1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Bitcode/BitCodes.h" 29 #include "llvm/Bitcode/BitstreamWriter.h" 30 #include "llvm/Bitcode/LLVMBitCodes.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/Object/IRSymtab.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Endian.h" 65 #include "llvm/Support/Error.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/SHA1.h" 69 #include "llvm/Support/TargetRegistry.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <map> 77 #include <memory> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 static cl::opt<unsigned> 85 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 86 cl::desc("Number of metadatas above which we emit an index " 87 "to enable lazy-loading")); 88 89 cl::opt<bool> WriteRelBFToSummary( 90 "write-relbf-to-summary", cl::Hidden, cl::init(false), 91 cl::desc("Write relative block frequency to function summary ")); 92 namespace { 93 94 /// These are manifest constants used by the bitcode writer. They do not need to 95 /// be kept in sync with the reader, but need to be consistent within this file. 96 enum { 97 // VALUE_SYMTAB_BLOCK abbrev id's. 98 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 99 VST_ENTRY_7_ABBREV, 100 VST_ENTRY_6_ABBREV, 101 VST_BBENTRY_6_ABBREV, 102 103 // CONSTANTS_BLOCK abbrev id's. 104 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 105 CONSTANTS_INTEGER_ABBREV, 106 CONSTANTS_CE_CAST_Abbrev, 107 CONSTANTS_NULL_Abbrev, 108 109 // FUNCTION_BLOCK abbrev id's. 110 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 111 FUNCTION_INST_BINOP_ABBREV, 112 FUNCTION_INST_BINOP_FLAGS_ABBREV, 113 FUNCTION_INST_CAST_ABBREV, 114 FUNCTION_INST_RET_VOID_ABBREV, 115 FUNCTION_INST_RET_VAL_ABBREV, 116 FUNCTION_INST_UNREACHABLE_ABBREV, 117 FUNCTION_INST_GEP_ABBREV, 118 }; 119 120 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 121 /// file type. 122 class BitcodeWriterBase { 123 protected: 124 /// The stream created and owned by the client. 125 BitstreamWriter &Stream; 126 127 StringTableBuilder &StrtabBuilder; 128 129 public: 130 /// Constructs a BitcodeWriterBase object that writes to the provided 131 /// \p Stream. 132 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 133 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 134 135 protected: 136 void writeBitcodeHeader(); 137 void writeModuleVersion(); 138 }; 139 140 void BitcodeWriterBase::writeModuleVersion() { 141 // VERSION: [version#] 142 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 143 } 144 145 /// Base class to manage the module bitcode writing, currently subclassed for 146 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 147 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 148 protected: 149 /// The Module to write to bitcode. 150 const Module &M; 151 152 /// Enumerates ids for all values in the module. 153 ValueEnumerator VE; 154 155 /// Optional per-module index to write for ThinLTO. 156 const ModuleSummaryIndex *Index; 157 158 /// Map that holds the correspondence between GUIDs in the summary index, 159 /// that came from indirect call profiles, and a value id generated by this 160 /// class to use in the VST and summary block records. 161 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 162 163 /// Tracks the last value id recorded in the GUIDToValueMap. 164 unsigned GlobalValueId; 165 166 /// Saves the offset of the VSTOffset record that must eventually be 167 /// backpatched with the offset of the actual VST. 168 uint64_t VSTOffsetPlaceholder = 0; 169 170 public: 171 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 172 /// writing to the provided \p Buffer. 173 ModuleBitcodeWriterBase(const Module *M, StringTableBuilder &StrtabBuilder, 174 BitstreamWriter &Stream, 175 bool ShouldPreserveUseListOrder, 176 const ModuleSummaryIndex *Index) 177 : BitcodeWriterBase(Stream, StrtabBuilder), M(*M), 178 VE(*M, ShouldPreserveUseListOrder), Index(Index) { 179 // Assign ValueIds to any callee values in the index that came from 180 // indirect call profiles and were recorded as a GUID not a Value* 181 // (which would have been assigned an ID by the ValueEnumerator). 182 // The starting ValueId is just after the number of values in the 183 // ValueEnumerator, so that they can be emitted in the VST. 184 GlobalValueId = VE.getValues().size(); 185 if (!Index) 186 return; 187 for (const auto &GUIDSummaryLists : *Index) 188 // Examine all summaries for this GUID. 189 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 190 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 191 // For each call in the function summary, see if the call 192 // is to a GUID (which means it is for an indirect call, 193 // otherwise we would have a Value for it). If so, synthesize 194 // a value id. 195 for (auto &CallEdge : FS->calls()) 196 if (!CallEdge.first.getValue()) 197 assignValueId(CallEdge.first.getGUID()); 198 } 199 200 protected: 201 void writePerModuleGlobalValueSummary(); 202 203 private: 204 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 205 GlobalValueSummary *Summary, 206 unsigned ValueID, 207 unsigned FSCallsAbbrev, 208 unsigned FSCallsProfileAbbrev, 209 const Function &F); 210 void writeModuleLevelReferences(const GlobalVariable &V, 211 SmallVector<uint64_t, 64> &NameVals, 212 unsigned FSModRefsAbbrev); 213 214 void assignValueId(GlobalValue::GUID ValGUID) { 215 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 216 } 217 218 unsigned getValueId(GlobalValue::GUID ValGUID) { 219 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 220 // Expect that any GUID value had a value Id assigned by an 221 // earlier call to assignValueId. 222 assert(VMI != GUIDToValueIdMap.end() && 223 "GUID does not have assigned value Id"); 224 return VMI->second; 225 } 226 227 // Helper to get the valueId for the type of value recorded in VI. 228 unsigned getValueId(ValueInfo VI) { 229 if (!VI.getValue()) 230 return getValueId(VI.getGUID()); 231 return VE.getValueID(VI.getValue()); 232 } 233 234 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 235 }; 236 237 /// Class to manage the bitcode writing for a module. 238 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 239 /// Pointer to the buffer allocated by caller for bitcode writing. 240 const SmallVectorImpl<char> &Buffer; 241 242 /// True if a module hash record should be written. 243 bool GenerateHash; 244 245 /// If non-null, when GenerateHash is true, the resulting hash is written 246 /// into ModHash. 247 ModuleHash *ModHash; 248 249 SHA1 Hasher; 250 251 /// The start bit of the identification block. 252 uint64_t BitcodeStartBit; 253 254 public: 255 /// Constructs a ModuleBitcodeWriter object for the given Module, 256 /// writing to the provided \p Buffer. 257 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 258 StringTableBuilder &StrtabBuilder, 259 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 260 const ModuleSummaryIndex *Index, bool GenerateHash, 261 ModuleHash *ModHash = nullptr) 262 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 263 ShouldPreserveUseListOrder, Index), 264 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 265 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 266 267 /// Emit the current module to the bitstream. 268 void write(); 269 270 private: 271 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 272 273 size_t addToStrtab(StringRef Str); 274 275 void writeAttributeGroupTable(); 276 void writeAttributeTable(); 277 void writeTypeTable(); 278 void writeComdats(); 279 void writeValueSymbolTableForwardDecl(); 280 void writeModuleInfo(); 281 void writeValueAsMetadata(const ValueAsMetadata *MD, 282 SmallVectorImpl<uint64_t> &Record); 283 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 284 unsigned Abbrev); 285 unsigned createDILocationAbbrev(); 286 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 287 unsigned &Abbrev); 288 unsigned createGenericDINodeAbbrev(); 289 void writeGenericDINode(const GenericDINode *N, 290 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 291 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 292 unsigned Abbrev); 293 void writeDIEnumerator(const DIEnumerator *N, 294 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 295 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 296 unsigned Abbrev); 297 void writeDIDerivedType(const DIDerivedType *N, 298 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 299 void writeDICompositeType(const DICompositeType *N, 300 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 301 void writeDISubroutineType(const DISubroutineType *N, 302 SmallVectorImpl<uint64_t> &Record, 303 unsigned Abbrev); 304 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 305 unsigned Abbrev); 306 void writeDICompileUnit(const DICompileUnit *N, 307 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 308 void writeDISubprogram(const DISubprogram *N, 309 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 310 void writeDILexicalBlock(const DILexicalBlock *N, 311 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 312 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 313 SmallVectorImpl<uint64_t> &Record, 314 unsigned Abbrev); 315 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 316 unsigned Abbrev); 317 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 318 unsigned Abbrev); 319 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 322 unsigned Abbrev); 323 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 324 SmallVectorImpl<uint64_t> &Record, 325 unsigned Abbrev); 326 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 327 SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDIGlobalVariable(const DIGlobalVariable *N, 330 SmallVectorImpl<uint64_t> &Record, 331 unsigned Abbrev); 332 void writeDILocalVariable(const DILocalVariable *N, 333 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 334 void writeDIExpression(const DIExpression *N, 335 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 336 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 337 SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIObjCProperty(const DIObjCProperty *N, 340 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 341 void writeDIImportedEntity(const DIImportedEntity *N, 342 SmallVectorImpl<uint64_t> &Record, 343 unsigned Abbrev); 344 unsigned createNamedMetadataAbbrev(); 345 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 346 unsigned createMetadataStringsAbbrev(); 347 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 348 SmallVectorImpl<uint64_t> &Record); 349 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 350 SmallVectorImpl<uint64_t> &Record, 351 std::vector<unsigned> *MDAbbrevs = nullptr, 352 std::vector<uint64_t> *IndexPos = nullptr); 353 void writeModuleMetadata(); 354 void writeFunctionMetadata(const Function &F); 355 void writeFunctionMetadataAttachment(const Function &F); 356 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 357 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 358 const GlobalObject &GO); 359 void writeModuleMetadataKinds(); 360 void writeOperandBundleTags(); 361 void writeSyncScopeNames(); 362 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 363 void writeModuleConstants(); 364 bool pushValueAndType(const Value *V, unsigned InstID, 365 SmallVectorImpl<unsigned> &Vals); 366 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 367 void pushValue(const Value *V, unsigned InstID, 368 SmallVectorImpl<unsigned> &Vals); 369 void pushValueSigned(const Value *V, unsigned InstID, 370 SmallVectorImpl<uint64_t> &Vals); 371 void writeInstruction(const Instruction &I, unsigned InstID, 372 SmallVectorImpl<unsigned> &Vals); 373 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 374 void writeGlobalValueSymbolTable( 375 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 376 void writeUseList(UseListOrder &&Order); 377 void writeUseListBlock(const Function *F); 378 void 379 writeFunction(const Function &F, 380 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 381 void writeBlockInfo(); 382 void writeModuleHash(size_t BlockStartPos); 383 384 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 385 return unsigned(SSID); 386 } 387 }; 388 389 /// Class to manage the bitcode writing for a combined index. 390 class IndexBitcodeWriter : public BitcodeWriterBase { 391 /// The combined index to write to bitcode. 392 const ModuleSummaryIndex &Index; 393 394 /// When writing a subset of the index for distributed backends, client 395 /// provides a map of modules to the corresponding GUIDs/summaries to write. 396 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 397 398 /// Map that holds the correspondence between the GUID used in the combined 399 /// index and a value id generated by this class to use in references. 400 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 401 402 /// Tracks the last value id recorded in the GUIDToValueMap. 403 unsigned GlobalValueId = 0; 404 405 public: 406 /// Constructs a IndexBitcodeWriter object for the given combined index, 407 /// writing to the provided \p Buffer. When writing a subset of the index 408 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 409 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 410 const ModuleSummaryIndex &Index, 411 const std::map<std::string, GVSummaryMapTy> 412 *ModuleToSummariesForIndex = nullptr) 413 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 414 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 415 // Assign unique value ids to all summaries to be written, for use 416 // in writing out the call graph edges. Save the mapping from GUID 417 // to the new global value id to use when writing those edges, which 418 // are currently saved in the index in terms of GUID. 419 forEachSummary([&](GVInfo I, bool) { 420 GUIDToValueIdMap[I.first] = ++GlobalValueId; 421 }); 422 } 423 424 /// The below iterator returns the GUID and associated summary. 425 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 426 427 /// Calls the callback for each value GUID and summary to be written to 428 /// bitcode. This hides the details of whether they are being pulled from the 429 /// entire index or just those in a provided ModuleToSummariesForIndex map. 430 template<typename Functor> 431 void forEachSummary(Functor Callback) { 432 if (ModuleToSummariesForIndex) { 433 for (auto &M : *ModuleToSummariesForIndex) 434 for (auto &Summary : M.second) { 435 Callback(Summary, false); 436 // Ensure aliasee is handled, e.g. for assigning a valueId, 437 // even if we are not importing the aliasee directly (the 438 // imported alias will contain a copy of aliasee). 439 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 440 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 441 } 442 } else { 443 for (auto &Summaries : Index) 444 for (auto &Summary : Summaries.second.SummaryList) 445 Callback({Summaries.first, Summary.get()}, false); 446 } 447 } 448 449 /// Calls the callback for each entry in the modulePaths StringMap that 450 /// should be written to the module path string table. This hides the details 451 /// of whether they are being pulled from the entire index or just those in a 452 /// provided ModuleToSummariesForIndex map. 453 template <typename Functor> void forEachModule(Functor Callback) { 454 if (ModuleToSummariesForIndex) { 455 for (const auto &M : *ModuleToSummariesForIndex) { 456 const auto &MPI = Index.modulePaths().find(M.first); 457 if (MPI == Index.modulePaths().end()) { 458 // This should only happen if the bitcode file was empty, in which 459 // case we shouldn't be importing (the ModuleToSummariesForIndex 460 // would only include the module we are writing and index for). 461 assert(ModuleToSummariesForIndex->size() == 1); 462 continue; 463 } 464 Callback(*MPI); 465 } 466 } else { 467 for (const auto &MPSE : Index.modulePaths()) 468 Callback(MPSE); 469 } 470 } 471 472 /// Main entry point for writing a combined index to bitcode. 473 void write(); 474 475 private: 476 void writeModStrings(); 477 void writeCombinedGlobalValueSummary(); 478 479 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 480 auto VMI = GUIDToValueIdMap.find(ValGUID); 481 if (VMI == GUIDToValueIdMap.end()) 482 return None; 483 return VMI->second; 484 } 485 486 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 487 }; 488 489 } // end anonymous namespace 490 491 static unsigned getEncodedCastOpcode(unsigned Opcode) { 492 switch (Opcode) { 493 default: llvm_unreachable("Unknown cast instruction!"); 494 case Instruction::Trunc : return bitc::CAST_TRUNC; 495 case Instruction::ZExt : return bitc::CAST_ZEXT; 496 case Instruction::SExt : return bitc::CAST_SEXT; 497 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 498 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 499 case Instruction::UIToFP : return bitc::CAST_UITOFP; 500 case Instruction::SIToFP : return bitc::CAST_SITOFP; 501 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 502 case Instruction::FPExt : return bitc::CAST_FPEXT; 503 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 504 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 505 case Instruction::BitCast : return bitc::CAST_BITCAST; 506 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 507 } 508 } 509 510 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 511 switch (Opcode) { 512 default: llvm_unreachable("Unknown binary instruction!"); 513 case Instruction::Add: 514 case Instruction::FAdd: return bitc::BINOP_ADD; 515 case Instruction::Sub: 516 case Instruction::FSub: return bitc::BINOP_SUB; 517 case Instruction::Mul: 518 case Instruction::FMul: return bitc::BINOP_MUL; 519 case Instruction::UDiv: return bitc::BINOP_UDIV; 520 case Instruction::FDiv: 521 case Instruction::SDiv: return bitc::BINOP_SDIV; 522 case Instruction::URem: return bitc::BINOP_UREM; 523 case Instruction::FRem: 524 case Instruction::SRem: return bitc::BINOP_SREM; 525 case Instruction::Shl: return bitc::BINOP_SHL; 526 case Instruction::LShr: return bitc::BINOP_LSHR; 527 case Instruction::AShr: return bitc::BINOP_ASHR; 528 case Instruction::And: return bitc::BINOP_AND; 529 case Instruction::Or: return bitc::BINOP_OR; 530 case Instruction::Xor: return bitc::BINOP_XOR; 531 } 532 } 533 534 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 535 switch (Op) { 536 default: llvm_unreachable("Unknown RMW operation!"); 537 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 538 case AtomicRMWInst::Add: return bitc::RMW_ADD; 539 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 540 case AtomicRMWInst::And: return bitc::RMW_AND; 541 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 542 case AtomicRMWInst::Or: return bitc::RMW_OR; 543 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 544 case AtomicRMWInst::Max: return bitc::RMW_MAX; 545 case AtomicRMWInst::Min: return bitc::RMW_MIN; 546 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 547 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 548 } 549 } 550 551 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 552 switch (Ordering) { 553 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 554 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 555 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 556 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 557 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 558 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 559 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 560 } 561 llvm_unreachable("Invalid ordering"); 562 } 563 564 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 565 StringRef Str, unsigned AbbrevToUse) { 566 SmallVector<unsigned, 64> Vals; 567 568 // Code: [strchar x N] 569 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 570 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 571 AbbrevToUse = 0; 572 Vals.push_back(Str[i]); 573 } 574 575 // Emit the finished record. 576 Stream.EmitRecord(Code, Vals, AbbrevToUse); 577 } 578 579 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 580 switch (Kind) { 581 case Attribute::Alignment: 582 return bitc::ATTR_KIND_ALIGNMENT; 583 case Attribute::AllocSize: 584 return bitc::ATTR_KIND_ALLOC_SIZE; 585 case Attribute::AlwaysInline: 586 return bitc::ATTR_KIND_ALWAYS_INLINE; 587 case Attribute::ArgMemOnly: 588 return bitc::ATTR_KIND_ARGMEMONLY; 589 case Attribute::Builtin: 590 return bitc::ATTR_KIND_BUILTIN; 591 case Attribute::ByVal: 592 return bitc::ATTR_KIND_BY_VAL; 593 case Attribute::Convergent: 594 return bitc::ATTR_KIND_CONVERGENT; 595 case Attribute::InAlloca: 596 return bitc::ATTR_KIND_IN_ALLOCA; 597 case Attribute::Cold: 598 return bitc::ATTR_KIND_COLD; 599 case Attribute::InaccessibleMemOnly: 600 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 601 case Attribute::InaccessibleMemOrArgMemOnly: 602 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 603 case Attribute::InlineHint: 604 return bitc::ATTR_KIND_INLINE_HINT; 605 case Attribute::InReg: 606 return bitc::ATTR_KIND_IN_REG; 607 case Attribute::JumpTable: 608 return bitc::ATTR_KIND_JUMP_TABLE; 609 case Attribute::MinSize: 610 return bitc::ATTR_KIND_MIN_SIZE; 611 case Attribute::Naked: 612 return bitc::ATTR_KIND_NAKED; 613 case Attribute::Nest: 614 return bitc::ATTR_KIND_NEST; 615 case Attribute::NoAlias: 616 return bitc::ATTR_KIND_NO_ALIAS; 617 case Attribute::NoBuiltin: 618 return bitc::ATTR_KIND_NO_BUILTIN; 619 case Attribute::NoCapture: 620 return bitc::ATTR_KIND_NO_CAPTURE; 621 case Attribute::NoDuplicate: 622 return bitc::ATTR_KIND_NO_DUPLICATE; 623 case Attribute::NoImplicitFloat: 624 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 625 case Attribute::NoInline: 626 return bitc::ATTR_KIND_NO_INLINE; 627 case Attribute::NoRecurse: 628 return bitc::ATTR_KIND_NO_RECURSE; 629 case Attribute::NonLazyBind: 630 return bitc::ATTR_KIND_NON_LAZY_BIND; 631 case Attribute::NonNull: 632 return bitc::ATTR_KIND_NON_NULL; 633 case Attribute::Dereferenceable: 634 return bitc::ATTR_KIND_DEREFERENCEABLE; 635 case Attribute::DereferenceableOrNull: 636 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 637 case Attribute::NoRedZone: 638 return bitc::ATTR_KIND_NO_RED_ZONE; 639 case Attribute::NoReturn: 640 return bitc::ATTR_KIND_NO_RETURN; 641 case Attribute::NoUnwind: 642 return bitc::ATTR_KIND_NO_UNWIND; 643 case Attribute::OptimizeForSize: 644 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 645 case Attribute::OptimizeNone: 646 return bitc::ATTR_KIND_OPTIMIZE_NONE; 647 case Attribute::ReadNone: 648 return bitc::ATTR_KIND_READ_NONE; 649 case Attribute::ReadOnly: 650 return bitc::ATTR_KIND_READ_ONLY; 651 case Attribute::Returned: 652 return bitc::ATTR_KIND_RETURNED; 653 case Attribute::ReturnsTwice: 654 return bitc::ATTR_KIND_RETURNS_TWICE; 655 case Attribute::SExt: 656 return bitc::ATTR_KIND_S_EXT; 657 case Attribute::Speculatable: 658 return bitc::ATTR_KIND_SPECULATABLE; 659 case Attribute::StackAlignment: 660 return bitc::ATTR_KIND_STACK_ALIGNMENT; 661 case Attribute::StackProtect: 662 return bitc::ATTR_KIND_STACK_PROTECT; 663 case Attribute::StackProtectReq: 664 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 665 case Attribute::StackProtectStrong: 666 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 667 case Attribute::SafeStack: 668 return bitc::ATTR_KIND_SAFESTACK; 669 case Attribute::StrictFP: 670 return bitc::ATTR_KIND_STRICT_FP; 671 case Attribute::StructRet: 672 return bitc::ATTR_KIND_STRUCT_RET; 673 case Attribute::SanitizeAddress: 674 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 675 case Attribute::SanitizeHWAddress: 676 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 677 case Attribute::SanitizeThread: 678 return bitc::ATTR_KIND_SANITIZE_THREAD; 679 case Attribute::SanitizeMemory: 680 return bitc::ATTR_KIND_SANITIZE_MEMORY; 681 case Attribute::SwiftError: 682 return bitc::ATTR_KIND_SWIFT_ERROR; 683 case Attribute::SwiftSelf: 684 return bitc::ATTR_KIND_SWIFT_SELF; 685 case Attribute::UWTable: 686 return bitc::ATTR_KIND_UW_TABLE; 687 case Attribute::WriteOnly: 688 return bitc::ATTR_KIND_WRITEONLY; 689 case Attribute::ZExt: 690 return bitc::ATTR_KIND_Z_EXT; 691 case Attribute::EndAttrKinds: 692 llvm_unreachable("Can not encode end-attribute kinds marker."); 693 case Attribute::None: 694 llvm_unreachable("Can not encode none-attribute."); 695 } 696 697 llvm_unreachable("Trying to encode unknown attribute"); 698 } 699 700 void ModuleBitcodeWriter::writeAttributeGroupTable() { 701 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 702 VE.getAttributeGroups(); 703 if (AttrGrps.empty()) return; 704 705 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 706 707 SmallVector<uint64_t, 64> Record; 708 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 709 unsigned AttrListIndex = Pair.first; 710 AttributeSet AS = Pair.second; 711 Record.push_back(VE.getAttributeGroupID(Pair)); 712 Record.push_back(AttrListIndex); 713 714 for (Attribute Attr : AS) { 715 if (Attr.isEnumAttribute()) { 716 Record.push_back(0); 717 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 718 } else if (Attr.isIntAttribute()) { 719 Record.push_back(1); 720 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 721 Record.push_back(Attr.getValueAsInt()); 722 } else { 723 StringRef Kind = Attr.getKindAsString(); 724 StringRef Val = Attr.getValueAsString(); 725 726 Record.push_back(Val.empty() ? 3 : 4); 727 Record.append(Kind.begin(), Kind.end()); 728 Record.push_back(0); 729 if (!Val.empty()) { 730 Record.append(Val.begin(), Val.end()); 731 Record.push_back(0); 732 } 733 } 734 } 735 736 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 737 Record.clear(); 738 } 739 740 Stream.ExitBlock(); 741 } 742 743 void ModuleBitcodeWriter::writeAttributeTable() { 744 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 745 if (Attrs.empty()) return; 746 747 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 748 749 SmallVector<uint64_t, 64> Record; 750 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 751 AttributeList AL = Attrs[i]; 752 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 753 AttributeSet AS = AL.getAttributes(i); 754 if (AS.hasAttributes()) 755 Record.push_back(VE.getAttributeGroupID({i, AS})); 756 } 757 758 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 759 Record.clear(); 760 } 761 762 Stream.ExitBlock(); 763 } 764 765 /// WriteTypeTable - Write out the type table for a module. 766 void ModuleBitcodeWriter::writeTypeTable() { 767 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 768 769 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 770 SmallVector<uint64_t, 64> TypeVals; 771 772 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 773 774 // Abbrev for TYPE_CODE_POINTER. 775 auto Abbv = std::make_shared<BitCodeAbbrev>(); 776 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 778 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 779 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 780 781 // Abbrev for TYPE_CODE_FUNCTION. 782 Abbv = std::make_shared<BitCodeAbbrev>(); 783 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 787 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 788 789 // Abbrev for TYPE_CODE_STRUCT_ANON. 790 Abbv = std::make_shared<BitCodeAbbrev>(); 791 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 795 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 796 797 // Abbrev for TYPE_CODE_STRUCT_NAME. 798 Abbv = std::make_shared<BitCodeAbbrev>(); 799 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 802 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 803 804 // Abbrev for TYPE_CODE_STRUCT_NAMED. 805 Abbv = std::make_shared<BitCodeAbbrev>(); 806 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 808 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 809 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 810 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 811 812 // Abbrev for TYPE_CODE_ARRAY. 813 Abbv = std::make_shared<BitCodeAbbrev>(); 814 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 817 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 818 819 // Emit an entry count so the reader can reserve space. 820 TypeVals.push_back(TypeList.size()); 821 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 822 TypeVals.clear(); 823 824 // Loop over all of the types, emitting each in turn. 825 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 826 Type *T = TypeList[i]; 827 int AbbrevToUse = 0; 828 unsigned Code = 0; 829 830 switch (T->getTypeID()) { 831 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 832 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 833 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 834 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 835 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 836 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 837 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 838 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 839 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 840 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 841 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 842 case Type::IntegerTyID: 843 // INTEGER: [width] 844 Code = bitc::TYPE_CODE_INTEGER; 845 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 846 break; 847 case Type::PointerTyID: { 848 PointerType *PTy = cast<PointerType>(T); 849 // POINTER: [pointee type, address space] 850 Code = bitc::TYPE_CODE_POINTER; 851 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 852 unsigned AddressSpace = PTy->getAddressSpace(); 853 TypeVals.push_back(AddressSpace); 854 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 855 break; 856 } 857 case Type::FunctionTyID: { 858 FunctionType *FT = cast<FunctionType>(T); 859 // FUNCTION: [isvararg, retty, paramty x N] 860 Code = bitc::TYPE_CODE_FUNCTION; 861 TypeVals.push_back(FT->isVarArg()); 862 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 863 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 864 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 865 AbbrevToUse = FunctionAbbrev; 866 break; 867 } 868 case Type::StructTyID: { 869 StructType *ST = cast<StructType>(T); 870 // STRUCT: [ispacked, eltty x N] 871 TypeVals.push_back(ST->isPacked()); 872 // Output all of the element types. 873 for (StructType::element_iterator I = ST->element_begin(), 874 E = ST->element_end(); I != E; ++I) 875 TypeVals.push_back(VE.getTypeID(*I)); 876 877 if (ST->isLiteral()) { 878 Code = bitc::TYPE_CODE_STRUCT_ANON; 879 AbbrevToUse = StructAnonAbbrev; 880 } else { 881 if (ST->isOpaque()) { 882 Code = bitc::TYPE_CODE_OPAQUE; 883 } else { 884 Code = bitc::TYPE_CODE_STRUCT_NAMED; 885 AbbrevToUse = StructNamedAbbrev; 886 } 887 888 // Emit the name if it is present. 889 if (!ST->getName().empty()) 890 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 891 StructNameAbbrev); 892 } 893 break; 894 } 895 case Type::ArrayTyID: { 896 ArrayType *AT = cast<ArrayType>(T); 897 // ARRAY: [numelts, eltty] 898 Code = bitc::TYPE_CODE_ARRAY; 899 TypeVals.push_back(AT->getNumElements()); 900 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 901 AbbrevToUse = ArrayAbbrev; 902 break; 903 } 904 case Type::VectorTyID: { 905 VectorType *VT = cast<VectorType>(T); 906 // VECTOR [numelts, eltty] 907 Code = bitc::TYPE_CODE_VECTOR; 908 TypeVals.push_back(VT->getNumElements()); 909 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 910 break; 911 } 912 } 913 914 // Emit the finished record. 915 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 916 TypeVals.clear(); 917 } 918 919 Stream.ExitBlock(); 920 } 921 922 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 923 switch (Linkage) { 924 case GlobalValue::ExternalLinkage: 925 return 0; 926 case GlobalValue::WeakAnyLinkage: 927 return 16; 928 case GlobalValue::AppendingLinkage: 929 return 2; 930 case GlobalValue::InternalLinkage: 931 return 3; 932 case GlobalValue::LinkOnceAnyLinkage: 933 return 18; 934 case GlobalValue::ExternalWeakLinkage: 935 return 7; 936 case GlobalValue::CommonLinkage: 937 return 8; 938 case GlobalValue::PrivateLinkage: 939 return 9; 940 case GlobalValue::WeakODRLinkage: 941 return 17; 942 case GlobalValue::LinkOnceODRLinkage: 943 return 19; 944 case GlobalValue::AvailableExternallyLinkage: 945 return 12; 946 } 947 llvm_unreachable("Invalid linkage"); 948 } 949 950 static unsigned getEncodedLinkage(const GlobalValue &GV) { 951 return getEncodedLinkage(GV.getLinkage()); 952 } 953 954 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 955 uint64_t RawFlags = 0; 956 RawFlags |= Flags.ReadNone; 957 RawFlags |= (Flags.ReadOnly << 1); 958 RawFlags |= (Flags.NoRecurse << 2); 959 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 960 return RawFlags; 961 } 962 963 // Decode the flags for GlobalValue in the summary 964 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 965 uint64_t RawFlags = 0; 966 967 RawFlags |= Flags.NotEligibleToImport; // bool 968 RawFlags |= (Flags.Live << 1); 969 RawFlags |= (Flags.DSOLocal << 2); 970 971 // Linkage don't need to be remapped at that time for the summary. Any future 972 // change to the getEncodedLinkage() function will need to be taken into 973 // account here as well. 974 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 975 976 return RawFlags; 977 } 978 979 static unsigned getEncodedVisibility(const GlobalValue &GV) { 980 switch (GV.getVisibility()) { 981 case GlobalValue::DefaultVisibility: return 0; 982 case GlobalValue::HiddenVisibility: return 1; 983 case GlobalValue::ProtectedVisibility: return 2; 984 } 985 llvm_unreachable("Invalid visibility"); 986 } 987 988 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 989 switch (GV.getDLLStorageClass()) { 990 case GlobalValue::DefaultStorageClass: return 0; 991 case GlobalValue::DLLImportStorageClass: return 1; 992 case GlobalValue::DLLExportStorageClass: return 2; 993 } 994 llvm_unreachable("Invalid DLL storage class"); 995 } 996 997 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 998 switch (GV.getThreadLocalMode()) { 999 case GlobalVariable::NotThreadLocal: return 0; 1000 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1001 case GlobalVariable::LocalDynamicTLSModel: return 2; 1002 case GlobalVariable::InitialExecTLSModel: return 3; 1003 case GlobalVariable::LocalExecTLSModel: return 4; 1004 } 1005 llvm_unreachable("Invalid TLS model"); 1006 } 1007 1008 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1009 switch (C.getSelectionKind()) { 1010 case Comdat::Any: 1011 return bitc::COMDAT_SELECTION_KIND_ANY; 1012 case Comdat::ExactMatch: 1013 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1014 case Comdat::Largest: 1015 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1016 case Comdat::NoDuplicates: 1017 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1018 case Comdat::SameSize: 1019 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1020 } 1021 llvm_unreachable("Invalid selection kind"); 1022 } 1023 1024 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1025 switch (GV.getUnnamedAddr()) { 1026 case GlobalValue::UnnamedAddr::None: return 0; 1027 case GlobalValue::UnnamedAddr::Local: return 2; 1028 case GlobalValue::UnnamedAddr::Global: return 1; 1029 } 1030 llvm_unreachable("Invalid unnamed_addr"); 1031 } 1032 1033 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1034 if (GenerateHash) 1035 Hasher.update(Str); 1036 return StrtabBuilder.add(Str); 1037 } 1038 1039 void ModuleBitcodeWriter::writeComdats() { 1040 SmallVector<unsigned, 64> Vals; 1041 for (const Comdat *C : VE.getComdats()) { 1042 // COMDAT: [strtab offset, strtab size, selection_kind] 1043 Vals.push_back(addToStrtab(C->getName())); 1044 Vals.push_back(C->getName().size()); 1045 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1046 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1047 Vals.clear(); 1048 } 1049 } 1050 1051 /// Write a record that will eventually hold the word offset of the 1052 /// module-level VST. For now the offset is 0, which will be backpatched 1053 /// after the real VST is written. Saves the bit offset to backpatch. 1054 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1055 // Write a placeholder value in for the offset of the real VST, 1056 // which is written after the function blocks so that it can include 1057 // the offset of each function. The placeholder offset will be 1058 // updated when the real VST is written. 1059 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1060 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1061 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1062 // hold the real VST offset. Must use fixed instead of VBR as we don't 1063 // know how many VBR chunks to reserve ahead of time. 1064 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1065 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1066 1067 // Emit the placeholder 1068 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1069 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1070 1071 // Compute and save the bit offset to the placeholder, which will be 1072 // patched when the real VST is written. We can simply subtract the 32-bit 1073 // fixed size from the current bit number to get the location to backpatch. 1074 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1075 } 1076 1077 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1078 1079 /// Determine the encoding to use for the given string name and length. 1080 static StringEncoding getStringEncoding(StringRef Str) { 1081 bool isChar6 = true; 1082 for (char C : Str) { 1083 if (isChar6) 1084 isChar6 = BitCodeAbbrevOp::isChar6(C); 1085 if ((unsigned char)C & 128) 1086 // don't bother scanning the rest. 1087 return SE_Fixed8; 1088 } 1089 if (isChar6) 1090 return SE_Char6; 1091 return SE_Fixed7; 1092 } 1093 1094 /// Emit top-level description of module, including target triple, inline asm, 1095 /// descriptors for global variables, and function prototype info. 1096 /// Returns the bit offset to backpatch with the location of the real VST. 1097 void ModuleBitcodeWriter::writeModuleInfo() { 1098 // Emit various pieces of data attached to a module. 1099 if (!M.getTargetTriple().empty()) 1100 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1101 0 /*TODO*/); 1102 const std::string &DL = M.getDataLayoutStr(); 1103 if (!DL.empty()) 1104 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1105 if (!M.getModuleInlineAsm().empty()) 1106 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1107 0 /*TODO*/); 1108 1109 // Emit information about sections and GC, computing how many there are. Also 1110 // compute the maximum alignment value. 1111 std::map<std::string, unsigned> SectionMap; 1112 std::map<std::string, unsigned> GCMap; 1113 unsigned MaxAlignment = 0; 1114 unsigned MaxGlobalType = 0; 1115 for (const GlobalValue &GV : M.globals()) { 1116 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1117 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1118 if (GV.hasSection()) { 1119 // Give section names unique ID's. 1120 unsigned &Entry = SectionMap[GV.getSection()]; 1121 if (!Entry) { 1122 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1123 0 /*TODO*/); 1124 Entry = SectionMap.size(); 1125 } 1126 } 1127 } 1128 for (const Function &F : M) { 1129 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1130 if (F.hasSection()) { 1131 // Give section names unique ID's. 1132 unsigned &Entry = SectionMap[F.getSection()]; 1133 if (!Entry) { 1134 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1135 0 /*TODO*/); 1136 Entry = SectionMap.size(); 1137 } 1138 } 1139 if (F.hasGC()) { 1140 // Same for GC names. 1141 unsigned &Entry = GCMap[F.getGC()]; 1142 if (!Entry) { 1143 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1144 0 /*TODO*/); 1145 Entry = GCMap.size(); 1146 } 1147 } 1148 } 1149 1150 // Emit abbrev for globals, now that we know # sections and max alignment. 1151 unsigned SimpleGVarAbbrev = 0; 1152 if (!M.global_empty()) { 1153 // Add an abbrev for common globals with no visibility or thread localness. 1154 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1155 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1159 Log2_32_Ceil(MaxGlobalType+1))); 1160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1161 //| explicitType << 1 1162 //| constant 1163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1165 if (MaxAlignment == 0) // Alignment. 1166 Abbv->Add(BitCodeAbbrevOp(0)); 1167 else { 1168 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1170 Log2_32_Ceil(MaxEncAlignment+1))); 1171 } 1172 if (SectionMap.empty()) // Section. 1173 Abbv->Add(BitCodeAbbrevOp(0)); 1174 else 1175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1176 Log2_32_Ceil(SectionMap.size()+1))); 1177 // Don't bother emitting vis + thread local. 1178 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1179 } 1180 1181 SmallVector<unsigned, 64> Vals; 1182 // Emit the module's source file name. 1183 { 1184 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1185 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1186 if (Bits == SE_Char6) 1187 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1188 else if (Bits == SE_Fixed7) 1189 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1190 1191 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1192 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1193 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1195 Abbv->Add(AbbrevOpToUse); 1196 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1197 1198 for (const auto P : M.getSourceFileName()) 1199 Vals.push_back((unsigned char)P); 1200 1201 // Emit the finished record. 1202 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1203 Vals.clear(); 1204 } 1205 1206 // Emit the global variable information. 1207 for (const GlobalVariable &GV : M.globals()) { 1208 unsigned AbbrevToUse = 0; 1209 1210 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1211 // linkage, alignment, section, visibility, threadlocal, 1212 // unnamed_addr, externally_initialized, dllstorageclass, 1213 // comdat, attributes, DSO_Local] 1214 Vals.push_back(addToStrtab(GV.getName())); 1215 Vals.push_back(GV.getName().size()); 1216 Vals.push_back(VE.getTypeID(GV.getValueType())); 1217 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1218 Vals.push_back(GV.isDeclaration() ? 0 : 1219 (VE.getValueID(GV.getInitializer()) + 1)); 1220 Vals.push_back(getEncodedLinkage(GV)); 1221 Vals.push_back(Log2_32(GV.getAlignment())+1); 1222 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1223 if (GV.isThreadLocal() || 1224 GV.getVisibility() != GlobalValue::DefaultVisibility || 1225 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1226 GV.isExternallyInitialized() || 1227 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1228 GV.hasComdat() || 1229 GV.hasAttributes() || 1230 GV.isDSOLocal()) { 1231 Vals.push_back(getEncodedVisibility(GV)); 1232 Vals.push_back(getEncodedThreadLocalMode(GV)); 1233 Vals.push_back(getEncodedUnnamedAddr(GV)); 1234 Vals.push_back(GV.isExternallyInitialized()); 1235 Vals.push_back(getEncodedDLLStorageClass(GV)); 1236 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1237 1238 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1239 Vals.push_back(VE.getAttributeListID(AL)); 1240 1241 Vals.push_back(GV.isDSOLocal()); 1242 } else { 1243 AbbrevToUse = SimpleGVarAbbrev; 1244 } 1245 1246 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1247 Vals.clear(); 1248 } 1249 1250 // Emit the function proto information. 1251 for (const Function &F : M) { 1252 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1253 // linkage, paramattrs, alignment, section, visibility, gc, 1254 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1255 // prefixdata, personalityfn, DSO_Local] 1256 Vals.push_back(addToStrtab(F.getName())); 1257 Vals.push_back(F.getName().size()); 1258 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1259 Vals.push_back(F.getCallingConv()); 1260 Vals.push_back(F.isDeclaration()); 1261 Vals.push_back(getEncodedLinkage(F)); 1262 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1263 Vals.push_back(Log2_32(F.getAlignment())+1); 1264 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1265 Vals.push_back(getEncodedVisibility(F)); 1266 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1267 Vals.push_back(getEncodedUnnamedAddr(F)); 1268 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1269 : 0); 1270 Vals.push_back(getEncodedDLLStorageClass(F)); 1271 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1272 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1273 : 0); 1274 Vals.push_back( 1275 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1276 1277 Vals.push_back(F.isDSOLocal()); 1278 unsigned AbbrevToUse = 0; 1279 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1280 Vals.clear(); 1281 } 1282 1283 // Emit the alias information. 1284 for (const GlobalAlias &A : M.aliases()) { 1285 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1286 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1287 // DSO_Local] 1288 Vals.push_back(addToStrtab(A.getName())); 1289 Vals.push_back(A.getName().size()); 1290 Vals.push_back(VE.getTypeID(A.getValueType())); 1291 Vals.push_back(A.getType()->getAddressSpace()); 1292 Vals.push_back(VE.getValueID(A.getAliasee())); 1293 Vals.push_back(getEncodedLinkage(A)); 1294 Vals.push_back(getEncodedVisibility(A)); 1295 Vals.push_back(getEncodedDLLStorageClass(A)); 1296 Vals.push_back(getEncodedThreadLocalMode(A)); 1297 Vals.push_back(getEncodedUnnamedAddr(A)); 1298 Vals.push_back(A.isDSOLocal()); 1299 1300 unsigned AbbrevToUse = 0; 1301 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1302 Vals.clear(); 1303 } 1304 1305 // Emit the ifunc information. 1306 for (const GlobalIFunc &I : M.ifuncs()) { 1307 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1308 // val#, linkage, visibility, DSO_Local] 1309 Vals.push_back(addToStrtab(I.getName())); 1310 Vals.push_back(I.getName().size()); 1311 Vals.push_back(VE.getTypeID(I.getValueType())); 1312 Vals.push_back(I.getType()->getAddressSpace()); 1313 Vals.push_back(VE.getValueID(I.getResolver())); 1314 Vals.push_back(getEncodedLinkage(I)); 1315 Vals.push_back(getEncodedVisibility(I)); 1316 Vals.push_back(I.isDSOLocal()); 1317 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1318 Vals.clear(); 1319 } 1320 1321 writeValueSymbolTableForwardDecl(); 1322 } 1323 1324 static uint64_t getOptimizationFlags(const Value *V) { 1325 uint64_t Flags = 0; 1326 1327 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1328 if (OBO->hasNoSignedWrap()) 1329 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1330 if (OBO->hasNoUnsignedWrap()) 1331 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1332 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1333 if (PEO->isExact()) 1334 Flags |= 1 << bitc::PEO_EXACT; 1335 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1336 if (FPMO->hasAllowReassoc()) 1337 Flags |= FastMathFlags::AllowReassoc; 1338 if (FPMO->hasNoNaNs()) 1339 Flags |= FastMathFlags::NoNaNs; 1340 if (FPMO->hasNoInfs()) 1341 Flags |= FastMathFlags::NoInfs; 1342 if (FPMO->hasNoSignedZeros()) 1343 Flags |= FastMathFlags::NoSignedZeros; 1344 if (FPMO->hasAllowReciprocal()) 1345 Flags |= FastMathFlags::AllowReciprocal; 1346 if (FPMO->hasAllowContract()) 1347 Flags |= FastMathFlags::AllowContract; 1348 if (FPMO->hasApproxFunc()) 1349 Flags |= FastMathFlags::ApproxFunc; 1350 } 1351 1352 return Flags; 1353 } 1354 1355 void ModuleBitcodeWriter::writeValueAsMetadata( 1356 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1357 // Mimic an MDNode with a value as one operand. 1358 Value *V = MD->getValue(); 1359 Record.push_back(VE.getTypeID(V->getType())); 1360 Record.push_back(VE.getValueID(V)); 1361 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1362 Record.clear(); 1363 } 1364 1365 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1366 SmallVectorImpl<uint64_t> &Record, 1367 unsigned Abbrev) { 1368 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1369 Metadata *MD = N->getOperand(i); 1370 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1371 "Unexpected function-local metadata"); 1372 Record.push_back(VE.getMetadataOrNullID(MD)); 1373 } 1374 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1375 : bitc::METADATA_NODE, 1376 Record, Abbrev); 1377 Record.clear(); 1378 } 1379 1380 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1381 // Assume the column is usually under 128, and always output the inlined-at 1382 // location (it's never more expensive than building an array size 1). 1383 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1384 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1390 return Stream.EmitAbbrev(std::move(Abbv)); 1391 } 1392 1393 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1394 SmallVectorImpl<uint64_t> &Record, 1395 unsigned &Abbrev) { 1396 if (!Abbrev) 1397 Abbrev = createDILocationAbbrev(); 1398 1399 Record.push_back(N->isDistinct()); 1400 Record.push_back(N->getLine()); 1401 Record.push_back(N->getColumn()); 1402 Record.push_back(VE.getMetadataID(N->getScope())); 1403 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1404 1405 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1406 Record.clear(); 1407 } 1408 1409 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1410 // Assume the column is usually under 128, and always output the inlined-at 1411 // location (it's never more expensive than building an array size 1). 1412 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1413 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1420 return Stream.EmitAbbrev(std::move(Abbv)); 1421 } 1422 1423 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1424 SmallVectorImpl<uint64_t> &Record, 1425 unsigned &Abbrev) { 1426 if (!Abbrev) 1427 Abbrev = createGenericDINodeAbbrev(); 1428 1429 Record.push_back(N->isDistinct()); 1430 Record.push_back(N->getTag()); 1431 Record.push_back(0); // Per-tag version field; unused for now. 1432 1433 for (auto &I : N->operands()) 1434 Record.push_back(VE.getMetadataOrNullID(I)); 1435 1436 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1437 Record.clear(); 1438 } 1439 1440 static uint64_t rotateSign(int64_t I) { 1441 uint64_t U = I; 1442 return I < 0 ? ~(U << 1) : U << 1; 1443 } 1444 1445 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1446 SmallVectorImpl<uint64_t> &Record, 1447 unsigned Abbrev) { 1448 const uint64_t Version = 1 << 1; 1449 Record.push_back((uint64_t)N->isDistinct() | Version); 1450 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1451 Record.push_back(rotateSign(N->getLowerBound())); 1452 1453 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1454 Record.clear(); 1455 } 1456 1457 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1458 SmallVectorImpl<uint64_t> &Record, 1459 unsigned Abbrev) { 1460 Record.push_back(N->isDistinct()); 1461 Record.push_back(rotateSign(N->getValue())); 1462 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1463 1464 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1465 Record.clear(); 1466 } 1467 1468 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1469 SmallVectorImpl<uint64_t> &Record, 1470 unsigned Abbrev) { 1471 Record.push_back(N->isDistinct()); 1472 Record.push_back(N->getTag()); 1473 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1474 Record.push_back(N->getSizeInBits()); 1475 Record.push_back(N->getAlignInBits()); 1476 Record.push_back(N->getEncoding()); 1477 1478 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1479 Record.clear(); 1480 } 1481 1482 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1483 SmallVectorImpl<uint64_t> &Record, 1484 unsigned Abbrev) { 1485 Record.push_back(N->isDistinct()); 1486 Record.push_back(N->getTag()); 1487 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1488 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1489 Record.push_back(N->getLine()); 1490 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1491 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1492 Record.push_back(N->getSizeInBits()); 1493 Record.push_back(N->getAlignInBits()); 1494 Record.push_back(N->getOffsetInBits()); 1495 Record.push_back(N->getFlags()); 1496 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1497 1498 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1499 // that there is no DWARF address space associated with DIDerivedType. 1500 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1501 Record.push_back(*DWARFAddressSpace + 1); 1502 else 1503 Record.push_back(0); 1504 1505 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1506 Record.clear(); 1507 } 1508 1509 void ModuleBitcodeWriter::writeDICompositeType( 1510 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1511 unsigned Abbrev) { 1512 const unsigned IsNotUsedInOldTypeRef = 0x2; 1513 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1514 Record.push_back(N->getTag()); 1515 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1516 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1517 Record.push_back(N->getLine()); 1518 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1519 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1520 Record.push_back(N->getSizeInBits()); 1521 Record.push_back(N->getAlignInBits()); 1522 Record.push_back(N->getOffsetInBits()); 1523 Record.push_back(N->getFlags()); 1524 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1525 Record.push_back(N->getRuntimeLang()); 1526 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1527 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1528 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1529 1530 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1531 Record.clear(); 1532 } 1533 1534 void ModuleBitcodeWriter::writeDISubroutineType( 1535 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1536 unsigned Abbrev) { 1537 const unsigned HasNoOldTypeRefs = 0x2; 1538 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1539 Record.push_back(N->getFlags()); 1540 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1541 Record.push_back(N->getCC()); 1542 1543 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1544 Record.clear(); 1545 } 1546 1547 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1548 SmallVectorImpl<uint64_t> &Record, 1549 unsigned Abbrev) { 1550 Record.push_back(N->isDistinct()); 1551 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1552 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1553 Record.push_back(N->getChecksumKind()); 1554 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum())); 1555 1556 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1557 Record.clear(); 1558 } 1559 1560 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1561 SmallVectorImpl<uint64_t> &Record, 1562 unsigned Abbrev) { 1563 assert(N->isDistinct() && "Expected distinct compile units"); 1564 Record.push_back(/* IsDistinct */ true); 1565 Record.push_back(N->getSourceLanguage()); 1566 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1567 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1568 Record.push_back(N->isOptimized()); 1569 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1570 Record.push_back(N->getRuntimeVersion()); 1571 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1572 Record.push_back(N->getEmissionKind()); 1573 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1574 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1575 Record.push_back(/* subprograms */ 0); 1576 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1577 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1578 Record.push_back(N->getDWOId()); 1579 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1580 Record.push_back(N->getSplitDebugInlining()); 1581 Record.push_back(N->getDebugInfoForProfiling()); 1582 Record.push_back(N->getGnuPubnames()); 1583 1584 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1585 Record.clear(); 1586 } 1587 1588 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1589 SmallVectorImpl<uint64_t> &Record, 1590 unsigned Abbrev) { 1591 uint64_t HasUnitFlag = 1 << 1; 1592 Record.push_back(N->isDistinct() | HasUnitFlag); 1593 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1594 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1595 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1596 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1597 Record.push_back(N->getLine()); 1598 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1599 Record.push_back(N->isLocalToUnit()); 1600 Record.push_back(N->isDefinition()); 1601 Record.push_back(N->getScopeLine()); 1602 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1603 Record.push_back(N->getVirtuality()); 1604 Record.push_back(N->getVirtualIndex()); 1605 Record.push_back(N->getFlags()); 1606 Record.push_back(N->isOptimized()); 1607 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1608 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1609 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1610 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1611 Record.push_back(N->getThisAdjustment()); 1612 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1613 1614 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1615 Record.clear(); 1616 } 1617 1618 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1619 SmallVectorImpl<uint64_t> &Record, 1620 unsigned Abbrev) { 1621 Record.push_back(N->isDistinct()); 1622 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1623 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1624 Record.push_back(N->getLine()); 1625 Record.push_back(N->getColumn()); 1626 1627 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1628 Record.clear(); 1629 } 1630 1631 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1632 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1633 unsigned Abbrev) { 1634 Record.push_back(N->isDistinct()); 1635 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1636 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1637 Record.push_back(N->getDiscriminator()); 1638 1639 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1640 Record.clear(); 1641 } 1642 1643 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1644 SmallVectorImpl<uint64_t> &Record, 1645 unsigned Abbrev) { 1646 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1647 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1648 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1649 1650 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1651 Record.clear(); 1652 } 1653 1654 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1655 SmallVectorImpl<uint64_t> &Record, 1656 unsigned Abbrev) { 1657 Record.push_back(N->isDistinct()); 1658 Record.push_back(N->getMacinfoType()); 1659 Record.push_back(N->getLine()); 1660 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1661 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1662 1663 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1664 Record.clear(); 1665 } 1666 1667 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1668 SmallVectorImpl<uint64_t> &Record, 1669 unsigned Abbrev) { 1670 Record.push_back(N->isDistinct()); 1671 Record.push_back(N->getMacinfoType()); 1672 Record.push_back(N->getLine()); 1673 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1674 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1675 1676 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1677 Record.clear(); 1678 } 1679 1680 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1681 SmallVectorImpl<uint64_t> &Record, 1682 unsigned Abbrev) { 1683 Record.push_back(N->isDistinct()); 1684 for (auto &I : N->operands()) 1685 Record.push_back(VE.getMetadataOrNullID(I)); 1686 1687 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1688 Record.clear(); 1689 } 1690 1691 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1692 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1693 unsigned Abbrev) { 1694 Record.push_back(N->isDistinct()); 1695 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1696 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1697 1698 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1699 Record.clear(); 1700 } 1701 1702 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1703 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1704 unsigned Abbrev) { 1705 Record.push_back(N->isDistinct()); 1706 Record.push_back(N->getTag()); 1707 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1708 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1709 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1710 1711 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1712 Record.clear(); 1713 } 1714 1715 void ModuleBitcodeWriter::writeDIGlobalVariable( 1716 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1717 unsigned Abbrev) { 1718 const uint64_t Version = 1 << 1; 1719 Record.push_back((uint64_t)N->isDistinct() | Version); 1720 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1721 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1722 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1723 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1724 Record.push_back(N->getLine()); 1725 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1726 Record.push_back(N->isLocalToUnit()); 1727 Record.push_back(N->isDefinition()); 1728 Record.push_back(/* expr */ 0); 1729 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1730 Record.push_back(N->getAlignInBits()); 1731 1732 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1733 Record.clear(); 1734 } 1735 1736 void ModuleBitcodeWriter::writeDILocalVariable( 1737 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1738 unsigned Abbrev) { 1739 // In order to support all possible bitcode formats in BitcodeReader we need 1740 // to distinguish the following cases: 1741 // 1) Record has no artificial tag (Record[1]), 1742 // has no obsolete inlinedAt field (Record[9]). 1743 // In this case Record size will be 8, HasAlignment flag is false. 1744 // 2) Record has artificial tag (Record[1]), 1745 // has no obsolete inlignedAt field (Record[9]). 1746 // In this case Record size will be 9, HasAlignment flag is false. 1747 // 3) Record has both artificial tag (Record[1]) and 1748 // obsolete inlignedAt field (Record[9]). 1749 // In this case Record size will be 10, HasAlignment flag is false. 1750 // 4) Record has neither artificial tag, nor inlignedAt field, but 1751 // HasAlignment flag is true and Record[8] contains alignment value. 1752 const uint64_t HasAlignmentFlag = 1 << 1; 1753 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1754 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1755 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1756 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1757 Record.push_back(N->getLine()); 1758 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1759 Record.push_back(N->getArg()); 1760 Record.push_back(N->getFlags()); 1761 Record.push_back(N->getAlignInBits()); 1762 1763 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1764 Record.clear(); 1765 } 1766 1767 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1768 SmallVectorImpl<uint64_t> &Record, 1769 unsigned Abbrev) { 1770 Record.reserve(N->getElements().size() + 1); 1771 const uint64_t Version = 3 << 1; 1772 Record.push_back((uint64_t)N->isDistinct() | Version); 1773 Record.append(N->elements_begin(), N->elements_end()); 1774 1775 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1776 Record.clear(); 1777 } 1778 1779 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1780 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1781 unsigned Abbrev) { 1782 Record.push_back(N->isDistinct()); 1783 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1784 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1785 1786 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1787 Record.clear(); 1788 } 1789 1790 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1791 SmallVectorImpl<uint64_t> &Record, 1792 unsigned Abbrev) { 1793 Record.push_back(N->isDistinct()); 1794 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1795 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1796 Record.push_back(N->getLine()); 1797 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1798 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1799 Record.push_back(N->getAttributes()); 1800 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1801 1802 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1803 Record.clear(); 1804 } 1805 1806 void ModuleBitcodeWriter::writeDIImportedEntity( 1807 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1808 unsigned Abbrev) { 1809 Record.push_back(N->isDistinct()); 1810 Record.push_back(N->getTag()); 1811 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1812 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1813 Record.push_back(N->getLine()); 1814 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1815 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1816 1817 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1818 Record.clear(); 1819 } 1820 1821 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1822 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1823 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1825 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1826 return Stream.EmitAbbrev(std::move(Abbv)); 1827 } 1828 1829 void ModuleBitcodeWriter::writeNamedMetadata( 1830 SmallVectorImpl<uint64_t> &Record) { 1831 if (M.named_metadata_empty()) 1832 return; 1833 1834 unsigned Abbrev = createNamedMetadataAbbrev(); 1835 for (const NamedMDNode &NMD : M.named_metadata()) { 1836 // Write name. 1837 StringRef Str = NMD.getName(); 1838 Record.append(Str.bytes_begin(), Str.bytes_end()); 1839 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1840 Record.clear(); 1841 1842 // Write named metadata operands. 1843 for (const MDNode *N : NMD.operands()) 1844 Record.push_back(VE.getMetadataID(N)); 1845 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1846 Record.clear(); 1847 } 1848 } 1849 1850 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1851 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1852 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1855 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1856 return Stream.EmitAbbrev(std::move(Abbv)); 1857 } 1858 1859 /// Write out a record for MDString. 1860 /// 1861 /// All the metadata strings in a metadata block are emitted in a single 1862 /// record. The sizes and strings themselves are shoved into a blob. 1863 void ModuleBitcodeWriter::writeMetadataStrings( 1864 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1865 if (Strings.empty()) 1866 return; 1867 1868 // Start the record with the number of strings. 1869 Record.push_back(bitc::METADATA_STRINGS); 1870 Record.push_back(Strings.size()); 1871 1872 // Emit the sizes of the strings in the blob. 1873 SmallString<256> Blob; 1874 { 1875 BitstreamWriter W(Blob); 1876 for (const Metadata *MD : Strings) 1877 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1878 W.FlushToWord(); 1879 } 1880 1881 // Add the offset to the strings to the record. 1882 Record.push_back(Blob.size()); 1883 1884 // Add the strings to the blob. 1885 for (const Metadata *MD : Strings) 1886 Blob.append(cast<MDString>(MD)->getString()); 1887 1888 // Emit the final record. 1889 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1890 Record.clear(); 1891 } 1892 1893 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1894 enum MetadataAbbrev : unsigned { 1895 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1896 #include "llvm/IR/Metadata.def" 1897 LastPlusOne 1898 }; 1899 1900 void ModuleBitcodeWriter::writeMetadataRecords( 1901 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1902 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1903 if (MDs.empty()) 1904 return; 1905 1906 // Initialize MDNode abbreviations. 1907 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1908 #include "llvm/IR/Metadata.def" 1909 1910 for (const Metadata *MD : MDs) { 1911 if (IndexPos) 1912 IndexPos->push_back(Stream.GetCurrentBitNo()); 1913 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1914 assert(N->isResolved() && "Expected forward references to be resolved"); 1915 1916 switch (N->getMetadataID()) { 1917 default: 1918 llvm_unreachable("Invalid MDNode subclass"); 1919 #define HANDLE_MDNODE_LEAF(CLASS) \ 1920 case Metadata::CLASS##Kind: \ 1921 if (MDAbbrevs) \ 1922 write##CLASS(cast<CLASS>(N), Record, \ 1923 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1924 else \ 1925 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1926 continue; 1927 #include "llvm/IR/Metadata.def" 1928 } 1929 } 1930 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1931 } 1932 } 1933 1934 void ModuleBitcodeWriter::writeModuleMetadata() { 1935 if (!VE.hasMDs() && M.named_metadata_empty()) 1936 return; 1937 1938 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1939 SmallVector<uint64_t, 64> Record; 1940 1941 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1942 // block and load any metadata. 1943 std::vector<unsigned> MDAbbrevs; 1944 1945 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1946 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1947 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1948 createGenericDINodeAbbrev(); 1949 1950 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1951 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1954 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1955 1956 Abbv = std::make_shared<BitCodeAbbrev>(); 1957 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1960 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1961 1962 // Emit MDStrings together upfront. 1963 writeMetadataStrings(VE.getMDStrings(), Record); 1964 1965 // We only emit an index for the metadata record if we have more than a given 1966 // (naive) threshold of metadatas, otherwise it is not worth it. 1967 if (VE.getNonMDStrings().size() > IndexThreshold) { 1968 // Write a placeholder value in for the offset of the metadata index, 1969 // which is written after the records, so that it can include 1970 // the offset of each entry. The placeholder offset will be 1971 // updated after all records are emitted. 1972 uint64_t Vals[] = {0, 0}; 1973 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1974 } 1975 1976 // Compute and save the bit offset to the current position, which will be 1977 // patched when we emit the index later. We can simply subtract the 64-bit 1978 // fixed size from the current bit number to get the location to backpatch. 1979 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1980 1981 // This index will contain the bitpos for each individual record. 1982 std::vector<uint64_t> IndexPos; 1983 IndexPos.reserve(VE.getNonMDStrings().size()); 1984 1985 // Write all the records 1986 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1987 1988 if (VE.getNonMDStrings().size() > IndexThreshold) { 1989 // Now that we have emitted all the records we will emit the index. But 1990 // first 1991 // backpatch the forward reference so that the reader can skip the records 1992 // efficiently. 1993 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 1994 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 1995 1996 // Delta encode the index. 1997 uint64_t PreviousValue = IndexOffsetRecordBitPos; 1998 for (auto &Elt : IndexPos) { 1999 auto EltDelta = Elt - PreviousValue; 2000 PreviousValue = Elt; 2001 Elt = EltDelta; 2002 } 2003 // Emit the index record. 2004 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2005 IndexPos.clear(); 2006 } 2007 2008 // Write the named metadata now. 2009 writeNamedMetadata(Record); 2010 2011 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2012 SmallVector<uint64_t, 4> Record; 2013 Record.push_back(VE.getValueID(&GO)); 2014 pushGlobalMetadataAttachment(Record, GO); 2015 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2016 }; 2017 for (const Function &F : M) 2018 if (F.isDeclaration() && F.hasMetadata()) 2019 AddDeclAttachedMetadata(F); 2020 // FIXME: Only store metadata for declarations here, and move data for global 2021 // variable definitions to a separate block (PR28134). 2022 for (const GlobalVariable &GV : M.globals()) 2023 if (GV.hasMetadata()) 2024 AddDeclAttachedMetadata(GV); 2025 2026 Stream.ExitBlock(); 2027 } 2028 2029 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2030 if (!VE.hasMDs()) 2031 return; 2032 2033 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2034 SmallVector<uint64_t, 64> Record; 2035 writeMetadataStrings(VE.getMDStrings(), Record); 2036 writeMetadataRecords(VE.getNonMDStrings(), Record); 2037 Stream.ExitBlock(); 2038 } 2039 2040 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2041 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2042 // [n x [id, mdnode]] 2043 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2044 GO.getAllMetadata(MDs); 2045 for (const auto &I : MDs) { 2046 Record.push_back(I.first); 2047 Record.push_back(VE.getMetadataID(I.second)); 2048 } 2049 } 2050 2051 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2052 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2053 2054 SmallVector<uint64_t, 64> Record; 2055 2056 if (F.hasMetadata()) { 2057 pushGlobalMetadataAttachment(Record, F); 2058 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2059 Record.clear(); 2060 } 2061 2062 // Write metadata attachments 2063 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2064 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2065 for (const BasicBlock &BB : F) 2066 for (const Instruction &I : BB) { 2067 MDs.clear(); 2068 I.getAllMetadataOtherThanDebugLoc(MDs); 2069 2070 // If no metadata, ignore instruction. 2071 if (MDs.empty()) continue; 2072 2073 Record.push_back(VE.getInstructionID(&I)); 2074 2075 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2076 Record.push_back(MDs[i].first); 2077 Record.push_back(VE.getMetadataID(MDs[i].second)); 2078 } 2079 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2080 Record.clear(); 2081 } 2082 2083 Stream.ExitBlock(); 2084 } 2085 2086 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2087 SmallVector<uint64_t, 64> Record; 2088 2089 // Write metadata kinds 2090 // METADATA_KIND - [n x [id, name]] 2091 SmallVector<StringRef, 8> Names; 2092 M.getMDKindNames(Names); 2093 2094 if (Names.empty()) return; 2095 2096 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2097 2098 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2099 Record.push_back(MDKindID); 2100 StringRef KName = Names[MDKindID]; 2101 Record.append(KName.begin(), KName.end()); 2102 2103 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2104 Record.clear(); 2105 } 2106 2107 Stream.ExitBlock(); 2108 } 2109 2110 void ModuleBitcodeWriter::writeOperandBundleTags() { 2111 // Write metadata kinds 2112 // 2113 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2114 // 2115 // OPERAND_BUNDLE_TAG - [strchr x N] 2116 2117 SmallVector<StringRef, 8> Tags; 2118 M.getOperandBundleTags(Tags); 2119 2120 if (Tags.empty()) 2121 return; 2122 2123 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2124 2125 SmallVector<uint64_t, 64> Record; 2126 2127 for (auto Tag : Tags) { 2128 Record.append(Tag.begin(), Tag.end()); 2129 2130 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2131 Record.clear(); 2132 } 2133 2134 Stream.ExitBlock(); 2135 } 2136 2137 void ModuleBitcodeWriter::writeSyncScopeNames() { 2138 SmallVector<StringRef, 8> SSNs; 2139 M.getContext().getSyncScopeNames(SSNs); 2140 if (SSNs.empty()) 2141 return; 2142 2143 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2144 2145 SmallVector<uint64_t, 64> Record; 2146 for (auto SSN : SSNs) { 2147 Record.append(SSN.begin(), SSN.end()); 2148 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2149 Record.clear(); 2150 } 2151 2152 Stream.ExitBlock(); 2153 } 2154 2155 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2156 if ((int64_t)V >= 0) 2157 Vals.push_back(V << 1); 2158 else 2159 Vals.push_back((-V << 1) | 1); 2160 } 2161 2162 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2163 bool isGlobal) { 2164 if (FirstVal == LastVal) return; 2165 2166 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2167 2168 unsigned AggregateAbbrev = 0; 2169 unsigned String8Abbrev = 0; 2170 unsigned CString7Abbrev = 0; 2171 unsigned CString6Abbrev = 0; 2172 // If this is a constant pool for the module, emit module-specific abbrevs. 2173 if (isGlobal) { 2174 // Abbrev for CST_CODE_AGGREGATE. 2175 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2176 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2179 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2180 2181 // Abbrev for CST_CODE_STRING. 2182 Abbv = std::make_shared<BitCodeAbbrev>(); 2183 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2184 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2185 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2186 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2187 // Abbrev for CST_CODE_CSTRING. 2188 Abbv = std::make_shared<BitCodeAbbrev>(); 2189 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2192 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2193 // Abbrev for CST_CODE_CSTRING. 2194 Abbv = std::make_shared<BitCodeAbbrev>(); 2195 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2198 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2199 } 2200 2201 SmallVector<uint64_t, 64> Record; 2202 2203 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2204 Type *LastTy = nullptr; 2205 for (unsigned i = FirstVal; i != LastVal; ++i) { 2206 const Value *V = Vals[i].first; 2207 // If we need to switch types, do so now. 2208 if (V->getType() != LastTy) { 2209 LastTy = V->getType(); 2210 Record.push_back(VE.getTypeID(LastTy)); 2211 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2212 CONSTANTS_SETTYPE_ABBREV); 2213 Record.clear(); 2214 } 2215 2216 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2217 Record.push_back(unsigned(IA->hasSideEffects()) | 2218 unsigned(IA->isAlignStack()) << 1 | 2219 unsigned(IA->getDialect()&1) << 2); 2220 2221 // Add the asm string. 2222 const std::string &AsmStr = IA->getAsmString(); 2223 Record.push_back(AsmStr.size()); 2224 Record.append(AsmStr.begin(), AsmStr.end()); 2225 2226 // Add the constraint string. 2227 const std::string &ConstraintStr = IA->getConstraintString(); 2228 Record.push_back(ConstraintStr.size()); 2229 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2230 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2231 Record.clear(); 2232 continue; 2233 } 2234 const Constant *C = cast<Constant>(V); 2235 unsigned Code = -1U; 2236 unsigned AbbrevToUse = 0; 2237 if (C->isNullValue()) { 2238 Code = bitc::CST_CODE_NULL; 2239 } else if (isa<UndefValue>(C)) { 2240 Code = bitc::CST_CODE_UNDEF; 2241 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2242 if (IV->getBitWidth() <= 64) { 2243 uint64_t V = IV->getSExtValue(); 2244 emitSignedInt64(Record, V); 2245 Code = bitc::CST_CODE_INTEGER; 2246 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2247 } else { // Wide integers, > 64 bits in size. 2248 // We have an arbitrary precision integer value to write whose 2249 // bit width is > 64. However, in canonical unsigned integer 2250 // format it is likely that the high bits are going to be zero. 2251 // So, we only write the number of active words. 2252 unsigned NWords = IV->getValue().getActiveWords(); 2253 const uint64_t *RawWords = IV->getValue().getRawData(); 2254 for (unsigned i = 0; i != NWords; ++i) { 2255 emitSignedInt64(Record, RawWords[i]); 2256 } 2257 Code = bitc::CST_CODE_WIDE_INTEGER; 2258 } 2259 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2260 Code = bitc::CST_CODE_FLOAT; 2261 Type *Ty = CFP->getType(); 2262 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2263 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2264 } else if (Ty->isX86_FP80Ty()) { 2265 // api needed to prevent premature destruction 2266 // bits are not in the same order as a normal i80 APInt, compensate. 2267 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2268 const uint64_t *p = api.getRawData(); 2269 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2270 Record.push_back(p[0] & 0xffffLL); 2271 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2272 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2273 const uint64_t *p = api.getRawData(); 2274 Record.push_back(p[0]); 2275 Record.push_back(p[1]); 2276 } else { 2277 assert(0 && "Unknown FP type!"); 2278 } 2279 } else if (isa<ConstantDataSequential>(C) && 2280 cast<ConstantDataSequential>(C)->isString()) { 2281 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2282 // Emit constant strings specially. 2283 unsigned NumElts = Str->getNumElements(); 2284 // If this is a null-terminated string, use the denser CSTRING encoding. 2285 if (Str->isCString()) { 2286 Code = bitc::CST_CODE_CSTRING; 2287 --NumElts; // Don't encode the null, which isn't allowed by char6. 2288 } else { 2289 Code = bitc::CST_CODE_STRING; 2290 AbbrevToUse = String8Abbrev; 2291 } 2292 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2293 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2294 for (unsigned i = 0; i != NumElts; ++i) { 2295 unsigned char V = Str->getElementAsInteger(i); 2296 Record.push_back(V); 2297 isCStr7 &= (V & 128) == 0; 2298 if (isCStrChar6) 2299 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2300 } 2301 2302 if (isCStrChar6) 2303 AbbrevToUse = CString6Abbrev; 2304 else if (isCStr7) 2305 AbbrevToUse = CString7Abbrev; 2306 } else if (const ConstantDataSequential *CDS = 2307 dyn_cast<ConstantDataSequential>(C)) { 2308 Code = bitc::CST_CODE_DATA; 2309 Type *EltTy = CDS->getType()->getElementType(); 2310 if (isa<IntegerType>(EltTy)) { 2311 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2312 Record.push_back(CDS->getElementAsInteger(i)); 2313 } else { 2314 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2315 Record.push_back( 2316 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2317 } 2318 } else if (isa<ConstantAggregate>(C)) { 2319 Code = bitc::CST_CODE_AGGREGATE; 2320 for (const Value *Op : C->operands()) 2321 Record.push_back(VE.getValueID(Op)); 2322 AbbrevToUse = AggregateAbbrev; 2323 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2324 switch (CE->getOpcode()) { 2325 default: 2326 if (Instruction::isCast(CE->getOpcode())) { 2327 Code = bitc::CST_CODE_CE_CAST; 2328 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2329 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2330 Record.push_back(VE.getValueID(C->getOperand(0))); 2331 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2332 } else { 2333 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2334 Code = bitc::CST_CODE_CE_BINOP; 2335 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2336 Record.push_back(VE.getValueID(C->getOperand(0))); 2337 Record.push_back(VE.getValueID(C->getOperand(1))); 2338 uint64_t Flags = getOptimizationFlags(CE); 2339 if (Flags != 0) 2340 Record.push_back(Flags); 2341 } 2342 break; 2343 case Instruction::GetElementPtr: { 2344 Code = bitc::CST_CODE_CE_GEP; 2345 const auto *GO = cast<GEPOperator>(C); 2346 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2347 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2348 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2349 Record.push_back((*Idx << 1) | GO->isInBounds()); 2350 } else if (GO->isInBounds()) 2351 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2352 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2353 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2354 Record.push_back(VE.getValueID(C->getOperand(i))); 2355 } 2356 break; 2357 } 2358 case Instruction::Select: 2359 Code = bitc::CST_CODE_CE_SELECT; 2360 Record.push_back(VE.getValueID(C->getOperand(0))); 2361 Record.push_back(VE.getValueID(C->getOperand(1))); 2362 Record.push_back(VE.getValueID(C->getOperand(2))); 2363 break; 2364 case Instruction::ExtractElement: 2365 Code = bitc::CST_CODE_CE_EXTRACTELT; 2366 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2367 Record.push_back(VE.getValueID(C->getOperand(0))); 2368 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2369 Record.push_back(VE.getValueID(C->getOperand(1))); 2370 break; 2371 case Instruction::InsertElement: 2372 Code = bitc::CST_CODE_CE_INSERTELT; 2373 Record.push_back(VE.getValueID(C->getOperand(0))); 2374 Record.push_back(VE.getValueID(C->getOperand(1))); 2375 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2376 Record.push_back(VE.getValueID(C->getOperand(2))); 2377 break; 2378 case Instruction::ShuffleVector: 2379 // If the return type and argument types are the same, this is a 2380 // standard shufflevector instruction. If the types are different, 2381 // then the shuffle is widening or truncating the input vectors, and 2382 // the argument type must also be encoded. 2383 if (C->getType() == C->getOperand(0)->getType()) { 2384 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2385 } else { 2386 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2387 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2388 } 2389 Record.push_back(VE.getValueID(C->getOperand(0))); 2390 Record.push_back(VE.getValueID(C->getOperand(1))); 2391 Record.push_back(VE.getValueID(C->getOperand(2))); 2392 break; 2393 case Instruction::ICmp: 2394 case Instruction::FCmp: 2395 Code = bitc::CST_CODE_CE_CMP; 2396 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2397 Record.push_back(VE.getValueID(C->getOperand(0))); 2398 Record.push_back(VE.getValueID(C->getOperand(1))); 2399 Record.push_back(CE->getPredicate()); 2400 break; 2401 } 2402 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2403 Code = bitc::CST_CODE_BLOCKADDRESS; 2404 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2405 Record.push_back(VE.getValueID(BA->getFunction())); 2406 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2407 } else { 2408 #ifndef NDEBUG 2409 C->dump(); 2410 #endif 2411 llvm_unreachable("Unknown constant!"); 2412 } 2413 Stream.EmitRecord(Code, Record, AbbrevToUse); 2414 Record.clear(); 2415 } 2416 2417 Stream.ExitBlock(); 2418 } 2419 2420 void ModuleBitcodeWriter::writeModuleConstants() { 2421 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2422 2423 // Find the first constant to emit, which is the first non-globalvalue value. 2424 // We know globalvalues have been emitted by WriteModuleInfo. 2425 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2426 if (!isa<GlobalValue>(Vals[i].first)) { 2427 writeConstants(i, Vals.size(), true); 2428 return; 2429 } 2430 } 2431 } 2432 2433 /// pushValueAndType - The file has to encode both the value and type id for 2434 /// many values, because we need to know what type to create for forward 2435 /// references. However, most operands are not forward references, so this type 2436 /// field is not needed. 2437 /// 2438 /// This function adds V's value ID to Vals. If the value ID is higher than the 2439 /// instruction ID, then it is a forward reference, and it also includes the 2440 /// type ID. The value ID that is written is encoded relative to the InstID. 2441 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2442 SmallVectorImpl<unsigned> &Vals) { 2443 unsigned ValID = VE.getValueID(V); 2444 // Make encoding relative to the InstID. 2445 Vals.push_back(InstID - ValID); 2446 if (ValID >= InstID) { 2447 Vals.push_back(VE.getTypeID(V->getType())); 2448 return true; 2449 } 2450 return false; 2451 } 2452 2453 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2454 unsigned InstID) { 2455 SmallVector<unsigned, 64> Record; 2456 LLVMContext &C = CS.getInstruction()->getContext(); 2457 2458 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2459 const auto &Bundle = CS.getOperandBundleAt(i); 2460 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2461 2462 for (auto &Input : Bundle.Inputs) 2463 pushValueAndType(Input, InstID, Record); 2464 2465 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2466 Record.clear(); 2467 } 2468 } 2469 2470 /// pushValue - Like pushValueAndType, but where the type of the value is 2471 /// omitted (perhaps it was already encoded in an earlier operand). 2472 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2473 SmallVectorImpl<unsigned> &Vals) { 2474 unsigned ValID = VE.getValueID(V); 2475 Vals.push_back(InstID - ValID); 2476 } 2477 2478 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2479 SmallVectorImpl<uint64_t> &Vals) { 2480 unsigned ValID = VE.getValueID(V); 2481 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2482 emitSignedInt64(Vals, diff); 2483 } 2484 2485 /// WriteInstruction - Emit an instruction to the specified stream. 2486 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2487 unsigned InstID, 2488 SmallVectorImpl<unsigned> &Vals) { 2489 unsigned Code = 0; 2490 unsigned AbbrevToUse = 0; 2491 VE.setInstructionID(&I); 2492 switch (I.getOpcode()) { 2493 default: 2494 if (Instruction::isCast(I.getOpcode())) { 2495 Code = bitc::FUNC_CODE_INST_CAST; 2496 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2497 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2498 Vals.push_back(VE.getTypeID(I.getType())); 2499 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2500 } else { 2501 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2502 Code = bitc::FUNC_CODE_INST_BINOP; 2503 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2504 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2505 pushValue(I.getOperand(1), InstID, Vals); 2506 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2507 uint64_t Flags = getOptimizationFlags(&I); 2508 if (Flags != 0) { 2509 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2510 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2511 Vals.push_back(Flags); 2512 } 2513 } 2514 break; 2515 2516 case Instruction::GetElementPtr: { 2517 Code = bitc::FUNC_CODE_INST_GEP; 2518 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2519 auto &GEPInst = cast<GetElementPtrInst>(I); 2520 Vals.push_back(GEPInst.isInBounds()); 2521 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2522 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2523 pushValueAndType(I.getOperand(i), InstID, Vals); 2524 break; 2525 } 2526 case Instruction::ExtractValue: { 2527 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2528 pushValueAndType(I.getOperand(0), InstID, Vals); 2529 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2530 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2531 break; 2532 } 2533 case Instruction::InsertValue: { 2534 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2535 pushValueAndType(I.getOperand(0), InstID, Vals); 2536 pushValueAndType(I.getOperand(1), InstID, Vals); 2537 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2538 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2539 break; 2540 } 2541 case Instruction::Select: 2542 Code = bitc::FUNC_CODE_INST_VSELECT; 2543 pushValueAndType(I.getOperand(1), InstID, Vals); 2544 pushValue(I.getOperand(2), InstID, Vals); 2545 pushValueAndType(I.getOperand(0), InstID, Vals); 2546 break; 2547 case Instruction::ExtractElement: 2548 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2549 pushValueAndType(I.getOperand(0), InstID, Vals); 2550 pushValueAndType(I.getOperand(1), InstID, Vals); 2551 break; 2552 case Instruction::InsertElement: 2553 Code = bitc::FUNC_CODE_INST_INSERTELT; 2554 pushValueAndType(I.getOperand(0), InstID, Vals); 2555 pushValue(I.getOperand(1), InstID, Vals); 2556 pushValueAndType(I.getOperand(2), InstID, Vals); 2557 break; 2558 case Instruction::ShuffleVector: 2559 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2560 pushValueAndType(I.getOperand(0), InstID, Vals); 2561 pushValue(I.getOperand(1), InstID, Vals); 2562 pushValue(I.getOperand(2), InstID, Vals); 2563 break; 2564 case Instruction::ICmp: 2565 case Instruction::FCmp: { 2566 // compare returning Int1Ty or vector of Int1Ty 2567 Code = bitc::FUNC_CODE_INST_CMP2; 2568 pushValueAndType(I.getOperand(0), InstID, Vals); 2569 pushValue(I.getOperand(1), InstID, Vals); 2570 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2571 uint64_t Flags = getOptimizationFlags(&I); 2572 if (Flags != 0) 2573 Vals.push_back(Flags); 2574 break; 2575 } 2576 2577 case Instruction::Ret: 2578 { 2579 Code = bitc::FUNC_CODE_INST_RET; 2580 unsigned NumOperands = I.getNumOperands(); 2581 if (NumOperands == 0) 2582 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2583 else if (NumOperands == 1) { 2584 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2585 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2586 } else { 2587 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2588 pushValueAndType(I.getOperand(i), InstID, Vals); 2589 } 2590 } 2591 break; 2592 case Instruction::Br: 2593 { 2594 Code = bitc::FUNC_CODE_INST_BR; 2595 const BranchInst &II = cast<BranchInst>(I); 2596 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2597 if (II.isConditional()) { 2598 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2599 pushValue(II.getCondition(), InstID, Vals); 2600 } 2601 } 2602 break; 2603 case Instruction::Switch: 2604 { 2605 Code = bitc::FUNC_CODE_INST_SWITCH; 2606 const SwitchInst &SI = cast<SwitchInst>(I); 2607 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2608 pushValue(SI.getCondition(), InstID, Vals); 2609 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2610 for (auto Case : SI.cases()) { 2611 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2612 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2613 } 2614 } 2615 break; 2616 case Instruction::IndirectBr: 2617 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2618 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2619 // Encode the address operand as relative, but not the basic blocks. 2620 pushValue(I.getOperand(0), InstID, Vals); 2621 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2622 Vals.push_back(VE.getValueID(I.getOperand(i))); 2623 break; 2624 2625 case Instruction::Invoke: { 2626 const InvokeInst *II = cast<InvokeInst>(&I); 2627 const Value *Callee = II->getCalledValue(); 2628 FunctionType *FTy = II->getFunctionType(); 2629 2630 if (II->hasOperandBundles()) 2631 writeOperandBundles(II, InstID); 2632 2633 Code = bitc::FUNC_CODE_INST_INVOKE; 2634 2635 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2636 Vals.push_back(II->getCallingConv() | 1 << 13); 2637 Vals.push_back(VE.getValueID(II->getNormalDest())); 2638 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2639 Vals.push_back(VE.getTypeID(FTy)); 2640 pushValueAndType(Callee, InstID, Vals); 2641 2642 // Emit value #'s for the fixed parameters. 2643 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2644 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2645 2646 // Emit type/value pairs for varargs params. 2647 if (FTy->isVarArg()) { 2648 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2649 i != e; ++i) 2650 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2651 } 2652 break; 2653 } 2654 case Instruction::Resume: 2655 Code = bitc::FUNC_CODE_INST_RESUME; 2656 pushValueAndType(I.getOperand(0), InstID, Vals); 2657 break; 2658 case Instruction::CleanupRet: { 2659 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2660 const auto &CRI = cast<CleanupReturnInst>(I); 2661 pushValue(CRI.getCleanupPad(), InstID, Vals); 2662 if (CRI.hasUnwindDest()) 2663 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2664 break; 2665 } 2666 case Instruction::CatchRet: { 2667 Code = bitc::FUNC_CODE_INST_CATCHRET; 2668 const auto &CRI = cast<CatchReturnInst>(I); 2669 pushValue(CRI.getCatchPad(), InstID, Vals); 2670 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2671 break; 2672 } 2673 case Instruction::CleanupPad: 2674 case Instruction::CatchPad: { 2675 const auto &FuncletPad = cast<FuncletPadInst>(I); 2676 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2677 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2678 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2679 2680 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2681 Vals.push_back(NumArgOperands); 2682 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2683 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2684 break; 2685 } 2686 case Instruction::CatchSwitch: { 2687 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2688 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2689 2690 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2691 2692 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2693 Vals.push_back(NumHandlers); 2694 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2695 Vals.push_back(VE.getValueID(CatchPadBB)); 2696 2697 if (CatchSwitch.hasUnwindDest()) 2698 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2699 break; 2700 } 2701 case Instruction::Unreachable: 2702 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2703 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2704 break; 2705 2706 case Instruction::PHI: { 2707 const PHINode &PN = cast<PHINode>(I); 2708 Code = bitc::FUNC_CODE_INST_PHI; 2709 // With the newer instruction encoding, forward references could give 2710 // negative valued IDs. This is most common for PHIs, so we use 2711 // signed VBRs. 2712 SmallVector<uint64_t, 128> Vals64; 2713 Vals64.push_back(VE.getTypeID(PN.getType())); 2714 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2715 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2716 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2717 } 2718 // Emit a Vals64 vector and exit. 2719 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2720 Vals64.clear(); 2721 return; 2722 } 2723 2724 case Instruction::LandingPad: { 2725 const LandingPadInst &LP = cast<LandingPadInst>(I); 2726 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2727 Vals.push_back(VE.getTypeID(LP.getType())); 2728 Vals.push_back(LP.isCleanup()); 2729 Vals.push_back(LP.getNumClauses()); 2730 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2731 if (LP.isCatch(I)) 2732 Vals.push_back(LandingPadInst::Catch); 2733 else 2734 Vals.push_back(LandingPadInst::Filter); 2735 pushValueAndType(LP.getClause(I), InstID, Vals); 2736 } 2737 break; 2738 } 2739 2740 case Instruction::Alloca: { 2741 Code = bitc::FUNC_CODE_INST_ALLOCA; 2742 const AllocaInst &AI = cast<AllocaInst>(I); 2743 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2744 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2745 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2746 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2747 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2748 "not enough bits for maximum alignment"); 2749 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2750 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2751 AlignRecord |= 1 << 6; 2752 AlignRecord |= AI.isSwiftError() << 7; 2753 Vals.push_back(AlignRecord); 2754 break; 2755 } 2756 2757 case Instruction::Load: 2758 if (cast<LoadInst>(I).isAtomic()) { 2759 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2760 pushValueAndType(I.getOperand(0), InstID, Vals); 2761 } else { 2762 Code = bitc::FUNC_CODE_INST_LOAD; 2763 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2764 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2765 } 2766 Vals.push_back(VE.getTypeID(I.getType())); 2767 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2768 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2769 if (cast<LoadInst>(I).isAtomic()) { 2770 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2771 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2772 } 2773 break; 2774 case Instruction::Store: 2775 if (cast<StoreInst>(I).isAtomic()) 2776 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2777 else 2778 Code = bitc::FUNC_CODE_INST_STORE; 2779 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2780 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2781 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2782 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2783 if (cast<StoreInst>(I).isAtomic()) { 2784 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2785 Vals.push_back( 2786 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2787 } 2788 break; 2789 case Instruction::AtomicCmpXchg: 2790 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2791 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2792 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2793 pushValue(I.getOperand(2), InstID, Vals); // newval. 2794 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2795 Vals.push_back( 2796 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2797 Vals.push_back( 2798 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2799 Vals.push_back( 2800 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2801 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2802 break; 2803 case Instruction::AtomicRMW: 2804 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2805 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2806 pushValue(I.getOperand(1), InstID, Vals); // val. 2807 Vals.push_back( 2808 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2809 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2810 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2811 Vals.push_back( 2812 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2813 break; 2814 case Instruction::Fence: 2815 Code = bitc::FUNC_CODE_INST_FENCE; 2816 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2817 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2818 break; 2819 case Instruction::Call: { 2820 const CallInst &CI = cast<CallInst>(I); 2821 FunctionType *FTy = CI.getFunctionType(); 2822 2823 if (CI.hasOperandBundles()) 2824 writeOperandBundles(&CI, InstID); 2825 2826 Code = bitc::FUNC_CODE_INST_CALL; 2827 2828 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2829 2830 unsigned Flags = getOptimizationFlags(&I); 2831 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2832 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2833 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2834 1 << bitc::CALL_EXPLICIT_TYPE | 2835 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2836 unsigned(Flags != 0) << bitc::CALL_FMF); 2837 if (Flags != 0) 2838 Vals.push_back(Flags); 2839 2840 Vals.push_back(VE.getTypeID(FTy)); 2841 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2842 2843 // Emit value #'s for the fixed parameters. 2844 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2845 // Check for labels (can happen with asm labels). 2846 if (FTy->getParamType(i)->isLabelTy()) 2847 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2848 else 2849 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2850 } 2851 2852 // Emit type/value pairs for varargs params. 2853 if (FTy->isVarArg()) { 2854 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2855 i != e; ++i) 2856 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2857 } 2858 break; 2859 } 2860 case Instruction::VAArg: 2861 Code = bitc::FUNC_CODE_INST_VAARG; 2862 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2863 pushValue(I.getOperand(0), InstID, Vals); // valist. 2864 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2865 break; 2866 } 2867 2868 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2869 Vals.clear(); 2870 } 2871 2872 /// Write a GlobalValue VST to the module. The purpose of this data structure is 2873 /// to allow clients to efficiently find the function body. 2874 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 2875 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2876 // Get the offset of the VST we are writing, and backpatch it into 2877 // the VST forward declaration record. 2878 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2879 // The BitcodeStartBit was the stream offset of the identification block. 2880 VSTOffset -= bitcodeStartBit(); 2881 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2882 // Note that we add 1 here because the offset is relative to one word 2883 // before the start of the identification block, which was historically 2884 // always the start of the regular bitcode header. 2885 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2886 2887 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2888 2889 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2890 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2891 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2893 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2894 2895 for (const Function &F : M) { 2896 uint64_t Record[2]; 2897 2898 if (F.isDeclaration()) 2899 continue; 2900 2901 Record[0] = VE.getValueID(&F); 2902 2903 // Save the word offset of the function (from the start of the 2904 // actual bitcode written to the stream). 2905 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 2906 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2907 // Note that we add 1 here because the offset is relative to one word 2908 // before the start of the identification block, which was historically 2909 // always the start of the regular bitcode header. 2910 Record[1] = BitcodeIndex / 32 + 1; 2911 2912 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 2913 } 2914 2915 Stream.ExitBlock(); 2916 } 2917 2918 /// Emit names for arguments, instructions and basic blocks in a function. 2919 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 2920 const ValueSymbolTable &VST) { 2921 if (VST.empty()) 2922 return; 2923 2924 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2925 2926 // FIXME: Set up the abbrev, we know how many values there are! 2927 // FIXME: We know if the type names can use 7-bit ascii. 2928 SmallVector<uint64_t, 64> NameVals; 2929 2930 for (const ValueName &Name : VST) { 2931 // Figure out the encoding to use for the name. 2932 StringEncoding Bits = getStringEncoding(Name.getKey()); 2933 2934 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2935 NameVals.push_back(VE.getValueID(Name.getValue())); 2936 2937 // VST_CODE_ENTRY: [valueid, namechar x N] 2938 // VST_CODE_BBENTRY: [bbid, namechar x N] 2939 unsigned Code; 2940 if (isa<BasicBlock>(Name.getValue())) { 2941 Code = bitc::VST_CODE_BBENTRY; 2942 if (Bits == SE_Char6) 2943 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2944 } else { 2945 Code = bitc::VST_CODE_ENTRY; 2946 if (Bits == SE_Char6) 2947 AbbrevToUse = VST_ENTRY_6_ABBREV; 2948 else if (Bits == SE_Fixed7) 2949 AbbrevToUse = VST_ENTRY_7_ABBREV; 2950 } 2951 2952 for (const auto P : Name.getKey()) 2953 NameVals.push_back((unsigned char)P); 2954 2955 // Emit the finished record. 2956 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2957 NameVals.clear(); 2958 } 2959 2960 Stream.ExitBlock(); 2961 } 2962 2963 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 2964 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2965 unsigned Code; 2966 if (isa<BasicBlock>(Order.V)) 2967 Code = bitc::USELIST_CODE_BB; 2968 else 2969 Code = bitc::USELIST_CODE_DEFAULT; 2970 2971 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2972 Record.push_back(VE.getValueID(Order.V)); 2973 Stream.EmitRecord(Code, Record); 2974 } 2975 2976 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 2977 assert(VE.shouldPreserveUseListOrder() && 2978 "Expected to be preserving use-list order"); 2979 2980 auto hasMore = [&]() { 2981 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2982 }; 2983 if (!hasMore()) 2984 // Nothing to do. 2985 return; 2986 2987 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2988 while (hasMore()) { 2989 writeUseList(std::move(VE.UseListOrders.back())); 2990 VE.UseListOrders.pop_back(); 2991 } 2992 Stream.ExitBlock(); 2993 } 2994 2995 /// Emit a function body to the module stream. 2996 void ModuleBitcodeWriter::writeFunction( 2997 const Function &F, 2998 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2999 // Save the bitcode index of the start of this function block for recording 3000 // in the VST. 3001 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3002 3003 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3004 VE.incorporateFunction(F); 3005 3006 SmallVector<unsigned, 64> Vals; 3007 3008 // Emit the number of basic blocks, so the reader can create them ahead of 3009 // time. 3010 Vals.push_back(VE.getBasicBlocks().size()); 3011 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3012 Vals.clear(); 3013 3014 // If there are function-local constants, emit them now. 3015 unsigned CstStart, CstEnd; 3016 VE.getFunctionConstantRange(CstStart, CstEnd); 3017 writeConstants(CstStart, CstEnd, false); 3018 3019 // If there is function-local metadata, emit it now. 3020 writeFunctionMetadata(F); 3021 3022 // Keep a running idea of what the instruction ID is. 3023 unsigned InstID = CstEnd; 3024 3025 bool NeedsMetadataAttachment = F.hasMetadata(); 3026 3027 DILocation *LastDL = nullptr; 3028 // Finally, emit all the instructions, in order. 3029 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3030 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3031 I != E; ++I) { 3032 writeInstruction(*I, InstID, Vals); 3033 3034 if (!I->getType()->isVoidTy()) 3035 ++InstID; 3036 3037 // If the instruction has metadata, write a metadata attachment later. 3038 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3039 3040 // If the instruction has a debug location, emit it. 3041 DILocation *DL = I->getDebugLoc(); 3042 if (!DL) 3043 continue; 3044 3045 if (DL == LastDL) { 3046 // Just repeat the same debug loc as last time. 3047 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3048 continue; 3049 } 3050 3051 Vals.push_back(DL->getLine()); 3052 Vals.push_back(DL->getColumn()); 3053 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3054 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3055 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3056 Vals.clear(); 3057 3058 LastDL = DL; 3059 } 3060 3061 // Emit names for all the instructions etc. 3062 if (auto *Symtab = F.getValueSymbolTable()) 3063 writeFunctionLevelValueSymbolTable(*Symtab); 3064 3065 if (NeedsMetadataAttachment) 3066 writeFunctionMetadataAttachment(F); 3067 if (VE.shouldPreserveUseListOrder()) 3068 writeUseListBlock(&F); 3069 VE.purgeFunction(); 3070 Stream.ExitBlock(); 3071 } 3072 3073 // Emit blockinfo, which defines the standard abbreviations etc. 3074 void ModuleBitcodeWriter::writeBlockInfo() { 3075 // We only want to emit block info records for blocks that have multiple 3076 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3077 // Other blocks can define their abbrevs inline. 3078 Stream.EnterBlockInfoBlock(); 3079 3080 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3081 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3082 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3083 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3085 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3086 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3087 VST_ENTRY_8_ABBREV) 3088 llvm_unreachable("Unexpected abbrev ordering!"); 3089 } 3090 3091 { // 7-bit fixed width VST_CODE_ENTRY strings. 3092 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3093 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3094 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3095 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3096 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3097 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3098 VST_ENTRY_7_ABBREV) 3099 llvm_unreachable("Unexpected abbrev ordering!"); 3100 } 3101 { // 6-bit char6 VST_CODE_ENTRY strings. 3102 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3103 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3104 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3105 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3106 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3107 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3108 VST_ENTRY_6_ABBREV) 3109 llvm_unreachable("Unexpected abbrev ordering!"); 3110 } 3111 { // 6-bit char6 VST_CODE_BBENTRY strings. 3112 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3113 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3114 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3115 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3116 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3117 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3118 VST_BBENTRY_6_ABBREV) 3119 llvm_unreachable("Unexpected abbrev ordering!"); 3120 } 3121 3122 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3123 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3124 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3125 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3126 VE.computeBitsRequiredForTypeIndicies())); 3127 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3128 CONSTANTS_SETTYPE_ABBREV) 3129 llvm_unreachable("Unexpected abbrev ordering!"); 3130 } 3131 3132 { // INTEGER abbrev for CONSTANTS_BLOCK. 3133 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3134 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3135 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3136 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3137 CONSTANTS_INTEGER_ABBREV) 3138 llvm_unreachable("Unexpected abbrev ordering!"); 3139 } 3140 3141 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3142 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3143 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3146 VE.computeBitsRequiredForTypeIndicies())); 3147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3148 3149 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3150 CONSTANTS_CE_CAST_Abbrev) 3151 llvm_unreachable("Unexpected abbrev ordering!"); 3152 } 3153 { // NULL abbrev for CONSTANTS_BLOCK. 3154 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3155 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3156 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3157 CONSTANTS_NULL_Abbrev) 3158 llvm_unreachable("Unexpected abbrev ordering!"); 3159 } 3160 3161 // FIXME: This should only use space for first class types! 3162 3163 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3164 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3165 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3168 VE.computeBitsRequiredForTypeIndicies())); 3169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3171 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3172 FUNCTION_INST_LOAD_ABBREV) 3173 llvm_unreachable("Unexpected abbrev ordering!"); 3174 } 3175 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3176 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3177 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3181 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3182 FUNCTION_INST_BINOP_ABBREV) 3183 llvm_unreachable("Unexpected abbrev ordering!"); 3184 } 3185 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3186 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3187 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3192 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3193 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3194 llvm_unreachable("Unexpected abbrev ordering!"); 3195 } 3196 { // INST_CAST abbrev for FUNCTION_BLOCK. 3197 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3198 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3199 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3200 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3201 VE.computeBitsRequiredForTypeIndicies())); 3202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3203 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3204 FUNCTION_INST_CAST_ABBREV) 3205 llvm_unreachable("Unexpected abbrev ordering!"); 3206 } 3207 3208 { // INST_RET abbrev for FUNCTION_BLOCK. 3209 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3210 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3211 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3212 FUNCTION_INST_RET_VOID_ABBREV) 3213 llvm_unreachable("Unexpected abbrev ordering!"); 3214 } 3215 { // INST_RET abbrev for FUNCTION_BLOCK. 3216 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3217 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3218 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3219 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3220 FUNCTION_INST_RET_VAL_ABBREV) 3221 llvm_unreachable("Unexpected abbrev ordering!"); 3222 } 3223 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3224 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3225 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3226 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3227 FUNCTION_INST_UNREACHABLE_ABBREV) 3228 llvm_unreachable("Unexpected abbrev ordering!"); 3229 } 3230 { 3231 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3232 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3235 Log2_32_Ceil(VE.getTypes().size() + 1))); 3236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3237 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3238 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3239 FUNCTION_INST_GEP_ABBREV) 3240 llvm_unreachable("Unexpected abbrev ordering!"); 3241 } 3242 3243 Stream.ExitBlock(); 3244 } 3245 3246 /// Write the module path strings, currently only used when generating 3247 /// a combined index file. 3248 void IndexBitcodeWriter::writeModStrings() { 3249 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3250 3251 // TODO: See which abbrev sizes we actually need to emit 3252 3253 // 8-bit fixed-width MST_ENTRY strings. 3254 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3255 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3256 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3257 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3258 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3259 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3260 3261 // 7-bit fixed width MST_ENTRY strings. 3262 Abbv = std::make_shared<BitCodeAbbrev>(); 3263 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3264 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3265 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3266 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3267 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3268 3269 // 6-bit char6 MST_ENTRY strings. 3270 Abbv = std::make_shared<BitCodeAbbrev>(); 3271 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3272 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3273 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3274 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3275 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3276 3277 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3278 Abbv = std::make_shared<BitCodeAbbrev>(); 3279 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3283 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3284 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3285 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3286 3287 SmallVector<unsigned, 64> Vals; 3288 forEachModule( 3289 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3290 StringRef Key = MPSE.getKey(); 3291 const auto &Value = MPSE.getValue(); 3292 StringEncoding Bits = getStringEncoding(Key); 3293 unsigned AbbrevToUse = Abbrev8Bit; 3294 if (Bits == SE_Char6) 3295 AbbrevToUse = Abbrev6Bit; 3296 else if (Bits == SE_Fixed7) 3297 AbbrevToUse = Abbrev7Bit; 3298 3299 Vals.push_back(Value.first); 3300 Vals.append(Key.begin(), Key.end()); 3301 3302 // Emit the finished record. 3303 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3304 3305 // Emit an optional hash for the module now 3306 const auto &Hash = Value.second; 3307 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3308 Vals.assign(Hash.begin(), Hash.end()); 3309 // Emit the hash record. 3310 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3311 } 3312 3313 Vals.clear(); 3314 }); 3315 Stream.ExitBlock(); 3316 } 3317 3318 /// Write the function type metadata related records that need to appear before 3319 /// a function summary entry (whether per-module or combined). 3320 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3321 FunctionSummary *FS) { 3322 if (!FS->type_tests().empty()) 3323 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3324 3325 SmallVector<uint64_t, 64> Record; 3326 3327 auto WriteVFuncIdVec = [&](uint64_t Ty, 3328 ArrayRef<FunctionSummary::VFuncId> VFs) { 3329 if (VFs.empty()) 3330 return; 3331 Record.clear(); 3332 for (auto &VF : VFs) { 3333 Record.push_back(VF.GUID); 3334 Record.push_back(VF.Offset); 3335 } 3336 Stream.EmitRecord(Ty, Record); 3337 }; 3338 3339 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3340 FS->type_test_assume_vcalls()); 3341 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3342 FS->type_checked_load_vcalls()); 3343 3344 auto WriteConstVCallVec = [&](uint64_t Ty, 3345 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3346 for (auto &VC : VCs) { 3347 Record.clear(); 3348 Record.push_back(VC.VFunc.GUID); 3349 Record.push_back(VC.VFunc.Offset); 3350 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3351 Stream.EmitRecord(Ty, Record); 3352 } 3353 }; 3354 3355 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3356 FS->type_test_assume_const_vcalls()); 3357 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3358 FS->type_checked_load_const_vcalls()); 3359 } 3360 3361 // Helper to emit a single function summary record. 3362 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3363 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3364 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3365 const Function &F) { 3366 NameVals.push_back(ValueID); 3367 3368 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3369 writeFunctionTypeMetadataRecords(Stream, FS); 3370 3371 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3372 NameVals.push_back(FS->instCount()); 3373 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3374 NameVals.push_back(FS->refs().size()); 3375 3376 for (auto &RI : FS->refs()) 3377 NameVals.push_back(VE.getValueID(RI.getValue())); 3378 3379 bool HasProfileData = F.hasProfileData(); 3380 for (auto &ECI : FS->calls()) { 3381 NameVals.push_back(getValueId(ECI.first)); 3382 if (HasProfileData) 3383 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3384 else if (WriteRelBFToSummary) 3385 NameVals.push_back(ECI.second.RelBlockFreq); 3386 } 3387 3388 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3389 unsigned Code = 3390 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3391 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3392 : bitc::FS_PERMODULE)); 3393 3394 // Emit the finished record. 3395 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3396 NameVals.clear(); 3397 } 3398 3399 // Collect the global value references in the given variable's initializer, 3400 // and emit them in a summary record. 3401 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3402 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3403 unsigned FSModRefsAbbrev) { 3404 auto VI = Index->getValueInfo(GlobalValue::getGUID(V.getName())); 3405 if (!VI || VI.getSummaryList().empty()) { 3406 // Only declarations should not have a summary (a declaration might however 3407 // have a summary if the def was in module level asm). 3408 assert(V.isDeclaration()); 3409 return; 3410 } 3411 auto *Summary = VI.getSummaryList()[0].get(); 3412 NameVals.push_back(VE.getValueID(&V)); 3413 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3414 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3415 3416 unsigned SizeBeforeRefs = NameVals.size(); 3417 for (auto &RI : VS->refs()) 3418 NameVals.push_back(VE.getValueID(RI.getValue())); 3419 // Sort the refs for determinism output, the vector returned by FS->refs() has 3420 // been initialized from a DenseSet. 3421 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3422 3423 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3424 FSModRefsAbbrev); 3425 NameVals.clear(); 3426 } 3427 3428 // Current version for the summary. 3429 // This is bumped whenever we introduce changes in the way some record are 3430 // interpreted, like flags for instance. 3431 static const uint64_t INDEX_VERSION = 4; 3432 3433 /// Emit the per-module summary section alongside the rest of 3434 /// the module's bitcode. 3435 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3436 // By default we compile with ThinLTO if the module has a summary, but the 3437 // client can request full LTO with a module flag. 3438 bool IsThinLTO = true; 3439 if (auto *MD = 3440 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3441 IsThinLTO = MD->getZExtValue(); 3442 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3443 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3444 4); 3445 3446 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3447 3448 if (Index->begin() == Index->end()) { 3449 Stream.ExitBlock(); 3450 return; 3451 } 3452 3453 for (const auto &GVI : valueIds()) { 3454 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3455 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3456 } 3457 3458 // Abbrev for FS_PERMODULE_PROFILE. 3459 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3460 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3466 // numrefs x valueid, n x (valueid, hotness) 3467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3469 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3470 3471 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3472 Abbv = std::make_shared<BitCodeAbbrev>(); 3473 if (WriteRelBFToSummary) 3474 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3475 else 3476 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3482 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3484 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3485 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3486 3487 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3488 Abbv = std::make_shared<BitCodeAbbrev>(); 3489 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3490 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3491 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3494 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3495 3496 // Abbrev for FS_ALIAS. 3497 Abbv = std::make_shared<BitCodeAbbrev>(); 3498 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3499 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3502 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3503 3504 SmallVector<uint64_t, 64> NameVals; 3505 // Iterate over the list of functions instead of the Index to 3506 // ensure the ordering is stable. 3507 for (const Function &F : M) { 3508 // Summary emission does not support anonymous functions, they have to 3509 // renamed using the anonymous function renaming pass. 3510 if (!F.hasName()) 3511 report_fatal_error("Unexpected anonymous function when writing summary"); 3512 3513 ValueInfo VI = Index->getValueInfo(GlobalValue::getGUID(F.getName())); 3514 if (!VI || VI.getSummaryList().empty()) { 3515 // Only declarations should not have a summary (a declaration might 3516 // however have a summary if the def was in module level asm). 3517 assert(F.isDeclaration()); 3518 continue; 3519 } 3520 auto *Summary = VI.getSummaryList()[0].get(); 3521 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3522 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3523 } 3524 3525 // Capture references from GlobalVariable initializers, which are outside 3526 // of a function scope. 3527 for (const GlobalVariable &G : M.globals()) 3528 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3529 3530 for (const GlobalAlias &A : M.aliases()) { 3531 auto *Aliasee = A.getBaseObject(); 3532 if (!Aliasee->hasName()) 3533 // Nameless function don't have an entry in the summary, skip it. 3534 continue; 3535 auto AliasId = VE.getValueID(&A); 3536 auto AliaseeId = VE.getValueID(Aliasee); 3537 NameVals.push_back(AliasId); 3538 auto *Summary = Index->getGlobalValueSummary(A); 3539 AliasSummary *AS = cast<AliasSummary>(Summary); 3540 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3541 NameVals.push_back(AliaseeId); 3542 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3543 NameVals.clear(); 3544 } 3545 3546 Stream.ExitBlock(); 3547 } 3548 3549 /// Emit the combined summary section into the combined index file. 3550 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3551 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3552 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3553 3554 for (const auto &GVI : valueIds()) { 3555 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3556 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3557 } 3558 3559 // Abbrev for FS_COMBINED. 3560 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3561 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3564 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3565 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3566 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3567 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3568 // numrefs x valueid, n x (valueid) 3569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3571 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3572 3573 // Abbrev for FS_COMBINED_PROFILE. 3574 Abbv = std::make_shared<BitCodeAbbrev>(); 3575 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3576 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3577 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3582 // numrefs x valueid, n x (valueid, hotness) 3583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3585 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3586 3587 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3588 Abbv = std::make_shared<BitCodeAbbrev>(); 3589 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3595 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3596 3597 // Abbrev for FS_COMBINED_ALIAS. 3598 Abbv = std::make_shared<BitCodeAbbrev>(); 3599 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3603 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3604 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3605 3606 // The aliases are emitted as a post-pass, and will point to the value 3607 // id of the aliasee. Save them in a vector for post-processing. 3608 SmallVector<AliasSummary *, 64> Aliases; 3609 3610 // Save the value id for each summary for alias emission. 3611 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3612 3613 SmallVector<uint64_t, 64> NameVals; 3614 3615 // For local linkage, we also emit the original name separately 3616 // immediately after the record. 3617 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3618 if (!GlobalValue::isLocalLinkage(S.linkage())) 3619 return; 3620 NameVals.push_back(S.getOriginalName()); 3621 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3622 NameVals.clear(); 3623 }; 3624 3625 forEachSummary([&](GVInfo I, bool IsAliasee) { 3626 GlobalValueSummary *S = I.second; 3627 assert(S); 3628 3629 auto ValueId = getValueId(I.first); 3630 assert(ValueId); 3631 SummaryToValueIdMap[S] = *ValueId; 3632 3633 // If this is invoked for an aliasee, we want to record the above 3634 // mapping, but then not emit a summary entry (if the aliasee is 3635 // to be imported, we will invoke this separately with IsAliasee=false). 3636 if (IsAliasee) 3637 return; 3638 3639 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3640 // Will process aliases as a post-pass because the reader wants all 3641 // global to be loaded first. 3642 Aliases.push_back(AS); 3643 return; 3644 } 3645 3646 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3647 NameVals.push_back(*ValueId); 3648 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3649 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3650 for (auto &RI : VS->refs()) { 3651 auto RefValueId = getValueId(RI.getGUID()); 3652 if (!RefValueId) 3653 continue; 3654 NameVals.push_back(*RefValueId); 3655 } 3656 3657 // Emit the finished record. 3658 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3659 FSModRefsAbbrev); 3660 NameVals.clear(); 3661 MaybeEmitOriginalName(*S); 3662 return; 3663 } 3664 3665 auto *FS = cast<FunctionSummary>(S); 3666 writeFunctionTypeMetadataRecords(Stream, FS); 3667 3668 NameVals.push_back(*ValueId); 3669 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3670 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3671 NameVals.push_back(FS->instCount()); 3672 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3673 // Fill in below 3674 NameVals.push_back(0); 3675 3676 unsigned Count = 0; 3677 for (auto &RI : FS->refs()) { 3678 auto RefValueId = getValueId(RI.getGUID()); 3679 if (!RefValueId) 3680 continue; 3681 NameVals.push_back(*RefValueId); 3682 Count++; 3683 } 3684 NameVals[5] = Count; 3685 3686 bool HasProfileData = false; 3687 for (auto &EI : FS->calls()) { 3688 HasProfileData |= 3689 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 3690 if (HasProfileData) 3691 break; 3692 } 3693 3694 for (auto &EI : FS->calls()) { 3695 // If this GUID doesn't have a value id, it doesn't have a function 3696 // summary and we don't need to record any calls to it. 3697 GlobalValue::GUID GUID = EI.first.getGUID(); 3698 auto CallValueId = getValueId(GUID); 3699 if (!CallValueId) { 3700 // For SamplePGO, the indirect call targets for local functions will 3701 // have its original name annotated in profile. We try to find the 3702 // corresponding PGOFuncName as the GUID. 3703 GUID = Index.getGUIDFromOriginalID(GUID); 3704 if (GUID == 0) 3705 continue; 3706 CallValueId = getValueId(GUID); 3707 if (!CallValueId) 3708 continue; 3709 // The mapping from OriginalId to GUID may return a GUID 3710 // that corresponds to a static variable. Filter it out here. 3711 // This can happen when 3712 // 1) There is a call to a library function which does not have 3713 // a CallValidId; 3714 // 2) There is a static variable with the OriginalGUID identical 3715 // to the GUID of the library function in 1); 3716 // When this happens, the logic for SamplePGO kicks in and 3717 // the static variable in 2) will be found, which needs to be 3718 // filtered out. 3719 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 3720 if (GVSum && 3721 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 3722 continue; 3723 } 3724 NameVals.push_back(*CallValueId); 3725 if (HasProfileData) 3726 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3727 } 3728 3729 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3730 unsigned Code = 3731 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3732 3733 // Emit the finished record. 3734 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3735 NameVals.clear(); 3736 MaybeEmitOriginalName(*S); 3737 }); 3738 3739 for (auto *AS : Aliases) { 3740 auto AliasValueId = SummaryToValueIdMap[AS]; 3741 assert(AliasValueId); 3742 NameVals.push_back(AliasValueId); 3743 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3744 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3745 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3746 assert(AliaseeValueId); 3747 NameVals.push_back(AliaseeValueId); 3748 3749 // Emit the finished record. 3750 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3751 NameVals.clear(); 3752 MaybeEmitOriginalName(*AS); 3753 } 3754 3755 if (!Index.cfiFunctionDefs().empty()) { 3756 for (auto &S : Index.cfiFunctionDefs()) { 3757 NameVals.push_back(StrtabBuilder.add(S)); 3758 NameVals.push_back(S.size()); 3759 } 3760 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 3761 NameVals.clear(); 3762 } 3763 3764 if (!Index.cfiFunctionDecls().empty()) { 3765 for (auto &S : Index.cfiFunctionDecls()) { 3766 NameVals.push_back(StrtabBuilder.add(S)); 3767 NameVals.push_back(S.size()); 3768 } 3769 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 3770 NameVals.clear(); 3771 } 3772 3773 Stream.ExitBlock(); 3774 } 3775 3776 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3777 /// current llvm version, and a record for the epoch number. 3778 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3779 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3780 3781 // Write the "user readable" string identifying the bitcode producer 3782 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3783 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3786 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3787 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3788 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3789 3790 // Write the epoch version 3791 Abbv = std::make_shared<BitCodeAbbrev>(); 3792 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3794 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3795 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3796 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3797 Stream.ExitBlock(); 3798 } 3799 3800 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3801 // Emit the module's hash. 3802 // MODULE_CODE_HASH: [5*i32] 3803 if (GenerateHash) { 3804 uint32_t Vals[5]; 3805 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3806 Buffer.size() - BlockStartPos)); 3807 StringRef Hash = Hasher.result(); 3808 for (int Pos = 0; Pos < 20; Pos += 4) { 3809 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3810 } 3811 3812 // Emit the finished record. 3813 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3814 3815 if (ModHash) 3816 // Save the written hash value. 3817 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash)); 3818 } 3819 } 3820 3821 void ModuleBitcodeWriter::write() { 3822 writeIdentificationBlock(Stream); 3823 3824 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3825 size_t BlockStartPos = Buffer.size(); 3826 3827 writeModuleVersion(); 3828 3829 // Emit blockinfo, which defines the standard abbreviations etc. 3830 writeBlockInfo(); 3831 3832 // Emit information about attribute groups. 3833 writeAttributeGroupTable(); 3834 3835 // Emit information about parameter attributes. 3836 writeAttributeTable(); 3837 3838 // Emit information describing all of the types in the module. 3839 writeTypeTable(); 3840 3841 writeComdats(); 3842 3843 // Emit top-level description of module, including target triple, inline asm, 3844 // descriptors for global variables, and function prototype info. 3845 writeModuleInfo(); 3846 3847 // Emit constants. 3848 writeModuleConstants(); 3849 3850 // Emit metadata kind names. 3851 writeModuleMetadataKinds(); 3852 3853 // Emit metadata. 3854 writeModuleMetadata(); 3855 3856 // Emit module-level use-lists. 3857 if (VE.shouldPreserveUseListOrder()) 3858 writeUseListBlock(nullptr); 3859 3860 writeOperandBundleTags(); 3861 writeSyncScopeNames(); 3862 3863 // Emit function bodies. 3864 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3865 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3866 if (!F->isDeclaration()) 3867 writeFunction(*F, FunctionToBitcodeIndex); 3868 3869 // Need to write after the above call to WriteFunction which populates 3870 // the summary information in the index. 3871 if (Index) 3872 writePerModuleGlobalValueSummary(); 3873 3874 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 3875 3876 writeModuleHash(BlockStartPos); 3877 3878 Stream.ExitBlock(); 3879 } 3880 3881 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3882 uint32_t &Position) { 3883 support::endian::write32le(&Buffer[Position], Value); 3884 Position += 4; 3885 } 3886 3887 /// If generating a bc file on darwin, we have to emit a 3888 /// header and trailer to make it compatible with the system archiver. To do 3889 /// this we emit the following header, and then emit a trailer that pads the 3890 /// file out to be a multiple of 16 bytes. 3891 /// 3892 /// struct bc_header { 3893 /// uint32_t Magic; // 0x0B17C0DE 3894 /// uint32_t Version; // Version, currently always 0. 3895 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3896 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3897 /// uint32_t CPUType; // CPU specifier. 3898 /// ... potentially more later ... 3899 /// }; 3900 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3901 const Triple &TT) { 3902 unsigned CPUType = ~0U; 3903 3904 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3905 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3906 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3907 // specific constants here because they are implicitly part of the Darwin ABI. 3908 enum { 3909 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3910 DARWIN_CPU_TYPE_X86 = 7, 3911 DARWIN_CPU_TYPE_ARM = 12, 3912 DARWIN_CPU_TYPE_POWERPC = 18 3913 }; 3914 3915 Triple::ArchType Arch = TT.getArch(); 3916 if (Arch == Triple::x86_64) 3917 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3918 else if (Arch == Triple::x86) 3919 CPUType = DARWIN_CPU_TYPE_X86; 3920 else if (Arch == Triple::ppc) 3921 CPUType = DARWIN_CPU_TYPE_POWERPC; 3922 else if (Arch == Triple::ppc64) 3923 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3924 else if (Arch == Triple::arm || Arch == Triple::thumb) 3925 CPUType = DARWIN_CPU_TYPE_ARM; 3926 3927 // Traditional Bitcode starts after header. 3928 assert(Buffer.size() >= BWH_HeaderSize && 3929 "Expected header size to be reserved"); 3930 unsigned BCOffset = BWH_HeaderSize; 3931 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3932 3933 // Write the magic and version. 3934 unsigned Position = 0; 3935 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3936 writeInt32ToBuffer(0, Buffer, Position); // Version. 3937 writeInt32ToBuffer(BCOffset, Buffer, Position); 3938 writeInt32ToBuffer(BCSize, Buffer, Position); 3939 writeInt32ToBuffer(CPUType, Buffer, Position); 3940 3941 // If the file is not a multiple of 16 bytes, insert dummy padding. 3942 while (Buffer.size() & 15) 3943 Buffer.push_back(0); 3944 } 3945 3946 /// Helper to write the header common to all bitcode files. 3947 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3948 // Emit the file header. 3949 Stream.Emit((unsigned)'B', 8); 3950 Stream.Emit((unsigned)'C', 8); 3951 Stream.Emit(0x0, 4); 3952 Stream.Emit(0xC, 4); 3953 Stream.Emit(0xE, 4); 3954 Stream.Emit(0xD, 4); 3955 } 3956 3957 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3958 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3959 writeBitcodeHeader(*Stream); 3960 } 3961 3962 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 3963 3964 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 3965 Stream->EnterSubblock(Block, 3); 3966 3967 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3968 Abbv->Add(BitCodeAbbrevOp(Record)); 3969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 3970 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 3971 3972 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 3973 3974 Stream->ExitBlock(); 3975 } 3976 3977 void BitcodeWriter::writeSymtab() { 3978 assert(!WroteStrtab && !WroteSymtab); 3979 3980 // If any module has module-level inline asm, we will require a registered asm 3981 // parser for the target so that we can create an accurate symbol table for 3982 // the module. 3983 for (Module *M : Mods) { 3984 if (M->getModuleInlineAsm().empty()) 3985 continue; 3986 3987 std::string Err; 3988 const Triple TT(M->getTargetTriple()); 3989 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 3990 if (!T || !T->hasMCAsmParser()) 3991 return; 3992 } 3993 3994 WroteSymtab = true; 3995 SmallVector<char, 0> Symtab; 3996 // The irsymtab::build function may be unable to create a symbol table if the 3997 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 3998 // table is not required for correctness, but we still want to be able to 3999 // write malformed modules to bitcode files, so swallow the error. 4000 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4001 consumeError(std::move(E)); 4002 return; 4003 } 4004 4005 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4006 {Symtab.data(), Symtab.size()}); 4007 } 4008 4009 void BitcodeWriter::writeStrtab() { 4010 assert(!WroteStrtab); 4011 4012 std::vector<char> Strtab; 4013 StrtabBuilder.finalizeInOrder(); 4014 Strtab.resize(StrtabBuilder.getSize()); 4015 StrtabBuilder.write((uint8_t *)Strtab.data()); 4016 4017 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4018 {Strtab.data(), Strtab.size()}); 4019 4020 WroteStrtab = true; 4021 } 4022 4023 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4024 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4025 WroteStrtab = true; 4026 } 4027 4028 void BitcodeWriter::writeModule(const Module *M, 4029 bool ShouldPreserveUseListOrder, 4030 const ModuleSummaryIndex *Index, 4031 bool GenerateHash, ModuleHash *ModHash) { 4032 assert(!WroteStrtab); 4033 4034 // The Mods vector is used by irsymtab::build, which requires non-const 4035 // Modules in case it needs to materialize metadata. But the bitcode writer 4036 // requires that the module is materialized, so we can cast to non-const here, 4037 // after checking that it is in fact materialized. 4038 assert(M->isMaterialized()); 4039 Mods.push_back(const_cast<Module *>(M)); 4040 4041 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4042 ShouldPreserveUseListOrder, Index, 4043 GenerateHash, ModHash); 4044 ModuleWriter.write(); 4045 } 4046 4047 void BitcodeWriter::writeIndex( 4048 const ModuleSummaryIndex *Index, 4049 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4050 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4051 ModuleToSummariesForIndex); 4052 IndexWriter.write(); 4053 } 4054 4055 /// WriteBitcodeToFile - Write the specified module to the specified output 4056 /// stream. 4057 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 4058 bool ShouldPreserveUseListOrder, 4059 const ModuleSummaryIndex *Index, 4060 bool GenerateHash, ModuleHash *ModHash) { 4061 SmallVector<char, 0> Buffer; 4062 Buffer.reserve(256*1024); 4063 4064 // If this is darwin or another generic macho target, reserve space for the 4065 // header. 4066 Triple TT(M->getTargetTriple()); 4067 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4068 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4069 4070 BitcodeWriter Writer(Buffer); 4071 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4072 ModHash); 4073 Writer.writeSymtab(); 4074 Writer.writeStrtab(); 4075 4076 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4077 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4078 4079 // Write the generated bitstream to "Out". 4080 Out.write((char*)&Buffer.front(), Buffer.size()); 4081 } 4082 4083 void IndexBitcodeWriter::write() { 4084 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4085 4086 writeModuleVersion(); 4087 4088 // Write the module paths in the combined index. 4089 writeModStrings(); 4090 4091 // Write the summary combined index records. 4092 writeCombinedGlobalValueSummary(); 4093 4094 Stream.ExitBlock(); 4095 } 4096 4097 // Write the specified module summary index to the given raw output stream, 4098 // where it will be written in a new bitcode block. This is used when 4099 // writing the combined index file for ThinLTO. When writing a subset of the 4100 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4101 void llvm::WriteIndexToFile( 4102 const ModuleSummaryIndex &Index, raw_ostream &Out, 4103 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4104 SmallVector<char, 0> Buffer; 4105 Buffer.reserve(256 * 1024); 4106 4107 BitcodeWriter Writer(Buffer); 4108 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4109 Writer.writeStrtab(); 4110 4111 Out.write((char *)&Buffer.front(), Buffer.size()); 4112 } 4113 4114 namespace { 4115 4116 /// Class to manage the bitcode writing for a thin link bitcode file. 4117 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4118 /// ModHash is for use in ThinLTO incremental build, generated while writing 4119 /// the module bitcode file. 4120 const ModuleHash *ModHash; 4121 4122 public: 4123 ThinLinkBitcodeWriter(const Module *M, StringTableBuilder &StrtabBuilder, 4124 BitstreamWriter &Stream, 4125 const ModuleSummaryIndex &Index, 4126 const ModuleHash &ModHash) 4127 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4128 /*ShouldPreserveUseListOrder=*/false, &Index), 4129 ModHash(&ModHash) {} 4130 4131 void write(); 4132 4133 private: 4134 void writeSimplifiedModuleInfo(); 4135 }; 4136 4137 } // end anonymous namespace 4138 4139 // This function writes a simpilified module info for thin link bitcode file. 4140 // It only contains the source file name along with the name(the offset and 4141 // size in strtab) and linkage for global values. For the global value info 4142 // entry, in order to keep linkage at offset 5, there are three zeros used 4143 // as padding. 4144 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4145 SmallVector<unsigned, 64> Vals; 4146 // Emit the module's source file name. 4147 { 4148 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4149 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4150 if (Bits == SE_Char6) 4151 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4152 else if (Bits == SE_Fixed7) 4153 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4154 4155 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4156 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4157 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4159 Abbv->Add(AbbrevOpToUse); 4160 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4161 4162 for (const auto P : M.getSourceFileName()) 4163 Vals.push_back((unsigned char)P); 4164 4165 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4166 Vals.clear(); 4167 } 4168 4169 // Emit the global variable information. 4170 for (const GlobalVariable &GV : M.globals()) { 4171 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4172 Vals.push_back(StrtabBuilder.add(GV.getName())); 4173 Vals.push_back(GV.getName().size()); 4174 Vals.push_back(0); 4175 Vals.push_back(0); 4176 Vals.push_back(0); 4177 Vals.push_back(getEncodedLinkage(GV)); 4178 4179 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4180 Vals.clear(); 4181 } 4182 4183 // Emit the function proto information. 4184 for (const Function &F : M) { 4185 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4186 Vals.push_back(StrtabBuilder.add(F.getName())); 4187 Vals.push_back(F.getName().size()); 4188 Vals.push_back(0); 4189 Vals.push_back(0); 4190 Vals.push_back(0); 4191 Vals.push_back(getEncodedLinkage(F)); 4192 4193 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4194 Vals.clear(); 4195 } 4196 4197 // Emit the alias information. 4198 for (const GlobalAlias &A : M.aliases()) { 4199 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4200 Vals.push_back(StrtabBuilder.add(A.getName())); 4201 Vals.push_back(A.getName().size()); 4202 Vals.push_back(0); 4203 Vals.push_back(0); 4204 Vals.push_back(0); 4205 Vals.push_back(getEncodedLinkage(A)); 4206 4207 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4208 Vals.clear(); 4209 } 4210 4211 // Emit the ifunc information. 4212 for (const GlobalIFunc &I : M.ifuncs()) { 4213 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4214 Vals.push_back(StrtabBuilder.add(I.getName())); 4215 Vals.push_back(I.getName().size()); 4216 Vals.push_back(0); 4217 Vals.push_back(0); 4218 Vals.push_back(0); 4219 Vals.push_back(getEncodedLinkage(I)); 4220 4221 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4222 Vals.clear(); 4223 } 4224 } 4225 4226 void ThinLinkBitcodeWriter::write() { 4227 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4228 4229 writeModuleVersion(); 4230 4231 writeSimplifiedModuleInfo(); 4232 4233 writePerModuleGlobalValueSummary(); 4234 4235 // Write module hash. 4236 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4237 4238 Stream.ExitBlock(); 4239 } 4240 4241 void BitcodeWriter::writeThinLinkBitcode(const Module *M, 4242 const ModuleSummaryIndex &Index, 4243 const ModuleHash &ModHash) { 4244 assert(!WroteStrtab); 4245 4246 // The Mods vector is used by irsymtab::build, which requires non-const 4247 // Modules in case it needs to materialize metadata. But the bitcode writer 4248 // requires that the module is materialized, so we can cast to non-const here, 4249 // after checking that it is in fact materialized. 4250 assert(M->isMaterialized()); 4251 Mods.push_back(const_cast<Module *>(M)); 4252 4253 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4254 ModHash); 4255 ThinLinkWriter.write(); 4256 } 4257 4258 // Write the specified thin link bitcode file to the given raw output stream, 4259 // where it will be written in a new bitcode block. This is used when 4260 // writing the per-module index file for ThinLTO. 4261 void llvm::WriteThinLinkBitcodeToFile(const Module *M, raw_ostream &Out, 4262 const ModuleSummaryIndex &Index, 4263 const ModuleHash &ModHash) { 4264 SmallVector<char, 0> Buffer; 4265 Buffer.reserve(256 * 1024); 4266 4267 BitcodeWriter Writer(Buffer); 4268 Writer.writeThinLinkBitcode(M, Index, ModHash); 4269 Writer.writeSymtab(); 4270 Writer.writeStrtab(); 4271 4272 Out.write((char *)&Buffer.front(), Buffer.size()); 4273 } 4274