1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/StringExtras.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/Bitcode/ReaderWriter.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/UseListOrder.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Support/Program.h" 34 #include "llvm/Support/SHA1.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <cctype> 37 #include <map> 38 using namespace llvm; 39 40 /// These are manifest constants used by the bitcode writer. They do not need to 41 /// be kept in sync with the reader, but need to be consistent within this file. 42 enum { 43 // VALUE_SYMTAB_BLOCK abbrev id's. 44 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 45 VST_ENTRY_7_ABBREV, 46 VST_ENTRY_6_ABBREV, 47 VST_BBENTRY_6_ABBREV, 48 49 // CONSTANTS_BLOCK abbrev id's. 50 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 51 CONSTANTS_INTEGER_ABBREV, 52 CONSTANTS_CE_CAST_Abbrev, 53 CONSTANTS_NULL_Abbrev, 54 55 // FUNCTION_BLOCK abbrev id's. 56 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 57 FUNCTION_INST_BINOP_ABBREV, 58 FUNCTION_INST_BINOP_FLAGS_ABBREV, 59 FUNCTION_INST_CAST_ABBREV, 60 FUNCTION_INST_RET_VOID_ABBREV, 61 FUNCTION_INST_RET_VAL_ABBREV, 62 FUNCTION_INST_UNREACHABLE_ABBREV, 63 FUNCTION_INST_GEP_ABBREV, 64 }; 65 66 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 67 /// file type. Owns the BitstreamWriter, and includes the main entry point for 68 /// writing. 69 class BitcodeWriter { 70 protected: 71 /// Pointer to the buffer allocated by caller for bitcode writing. 72 const SmallVectorImpl<char> &Buffer; 73 74 /// The stream created and owned by the BitodeWriter. 75 BitstreamWriter Stream; 76 77 /// Saves the offset of the VSTOffset record that must eventually be 78 /// backpatched with the offset of the actual VST. 79 uint64_t VSTOffsetPlaceholder = 0; 80 81 public: 82 /// Constructs a BitcodeWriter object, and initializes a BitstreamRecord, 83 /// writing to the provided \p Buffer. 84 BitcodeWriter(SmallVectorImpl<char> &Buffer) 85 : Buffer(Buffer), Stream(Buffer) {} 86 87 virtual ~BitcodeWriter() = default; 88 89 /// Main entry point to write the bitcode file, which writes the bitcode 90 /// header and will then invoke the virtual writeBlocks() method. 91 void write(); 92 93 private: 94 /// Derived classes must implement this to write the corresponding blocks for 95 /// that bitcode file type. 96 virtual void writeBlocks() = 0; 97 98 protected: 99 bool hasVSTOffsetPlaceholder() { return VSTOffsetPlaceholder != 0; } 100 void writeValueSymbolTableForwardDecl(); 101 void writeBitcodeHeader(); 102 }; 103 104 /// Class to manage the bitcode writing for a module. 105 class ModuleBitcodeWriter : public BitcodeWriter { 106 /// The Module to write to bitcode. 107 const Module &M; 108 109 /// Enumerates ids for all values in the module. 110 ValueEnumerator VE; 111 112 /// Optional per-module index to write for ThinLTO. 113 const ModuleSummaryIndex *Index; 114 115 /// True if a module hash record should be written. 116 bool GenerateHash; 117 118 /// The start bit of the module block, for use in generating a module hash 119 uint64_t BitcodeStartBit = 0; 120 121 public: 122 /// Constructs a ModuleBitcodeWriter object for the given Module, 123 /// writing to the provided \p Buffer. 124 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 125 bool ShouldPreserveUseListOrder, 126 const ModuleSummaryIndex *Index, bool GenerateHash) 127 : BitcodeWriter(Buffer), M(*M), VE(*M, ShouldPreserveUseListOrder), 128 Index(Index), GenerateHash(GenerateHash) { 129 // Save the start bit of the actual bitcode, in case there is space 130 // saved at the start for the darwin header above. The reader stream 131 // will start at the bitcode, and we need the offset of the VST 132 // to line up. 133 BitcodeStartBit = Stream.GetCurrentBitNo(); 134 } 135 136 private: 137 /// Main entry point for writing a module to bitcode, invoked by 138 /// BitcodeWriter::write() after it writes the header. 139 void writeBlocks() override; 140 141 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 142 /// current llvm version, and a record for the epoch number. 143 void writeIdentificationBlock(); 144 145 /// Emit the current module to the bitstream. 146 void writeModule(); 147 148 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 149 150 void writeStringRecord(unsigned Code, StringRef Str, unsigned AbbrevToUse); 151 void writeAttributeGroupTable(); 152 void writeAttributeTable(); 153 void writeTypeTable(); 154 void writeComdats(); 155 void writeModuleInfo(); 156 void writeValueAsMetadata(const ValueAsMetadata *MD, 157 SmallVectorImpl<uint64_t> &Record); 158 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 159 unsigned Abbrev); 160 unsigned createDILocationAbbrev(); 161 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 162 unsigned &Abbrev); 163 unsigned createGenericDINodeAbbrev(); 164 void writeGenericDINode(const GenericDINode *N, 165 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 166 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 167 unsigned Abbrev); 168 void writeDIEnumerator(const DIEnumerator *N, 169 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 170 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 171 unsigned Abbrev); 172 void writeDIDerivedType(const DIDerivedType *N, 173 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 174 void writeDICompositeType(const DICompositeType *N, 175 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 176 void writeDISubroutineType(const DISubroutineType *N, 177 SmallVectorImpl<uint64_t> &Record, 178 unsigned Abbrev); 179 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 180 unsigned Abbrev); 181 void writeDICompileUnit(const DICompileUnit *N, 182 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 183 void writeDISubprogram(const DISubprogram *N, 184 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 185 void writeDILexicalBlock(const DILexicalBlock *N, 186 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 187 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 188 SmallVectorImpl<uint64_t> &Record, 189 unsigned Abbrev); 190 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 191 unsigned Abbrev); 192 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 193 unsigned Abbrev); 194 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 195 unsigned Abbrev); 196 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 197 unsigned Abbrev); 198 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 199 SmallVectorImpl<uint64_t> &Record, 200 unsigned Abbrev); 201 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 202 SmallVectorImpl<uint64_t> &Record, 203 unsigned Abbrev); 204 void writeDIGlobalVariable(const DIGlobalVariable *N, 205 SmallVectorImpl<uint64_t> &Record, 206 unsigned Abbrev); 207 void writeDILocalVariable(const DILocalVariable *N, 208 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 209 void writeDIExpression(const DIExpression *N, 210 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 211 void writeDIObjCProperty(const DIObjCProperty *N, 212 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 213 void writeDIImportedEntity(const DIImportedEntity *N, 214 SmallVectorImpl<uint64_t> &Record, 215 unsigned Abbrev); 216 unsigned createNamedMetadataAbbrev(); 217 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 218 unsigned createMetadataStringsAbbrev(); 219 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 220 SmallVectorImpl<uint64_t> &Record); 221 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 222 SmallVectorImpl<uint64_t> &Record); 223 void writeModuleMetadata(); 224 void writeFunctionMetadata(const Function &F); 225 void writeMetadataAttachment(const Function &F); 226 void writeModuleMetadataStore(); 227 void writeOperandBundleTags(); 228 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 229 void writeModuleConstants(); 230 bool pushValueAndType(const Value *V, unsigned InstID, 231 SmallVectorImpl<unsigned> &Vals); 232 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 233 void pushValue(const Value *V, unsigned InstID, 234 SmallVectorImpl<unsigned> &Vals); 235 void pushValueSigned(const Value *V, unsigned InstID, 236 SmallVectorImpl<uint64_t> &Vals); 237 void writeInstruction(const Instruction &I, unsigned InstID, 238 SmallVectorImpl<unsigned> &Vals); 239 void writeValueSymbolTable( 240 const ValueSymbolTable &VST, bool IsModuleLevel = false, 241 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex = nullptr); 242 void writeUseList(UseListOrder &&Order); 243 void writeUseListBlock(const Function *F); 244 void 245 writeFunction(const Function &F, 246 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 247 void writeBlockInfo(); 248 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 249 GlobalValueInfo *Info, 250 unsigned ValueID, 251 unsigned FSCallsAbbrev, 252 unsigned FSCallsProfileAbbrev, 253 const Function &F); 254 void writeModuleLevelReferences(const GlobalVariable &V, 255 SmallVector<uint64_t, 64> &NameVals, 256 unsigned FSModRefsAbbrev); 257 void writePerModuleGlobalValueSummary(); 258 void writeModuleHash(size_t BlockStartPos); 259 }; 260 261 /// Class to manage the bitcode writing for a combined index. 262 class IndexBitcodeWriter : public BitcodeWriter { 263 /// The combined index to write to bitcode. 264 const ModuleSummaryIndex &Index; 265 266 /// Map that holds the correspondence between the GUID used in the combined 267 /// index and a value id generated by this class to use in references. 268 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 269 270 /// Tracks the last value id recorded in the GUIDToValueMap. 271 unsigned GlobalValueId = 0; 272 273 public: 274 /// Constructs a IndexBitcodeWriter object for the given combined index, 275 /// writing to the provided \p Buffer. 276 IndexBitcodeWriter(SmallVectorImpl<char> &Buffer, 277 const ModuleSummaryIndex &Index) 278 : BitcodeWriter(Buffer), Index(Index) { 279 // Assign unique value ids to all functions in the index for use 280 // in writing out the call graph edges. Save the mapping from GUID 281 // to the new global value id to use when writing those edges, which 282 // are currently saved in the index in terms of GUID. 283 for (auto &II : Index) 284 GUIDToValueIdMap[II.first] = ++GlobalValueId; 285 } 286 287 private: 288 /// Main entry point for writing a combined index to bitcode, invoked by 289 /// BitcodeWriter::write() after it writes the header. 290 void writeBlocks() override; 291 292 void writeIndex(); 293 void writeModStrings(); 294 void writeCombinedValueSymbolTable(); 295 void writeCombinedGlobalValueSummary(); 296 297 bool hasValueId(GlobalValue::GUID ValGUID) { 298 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 299 return VMI != GUIDToValueIdMap.end(); 300 } 301 unsigned getValueId(GlobalValue::GUID ValGUID) { 302 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 303 // If this GUID doesn't have an entry, assign one. 304 if (VMI == GUIDToValueIdMap.end()) { 305 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 306 return GlobalValueId; 307 } else { 308 return VMI->second; 309 } 310 } 311 unsigned popValueId(GlobalValue::GUID ValGUID) { 312 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 313 assert(VMI != GUIDToValueIdMap.end()); 314 unsigned ValueId = VMI->second; 315 GUIDToValueIdMap.erase(VMI); 316 return ValueId; 317 } 318 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 319 }; 320 321 static unsigned getEncodedCastOpcode(unsigned Opcode) { 322 switch (Opcode) { 323 default: llvm_unreachable("Unknown cast instruction!"); 324 case Instruction::Trunc : return bitc::CAST_TRUNC; 325 case Instruction::ZExt : return bitc::CAST_ZEXT; 326 case Instruction::SExt : return bitc::CAST_SEXT; 327 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 328 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 329 case Instruction::UIToFP : return bitc::CAST_UITOFP; 330 case Instruction::SIToFP : return bitc::CAST_SITOFP; 331 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 332 case Instruction::FPExt : return bitc::CAST_FPEXT; 333 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 334 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 335 case Instruction::BitCast : return bitc::CAST_BITCAST; 336 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 337 } 338 } 339 340 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 341 switch (Opcode) { 342 default: llvm_unreachable("Unknown binary instruction!"); 343 case Instruction::Add: 344 case Instruction::FAdd: return bitc::BINOP_ADD; 345 case Instruction::Sub: 346 case Instruction::FSub: return bitc::BINOP_SUB; 347 case Instruction::Mul: 348 case Instruction::FMul: return bitc::BINOP_MUL; 349 case Instruction::UDiv: return bitc::BINOP_UDIV; 350 case Instruction::FDiv: 351 case Instruction::SDiv: return bitc::BINOP_SDIV; 352 case Instruction::URem: return bitc::BINOP_UREM; 353 case Instruction::FRem: 354 case Instruction::SRem: return bitc::BINOP_SREM; 355 case Instruction::Shl: return bitc::BINOP_SHL; 356 case Instruction::LShr: return bitc::BINOP_LSHR; 357 case Instruction::AShr: return bitc::BINOP_ASHR; 358 case Instruction::And: return bitc::BINOP_AND; 359 case Instruction::Or: return bitc::BINOP_OR; 360 case Instruction::Xor: return bitc::BINOP_XOR; 361 } 362 } 363 364 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 365 switch (Op) { 366 default: llvm_unreachable("Unknown RMW operation!"); 367 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 368 case AtomicRMWInst::Add: return bitc::RMW_ADD; 369 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 370 case AtomicRMWInst::And: return bitc::RMW_AND; 371 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 372 case AtomicRMWInst::Or: return bitc::RMW_OR; 373 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 374 case AtomicRMWInst::Max: return bitc::RMW_MAX; 375 case AtomicRMWInst::Min: return bitc::RMW_MIN; 376 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 377 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 378 } 379 } 380 381 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 382 switch (Ordering) { 383 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 384 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 385 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 386 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 387 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 388 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 389 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 390 } 391 llvm_unreachable("Invalid ordering"); 392 } 393 394 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) { 395 switch (SynchScope) { 396 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 397 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 398 } 399 llvm_unreachable("Invalid synch scope"); 400 } 401 402 void ModuleBitcodeWriter::writeStringRecord(unsigned Code, StringRef Str, 403 unsigned AbbrevToUse) { 404 SmallVector<unsigned, 64> Vals; 405 406 // Code: [strchar x N] 407 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 408 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 409 AbbrevToUse = 0; 410 Vals.push_back(Str[i]); 411 } 412 413 // Emit the finished record. 414 Stream.EmitRecord(Code, Vals, AbbrevToUse); 415 } 416 417 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 418 switch (Kind) { 419 case Attribute::Alignment: 420 return bitc::ATTR_KIND_ALIGNMENT; 421 case Attribute::AllocSize: 422 return bitc::ATTR_KIND_ALLOC_SIZE; 423 case Attribute::AlwaysInline: 424 return bitc::ATTR_KIND_ALWAYS_INLINE; 425 case Attribute::ArgMemOnly: 426 return bitc::ATTR_KIND_ARGMEMONLY; 427 case Attribute::Builtin: 428 return bitc::ATTR_KIND_BUILTIN; 429 case Attribute::ByVal: 430 return bitc::ATTR_KIND_BY_VAL; 431 case Attribute::Convergent: 432 return bitc::ATTR_KIND_CONVERGENT; 433 case Attribute::InAlloca: 434 return bitc::ATTR_KIND_IN_ALLOCA; 435 case Attribute::Cold: 436 return bitc::ATTR_KIND_COLD; 437 case Attribute::InaccessibleMemOnly: 438 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 439 case Attribute::InaccessibleMemOrArgMemOnly: 440 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 441 case Attribute::InlineHint: 442 return bitc::ATTR_KIND_INLINE_HINT; 443 case Attribute::InReg: 444 return bitc::ATTR_KIND_IN_REG; 445 case Attribute::JumpTable: 446 return bitc::ATTR_KIND_JUMP_TABLE; 447 case Attribute::MinSize: 448 return bitc::ATTR_KIND_MIN_SIZE; 449 case Attribute::Naked: 450 return bitc::ATTR_KIND_NAKED; 451 case Attribute::Nest: 452 return bitc::ATTR_KIND_NEST; 453 case Attribute::NoAlias: 454 return bitc::ATTR_KIND_NO_ALIAS; 455 case Attribute::NoBuiltin: 456 return bitc::ATTR_KIND_NO_BUILTIN; 457 case Attribute::NoCapture: 458 return bitc::ATTR_KIND_NO_CAPTURE; 459 case Attribute::NoDuplicate: 460 return bitc::ATTR_KIND_NO_DUPLICATE; 461 case Attribute::NoImplicitFloat: 462 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 463 case Attribute::NoInline: 464 return bitc::ATTR_KIND_NO_INLINE; 465 case Attribute::NoRecurse: 466 return bitc::ATTR_KIND_NO_RECURSE; 467 case Attribute::NonLazyBind: 468 return bitc::ATTR_KIND_NON_LAZY_BIND; 469 case Attribute::NonNull: 470 return bitc::ATTR_KIND_NON_NULL; 471 case Attribute::Dereferenceable: 472 return bitc::ATTR_KIND_DEREFERENCEABLE; 473 case Attribute::DereferenceableOrNull: 474 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 475 case Attribute::NoRedZone: 476 return bitc::ATTR_KIND_NO_RED_ZONE; 477 case Attribute::NoReturn: 478 return bitc::ATTR_KIND_NO_RETURN; 479 case Attribute::NoUnwind: 480 return bitc::ATTR_KIND_NO_UNWIND; 481 case Attribute::OptimizeForSize: 482 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 483 case Attribute::OptimizeNone: 484 return bitc::ATTR_KIND_OPTIMIZE_NONE; 485 case Attribute::ReadNone: 486 return bitc::ATTR_KIND_READ_NONE; 487 case Attribute::ReadOnly: 488 return bitc::ATTR_KIND_READ_ONLY; 489 case Attribute::Returned: 490 return bitc::ATTR_KIND_RETURNED; 491 case Attribute::ReturnsTwice: 492 return bitc::ATTR_KIND_RETURNS_TWICE; 493 case Attribute::SExt: 494 return bitc::ATTR_KIND_S_EXT; 495 case Attribute::StackAlignment: 496 return bitc::ATTR_KIND_STACK_ALIGNMENT; 497 case Attribute::StackProtect: 498 return bitc::ATTR_KIND_STACK_PROTECT; 499 case Attribute::StackProtectReq: 500 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 501 case Attribute::StackProtectStrong: 502 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 503 case Attribute::SafeStack: 504 return bitc::ATTR_KIND_SAFESTACK; 505 case Attribute::StructRet: 506 return bitc::ATTR_KIND_STRUCT_RET; 507 case Attribute::SanitizeAddress: 508 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 509 case Attribute::SanitizeThread: 510 return bitc::ATTR_KIND_SANITIZE_THREAD; 511 case Attribute::SanitizeMemory: 512 return bitc::ATTR_KIND_SANITIZE_MEMORY; 513 case Attribute::SwiftError: 514 return bitc::ATTR_KIND_SWIFT_ERROR; 515 case Attribute::SwiftSelf: 516 return bitc::ATTR_KIND_SWIFT_SELF; 517 case Attribute::UWTable: 518 return bitc::ATTR_KIND_UW_TABLE; 519 case Attribute::ZExt: 520 return bitc::ATTR_KIND_Z_EXT; 521 case Attribute::EndAttrKinds: 522 llvm_unreachable("Can not encode end-attribute kinds marker."); 523 case Attribute::None: 524 llvm_unreachable("Can not encode none-attribute."); 525 } 526 527 llvm_unreachable("Trying to encode unknown attribute"); 528 } 529 530 void ModuleBitcodeWriter::writeAttributeGroupTable() { 531 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 532 if (AttrGrps.empty()) return; 533 534 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 535 536 SmallVector<uint64_t, 64> Record; 537 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 538 AttributeSet AS = AttrGrps[i]; 539 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 540 AttributeSet A = AS.getSlotAttributes(i); 541 542 Record.push_back(VE.getAttributeGroupID(A)); 543 Record.push_back(AS.getSlotIndex(i)); 544 545 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 546 I != E; ++I) { 547 Attribute Attr = *I; 548 if (Attr.isEnumAttribute()) { 549 Record.push_back(0); 550 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 551 } else if (Attr.isIntAttribute()) { 552 Record.push_back(1); 553 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 554 Record.push_back(Attr.getValueAsInt()); 555 } else { 556 StringRef Kind = Attr.getKindAsString(); 557 StringRef Val = Attr.getValueAsString(); 558 559 Record.push_back(Val.empty() ? 3 : 4); 560 Record.append(Kind.begin(), Kind.end()); 561 Record.push_back(0); 562 if (!Val.empty()) { 563 Record.append(Val.begin(), Val.end()); 564 Record.push_back(0); 565 } 566 } 567 } 568 569 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 570 Record.clear(); 571 } 572 } 573 574 Stream.ExitBlock(); 575 } 576 577 void ModuleBitcodeWriter::writeAttributeTable() { 578 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 579 if (Attrs.empty()) return; 580 581 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 582 583 SmallVector<uint64_t, 64> Record; 584 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 585 const AttributeSet &A = Attrs[i]; 586 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 587 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 588 589 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 590 Record.clear(); 591 } 592 593 Stream.ExitBlock(); 594 } 595 596 /// WriteTypeTable - Write out the type table for a module. 597 void ModuleBitcodeWriter::writeTypeTable() { 598 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 599 600 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 601 SmallVector<uint64_t, 64> TypeVals; 602 603 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 604 605 // Abbrev for TYPE_CODE_POINTER. 606 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 607 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 608 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 609 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 610 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 611 612 // Abbrev for TYPE_CODE_FUNCTION. 613 Abbv = new BitCodeAbbrev(); 614 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 616 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 618 619 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 620 621 // Abbrev for TYPE_CODE_STRUCT_ANON. 622 Abbv = new BitCodeAbbrev(); 623 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 624 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 625 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 626 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 627 628 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 629 630 // Abbrev for TYPE_CODE_STRUCT_NAME. 631 Abbv = new BitCodeAbbrev(); 632 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 635 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 636 637 // Abbrev for TYPE_CODE_STRUCT_NAMED. 638 Abbv = new BitCodeAbbrev(); 639 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 640 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 641 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 642 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 643 644 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 645 646 // Abbrev for TYPE_CODE_ARRAY. 647 Abbv = new BitCodeAbbrev(); 648 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 649 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 650 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 651 652 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 653 654 // Emit an entry count so the reader can reserve space. 655 TypeVals.push_back(TypeList.size()); 656 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 657 TypeVals.clear(); 658 659 // Loop over all of the types, emitting each in turn. 660 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 661 Type *T = TypeList[i]; 662 int AbbrevToUse = 0; 663 unsigned Code = 0; 664 665 switch (T->getTypeID()) { 666 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 667 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 668 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 669 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 670 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 671 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 672 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 673 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 674 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 675 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 676 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 677 case Type::IntegerTyID: 678 // INTEGER: [width] 679 Code = bitc::TYPE_CODE_INTEGER; 680 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 681 break; 682 case Type::PointerTyID: { 683 PointerType *PTy = cast<PointerType>(T); 684 // POINTER: [pointee type, address space] 685 Code = bitc::TYPE_CODE_POINTER; 686 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 687 unsigned AddressSpace = PTy->getAddressSpace(); 688 TypeVals.push_back(AddressSpace); 689 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 690 break; 691 } 692 case Type::FunctionTyID: { 693 FunctionType *FT = cast<FunctionType>(T); 694 // FUNCTION: [isvararg, retty, paramty x N] 695 Code = bitc::TYPE_CODE_FUNCTION; 696 TypeVals.push_back(FT->isVarArg()); 697 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 698 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 699 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 700 AbbrevToUse = FunctionAbbrev; 701 break; 702 } 703 case Type::StructTyID: { 704 StructType *ST = cast<StructType>(T); 705 // STRUCT: [ispacked, eltty x N] 706 TypeVals.push_back(ST->isPacked()); 707 // Output all of the element types. 708 for (StructType::element_iterator I = ST->element_begin(), 709 E = ST->element_end(); I != E; ++I) 710 TypeVals.push_back(VE.getTypeID(*I)); 711 712 if (ST->isLiteral()) { 713 Code = bitc::TYPE_CODE_STRUCT_ANON; 714 AbbrevToUse = StructAnonAbbrev; 715 } else { 716 if (ST->isOpaque()) { 717 Code = bitc::TYPE_CODE_OPAQUE; 718 } else { 719 Code = bitc::TYPE_CODE_STRUCT_NAMED; 720 AbbrevToUse = StructNamedAbbrev; 721 } 722 723 // Emit the name if it is present. 724 if (!ST->getName().empty()) 725 writeStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 726 StructNameAbbrev); 727 } 728 break; 729 } 730 case Type::ArrayTyID: { 731 ArrayType *AT = cast<ArrayType>(T); 732 // ARRAY: [numelts, eltty] 733 Code = bitc::TYPE_CODE_ARRAY; 734 TypeVals.push_back(AT->getNumElements()); 735 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 736 AbbrevToUse = ArrayAbbrev; 737 break; 738 } 739 case Type::VectorTyID: { 740 VectorType *VT = cast<VectorType>(T); 741 // VECTOR [numelts, eltty] 742 Code = bitc::TYPE_CODE_VECTOR; 743 TypeVals.push_back(VT->getNumElements()); 744 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 745 break; 746 } 747 } 748 749 // Emit the finished record. 750 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 751 TypeVals.clear(); 752 } 753 754 Stream.ExitBlock(); 755 } 756 757 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 758 switch (Linkage) { 759 case GlobalValue::ExternalLinkage: 760 return 0; 761 case GlobalValue::WeakAnyLinkage: 762 return 16; 763 case GlobalValue::AppendingLinkage: 764 return 2; 765 case GlobalValue::InternalLinkage: 766 return 3; 767 case GlobalValue::LinkOnceAnyLinkage: 768 return 18; 769 case GlobalValue::ExternalWeakLinkage: 770 return 7; 771 case GlobalValue::CommonLinkage: 772 return 8; 773 case GlobalValue::PrivateLinkage: 774 return 9; 775 case GlobalValue::WeakODRLinkage: 776 return 17; 777 case GlobalValue::LinkOnceODRLinkage: 778 return 19; 779 case GlobalValue::AvailableExternallyLinkage: 780 return 12; 781 } 782 llvm_unreachable("Invalid linkage"); 783 } 784 785 static unsigned getEncodedLinkage(const GlobalValue &GV) { 786 return getEncodedLinkage(GV.getLinkage()); 787 } 788 789 // Decode the flags for GlobalValue in the summary 790 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 791 uint64_t RawFlags = 0; 792 793 RawFlags |= Flags.HasSection; // bool 794 795 // Linkage don't need to be remapped at that time for the summary. Any future 796 // change to the getEncodedLinkage() function will need to be taken into 797 // account here as well. 798 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 799 800 return RawFlags; 801 } 802 803 static unsigned getEncodedVisibility(const GlobalValue &GV) { 804 switch (GV.getVisibility()) { 805 case GlobalValue::DefaultVisibility: return 0; 806 case GlobalValue::HiddenVisibility: return 1; 807 case GlobalValue::ProtectedVisibility: return 2; 808 } 809 llvm_unreachable("Invalid visibility"); 810 } 811 812 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 813 switch (GV.getDLLStorageClass()) { 814 case GlobalValue::DefaultStorageClass: return 0; 815 case GlobalValue::DLLImportStorageClass: return 1; 816 case GlobalValue::DLLExportStorageClass: return 2; 817 } 818 llvm_unreachable("Invalid DLL storage class"); 819 } 820 821 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 822 switch (GV.getThreadLocalMode()) { 823 case GlobalVariable::NotThreadLocal: return 0; 824 case GlobalVariable::GeneralDynamicTLSModel: return 1; 825 case GlobalVariable::LocalDynamicTLSModel: return 2; 826 case GlobalVariable::InitialExecTLSModel: return 3; 827 case GlobalVariable::LocalExecTLSModel: return 4; 828 } 829 llvm_unreachable("Invalid TLS model"); 830 } 831 832 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 833 switch (C.getSelectionKind()) { 834 case Comdat::Any: 835 return bitc::COMDAT_SELECTION_KIND_ANY; 836 case Comdat::ExactMatch: 837 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 838 case Comdat::Largest: 839 return bitc::COMDAT_SELECTION_KIND_LARGEST; 840 case Comdat::NoDuplicates: 841 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 842 case Comdat::SameSize: 843 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 844 } 845 llvm_unreachable("Invalid selection kind"); 846 } 847 848 void ModuleBitcodeWriter::writeComdats() { 849 SmallVector<unsigned, 64> Vals; 850 for (const Comdat *C : VE.getComdats()) { 851 // COMDAT: [selection_kind, name] 852 Vals.push_back(getEncodedComdatSelectionKind(*C)); 853 size_t Size = C->getName().size(); 854 assert(isUInt<32>(Size)); 855 Vals.push_back(Size); 856 for (char Chr : C->getName()) 857 Vals.push_back((unsigned char)Chr); 858 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 859 Vals.clear(); 860 } 861 } 862 863 /// Write a record that will eventually hold the word offset of the 864 /// module-level VST. For now the offset is 0, which will be backpatched 865 /// after the real VST is written. Saves the bit offset to backpatch. 866 void BitcodeWriter::writeValueSymbolTableForwardDecl() { 867 // Write a placeholder value in for the offset of the real VST, 868 // which is written after the function blocks so that it can include 869 // the offset of each function. The placeholder offset will be 870 // updated when the real VST is written. 871 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 872 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 873 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 874 // hold the real VST offset. Must use fixed instead of VBR as we don't 875 // know how many VBR chunks to reserve ahead of time. 876 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 877 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv); 878 879 // Emit the placeholder 880 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 881 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 882 883 // Compute and save the bit offset to the placeholder, which will be 884 // patched when the real VST is written. We can simply subtract the 32-bit 885 // fixed size from the current bit number to get the location to backpatch. 886 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 887 } 888 889 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 890 891 /// Determine the encoding to use for the given string name and length. 892 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 893 bool isChar6 = true; 894 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 895 if (isChar6) 896 isChar6 = BitCodeAbbrevOp::isChar6(*C); 897 if ((unsigned char)*C & 128) 898 // don't bother scanning the rest. 899 return SE_Fixed8; 900 } 901 if (isChar6) 902 return SE_Char6; 903 else 904 return SE_Fixed7; 905 } 906 907 /// Emit top-level description of module, including target triple, inline asm, 908 /// descriptors for global variables, and function prototype info. 909 /// Returns the bit offset to backpatch with the location of the real VST. 910 void ModuleBitcodeWriter::writeModuleInfo() { 911 // Emit various pieces of data attached to a module. 912 if (!M.getTargetTriple().empty()) 913 writeStringRecord(bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 914 0 /*TODO*/); 915 const std::string &DL = M.getDataLayoutStr(); 916 if (!DL.empty()) 917 writeStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 918 if (!M.getModuleInlineAsm().empty()) 919 writeStringRecord(bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 920 0 /*TODO*/); 921 922 // Emit information about sections and GC, computing how many there are. Also 923 // compute the maximum alignment value. 924 std::map<std::string, unsigned> SectionMap; 925 std::map<std::string, unsigned> GCMap; 926 unsigned MaxAlignment = 0; 927 unsigned MaxGlobalType = 0; 928 for (const GlobalValue &GV : M.globals()) { 929 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 930 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 931 if (GV.hasSection()) { 932 // Give section names unique ID's. 933 unsigned &Entry = SectionMap[GV.getSection()]; 934 if (!Entry) { 935 writeStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 936 0 /*TODO*/); 937 Entry = SectionMap.size(); 938 } 939 } 940 } 941 for (const Function &F : M) { 942 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 943 if (F.hasSection()) { 944 // Give section names unique ID's. 945 unsigned &Entry = SectionMap[F.getSection()]; 946 if (!Entry) { 947 writeStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 948 0 /*TODO*/); 949 Entry = SectionMap.size(); 950 } 951 } 952 if (F.hasGC()) { 953 // Same for GC names. 954 unsigned &Entry = GCMap[F.getGC()]; 955 if (!Entry) { 956 writeStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 0 /*TODO*/); 957 Entry = GCMap.size(); 958 } 959 } 960 } 961 962 // Emit abbrev for globals, now that we know # sections and max alignment. 963 unsigned SimpleGVarAbbrev = 0; 964 if (!M.global_empty()) { 965 // Add an abbrev for common globals with no visibility or thread localness. 966 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 967 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 969 Log2_32_Ceil(MaxGlobalType+1))); 970 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 971 //| explicitType << 1 972 //| constant 973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 975 if (MaxAlignment == 0) // Alignment. 976 Abbv->Add(BitCodeAbbrevOp(0)); 977 else { 978 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 979 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 980 Log2_32_Ceil(MaxEncAlignment+1))); 981 } 982 if (SectionMap.empty()) // Section. 983 Abbv->Add(BitCodeAbbrevOp(0)); 984 else 985 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 986 Log2_32_Ceil(SectionMap.size()+1))); 987 // Don't bother emitting vis + thread local. 988 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 989 } 990 991 // Emit the global variable information. 992 SmallVector<unsigned, 64> Vals; 993 for (const GlobalVariable &GV : M.globals()) { 994 unsigned AbbrevToUse = 0; 995 996 // GLOBALVAR: [type, isconst, initid, 997 // linkage, alignment, section, visibility, threadlocal, 998 // unnamed_addr, externally_initialized, dllstorageclass, 999 // comdat] 1000 Vals.push_back(VE.getTypeID(GV.getValueType())); 1001 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1002 Vals.push_back(GV.isDeclaration() ? 0 : 1003 (VE.getValueID(GV.getInitializer()) + 1)); 1004 Vals.push_back(getEncodedLinkage(GV)); 1005 Vals.push_back(Log2_32(GV.getAlignment())+1); 1006 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1007 if (GV.isThreadLocal() || 1008 GV.getVisibility() != GlobalValue::DefaultVisibility || 1009 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 1010 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1011 GV.hasComdat()) { 1012 Vals.push_back(getEncodedVisibility(GV)); 1013 Vals.push_back(getEncodedThreadLocalMode(GV)); 1014 Vals.push_back(GV.hasUnnamedAddr()); 1015 Vals.push_back(GV.isExternallyInitialized()); 1016 Vals.push_back(getEncodedDLLStorageClass(GV)); 1017 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1018 } else { 1019 AbbrevToUse = SimpleGVarAbbrev; 1020 } 1021 1022 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1023 Vals.clear(); 1024 } 1025 1026 // Emit the function proto information. 1027 for (const Function &F : M) { 1028 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 1029 // section, visibility, gc, unnamed_addr, prologuedata, 1030 // dllstorageclass, comdat, prefixdata, personalityfn] 1031 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1032 Vals.push_back(F.getCallingConv()); 1033 Vals.push_back(F.isDeclaration()); 1034 Vals.push_back(getEncodedLinkage(F)); 1035 Vals.push_back(VE.getAttributeID(F.getAttributes())); 1036 Vals.push_back(Log2_32(F.getAlignment())+1); 1037 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1038 Vals.push_back(getEncodedVisibility(F)); 1039 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1040 Vals.push_back(F.hasUnnamedAddr()); 1041 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1042 : 0); 1043 Vals.push_back(getEncodedDLLStorageClass(F)); 1044 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1045 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1046 : 0); 1047 Vals.push_back( 1048 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1049 1050 unsigned AbbrevToUse = 0; 1051 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1052 Vals.clear(); 1053 } 1054 1055 // Emit the alias information. 1056 for (const GlobalAlias &A : M.aliases()) { 1057 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1058 Vals.push_back(VE.getTypeID(A.getValueType())); 1059 Vals.push_back(A.getType()->getAddressSpace()); 1060 Vals.push_back(VE.getValueID(A.getAliasee())); 1061 Vals.push_back(getEncodedLinkage(A)); 1062 Vals.push_back(getEncodedVisibility(A)); 1063 Vals.push_back(getEncodedDLLStorageClass(A)); 1064 Vals.push_back(getEncodedThreadLocalMode(A)); 1065 Vals.push_back(A.hasUnnamedAddr()); 1066 unsigned AbbrevToUse = 0; 1067 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1068 Vals.clear(); 1069 } 1070 1071 // Emit the ifunc information. 1072 for (const GlobalIFunc &I : M.ifuncs()) { 1073 // IFUNC: [ifunc type, address space, resolver val#, linkage, visibility] 1074 Vals.push_back(VE.getTypeID(I.getValueType())); 1075 Vals.push_back(I.getType()->getAddressSpace()); 1076 Vals.push_back(VE.getValueID(I.getResolver())); 1077 Vals.push_back(getEncodedLinkage(I)); 1078 Vals.push_back(getEncodedVisibility(I)); 1079 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1080 Vals.clear(); 1081 } 1082 1083 // Emit the module's source file name. 1084 { 1085 StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(), 1086 M.getSourceFileName().size()); 1087 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1088 if (Bits == SE_Char6) 1089 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1090 else if (Bits == SE_Fixed7) 1091 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1092 1093 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1094 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1095 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1096 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1097 Abbv->Add(AbbrevOpToUse); 1098 unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv); 1099 1100 for (const auto P : M.getSourceFileName()) 1101 Vals.push_back((unsigned char)P); 1102 1103 // Emit the finished record. 1104 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1105 Vals.clear(); 1106 } 1107 1108 // If we have a VST, write the VSTOFFSET record placeholder. 1109 if (M.getValueSymbolTable().empty()) 1110 return; 1111 writeValueSymbolTableForwardDecl(); 1112 } 1113 1114 static uint64_t getOptimizationFlags(const Value *V) { 1115 uint64_t Flags = 0; 1116 1117 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1118 if (OBO->hasNoSignedWrap()) 1119 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1120 if (OBO->hasNoUnsignedWrap()) 1121 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1122 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1123 if (PEO->isExact()) 1124 Flags |= 1 << bitc::PEO_EXACT; 1125 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1126 if (FPMO->hasUnsafeAlgebra()) 1127 Flags |= FastMathFlags::UnsafeAlgebra; 1128 if (FPMO->hasNoNaNs()) 1129 Flags |= FastMathFlags::NoNaNs; 1130 if (FPMO->hasNoInfs()) 1131 Flags |= FastMathFlags::NoInfs; 1132 if (FPMO->hasNoSignedZeros()) 1133 Flags |= FastMathFlags::NoSignedZeros; 1134 if (FPMO->hasAllowReciprocal()) 1135 Flags |= FastMathFlags::AllowReciprocal; 1136 } 1137 1138 return Flags; 1139 } 1140 1141 void ModuleBitcodeWriter::writeValueAsMetadata( 1142 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1143 // Mimic an MDNode with a value as one operand. 1144 Value *V = MD->getValue(); 1145 Record.push_back(VE.getTypeID(V->getType())); 1146 Record.push_back(VE.getValueID(V)); 1147 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1148 Record.clear(); 1149 } 1150 1151 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1152 SmallVectorImpl<uint64_t> &Record, 1153 unsigned Abbrev) { 1154 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1155 Metadata *MD = N->getOperand(i); 1156 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1157 "Unexpected function-local metadata"); 1158 Record.push_back(VE.getMetadataOrNullID(MD)); 1159 } 1160 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1161 : bitc::METADATA_NODE, 1162 Record, Abbrev); 1163 Record.clear(); 1164 } 1165 1166 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1167 // Assume the column is usually under 128, and always output the inlined-at 1168 // location (it's never more expensive than building an array size 1). 1169 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1170 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1176 return Stream.EmitAbbrev(Abbv); 1177 } 1178 1179 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1180 SmallVectorImpl<uint64_t> &Record, 1181 unsigned &Abbrev) { 1182 if (!Abbrev) 1183 Abbrev = createDILocationAbbrev(); 1184 1185 Record.push_back(N->isDistinct()); 1186 Record.push_back(N->getLine()); 1187 Record.push_back(N->getColumn()); 1188 Record.push_back(VE.getMetadataID(N->getScope())); 1189 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1190 1191 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1192 Record.clear(); 1193 } 1194 1195 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1196 // Assume the column is usually under 128, and always output the inlined-at 1197 // location (it's never more expensive than building an array size 1). 1198 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1199 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1200 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1205 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1206 return Stream.EmitAbbrev(Abbv); 1207 } 1208 1209 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1210 SmallVectorImpl<uint64_t> &Record, 1211 unsigned &Abbrev) { 1212 if (!Abbrev) 1213 Abbrev = createGenericDINodeAbbrev(); 1214 1215 Record.push_back(N->isDistinct()); 1216 Record.push_back(N->getTag()); 1217 Record.push_back(0); // Per-tag version field; unused for now. 1218 1219 for (auto &I : N->operands()) 1220 Record.push_back(VE.getMetadataOrNullID(I)); 1221 1222 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1223 Record.clear(); 1224 } 1225 1226 static uint64_t rotateSign(int64_t I) { 1227 uint64_t U = I; 1228 return I < 0 ? ~(U << 1) : U << 1; 1229 } 1230 1231 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1232 SmallVectorImpl<uint64_t> &Record, 1233 unsigned Abbrev) { 1234 Record.push_back(N->isDistinct()); 1235 Record.push_back(N->getCount()); 1236 Record.push_back(rotateSign(N->getLowerBound())); 1237 1238 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1239 Record.clear(); 1240 } 1241 1242 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1243 SmallVectorImpl<uint64_t> &Record, 1244 unsigned Abbrev) { 1245 Record.push_back(N->isDistinct()); 1246 Record.push_back(rotateSign(N->getValue())); 1247 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1248 1249 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1250 Record.clear(); 1251 } 1252 1253 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1254 SmallVectorImpl<uint64_t> &Record, 1255 unsigned Abbrev) { 1256 Record.push_back(N->isDistinct()); 1257 Record.push_back(N->getTag()); 1258 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1259 Record.push_back(N->getSizeInBits()); 1260 Record.push_back(N->getAlignInBits()); 1261 Record.push_back(N->getEncoding()); 1262 1263 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1264 Record.clear(); 1265 } 1266 1267 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1268 SmallVectorImpl<uint64_t> &Record, 1269 unsigned Abbrev) { 1270 Record.push_back(N->isDistinct()); 1271 Record.push_back(N->getTag()); 1272 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1273 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1274 Record.push_back(N->getLine()); 1275 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1276 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1277 Record.push_back(N->getSizeInBits()); 1278 Record.push_back(N->getAlignInBits()); 1279 Record.push_back(N->getOffsetInBits()); 1280 Record.push_back(N->getFlags()); 1281 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1282 1283 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1284 Record.clear(); 1285 } 1286 1287 void ModuleBitcodeWriter::writeDICompositeType( 1288 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1289 unsigned Abbrev) { 1290 const unsigned IsNotUsedInOldTypeRef = 0x2; 1291 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1292 Record.push_back(N->getTag()); 1293 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1294 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1295 Record.push_back(N->getLine()); 1296 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1297 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1298 Record.push_back(N->getSizeInBits()); 1299 Record.push_back(N->getAlignInBits()); 1300 Record.push_back(N->getOffsetInBits()); 1301 Record.push_back(N->getFlags()); 1302 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1303 Record.push_back(N->getRuntimeLang()); 1304 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1305 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1306 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1307 1308 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1309 Record.clear(); 1310 } 1311 1312 void ModuleBitcodeWriter::writeDISubroutineType( 1313 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1314 unsigned Abbrev) { 1315 const unsigned HasNoOldTypeRefs = 0x2; 1316 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1317 Record.push_back(N->getFlags()); 1318 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1319 1320 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1321 Record.clear(); 1322 } 1323 1324 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1325 SmallVectorImpl<uint64_t> &Record, 1326 unsigned Abbrev) { 1327 Record.push_back(N->isDistinct()); 1328 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1329 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1330 1331 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1332 Record.clear(); 1333 } 1334 1335 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1336 SmallVectorImpl<uint64_t> &Record, 1337 unsigned Abbrev) { 1338 assert(N->isDistinct() && "Expected distinct compile units"); 1339 Record.push_back(/* IsDistinct */ true); 1340 Record.push_back(N->getSourceLanguage()); 1341 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1342 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1343 Record.push_back(N->isOptimized()); 1344 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1345 Record.push_back(N->getRuntimeVersion()); 1346 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1347 Record.push_back(N->getEmissionKind()); 1348 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1349 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1350 Record.push_back(/* subprograms */ 0); 1351 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1352 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1353 Record.push_back(N->getDWOId()); 1354 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1355 1356 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1357 Record.clear(); 1358 } 1359 1360 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1361 SmallVectorImpl<uint64_t> &Record, 1362 unsigned Abbrev) { 1363 Record.push_back(N->isDistinct()); 1364 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1365 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1366 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1367 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1368 Record.push_back(N->getLine()); 1369 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1370 Record.push_back(N->isLocalToUnit()); 1371 Record.push_back(N->isDefinition()); 1372 Record.push_back(N->getScopeLine()); 1373 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1374 Record.push_back(N->getVirtuality()); 1375 Record.push_back(N->getVirtualIndex()); 1376 Record.push_back(N->getFlags()); 1377 Record.push_back(N->isOptimized()); 1378 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1379 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1380 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1381 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1382 1383 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1384 Record.clear(); 1385 } 1386 1387 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1388 SmallVectorImpl<uint64_t> &Record, 1389 unsigned Abbrev) { 1390 Record.push_back(N->isDistinct()); 1391 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1392 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1393 Record.push_back(N->getLine()); 1394 Record.push_back(N->getColumn()); 1395 1396 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1397 Record.clear(); 1398 } 1399 1400 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1401 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1402 unsigned Abbrev) { 1403 Record.push_back(N->isDistinct()); 1404 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1405 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1406 Record.push_back(N->getDiscriminator()); 1407 1408 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1409 Record.clear(); 1410 } 1411 1412 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1413 SmallVectorImpl<uint64_t> &Record, 1414 unsigned Abbrev) { 1415 Record.push_back(N->isDistinct()); 1416 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1417 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1418 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1419 Record.push_back(N->getLine()); 1420 1421 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1422 Record.clear(); 1423 } 1424 1425 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1426 SmallVectorImpl<uint64_t> &Record, 1427 unsigned Abbrev) { 1428 Record.push_back(N->isDistinct()); 1429 Record.push_back(N->getMacinfoType()); 1430 Record.push_back(N->getLine()); 1431 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1432 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1433 1434 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1435 Record.clear(); 1436 } 1437 1438 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1439 SmallVectorImpl<uint64_t> &Record, 1440 unsigned Abbrev) { 1441 Record.push_back(N->isDistinct()); 1442 Record.push_back(N->getMacinfoType()); 1443 Record.push_back(N->getLine()); 1444 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1445 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1446 1447 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1448 Record.clear(); 1449 } 1450 1451 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1452 SmallVectorImpl<uint64_t> &Record, 1453 unsigned Abbrev) { 1454 Record.push_back(N->isDistinct()); 1455 for (auto &I : N->operands()) 1456 Record.push_back(VE.getMetadataOrNullID(I)); 1457 1458 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1459 Record.clear(); 1460 } 1461 1462 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1463 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1464 unsigned Abbrev) { 1465 Record.push_back(N->isDistinct()); 1466 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1467 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1468 1469 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1470 Record.clear(); 1471 } 1472 1473 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1474 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1475 unsigned Abbrev) { 1476 Record.push_back(N->isDistinct()); 1477 Record.push_back(N->getTag()); 1478 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1479 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1480 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1481 1482 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1483 Record.clear(); 1484 } 1485 1486 void ModuleBitcodeWriter::writeDIGlobalVariable( 1487 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1488 unsigned Abbrev) { 1489 Record.push_back(N->isDistinct()); 1490 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1491 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1492 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1493 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1494 Record.push_back(N->getLine()); 1495 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1496 Record.push_back(N->isLocalToUnit()); 1497 Record.push_back(N->isDefinition()); 1498 Record.push_back(VE.getMetadataOrNullID(N->getRawVariable())); 1499 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1500 1501 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1502 Record.clear(); 1503 } 1504 1505 void ModuleBitcodeWriter::writeDILocalVariable( 1506 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1507 unsigned Abbrev) { 1508 Record.push_back(N->isDistinct()); 1509 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1510 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1511 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1512 Record.push_back(N->getLine()); 1513 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1514 Record.push_back(N->getArg()); 1515 Record.push_back(N->getFlags()); 1516 1517 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1518 Record.clear(); 1519 } 1520 1521 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1522 SmallVectorImpl<uint64_t> &Record, 1523 unsigned Abbrev) { 1524 Record.reserve(N->getElements().size() + 1); 1525 1526 Record.push_back(N->isDistinct()); 1527 Record.append(N->elements_begin(), N->elements_end()); 1528 1529 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1530 Record.clear(); 1531 } 1532 1533 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1534 SmallVectorImpl<uint64_t> &Record, 1535 unsigned Abbrev) { 1536 Record.push_back(N->isDistinct()); 1537 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1538 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1539 Record.push_back(N->getLine()); 1540 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1541 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1542 Record.push_back(N->getAttributes()); 1543 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1544 1545 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1546 Record.clear(); 1547 } 1548 1549 void ModuleBitcodeWriter::writeDIImportedEntity( 1550 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1551 unsigned Abbrev) { 1552 Record.push_back(N->isDistinct()); 1553 Record.push_back(N->getTag()); 1554 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1555 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1556 Record.push_back(N->getLine()); 1557 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1558 1559 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1560 Record.clear(); 1561 } 1562 1563 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1564 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1565 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1566 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1567 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1568 return Stream.EmitAbbrev(Abbv); 1569 } 1570 1571 void ModuleBitcodeWriter::writeNamedMetadata( 1572 SmallVectorImpl<uint64_t> &Record) { 1573 if (M.named_metadata_empty()) 1574 return; 1575 1576 unsigned Abbrev = createNamedMetadataAbbrev(); 1577 for (const NamedMDNode &NMD : M.named_metadata()) { 1578 // Write name. 1579 StringRef Str = NMD.getName(); 1580 Record.append(Str.bytes_begin(), Str.bytes_end()); 1581 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1582 Record.clear(); 1583 1584 // Write named metadata operands. 1585 for (const MDNode *N : NMD.operands()) 1586 Record.push_back(VE.getMetadataID(N)); 1587 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1588 Record.clear(); 1589 } 1590 } 1591 1592 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1593 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1594 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1598 return Stream.EmitAbbrev(Abbv); 1599 } 1600 1601 /// Write out a record for MDString. 1602 /// 1603 /// All the metadata strings in a metadata block are emitted in a single 1604 /// record. The sizes and strings themselves are shoved into a blob. 1605 void ModuleBitcodeWriter::writeMetadataStrings( 1606 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1607 if (Strings.empty()) 1608 return; 1609 1610 // Start the record with the number of strings. 1611 Record.push_back(bitc::METADATA_STRINGS); 1612 Record.push_back(Strings.size()); 1613 1614 // Emit the sizes of the strings in the blob. 1615 SmallString<256> Blob; 1616 { 1617 BitstreamWriter W(Blob); 1618 for (const Metadata *MD : Strings) 1619 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1620 W.FlushToWord(); 1621 } 1622 1623 // Add the offset to the strings to the record. 1624 Record.push_back(Blob.size()); 1625 1626 // Add the strings to the blob. 1627 for (const Metadata *MD : Strings) 1628 Blob.append(cast<MDString>(MD)->getString()); 1629 1630 // Emit the final record. 1631 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1632 Record.clear(); 1633 } 1634 1635 void ModuleBitcodeWriter::writeMetadataRecords( 1636 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record) { 1637 if (MDs.empty()) 1638 return; 1639 1640 // Initialize MDNode abbreviations. 1641 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1642 #include "llvm/IR/Metadata.def" 1643 1644 for (const Metadata *MD : MDs) { 1645 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1646 assert(N->isResolved() && "Expected forward references to be resolved"); 1647 1648 switch (N->getMetadataID()) { 1649 default: 1650 llvm_unreachable("Invalid MDNode subclass"); 1651 #define HANDLE_MDNODE_LEAF(CLASS) \ 1652 case Metadata::CLASS##Kind: \ 1653 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1654 continue; 1655 #include "llvm/IR/Metadata.def" 1656 } 1657 } 1658 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1659 } 1660 } 1661 1662 void ModuleBitcodeWriter::writeModuleMetadata() { 1663 if (!VE.hasMDs() && M.named_metadata_empty()) 1664 return; 1665 1666 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1667 SmallVector<uint64_t, 64> Record; 1668 writeMetadataStrings(VE.getMDStrings(), Record); 1669 writeMetadataRecords(VE.getNonMDStrings(), Record); 1670 writeNamedMetadata(Record); 1671 Stream.ExitBlock(); 1672 } 1673 1674 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 1675 if (!VE.hasMDs()) 1676 return; 1677 1678 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1679 SmallVector<uint64_t, 64> Record; 1680 writeMetadataStrings(VE.getMDStrings(), Record); 1681 writeMetadataRecords(VE.getNonMDStrings(), Record); 1682 Stream.ExitBlock(); 1683 } 1684 1685 void ModuleBitcodeWriter::writeMetadataAttachment(const Function &F) { 1686 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1687 1688 SmallVector<uint64_t, 64> Record; 1689 1690 // Write metadata attachments 1691 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1692 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1693 F.getAllMetadata(MDs); 1694 if (!MDs.empty()) { 1695 for (const auto &I : MDs) { 1696 Record.push_back(I.first); 1697 Record.push_back(VE.getMetadataID(I.second)); 1698 } 1699 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1700 Record.clear(); 1701 } 1702 1703 for (const BasicBlock &BB : F) 1704 for (const Instruction &I : BB) { 1705 MDs.clear(); 1706 I.getAllMetadataOtherThanDebugLoc(MDs); 1707 1708 // If no metadata, ignore instruction. 1709 if (MDs.empty()) continue; 1710 1711 Record.push_back(VE.getInstructionID(&I)); 1712 1713 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1714 Record.push_back(MDs[i].first); 1715 Record.push_back(VE.getMetadataID(MDs[i].second)); 1716 } 1717 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1718 Record.clear(); 1719 } 1720 1721 Stream.ExitBlock(); 1722 } 1723 1724 void ModuleBitcodeWriter::writeModuleMetadataStore() { 1725 SmallVector<uint64_t, 64> Record; 1726 1727 // Write metadata kinds 1728 // METADATA_KIND - [n x [id, name]] 1729 SmallVector<StringRef, 8> Names; 1730 M.getMDKindNames(Names); 1731 1732 if (Names.empty()) return; 1733 1734 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 1735 1736 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1737 Record.push_back(MDKindID); 1738 StringRef KName = Names[MDKindID]; 1739 Record.append(KName.begin(), KName.end()); 1740 1741 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1742 Record.clear(); 1743 } 1744 1745 Stream.ExitBlock(); 1746 } 1747 1748 void ModuleBitcodeWriter::writeOperandBundleTags() { 1749 // Write metadata kinds 1750 // 1751 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 1752 // 1753 // OPERAND_BUNDLE_TAG - [strchr x N] 1754 1755 SmallVector<StringRef, 8> Tags; 1756 M.getOperandBundleTags(Tags); 1757 1758 if (Tags.empty()) 1759 return; 1760 1761 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 1762 1763 SmallVector<uint64_t, 64> Record; 1764 1765 for (auto Tag : Tags) { 1766 Record.append(Tag.begin(), Tag.end()); 1767 1768 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 1769 Record.clear(); 1770 } 1771 1772 Stream.ExitBlock(); 1773 } 1774 1775 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1776 if ((int64_t)V >= 0) 1777 Vals.push_back(V << 1); 1778 else 1779 Vals.push_back((-V << 1) | 1); 1780 } 1781 1782 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 1783 bool isGlobal) { 1784 if (FirstVal == LastVal) return; 1785 1786 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1787 1788 unsigned AggregateAbbrev = 0; 1789 unsigned String8Abbrev = 0; 1790 unsigned CString7Abbrev = 0; 1791 unsigned CString6Abbrev = 0; 1792 // If this is a constant pool for the module, emit module-specific abbrevs. 1793 if (isGlobal) { 1794 // Abbrev for CST_CODE_AGGREGATE. 1795 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1796 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1799 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1800 1801 // Abbrev for CST_CODE_STRING. 1802 Abbv = new BitCodeAbbrev(); 1803 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1804 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1806 String8Abbrev = Stream.EmitAbbrev(Abbv); 1807 // Abbrev for CST_CODE_CSTRING. 1808 Abbv = new BitCodeAbbrev(); 1809 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1810 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1811 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1812 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1813 // Abbrev for CST_CODE_CSTRING. 1814 Abbv = new BitCodeAbbrev(); 1815 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1818 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1819 } 1820 1821 SmallVector<uint64_t, 64> Record; 1822 1823 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1824 Type *LastTy = nullptr; 1825 for (unsigned i = FirstVal; i != LastVal; ++i) { 1826 const Value *V = Vals[i].first; 1827 // If we need to switch types, do so now. 1828 if (V->getType() != LastTy) { 1829 LastTy = V->getType(); 1830 Record.push_back(VE.getTypeID(LastTy)); 1831 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1832 CONSTANTS_SETTYPE_ABBREV); 1833 Record.clear(); 1834 } 1835 1836 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1837 Record.push_back(unsigned(IA->hasSideEffects()) | 1838 unsigned(IA->isAlignStack()) << 1 | 1839 unsigned(IA->getDialect()&1) << 2); 1840 1841 // Add the asm string. 1842 const std::string &AsmStr = IA->getAsmString(); 1843 Record.push_back(AsmStr.size()); 1844 Record.append(AsmStr.begin(), AsmStr.end()); 1845 1846 // Add the constraint string. 1847 const std::string &ConstraintStr = IA->getConstraintString(); 1848 Record.push_back(ConstraintStr.size()); 1849 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1850 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1851 Record.clear(); 1852 continue; 1853 } 1854 const Constant *C = cast<Constant>(V); 1855 unsigned Code = -1U; 1856 unsigned AbbrevToUse = 0; 1857 if (C->isNullValue()) { 1858 Code = bitc::CST_CODE_NULL; 1859 } else if (isa<UndefValue>(C)) { 1860 Code = bitc::CST_CODE_UNDEF; 1861 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1862 if (IV->getBitWidth() <= 64) { 1863 uint64_t V = IV->getSExtValue(); 1864 emitSignedInt64(Record, V); 1865 Code = bitc::CST_CODE_INTEGER; 1866 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1867 } else { // Wide integers, > 64 bits in size. 1868 // We have an arbitrary precision integer value to write whose 1869 // bit width is > 64. However, in canonical unsigned integer 1870 // format it is likely that the high bits are going to be zero. 1871 // So, we only write the number of active words. 1872 unsigned NWords = IV->getValue().getActiveWords(); 1873 const uint64_t *RawWords = IV->getValue().getRawData(); 1874 for (unsigned i = 0; i != NWords; ++i) { 1875 emitSignedInt64(Record, RawWords[i]); 1876 } 1877 Code = bitc::CST_CODE_WIDE_INTEGER; 1878 } 1879 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1880 Code = bitc::CST_CODE_FLOAT; 1881 Type *Ty = CFP->getType(); 1882 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1883 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1884 } else if (Ty->isX86_FP80Ty()) { 1885 // api needed to prevent premature destruction 1886 // bits are not in the same order as a normal i80 APInt, compensate. 1887 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1888 const uint64_t *p = api.getRawData(); 1889 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1890 Record.push_back(p[0] & 0xffffLL); 1891 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1892 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1893 const uint64_t *p = api.getRawData(); 1894 Record.push_back(p[0]); 1895 Record.push_back(p[1]); 1896 } else { 1897 assert (0 && "Unknown FP type!"); 1898 } 1899 } else if (isa<ConstantDataSequential>(C) && 1900 cast<ConstantDataSequential>(C)->isString()) { 1901 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1902 // Emit constant strings specially. 1903 unsigned NumElts = Str->getNumElements(); 1904 // If this is a null-terminated string, use the denser CSTRING encoding. 1905 if (Str->isCString()) { 1906 Code = bitc::CST_CODE_CSTRING; 1907 --NumElts; // Don't encode the null, which isn't allowed by char6. 1908 } else { 1909 Code = bitc::CST_CODE_STRING; 1910 AbbrevToUse = String8Abbrev; 1911 } 1912 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1913 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1914 for (unsigned i = 0; i != NumElts; ++i) { 1915 unsigned char V = Str->getElementAsInteger(i); 1916 Record.push_back(V); 1917 isCStr7 &= (V & 128) == 0; 1918 if (isCStrChar6) 1919 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1920 } 1921 1922 if (isCStrChar6) 1923 AbbrevToUse = CString6Abbrev; 1924 else if (isCStr7) 1925 AbbrevToUse = CString7Abbrev; 1926 } else if (const ConstantDataSequential *CDS = 1927 dyn_cast<ConstantDataSequential>(C)) { 1928 Code = bitc::CST_CODE_DATA; 1929 Type *EltTy = CDS->getType()->getElementType(); 1930 if (isa<IntegerType>(EltTy)) { 1931 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1932 Record.push_back(CDS->getElementAsInteger(i)); 1933 } else { 1934 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1935 Record.push_back( 1936 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 1937 } 1938 } else if (isa<ConstantAggregate>(C)) { 1939 Code = bitc::CST_CODE_AGGREGATE; 1940 for (const Value *Op : C->operands()) 1941 Record.push_back(VE.getValueID(Op)); 1942 AbbrevToUse = AggregateAbbrev; 1943 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1944 switch (CE->getOpcode()) { 1945 default: 1946 if (Instruction::isCast(CE->getOpcode())) { 1947 Code = bitc::CST_CODE_CE_CAST; 1948 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 1949 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1950 Record.push_back(VE.getValueID(C->getOperand(0))); 1951 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1952 } else { 1953 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1954 Code = bitc::CST_CODE_CE_BINOP; 1955 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 1956 Record.push_back(VE.getValueID(C->getOperand(0))); 1957 Record.push_back(VE.getValueID(C->getOperand(1))); 1958 uint64_t Flags = getOptimizationFlags(CE); 1959 if (Flags != 0) 1960 Record.push_back(Flags); 1961 } 1962 break; 1963 case Instruction::GetElementPtr: { 1964 Code = bitc::CST_CODE_CE_GEP; 1965 const auto *GO = cast<GEPOperator>(C); 1966 if (GO->isInBounds()) 1967 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1968 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 1969 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1970 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1971 Record.push_back(VE.getValueID(C->getOperand(i))); 1972 } 1973 break; 1974 } 1975 case Instruction::Select: 1976 Code = bitc::CST_CODE_CE_SELECT; 1977 Record.push_back(VE.getValueID(C->getOperand(0))); 1978 Record.push_back(VE.getValueID(C->getOperand(1))); 1979 Record.push_back(VE.getValueID(C->getOperand(2))); 1980 break; 1981 case Instruction::ExtractElement: 1982 Code = bitc::CST_CODE_CE_EXTRACTELT; 1983 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1984 Record.push_back(VE.getValueID(C->getOperand(0))); 1985 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1986 Record.push_back(VE.getValueID(C->getOperand(1))); 1987 break; 1988 case Instruction::InsertElement: 1989 Code = bitc::CST_CODE_CE_INSERTELT; 1990 Record.push_back(VE.getValueID(C->getOperand(0))); 1991 Record.push_back(VE.getValueID(C->getOperand(1))); 1992 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1993 Record.push_back(VE.getValueID(C->getOperand(2))); 1994 break; 1995 case Instruction::ShuffleVector: 1996 // If the return type and argument types are the same, this is a 1997 // standard shufflevector instruction. If the types are different, 1998 // then the shuffle is widening or truncating the input vectors, and 1999 // the argument type must also be encoded. 2000 if (C->getType() == C->getOperand(0)->getType()) { 2001 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2002 } else { 2003 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2004 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2005 } 2006 Record.push_back(VE.getValueID(C->getOperand(0))); 2007 Record.push_back(VE.getValueID(C->getOperand(1))); 2008 Record.push_back(VE.getValueID(C->getOperand(2))); 2009 break; 2010 case Instruction::ICmp: 2011 case Instruction::FCmp: 2012 Code = bitc::CST_CODE_CE_CMP; 2013 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2014 Record.push_back(VE.getValueID(C->getOperand(0))); 2015 Record.push_back(VE.getValueID(C->getOperand(1))); 2016 Record.push_back(CE->getPredicate()); 2017 break; 2018 } 2019 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2020 Code = bitc::CST_CODE_BLOCKADDRESS; 2021 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2022 Record.push_back(VE.getValueID(BA->getFunction())); 2023 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2024 } else { 2025 #ifndef NDEBUG 2026 C->dump(); 2027 #endif 2028 llvm_unreachable("Unknown constant!"); 2029 } 2030 Stream.EmitRecord(Code, Record, AbbrevToUse); 2031 Record.clear(); 2032 } 2033 2034 Stream.ExitBlock(); 2035 } 2036 2037 void ModuleBitcodeWriter::writeModuleConstants() { 2038 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2039 2040 // Find the first constant to emit, which is the first non-globalvalue value. 2041 // We know globalvalues have been emitted by WriteModuleInfo. 2042 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2043 if (!isa<GlobalValue>(Vals[i].first)) { 2044 writeConstants(i, Vals.size(), true); 2045 return; 2046 } 2047 } 2048 } 2049 2050 /// pushValueAndType - The file has to encode both the value and type id for 2051 /// many values, because we need to know what type to create for forward 2052 /// references. However, most operands are not forward references, so this type 2053 /// field is not needed. 2054 /// 2055 /// This function adds V's value ID to Vals. If the value ID is higher than the 2056 /// instruction ID, then it is a forward reference, and it also includes the 2057 /// type ID. The value ID that is written is encoded relative to the InstID. 2058 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2059 SmallVectorImpl<unsigned> &Vals) { 2060 unsigned ValID = VE.getValueID(V); 2061 // Make encoding relative to the InstID. 2062 Vals.push_back(InstID - ValID); 2063 if (ValID >= InstID) { 2064 Vals.push_back(VE.getTypeID(V->getType())); 2065 return true; 2066 } 2067 return false; 2068 } 2069 2070 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2071 unsigned InstID) { 2072 SmallVector<unsigned, 64> Record; 2073 LLVMContext &C = CS.getInstruction()->getContext(); 2074 2075 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2076 const auto &Bundle = CS.getOperandBundleAt(i); 2077 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2078 2079 for (auto &Input : Bundle.Inputs) 2080 pushValueAndType(Input, InstID, Record); 2081 2082 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2083 Record.clear(); 2084 } 2085 } 2086 2087 /// pushValue - Like pushValueAndType, but where the type of the value is 2088 /// omitted (perhaps it was already encoded in an earlier operand). 2089 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2090 SmallVectorImpl<unsigned> &Vals) { 2091 unsigned ValID = VE.getValueID(V); 2092 Vals.push_back(InstID - ValID); 2093 } 2094 2095 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2096 SmallVectorImpl<uint64_t> &Vals) { 2097 unsigned ValID = VE.getValueID(V); 2098 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2099 emitSignedInt64(Vals, diff); 2100 } 2101 2102 /// WriteInstruction - Emit an instruction to the specified stream. 2103 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2104 unsigned InstID, 2105 SmallVectorImpl<unsigned> &Vals) { 2106 unsigned Code = 0; 2107 unsigned AbbrevToUse = 0; 2108 VE.setInstructionID(&I); 2109 switch (I.getOpcode()) { 2110 default: 2111 if (Instruction::isCast(I.getOpcode())) { 2112 Code = bitc::FUNC_CODE_INST_CAST; 2113 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2114 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2115 Vals.push_back(VE.getTypeID(I.getType())); 2116 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2117 } else { 2118 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2119 Code = bitc::FUNC_CODE_INST_BINOP; 2120 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2121 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2122 pushValue(I.getOperand(1), InstID, Vals); 2123 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2124 uint64_t Flags = getOptimizationFlags(&I); 2125 if (Flags != 0) { 2126 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2127 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2128 Vals.push_back(Flags); 2129 } 2130 } 2131 break; 2132 2133 case Instruction::GetElementPtr: { 2134 Code = bitc::FUNC_CODE_INST_GEP; 2135 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2136 auto &GEPInst = cast<GetElementPtrInst>(I); 2137 Vals.push_back(GEPInst.isInBounds()); 2138 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2139 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2140 pushValueAndType(I.getOperand(i), InstID, Vals); 2141 break; 2142 } 2143 case Instruction::ExtractValue: { 2144 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2145 pushValueAndType(I.getOperand(0), InstID, Vals); 2146 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2147 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2148 break; 2149 } 2150 case Instruction::InsertValue: { 2151 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2152 pushValueAndType(I.getOperand(0), InstID, Vals); 2153 pushValueAndType(I.getOperand(1), InstID, Vals); 2154 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2155 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2156 break; 2157 } 2158 case Instruction::Select: 2159 Code = bitc::FUNC_CODE_INST_VSELECT; 2160 pushValueAndType(I.getOperand(1), InstID, Vals); 2161 pushValue(I.getOperand(2), InstID, Vals); 2162 pushValueAndType(I.getOperand(0), InstID, Vals); 2163 break; 2164 case Instruction::ExtractElement: 2165 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2166 pushValueAndType(I.getOperand(0), InstID, Vals); 2167 pushValueAndType(I.getOperand(1), InstID, Vals); 2168 break; 2169 case Instruction::InsertElement: 2170 Code = bitc::FUNC_CODE_INST_INSERTELT; 2171 pushValueAndType(I.getOperand(0), InstID, Vals); 2172 pushValue(I.getOperand(1), InstID, Vals); 2173 pushValueAndType(I.getOperand(2), InstID, Vals); 2174 break; 2175 case Instruction::ShuffleVector: 2176 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2177 pushValueAndType(I.getOperand(0), InstID, Vals); 2178 pushValue(I.getOperand(1), InstID, Vals); 2179 pushValue(I.getOperand(2), InstID, Vals); 2180 break; 2181 case Instruction::ICmp: 2182 case Instruction::FCmp: { 2183 // compare returning Int1Ty or vector of Int1Ty 2184 Code = bitc::FUNC_CODE_INST_CMP2; 2185 pushValueAndType(I.getOperand(0), InstID, Vals); 2186 pushValue(I.getOperand(1), InstID, Vals); 2187 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2188 uint64_t Flags = getOptimizationFlags(&I); 2189 if (Flags != 0) 2190 Vals.push_back(Flags); 2191 break; 2192 } 2193 2194 case Instruction::Ret: 2195 { 2196 Code = bitc::FUNC_CODE_INST_RET; 2197 unsigned NumOperands = I.getNumOperands(); 2198 if (NumOperands == 0) 2199 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2200 else if (NumOperands == 1) { 2201 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2202 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2203 } else { 2204 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2205 pushValueAndType(I.getOperand(i), InstID, Vals); 2206 } 2207 } 2208 break; 2209 case Instruction::Br: 2210 { 2211 Code = bitc::FUNC_CODE_INST_BR; 2212 const BranchInst &II = cast<BranchInst>(I); 2213 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2214 if (II.isConditional()) { 2215 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2216 pushValue(II.getCondition(), InstID, Vals); 2217 } 2218 } 2219 break; 2220 case Instruction::Switch: 2221 { 2222 Code = bitc::FUNC_CODE_INST_SWITCH; 2223 const SwitchInst &SI = cast<SwitchInst>(I); 2224 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2225 pushValue(SI.getCondition(), InstID, Vals); 2226 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2227 for (SwitchInst::ConstCaseIt Case : SI.cases()) { 2228 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2229 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2230 } 2231 } 2232 break; 2233 case Instruction::IndirectBr: 2234 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2235 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2236 // Encode the address operand as relative, but not the basic blocks. 2237 pushValue(I.getOperand(0), InstID, Vals); 2238 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2239 Vals.push_back(VE.getValueID(I.getOperand(i))); 2240 break; 2241 2242 case Instruction::Invoke: { 2243 const InvokeInst *II = cast<InvokeInst>(&I); 2244 const Value *Callee = II->getCalledValue(); 2245 FunctionType *FTy = II->getFunctionType(); 2246 2247 if (II->hasOperandBundles()) 2248 writeOperandBundles(II, InstID); 2249 2250 Code = bitc::FUNC_CODE_INST_INVOKE; 2251 2252 Vals.push_back(VE.getAttributeID(II->getAttributes())); 2253 Vals.push_back(II->getCallingConv() | 1 << 13); 2254 Vals.push_back(VE.getValueID(II->getNormalDest())); 2255 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2256 Vals.push_back(VE.getTypeID(FTy)); 2257 pushValueAndType(Callee, InstID, Vals); 2258 2259 // Emit value #'s for the fixed parameters. 2260 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2261 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2262 2263 // Emit type/value pairs for varargs params. 2264 if (FTy->isVarArg()) { 2265 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 2266 i != e; ++i) 2267 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2268 } 2269 break; 2270 } 2271 case Instruction::Resume: 2272 Code = bitc::FUNC_CODE_INST_RESUME; 2273 pushValueAndType(I.getOperand(0), InstID, Vals); 2274 break; 2275 case Instruction::CleanupRet: { 2276 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2277 const auto &CRI = cast<CleanupReturnInst>(I); 2278 pushValue(CRI.getCleanupPad(), InstID, Vals); 2279 if (CRI.hasUnwindDest()) 2280 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2281 break; 2282 } 2283 case Instruction::CatchRet: { 2284 Code = bitc::FUNC_CODE_INST_CATCHRET; 2285 const auto &CRI = cast<CatchReturnInst>(I); 2286 pushValue(CRI.getCatchPad(), InstID, Vals); 2287 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2288 break; 2289 } 2290 case Instruction::CleanupPad: 2291 case Instruction::CatchPad: { 2292 const auto &FuncletPad = cast<FuncletPadInst>(I); 2293 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2294 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2295 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2296 2297 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2298 Vals.push_back(NumArgOperands); 2299 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2300 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2301 break; 2302 } 2303 case Instruction::CatchSwitch: { 2304 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2305 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2306 2307 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2308 2309 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2310 Vals.push_back(NumHandlers); 2311 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2312 Vals.push_back(VE.getValueID(CatchPadBB)); 2313 2314 if (CatchSwitch.hasUnwindDest()) 2315 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2316 break; 2317 } 2318 case Instruction::Unreachable: 2319 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2320 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2321 break; 2322 2323 case Instruction::PHI: { 2324 const PHINode &PN = cast<PHINode>(I); 2325 Code = bitc::FUNC_CODE_INST_PHI; 2326 // With the newer instruction encoding, forward references could give 2327 // negative valued IDs. This is most common for PHIs, so we use 2328 // signed VBRs. 2329 SmallVector<uint64_t, 128> Vals64; 2330 Vals64.push_back(VE.getTypeID(PN.getType())); 2331 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2332 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2333 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2334 } 2335 // Emit a Vals64 vector and exit. 2336 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2337 Vals64.clear(); 2338 return; 2339 } 2340 2341 case Instruction::LandingPad: { 2342 const LandingPadInst &LP = cast<LandingPadInst>(I); 2343 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2344 Vals.push_back(VE.getTypeID(LP.getType())); 2345 Vals.push_back(LP.isCleanup()); 2346 Vals.push_back(LP.getNumClauses()); 2347 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2348 if (LP.isCatch(I)) 2349 Vals.push_back(LandingPadInst::Catch); 2350 else 2351 Vals.push_back(LandingPadInst::Filter); 2352 pushValueAndType(LP.getClause(I), InstID, Vals); 2353 } 2354 break; 2355 } 2356 2357 case Instruction::Alloca: { 2358 Code = bitc::FUNC_CODE_INST_ALLOCA; 2359 const AllocaInst &AI = cast<AllocaInst>(I); 2360 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2361 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2362 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2363 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2364 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2365 "not enough bits for maximum alignment"); 2366 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2367 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2368 AlignRecord |= 1 << 6; 2369 AlignRecord |= AI.isSwiftError() << 7; 2370 Vals.push_back(AlignRecord); 2371 break; 2372 } 2373 2374 case Instruction::Load: 2375 if (cast<LoadInst>(I).isAtomic()) { 2376 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2377 pushValueAndType(I.getOperand(0), InstID, Vals); 2378 } else { 2379 Code = bitc::FUNC_CODE_INST_LOAD; 2380 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2381 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2382 } 2383 Vals.push_back(VE.getTypeID(I.getType())); 2384 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2385 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2386 if (cast<LoadInst>(I).isAtomic()) { 2387 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2388 Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2389 } 2390 break; 2391 case Instruction::Store: 2392 if (cast<StoreInst>(I).isAtomic()) 2393 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2394 else 2395 Code = bitc::FUNC_CODE_INST_STORE; 2396 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2397 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2398 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2399 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2400 if (cast<StoreInst>(I).isAtomic()) { 2401 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2402 Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2403 } 2404 break; 2405 case Instruction::AtomicCmpXchg: 2406 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2407 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2408 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2409 pushValue(I.getOperand(2), InstID, Vals); // newval. 2410 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2411 Vals.push_back( 2412 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2413 Vals.push_back( 2414 getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope())); 2415 Vals.push_back( 2416 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2417 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2418 break; 2419 case Instruction::AtomicRMW: 2420 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2421 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2422 pushValue(I.getOperand(1), InstID, Vals); // val. 2423 Vals.push_back( 2424 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2425 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2426 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2427 Vals.push_back( 2428 getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope())); 2429 break; 2430 case Instruction::Fence: 2431 Code = bitc::FUNC_CODE_INST_FENCE; 2432 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2433 Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2434 break; 2435 case Instruction::Call: { 2436 const CallInst &CI = cast<CallInst>(I); 2437 FunctionType *FTy = CI.getFunctionType(); 2438 2439 if (CI.hasOperandBundles()) 2440 writeOperandBundles(&CI, InstID); 2441 2442 Code = bitc::FUNC_CODE_INST_CALL; 2443 2444 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 2445 2446 unsigned Flags = getOptimizationFlags(&I); 2447 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2448 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2449 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2450 1 << bitc::CALL_EXPLICIT_TYPE | 2451 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2452 unsigned(Flags != 0) << bitc::CALL_FMF); 2453 if (Flags != 0) 2454 Vals.push_back(Flags); 2455 2456 Vals.push_back(VE.getTypeID(FTy)); 2457 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2458 2459 // Emit value #'s for the fixed parameters. 2460 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2461 // Check for labels (can happen with asm labels). 2462 if (FTy->getParamType(i)->isLabelTy()) 2463 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2464 else 2465 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2466 } 2467 2468 // Emit type/value pairs for varargs params. 2469 if (FTy->isVarArg()) { 2470 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2471 i != e; ++i) 2472 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2473 } 2474 break; 2475 } 2476 case Instruction::VAArg: 2477 Code = bitc::FUNC_CODE_INST_VAARG; 2478 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2479 pushValue(I.getOperand(0), InstID, Vals); // valist. 2480 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2481 break; 2482 } 2483 2484 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2485 Vals.clear(); 2486 } 2487 2488 /// Emit names for globals/functions etc. \p IsModuleLevel is true when 2489 /// we are writing the module-level VST, where we are including a function 2490 /// bitcode index and need to backpatch the VST forward declaration record. 2491 void ModuleBitcodeWriter::writeValueSymbolTable( 2492 const ValueSymbolTable &VST, bool IsModuleLevel, 2493 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex) { 2494 if (VST.empty()) { 2495 // writeValueSymbolTableForwardDecl should have returned early as 2496 // well. Ensure this handling remains in sync by asserting that 2497 // the placeholder offset is not set. 2498 assert(!IsModuleLevel || !hasVSTOffsetPlaceholder()); 2499 return; 2500 } 2501 2502 if (IsModuleLevel && hasVSTOffsetPlaceholder()) { 2503 // Get the offset of the VST we are writing, and backpatch it into 2504 // the VST forward declaration record. 2505 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2506 // The BitcodeStartBit was the stream offset of the actual bitcode 2507 // (e.g. excluding any initial darwin header). 2508 VSTOffset -= bitcodeStartBit(); 2509 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2510 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2511 } 2512 2513 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2514 2515 // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY 2516 // records, which are not used in the per-function VSTs. 2517 unsigned FnEntry8BitAbbrev; 2518 unsigned FnEntry7BitAbbrev; 2519 unsigned FnEntry6BitAbbrev; 2520 if (IsModuleLevel && hasVSTOffsetPlaceholder()) { 2521 // 8-bit fixed-width VST_CODE_FNENTRY function strings. 2522 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2523 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2528 FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv); 2529 2530 // 7-bit fixed width VST_CODE_FNENTRY function strings. 2531 Abbv = new BitCodeAbbrev(); 2532 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2533 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2534 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2535 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2537 FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv); 2538 2539 // 6-bit char6 VST_CODE_FNENTRY function strings. 2540 Abbv = new BitCodeAbbrev(); 2541 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2542 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2543 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2544 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2545 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2546 FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv); 2547 } 2548 2549 // FIXME: Set up the abbrev, we know how many values there are! 2550 // FIXME: We know if the type names can use 7-bit ascii. 2551 SmallVector<unsigned, 64> NameVals; 2552 2553 for (const ValueName &Name : VST) { 2554 // Figure out the encoding to use for the name. 2555 StringEncoding Bits = 2556 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2557 2558 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2559 NameVals.push_back(VE.getValueID(Name.getValue())); 2560 2561 Function *F = dyn_cast<Function>(Name.getValue()); 2562 if (!F) { 2563 // If value is an alias, need to get the aliased base object to 2564 // see if it is a function. 2565 auto *GA = dyn_cast<GlobalAlias>(Name.getValue()); 2566 if (GA && GA->getBaseObject()) 2567 F = dyn_cast<Function>(GA->getBaseObject()); 2568 } 2569 2570 // VST_CODE_ENTRY: [valueid, namechar x N] 2571 // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N] 2572 // VST_CODE_BBENTRY: [bbid, namechar x N] 2573 unsigned Code; 2574 if (isa<BasicBlock>(Name.getValue())) { 2575 Code = bitc::VST_CODE_BBENTRY; 2576 if (Bits == SE_Char6) 2577 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2578 } else if (F && !F->isDeclaration()) { 2579 // Must be the module-level VST, where we pass in the Index and 2580 // have a VSTOffsetPlaceholder. The function-level VST should not 2581 // contain any Function symbols. 2582 assert(FunctionToBitcodeIndex); 2583 assert(hasVSTOffsetPlaceholder()); 2584 2585 // Save the word offset of the function (from the start of the 2586 // actual bitcode written to the stream). 2587 uint64_t BitcodeIndex = (*FunctionToBitcodeIndex)[F] - bitcodeStartBit(); 2588 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2589 NameVals.push_back(BitcodeIndex / 32); 2590 2591 Code = bitc::VST_CODE_FNENTRY; 2592 AbbrevToUse = FnEntry8BitAbbrev; 2593 if (Bits == SE_Char6) 2594 AbbrevToUse = FnEntry6BitAbbrev; 2595 else if (Bits == SE_Fixed7) 2596 AbbrevToUse = FnEntry7BitAbbrev; 2597 } else { 2598 Code = bitc::VST_CODE_ENTRY; 2599 if (Bits == SE_Char6) 2600 AbbrevToUse = VST_ENTRY_6_ABBREV; 2601 else if (Bits == SE_Fixed7) 2602 AbbrevToUse = VST_ENTRY_7_ABBREV; 2603 } 2604 2605 for (const auto P : Name.getKey()) 2606 NameVals.push_back((unsigned char)P); 2607 2608 // Emit the finished record. 2609 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2610 NameVals.clear(); 2611 } 2612 Stream.ExitBlock(); 2613 } 2614 2615 /// Emit function names and summary offsets for the combined index 2616 /// used by ThinLTO. 2617 void IndexBitcodeWriter::writeCombinedValueSymbolTable() { 2618 assert(hasVSTOffsetPlaceholder() && "Expected non-zero VSTOffsetPlaceholder"); 2619 // Get the offset of the VST we are writing, and backpatch it into 2620 // the VST forward declaration record. 2621 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2622 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2623 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2624 2625 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2626 2627 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2628 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_GVDEFENTRY)); 2629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2630 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // sumoffset 2631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // guid 2632 unsigned DefEntryAbbrev = Stream.EmitAbbrev(Abbv); 2633 2634 Abbv = new BitCodeAbbrev(); 2635 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 2636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2637 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 2638 unsigned EntryAbbrev = Stream.EmitAbbrev(Abbv); 2639 2640 SmallVector<uint64_t, 64> NameVals; 2641 2642 for (const auto &FII : Index) { 2643 GlobalValue::GUID FuncGUID = FII.first; 2644 unsigned ValueId = popValueId(FuncGUID); 2645 2646 for (const auto &FI : FII.second) { 2647 // VST_CODE_COMBINED_GVDEFENTRY: [valueid, sumoffset, guid] 2648 NameVals.push_back(ValueId); 2649 NameVals.push_back(FI->bitcodeIndex()); 2650 NameVals.push_back(FuncGUID); 2651 2652 // Emit the finished record. 2653 Stream.EmitRecord(bitc::VST_CODE_COMBINED_GVDEFENTRY, NameVals, 2654 DefEntryAbbrev); 2655 NameVals.clear(); 2656 } 2657 } 2658 for (const auto &GVI : valueIds()) { 2659 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 2660 NameVals.push_back(GVI.second); 2661 NameVals.push_back(GVI.first); 2662 2663 // Emit the finished record. 2664 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev); 2665 NameVals.clear(); 2666 } 2667 Stream.ExitBlock(); 2668 } 2669 2670 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 2671 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2672 unsigned Code; 2673 if (isa<BasicBlock>(Order.V)) 2674 Code = bitc::USELIST_CODE_BB; 2675 else 2676 Code = bitc::USELIST_CODE_DEFAULT; 2677 2678 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2679 Record.push_back(VE.getValueID(Order.V)); 2680 Stream.EmitRecord(Code, Record); 2681 } 2682 2683 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 2684 assert(VE.shouldPreserveUseListOrder() && 2685 "Expected to be preserving use-list order"); 2686 2687 auto hasMore = [&]() { 2688 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2689 }; 2690 if (!hasMore()) 2691 // Nothing to do. 2692 return; 2693 2694 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2695 while (hasMore()) { 2696 writeUseList(std::move(VE.UseListOrders.back())); 2697 VE.UseListOrders.pop_back(); 2698 } 2699 Stream.ExitBlock(); 2700 } 2701 2702 /// Emit a function body to the module stream. 2703 void ModuleBitcodeWriter::writeFunction( 2704 const Function &F, 2705 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2706 // Save the bitcode index of the start of this function block for recording 2707 // in the VST. 2708 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 2709 2710 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2711 VE.incorporateFunction(F); 2712 2713 SmallVector<unsigned, 64> Vals; 2714 2715 // Emit the number of basic blocks, so the reader can create them ahead of 2716 // time. 2717 Vals.push_back(VE.getBasicBlocks().size()); 2718 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2719 Vals.clear(); 2720 2721 // If there are function-local constants, emit them now. 2722 unsigned CstStart, CstEnd; 2723 VE.getFunctionConstantRange(CstStart, CstEnd); 2724 writeConstants(CstStart, CstEnd, false); 2725 2726 // If there is function-local metadata, emit it now. 2727 writeFunctionMetadata(F); 2728 2729 // Keep a running idea of what the instruction ID is. 2730 unsigned InstID = CstEnd; 2731 2732 bool NeedsMetadataAttachment = F.hasMetadata(); 2733 2734 DILocation *LastDL = nullptr; 2735 // Finally, emit all the instructions, in order. 2736 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2737 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2738 I != E; ++I) { 2739 writeInstruction(*I, InstID, Vals); 2740 2741 if (!I->getType()->isVoidTy()) 2742 ++InstID; 2743 2744 // If the instruction has metadata, write a metadata attachment later. 2745 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2746 2747 // If the instruction has a debug location, emit it. 2748 DILocation *DL = I->getDebugLoc(); 2749 if (!DL) 2750 continue; 2751 2752 if (DL == LastDL) { 2753 // Just repeat the same debug loc as last time. 2754 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2755 continue; 2756 } 2757 2758 Vals.push_back(DL->getLine()); 2759 Vals.push_back(DL->getColumn()); 2760 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2761 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2762 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2763 Vals.clear(); 2764 2765 LastDL = DL; 2766 } 2767 2768 // Emit names for all the instructions etc. 2769 writeValueSymbolTable(F.getValueSymbolTable()); 2770 2771 if (NeedsMetadataAttachment) 2772 writeMetadataAttachment(F); 2773 if (VE.shouldPreserveUseListOrder()) 2774 writeUseListBlock(&F); 2775 VE.purgeFunction(); 2776 Stream.ExitBlock(); 2777 } 2778 2779 // Emit blockinfo, which defines the standard abbreviations etc. 2780 void ModuleBitcodeWriter::writeBlockInfo() { 2781 // We only want to emit block info records for blocks that have multiple 2782 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2783 // Other blocks can define their abbrevs inline. 2784 Stream.EnterBlockInfoBlock(2); 2785 2786 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 2787 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2792 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2793 VST_ENTRY_8_ABBREV) 2794 llvm_unreachable("Unexpected abbrev ordering!"); 2795 } 2796 2797 { // 7-bit fixed width VST_CODE_ENTRY strings. 2798 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2799 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2803 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2804 VST_ENTRY_7_ABBREV) 2805 llvm_unreachable("Unexpected abbrev ordering!"); 2806 } 2807 { // 6-bit char6 VST_CODE_ENTRY strings. 2808 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2809 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2810 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2811 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2813 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2814 VST_ENTRY_6_ABBREV) 2815 llvm_unreachable("Unexpected abbrev ordering!"); 2816 } 2817 { // 6-bit char6 VST_CODE_BBENTRY strings. 2818 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2819 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2823 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2824 VST_BBENTRY_6_ABBREV) 2825 llvm_unreachable("Unexpected abbrev ordering!"); 2826 } 2827 2828 2829 2830 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2831 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2832 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2833 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2834 VE.computeBitsRequiredForTypeIndicies())); 2835 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 2836 CONSTANTS_SETTYPE_ABBREV) 2837 llvm_unreachable("Unexpected abbrev ordering!"); 2838 } 2839 2840 { // INTEGER abbrev for CONSTANTS_BLOCK. 2841 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2842 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2844 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 2845 CONSTANTS_INTEGER_ABBREV) 2846 llvm_unreachable("Unexpected abbrev ordering!"); 2847 } 2848 2849 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2850 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2851 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2852 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2854 VE.computeBitsRequiredForTypeIndicies())); 2855 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2856 2857 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 2858 CONSTANTS_CE_CAST_Abbrev) 2859 llvm_unreachable("Unexpected abbrev ordering!"); 2860 } 2861 { // NULL abbrev for CONSTANTS_BLOCK. 2862 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2863 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2864 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 2865 CONSTANTS_NULL_Abbrev) 2866 llvm_unreachable("Unexpected abbrev ordering!"); 2867 } 2868 2869 // FIXME: This should only use space for first class types! 2870 2871 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2872 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2873 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2874 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2875 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2876 VE.computeBitsRequiredForTypeIndicies())); 2877 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2878 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2879 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 2880 FUNCTION_INST_LOAD_ABBREV) 2881 llvm_unreachable("Unexpected abbrev ordering!"); 2882 } 2883 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2884 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2885 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2886 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2887 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2888 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2889 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 2890 FUNCTION_INST_BINOP_ABBREV) 2891 llvm_unreachable("Unexpected abbrev ordering!"); 2892 } 2893 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2894 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2895 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2896 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2897 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2898 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2899 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2900 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 2901 FUNCTION_INST_BINOP_FLAGS_ABBREV) 2902 llvm_unreachable("Unexpected abbrev ordering!"); 2903 } 2904 { // INST_CAST abbrev for FUNCTION_BLOCK. 2905 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2906 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2907 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2908 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2909 VE.computeBitsRequiredForTypeIndicies())); 2910 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2911 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 2912 FUNCTION_INST_CAST_ABBREV) 2913 llvm_unreachable("Unexpected abbrev ordering!"); 2914 } 2915 2916 { // INST_RET abbrev for FUNCTION_BLOCK. 2917 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2918 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2919 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 2920 FUNCTION_INST_RET_VOID_ABBREV) 2921 llvm_unreachable("Unexpected abbrev ordering!"); 2922 } 2923 { // INST_RET abbrev for FUNCTION_BLOCK. 2924 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2925 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2926 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2927 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 2928 FUNCTION_INST_RET_VAL_ABBREV) 2929 llvm_unreachable("Unexpected abbrev ordering!"); 2930 } 2931 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2932 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2933 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2934 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 2935 FUNCTION_INST_UNREACHABLE_ABBREV) 2936 llvm_unreachable("Unexpected abbrev ordering!"); 2937 } 2938 { 2939 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2940 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2943 Log2_32_Ceil(VE.getTypes().size() + 1))); 2944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2946 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 2947 FUNCTION_INST_GEP_ABBREV) 2948 llvm_unreachable("Unexpected abbrev ordering!"); 2949 } 2950 2951 Stream.ExitBlock(); 2952 } 2953 2954 /// Write the module path strings, currently only used when generating 2955 /// a combined index file. 2956 void IndexBitcodeWriter::writeModStrings() { 2957 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 2958 2959 // TODO: See which abbrev sizes we actually need to emit 2960 2961 // 8-bit fixed-width MST_ENTRY strings. 2962 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2963 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2967 unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv); 2968 2969 // 7-bit fixed width MST_ENTRY strings. 2970 Abbv = new BitCodeAbbrev(); 2971 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2975 unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv); 2976 2977 // 6-bit char6 MST_ENTRY strings. 2978 Abbv = new BitCodeAbbrev(); 2979 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2980 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2981 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2983 unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv); 2984 2985 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 2986 Abbv = new BitCodeAbbrev(); 2987 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 2988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2990 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2991 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2992 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2993 unsigned AbbrevHash = Stream.EmitAbbrev(Abbv); 2994 2995 SmallVector<unsigned, 64> Vals; 2996 for (const auto &MPSE : Index.modulePaths()) { 2997 StringEncoding Bits = 2998 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 2999 unsigned AbbrevToUse = Abbrev8Bit; 3000 if (Bits == SE_Char6) 3001 AbbrevToUse = Abbrev6Bit; 3002 else if (Bits == SE_Fixed7) 3003 AbbrevToUse = Abbrev7Bit; 3004 3005 Vals.push_back(MPSE.getValue().first); 3006 3007 for (const auto P : MPSE.getKey()) 3008 Vals.push_back((unsigned char)P); 3009 3010 // Emit the finished record. 3011 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3012 3013 Vals.clear(); 3014 // Emit an optional hash for the module now 3015 auto &Hash = MPSE.getValue().second; 3016 bool AllZero = true; // Detect if the hash is empty, and do not generate it 3017 for (auto Val : Hash) { 3018 if (Val) 3019 AllZero = false; 3020 Vals.push_back(Val); 3021 } 3022 if (!AllZero) { 3023 // Emit the hash record. 3024 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3025 } 3026 3027 Vals.clear(); 3028 } 3029 Stream.ExitBlock(); 3030 } 3031 3032 // Helper to emit a single function summary record. 3033 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord( 3034 SmallVector<uint64_t, 64> &NameVals, GlobalValueInfo *Info, 3035 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3036 const Function &F) { 3037 NameVals.push_back(ValueID); 3038 3039 FunctionSummary *FS = cast<FunctionSummary>(Info->summary()); 3040 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3041 NameVals.push_back(FS->instCount()); 3042 NameVals.push_back(FS->refs().size()); 3043 3044 for (auto &RI : FS->refs()) 3045 NameVals.push_back(VE.getValueID(RI.getValue())); 3046 3047 bool HasProfileData = F.getEntryCount().hasValue(); 3048 for (auto &ECI : FS->calls()) { 3049 NameVals.push_back(VE.getValueID(ECI.first.getValue())); 3050 assert(ECI.second.CallsiteCount > 0 && "Expected at least one callsite"); 3051 NameVals.push_back(ECI.second.CallsiteCount); 3052 if (HasProfileData) 3053 NameVals.push_back(ECI.second.ProfileCount); 3054 } 3055 3056 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3057 unsigned Code = 3058 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3059 3060 // Emit the finished record. 3061 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3062 NameVals.clear(); 3063 } 3064 3065 // Collect the global value references in the given variable's initializer, 3066 // and emit them in a summary record. 3067 void ModuleBitcodeWriter::writeModuleLevelReferences( 3068 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3069 unsigned FSModRefsAbbrev) { 3070 // Only interested in recording variable defs in the summary. 3071 if (V.isDeclaration()) 3072 return; 3073 NameVals.push_back(VE.getValueID(&V)); 3074 NameVals.push_back(getEncodedGVSummaryFlags(V)); 3075 auto *Info = Index->getGlobalValueInfo(V); 3076 GlobalVarSummary *VS = cast<GlobalVarSummary>(Info->summary()); 3077 for (auto Ref : VS->refs()) 3078 NameVals.push_back(VE.getValueID(Ref.getValue())); 3079 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3080 FSModRefsAbbrev); 3081 NameVals.clear(); 3082 } 3083 3084 // Current version for the summary. 3085 // This is bumped whenever we introduce changes in the way some record are 3086 // interpreted, like flags for instance. 3087 static const uint64_t INDEX_VERSION = 1; 3088 3089 /// Emit the per-module summary section alongside the rest of 3090 /// the module's bitcode. 3091 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() { 3092 if (M.empty()) 3093 return; 3094 3095 if (Index->begin() == Index->end()) 3096 return; 3097 3098 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 3099 3100 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3101 3102 // Abbrev for FS_PERMODULE. 3103 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3104 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3105 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3106 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3107 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3108 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3109 // numrefs x valueid, n x (valueid, callsitecount) 3110 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3112 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 3113 3114 // Abbrev for FS_PERMODULE_PROFILE. 3115 Abbv = new BitCodeAbbrev(); 3116 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3117 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3118 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3119 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3120 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3121 // numrefs x valueid, n x (valueid, callsitecount, profilecount) 3122 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3123 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3124 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 3125 3126 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3127 Abbv = new BitCodeAbbrev(); 3128 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3132 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3133 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 3134 3135 // Abbrev for FS_ALIAS. 3136 Abbv = new BitCodeAbbrev(); 3137 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3140 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3141 unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv); 3142 3143 SmallVector<uint64_t, 64> NameVals; 3144 // Iterate over the list of functions instead of the Index to 3145 // ensure the ordering is stable. 3146 for (const Function &F : M) { 3147 if (F.isDeclaration()) 3148 continue; 3149 // Summary emission does not support anonymous functions, they have to 3150 // renamed using the anonymous function renaming pass. 3151 if (!F.hasName()) 3152 report_fatal_error("Unexpected anonymous function when writing summary"); 3153 3154 auto *Info = Index->getGlobalValueInfo(F); 3155 writePerModuleFunctionSummaryRecord( 3156 NameVals, Info, 3157 VE.getValueID(M.getValueSymbolTable().lookup(F.getName())), 3158 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3159 } 3160 3161 // Capture references from GlobalVariable initializers, which are outside 3162 // of a function scope. 3163 for (const GlobalVariable &G : M.globals()) 3164 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3165 3166 for (const GlobalAlias &A : M.aliases()) { 3167 auto *Aliasee = A.getBaseObject(); 3168 if (!Aliasee->hasName()) 3169 // Nameless function don't have an entry in the summary, skip it. 3170 continue; 3171 auto AliasId = VE.getValueID(&A); 3172 auto AliaseeId = VE.getValueID(Aliasee); 3173 NameVals.push_back(AliasId); 3174 NameVals.push_back(getEncodedGVSummaryFlags(A)); 3175 NameVals.push_back(AliaseeId); 3176 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3177 NameVals.clear(); 3178 } 3179 3180 Stream.ExitBlock(); 3181 } 3182 3183 /// Emit the combined summary section into the combined index file. 3184 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3185 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3186 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3187 3188 // Abbrev for FS_COMBINED. 3189 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3190 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3195 // numrefs x valueid, n x (valueid, callsitecount) 3196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3198 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 3199 3200 // Abbrev for FS_COMBINED_PROFILE. 3201 Abbv = new BitCodeAbbrev(); 3202 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3205 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3206 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3207 // numrefs x valueid, n x (valueid, callsitecount, profilecount) 3208 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3210 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 3211 3212 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3213 Abbv = new BitCodeAbbrev(); 3214 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3215 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3217 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3218 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3219 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 3220 3221 // Abbrev for FS_COMBINED_ALIAS. 3222 Abbv = new BitCodeAbbrev(); 3223 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3224 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3226 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // offset 3227 unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv); 3228 3229 // The aliases are emitted as a post-pass, and will point to the summary 3230 // offset id of the aliasee. For this purpose we need to be able to get back 3231 // from the summary to the offset 3232 SmallVector<GlobalValueInfo *, 64> Aliases; 3233 DenseMap<const GlobalValueSummary *, uint64_t> SummaryToOffsetMap; 3234 3235 SmallVector<uint64_t, 64> NameVals; 3236 3237 // For local linkage, we also emit the original name separately 3238 // immediately after the record. 3239 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3240 if (!GlobalValue::isLocalLinkage(S.linkage())) 3241 return; 3242 NameVals.push_back(S.getOriginalName()); 3243 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3244 NameVals.clear(); 3245 }; 3246 3247 for (const auto &FII : Index) { 3248 for (auto &FI : FII.second) { 3249 GlobalValueSummary *S = FI->summary(); 3250 assert(S); 3251 if (isa<AliasSummary>(S)) { 3252 // Will process aliases as a post-pass because the reader wants all 3253 // global to be loaded first. 3254 Aliases.push_back(FI.get()); 3255 continue; 3256 } 3257 3258 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3259 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3260 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3261 for (auto &RI : VS->refs()) { 3262 NameVals.push_back(getValueId(RI.getGUID())); 3263 } 3264 3265 // Record the starting offset of this summary entry for use 3266 // in the VST entry. Add the current code size since the 3267 // reader will invoke readRecord after the abbrev id read. 3268 FI->setBitcodeIndex(Stream.GetCurrentBitNo() + 3269 Stream.GetAbbrevIDWidth()); 3270 // Store temporarily the offset in the map for a possible alias. 3271 SummaryToOffsetMap[S] = FI->bitcodeIndex(); 3272 3273 // Emit the finished record. 3274 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3275 FSModRefsAbbrev); 3276 NameVals.clear(); 3277 MaybeEmitOriginalName(*S); 3278 continue; 3279 } 3280 3281 auto *FS = cast<FunctionSummary>(S); 3282 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3283 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3284 NameVals.push_back(FS->instCount()); 3285 NameVals.push_back(FS->refs().size()); 3286 3287 for (auto &RI : FS->refs()) { 3288 NameVals.push_back(getValueId(RI.getGUID())); 3289 } 3290 3291 bool HasProfileData = false; 3292 for (auto &EI : FS->calls()) { 3293 HasProfileData |= EI.second.ProfileCount != 0; 3294 if (HasProfileData) 3295 break; 3296 } 3297 3298 for (auto &EI : FS->calls()) { 3299 // If this GUID doesn't have a value id, it doesn't have a function 3300 // summary and we don't need to record any calls to it. 3301 if (!hasValueId(EI.first.getGUID())) 3302 continue; 3303 NameVals.push_back(getValueId(EI.first.getGUID())); 3304 assert(EI.second.CallsiteCount > 0 && "Expected at least one callsite"); 3305 NameVals.push_back(EI.second.CallsiteCount); 3306 if (HasProfileData) 3307 NameVals.push_back(EI.second.ProfileCount); 3308 } 3309 3310 // Record the starting offset of this summary entry for use 3311 // in the VST entry. Add the current code size since the 3312 // reader will invoke readRecord after the abbrev id read. 3313 FI->setBitcodeIndex(Stream.GetCurrentBitNo() + Stream.GetAbbrevIDWidth()); 3314 // Store temporarily the offset in the map for a possible alias. 3315 SummaryToOffsetMap[S] = FI->bitcodeIndex(); 3316 3317 unsigned FSAbbrev = 3318 (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3319 unsigned Code = 3320 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3321 3322 // Emit the finished record. 3323 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3324 NameVals.clear(); 3325 MaybeEmitOriginalName(*S); 3326 } 3327 } 3328 3329 for (auto GVI : Aliases) { 3330 AliasSummary *AS = cast<AliasSummary>(GVI->summary()); 3331 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3332 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3333 auto AliaseeOffset = SummaryToOffsetMap[&AS->getAliasee()]; 3334 assert(AliaseeOffset); 3335 NameVals.push_back(AliaseeOffset); 3336 3337 // Record the starting offset of this summary entry for use 3338 // in the VST entry. Add the current code size since the 3339 // reader will invoke readRecord after the abbrev id read. 3340 GVI->setBitcodeIndex(Stream.GetCurrentBitNo() + Stream.GetAbbrevIDWidth()); 3341 3342 // Emit the finished record. 3343 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3344 NameVals.clear(); 3345 MaybeEmitOriginalName(*AS); 3346 } 3347 3348 Stream.ExitBlock(); 3349 } 3350 3351 void ModuleBitcodeWriter::writeIdentificationBlock() { 3352 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3353 3354 // Write the "user readable" string identifying the bitcode producer 3355 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3356 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3359 auto StringAbbrev = Stream.EmitAbbrev(Abbv); 3360 writeStringRecord(bitc::IDENTIFICATION_CODE_STRING, 3361 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3362 3363 // Write the epoch version 3364 Abbv = new BitCodeAbbrev(); 3365 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3367 auto EpochAbbrev = Stream.EmitAbbrev(Abbv); 3368 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3369 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3370 Stream.ExitBlock(); 3371 } 3372 3373 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3374 // Emit the module's hash. 3375 // MODULE_CODE_HASH: [5*i32] 3376 SHA1 Hasher; 3377 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&(Buffer)[BlockStartPos], 3378 Buffer.size() - BlockStartPos)); 3379 auto Hash = Hasher.result(); 3380 SmallVector<uint64_t, 20> Vals; 3381 auto LShift = [&](unsigned char Val, unsigned Amount) 3382 -> uint64_t { return ((uint64_t)Val) << Amount; }; 3383 for (int Pos = 0; Pos < 20; Pos += 4) { 3384 uint32_t SubHash = LShift(Hash[Pos + 0], 24); 3385 SubHash |= LShift(Hash[Pos + 1], 16) | LShift(Hash[Pos + 2], 8) | 3386 (unsigned)(unsigned char)Hash[Pos + 3]; 3387 Vals.push_back(SubHash); 3388 } 3389 3390 // Emit the finished record. 3391 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3392 } 3393 3394 void BitcodeWriter::write() { 3395 // Emit the file header first. 3396 writeBitcodeHeader(); 3397 3398 writeBlocks(); 3399 } 3400 3401 void ModuleBitcodeWriter::writeBlocks() { 3402 writeIdentificationBlock(); 3403 writeModule(); 3404 } 3405 3406 void IndexBitcodeWriter::writeBlocks() { 3407 // Index contains only a single outer (module) block. 3408 writeIndex(); 3409 } 3410 3411 void ModuleBitcodeWriter::writeModule() { 3412 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3413 size_t BlockStartPos = Buffer.size(); 3414 3415 SmallVector<unsigned, 1> Vals; 3416 unsigned CurVersion = 1; 3417 Vals.push_back(CurVersion); 3418 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3419 3420 // Emit blockinfo, which defines the standard abbreviations etc. 3421 writeBlockInfo(); 3422 3423 // Emit information about attribute groups. 3424 writeAttributeGroupTable(); 3425 3426 // Emit information about parameter attributes. 3427 writeAttributeTable(); 3428 3429 // Emit information describing all of the types in the module. 3430 writeTypeTable(); 3431 3432 writeComdats(); 3433 3434 // Emit top-level description of module, including target triple, inline asm, 3435 // descriptors for global variables, and function prototype info. 3436 writeModuleInfo(); 3437 3438 // Emit constants. 3439 writeModuleConstants(); 3440 3441 // Emit metadata. 3442 writeModuleMetadata(); 3443 3444 // Emit metadata. 3445 writeModuleMetadataStore(); 3446 3447 // Emit module-level use-lists. 3448 if (VE.shouldPreserveUseListOrder()) 3449 writeUseListBlock(nullptr); 3450 3451 writeOperandBundleTags(); 3452 3453 // Emit function bodies. 3454 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3455 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3456 if (!F->isDeclaration()) 3457 writeFunction(*F, FunctionToBitcodeIndex); 3458 3459 // Need to write after the above call to WriteFunction which populates 3460 // the summary information in the index. 3461 if (Index) 3462 writePerModuleGlobalValueSummary(); 3463 3464 writeValueSymbolTable(M.getValueSymbolTable(), 3465 /* IsModuleLevel */ true, &FunctionToBitcodeIndex); 3466 3467 if (GenerateHash) { 3468 writeModuleHash(BlockStartPos); 3469 } 3470 3471 Stream.ExitBlock(); 3472 } 3473 3474 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3475 uint32_t &Position) { 3476 support::endian::write32le(&Buffer[Position], Value); 3477 Position += 4; 3478 } 3479 3480 /// If generating a bc file on darwin, we have to emit a 3481 /// header and trailer to make it compatible with the system archiver. To do 3482 /// this we emit the following header, and then emit a trailer that pads the 3483 /// file out to be a multiple of 16 bytes. 3484 /// 3485 /// struct bc_header { 3486 /// uint32_t Magic; // 0x0B17C0DE 3487 /// uint32_t Version; // Version, currently always 0. 3488 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3489 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3490 /// uint32_t CPUType; // CPU specifier. 3491 /// ... potentially more later ... 3492 /// }; 3493 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3494 const Triple &TT) { 3495 unsigned CPUType = ~0U; 3496 3497 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3498 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3499 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3500 // specific constants here because they are implicitly part of the Darwin ABI. 3501 enum { 3502 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3503 DARWIN_CPU_TYPE_X86 = 7, 3504 DARWIN_CPU_TYPE_ARM = 12, 3505 DARWIN_CPU_TYPE_POWERPC = 18 3506 }; 3507 3508 Triple::ArchType Arch = TT.getArch(); 3509 if (Arch == Triple::x86_64) 3510 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3511 else if (Arch == Triple::x86) 3512 CPUType = DARWIN_CPU_TYPE_X86; 3513 else if (Arch == Triple::ppc) 3514 CPUType = DARWIN_CPU_TYPE_POWERPC; 3515 else if (Arch == Triple::ppc64) 3516 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3517 else if (Arch == Triple::arm || Arch == Triple::thumb) 3518 CPUType = DARWIN_CPU_TYPE_ARM; 3519 3520 // Traditional Bitcode starts after header. 3521 assert(Buffer.size() >= BWH_HeaderSize && 3522 "Expected header size to be reserved"); 3523 unsigned BCOffset = BWH_HeaderSize; 3524 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3525 3526 // Write the magic and version. 3527 unsigned Position = 0; 3528 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3529 writeInt32ToBuffer(0, Buffer, Position); // Version. 3530 writeInt32ToBuffer(BCOffset, Buffer, Position); 3531 writeInt32ToBuffer(BCSize, Buffer, Position); 3532 writeInt32ToBuffer(CPUType, Buffer, Position); 3533 3534 // If the file is not a multiple of 16 bytes, insert dummy padding. 3535 while (Buffer.size() & 15) 3536 Buffer.push_back(0); 3537 } 3538 3539 /// Helper to write the header common to all bitcode files. 3540 void BitcodeWriter::writeBitcodeHeader() { 3541 // Emit the file header. 3542 Stream.Emit((unsigned)'B', 8); 3543 Stream.Emit((unsigned)'C', 8); 3544 Stream.Emit(0x0, 4); 3545 Stream.Emit(0xC, 4); 3546 Stream.Emit(0xE, 4); 3547 Stream.Emit(0xD, 4); 3548 } 3549 3550 /// WriteBitcodeToFile - Write the specified module to the specified output 3551 /// stream. 3552 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3553 bool ShouldPreserveUseListOrder, 3554 const ModuleSummaryIndex *Index, 3555 bool GenerateHash) { 3556 SmallVector<char, 0> Buffer; 3557 Buffer.reserve(256*1024); 3558 3559 // If this is darwin or another generic macho target, reserve space for the 3560 // header. 3561 Triple TT(M->getTargetTriple()); 3562 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3563 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3564 3565 // Emit the module into the buffer. 3566 ModuleBitcodeWriter ModuleWriter(M, Buffer, ShouldPreserveUseListOrder, Index, 3567 GenerateHash); 3568 ModuleWriter.write(); 3569 3570 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3571 emitDarwinBCHeaderAndTrailer(Buffer, TT); 3572 3573 // Write the generated bitstream to "Out". 3574 Out.write((char*)&Buffer.front(), Buffer.size()); 3575 } 3576 3577 void IndexBitcodeWriter::writeIndex() { 3578 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3579 3580 SmallVector<unsigned, 1> Vals; 3581 unsigned CurVersion = 1; 3582 Vals.push_back(CurVersion); 3583 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3584 3585 // If we have a VST, write the VSTOFFSET record placeholder. 3586 writeValueSymbolTableForwardDecl(); 3587 3588 // Write the module paths in the combined index. 3589 writeModStrings(); 3590 3591 // Write the summary combined index records. 3592 writeCombinedGlobalValueSummary(); 3593 3594 // Need a special VST writer for the combined index (we don't have a 3595 // real VST and real values when this is invoked). 3596 writeCombinedValueSymbolTable(); 3597 3598 Stream.ExitBlock(); 3599 } 3600 3601 // Write the specified module summary index to the given raw output stream, 3602 // where it will be written in a new bitcode block. This is used when 3603 // writing the combined index file for ThinLTO. 3604 void llvm::WriteIndexToFile(const ModuleSummaryIndex &Index, raw_ostream &Out) { 3605 SmallVector<char, 0> Buffer; 3606 Buffer.reserve(256 * 1024); 3607 3608 IndexBitcodeWriter IndexWriter(Buffer, Index); 3609 IndexWriter.write(); 3610 3611 Out.write((char *)&Buffer.front(), Buffer.size()); 3612 } 3613