 2886 const Function &F, 2887 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2888 // Save the bitcode index of the start of this function block for recording 2889 // in the VST. 2890 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 2891 2892 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2893 VE.incorporateFunction(F); 2894 2895 SmallVector<unsigned, 64> Vals; 2896 2897 // Emit the number of basic blocks, so the reader can create them ahead of 2898 // time. 2899 Vals.push_back(VE.getBasicBlocks().size()); 2900 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2901 Vals.clear(); 2902 2903 // If there are function-local constants, emit them now. 2904 unsigned CstStart, CstEnd; 2905 VE.getFunctionConstantRange(CstStart, CstEnd); 2906 writeConstants(CstStart, CstEnd, false); 2907 2908 // If there is function-local metadata, emit it now. 2909 writeFunctionMetadata(F); 2910 2911 // Keep a running idea of what the instruction ID is. 2912 unsigned InstID = CstEnd; 2913 2914 bool NeedsMetadataAttachment = F.hasMetadata(); 2915 2916 DILocation *LastDL = nullptr; 2917 // Finally, emit all the instructions, in order. 2918 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2919 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2920 I != E; ++I) { 2921 writeInstruction(*I, InstID, Vals); 2922 2923 if (!I->getType()->isVoidTy()) 2924 ++InstID; 2925 2926 // If the instruction has metadata, write a metadata attachment later. 2927 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2928 2929 // If the instruction has a debug location, emit it. 2930 DILocation *DL = I->getDebugLoc(); 2931 if (!DL) 2932 continue; 2933 2934 if (DL == LastDL) { 2935 // Just repeat the same debug loc as last time. 2936 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2937 continue; 2938 } 2939 2940 Vals.push_back(DL->getLine()); 2941 Vals.push_back(DL->getColumn()); 2942 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2943 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2944 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2945 Vals.clear(); 2946 2947 LastDL = DL; 2948 } 2949 2950 // Emit names for all the instructions etc. 2951 if (auto *Symtab = F.getValueSymbolTable()) 2952 writeFunctionLevelValueSymbolTable(*Symtab); 2953 2954 if (NeedsMetadataAttachment) 2955 writeFunctionMetadataAttachment(F); 2956 if (VE.shouldPreserveUseListOrder()) 2957 writeUseListBlock(&F); 2958 VE.purgeFunction(); 2959 Stream.ExitBlock(); 2960 } 2961 2962 // Emit blockinfo, which defines the standard abbreviations etc. 2963 void ModuleBitcodeWriter::writeBlockInfo() { 2964 // We only want to emit block info records for blocks that have multiple 2965 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2966 // Other blocks can define their abbrevs inline. 2967 Stream.EnterBlockInfoBlock(); 2968 2969 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 2970 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2975 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2976 VST_ENTRY_8_ABBREV) 2977 llvm_unreachable("Unexpected abbrev ordering!"); 2978 } 2979 2980 { // 7-bit fixed width VST_CODE_ENTRY strings. 2981 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2982 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2983 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2984 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2985 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2986 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2987 VST_ENTRY_7_ABBREV) 2988 llvm_unreachable("Unexpected abbrev ordering!"); 2989 } 2990 { // 6-bit char6 VST_CODE_ENTRY strings. 2991 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2992 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2993 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2994 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2995 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2996 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2997 VST_ENTRY_6_ABBREV) 2998 llvm_unreachable("Unexpected abbrev ordering!"); 2999 } 3000 { // 6-bit char6 VST_CODE_BBENTRY strings. 3001 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3002 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3003 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3006 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3007 VST_BBENTRY_6_ABBREV) 3008 llvm_unreachable("Unexpected abbrev ordering!"); 3009 } 3010 3011 3012 3013 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3014 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3015 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3016 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3017 VE.computeBitsRequiredForTypeIndicies())); 3018 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3019 CONSTANTS_SETTYPE_ABBREV) 3020 llvm_unreachable("Unexpected abbrev ordering!"); 3021 } 3022 3023 { // INTEGER abbrev for CONSTANTS_BLOCK. 3024 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3025 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3026 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3027 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3028 CONSTANTS_INTEGER_ABBREV) 3029 llvm_unreachable("Unexpected abbrev ordering!"); 3030 } 3031 3032 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3033 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3034 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3035 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3036 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3037 VE.computeBitsRequiredForTypeIndicies())); 3038 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3039 3040 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3041 CONSTANTS_CE_CAST_Abbrev) 3042 llvm_unreachable("Unexpected abbrev ordering!"); 3043 } 3044 { // NULL abbrev for CONSTANTS_BLOCK. 3045 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3046 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3047 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3048 CONSTANTS_NULL_Abbrev) 3049 llvm_unreachable("Unexpected abbrev ordering!"); 3050 } 3051 3052 // FIXME: This should only use space for first class types! 3053 3054 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3055 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3056 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3057 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3059 VE.computeBitsRequiredForTypeIndicies())); 3060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3062 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3063 FUNCTION_INST_LOAD_ABBREV) 3064 llvm_unreachable("Unexpected abbrev ordering!"); 3065 } 3066 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3067 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3068 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3072 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3073 FUNCTION_INST_BINOP_ABBREV) 3074 llvm_unreachable("Unexpected abbrev ordering!"); 3075 } 3076 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3077 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3078 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3080 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3081 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3082 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3083 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3084 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3085 llvm_unreachable("Unexpected abbrev ordering!"); 3086 } 3087 { // INST_CAST abbrev for FUNCTION_BLOCK. 3088 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3089 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3092 VE.computeBitsRequiredForTypeIndicies())); 3093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3094 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3095 FUNCTION_INST_CAST_ABBREV) 3096 llvm_unreachable("Unexpected abbrev ordering!"); 3097 } 3098 3099 { // INST_RET abbrev for FUNCTION_BLOCK. 3100 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3101 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3102 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3103 FUNCTION_INST_RET_VOID_ABBREV) 3104 llvm_unreachable("Unexpected abbrev ordering!"); 3105 } 3106 { // INST_RET abbrev for FUNCTION_BLOCK. 3107 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3108 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3109 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3110 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3111 FUNCTION_INST_RET_VAL_ABBREV) 3112 llvm_unreachable("Unexpected abbrev ordering!"); 3113 } 3114 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3115 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3116 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3117 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3118 FUNCTION_INST_UNREACHABLE_ABBREV) 3119 llvm_unreachable("Unexpected abbrev ordering!"); 3120 } 3121 { 3122 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3123 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3124 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3125 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3126 Log2_32_Ceil(VE.getTypes().size() + 1))); 3127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3129 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3130 FUNCTION_INST_GEP_ABBREV) 3131 llvm_unreachable("Unexpected abbrev ordering!"); 3132 } 3133 3134 Stream.ExitBlock(); 3135 } 3136 3137 /// Write the module path strings, currently only used when generating 3138 /// a combined index file. 3139 void IndexBitcodeWriter::writeModStrings() { 3140 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3141 3142 // TODO: See which abbrev sizes we actually need to emit 3143 3144 // 8-bit fixed-width MST_ENTRY strings. 3145 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3146 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3150 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3151 3152 // 7-bit fixed width MST_ENTRY strings. 3153 Abbv = std::make_shared<BitCodeAbbrev>(); 3154 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3158 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3159 3160 // 6-bit char6 MST_ENTRY strings. 3161 Abbv = std::make_shared<BitCodeAbbrev>(); 3162 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3166 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3167 3168 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3169 Abbv = std::make_shared<BitCodeAbbrev>(); 3170 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3176 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3177 3178 SmallVector<unsigned, 64> Vals; 3179 forEachModule( 3180 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3181 StringRef Key = MPSE.getKey(); 3182 const auto &Value = MPSE.getValue(); 3183 StringEncoding Bits = getStringEncoding(Key); 3184 unsigned AbbrevToUse = Abbrev8Bit; 3185 if (Bits == SE_Char6) 3186 AbbrevToUse = Abbrev6Bit; 3187 else if (Bits == SE_Fixed7) 3188 AbbrevToUse = Abbrev7Bit; 3189 3190 Vals.push_back(Value.first); 3191 Vals.append(Key.begin(), Key.end()); 3192 3193 // Emit the finished record. 3194 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3195 3196 // Emit an optional hash for the module now 3197 const auto &Hash = Value.second; 3198 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3199 Vals.assign(Hash.begin(), Hash.end()); 3200 // Emit the hash record. 3201 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3202 } 3203 3204 Vals.clear(); 3205 }); 3206 Stream.ExitBlock(); 3207 } 3208 3209 /// Write the function type metadata related records that need to appear before 3210 /// a function summary entry (whether per-module or combined). 3211 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3212 FunctionSummary *FS) { 3213 if (!FS->type_tests().empty()) 3214 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3215 3216 SmallVector<uint64_t, 64> Record; 3217 3218 auto WriteVFuncIdVec = [&](uint64_t Ty, 3219 ArrayRef<FunctionSummary::VFuncId> VFs) { 3220 if (VFs.empty()) 3221 return; 3222 Record.clear(); 3223 for (auto &VF : VFs) { 3224 Record.push_back(VF.GUID); 3225 Record.push_back(VF.Offset); 3226 } 3227 Stream.EmitRecord(Ty, Record); 3228 }; 3229 3230 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3231 FS->type_test_assume_vcalls()); 3232 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3233 FS->type_checked_load_vcalls()); 3234 3235 auto WriteConstVCallVec = [&](uint64_t Ty, 3236 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3237 for (auto &VC : VCs) { 3238 Record.clear(); 3239 Record.push_back(VC.VFunc.GUID); 3240 Record.push_back(VC.VFunc.Offset); 3241 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3242 Stream.EmitRecord(Ty, Record); 3243 } 3244 }; 3245 3246 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3247 FS->type_test_assume_const_vcalls()); 3248 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3249 FS->type_checked_load_const_vcalls()); 3250 } 3251 3252 // Helper to emit a single function summary record. 3253 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord( 3254 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3255 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3256 const Function &F) { 3257 NameVals.push_back(ValueID); 3258 3259 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3260 writeFunctionTypeMetadataRecords(Stream, FS); 3261 3262 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3263 NameVals.push_back(FS->instCount()); 3264 NameVals.push_back(FS->refs().size()); 3265 3266 for (auto &RI : FS->refs()) 3267 NameVals.push_back(VE.getValueID(RI.getValue())); 3268 3269 bool HasProfileData = F.getEntryCount().hasValue(); 3270 for (auto &ECI : FS->calls()) { 3271 NameVals.push_back(getValueId(ECI.first)); 3272 if (HasProfileData) 3273 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3274 } 3275 3276 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3277 unsigned Code = 3278 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3279 3280 // Emit the finished record. 3281 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3282 NameVals.clear(); 3283 } 3284 3285 // Collect the global value references in the given variable's initializer, 3286 // and emit them in a summary record. 3287 void ModuleBitcodeWriter::writeModuleLevelReferences( 3288 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3289 unsigned FSModRefsAbbrev) { 3290 auto VI = Index->getValueInfo(GlobalValue::getGUID(V.getName())); 3291 if (!VI || VI.getSummaryList().empty()) { 3292 // Only declarations should not have a summary (a declaration might however 3293 // have a summary if the def was in module level asm). 3294 assert(V.isDeclaration()); 3295 return; 3296 } 3297 auto *Summary = VI.getSummaryList()[0].get(); 3298 NameVals.push_back(VE.getValueID(&V)); 3299 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3300 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3301 3302 unsigned SizeBeforeRefs = NameVals.size(); 3303 for (auto &RI : VS->refs()) 3304 NameVals.push_back(VE.getValueID(RI.getValue())); 3305 // Sort the refs for determinism output, the vector returned by FS->refs() has 3306 // been initialized from a DenseSet. 3307 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3308 3309 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3310 FSModRefsAbbrev); 3311 NameVals.clear(); 3312 } 3313 3314 // Current version for the summary. 3315 // This is bumped whenever we introduce changes in the way some record are 3316 // interpreted, like flags for instance. 3317 static const uint64_t INDEX_VERSION = 3; 3318 3319 /// Emit the per-module summary section alongside the rest of 3320 /// the module's bitcode. 3321 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() { 3322 // By default we compile with ThinLTO if the module has a summary, but the 3323 // client can request full LTO with a module flag. 3324 bool IsThinLTO = true; 3325 if (auto *MD = 3326 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3327 IsThinLTO = MD->getZExtValue(); 3328 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3329 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3330 4); 3331 3332 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3333 3334 if (Index->begin() == Index->end()) { 3335 Stream.ExitBlock(); 3336 return; 3337 } 3338 3339 for (const auto &GVI : valueIds()) { 3340 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3341 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3342 } 3343 3344 // Abbrev for FS_PERMODULE. 3345 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3346 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3351 // numrefs x valueid, n x (valueid) 3352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3354 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3355 3356 // Abbrev for FS_PERMODULE_PROFILE. 3357 Abbv = std::make_shared<BitCodeAbbrev>(); 3358 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3363 // numrefs x valueid, n x (valueid, hotness) 3364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3366 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3367 3368 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3369 Abbv = std::make_shared<BitCodeAbbrev>(); 3370 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3375 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3376 3377 // Abbrev for FS_ALIAS. 3378 Abbv = std::make_shared<BitCodeAbbrev>(); 3379 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3383 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3384 3385 SmallVector<uint64_t, 64> NameVals; 3386 // Iterate over the list of functions instead of the Index to 3387 // ensure the ordering is stable. 3388 for (const Function &F : M) { 3389 // Summary emission does not support anonymous functions, they have to 3390 // renamed using the anonymous function renaming pass. 3391 if (!F.hasName()) 3392 report_fatal_error("Unexpected anonymous function when writing summary"); 3393 3394 ValueInfo VI = Index->getValueInfo(GlobalValue::getGUID(F.getName())); 3395 if (!VI || VI.getSummaryList().empty()) { 3396 // Only declarations should not have a summary (a declaration might 3397 // however have a summary if the def was in module level asm). 3398 assert(F.isDeclaration()); 3399 continue; 3400 } 3401 auto *Summary = VI.getSummaryList()[0].get(); 3402 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3403 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3404 } 3405 3406 // Capture references from GlobalVariable initializers, which are outside 3407 // of a function scope. 3408 for (const GlobalVariable &G : M.globals()) 3409 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3410 3411 for (const GlobalAlias &A : M.aliases()) { 3412 auto *Aliasee = A.getBaseObject(); 3413 if (!Aliasee->hasName()) 3414 // Nameless function don't have an entry in the summary, skip it. 3415 continue; 3416 auto AliasId = VE.getValueID(&A); 3417 auto AliaseeId = VE.getValueID(Aliasee); 3418 NameVals.push_back(AliasId); 3419 auto *Summary = Index->getGlobalValueSummary(A); 3420 AliasSummary *AS = cast<AliasSummary>(Summary); 3421 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3422 NameVals.push_back(AliaseeId); 3423 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3424 NameVals.clear(); 3425 } 3426 3427 Stream.ExitBlock(); 3428 } 3429 3430 /// Emit the combined summary section into the combined index file. 3431 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3432 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3433 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3434 3435 for (const auto &GVI : valueIds()) { 3436 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3437 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3438 } 3439 3440 // Abbrev for FS_COMBINED. 3441 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3442 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3443 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3448 // numrefs x valueid, n x (valueid) 3449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3451 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3452 3453 // Abbrev for FS_COMBINED_PROFILE. 3454 Abbv = std::make_shared<BitCodeAbbrev>(); 3455 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3461 // numrefs x valueid, n x (valueid, hotness) 3462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3464 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3465 3466 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3467 Abbv = std::make_shared<BitCodeAbbrev>(); 3468 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3474 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3475 3476 // Abbrev for FS_COMBINED_ALIAS. 3477 Abbv = std::make_shared<BitCodeAbbrev>(); 3478 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3483 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3484 3485 // The aliases are emitted as a post-pass, and will point to the value 3486 // id of the aliasee. Save them in a vector for post-processing. 3487 SmallVector<AliasSummary *, 64> Aliases; 3488 3489 // Save the value id for each summary for alias emission. 3490 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3491 3492 SmallVector<uint64_t, 64> NameVals; 3493 3494 // For local linkage, we also emit the original name separately 3495 // immediately after the record. 3496 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3497 if (!GlobalValue::isLocalLinkage(S.linkage())) 3498 return; 3499 NameVals.push_back(S.getOriginalName()); 3500 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3501 NameVals.clear(); 3502 }; 3503 3504 forEachSummary([&](GVInfo I) { 3505 GlobalValueSummary *S = I.second; 3506 assert(S); 3507 3508 auto ValueId = getValueId(I.first); 3509 assert(ValueId); 3510 SummaryToValueIdMap[S] = *ValueId; 3511 3512 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3513 // Will process aliases as a post-pass because the reader wants all 3514 // global to be loaded first. 3515 Aliases.push_back(AS); 3516 return; 3517 } 3518 3519 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3520 NameVals.push_back(*ValueId); 3521 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3522 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3523 for (auto &RI : VS->refs()) { 3524 auto RefValueId = getValueId(RI.getGUID()); 3525 if (!RefValueId) 3526 continue; 3527 NameVals.push_back(*RefValueId); 3528 } 3529 3530 // Emit the finished record. 3531 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3532 FSModRefsAbbrev); 3533 NameVals.clear(); 3534 MaybeEmitOriginalName(*S); 3535 return; 3536 } 3537 3538 auto *FS = cast<FunctionSummary>(S); 3539 writeFunctionTypeMetadataRecords(Stream, FS); 3540 3541 NameVals.push_back(*ValueId); 3542 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3543 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3544 NameVals.push_back(FS->instCount()); 3545 // Fill in below 3546 NameVals.push_back(0); 3547 3548 unsigned Count = 0; 3549 for (auto &RI : FS->refs()) { 3550 auto RefValueId = getValueId(RI.getGUID()); 3551 if (!RefValueId) 3552 continue; 3553 NameVals.push_back(*RefValueId); 3554 Count++; 3555 } 3556 NameVals[4] = Count; 3557 3558 bool HasProfileData = false; 3559 for (auto &EI : FS->calls()) { 3560 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown; 3561 if (HasProfileData) 3562 break; 3563 } 3564 3565 for (auto &EI : FS->calls()) { 3566 // If this GUID doesn't have a value id, it doesn't have a function 3567 // summary and we don't need to record any calls to it. 3568 GlobalValue::GUID GUID = EI.first.getGUID(); 3569 auto CallValueId = getValueId(GUID); 3570 if (!CallValueId) { 3571 // For SamplePGO, the indirect call targets for local functions will 3572 // have its original name annotated in profile. We try to find the 3573 // corresponding PGOFuncName as the GUID. 3574 GUID = Index.getGUIDFromOriginalID(GUID); 3575 if (GUID == 0) 3576 continue; 3577 CallValueId = getValueId(GUID); 3578 if (!CallValueId) 3579 continue; 3580 } 3581 NameVals.push_back(*CallValueId); 3582 if (HasProfileData) 3583 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3584 } 3585 3586 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3587 unsigned Code = 3588 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3589 3590 // Emit the finished record. 3591 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3592 NameVals.clear(); 3593 MaybeEmitOriginalName(*S); 3594 }); 3595 3596 for (auto *AS : Aliases) { 3597 auto AliasValueId = SummaryToValueIdMap[AS]; 3598 assert(AliasValueId); 3599 NameVals.push_back(AliasValueId); 3600 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3601 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3602 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3603 assert(AliaseeValueId); 3604 NameVals.push_back(AliaseeValueId); 3605 3606 // Emit the finished record. 3607 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3608 NameVals.clear(); 3609 MaybeEmitOriginalName(*AS); 3610 } 3611 3612 if (!Index.cfiFunctionDefs().empty()) { 3613 for (auto &S : Index.cfiFunctionDefs()) { 3614 NameVals.push_back(StrtabBuilder.add(S)); 3615 NameVals.push_back(S.size()); 3616 } 3617 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 3618 NameVals.clear(); 3619 } 3620 3621 if (!Index.cfiFunctionDecls().empty()) { 3622 for (auto &S : Index.cfiFunctionDecls()) { 3623 NameVals.push_back(StrtabBuilder.add(S)); 3624 NameVals.push_back(S.size()); 3625 } 3626 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 3627 NameVals.clear(); 3628 } 3629 3630 Stream.ExitBlock(); 3631 } 3632 3633 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3634 /// current llvm version, and a record for the epoch number. 3635 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3636 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3637 3638 // Write the "user readable" string identifying the bitcode producer 3639 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3640 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3641 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3642 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3643 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3644 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3645 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3646 3647 // Write the epoch version 3648 Abbv = std::make_shared<BitCodeAbbrev>(); 3649 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3650 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3651 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3652 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3653 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3654 Stream.ExitBlock(); 3655 } 3656 3657 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3658 // Emit the module's hash. 3659 // MODULE_CODE_HASH: [5*i32] 3660 if (GenerateHash) { 3661 uint32_t Vals[5]; 3662 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3663 Buffer.size() - BlockStartPos)); 3664 StringRef Hash = Hasher.result(); 3665 for (int Pos = 0; Pos < 20; Pos += 4) { 3666 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3667 } 3668 3669 // Emit the finished record. 3670 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3671 3672 if (ModHash) 3673 // Save the written hash value. 3674 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash)); 3675 } else if (ModHash) 3676 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 3677 } 3678 3679 void ModuleBitcodeWriter::write() { 3680 writeIdentificationBlock(Stream); 3681 3682 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3683 size_t BlockStartPos = Buffer.size(); 3684 3685 writeModuleVersion(); 3686 3687 // Emit blockinfo, which defines the standard abbreviations etc. 3688 writeBlockInfo(); 3689 3690 // Emit information about attribute groups. 3691 writeAttributeGroupTable(); 3692 3693 // Emit information about parameter attributes. 3694 writeAttributeTable(); 3695 3696 // Emit information describing all of the types in the module. 3697 writeTypeTable(); 3698 3699 writeComdats(); 3700 3701 // Emit top-level description of module, including target triple, inline asm, 3702 // descriptors for global variables, and function prototype info. 3703 writeModuleInfo(); 3704 3705 // Emit constants. 3706 writeModuleConstants(); 3707 3708 // Emit metadata kind names. 3709 writeModuleMetadataKinds(); 3710 3711 // Emit metadata. 3712 writeModuleMetadata(); 3713 3714 // Emit module-level use-lists. 3715 if (VE.shouldPreserveUseListOrder()) 3716 writeUseListBlock(nullptr); 3717 3718 writeOperandBundleTags(); 3719 3720 // Emit function bodies. 3721 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3722 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3723 if (!F->isDeclaration()) 3724 writeFunction(*F, FunctionToBitcodeIndex); 3725 3726 // Need to write after the above call to WriteFunction which populates 3727 // the summary information in the index. 3728 if (Index) 3729 writePerModuleGlobalValueSummary(); 3730 3731 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 3732 3733 writeModuleHash(BlockStartPos); 3734 3735 Stream.ExitBlock(); 3736 } 3737 3738 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3739 uint32_t &Position) { 3740 support::endian::write32le(&Buffer[Position], Value); 3741 Position += 4; 3742 } 3743 3744 /// If generating a bc file on darwin, we have to emit a 3745 /// header and trailer to make it compatible with the system archiver. To do 3746 /// this we emit the following header, and then emit a trailer that pads the 3747 /// file out to be a multiple of 16 bytes. 3748 /// 3749 /// struct bc_header { 3750 /// uint32_t Magic; // 0x0B17C0DE 3751 /// uint32_t Version; // Version, currently always 0. 3752 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3753 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3754 /// uint32_t CPUType; // CPU specifier. 3755 /// ... potentially more later ... 3756 /// }; 3757 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3758 const Triple &TT) { 3759 unsigned CPUType = ~0U; 3760 3761 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3762 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3763 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3764 // specific constants here because they are implicitly part of the Darwin ABI. 3765 enum { 3766 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3767 DARWIN_CPU_TYPE_X86 = 7, 3768 DARWIN_CPU_TYPE_ARM = 12, 3769 DARWIN_CPU_TYPE_POWERPC = 18 3770 }; 3771 3772 Triple::ArchType Arch = TT.getArch(); 3773 if (Arch == Triple::x86_64) 3774 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3775 else if (Arch == Triple::x86) 3776 CPUType = DARWIN_CPU_TYPE_X86; 3777 else if (Arch == Triple::ppc) 3778 CPUType = DARWIN_CPU_TYPE_POWERPC; 3779 else if (Arch == Triple::ppc64) 3780 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3781 else if (Arch == Triple::arm || Arch == Triple::thumb) 3782 CPUType = DARWIN_CPU_TYPE_ARM; 3783 3784 // Traditional Bitcode starts after header. 3785 assert(Buffer.size() >= BWH_HeaderSize && 3786 "Expected header size to be reserved"); 3787 unsigned BCOffset = BWH_HeaderSize; 3788 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3789 3790 // Write the magic and version. 3791 unsigned Position = 0; 3792 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3793 writeInt32ToBuffer(0, Buffer, Position); // Version. 3794 writeInt32ToBuffer(BCOffset, Buffer, Position); 3795 writeInt32ToBuffer(BCSize, Buffer, Position); 3796 writeInt32ToBuffer(CPUType, Buffer, Position); 3797 3798 // If the file is not a multiple of 16 bytes, insert dummy padding. 3799 while (Buffer.size() & 15) 3800 Buffer.push_back(0); 3801 } 3802 3803 /// Helper to write the header common to all bitcode files. 3804 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3805 // Emit the file header. 3806 Stream.Emit((unsigned)'B', 8); 3807 Stream.Emit((unsigned)'C', 8); 3808 Stream.Emit(0x0, 4); 3809 Stream.Emit(0xC, 4); 3810 Stream.Emit(0xE, 4); 3811 Stream.Emit(0xD, 4); 3812 } 3813 3814 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3815 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3816 writeBitcodeHeader(*Stream); 3817 } 3818 3819 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 3820 3821 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 3822 Stream->EnterSubblock(Block, 3); 3823 3824 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3825 Abbv->Add(BitCodeAbbrevOp(Record)); 3826 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 3827 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 3828 3829 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 3830 3831 Stream->ExitBlock(); 3832 } 3833 3834 void BitcodeWriter::writeSymtab() { 3835 assert(!WroteStrtab && !WroteSymtab); 3836 3837 // If any module has module-level inline asm, we will require a registered asm 3838 // parser for the target so that we can create an accurate symbol table for 3839 // the module. 3840 for (Module *M : Mods) { 3841 if (M->getModuleInlineAsm().empty()) 3842 continue; 3843 3844 std::string Err; 3845 const Triple TT(M->getTargetTriple()); 3846 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 3847 if (!T || !T->hasMCAsmParser()) 3848 return; 3849 } 3850 3851 WroteSymtab = true; 3852 SmallVector<char, 0> Symtab; 3853 // The irsymtab::build function may be unable to create a symbol table if the 3854 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 3855 // table is not required for correctness, but we still want to be able to 3856 // write malformed modules to bitcode files, so swallow the error. 3857 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 3858 consumeError(std::move(E)); 3859 return; 3860 } 3861 3862 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 3863 {Symtab.data(), Symtab.size()}); 3864 } 3865 3866 void BitcodeWriter::writeStrtab() { 3867 assert(!WroteStrtab); 3868 3869 std::vector<char> Strtab; 3870 StrtabBuilder.finalizeInOrder(); 3871 Strtab.resize(StrtabBuilder.getSize()); 3872 StrtabBuilder.write((uint8_t *)Strtab.data()); 3873 3874 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 3875 {Strtab.data(), Strtab.size()}); 3876 3877 WroteStrtab = true; 3878 } 3879 3880 void BitcodeWriter::copyStrtab(StringRef Strtab) { 3881 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 3882 WroteStrtab = true; 3883 } 3884 3885 void BitcodeWriter::writeModule(const Module *M, 3886 bool ShouldPreserveUseListOrder, 3887 const ModuleSummaryIndex *Index, 3888 bool GenerateHash, ModuleHash *ModHash) { 3889 assert(!WroteStrtab); 3890 3891 // The Mods vector is used by irsymtab::build, which requires non-const 3892 // Modules in case it needs to materialize metadata. But the bitcode writer 3893 // requires that the module is materialized, so we can cast to non-const here, 3894 // after checking that it is in fact materialized. 3895 assert(M->isMaterialized()); 3896 Mods.push_back(const_cast<Module *>(M)); 3897 3898 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 3899 ShouldPreserveUseListOrder, Index, 3900 GenerateHash, ModHash); 3901 ModuleWriter.write(); 3902 } 3903 3904 void BitcodeWriter::writeIndex( 3905 const ModuleSummaryIndex *Index, 3906 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 3907 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 3908 ModuleToSummariesForIndex); 3909 IndexWriter.write(); 3910 } 3911 3912 /// WriteBitcodeToFile - Write the specified module to the specified output 3913 /// stream. 3914 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3915 bool ShouldPreserveUseListOrder, 3916 const ModuleSummaryIndex *Index, 3917 bool GenerateHash, ModuleHash *ModHash) { 3918 SmallVector<char, 0> Buffer; 3919 Buffer.reserve(256*1024); 3920 3921 // If this is darwin or another generic macho target, reserve space for the 3922 // header. 3923 Triple TT(M->getTargetTriple()); 3924 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3925 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3926 3927 BitcodeWriter Writer(Buffer); 3928 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 3929 ModHash); 3930 Writer.writeSymtab(); 3931 Writer.writeStrtab(); 3932 3933 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3934 emitDarwinBCHeaderAndTrailer(Buffer, TT); 3935 3936 // Write the generated bitstream to "Out". 3937 Out.write((char*)&Buffer.front(), Buffer.size()); 3938 } 3939 3940 void IndexBitcodeWriter::write() { 3941 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3942 3943 writeModuleVersion(); 3944 3945 // Write the module paths in the combined index. 3946 writeModStrings(); 3947 3948 // Write the summary combined index records. 3949 writeCombinedGlobalValueSummary(); 3950 3951 Stream.ExitBlock(); 3952 } 3953 3954 // Write the specified module summary index to the given raw output stream, 3955 // where it will be written in a new bitcode block. This is used when 3956 // writing the combined index file for ThinLTO. When writing a subset of the 3957 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 3958 void llvm::WriteIndexToFile( 3959 const ModuleSummaryIndex &Index, raw_ostream &Out, 3960 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 3961 SmallVector<char, 0> Buffer; 3962 Buffer.reserve(256 * 1024); 3963 3964 BitcodeWriter Writer(Buffer); 3965 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 3966 Writer.writeStrtab(); 3967 3968 Out.write((char *)&Buffer.front(), Buffer.size()); 3969 } 3970