1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/TargetRegistry.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 static cl::opt<unsigned> 86 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 87 cl::desc("Number of metadatas above which we emit an index " 88 "to enable lazy-loading")); 89 90 static cl::opt<bool> WriteRelBFToSummary( 91 "write-relbf-to-summary", cl::Hidden, cl::init(false), 92 cl::desc("Write relative block frequency to function summary ")); 93 94 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 95 96 namespace { 97 98 /// These are manifest constants used by the bitcode writer. They do not need to 99 /// be kept in sync with the reader, but need to be consistent within this file. 100 enum { 101 // VALUE_SYMTAB_BLOCK abbrev id's. 102 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 103 VST_ENTRY_7_ABBREV, 104 VST_ENTRY_6_ABBREV, 105 VST_BBENTRY_6_ABBREV, 106 107 // CONSTANTS_BLOCK abbrev id's. 108 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 109 CONSTANTS_INTEGER_ABBREV, 110 CONSTANTS_CE_CAST_Abbrev, 111 CONSTANTS_NULL_Abbrev, 112 113 // FUNCTION_BLOCK abbrev id's. 114 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 115 FUNCTION_INST_UNOP_ABBREV, 116 FUNCTION_INST_UNOP_FLAGS_ABBREV, 117 FUNCTION_INST_BINOP_ABBREV, 118 FUNCTION_INST_BINOP_FLAGS_ABBREV, 119 FUNCTION_INST_CAST_ABBREV, 120 FUNCTION_INST_RET_VOID_ABBREV, 121 FUNCTION_INST_RET_VAL_ABBREV, 122 FUNCTION_INST_UNREACHABLE_ABBREV, 123 FUNCTION_INST_GEP_ABBREV, 124 }; 125 126 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 127 /// file type. 128 class BitcodeWriterBase { 129 protected: 130 /// The stream created and owned by the client. 131 BitstreamWriter &Stream; 132 133 StringTableBuilder &StrtabBuilder; 134 135 public: 136 /// Constructs a BitcodeWriterBase object that writes to the provided 137 /// \p Stream. 138 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 139 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 140 141 protected: 142 void writeBitcodeHeader(); 143 void writeModuleVersion(); 144 }; 145 146 void BitcodeWriterBase::writeModuleVersion() { 147 // VERSION: [version#] 148 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 149 } 150 151 /// Base class to manage the module bitcode writing, currently subclassed for 152 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 153 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 154 protected: 155 /// The Module to write to bitcode. 156 const Module &M; 157 158 /// Enumerates ids for all values in the module. 159 ValueEnumerator VE; 160 161 /// Optional per-module index to write for ThinLTO. 162 const ModuleSummaryIndex *Index; 163 164 /// Map that holds the correspondence between GUIDs in the summary index, 165 /// that came from indirect call profiles, and a value id generated by this 166 /// class to use in the VST and summary block records. 167 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 168 169 /// Tracks the last value id recorded in the GUIDToValueMap. 170 unsigned GlobalValueId; 171 172 /// Saves the offset of the VSTOffset record that must eventually be 173 /// backpatched with the offset of the actual VST. 174 uint64_t VSTOffsetPlaceholder = 0; 175 176 public: 177 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 178 /// writing to the provided \p Buffer. 179 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 180 BitstreamWriter &Stream, 181 bool ShouldPreserveUseListOrder, 182 const ModuleSummaryIndex *Index) 183 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 184 VE(M, ShouldPreserveUseListOrder), Index(Index) { 185 // Assign ValueIds to any callee values in the index that came from 186 // indirect call profiles and were recorded as a GUID not a Value* 187 // (which would have been assigned an ID by the ValueEnumerator). 188 // The starting ValueId is just after the number of values in the 189 // ValueEnumerator, so that they can be emitted in the VST. 190 GlobalValueId = VE.getValues().size(); 191 if (!Index) 192 return; 193 for (const auto &GUIDSummaryLists : *Index) 194 // Examine all summaries for this GUID. 195 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 196 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 197 // For each call in the function summary, see if the call 198 // is to a GUID (which means it is for an indirect call, 199 // otherwise we would have a Value for it). If so, synthesize 200 // a value id. 201 for (auto &CallEdge : FS->calls()) 202 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 203 assignValueId(CallEdge.first.getGUID()); 204 } 205 206 protected: 207 void writePerModuleGlobalValueSummary(); 208 209 private: 210 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 211 GlobalValueSummary *Summary, 212 unsigned ValueID, 213 unsigned FSCallsAbbrev, 214 unsigned FSCallsProfileAbbrev, 215 const Function &F); 216 void writeModuleLevelReferences(const GlobalVariable &V, 217 SmallVector<uint64_t, 64> &NameVals, 218 unsigned FSModRefsAbbrev, 219 unsigned FSModVTableRefsAbbrev); 220 221 void assignValueId(GlobalValue::GUID ValGUID) { 222 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 223 } 224 225 unsigned getValueId(GlobalValue::GUID ValGUID) { 226 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 227 // Expect that any GUID value had a value Id assigned by an 228 // earlier call to assignValueId. 229 assert(VMI != GUIDToValueIdMap.end() && 230 "GUID does not have assigned value Id"); 231 return VMI->second; 232 } 233 234 // Helper to get the valueId for the type of value recorded in VI. 235 unsigned getValueId(ValueInfo VI) { 236 if (!VI.haveGVs() || !VI.getValue()) 237 return getValueId(VI.getGUID()); 238 return VE.getValueID(VI.getValue()); 239 } 240 241 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 242 }; 243 244 /// Class to manage the bitcode writing for a module. 245 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 246 /// Pointer to the buffer allocated by caller for bitcode writing. 247 const SmallVectorImpl<char> &Buffer; 248 249 /// True if a module hash record should be written. 250 bool GenerateHash; 251 252 /// If non-null, when GenerateHash is true, the resulting hash is written 253 /// into ModHash. 254 ModuleHash *ModHash; 255 256 SHA1 Hasher; 257 258 /// The start bit of the identification block. 259 uint64_t BitcodeStartBit; 260 261 public: 262 /// Constructs a ModuleBitcodeWriter object for the given Module, 263 /// writing to the provided \p Buffer. 264 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 265 StringTableBuilder &StrtabBuilder, 266 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 267 const ModuleSummaryIndex *Index, bool GenerateHash, 268 ModuleHash *ModHash = nullptr) 269 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 270 ShouldPreserveUseListOrder, Index), 271 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 272 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 273 274 /// Emit the current module to the bitstream. 275 void write(); 276 277 private: 278 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 279 280 size_t addToStrtab(StringRef Str); 281 282 void writeAttributeGroupTable(); 283 void writeAttributeTable(); 284 void writeTypeTable(); 285 void writeComdats(); 286 void writeValueSymbolTableForwardDecl(); 287 void writeModuleInfo(); 288 void writeValueAsMetadata(const ValueAsMetadata *MD, 289 SmallVectorImpl<uint64_t> &Record); 290 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 291 unsigned Abbrev); 292 unsigned createDILocationAbbrev(); 293 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 294 unsigned &Abbrev); 295 unsigned createGenericDINodeAbbrev(); 296 void writeGenericDINode(const GenericDINode *N, 297 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 298 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 299 unsigned Abbrev); 300 void writeDIEnumerator(const DIEnumerator *N, 301 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 302 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 303 unsigned Abbrev); 304 void writeDIDerivedType(const DIDerivedType *N, 305 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 306 void writeDICompositeType(const DICompositeType *N, 307 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 308 void writeDISubroutineType(const DISubroutineType *N, 309 SmallVectorImpl<uint64_t> &Record, 310 unsigned Abbrev); 311 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 312 unsigned Abbrev); 313 void writeDICompileUnit(const DICompileUnit *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDISubprogram(const DISubprogram *N, 316 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 317 void writeDILexicalBlock(const DILexicalBlock *N, 318 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 319 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 320 SmallVectorImpl<uint64_t> &Record, 321 unsigned Abbrev); 322 void writeDICommonBlock(const DICommonBlock *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 325 unsigned Abbrev); 326 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 327 unsigned Abbrev); 328 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 331 unsigned Abbrev); 332 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 333 SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 336 SmallVectorImpl<uint64_t> &Record, 337 unsigned Abbrev); 338 void writeDIGlobalVariable(const DIGlobalVariable *N, 339 SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDILocalVariable(const DILocalVariable *N, 342 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 343 void writeDILabel(const DILabel *N, 344 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 345 void writeDIExpression(const DIExpression *N, 346 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 347 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 348 SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 void writeDIObjCProperty(const DIObjCProperty *N, 351 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 352 void writeDIImportedEntity(const DIImportedEntity *N, 353 SmallVectorImpl<uint64_t> &Record, 354 unsigned Abbrev); 355 unsigned createNamedMetadataAbbrev(); 356 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 357 unsigned createMetadataStringsAbbrev(); 358 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 359 SmallVectorImpl<uint64_t> &Record); 360 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 361 SmallVectorImpl<uint64_t> &Record, 362 std::vector<unsigned> *MDAbbrevs = nullptr, 363 std::vector<uint64_t> *IndexPos = nullptr); 364 void writeModuleMetadata(); 365 void writeFunctionMetadata(const Function &F); 366 void writeFunctionMetadataAttachment(const Function &F); 367 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 368 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 369 const GlobalObject &GO); 370 void writeModuleMetadataKinds(); 371 void writeOperandBundleTags(); 372 void writeSyncScopeNames(); 373 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 374 void writeModuleConstants(); 375 bool pushValueAndType(const Value *V, unsigned InstID, 376 SmallVectorImpl<unsigned> &Vals); 377 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 378 void pushValue(const Value *V, unsigned InstID, 379 SmallVectorImpl<unsigned> &Vals); 380 void pushValueSigned(const Value *V, unsigned InstID, 381 SmallVectorImpl<uint64_t> &Vals); 382 void writeInstruction(const Instruction &I, unsigned InstID, 383 SmallVectorImpl<unsigned> &Vals); 384 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 385 void writeGlobalValueSymbolTable( 386 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 387 void writeUseList(UseListOrder &&Order); 388 void writeUseListBlock(const Function *F); 389 void 390 writeFunction(const Function &F, 391 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 392 void writeBlockInfo(); 393 void writeModuleHash(size_t BlockStartPos); 394 395 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 396 return unsigned(SSID); 397 } 398 }; 399 400 /// Class to manage the bitcode writing for a combined index. 401 class IndexBitcodeWriter : public BitcodeWriterBase { 402 /// The combined index to write to bitcode. 403 const ModuleSummaryIndex &Index; 404 405 /// When writing a subset of the index for distributed backends, client 406 /// provides a map of modules to the corresponding GUIDs/summaries to write. 407 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 408 409 /// Map that holds the correspondence between the GUID used in the combined 410 /// index and a value id generated by this class to use in references. 411 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 412 413 /// Tracks the last value id recorded in the GUIDToValueMap. 414 unsigned GlobalValueId = 0; 415 416 public: 417 /// Constructs a IndexBitcodeWriter object for the given combined index, 418 /// writing to the provided \p Buffer. When writing a subset of the index 419 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 420 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 421 const ModuleSummaryIndex &Index, 422 const std::map<std::string, GVSummaryMapTy> 423 *ModuleToSummariesForIndex = nullptr) 424 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 425 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 426 // Assign unique value ids to all summaries to be written, for use 427 // in writing out the call graph edges. Save the mapping from GUID 428 // to the new global value id to use when writing those edges, which 429 // are currently saved in the index in terms of GUID. 430 forEachSummary([&](GVInfo I, bool) { 431 GUIDToValueIdMap[I.first] = ++GlobalValueId; 432 }); 433 } 434 435 /// The below iterator returns the GUID and associated summary. 436 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 437 438 /// Calls the callback for each value GUID and summary to be written to 439 /// bitcode. This hides the details of whether they are being pulled from the 440 /// entire index or just those in a provided ModuleToSummariesForIndex map. 441 template<typename Functor> 442 void forEachSummary(Functor Callback) { 443 if (ModuleToSummariesForIndex) { 444 for (auto &M : *ModuleToSummariesForIndex) 445 for (auto &Summary : M.second) { 446 Callback(Summary, false); 447 // Ensure aliasee is handled, e.g. for assigning a valueId, 448 // even if we are not importing the aliasee directly (the 449 // imported alias will contain a copy of aliasee). 450 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 451 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 452 } 453 } else { 454 for (auto &Summaries : Index) 455 for (auto &Summary : Summaries.second.SummaryList) 456 Callback({Summaries.first, Summary.get()}, false); 457 } 458 } 459 460 /// Calls the callback for each entry in the modulePaths StringMap that 461 /// should be written to the module path string table. This hides the details 462 /// of whether they are being pulled from the entire index or just those in a 463 /// provided ModuleToSummariesForIndex map. 464 template <typename Functor> void forEachModule(Functor Callback) { 465 if (ModuleToSummariesForIndex) { 466 for (const auto &M : *ModuleToSummariesForIndex) { 467 const auto &MPI = Index.modulePaths().find(M.first); 468 if (MPI == Index.modulePaths().end()) { 469 // This should only happen if the bitcode file was empty, in which 470 // case we shouldn't be importing (the ModuleToSummariesForIndex 471 // would only include the module we are writing and index for). 472 assert(ModuleToSummariesForIndex->size() == 1); 473 continue; 474 } 475 Callback(*MPI); 476 } 477 } else { 478 for (const auto &MPSE : Index.modulePaths()) 479 Callback(MPSE); 480 } 481 } 482 483 /// Main entry point for writing a combined index to bitcode. 484 void write(); 485 486 private: 487 void writeModStrings(); 488 void writeCombinedGlobalValueSummary(); 489 490 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 491 auto VMI = GUIDToValueIdMap.find(ValGUID); 492 if (VMI == GUIDToValueIdMap.end()) 493 return None; 494 return VMI->second; 495 } 496 497 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 498 }; 499 500 } // end anonymous namespace 501 502 static unsigned getEncodedCastOpcode(unsigned Opcode) { 503 switch (Opcode) { 504 default: llvm_unreachable("Unknown cast instruction!"); 505 case Instruction::Trunc : return bitc::CAST_TRUNC; 506 case Instruction::ZExt : return bitc::CAST_ZEXT; 507 case Instruction::SExt : return bitc::CAST_SEXT; 508 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 509 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 510 case Instruction::UIToFP : return bitc::CAST_UITOFP; 511 case Instruction::SIToFP : return bitc::CAST_SITOFP; 512 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 513 case Instruction::FPExt : return bitc::CAST_FPEXT; 514 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 515 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 516 case Instruction::BitCast : return bitc::CAST_BITCAST; 517 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 518 } 519 } 520 521 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 522 switch (Opcode) { 523 default: llvm_unreachable("Unknown binary instruction!"); 524 case Instruction::FNeg: return bitc::UNOP_FNEG; 525 } 526 } 527 528 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 529 switch (Opcode) { 530 default: llvm_unreachable("Unknown binary instruction!"); 531 case Instruction::Add: 532 case Instruction::FAdd: return bitc::BINOP_ADD; 533 case Instruction::Sub: 534 case Instruction::FSub: return bitc::BINOP_SUB; 535 case Instruction::Mul: 536 case Instruction::FMul: return bitc::BINOP_MUL; 537 case Instruction::UDiv: return bitc::BINOP_UDIV; 538 case Instruction::FDiv: 539 case Instruction::SDiv: return bitc::BINOP_SDIV; 540 case Instruction::URem: return bitc::BINOP_UREM; 541 case Instruction::FRem: 542 case Instruction::SRem: return bitc::BINOP_SREM; 543 case Instruction::Shl: return bitc::BINOP_SHL; 544 case Instruction::LShr: return bitc::BINOP_LSHR; 545 case Instruction::AShr: return bitc::BINOP_ASHR; 546 case Instruction::And: return bitc::BINOP_AND; 547 case Instruction::Or: return bitc::BINOP_OR; 548 case Instruction::Xor: return bitc::BINOP_XOR; 549 } 550 } 551 552 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 553 switch (Op) { 554 default: llvm_unreachable("Unknown RMW operation!"); 555 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 556 case AtomicRMWInst::Add: return bitc::RMW_ADD; 557 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 558 case AtomicRMWInst::And: return bitc::RMW_AND; 559 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 560 case AtomicRMWInst::Or: return bitc::RMW_OR; 561 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 562 case AtomicRMWInst::Max: return bitc::RMW_MAX; 563 case AtomicRMWInst::Min: return bitc::RMW_MIN; 564 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 565 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 566 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 567 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 568 } 569 } 570 571 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 572 switch (Ordering) { 573 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 574 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 575 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 576 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 577 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 578 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 579 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 580 } 581 llvm_unreachable("Invalid ordering"); 582 } 583 584 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 585 StringRef Str, unsigned AbbrevToUse) { 586 SmallVector<unsigned, 64> Vals; 587 588 // Code: [strchar x N] 589 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 590 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 591 AbbrevToUse = 0; 592 Vals.push_back(Str[i]); 593 } 594 595 // Emit the finished record. 596 Stream.EmitRecord(Code, Vals, AbbrevToUse); 597 } 598 599 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 600 switch (Kind) { 601 case Attribute::Alignment: 602 return bitc::ATTR_KIND_ALIGNMENT; 603 case Attribute::AllocSize: 604 return bitc::ATTR_KIND_ALLOC_SIZE; 605 case Attribute::AlwaysInline: 606 return bitc::ATTR_KIND_ALWAYS_INLINE; 607 case Attribute::ArgMemOnly: 608 return bitc::ATTR_KIND_ARGMEMONLY; 609 case Attribute::Builtin: 610 return bitc::ATTR_KIND_BUILTIN; 611 case Attribute::ByVal: 612 return bitc::ATTR_KIND_BY_VAL; 613 case Attribute::Convergent: 614 return bitc::ATTR_KIND_CONVERGENT; 615 case Attribute::InAlloca: 616 return bitc::ATTR_KIND_IN_ALLOCA; 617 case Attribute::Cold: 618 return bitc::ATTR_KIND_COLD; 619 case Attribute::InaccessibleMemOnly: 620 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 621 case Attribute::InaccessibleMemOrArgMemOnly: 622 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 623 case Attribute::InlineHint: 624 return bitc::ATTR_KIND_INLINE_HINT; 625 case Attribute::InReg: 626 return bitc::ATTR_KIND_IN_REG; 627 case Attribute::JumpTable: 628 return bitc::ATTR_KIND_JUMP_TABLE; 629 case Attribute::MinSize: 630 return bitc::ATTR_KIND_MIN_SIZE; 631 case Attribute::Naked: 632 return bitc::ATTR_KIND_NAKED; 633 case Attribute::Nest: 634 return bitc::ATTR_KIND_NEST; 635 case Attribute::NoAlias: 636 return bitc::ATTR_KIND_NO_ALIAS; 637 case Attribute::NoBuiltin: 638 return bitc::ATTR_KIND_NO_BUILTIN; 639 case Attribute::NoCapture: 640 return bitc::ATTR_KIND_NO_CAPTURE; 641 case Attribute::NoDuplicate: 642 return bitc::ATTR_KIND_NO_DUPLICATE; 643 case Attribute::NoFree: 644 return bitc::ATTR_KIND_NOFREE; 645 case Attribute::NoImplicitFloat: 646 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 647 case Attribute::NoInline: 648 return bitc::ATTR_KIND_NO_INLINE; 649 case Attribute::NoRecurse: 650 return bitc::ATTR_KIND_NO_RECURSE; 651 case Attribute::NonLazyBind: 652 return bitc::ATTR_KIND_NON_LAZY_BIND; 653 case Attribute::NonNull: 654 return bitc::ATTR_KIND_NON_NULL; 655 case Attribute::Dereferenceable: 656 return bitc::ATTR_KIND_DEREFERENCEABLE; 657 case Attribute::DereferenceableOrNull: 658 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 659 case Attribute::NoRedZone: 660 return bitc::ATTR_KIND_NO_RED_ZONE; 661 case Attribute::NoReturn: 662 return bitc::ATTR_KIND_NO_RETURN; 663 case Attribute::NoSync: 664 return bitc::ATTR_KIND_NOSYNC; 665 case Attribute::NoCfCheck: 666 return bitc::ATTR_KIND_NOCF_CHECK; 667 case Attribute::NoUnwind: 668 return bitc::ATTR_KIND_NO_UNWIND; 669 case Attribute::OptForFuzzing: 670 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 671 case Attribute::OptimizeForSize: 672 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 673 case Attribute::OptimizeNone: 674 return bitc::ATTR_KIND_OPTIMIZE_NONE; 675 case Attribute::ReadNone: 676 return bitc::ATTR_KIND_READ_NONE; 677 case Attribute::ReadOnly: 678 return bitc::ATTR_KIND_READ_ONLY; 679 case Attribute::Returned: 680 return bitc::ATTR_KIND_RETURNED; 681 case Attribute::ReturnsTwice: 682 return bitc::ATTR_KIND_RETURNS_TWICE; 683 case Attribute::SExt: 684 return bitc::ATTR_KIND_S_EXT; 685 case Attribute::Speculatable: 686 return bitc::ATTR_KIND_SPECULATABLE; 687 case Attribute::StackAlignment: 688 return bitc::ATTR_KIND_STACK_ALIGNMENT; 689 case Attribute::StackProtect: 690 return bitc::ATTR_KIND_STACK_PROTECT; 691 case Attribute::StackProtectReq: 692 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 693 case Attribute::StackProtectStrong: 694 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 695 case Attribute::SafeStack: 696 return bitc::ATTR_KIND_SAFESTACK; 697 case Attribute::ShadowCallStack: 698 return bitc::ATTR_KIND_SHADOWCALLSTACK; 699 case Attribute::StrictFP: 700 return bitc::ATTR_KIND_STRICT_FP; 701 case Attribute::StructRet: 702 return bitc::ATTR_KIND_STRUCT_RET; 703 case Attribute::SanitizeAddress: 704 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 705 case Attribute::SanitizeHWAddress: 706 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 707 case Attribute::SanitizeThread: 708 return bitc::ATTR_KIND_SANITIZE_THREAD; 709 case Attribute::SanitizeMemory: 710 return bitc::ATTR_KIND_SANITIZE_MEMORY; 711 case Attribute::SpeculativeLoadHardening: 712 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 713 case Attribute::SwiftError: 714 return bitc::ATTR_KIND_SWIFT_ERROR; 715 case Attribute::SwiftSelf: 716 return bitc::ATTR_KIND_SWIFT_SELF; 717 case Attribute::UWTable: 718 return bitc::ATTR_KIND_UW_TABLE; 719 case Attribute::WillReturn: 720 return bitc::ATTR_KIND_WILLRETURN; 721 case Attribute::WriteOnly: 722 return bitc::ATTR_KIND_WRITEONLY; 723 case Attribute::ZExt: 724 return bitc::ATTR_KIND_Z_EXT; 725 case Attribute::ImmArg: 726 return bitc::ATTR_KIND_IMMARG; 727 case Attribute::SanitizeMemTag: 728 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 729 case Attribute::EndAttrKinds: 730 llvm_unreachable("Can not encode end-attribute kinds marker."); 731 case Attribute::None: 732 llvm_unreachable("Can not encode none-attribute."); 733 } 734 735 llvm_unreachable("Trying to encode unknown attribute"); 736 } 737 738 void ModuleBitcodeWriter::writeAttributeGroupTable() { 739 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 740 VE.getAttributeGroups(); 741 if (AttrGrps.empty()) return; 742 743 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 744 745 SmallVector<uint64_t, 64> Record; 746 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 747 unsigned AttrListIndex = Pair.first; 748 AttributeSet AS = Pair.second; 749 Record.push_back(VE.getAttributeGroupID(Pair)); 750 Record.push_back(AttrListIndex); 751 752 for (Attribute Attr : AS) { 753 if (Attr.isEnumAttribute()) { 754 Record.push_back(0); 755 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 756 } else if (Attr.isIntAttribute()) { 757 Record.push_back(1); 758 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 759 Record.push_back(Attr.getValueAsInt()); 760 } else if (Attr.isStringAttribute()) { 761 StringRef Kind = Attr.getKindAsString(); 762 StringRef Val = Attr.getValueAsString(); 763 764 Record.push_back(Val.empty() ? 3 : 4); 765 Record.append(Kind.begin(), Kind.end()); 766 Record.push_back(0); 767 if (!Val.empty()) { 768 Record.append(Val.begin(), Val.end()); 769 Record.push_back(0); 770 } 771 } else { 772 assert(Attr.isTypeAttribute()); 773 Type *Ty = Attr.getValueAsType(); 774 Record.push_back(Ty ? 6 : 5); 775 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 776 if (Ty) 777 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 778 } 779 } 780 781 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 782 Record.clear(); 783 } 784 785 Stream.ExitBlock(); 786 } 787 788 void ModuleBitcodeWriter::writeAttributeTable() { 789 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 790 if (Attrs.empty()) return; 791 792 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 793 794 SmallVector<uint64_t, 64> Record; 795 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 796 AttributeList AL = Attrs[i]; 797 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 798 AttributeSet AS = AL.getAttributes(i); 799 if (AS.hasAttributes()) 800 Record.push_back(VE.getAttributeGroupID({i, AS})); 801 } 802 803 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 804 Record.clear(); 805 } 806 807 Stream.ExitBlock(); 808 } 809 810 /// WriteTypeTable - Write out the type table for a module. 811 void ModuleBitcodeWriter::writeTypeTable() { 812 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 813 814 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 815 SmallVector<uint64_t, 64> TypeVals; 816 817 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 818 819 // Abbrev for TYPE_CODE_POINTER. 820 auto Abbv = std::make_shared<BitCodeAbbrev>(); 821 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 823 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 824 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 825 826 // Abbrev for TYPE_CODE_FUNCTION. 827 Abbv = std::make_shared<BitCodeAbbrev>(); 828 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 832 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 833 834 // Abbrev for TYPE_CODE_STRUCT_ANON. 835 Abbv = std::make_shared<BitCodeAbbrev>(); 836 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 840 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 841 842 // Abbrev for TYPE_CODE_STRUCT_NAME. 843 Abbv = std::make_shared<BitCodeAbbrev>(); 844 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 846 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 847 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 848 849 // Abbrev for TYPE_CODE_STRUCT_NAMED. 850 Abbv = std::make_shared<BitCodeAbbrev>(); 851 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 852 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 855 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 856 857 // Abbrev for TYPE_CODE_ARRAY. 858 Abbv = std::make_shared<BitCodeAbbrev>(); 859 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 862 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 863 864 // Emit an entry count so the reader can reserve space. 865 TypeVals.push_back(TypeList.size()); 866 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 867 TypeVals.clear(); 868 869 // Loop over all of the types, emitting each in turn. 870 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 871 Type *T = TypeList[i]; 872 int AbbrevToUse = 0; 873 unsigned Code = 0; 874 875 switch (T->getTypeID()) { 876 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 877 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 878 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 879 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 880 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 881 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 882 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 883 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 884 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 885 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 886 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 887 case Type::IntegerTyID: 888 // INTEGER: [width] 889 Code = bitc::TYPE_CODE_INTEGER; 890 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 891 break; 892 case Type::PointerTyID: { 893 PointerType *PTy = cast<PointerType>(T); 894 // POINTER: [pointee type, address space] 895 Code = bitc::TYPE_CODE_POINTER; 896 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 897 unsigned AddressSpace = PTy->getAddressSpace(); 898 TypeVals.push_back(AddressSpace); 899 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 900 break; 901 } 902 case Type::FunctionTyID: { 903 FunctionType *FT = cast<FunctionType>(T); 904 // FUNCTION: [isvararg, retty, paramty x N] 905 Code = bitc::TYPE_CODE_FUNCTION; 906 TypeVals.push_back(FT->isVarArg()); 907 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 908 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 909 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 910 AbbrevToUse = FunctionAbbrev; 911 break; 912 } 913 case Type::StructTyID: { 914 StructType *ST = cast<StructType>(T); 915 // STRUCT: [ispacked, eltty x N] 916 TypeVals.push_back(ST->isPacked()); 917 // Output all of the element types. 918 for (StructType::element_iterator I = ST->element_begin(), 919 E = ST->element_end(); I != E; ++I) 920 TypeVals.push_back(VE.getTypeID(*I)); 921 922 if (ST->isLiteral()) { 923 Code = bitc::TYPE_CODE_STRUCT_ANON; 924 AbbrevToUse = StructAnonAbbrev; 925 } else { 926 if (ST->isOpaque()) { 927 Code = bitc::TYPE_CODE_OPAQUE; 928 } else { 929 Code = bitc::TYPE_CODE_STRUCT_NAMED; 930 AbbrevToUse = StructNamedAbbrev; 931 } 932 933 // Emit the name if it is present. 934 if (!ST->getName().empty()) 935 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 936 StructNameAbbrev); 937 } 938 break; 939 } 940 case Type::ArrayTyID: { 941 ArrayType *AT = cast<ArrayType>(T); 942 // ARRAY: [numelts, eltty] 943 Code = bitc::TYPE_CODE_ARRAY; 944 TypeVals.push_back(AT->getNumElements()); 945 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 946 AbbrevToUse = ArrayAbbrev; 947 break; 948 } 949 case Type::VectorTyID: { 950 VectorType *VT = cast<VectorType>(T); 951 // VECTOR [numelts, eltty] or 952 // [numelts, eltty, scalable] 953 Code = bitc::TYPE_CODE_VECTOR; 954 TypeVals.push_back(VT->getNumElements()); 955 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 956 if (VT->isScalable()) 957 TypeVals.push_back(VT->isScalable()); 958 break; 959 } 960 } 961 962 // Emit the finished record. 963 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 964 TypeVals.clear(); 965 } 966 967 Stream.ExitBlock(); 968 } 969 970 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 971 switch (Linkage) { 972 case GlobalValue::ExternalLinkage: 973 return 0; 974 case GlobalValue::WeakAnyLinkage: 975 return 16; 976 case GlobalValue::AppendingLinkage: 977 return 2; 978 case GlobalValue::InternalLinkage: 979 return 3; 980 case GlobalValue::LinkOnceAnyLinkage: 981 return 18; 982 case GlobalValue::ExternalWeakLinkage: 983 return 7; 984 case GlobalValue::CommonLinkage: 985 return 8; 986 case GlobalValue::PrivateLinkage: 987 return 9; 988 case GlobalValue::WeakODRLinkage: 989 return 17; 990 case GlobalValue::LinkOnceODRLinkage: 991 return 19; 992 case GlobalValue::AvailableExternallyLinkage: 993 return 12; 994 } 995 llvm_unreachable("Invalid linkage"); 996 } 997 998 static unsigned getEncodedLinkage(const GlobalValue &GV) { 999 return getEncodedLinkage(GV.getLinkage()); 1000 } 1001 1002 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1003 uint64_t RawFlags = 0; 1004 RawFlags |= Flags.ReadNone; 1005 RawFlags |= (Flags.ReadOnly << 1); 1006 RawFlags |= (Flags.NoRecurse << 2); 1007 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1008 RawFlags |= (Flags.NoInline << 4); 1009 RawFlags |= (Flags.AlwaysInline << 5); 1010 return RawFlags; 1011 } 1012 1013 // Decode the flags for GlobalValue in the summary 1014 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1015 uint64_t RawFlags = 0; 1016 1017 RawFlags |= Flags.NotEligibleToImport; // bool 1018 RawFlags |= (Flags.Live << 1); 1019 RawFlags |= (Flags.DSOLocal << 2); 1020 RawFlags |= (Flags.CanAutoHide << 3); 1021 1022 // Linkage don't need to be remapped at that time for the summary. Any future 1023 // change to the getEncodedLinkage() function will need to be taken into 1024 // account here as well. 1025 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1026 1027 return RawFlags; 1028 } 1029 1030 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1031 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1); 1032 return RawFlags; 1033 } 1034 1035 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1036 switch (GV.getVisibility()) { 1037 case GlobalValue::DefaultVisibility: return 0; 1038 case GlobalValue::HiddenVisibility: return 1; 1039 case GlobalValue::ProtectedVisibility: return 2; 1040 } 1041 llvm_unreachable("Invalid visibility"); 1042 } 1043 1044 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1045 switch (GV.getDLLStorageClass()) { 1046 case GlobalValue::DefaultStorageClass: return 0; 1047 case GlobalValue::DLLImportStorageClass: return 1; 1048 case GlobalValue::DLLExportStorageClass: return 2; 1049 } 1050 llvm_unreachable("Invalid DLL storage class"); 1051 } 1052 1053 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1054 switch (GV.getThreadLocalMode()) { 1055 case GlobalVariable::NotThreadLocal: return 0; 1056 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1057 case GlobalVariable::LocalDynamicTLSModel: return 2; 1058 case GlobalVariable::InitialExecTLSModel: return 3; 1059 case GlobalVariable::LocalExecTLSModel: return 4; 1060 } 1061 llvm_unreachable("Invalid TLS model"); 1062 } 1063 1064 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1065 switch (C.getSelectionKind()) { 1066 case Comdat::Any: 1067 return bitc::COMDAT_SELECTION_KIND_ANY; 1068 case Comdat::ExactMatch: 1069 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1070 case Comdat::Largest: 1071 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1072 case Comdat::NoDuplicates: 1073 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1074 case Comdat::SameSize: 1075 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1076 } 1077 llvm_unreachable("Invalid selection kind"); 1078 } 1079 1080 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1081 switch (GV.getUnnamedAddr()) { 1082 case GlobalValue::UnnamedAddr::None: return 0; 1083 case GlobalValue::UnnamedAddr::Local: return 2; 1084 case GlobalValue::UnnamedAddr::Global: return 1; 1085 } 1086 llvm_unreachable("Invalid unnamed_addr"); 1087 } 1088 1089 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1090 if (GenerateHash) 1091 Hasher.update(Str); 1092 return StrtabBuilder.add(Str); 1093 } 1094 1095 void ModuleBitcodeWriter::writeComdats() { 1096 SmallVector<unsigned, 64> Vals; 1097 for (const Comdat *C : VE.getComdats()) { 1098 // COMDAT: [strtab offset, strtab size, selection_kind] 1099 Vals.push_back(addToStrtab(C->getName())); 1100 Vals.push_back(C->getName().size()); 1101 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1102 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1103 Vals.clear(); 1104 } 1105 } 1106 1107 /// Write a record that will eventually hold the word offset of the 1108 /// module-level VST. For now the offset is 0, which will be backpatched 1109 /// after the real VST is written. Saves the bit offset to backpatch. 1110 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1111 // Write a placeholder value in for the offset of the real VST, 1112 // which is written after the function blocks so that it can include 1113 // the offset of each function. The placeholder offset will be 1114 // updated when the real VST is written. 1115 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1116 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1117 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1118 // hold the real VST offset. Must use fixed instead of VBR as we don't 1119 // know how many VBR chunks to reserve ahead of time. 1120 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1121 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1122 1123 // Emit the placeholder 1124 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1125 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1126 1127 // Compute and save the bit offset to the placeholder, which will be 1128 // patched when the real VST is written. We can simply subtract the 32-bit 1129 // fixed size from the current bit number to get the location to backpatch. 1130 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1131 } 1132 1133 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1134 1135 /// Determine the encoding to use for the given string name and length. 1136 static StringEncoding getStringEncoding(StringRef Str) { 1137 bool isChar6 = true; 1138 for (char C : Str) { 1139 if (isChar6) 1140 isChar6 = BitCodeAbbrevOp::isChar6(C); 1141 if ((unsigned char)C & 128) 1142 // don't bother scanning the rest. 1143 return SE_Fixed8; 1144 } 1145 if (isChar6) 1146 return SE_Char6; 1147 return SE_Fixed7; 1148 } 1149 1150 /// Emit top-level description of module, including target triple, inline asm, 1151 /// descriptors for global variables, and function prototype info. 1152 /// Returns the bit offset to backpatch with the location of the real VST. 1153 void ModuleBitcodeWriter::writeModuleInfo() { 1154 // Emit various pieces of data attached to a module. 1155 if (!M.getTargetTriple().empty()) 1156 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1157 0 /*TODO*/); 1158 const std::string &DL = M.getDataLayoutStr(); 1159 if (!DL.empty()) 1160 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1161 if (!M.getModuleInlineAsm().empty()) 1162 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1163 0 /*TODO*/); 1164 1165 // Emit information about sections and GC, computing how many there are. Also 1166 // compute the maximum alignment value. 1167 std::map<std::string, unsigned> SectionMap; 1168 std::map<std::string, unsigned> GCMap; 1169 unsigned MaxAlignment = 0; 1170 unsigned MaxGlobalType = 0; 1171 for (const GlobalValue &GV : M.globals()) { 1172 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1173 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1174 if (GV.hasSection()) { 1175 // Give section names unique ID's. 1176 unsigned &Entry = SectionMap[GV.getSection()]; 1177 if (!Entry) { 1178 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1179 0 /*TODO*/); 1180 Entry = SectionMap.size(); 1181 } 1182 } 1183 } 1184 for (const Function &F : M) { 1185 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1186 if (F.hasSection()) { 1187 // Give section names unique ID's. 1188 unsigned &Entry = SectionMap[F.getSection()]; 1189 if (!Entry) { 1190 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1191 0 /*TODO*/); 1192 Entry = SectionMap.size(); 1193 } 1194 } 1195 if (F.hasGC()) { 1196 // Same for GC names. 1197 unsigned &Entry = GCMap[F.getGC()]; 1198 if (!Entry) { 1199 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1200 0 /*TODO*/); 1201 Entry = GCMap.size(); 1202 } 1203 } 1204 } 1205 1206 // Emit abbrev for globals, now that we know # sections and max alignment. 1207 unsigned SimpleGVarAbbrev = 0; 1208 if (!M.global_empty()) { 1209 // Add an abbrev for common globals with no visibility or thread localness. 1210 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1211 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1215 Log2_32_Ceil(MaxGlobalType+1))); 1216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1217 //| explicitType << 1 1218 //| constant 1219 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1221 if (MaxAlignment == 0) // Alignment. 1222 Abbv->Add(BitCodeAbbrevOp(0)); 1223 else { 1224 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1226 Log2_32_Ceil(MaxEncAlignment+1))); 1227 } 1228 if (SectionMap.empty()) // Section. 1229 Abbv->Add(BitCodeAbbrevOp(0)); 1230 else 1231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1232 Log2_32_Ceil(SectionMap.size()+1))); 1233 // Don't bother emitting vis + thread local. 1234 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1235 } 1236 1237 SmallVector<unsigned, 64> Vals; 1238 // Emit the module's source file name. 1239 { 1240 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1241 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1242 if (Bits == SE_Char6) 1243 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1244 else if (Bits == SE_Fixed7) 1245 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1246 1247 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1248 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1249 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1251 Abbv->Add(AbbrevOpToUse); 1252 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1253 1254 for (const auto P : M.getSourceFileName()) 1255 Vals.push_back((unsigned char)P); 1256 1257 // Emit the finished record. 1258 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1259 Vals.clear(); 1260 } 1261 1262 // Emit the global variable information. 1263 for (const GlobalVariable &GV : M.globals()) { 1264 unsigned AbbrevToUse = 0; 1265 1266 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1267 // linkage, alignment, section, visibility, threadlocal, 1268 // unnamed_addr, externally_initialized, dllstorageclass, 1269 // comdat, attributes, DSO_Local] 1270 Vals.push_back(addToStrtab(GV.getName())); 1271 Vals.push_back(GV.getName().size()); 1272 Vals.push_back(VE.getTypeID(GV.getValueType())); 1273 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1274 Vals.push_back(GV.isDeclaration() ? 0 : 1275 (VE.getValueID(GV.getInitializer()) + 1)); 1276 Vals.push_back(getEncodedLinkage(GV)); 1277 Vals.push_back(Log2_32(GV.getAlignment())+1); 1278 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1279 if (GV.isThreadLocal() || 1280 GV.getVisibility() != GlobalValue::DefaultVisibility || 1281 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1282 GV.isExternallyInitialized() || 1283 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1284 GV.hasComdat() || 1285 GV.hasAttributes() || 1286 GV.isDSOLocal() || 1287 GV.hasPartition()) { 1288 Vals.push_back(getEncodedVisibility(GV)); 1289 Vals.push_back(getEncodedThreadLocalMode(GV)); 1290 Vals.push_back(getEncodedUnnamedAddr(GV)); 1291 Vals.push_back(GV.isExternallyInitialized()); 1292 Vals.push_back(getEncodedDLLStorageClass(GV)); 1293 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1294 1295 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1296 Vals.push_back(VE.getAttributeListID(AL)); 1297 1298 Vals.push_back(GV.isDSOLocal()); 1299 Vals.push_back(addToStrtab(GV.getPartition())); 1300 Vals.push_back(GV.getPartition().size()); 1301 } else { 1302 AbbrevToUse = SimpleGVarAbbrev; 1303 } 1304 1305 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1306 Vals.clear(); 1307 } 1308 1309 // Emit the function proto information. 1310 for (const Function &F : M) { 1311 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1312 // linkage, paramattrs, alignment, section, visibility, gc, 1313 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1314 // prefixdata, personalityfn, DSO_Local, addrspace] 1315 Vals.push_back(addToStrtab(F.getName())); 1316 Vals.push_back(F.getName().size()); 1317 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1318 Vals.push_back(F.getCallingConv()); 1319 Vals.push_back(F.isDeclaration()); 1320 Vals.push_back(getEncodedLinkage(F)); 1321 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1322 Vals.push_back(Log2_32(F.getAlignment())+1); 1323 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1324 Vals.push_back(getEncodedVisibility(F)); 1325 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1326 Vals.push_back(getEncodedUnnamedAddr(F)); 1327 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1328 : 0); 1329 Vals.push_back(getEncodedDLLStorageClass(F)); 1330 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1331 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1332 : 0); 1333 Vals.push_back( 1334 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1335 1336 Vals.push_back(F.isDSOLocal()); 1337 Vals.push_back(F.getAddressSpace()); 1338 Vals.push_back(addToStrtab(F.getPartition())); 1339 Vals.push_back(F.getPartition().size()); 1340 1341 unsigned AbbrevToUse = 0; 1342 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1343 Vals.clear(); 1344 } 1345 1346 // Emit the alias information. 1347 for (const GlobalAlias &A : M.aliases()) { 1348 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1349 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1350 // DSO_Local] 1351 Vals.push_back(addToStrtab(A.getName())); 1352 Vals.push_back(A.getName().size()); 1353 Vals.push_back(VE.getTypeID(A.getValueType())); 1354 Vals.push_back(A.getType()->getAddressSpace()); 1355 Vals.push_back(VE.getValueID(A.getAliasee())); 1356 Vals.push_back(getEncodedLinkage(A)); 1357 Vals.push_back(getEncodedVisibility(A)); 1358 Vals.push_back(getEncodedDLLStorageClass(A)); 1359 Vals.push_back(getEncodedThreadLocalMode(A)); 1360 Vals.push_back(getEncodedUnnamedAddr(A)); 1361 Vals.push_back(A.isDSOLocal()); 1362 Vals.push_back(addToStrtab(A.getPartition())); 1363 Vals.push_back(A.getPartition().size()); 1364 1365 unsigned AbbrevToUse = 0; 1366 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1367 Vals.clear(); 1368 } 1369 1370 // Emit the ifunc information. 1371 for (const GlobalIFunc &I : M.ifuncs()) { 1372 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1373 // val#, linkage, visibility, DSO_Local] 1374 Vals.push_back(addToStrtab(I.getName())); 1375 Vals.push_back(I.getName().size()); 1376 Vals.push_back(VE.getTypeID(I.getValueType())); 1377 Vals.push_back(I.getType()->getAddressSpace()); 1378 Vals.push_back(VE.getValueID(I.getResolver())); 1379 Vals.push_back(getEncodedLinkage(I)); 1380 Vals.push_back(getEncodedVisibility(I)); 1381 Vals.push_back(I.isDSOLocal()); 1382 Vals.push_back(addToStrtab(I.getPartition())); 1383 Vals.push_back(I.getPartition().size()); 1384 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1385 Vals.clear(); 1386 } 1387 1388 writeValueSymbolTableForwardDecl(); 1389 } 1390 1391 static uint64_t getOptimizationFlags(const Value *V) { 1392 uint64_t Flags = 0; 1393 1394 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1395 if (OBO->hasNoSignedWrap()) 1396 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1397 if (OBO->hasNoUnsignedWrap()) 1398 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1399 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1400 if (PEO->isExact()) 1401 Flags |= 1 << bitc::PEO_EXACT; 1402 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1403 if (FPMO->hasAllowReassoc()) 1404 Flags |= bitc::AllowReassoc; 1405 if (FPMO->hasNoNaNs()) 1406 Flags |= bitc::NoNaNs; 1407 if (FPMO->hasNoInfs()) 1408 Flags |= bitc::NoInfs; 1409 if (FPMO->hasNoSignedZeros()) 1410 Flags |= bitc::NoSignedZeros; 1411 if (FPMO->hasAllowReciprocal()) 1412 Flags |= bitc::AllowReciprocal; 1413 if (FPMO->hasAllowContract()) 1414 Flags |= bitc::AllowContract; 1415 if (FPMO->hasApproxFunc()) 1416 Flags |= bitc::ApproxFunc; 1417 } 1418 1419 return Flags; 1420 } 1421 1422 void ModuleBitcodeWriter::writeValueAsMetadata( 1423 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1424 // Mimic an MDNode with a value as one operand. 1425 Value *V = MD->getValue(); 1426 Record.push_back(VE.getTypeID(V->getType())); 1427 Record.push_back(VE.getValueID(V)); 1428 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1429 Record.clear(); 1430 } 1431 1432 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1433 SmallVectorImpl<uint64_t> &Record, 1434 unsigned Abbrev) { 1435 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1436 Metadata *MD = N->getOperand(i); 1437 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1438 "Unexpected function-local metadata"); 1439 Record.push_back(VE.getMetadataOrNullID(MD)); 1440 } 1441 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1442 : bitc::METADATA_NODE, 1443 Record, Abbrev); 1444 Record.clear(); 1445 } 1446 1447 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1448 // Assume the column is usually under 128, and always output the inlined-at 1449 // location (it's never more expensive than building an array size 1). 1450 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1451 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1458 return Stream.EmitAbbrev(std::move(Abbv)); 1459 } 1460 1461 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1462 SmallVectorImpl<uint64_t> &Record, 1463 unsigned &Abbrev) { 1464 if (!Abbrev) 1465 Abbrev = createDILocationAbbrev(); 1466 1467 Record.push_back(N->isDistinct()); 1468 Record.push_back(N->getLine()); 1469 Record.push_back(N->getColumn()); 1470 Record.push_back(VE.getMetadataID(N->getScope())); 1471 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1472 Record.push_back(N->isImplicitCode()); 1473 1474 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1475 Record.clear(); 1476 } 1477 1478 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1479 // Assume the column is usually under 128, and always output the inlined-at 1480 // location (it's never more expensive than building an array size 1). 1481 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1482 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1484 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1485 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1489 return Stream.EmitAbbrev(std::move(Abbv)); 1490 } 1491 1492 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1493 SmallVectorImpl<uint64_t> &Record, 1494 unsigned &Abbrev) { 1495 if (!Abbrev) 1496 Abbrev = createGenericDINodeAbbrev(); 1497 1498 Record.push_back(N->isDistinct()); 1499 Record.push_back(N->getTag()); 1500 Record.push_back(0); // Per-tag version field; unused for now. 1501 1502 for (auto &I : N->operands()) 1503 Record.push_back(VE.getMetadataOrNullID(I)); 1504 1505 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1506 Record.clear(); 1507 } 1508 1509 static uint64_t rotateSign(int64_t I) { 1510 uint64_t U = I; 1511 return I < 0 ? ~(U << 1) : U << 1; 1512 } 1513 1514 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1515 SmallVectorImpl<uint64_t> &Record, 1516 unsigned Abbrev) { 1517 const uint64_t Version = 1 << 1; 1518 Record.push_back((uint64_t)N->isDistinct() | Version); 1519 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1520 Record.push_back(rotateSign(N->getLowerBound())); 1521 1522 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1523 Record.clear(); 1524 } 1525 1526 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1527 SmallVectorImpl<uint64_t> &Record, 1528 unsigned Abbrev) { 1529 Record.push_back((N->isUnsigned() << 1) | N->isDistinct()); 1530 Record.push_back(rotateSign(N->getValue())); 1531 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1532 1533 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1534 Record.clear(); 1535 } 1536 1537 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1538 SmallVectorImpl<uint64_t> &Record, 1539 unsigned Abbrev) { 1540 Record.push_back(N->isDistinct()); 1541 Record.push_back(N->getTag()); 1542 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1543 Record.push_back(N->getSizeInBits()); 1544 Record.push_back(N->getAlignInBits()); 1545 Record.push_back(N->getEncoding()); 1546 Record.push_back(N->getFlags()); 1547 1548 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1549 Record.clear(); 1550 } 1551 1552 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1553 SmallVectorImpl<uint64_t> &Record, 1554 unsigned Abbrev) { 1555 Record.push_back(N->isDistinct()); 1556 Record.push_back(N->getTag()); 1557 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1558 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1559 Record.push_back(N->getLine()); 1560 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1561 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1562 Record.push_back(N->getSizeInBits()); 1563 Record.push_back(N->getAlignInBits()); 1564 Record.push_back(N->getOffsetInBits()); 1565 Record.push_back(N->getFlags()); 1566 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1567 1568 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1569 // that there is no DWARF address space associated with DIDerivedType. 1570 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1571 Record.push_back(*DWARFAddressSpace + 1); 1572 else 1573 Record.push_back(0); 1574 1575 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1576 Record.clear(); 1577 } 1578 1579 void ModuleBitcodeWriter::writeDICompositeType( 1580 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1581 unsigned Abbrev) { 1582 const unsigned IsNotUsedInOldTypeRef = 0x2; 1583 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1584 Record.push_back(N->getTag()); 1585 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1586 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1587 Record.push_back(N->getLine()); 1588 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1589 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1590 Record.push_back(N->getSizeInBits()); 1591 Record.push_back(N->getAlignInBits()); 1592 Record.push_back(N->getOffsetInBits()); 1593 Record.push_back(N->getFlags()); 1594 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1595 Record.push_back(N->getRuntimeLang()); 1596 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1597 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1598 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1599 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1600 1601 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1602 Record.clear(); 1603 } 1604 1605 void ModuleBitcodeWriter::writeDISubroutineType( 1606 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1607 unsigned Abbrev) { 1608 const unsigned HasNoOldTypeRefs = 0x2; 1609 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1610 Record.push_back(N->getFlags()); 1611 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1612 Record.push_back(N->getCC()); 1613 1614 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1615 Record.clear(); 1616 } 1617 1618 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1619 SmallVectorImpl<uint64_t> &Record, 1620 unsigned Abbrev) { 1621 Record.push_back(N->isDistinct()); 1622 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1623 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1624 if (N->getRawChecksum()) { 1625 Record.push_back(N->getRawChecksum()->Kind); 1626 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1627 } else { 1628 // Maintain backwards compatibility with the old internal representation of 1629 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1630 Record.push_back(0); 1631 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1632 } 1633 auto Source = N->getRawSource(); 1634 if (Source) 1635 Record.push_back(VE.getMetadataOrNullID(*Source)); 1636 1637 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1638 Record.clear(); 1639 } 1640 1641 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1642 SmallVectorImpl<uint64_t> &Record, 1643 unsigned Abbrev) { 1644 assert(N->isDistinct() && "Expected distinct compile units"); 1645 Record.push_back(/* IsDistinct */ true); 1646 Record.push_back(N->getSourceLanguage()); 1647 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1648 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1649 Record.push_back(N->isOptimized()); 1650 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1651 Record.push_back(N->getRuntimeVersion()); 1652 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1653 Record.push_back(N->getEmissionKind()); 1654 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1655 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1656 Record.push_back(/* subprograms */ 0); 1657 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1658 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1659 Record.push_back(N->getDWOId()); 1660 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1661 Record.push_back(N->getSplitDebugInlining()); 1662 Record.push_back(N->getDebugInfoForProfiling()); 1663 Record.push_back((unsigned)N->getNameTableKind()); 1664 Record.push_back(N->getRangesBaseAddress()); 1665 1666 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1667 Record.clear(); 1668 } 1669 1670 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1671 SmallVectorImpl<uint64_t> &Record, 1672 unsigned Abbrev) { 1673 const uint64_t HasUnitFlag = 1 << 1; 1674 const uint64_t HasSPFlagsFlag = 1 << 2; 1675 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1676 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1677 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1678 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1679 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1680 Record.push_back(N->getLine()); 1681 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1682 Record.push_back(N->getScopeLine()); 1683 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1684 Record.push_back(N->getSPFlags()); 1685 Record.push_back(N->getVirtualIndex()); 1686 Record.push_back(N->getFlags()); 1687 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1688 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1689 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1690 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1691 Record.push_back(N->getThisAdjustment()); 1692 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1693 1694 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1695 Record.clear(); 1696 } 1697 1698 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1699 SmallVectorImpl<uint64_t> &Record, 1700 unsigned Abbrev) { 1701 Record.push_back(N->isDistinct()); 1702 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1703 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1704 Record.push_back(N->getLine()); 1705 Record.push_back(N->getColumn()); 1706 1707 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1708 Record.clear(); 1709 } 1710 1711 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1712 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1713 unsigned Abbrev) { 1714 Record.push_back(N->isDistinct()); 1715 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1716 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1717 Record.push_back(N->getDiscriminator()); 1718 1719 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1720 Record.clear(); 1721 } 1722 1723 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1724 SmallVectorImpl<uint64_t> &Record, 1725 unsigned Abbrev) { 1726 Record.push_back(N->isDistinct()); 1727 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1728 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1729 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1730 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1731 Record.push_back(N->getLineNo()); 1732 1733 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1734 Record.clear(); 1735 } 1736 1737 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1738 SmallVectorImpl<uint64_t> &Record, 1739 unsigned Abbrev) { 1740 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1741 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1742 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1743 1744 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1745 Record.clear(); 1746 } 1747 1748 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1749 SmallVectorImpl<uint64_t> &Record, 1750 unsigned Abbrev) { 1751 Record.push_back(N->isDistinct()); 1752 Record.push_back(N->getMacinfoType()); 1753 Record.push_back(N->getLine()); 1754 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1755 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1756 1757 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1758 Record.clear(); 1759 } 1760 1761 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1762 SmallVectorImpl<uint64_t> &Record, 1763 unsigned Abbrev) { 1764 Record.push_back(N->isDistinct()); 1765 Record.push_back(N->getMacinfoType()); 1766 Record.push_back(N->getLine()); 1767 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1768 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1769 1770 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1771 Record.clear(); 1772 } 1773 1774 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1775 SmallVectorImpl<uint64_t> &Record, 1776 unsigned Abbrev) { 1777 Record.push_back(N->isDistinct()); 1778 for (auto &I : N->operands()) 1779 Record.push_back(VE.getMetadataOrNullID(I)); 1780 1781 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1782 Record.clear(); 1783 } 1784 1785 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1786 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1787 unsigned Abbrev) { 1788 Record.push_back(N->isDistinct()); 1789 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1790 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1791 1792 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1793 Record.clear(); 1794 } 1795 1796 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1797 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1798 unsigned Abbrev) { 1799 Record.push_back(N->isDistinct()); 1800 Record.push_back(N->getTag()); 1801 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1802 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1803 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1804 1805 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1806 Record.clear(); 1807 } 1808 1809 void ModuleBitcodeWriter::writeDIGlobalVariable( 1810 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1811 unsigned Abbrev) { 1812 const uint64_t Version = 2 << 1; 1813 Record.push_back((uint64_t)N->isDistinct() | Version); 1814 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1815 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1816 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1817 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1818 Record.push_back(N->getLine()); 1819 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1820 Record.push_back(N->isLocalToUnit()); 1821 Record.push_back(N->isDefinition()); 1822 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1823 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1824 Record.push_back(N->getAlignInBits()); 1825 1826 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1827 Record.clear(); 1828 } 1829 1830 void ModuleBitcodeWriter::writeDILocalVariable( 1831 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1832 unsigned Abbrev) { 1833 // In order to support all possible bitcode formats in BitcodeReader we need 1834 // to distinguish the following cases: 1835 // 1) Record has no artificial tag (Record[1]), 1836 // has no obsolete inlinedAt field (Record[9]). 1837 // In this case Record size will be 8, HasAlignment flag is false. 1838 // 2) Record has artificial tag (Record[1]), 1839 // has no obsolete inlignedAt field (Record[9]). 1840 // In this case Record size will be 9, HasAlignment flag is false. 1841 // 3) Record has both artificial tag (Record[1]) and 1842 // obsolete inlignedAt field (Record[9]). 1843 // In this case Record size will be 10, HasAlignment flag is false. 1844 // 4) Record has neither artificial tag, nor inlignedAt field, but 1845 // HasAlignment flag is true and Record[8] contains alignment value. 1846 const uint64_t HasAlignmentFlag = 1 << 1; 1847 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1848 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1849 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1850 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1851 Record.push_back(N->getLine()); 1852 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1853 Record.push_back(N->getArg()); 1854 Record.push_back(N->getFlags()); 1855 Record.push_back(N->getAlignInBits()); 1856 1857 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1858 Record.clear(); 1859 } 1860 1861 void ModuleBitcodeWriter::writeDILabel( 1862 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1863 unsigned Abbrev) { 1864 Record.push_back((uint64_t)N->isDistinct()); 1865 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1866 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1867 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1868 Record.push_back(N->getLine()); 1869 1870 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 1871 Record.clear(); 1872 } 1873 1874 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1875 SmallVectorImpl<uint64_t> &Record, 1876 unsigned Abbrev) { 1877 Record.reserve(N->getElements().size() + 1); 1878 const uint64_t Version = 3 << 1; 1879 Record.push_back((uint64_t)N->isDistinct() | Version); 1880 Record.append(N->elements_begin(), N->elements_end()); 1881 1882 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1883 Record.clear(); 1884 } 1885 1886 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1887 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1888 unsigned Abbrev) { 1889 Record.push_back(N->isDistinct()); 1890 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1891 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1892 1893 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1894 Record.clear(); 1895 } 1896 1897 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1898 SmallVectorImpl<uint64_t> &Record, 1899 unsigned Abbrev) { 1900 Record.push_back(N->isDistinct()); 1901 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1902 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1903 Record.push_back(N->getLine()); 1904 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1905 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1906 Record.push_back(N->getAttributes()); 1907 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1908 1909 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1910 Record.clear(); 1911 } 1912 1913 void ModuleBitcodeWriter::writeDIImportedEntity( 1914 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1915 unsigned Abbrev) { 1916 Record.push_back(N->isDistinct()); 1917 Record.push_back(N->getTag()); 1918 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1919 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1920 Record.push_back(N->getLine()); 1921 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1922 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1923 1924 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1925 Record.clear(); 1926 } 1927 1928 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1929 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1930 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1932 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1933 return Stream.EmitAbbrev(std::move(Abbv)); 1934 } 1935 1936 void ModuleBitcodeWriter::writeNamedMetadata( 1937 SmallVectorImpl<uint64_t> &Record) { 1938 if (M.named_metadata_empty()) 1939 return; 1940 1941 unsigned Abbrev = createNamedMetadataAbbrev(); 1942 for (const NamedMDNode &NMD : M.named_metadata()) { 1943 // Write name. 1944 StringRef Str = NMD.getName(); 1945 Record.append(Str.bytes_begin(), Str.bytes_end()); 1946 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1947 Record.clear(); 1948 1949 // Write named metadata operands. 1950 for (const MDNode *N : NMD.operands()) 1951 Record.push_back(VE.getMetadataID(N)); 1952 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1953 Record.clear(); 1954 } 1955 } 1956 1957 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1958 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1959 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1963 return Stream.EmitAbbrev(std::move(Abbv)); 1964 } 1965 1966 /// Write out a record for MDString. 1967 /// 1968 /// All the metadata strings in a metadata block are emitted in a single 1969 /// record. The sizes and strings themselves are shoved into a blob. 1970 void ModuleBitcodeWriter::writeMetadataStrings( 1971 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1972 if (Strings.empty()) 1973 return; 1974 1975 // Start the record with the number of strings. 1976 Record.push_back(bitc::METADATA_STRINGS); 1977 Record.push_back(Strings.size()); 1978 1979 // Emit the sizes of the strings in the blob. 1980 SmallString<256> Blob; 1981 { 1982 BitstreamWriter W(Blob); 1983 for (const Metadata *MD : Strings) 1984 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1985 W.FlushToWord(); 1986 } 1987 1988 // Add the offset to the strings to the record. 1989 Record.push_back(Blob.size()); 1990 1991 // Add the strings to the blob. 1992 for (const Metadata *MD : Strings) 1993 Blob.append(cast<MDString>(MD)->getString()); 1994 1995 // Emit the final record. 1996 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1997 Record.clear(); 1998 } 1999 2000 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2001 enum MetadataAbbrev : unsigned { 2002 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2003 #include "llvm/IR/Metadata.def" 2004 LastPlusOne 2005 }; 2006 2007 void ModuleBitcodeWriter::writeMetadataRecords( 2008 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2009 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2010 if (MDs.empty()) 2011 return; 2012 2013 // Initialize MDNode abbreviations. 2014 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2015 #include "llvm/IR/Metadata.def" 2016 2017 for (const Metadata *MD : MDs) { 2018 if (IndexPos) 2019 IndexPos->push_back(Stream.GetCurrentBitNo()); 2020 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2021 assert(N->isResolved() && "Expected forward references to be resolved"); 2022 2023 switch (N->getMetadataID()) { 2024 default: 2025 llvm_unreachable("Invalid MDNode subclass"); 2026 #define HANDLE_MDNODE_LEAF(CLASS) \ 2027 case Metadata::CLASS##Kind: \ 2028 if (MDAbbrevs) \ 2029 write##CLASS(cast<CLASS>(N), Record, \ 2030 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2031 else \ 2032 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2033 continue; 2034 #include "llvm/IR/Metadata.def" 2035 } 2036 } 2037 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2038 } 2039 } 2040 2041 void ModuleBitcodeWriter::writeModuleMetadata() { 2042 if (!VE.hasMDs() && M.named_metadata_empty()) 2043 return; 2044 2045 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2046 SmallVector<uint64_t, 64> Record; 2047 2048 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2049 // block and load any metadata. 2050 std::vector<unsigned> MDAbbrevs; 2051 2052 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2053 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2054 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2055 createGenericDINodeAbbrev(); 2056 2057 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2058 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2059 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2061 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2062 2063 Abbv = std::make_shared<BitCodeAbbrev>(); 2064 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2067 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2068 2069 // Emit MDStrings together upfront. 2070 writeMetadataStrings(VE.getMDStrings(), Record); 2071 2072 // We only emit an index for the metadata record if we have more than a given 2073 // (naive) threshold of metadatas, otherwise it is not worth it. 2074 if (VE.getNonMDStrings().size() > IndexThreshold) { 2075 // Write a placeholder value in for the offset of the metadata index, 2076 // which is written after the records, so that it can include 2077 // the offset of each entry. The placeholder offset will be 2078 // updated after all records are emitted. 2079 uint64_t Vals[] = {0, 0}; 2080 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2081 } 2082 2083 // Compute and save the bit offset to the current position, which will be 2084 // patched when we emit the index later. We can simply subtract the 64-bit 2085 // fixed size from the current bit number to get the location to backpatch. 2086 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2087 2088 // This index will contain the bitpos for each individual record. 2089 std::vector<uint64_t> IndexPos; 2090 IndexPos.reserve(VE.getNonMDStrings().size()); 2091 2092 // Write all the records 2093 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2094 2095 if (VE.getNonMDStrings().size() > IndexThreshold) { 2096 // Now that we have emitted all the records we will emit the index. But 2097 // first 2098 // backpatch the forward reference so that the reader can skip the records 2099 // efficiently. 2100 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2101 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2102 2103 // Delta encode the index. 2104 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2105 for (auto &Elt : IndexPos) { 2106 auto EltDelta = Elt - PreviousValue; 2107 PreviousValue = Elt; 2108 Elt = EltDelta; 2109 } 2110 // Emit the index record. 2111 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2112 IndexPos.clear(); 2113 } 2114 2115 // Write the named metadata now. 2116 writeNamedMetadata(Record); 2117 2118 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2119 SmallVector<uint64_t, 4> Record; 2120 Record.push_back(VE.getValueID(&GO)); 2121 pushGlobalMetadataAttachment(Record, GO); 2122 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2123 }; 2124 for (const Function &F : M) 2125 if (F.isDeclaration() && F.hasMetadata()) 2126 AddDeclAttachedMetadata(F); 2127 // FIXME: Only store metadata for declarations here, and move data for global 2128 // variable definitions to a separate block (PR28134). 2129 for (const GlobalVariable &GV : M.globals()) 2130 if (GV.hasMetadata()) 2131 AddDeclAttachedMetadata(GV); 2132 2133 Stream.ExitBlock(); 2134 } 2135 2136 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2137 if (!VE.hasMDs()) 2138 return; 2139 2140 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2141 SmallVector<uint64_t, 64> Record; 2142 writeMetadataStrings(VE.getMDStrings(), Record); 2143 writeMetadataRecords(VE.getNonMDStrings(), Record); 2144 Stream.ExitBlock(); 2145 } 2146 2147 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2148 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2149 // [n x [id, mdnode]] 2150 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2151 GO.getAllMetadata(MDs); 2152 for (const auto &I : MDs) { 2153 Record.push_back(I.first); 2154 Record.push_back(VE.getMetadataID(I.second)); 2155 } 2156 } 2157 2158 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2159 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2160 2161 SmallVector<uint64_t, 64> Record; 2162 2163 if (F.hasMetadata()) { 2164 pushGlobalMetadataAttachment(Record, F); 2165 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2166 Record.clear(); 2167 } 2168 2169 // Write metadata attachments 2170 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2171 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2172 for (const BasicBlock &BB : F) 2173 for (const Instruction &I : BB) { 2174 MDs.clear(); 2175 I.getAllMetadataOtherThanDebugLoc(MDs); 2176 2177 // If no metadata, ignore instruction. 2178 if (MDs.empty()) continue; 2179 2180 Record.push_back(VE.getInstructionID(&I)); 2181 2182 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2183 Record.push_back(MDs[i].first); 2184 Record.push_back(VE.getMetadataID(MDs[i].second)); 2185 } 2186 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2187 Record.clear(); 2188 } 2189 2190 Stream.ExitBlock(); 2191 } 2192 2193 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2194 SmallVector<uint64_t, 64> Record; 2195 2196 // Write metadata kinds 2197 // METADATA_KIND - [n x [id, name]] 2198 SmallVector<StringRef, 8> Names; 2199 M.getMDKindNames(Names); 2200 2201 if (Names.empty()) return; 2202 2203 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2204 2205 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2206 Record.push_back(MDKindID); 2207 StringRef KName = Names[MDKindID]; 2208 Record.append(KName.begin(), KName.end()); 2209 2210 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2211 Record.clear(); 2212 } 2213 2214 Stream.ExitBlock(); 2215 } 2216 2217 void ModuleBitcodeWriter::writeOperandBundleTags() { 2218 // Write metadata kinds 2219 // 2220 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2221 // 2222 // OPERAND_BUNDLE_TAG - [strchr x N] 2223 2224 SmallVector<StringRef, 8> Tags; 2225 M.getOperandBundleTags(Tags); 2226 2227 if (Tags.empty()) 2228 return; 2229 2230 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2231 2232 SmallVector<uint64_t, 64> Record; 2233 2234 for (auto Tag : Tags) { 2235 Record.append(Tag.begin(), Tag.end()); 2236 2237 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2238 Record.clear(); 2239 } 2240 2241 Stream.ExitBlock(); 2242 } 2243 2244 void ModuleBitcodeWriter::writeSyncScopeNames() { 2245 SmallVector<StringRef, 8> SSNs; 2246 M.getContext().getSyncScopeNames(SSNs); 2247 if (SSNs.empty()) 2248 return; 2249 2250 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2251 2252 SmallVector<uint64_t, 64> Record; 2253 for (auto SSN : SSNs) { 2254 Record.append(SSN.begin(), SSN.end()); 2255 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2256 Record.clear(); 2257 } 2258 2259 Stream.ExitBlock(); 2260 } 2261 2262 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2263 if ((int64_t)V >= 0) 2264 Vals.push_back(V << 1); 2265 else 2266 Vals.push_back((-V << 1) | 1); 2267 } 2268 2269 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2270 bool isGlobal) { 2271 if (FirstVal == LastVal) return; 2272 2273 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2274 2275 unsigned AggregateAbbrev = 0; 2276 unsigned String8Abbrev = 0; 2277 unsigned CString7Abbrev = 0; 2278 unsigned CString6Abbrev = 0; 2279 // If this is a constant pool for the module, emit module-specific abbrevs. 2280 if (isGlobal) { 2281 // Abbrev for CST_CODE_AGGREGATE. 2282 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2283 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2284 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2286 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2287 2288 // Abbrev for CST_CODE_STRING. 2289 Abbv = std::make_shared<BitCodeAbbrev>(); 2290 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2291 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2293 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2294 // Abbrev for CST_CODE_CSTRING. 2295 Abbv = std::make_shared<BitCodeAbbrev>(); 2296 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2299 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2300 // Abbrev for CST_CODE_CSTRING. 2301 Abbv = std::make_shared<BitCodeAbbrev>(); 2302 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2303 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2304 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2305 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2306 } 2307 2308 SmallVector<uint64_t, 64> Record; 2309 2310 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2311 Type *LastTy = nullptr; 2312 for (unsigned i = FirstVal; i != LastVal; ++i) { 2313 const Value *V = Vals[i].first; 2314 // If we need to switch types, do so now. 2315 if (V->getType() != LastTy) { 2316 LastTy = V->getType(); 2317 Record.push_back(VE.getTypeID(LastTy)); 2318 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2319 CONSTANTS_SETTYPE_ABBREV); 2320 Record.clear(); 2321 } 2322 2323 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2324 Record.push_back(unsigned(IA->hasSideEffects()) | 2325 unsigned(IA->isAlignStack()) << 1 | 2326 unsigned(IA->getDialect()&1) << 2); 2327 2328 // Add the asm string. 2329 const std::string &AsmStr = IA->getAsmString(); 2330 Record.push_back(AsmStr.size()); 2331 Record.append(AsmStr.begin(), AsmStr.end()); 2332 2333 // Add the constraint string. 2334 const std::string &ConstraintStr = IA->getConstraintString(); 2335 Record.push_back(ConstraintStr.size()); 2336 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2337 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2338 Record.clear(); 2339 continue; 2340 } 2341 const Constant *C = cast<Constant>(V); 2342 unsigned Code = -1U; 2343 unsigned AbbrevToUse = 0; 2344 if (C->isNullValue()) { 2345 Code = bitc::CST_CODE_NULL; 2346 } else if (isa<UndefValue>(C)) { 2347 Code = bitc::CST_CODE_UNDEF; 2348 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2349 if (IV->getBitWidth() <= 64) { 2350 uint64_t V = IV->getSExtValue(); 2351 emitSignedInt64(Record, V); 2352 Code = bitc::CST_CODE_INTEGER; 2353 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2354 } else { // Wide integers, > 64 bits in size. 2355 // We have an arbitrary precision integer value to write whose 2356 // bit width is > 64. However, in canonical unsigned integer 2357 // format it is likely that the high bits are going to be zero. 2358 // So, we only write the number of active words. 2359 unsigned NWords = IV->getValue().getActiveWords(); 2360 const uint64_t *RawWords = IV->getValue().getRawData(); 2361 for (unsigned i = 0; i != NWords; ++i) { 2362 emitSignedInt64(Record, RawWords[i]); 2363 } 2364 Code = bitc::CST_CODE_WIDE_INTEGER; 2365 } 2366 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2367 Code = bitc::CST_CODE_FLOAT; 2368 Type *Ty = CFP->getType(); 2369 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2370 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2371 } else if (Ty->isX86_FP80Ty()) { 2372 // api needed to prevent premature destruction 2373 // bits are not in the same order as a normal i80 APInt, compensate. 2374 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2375 const uint64_t *p = api.getRawData(); 2376 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2377 Record.push_back(p[0] & 0xffffLL); 2378 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2379 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2380 const uint64_t *p = api.getRawData(); 2381 Record.push_back(p[0]); 2382 Record.push_back(p[1]); 2383 } else { 2384 assert(0 && "Unknown FP type!"); 2385 } 2386 } else if (isa<ConstantDataSequential>(C) && 2387 cast<ConstantDataSequential>(C)->isString()) { 2388 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2389 // Emit constant strings specially. 2390 unsigned NumElts = Str->getNumElements(); 2391 // If this is a null-terminated string, use the denser CSTRING encoding. 2392 if (Str->isCString()) { 2393 Code = bitc::CST_CODE_CSTRING; 2394 --NumElts; // Don't encode the null, which isn't allowed by char6. 2395 } else { 2396 Code = bitc::CST_CODE_STRING; 2397 AbbrevToUse = String8Abbrev; 2398 } 2399 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2400 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2401 for (unsigned i = 0; i != NumElts; ++i) { 2402 unsigned char V = Str->getElementAsInteger(i); 2403 Record.push_back(V); 2404 isCStr7 &= (V & 128) == 0; 2405 if (isCStrChar6) 2406 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2407 } 2408 2409 if (isCStrChar6) 2410 AbbrevToUse = CString6Abbrev; 2411 else if (isCStr7) 2412 AbbrevToUse = CString7Abbrev; 2413 } else if (const ConstantDataSequential *CDS = 2414 dyn_cast<ConstantDataSequential>(C)) { 2415 Code = bitc::CST_CODE_DATA; 2416 Type *EltTy = CDS->getType()->getElementType(); 2417 if (isa<IntegerType>(EltTy)) { 2418 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2419 Record.push_back(CDS->getElementAsInteger(i)); 2420 } else { 2421 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2422 Record.push_back( 2423 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2424 } 2425 } else if (isa<ConstantAggregate>(C)) { 2426 Code = bitc::CST_CODE_AGGREGATE; 2427 for (const Value *Op : C->operands()) 2428 Record.push_back(VE.getValueID(Op)); 2429 AbbrevToUse = AggregateAbbrev; 2430 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2431 switch (CE->getOpcode()) { 2432 default: 2433 if (Instruction::isCast(CE->getOpcode())) { 2434 Code = bitc::CST_CODE_CE_CAST; 2435 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2436 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2437 Record.push_back(VE.getValueID(C->getOperand(0))); 2438 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2439 } else { 2440 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2441 Code = bitc::CST_CODE_CE_BINOP; 2442 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2443 Record.push_back(VE.getValueID(C->getOperand(0))); 2444 Record.push_back(VE.getValueID(C->getOperand(1))); 2445 uint64_t Flags = getOptimizationFlags(CE); 2446 if (Flags != 0) 2447 Record.push_back(Flags); 2448 } 2449 break; 2450 case Instruction::FNeg: { 2451 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2452 Code = bitc::CST_CODE_CE_UNOP; 2453 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2454 Record.push_back(VE.getValueID(C->getOperand(0))); 2455 uint64_t Flags = getOptimizationFlags(CE); 2456 if (Flags != 0) 2457 Record.push_back(Flags); 2458 break; 2459 } 2460 case Instruction::GetElementPtr: { 2461 Code = bitc::CST_CODE_CE_GEP; 2462 const auto *GO = cast<GEPOperator>(C); 2463 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2464 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2465 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2466 Record.push_back((*Idx << 1) | GO->isInBounds()); 2467 } else if (GO->isInBounds()) 2468 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2469 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2470 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2471 Record.push_back(VE.getValueID(C->getOperand(i))); 2472 } 2473 break; 2474 } 2475 case Instruction::Select: 2476 Code = bitc::CST_CODE_CE_SELECT; 2477 Record.push_back(VE.getValueID(C->getOperand(0))); 2478 Record.push_back(VE.getValueID(C->getOperand(1))); 2479 Record.push_back(VE.getValueID(C->getOperand(2))); 2480 break; 2481 case Instruction::ExtractElement: 2482 Code = bitc::CST_CODE_CE_EXTRACTELT; 2483 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2484 Record.push_back(VE.getValueID(C->getOperand(0))); 2485 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2486 Record.push_back(VE.getValueID(C->getOperand(1))); 2487 break; 2488 case Instruction::InsertElement: 2489 Code = bitc::CST_CODE_CE_INSERTELT; 2490 Record.push_back(VE.getValueID(C->getOperand(0))); 2491 Record.push_back(VE.getValueID(C->getOperand(1))); 2492 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2493 Record.push_back(VE.getValueID(C->getOperand(2))); 2494 break; 2495 case Instruction::ShuffleVector: 2496 // If the return type and argument types are the same, this is a 2497 // standard shufflevector instruction. If the types are different, 2498 // then the shuffle is widening or truncating the input vectors, and 2499 // the argument type must also be encoded. 2500 if (C->getType() == C->getOperand(0)->getType()) { 2501 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2502 } else { 2503 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2504 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2505 } 2506 Record.push_back(VE.getValueID(C->getOperand(0))); 2507 Record.push_back(VE.getValueID(C->getOperand(1))); 2508 Record.push_back(VE.getValueID(C->getOperand(2))); 2509 break; 2510 case Instruction::ICmp: 2511 case Instruction::FCmp: 2512 Code = bitc::CST_CODE_CE_CMP; 2513 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2514 Record.push_back(VE.getValueID(C->getOperand(0))); 2515 Record.push_back(VE.getValueID(C->getOperand(1))); 2516 Record.push_back(CE->getPredicate()); 2517 break; 2518 } 2519 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2520 Code = bitc::CST_CODE_BLOCKADDRESS; 2521 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2522 Record.push_back(VE.getValueID(BA->getFunction())); 2523 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2524 } else { 2525 #ifndef NDEBUG 2526 C->dump(); 2527 #endif 2528 llvm_unreachable("Unknown constant!"); 2529 } 2530 Stream.EmitRecord(Code, Record, AbbrevToUse); 2531 Record.clear(); 2532 } 2533 2534 Stream.ExitBlock(); 2535 } 2536 2537 void ModuleBitcodeWriter::writeModuleConstants() { 2538 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2539 2540 // Find the first constant to emit, which is the first non-globalvalue value. 2541 // We know globalvalues have been emitted by WriteModuleInfo. 2542 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2543 if (!isa<GlobalValue>(Vals[i].first)) { 2544 writeConstants(i, Vals.size(), true); 2545 return; 2546 } 2547 } 2548 } 2549 2550 /// pushValueAndType - The file has to encode both the value and type id for 2551 /// many values, because we need to know what type to create for forward 2552 /// references. However, most operands are not forward references, so this type 2553 /// field is not needed. 2554 /// 2555 /// This function adds V's value ID to Vals. If the value ID is higher than the 2556 /// instruction ID, then it is a forward reference, and it also includes the 2557 /// type ID. The value ID that is written is encoded relative to the InstID. 2558 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2559 SmallVectorImpl<unsigned> &Vals) { 2560 unsigned ValID = VE.getValueID(V); 2561 // Make encoding relative to the InstID. 2562 Vals.push_back(InstID - ValID); 2563 if (ValID >= InstID) { 2564 Vals.push_back(VE.getTypeID(V->getType())); 2565 return true; 2566 } 2567 return false; 2568 } 2569 2570 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2571 unsigned InstID) { 2572 SmallVector<unsigned, 64> Record; 2573 LLVMContext &C = CS.getInstruction()->getContext(); 2574 2575 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2576 const auto &Bundle = CS.getOperandBundleAt(i); 2577 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2578 2579 for (auto &Input : Bundle.Inputs) 2580 pushValueAndType(Input, InstID, Record); 2581 2582 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2583 Record.clear(); 2584 } 2585 } 2586 2587 /// pushValue - Like pushValueAndType, but where the type of the value is 2588 /// omitted (perhaps it was already encoded in an earlier operand). 2589 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2590 SmallVectorImpl<unsigned> &Vals) { 2591 unsigned ValID = VE.getValueID(V); 2592 Vals.push_back(InstID - ValID); 2593 } 2594 2595 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2596 SmallVectorImpl<uint64_t> &Vals) { 2597 unsigned ValID = VE.getValueID(V); 2598 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2599 emitSignedInt64(Vals, diff); 2600 } 2601 2602 /// WriteInstruction - Emit an instruction to the specified stream. 2603 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2604 unsigned InstID, 2605 SmallVectorImpl<unsigned> &Vals) { 2606 unsigned Code = 0; 2607 unsigned AbbrevToUse = 0; 2608 VE.setInstructionID(&I); 2609 switch (I.getOpcode()) { 2610 default: 2611 if (Instruction::isCast(I.getOpcode())) { 2612 Code = bitc::FUNC_CODE_INST_CAST; 2613 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2614 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2615 Vals.push_back(VE.getTypeID(I.getType())); 2616 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2617 } else { 2618 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2619 Code = bitc::FUNC_CODE_INST_BINOP; 2620 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2621 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2622 pushValue(I.getOperand(1), InstID, Vals); 2623 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2624 uint64_t Flags = getOptimizationFlags(&I); 2625 if (Flags != 0) { 2626 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2627 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2628 Vals.push_back(Flags); 2629 } 2630 } 2631 break; 2632 case Instruction::FNeg: { 2633 Code = bitc::FUNC_CODE_INST_UNOP; 2634 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2635 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2636 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2637 uint64_t Flags = getOptimizationFlags(&I); 2638 if (Flags != 0) { 2639 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2640 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2641 Vals.push_back(Flags); 2642 } 2643 break; 2644 } 2645 case Instruction::GetElementPtr: { 2646 Code = bitc::FUNC_CODE_INST_GEP; 2647 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2648 auto &GEPInst = cast<GetElementPtrInst>(I); 2649 Vals.push_back(GEPInst.isInBounds()); 2650 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2651 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2652 pushValueAndType(I.getOperand(i), InstID, Vals); 2653 break; 2654 } 2655 case Instruction::ExtractValue: { 2656 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2657 pushValueAndType(I.getOperand(0), InstID, Vals); 2658 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2659 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2660 break; 2661 } 2662 case Instruction::InsertValue: { 2663 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2664 pushValueAndType(I.getOperand(0), InstID, Vals); 2665 pushValueAndType(I.getOperand(1), InstID, Vals); 2666 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2667 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2668 break; 2669 } 2670 case Instruction::Select: { 2671 Code = bitc::FUNC_CODE_INST_VSELECT; 2672 pushValueAndType(I.getOperand(1), InstID, Vals); 2673 pushValue(I.getOperand(2), InstID, Vals); 2674 pushValueAndType(I.getOperand(0), InstID, Vals); 2675 uint64_t Flags = getOptimizationFlags(&I); 2676 if (Flags != 0) 2677 Vals.push_back(Flags); 2678 break; 2679 } 2680 case Instruction::ExtractElement: 2681 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2682 pushValueAndType(I.getOperand(0), InstID, Vals); 2683 pushValueAndType(I.getOperand(1), InstID, Vals); 2684 break; 2685 case Instruction::InsertElement: 2686 Code = bitc::FUNC_CODE_INST_INSERTELT; 2687 pushValueAndType(I.getOperand(0), InstID, Vals); 2688 pushValue(I.getOperand(1), InstID, Vals); 2689 pushValueAndType(I.getOperand(2), InstID, Vals); 2690 break; 2691 case Instruction::ShuffleVector: 2692 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2693 pushValueAndType(I.getOperand(0), InstID, Vals); 2694 pushValue(I.getOperand(1), InstID, Vals); 2695 pushValue(I.getOperand(2), InstID, Vals); 2696 break; 2697 case Instruction::ICmp: 2698 case Instruction::FCmp: { 2699 // compare returning Int1Ty or vector of Int1Ty 2700 Code = bitc::FUNC_CODE_INST_CMP2; 2701 pushValueAndType(I.getOperand(0), InstID, Vals); 2702 pushValue(I.getOperand(1), InstID, Vals); 2703 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2704 uint64_t Flags = getOptimizationFlags(&I); 2705 if (Flags != 0) 2706 Vals.push_back(Flags); 2707 break; 2708 } 2709 2710 case Instruction::Ret: 2711 { 2712 Code = bitc::FUNC_CODE_INST_RET; 2713 unsigned NumOperands = I.getNumOperands(); 2714 if (NumOperands == 0) 2715 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2716 else if (NumOperands == 1) { 2717 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2718 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2719 } else { 2720 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2721 pushValueAndType(I.getOperand(i), InstID, Vals); 2722 } 2723 } 2724 break; 2725 case Instruction::Br: 2726 { 2727 Code = bitc::FUNC_CODE_INST_BR; 2728 const BranchInst &II = cast<BranchInst>(I); 2729 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2730 if (II.isConditional()) { 2731 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2732 pushValue(II.getCondition(), InstID, Vals); 2733 } 2734 } 2735 break; 2736 case Instruction::Switch: 2737 { 2738 Code = bitc::FUNC_CODE_INST_SWITCH; 2739 const SwitchInst &SI = cast<SwitchInst>(I); 2740 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2741 pushValue(SI.getCondition(), InstID, Vals); 2742 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2743 for (auto Case : SI.cases()) { 2744 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2745 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2746 } 2747 } 2748 break; 2749 case Instruction::IndirectBr: 2750 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2751 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2752 // Encode the address operand as relative, but not the basic blocks. 2753 pushValue(I.getOperand(0), InstID, Vals); 2754 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2755 Vals.push_back(VE.getValueID(I.getOperand(i))); 2756 break; 2757 2758 case Instruction::Invoke: { 2759 const InvokeInst *II = cast<InvokeInst>(&I); 2760 const Value *Callee = II->getCalledValue(); 2761 FunctionType *FTy = II->getFunctionType(); 2762 2763 if (II->hasOperandBundles()) 2764 writeOperandBundles(II, InstID); 2765 2766 Code = bitc::FUNC_CODE_INST_INVOKE; 2767 2768 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2769 Vals.push_back(II->getCallingConv() | 1 << 13); 2770 Vals.push_back(VE.getValueID(II->getNormalDest())); 2771 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2772 Vals.push_back(VE.getTypeID(FTy)); 2773 pushValueAndType(Callee, InstID, Vals); 2774 2775 // Emit value #'s for the fixed parameters. 2776 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2777 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2778 2779 // Emit type/value pairs for varargs params. 2780 if (FTy->isVarArg()) { 2781 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2782 i != e; ++i) 2783 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2784 } 2785 break; 2786 } 2787 case Instruction::Resume: 2788 Code = bitc::FUNC_CODE_INST_RESUME; 2789 pushValueAndType(I.getOperand(0), InstID, Vals); 2790 break; 2791 case Instruction::CleanupRet: { 2792 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2793 const auto &CRI = cast<CleanupReturnInst>(I); 2794 pushValue(CRI.getCleanupPad(), InstID, Vals); 2795 if (CRI.hasUnwindDest()) 2796 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2797 break; 2798 } 2799 case Instruction::CatchRet: { 2800 Code = bitc::FUNC_CODE_INST_CATCHRET; 2801 const auto &CRI = cast<CatchReturnInst>(I); 2802 pushValue(CRI.getCatchPad(), InstID, Vals); 2803 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2804 break; 2805 } 2806 case Instruction::CleanupPad: 2807 case Instruction::CatchPad: { 2808 const auto &FuncletPad = cast<FuncletPadInst>(I); 2809 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2810 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2811 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2812 2813 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2814 Vals.push_back(NumArgOperands); 2815 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2816 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2817 break; 2818 } 2819 case Instruction::CatchSwitch: { 2820 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2821 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2822 2823 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2824 2825 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2826 Vals.push_back(NumHandlers); 2827 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2828 Vals.push_back(VE.getValueID(CatchPadBB)); 2829 2830 if (CatchSwitch.hasUnwindDest()) 2831 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2832 break; 2833 } 2834 case Instruction::CallBr: { 2835 const CallBrInst *CBI = cast<CallBrInst>(&I); 2836 const Value *Callee = CBI->getCalledValue(); 2837 FunctionType *FTy = CBI->getFunctionType(); 2838 2839 if (CBI->hasOperandBundles()) 2840 writeOperandBundles(CBI, InstID); 2841 2842 Code = bitc::FUNC_CODE_INST_CALLBR; 2843 2844 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2845 2846 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2847 1 << bitc::CALL_EXPLICIT_TYPE); 2848 2849 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2850 Vals.push_back(CBI->getNumIndirectDests()); 2851 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2852 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2853 2854 Vals.push_back(VE.getTypeID(FTy)); 2855 pushValueAndType(Callee, InstID, Vals); 2856 2857 // Emit value #'s for the fixed parameters. 2858 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2859 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2860 2861 // Emit type/value pairs for varargs params. 2862 if (FTy->isVarArg()) { 2863 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2864 i != e; ++i) 2865 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2866 } 2867 break; 2868 } 2869 case Instruction::Unreachable: 2870 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2871 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2872 break; 2873 2874 case Instruction::PHI: { 2875 const PHINode &PN = cast<PHINode>(I); 2876 Code = bitc::FUNC_CODE_INST_PHI; 2877 // With the newer instruction encoding, forward references could give 2878 // negative valued IDs. This is most common for PHIs, so we use 2879 // signed VBRs. 2880 SmallVector<uint64_t, 128> Vals64; 2881 Vals64.push_back(VE.getTypeID(PN.getType())); 2882 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2883 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2884 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2885 } 2886 2887 uint64_t Flags = getOptimizationFlags(&I); 2888 if (Flags != 0) 2889 Vals64.push_back(Flags); 2890 2891 // Emit a Vals64 vector and exit. 2892 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2893 Vals64.clear(); 2894 return; 2895 } 2896 2897 case Instruction::LandingPad: { 2898 const LandingPadInst &LP = cast<LandingPadInst>(I); 2899 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2900 Vals.push_back(VE.getTypeID(LP.getType())); 2901 Vals.push_back(LP.isCleanup()); 2902 Vals.push_back(LP.getNumClauses()); 2903 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2904 if (LP.isCatch(I)) 2905 Vals.push_back(LandingPadInst::Catch); 2906 else 2907 Vals.push_back(LandingPadInst::Filter); 2908 pushValueAndType(LP.getClause(I), InstID, Vals); 2909 } 2910 break; 2911 } 2912 2913 case Instruction::Alloca: { 2914 Code = bitc::FUNC_CODE_INST_ALLOCA; 2915 const AllocaInst &AI = cast<AllocaInst>(I); 2916 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2917 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2918 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2919 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2920 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2921 "not enough bits for maximum alignment"); 2922 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2923 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2924 AlignRecord |= 1 << 6; 2925 AlignRecord |= AI.isSwiftError() << 7; 2926 Vals.push_back(AlignRecord); 2927 break; 2928 } 2929 2930 case Instruction::Load: 2931 if (cast<LoadInst>(I).isAtomic()) { 2932 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2933 pushValueAndType(I.getOperand(0), InstID, Vals); 2934 } else { 2935 Code = bitc::FUNC_CODE_INST_LOAD; 2936 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2937 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2938 } 2939 Vals.push_back(VE.getTypeID(I.getType())); 2940 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2941 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2942 if (cast<LoadInst>(I).isAtomic()) { 2943 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2944 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2945 } 2946 break; 2947 case Instruction::Store: 2948 if (cast<StoreInst>(I).isAtomic()) 2949 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2950 else 2951 Code = bitc::FUNC_CODE_INST_STORE; 2952 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2953 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2954 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2955 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2956 if (cast<StoreInst>(I).isAtomic()) { 2957 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2958 Vals.push_back( 2959 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2960 } 2961 break; 2962 case Instruction::AtomicCmpXchg: 2963 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2964 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2965 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2966 pushValue(I.getOperand(2), InstID, Vals); // newval. 2967 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2968 Vals.push_back( 2969 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2970 Vals.push_back( 2971 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2972 Vals.push_back( 2973 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2974 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2975 break; 2976 case Instruction::AtomicRMW: 2977 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2978 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2979 pushValue(I.getOperand(1), InstID, Vals); // val. 2980 Vals.push_back( 2981 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2982 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2983 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2984 Vals.push_back( 2985 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2986 break; 2987 case Instruction::Fence: 2988 Code = bitc::FUNC_CODE_INST_FENCE; 2989 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2990 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2991 break; 2992 case Instruction::Call: { 2993 const CallInst &CI = cast<CallInst>(I); 2994 FunctionType *FTy = CI.getFunctionType(); 2995 2996 if (CI.hasOperandBundles()) 2997 writeOperandBundles(&CI, InstID); 2998 2999 Code = bitc::FUNC_CODE_INST_CALL; 3000 3001 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3002 3003 unsigned Flags = getOptimizationFlags(&I); 3004 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3005 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3006 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3007 1 << bitc::CALL_EXPLICIT_TYPE | 3008 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3009 unsigned(Flags != 0) << bitc::CALL_FMF); 3010 if (Flags != 0) 3011 Vals.push_back(Flags); 3012 3013 Vals.push_back(VE.getTypeID(FTy)); 3014 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 3015 3016 // Emit value #'s for the fixed parameters. 3017 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3018 // Check for labels (can happen with asm labels). 3019 if (FTy->getParamType(i)->isLabelTy()) 3020 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3021 else 3022 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3023 } 3024 3025 // Emit type/value pairs for varargs params. 3026 if (FTy->isVarArg()) { 3027 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3028 i != e; ++i) 3029 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3030 } 3031 break; 3032 } 3033 case Instruction::VAArg: 3034 Code = bitc::FUNC_CODE_INST_VAARG; 3035 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3036 pushValue(I.getOperand(0), InstID, Vals); // valist. 3037 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3038 break; 3039 case Instruction::Freeze: 3040 Code = bitc::FUNC_CODE_INST_FREEZE; 3041 pushValueAndType(I.getOperand(0), InstID, Vals); 3042 break; 3043 } 3044 3045 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3046 Vals.clear(); 3047 } 3048 3049 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3050 /// to allow clients to efficiently find the function body. 3051 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3052 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3053 // Get the offset of the VST we are writing, and backpatch it into 3054 // the VST forward declaration record. 3055 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3056 // The BitcodeStartBit was the stream offset of the identification block. 3057 VSTOffset -= bitcodeStartBit(); 3058 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3059 // Note that we add 1 here because the offset is relative to one word 3060 // before the start of the identification block, which was historically 3061 // always the start of the regular bitcode header. 3062 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3063 3064 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3065 3066 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3067 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3068 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3070 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3071 3072 for (const Function &F : M) { 3073 uint64_t Record[2]; 3074 3075 if (F.isDeclaration()) 3076 continue; 3077 3078 Record[0] = VE.getValueID(&F); 3079 3080 // Save the word offset of the function (from the start of the 3081 // actual bitcode written to the stream). 3082 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3083 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3084 // Note that we add 1 here because the offset is relative to one word 3085 // before the start of the identification block, which was historically 3086 // always the start of the regular bitcode header. 3087 Record[1] = BitcodeIndex / 32 + 1; 3088 3089 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3090 } 3091 3092 Stream.ExitBlock(); 3093 } 3094 3095 /// Emit names for arguments, instructions and basic blocks in a function. 3096 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3097 const ValueSymbolTable &VST) { 3098 if (VST.empty()) 3099 return; 3100 3101 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3102 3103 // FIXME: Set up the abbrev, we know how many values there are! 3104 // FIXME: We know if the type names can use 7-bit ascii. 3105 SmallVector<uint64_t, 64> NameVals; 3106 3107 for (const ValueName &Name : VST) { 3108 // Figure out the encoding to use for the name. 3109 StringEncoding Bits = getStringEncoding(Name.getKey()); 3110 3111 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3112 NameVals.push_back(VE.getValueID(Name.getValue())); 3113 3114 // VST_CODE_ENTRY: [valueid, namechar x N] 3115 // VST_CODE_BBENTRY: [bbid, namechar x N] 3116 unsigned Code; 3117 if (isa<BasicBlock>(Name.getValue())) { 3118 Code = bitc::VST_CODE_BBENTRY; 3119 if (Bits == SE_Char6) 3120 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3121 } else { 3122 Code = bitc::VST_CODE_ENTRY; 3123 if (Bits == SE_Char6) 3124 AbbrevToUse = VST_ENTRY_6_ABBREV; 3125 else if (Bits == SE_Fixed7) 3126 AbbrevToUse = VST_ENTRY_7_ABBREV; 3127 } 3128 3129 for (const auto P : Name.getKey()) 3130 NameVals.push_back((unsigned char)P); 3131 3132 // Emit the finished record. 3133 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3134 NameVals.clear(); 3135 } 3136 3137 Stream.ExitBlock(); 3138 } 3139 3140 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3141 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3142 unsigned Code; 3143 if (isa<BasicBlock>(Order.V)) 3144 Code = bitc::USELIST_CODE_BB; 3145 else 3146 Code = bitc::USELIST_CODE_DEFAULT; 3147 3148 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3149 Record.push_back(VE.getValueID(Order.V)); 3150 Stream.EmitRecord(Code, Record); 3151 } 3152 3153 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3154 assert(VE.shouldPreserveUseListOrder() && 3155 "Expected to be preserving use-list order"); 3156 3157 auto hasMore = [&]() { 3158 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3159 }; 3160 if (!hasMore()) 3161 // Nothing to do. 3162 return; 3163 3164 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3165 while (hasMore()) { 3166 writeUseList(std::move(VE.UseListOrders.back())); 3167 VE.UseListOrders.pop_back(); 3168 } 3169 Stream.ExitBlock(); 3170 } 3171 3172 /// Emit a function body to the module stream. 3173 void ModuleBitcodeWriter::writeFunction( 3174 const Function &F, 3175 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3176 // Save the bitcode index of the start of this function block for recording 3177 // in the VST. 3178 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3179 3180 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3181 VE.incorporateFunction(F); 3182 3183 SmallVector<unsigned, 64> Vals; 3184 3185 // Emit the number of basic blocks, so the reader can create them ahead of 3186 // time. 3187 Vals.push_back(VE.getBasicBlocks().size()); 3188 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3189 Vals.clear(); 3190 3191 // If there are function-local constants, emit them now. 3192 unsigned CstStart, CstEnd; 3193 VE.getFunctionConstantRange(CstStart, CstEnd); 3194 writeConstants(CstStart, CstEnd, false); 3195 3196 // If there is function-local metadata, emit it now. 3197 writeFunctionMetadata(F); 3198 3199 // Keep a running idea of what the instruction ID is. 3200 unsigned InstID = CstEnd; 3201 3202 bool NeedsMetadataAttachment = F.hasMetadata(); 3203 3204 DILocation *LastDL = nullptr; 3205 // Finally, emit all the instructions, in order. 3206 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3207 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3208 I != E; ++I) { 3209 writeInstruction(*I, InstID, Vals); 3210 3211 if (!I->getType()->isVoidTy()) 3212 ++InstID; 3213 3214 // If the instruction has metadata, write a metadata attachment later. 3215 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3216 3217 // If the instruction has a debug location, emit it. 3218 DILocation *DL = I->getDebugLoc(); 3219 if (!DL) 3220 continue; 3221 3222 if (DL == LastDL) { 3223 // Just repeat the same debug loc as last time. 3224 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3225 continue; 3226 } 3227 3228 Vals.push_back(DL->getLine()); 3229 Vals.push_back(DL->getColumn()); 3230 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3231 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3232 Vals.push_back(DL->isImplicitCode()); 3233 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3234 Vals.clear(); 3235 3236 LastDL = DL; 3237 } 3238 3239 // Emit names for all the instructions etc. 3240 if (auto *Symtab = F.getValueSymbolTable()) 3241 writeFunctionLevelValueSymbolTable(*Symtab); 3242 3243 if (NeedsMetadataAttachment) 3244 writeFunctionMetadataAttachment(F); 3245 if (VE.shouldPreserveUseListOrder()) 3246 writeUseListBlock(&F); 3247 VE.purgeFunction(); 3248 Stream.ExitBlock(); 3249 } 3250 3251 // Emit blockinfo, which defines the standard abbreviations etc. 3252 void ModuleBitcodeWriter::writeBlockInfo() { 3253 // We only want to emit block info records for blocks that have multiple 3254 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3255 // Other blocks can define their abbrevs inline. 3256 Stream.EnterBlockInfoBlock(); 3257 3258 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3259 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3260 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3261 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3262 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3263 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3264 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3265 VST_ENTRY_8_ABBREV) 3266 llvm_unreachable("Unexpected abbrev ordering!"); 3267 } 3268 3269 { // 7-bit fixed width VST_CODE_ENTRY strings. 3270 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3271 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3272 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3273 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3274 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3275 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3276 VST_ENTRY_7_ABBREV) 3277 llvm_unreachable("Unexpected abbrev ordering!"); 3278 } 3279 { // 6-bit char6 VST_CODE_ENTRY strings. 3280 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3281 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3283 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3284 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3285 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3286 VST_ENTRY_6_ABBREV) 3287 llvm_unreachable("Unexpected abbrev ordering!"); 3288 } 3289 { // 6-bit char6 VST_CODE_BBENTRY strings. 3290 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3291 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3293 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3295 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3296 VST_BBENTRY_6_ABBREV) 3297 llvm_unreachable("Unexpected abbrev ordering!"); 3298 } 3299 3300 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3301 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3302 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3303 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3304 VE.computeBitsRequiredForTypeIndicies())); 3305 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3306 CONSTANTS_SETTYPE_ABBREV) 3307 llvm_unreachable("Unexpected abbrev ordering!"); 3308 } 3309 3310 { // INTEGER abbrev for CONSTANTS_BLOCK. 3311 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3312 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3314 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3315 CONSTANTS_INTEGER_ABBREV) 3316 llvm_unreachable("Unexpected abbrev ordering!"); 3317 } 3318 3319 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3320 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3321 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3324 VE.computeBitsRequiredForTypeIndicies())); 3325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3326 3327 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3328 CONSTANTS_CE_CAST_Abbrev) 3329 llvm_unreachable("Unexpected abbrev ordering!"); 3330 } 3331 { // NULL abbrev for CONSTANTS_BLOCK. 3332 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3333 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3334 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3335 CONSTANTS_NULL_Abbrev) 3336 llvm_unreachable("Unexpected abbrev ordering!"); 3337 } 3338 3339 // FIXME: This should only use space for first class types! 3340 3341 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3342 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3343 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3346 VE.computeBitsRequiredForTypeIndicies())); 3347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3349 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3350 FUNCTION_INST_LOAD_ABBREV) 3351 llvm_unreachable("Unexpected abbrev ordering!"); 3352 } 3353 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3354 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3355 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3358 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3359 FUNCTION_INST_UNOP_ABBREV) 3360 llvm_unreachable("Unexpected abbrev ordering!"); 3361 } 3362 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3363 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3364 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3368 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3369 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3370 llvm_unreachable("Unexpected abbrev ordering!"); 3371 } 3372 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3373 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3374 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3378 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3379 FUNCTION_INST_BINOP_ABBREV) 3380 llvm_unreachable("Unexpected abbrev ordering!"); 3381 } 3382 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3383 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3384 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3389 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3390 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3391 llvm_unreachable("Unexpected abbrev ordering!"); 3392 } 3393 { // INST_CAST abbrev for FUNCTION_BLOCK. 3394 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3395 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3398 VE.computeBitsRequiredForTypeIndicies())); 3399 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3400 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3401 FUNCTION_INST_CAST_ABBREV) 3402 llvm_unreachable("Unexpected abbrev ordering!"); 3403 } 3404 3405 { // INST_RET abbrev for FUNCTION_BLOCK. 3406 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3407 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3408 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3409 FUNCTION_INST_RET_VOID_ABBREV) 3410 llvm_unreachable("Unexpected abbrev ordering!"); 3411 } 3412 { // INST_RET abbrev for FUNCTION_BLOCK. 3413 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3414 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3416 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3417 FUNCTION_INST_RET_VAL_ABBREV) 3418 llvm_unreachable("Unexpected abbrev ordering!"); 3419 } 3420 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3421 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3422 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3423 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3424 FUNCTION_INST_UNREACHABLE_ABBREV) 3425 llvm_unreachable("Unexpected abbrev ordering!"); 3426 } 3427 { 3428 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3429 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3432 Log2_32_Ceil(VE.getTypes().size() + 1))); 3433 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3435 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3436 FUNCTION_INST_GEP_ABBREV) 3437 llvm_unreachable("Unexpected abbrev ordering!"); 3438 } 3439 3440 Stream.ExitBlock(); 3441 } 3442 3443 /// Write the module path strings, currently only used when generating 3444 /// a combined index file. 3445 void IndexBitcodeWriter::writeModStrings() { 3446 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3447 3448 // TODO: See which abbrev sizes we actually need to emit 3449 3450 // 8-bit fixed-width MST_ENTRY strings. 3451 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3452 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3456 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3457 3458 // 7-bit fixed width MST_ENTRY strings. 3459 Abbv = std::make_shared<BitCodeAbbrev>(); 3460 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3464 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3465 3466 // 6-bit char6 MST_ENTRY strings. 3467 Abbv = std::make_shared<BitCodeAbbrev>(); 3468 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3472 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3473 3474 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3475 Abbv = std::make_shared<BitCodeAbbrev>(); 3476 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3482 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3483 3484 SmallVector<unsigned, 64> Vals; 3485 forEachModule( 3486 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3487 StringRef Key = MPSE.getKey(); 3488 const auto &Value = MPSE.getValue(); 3489 StringEncoding Bits = getStringEncoding(Key); 3490 unsigned AbbrevToUse = Abbrev8Bit; 3491 if (Bits == SE_Char6) 3492 AbbrevToUse = Abbrev6Bit; 3493 else if (Bits == SE_Fixed7) 3494 AbbrevToUse = Abbrev7Bit; 3495 3496 Vals.push_back(Value.first); 3497 Vals.append(Key.begin(), Key.end()); 3498 3499 // Emit the finished record. 3500 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3501 3502 // Emit an optional hash for the module now 3503 const auto &Hash = Value.second; 3504 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3505 Vals.assign(Hash.begin(), Hash.end()); 3506 // Emit the hash record. 3507 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3508 } 3509 3510 Vals.clear(); 3511 }); 3512 Stream.ExitBlock(); 3513 } 3514 3515 /// Write the function type metadata related records that need to appear before 3516 /// a function summary entry (whether per-module or combined). 3517 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3518 FunctionSummary *FS) { 3519 if (!FS->type_tests().empty()) 3520 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3521 3522 SmallVector<uint64_t, 64> Record; 3523 3524 auto WriteVFuncIdVec = [&](uint64_t Ty, 3525 ArrayRef<FunctionSummary::VFuncId> VFs) { 3526 if (VFs.empty()) 3527 return; 3528 Record.clear(); 3529 for (auto &VF : VFs) { 3530 Record.push_back(VF.GUID); 3531 Record.push_back(VF.Offset); 3532 } 3533 Stream.EmitRecord(Ty, Record); 3534 }; 3535 3536 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3537 FS->type_test_assume_vcalls()); 3538 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3539 FS->type_checked_load_vcalls()); 3540 3541 auto WriteConstVCallVec = [&](uint64_t Ty, 3542 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3543 for (auto &VC : VCs) { 3544 Record.clear(); 3545 Record.push_back(VC.VFunc.GUID); 3546 Record.push_back(VC.VFunc.Offset); 3547 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3548 Stream.EmitRecord(Ty, Record); 3549 } 3550 }; 3551 3552 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3553 FS->type_test_assume_const_vcalls()); 3554 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3555 FS->type_checked_load_const_vcalls()); 3556 } 3557 3558 /// Collect type IDs from type tests used by function. 3559 static void 3560 getReferencedTypeIds(FunctionSummary *FS, 3561 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3562 if (!FS->type_tests().empty()) 3563 for (auto &TT : FS->type_tests()) 3564 ReferencedTypeIds.insert(TT); 3565 3566 auto GetReferencedTypesFromVFuncIdVec = 3567 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3568 for (auto &VF : VFs) 3569 ReferencedTypeIds.insert(VF.GUID); 3570 }; 3571 3572 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3573 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3574 3575 auto GetReferencedTypesFromConstVCallVec = 3576 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3577 for (auto &VC : VCs) 3578 ReferencedTypeIds.insert(VC.VFunc.GUID); 3579 }; 3580 3581 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3582 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3583 } 3584 3585 static void writeWholeProgramDevirtResolutionByArg( 3586 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3587 const WholeProgramDevirtResolution::ByArg &ByArg) { 3588 NameVals.push_back(args.size()); 3589 NameVals.insert(NameVals.end(), args.begin(), args.end()); 3590 3591 NameVals.push_back(ByArg.TheKind); 3592 NameVals.push_back(ByArg.Info); 3593 NameVals.push_back(ByArg.Byte); 3594 NameVals.push_back(ByArg.Bit); 3595 } 3596 3597 static void writeWholeProgramDevirtResolution( 3598 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3599 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3600 NameVals.push_back(Id); 3601 3602 NameVals.push_back(Wpd.TheKind); 3603 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3604 NameVals.push_back(Wpd.SingleImplName.size()); 3605 3606 NameVals.push_back(Wpd.ResByArg.size()); 3607 for (auto &A : Wpd.ResByArg) 3608 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3609 } 3610 3611 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3612 StringTableBuilder &StrtabBuilder, 3613 const std::string &Id, 3614 const TypeIdSummary &Summary) { 3615 NameVals.push_back(StrtabBuilder.add(Id)); 3616 NameVals.push_back(Id.size()); 3617 3618 NameVals.push_back(Summary.TTRes.TheKind); 3619 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3620 NameVals.push_back(Summary.TTRes.AlignLog2); 3621 NameVals.push_back(Summary.TTRes.SizeM1); 3622 NameVals.push_back(Summary.TTRes.BitMask); 3623 NameVals.push_back(Summary.TTRes.InlineBits); 3624 3625 for (auto &W : Summary.WPDRes) 3626 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3627 W.second); 3628 } 3629 3630 static void writeTypeIdCompatibleVtableSummaryRecord( 3631 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3632 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3633 ValueEnumerator &VE) { 3634 NameVals.push_back(StrtabBuilder.add(Id)); 3635 NameVals.push_back(Id.size()); 3636 3637 for (auto &P : Summary) { 3638 NameVals.push_back(P.AddressPointOffset); 3639 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3640 } 3641 } 3642 3643 // Helper to emit a single function summary record. 3644 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3645 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3646 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3647 const Function &F) { 3648 NameVals.push_back(ValueID); 3649 3650 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3651 writeFunctionTypeMetadataRecords(Stream, FS); 3652 3653 auto SpecialRefCnts = FS->specialRefCounts(); 3654 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3655 NameVals.push_back(FS->instCount()); 3656 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3657 NameVals.push_back(FS->refs().size()); 3658 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3659 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3660 3661 for (auto &RI : FS->refs()) 3662 NameVals.push_back(VE.getValueID(RI.getValue())); 3663 3664 bool HasProfileData = 3665 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3666 for (auto &ECI : FS->calls()) { 3667 NameVals.push_back(getValueId(ECI.first)); 3668 if (HasProfileData) 3669 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3670 else if (WriteRelBFToSummary) 3671 NameVals.push_back(ECI.second.RelBlockFreq); 3672 } 3673 3674 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3675 unsigned Code = 3676 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3677 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3678 : bitc::FS_PERMODULE)); 3679 3680 // Emit the finished record. 3681 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3682 NameVals.clear(); 3683 } 3684 3685 // Collect the global value references in the given variable's initializer, 3686 // and emit them in a summary record. 3687 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3688 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3689 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3690 auto VI = Index->getValueInfo(V.getGUID()); 3691 if (!VI || VI.getSummaryList().empty()) { 3692 // Only declarations should not have a summary (a declaration might however 3693 // have a summary if the def was in module level asm). 3694 assert(V.isDeclaration()); 3695 return; 3696 } 3697 auto *Summary = VI.getSummaryList()[0].get(); 3698 NameVals.push_back(VE.getValueID(&V)); 3699 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3700 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3701 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3702 3703 auto VTableFuncs = VS->vTableFuncs(); 3704 if (!VTableFuncs.empty()) 3705 NameVals.push_back(VS->refs().size()); 3706 3707 unsigned SizeBeforeRefs = NameVals.size(); 3708 for (auto &RI : VS->refs()) 3709 NameVals.push_back(VE.getValueID(RI.getValue())); 3710 // Sort the refs for determinism output, the vector returned by FS->refs() has 3711 // been initialized from a DenseSet. 3712 llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3713 3714 if (VTableFuncs.empty()) 3715 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3716 FSModRefsAbbrev); 3717 else { 3718 // VTableFuncs pairs should already be sorted by offset. 3719 for (auto &P : VTableFuncs) { 3720 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3721 NameVals.push_back(P.VTableOffset); 3722 } 3723 3724 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3725 FSModVTableRefsAbbrev); 3726 } 3727 NameVals.clear(); 3728 } 3729 3730 /// Emit the per-module summary section alongside the rest of 3731 /// the module's bitcode. 3732 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3733 // By default we compile with ThinLTO if the module has a summary, but the 3734 // client can request full LTO with a module flag. 3735 bool IsThinLTO = true; 3736 if (auto *MD = 3737 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3738 IsThinLTO = MD->getZExtValue(); 3739 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3740 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3741 4); 3742 3743 Stream.EmitRecord( 3744 bitc::FS_VERSION, 3745 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3746 3747 // Write the index flags. 3748 uint64_t Flags = 0; 3749 // Bits 1-3 are set only in the combined index, skip them. 3750 if (Index->enableSplitLTOUnit()) 3751 Flags |= 0x8; 3752 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3753 3754 if (Index->begin() == Index->end()) { 3755 Stream.ExitBlock(); 3756 return; 3757 } 3758 3759 for (const auto &GVI : valueIds()) { 3760 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3761 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3762 } 3763 3764 // Abbrev for FS_PERMODULE_PROFILE. 3765 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3766 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3771 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3773 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3774 // numrefs x valueid, n x (valueid, hotness) 3775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3777 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3778 3779 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3780 Abbv = std::make_shared<BitCodeAbbrev>(); 3781 if (WriteRelBFToSummary) 3782 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3783 else 3784 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3787 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3792 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3795 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3796 3797 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3798 Abbv = std::make_shared<BitCodeAbbrev>(); 3799 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3804 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3805 3806 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3807 Abbv = std::make_shared<BitCodeAbbrev>(); 3808 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3809 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3810 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3811 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3812 // numrefs x valueid, n x (valueid , offset) 3813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3815 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3816 3817 // Abbrev for FS_ALIAS. 3818 Abbv = std::make_shared<BitCodeAbbrev>(); 3819 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3823 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3824 3825 // Abbrev for FS_TYPE_ID_METADATA 3826 Abbv = std::make_shared<BitCodeAbbrev>(); 3827 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 3828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 3829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 3830 // n x (valueid , offset) 3831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3833 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3834 3835 SmallVector<uint64_t, 64> NameVals; 3836 // Iterate over the list of functions instead of the Index to 3837 // ensure the ordering is stable. 3838 for (const Function &F : M) { 3839 // Summary emission does not support anonymous functions, they have to 3840 // renamed using the anonymous function renaming pass. 3841 if (!F.hasName()) 3842 report_fatal_error("Unexpected anonymous function when writing summary"); 3843 3844 ValueInfo VI = Index->getValueInfo(F.getGUID()); 3845 if (!VI || VI.getSummaryList().empty()) { 3846 // Only declarations should not have a summary (a declaration might 3847 // however have a summary if the def was in module level asm). 3848 assert(F.isDeclaration()); 3849 continue; 3850 } 3851 auto *Summary = VI.getSummaryList()[0].get(); 3852 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3853 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3854 } 3855 3856 // Capture references from GlobalVariable initializers, which are outside 3857 // of a function scope. 3858 for (const GlobalVariable &G : M.globals()) 3859 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 3860 FSModVTableRefsAbbrev); 3861 3862 for (const GlobalAlias &A : M.aliases()) { 3863 auto *Aliasee = A.getBaseObject(); 3864 if (!Aliasee->hasName()) 3865 // Nameless function don't have an entry in the summary, skip it. 3866 continue; 3867 auto AliasId = VE.getValueID(&A); 3868 auto AliaseeId = VE.getValueID(Aliasee); 3869 NameVals.push_back(AliasId); 3870 auto *Summary = Index->getGlobalValueSummary(A); 3871 AliasSummary *AS = cast<AliasSummary>(Summary); 3872 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3873 NameVals.push_back(AliaseeId); 3874 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3875 NameVals.clear(); 3876 } 3877 3878 for (auto &S : Index->typeIdCompatibleVtableMap()) { 3879 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 3880 S.second, VE); 3881 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 3882 TypeIdCompatibleVtableAbbrev); 3883 NameVals.clear(); 3884 } 3885 3886 Stream.ExitBlock(); 3887 } 3888 3889 /// Emit the combined summary section into the combined index file. 3890 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3891 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3892 Stream.EmitRecord( 3893 bitc::FS_VERSION, 3894 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3895 3896 // Write the index flags. 3897 uint64_t Flags = 0; 3898 if (Index.withGlobalValueDeadStripping()) 3899 Flags |= 0x1; 3900 if (Index.skipModuleByDistributedBackend()) 3901 Flags |= 0x2; 3902 if (Index.hasSyntheticEntryCounts()) 3903 Flags |= 0x4; 3904 if (Index.enableSplitLTOUnit()) 3905 Flags |= 0x8; 3906 if (Index.partiallySplitLTOUnits()) 3907 Flags |= 0x10; 3908 if (Index.withAttributePropagation()) 3909 Flags |= 0x20; 3910 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3911 3912 for (const auto &GVI : valueIds()) { 3913 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3914 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3915 } 3916 3917 // Abbrev for FS_COMBINED. 3918 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3919 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3920 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3921 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3924 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3925 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3926 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3927 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3928 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3929 // numrefs x valueid, n x (valueid) 3930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3932 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3933 3934 // Abbrev for FS_COMBINED_PROFILE. 3935 Abbv = std::make_shared<BitCodeAbbrev>(); 3936 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3946 // numrefs x valueid, n x (valueid, hotness) 3947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3949 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3950 3951 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3952 Abbv = std::make_shared<BitCodeAbbrev>(); 3953 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3959 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3960 3961 // Abbrev for FS_COMBINED_ALIAS. 3962 Abbv = std::make_shared<BitCodeAbbrev>(); 3963 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3968 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3969 3970 // The aliases are emitted as a post-pass, and will point to the value 3971 // id of the aliasee. Save them in a vector for post-processing. 3972 SmallVector<AliasSummary *, 64> Aliases; 3973 3974 // Save the value id for each summary for alias emission. 3975 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3976 3977 SmallVector<uint64_t, 64> NameVals; 3978 3979 // Set that will be populated during call to writeFunctionTypeMetadataRecords 3980 // with the type ids referenced by this index file. 3981 std::set<GlobalValue::GUID> ReferencedTypeIds; 3982 3983 // For local linkage, we also emit the original name separately 3984 // immediately after the record. 3985 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3986 if (!GlobalValue::isLocalLinkage(S.linkage())) 3987 return; 3988 NameVals.push_back(S.getOriginalName()); 3989 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3990 NameVals.clear(); 3991 }; 3992 3993 std::set<GlobalValue::GUID> DefOrUseGUIDs; 3994 forEachSummary([&](GVInfo I, bool IsAliasee) { 3995 GlobalValueSummary *S = I.second; 3996 assert(S); 3997 DefOrUseGUIDs.insert(I.first); 3998 for (const ValueInfo &VI : S->refs()) 3999 DefOrUseGUIDs.insert(VI.getGUID()); 4000 4001 auto ValueId = getValueId(I.first); 4002 assert(ValueId); 4003 SummaryToValueIdMap[S] = *ValueId; 4004 4005 // If this is invoked for an aliasee, we want to record the above 4006 // mapping, but then not emit a summary entry (if the aliasee is 4007 // to be imported, we will invoke this separately with IsAliasee=false). 4008 if (IsAliasee) 4009 return; 4010 4011 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4012 // Will process aliases as a post-pass because the reader wants all 4013 // global to be loaded first. 4014 Aliases.push_back(AS); 4015 return; 4016 } 4017 4018 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4019 NameVals.push_back(*ValueId); 4020 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4021 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4022 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4023 for (auto &RI : VS->refs()) { 4024 auto RefValueId = getValueId(RI.getGUID()); 4025 if (!RefValueId) 4026 continue; 4027 NameVals.push_back(*RefValueId); 4028 } 4029 4030 // Emit the finished record. 4031 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4032 FSModRefsAbbrev); 4033 NameVals.clear(); 4034 MaybeEmitOriginalName(*S); 4035 return; 4036 } 4037 4038 auto *FS = cast<FunctionSummary>(S); 4039 writeFunctionTypeMetadataRecords(Stream, FS); 4040 getReferencedTypeIds(FS, ReferencedTypeIds); 4041 4042 NameVals.push_back(*ValueId); 4043 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4044 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4045 NameVals.push_back(FS->instCount()); 4046 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4047 NameVals.push_back(FS->entryCount()); 4048 4049 // Fill in below 4050 NameVals.push_back(0); // numrefs 4051 NameVals.push_back(0); // rorefcnt 4052 NameVals.push_back(0); // worefcnt 4053 4054 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4055 for (auto &RI : FS->refs()) { 4056 auto RefValueId = getValueId(RI.getGUID()); 4057 if (!RefValueId) 4058 continue; 4059 NameVals.push_back(*RefValueId); 4060 if (RI.isReadOnly()) 4061 RORefCnt++; 4062 else if (RI.isWriteOnly()) 4063 WORefCnt++; 4064 Count++; 4065 } 4066 NameVals[6] = Count; 4067 NameVals[7] = RORefCnt; 4068 NameVals[8] = WORefCnt; 4069 4070 bool HasProfileData = false; 4071 for (auto &EI : FS->calls()) { 4072 HasProfileData |= 4073 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4074 if (HasProfileData) 4075 break; 4076 } 4077 4078 for (auto &EI : FS->calls()) { 4079 // If this GUID doesn't have a value id, it doesn't have a function 4080 // summary and we don't need to record any calls to it. 4081 GlobalValue::GUID GUID = EI.first.getGUID(); 4082 auto CallValueId = getValueId(GUID); 4083 if (!CallValueId) { 4084 // For SamplePGO, the indirect call targets for local functions will 4085 // have its original name annotated in profile. We try to find the 4086 // corresponding PGOFuncName as the GUID. 4087 GUID = Index.getGUIDFromOriginalID(GUID); 4088 if (GUID == 0) 4089 continue; 4090 CallValueId = getValueId(GUID); 4091 if (!CallValueId) 4092 continue; 4093 // The mapping from OriginalId to GUID may return a GUID 4094 // that corresponds to a static variable. Filter it out here. 4095 // This can happen when 4096 // 1) There is a call to a library function which does not have 4097 // a CallValidId; 4098 // 2) There is a static variable with the OriginalGUID identical 4099 // to the GUID of the library function in 1); 4100 // When this happens, the logic for SamplePGO kicks in and 4101 // the static variable in 2) will be found, which needs to be 4102 // filtered out. 4103 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 4104 if (GVSum && 4105 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4106 continue; 4107 } 4108 NameVals.push_back(*CallValueId); 4109 if (HasProfileData) 4110 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4111 } 4112 4113 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4114 unsigned Code = 4115 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4116 4117 // Emit the finished record. 4118 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4119 NameVals.clear(); 4120 MaybeEmitOriginalName(*S); 4121 }); 4122 4123 for (auto *AS : Aliases) { 4124 auto AliasValueId = SummaryToValueIdMap[AS]; 4125 assert(AliasValueId); 4126 NameVals.push_back(AliasValueId); 4127 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4128 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4129 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4130 assert(AliaseeValueId); 4131 NameVals.push_back(AliaseeValueId); 4132 4133 // Emit the finished record. 4134 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4135 NameVals.clear(); 4136 MaybeEmitOriginalName(*AS); 4137 4138 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4139 getReferencedTypeIds(FS, ReferencedTypeIds); 4140 } 4141 4142 if (!Index.cfiFunctionDefs().empty()) { 4143 for (auto &S : Index.cfiFunctionDefs()) { 4144 if (DefOrUseGUIDs.count( 4145 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4146 NameVals.push_back(StrtabBuilder.add(S)); 4147 NameVals.push_back(S.size()); 4148 } 4149 } 4150 if (!NameVals.empty()) { 4151 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4152 NameVals.clear(); 4153 } 4154 } 4155 4156 if (!Index.cfiFunctionDecls().empty()) { 4157 for (auto &S : Index.cfiFunctionDecls()) { 4158 if (DefOrUseGUIDs.count( 4159 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4160 NameVals.push_back(StrtabBuilder.add(S)); 4161 NameVals.push_back(S.size()); 4162 } 4163 } 4164 if (!NameVals.empty()) { 4165 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4166 NameVals.clear(); 4167 } 4168 } 4169 4170 // Walk the GUIDs that were referenced, and write the 4171 // corresponding type id records. 4172 for (auto &T : ReferencedTypeIds) { 4173 auto TidIter = Index.typeIds().equal_range(T); 4174 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4175 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4176 It->second.second); 4177 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4178 NameVals.clear(); 4179 } 4180 } 4181 4182 Stream.ExitBlock(); 4183 } 4184 4185 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4186 /// current llvm version, and a record for the epoch number. 4187 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4188 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4189 4190 // Write the "user readable" string identifying the bitcode producer 4191 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4192 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4195 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4196 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4197 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4198 4199 // Write the epoch version 4200 Abbv = std::make_shared<BitCodeAbbrev>(); 4201 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4203 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4204 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 4205 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4206 Stream.ExitBlock(); 4207 } 4208 4209 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4210 // Emit the module's hash. 4211 // MODULE_CODE_HASH: [5*i32] 4212 if (GenerateHash) { 4213 uint32_t Vals[5]; 4214 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4215 Buffer.size() - BlockStartPos)); 4216 StringRef Hash = Hasher.result(); 4217 for (int Pos = 0; Pos < 20; Pos += 4) { 4218 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4219 } 4220 4221 // Emit the finished record. 4222 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4223 4224 if (ModHash) 4225 // Save the written hash value. 4226 llvm::copy(Vals, std::begin(*ModHash)); 4227 } 4228 } 4229 4230 void ModuleBitcodeWriter::write() { 4231 writeIdentificationBlock(Stream); 4232 4233 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4234 size_t BlockStartPos = Buffer.size(); 4235 4236 writeModuleVersion(); 4237 4238 // Emit blockinfo, which defines the standard abbreviations etc. 4239 writeBlockInfo(); 4240 4241 // Emit information describing all of the types in the module. 4242 writeTypeTable(); 4243 4244 // Emit information about attribute groups. 4245 writeAttributeGroupTable(); 4246 4247 // Emit information about parameter attributes. 4248 writeAttributeTable(); 4249 4250 writeComdats(); 4251 4252 // Emit top-level description of module, including target triple, inline asm, 4253 // descriptors for global variables, and function prototype info. 4254 writeModuleInfo(); 4255 4256 // Emit constants. 4257 writeModuleConstants(); 4258 4259 // Emit metadata kind names. 4260 writeModuleMetadataKinds(); 4261 4262 // Emit metadata. 4263 writeModuleMetadata(); 4264 4265 // Emit module-level use-lists. 4266 if (VE.shouldPreserveUseListOrder()) 4267 writeUseListBlock(nullptr); 4268 4269 writeOperandBundleTags(); 4270 writeSyncScopeNames(); 4271 4272 // Emit function bodies. 4273 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4274 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4275 if (!F->isDeclaration()) 4276 writeFunction(*F, FunctionToBitcodeIndex); 4277 4278 // Need to write after the above call to WriteFunction which populates 4279 // the summary information in the index. 4280 if (Index) 4281 writePerModuleGlobalValueSummary(); 4282 4283 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4284 4285 writeModuleHash(BlockStartPos); 4286 4287 Stream.ExitBlock(); 4288 } 4289 4290 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4291 uint32_t &Position) { 4292 support::endian::write32le(&Buffer[Position], Value); 4293 Position += 4; 4294 } 4295 4296 /// If generating a bc file on darwin, we have to emit a 4297 /// header and trailer to make it compatible with the system archiver. To do 4298 /// this we emit the following header, and then emit a trailer that pads the 4299 /// file out to be a multiple of 16 bytes. 4300 /// 4301 /// struct bc_header { 4302 /// uint32_t Magic; // 0x0B17C0DE 4303 /// uint32_t Version; // Version, currently always 0. 4304 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4305 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4306 /// uint32_t CPUType; // CPU specifier. 4307 /// ... potentially more later ... 4308 /// }; 4309 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4310 const Triple &TT) { 4311 unsigned CPUType = ~0U; 4312 4313 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4314 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4315 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4316 // specific constants here because they are implicitly part of the Darwin ABI. 4317 enum { 4318 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4319 DARWIN_CPU_TYPE_X86 = 7, 4320 DARWIN_CPU_TYPE_ARM = 12, 4321 DARWIN_CPU_TYPE_POWERPC = 18 4322 }; 4323 4324 Triple::ArchType Arch = TT.getArch(); 4325 if (Arch == Triple::x86_64) 4326 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4327 else if (Arch == Triple::x86) 4328 CPUType = DARWIN_CPU_TYPE_X86; 4329 else if (Arch == Triple::ppc) 4330 CPUType = DARWIN_CPU_TYPE_POWERPC; 4331 else if (Arch == Triple::ppc64) 4332 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4333 else if (Arch == Triple::arm || Arch == Triple::thumb) 4334 CPUType = DARWIN_CPU_TYPE_ARM; 4335 4336 // Traditional Bitcode starts after header. 4337 assert(Buffer.size() >= BWH_HeaderSize && 4338 "Expected header size to be reserved"); 4339 unsigned BCOffset = BWH_HeaderSize; 4340 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4341 4342 // Write the magic and version. 4343 unsigned Position = 0; 4344 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4345 writeInt32ToBuffer(0, Buffer, Position); // Version. 4346 writeInt32ToBuffer(BCOffset, Buffer, Position); 4347 writeInt32ToBuffer(BCSize, Buffer, Position); 4348 writeInt32ToBuffer(CPUType, Buffer, Position); 4349 4350 // If the file is not a multiple of 16 bytes, insert dummy padding. 4351 while (Buffer.size() & 15) 4352 Buffer.push_back(0); 4353 } 4354 4355 /// Helper to write the header common to all bitcode files. 4356 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4357 // Emit the file header. 4358 Stream.Emit((unsigned)'B', 8); 4359 Stream.Emit((unsigned)'C', 8); 4360 Stream.Emit(0x0, 4); 4361 Stream.Emit(0xC, 4); 4362 Stream.Emit(0xE, 4); 4363 Stream.Emit(0xD, 4); 4364 } 4365 4366 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 4367 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 4368 writeBitcodeHeader(*Stream); 4369 } 4370 4371 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4372 4373 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4374 Stream->EnterSubblock(Block, 3); 4375 4376 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4377 Abbv->Add(BitCodeAbbrevOp(Record)); 4378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4379 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4380 4381 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4382 4383 Stream->ExitBlock(); 4384 } 4385 4386 void BitcodeWriter::writeSymtab() { 4387 assert(!WroteStrtab && !WroteSymtab); 4388 4389 // If any module has module-level inline asm, we will require a registered asm 4390 // parser for the target so that we can create an accurate symbol table for 4391 // the module. 4392 for (Module *M : Mods) { 4393 if (M->getModuleInlineAsm().empty()) 4394 continue; 4395 4396 std::string Err; 4397 const Triple TT(M->getTargetTriple()); 4398 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4399 if (!T || !T->hasMCAsmParser()) 4400 return; 4401 } 4402 4403 WroteSymtab = true; 4404 SmallVector<char, 0> Symtab; 4405 // The irsymtab::build function may be unable to create a symbol table if the 4406 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4407 // table is not required for correctness, but we still want to be able to 4408 // write malformed modules to bitcode files, so swallow the error. 4409 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4410 consumeError(std::move(E)); 4411 return; 4412 } 4413 4414 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4415 {Symtab.data(), Symtab.size()}); 4416 } 4417 4418 void BitcodeWriter::writeStrtab() { 4419 assert(!WroteStrtab); 4420 4421 std::vector<char> Strtab; 4422 StrtabBuilder.finalizeInOrder(); 4423 Strtab.resize(StrtabBuilder.getSize()); 4424 StrtabBuilder.write((uint8_t *)Strtab.data()); 4425 4426 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4427 {Strtab.data(), Strtab.size()}); 4428 4429 WroteStrtab = true; 4430 } 4431 4432 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4433 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4434 WroteStrtab = true; 4435 } 4436 4437 void BitcodeWriter::writeModule(const Module &M, 4438 bool ShouldPreserveUseListOrder, 4439 const ModuleSummaryIndex *Index, 4440 bool GenerateHash, ModuleHash *ModHash) { 4441 assert(!WroteStrtab); 4442 4443 // The Mods vector is used by irsymtab::build, which requires non-const 4444 // Modules in case it needs to materialize metadata. But the bitcode writer 4445 // requires that the module is materialized, so we can cast to non-const here, 4446 // after checking that it is in fact materialized. 4447 assert(M.isMaterialized()); 4448 Mods.push_back(const_cast<Module *>(&M)); 4449 4450 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4451 ShouldPreserveUseListOrder, Index, 4452 GenerateHash, ModHash); 4453 ModuleWriter.write(); 4454 } 4455 4456 void BitcodeWriter::writeIndex( 4457 const ModuleSummaryIndex *Index, 4458 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4459 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4460 ModuleToSummariesForIndex); 4461 IndexWriter.write(); 4462 } 4463 4464 /// Write the specified module to the specified output stream. 4465 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4466 bool ShouldPreserveUseListOrder, 4467 const ModuleSummaryIndex *Index, 4468 bool GenerateHash, ModuleHash *ModHash) { 4469 SmallVector<char, 0> Buffer; 4470 Buffer.reserve(256*1024); 4471 4472 // If this is darwin or another generic macho target, reserve space for the 4473 // header. 4474 Triple TT(M.getTargetTriple()); 4475 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4476 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4477 4478 BitcodeWriter Writer(Buffer); 4479 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4480 ModHash); 4481 Writer.writeSymtab(); 4482 Writer.writeStrtab(); 4483 4484 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4485 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4486 4487 // Write the generated bitstream to "Out". 4488 Out.write((char*)&Buffer.front(), Buffer.size()); 4489 } 4490 4491 void IndexBitcodeWriter::write() { 4492 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4493 4494 writeModuleVersion(); 4495 4496 // Write the module paths in the combined index. 4497 writeModStrings(); 4498 4499 // Write the summary combined index records. 4500 writeCombinedGlobalValueSummary(); 4501 4502 Stream.ExitBlock(); 4503 } 4504 4505 // Write the specified module summary index to the given raw output stream, 4506 // where it will be written in a new bitcode block. This is used when 4507 // writing the combined index file for ThinLTO. When writing a subset of the 4508 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4509 void llvm::WriteIndexToFile( 4510 const ModuleSummaryIndex &Index, raw_ostream &Out, 4511 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4512 SmallVector<char, 0> Buffer; 4513 Buffer.reserve(256 * 1024); 4514 4515 BitcodeWriter Writer(Buffer); 4516 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4517 Writer.writeStrtab(); 4518 4519 Out.write((char *)&Buffer.front(), Buffer.size()); 4520 } 4521 4522 namespace { 4523 4524 /// Class to manage the bitcode writing for a thin link bitcode file. 4525 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4526 /// ModHash is for use in ThinLTO incremental build, generated while writing 4527 /// the module bitcode file. 4528 const ModuleHash *ModHash; 4529 4530 public: 4531 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4532 BitstreamWriter &Stream, 4533 const ModuleSummaryIndex &Index, 4534 const ModuleHash &ModHash) 4535 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4536 /*ShouldPreserveUseListOrder=*/false, &Index), 4537 ModHash(&ModHash) {} 4538 4539 void write(); 4540 4541 private: 4542 void writeSimplifiedModuleInfo(); 4543 }; 4544 4545 } // end anonymous namespace 4546 4547 // This function writes a simpilified module info for thin link bitcode file. 4548 // It only contains the source file name along with the name(the offset and 4549 // size in strtab) and linkage for global values. For the global value info 4550 // entry, in order to keep linkage at offset 5, there are three zeros used 4551 // as padding. 4552 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4553 SmallVector<unsigned, 64> Vals; 4554 // Emit the module's source file name. 4555 { 4556 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4557 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4558 if (Bits == SE_Char6) 4559 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4560 else if (Bits == SE_Fixed7) 4561 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4562 4563 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4564 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4565 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4566 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4567 Abbv->Add(AbbrevOpToUse); 4568 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4569 4570 for (const auto P : M.getSourceFileName()) 4571 Vals.push_back((unsigned char)P); 4572 4573 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4574 Vals.clear(); 4575 } 4576 4577 // Emit the global variable information. 4578 for (const GlobalVariable &GV : M.globals()) { 4579 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4580 Vals.push_back(StrtabBuilder.add(GV.getName())); 4581 Vals.push_back(GV.getName().size()); 4582 Vals.push_back(0); 4583 Vals.push_back(0); 4584 Vals.push_back(0); 4585 Vals.push_back(getEncodedLinkage(GV)); 4586 4587 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4588 Vals.clear(); 4589 } 4590 4591 // Emit the function proto information. 4592 for (const Function &F : M) { 4593 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4594 Vals.push_back(StrtabBuilder.add(F.getName())); 4595 Vals.push_back(F.getName().size()); 4596 Vals.push_back(0); 4597 Vals.push_back(0); 4598 Vals.push_back(0); 4599 Vals.push_back(getEncodedLinkage(F)); 4600 4601 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4602 Vals.clear(); 4603 } 4604 4605 // Emit the alias information. 4606 for (const GlobalAlias &A : M.aliases()) { 4607 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4608 Vals.push_back(StrtabBuilder.add(A.getName())); 4609 Vals.push_back(A.getName().size()); 4610 Vals.push_back(0); 4611 Vals.push_back(0); 4612 Vals.push_back(0); 4613 Vals.push_back(getEncodedLinkage(A)); 4614 4615 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4616 Vals.clear(); 4617 } 4618 4619 // Emit the ifunc information. 4620 for (const GlobalIFunc &I : M.ifuncs()) { 4621 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4622 Vals.push_back(StrtabBuilder.add(I.getName())); 4623 Vals.push_back(I.getName().size()); 4624 Vals.push_back(0); 4625 Vals.push_back(0); 4626 Vals.push_back(0); 4627 Vals.push_back(getEncodedLinkage(I)); 4628 4629 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4630 Vals.clear(); 4631 } 4632 } 4633 4634 void ThinLinkBitcodeWriter::write() { 4635 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4636 4637 writeModuleVersion(); 4638 4639 writeSimplifiedModuleInfo(); 4640 4641 writePerModuleGlobalValueSummary(); 4642 4643 // Write module hash. 4644 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4645 4646 Stream.ExitBlock(); 4647 } 4648 4649 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4650 const ModuleSummaryIndex &Index, 4651 const ModuleHash &ModHash) { 4652 assert(!WroteStrtab); 4653 4654 // The Mods vector is used by irsymtab::build, which requires non-const 4655 // Modules in case it needs to materialize metadata. But the bitcode writer 4656 // requires that the module is materialized, so we can cast to non-const here, 4657 // after checking that it is in fact materialized. 4658 assert(M.isMaterialized()); 4659 Mods.push_back(const_cast<Module *>(&M)); 4660 4661 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4662 ModHash); 4663 ThinLinkWriter.write(); 4664 } 4665 4666 // Write the specified thin link bitcode file to the given raw output stream, 4667 // where it will be written in a new bitcode block. This is used when 4668 // writing the per-module index file for ThinLTO. 4669 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4670 const ModuleSummaryIndex &Index, 4671 const ModuleHash &ModHash) { 4672 SmallVector<char, 0> Buffer; 4673 Buffer.reserve(256 * 1024); 4674 4675 BitcodeWriter Writer(Buffer); 4676 Writer.writeThinLinkBitcode(M, Index, ModHash); 4677 Writer.writeSymtab(); 4678 Writer.writeStrtab(); 4679 4680 Out.write((char *)&Buffer.front(), Buffer.size()); 4681 } 4682 4683 static const char *getSectionNameForBitcode(const Triple &T) { 4684 switch (T.getObjectFormat()) { 4685 case Triple::MachO: 4686 return "__LLVM,__bitcode"; 4687 case Triple::COFF: 4688 case Triple::ELF: 4689 case Triple::Wasm: 4690 case Triple::UnknownObjectFormat: 4691 return ".llvmbc"; 4692 case Triple::XCOFF: 4693 llvm_unreachable("XCOFF is not yet implemented"); 4694 break; 4695 } 4696 llvm_unreachable("Unimplemented ObjectFormatType"); 4697 } 4698 4699 static const char *getSectionNameForCommandline(const Triple &T) { 4700 switch (T.getObjectFormat()) { 4701 case Triple::MachO: 4702 return "__LLVM,__cmdline"; 4703 case Triple::COFF: 4704 case Triple::ELF: 4705 case Triple::Wasm: 4706 case Triple::UnknownObjectFormat: 4707 return ".llvmcmd"; 4708 case Triple::XCOFF: 4709 llvm_unreachable("XCOFF is not yet implemented"); 4710 break; 4711 } 4712 llvm_unreachable("Unimplemented ObjectFormatType"); 4713 } 4714 4715 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4716 bool EmbedBitcode, bool EmbedMarker, 4717 const std::vector<uint8_t> *CmdArgs) { 4718 // Save llvm.compiler.used and remove it. 4719 SmallVector<Constant *, 2> UsedArray; 4720 SmallPtrSet<GlobalValue *, 4> UsedGlobals; 4721 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4722 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4723 for (auto *GV : UsedGlobals) { 4724 if (GV->getName() != "llvm.embedded.module" && 4725 GV->getName() != "llvm.cmdline") 4726 UsedArray.push_back( 4727 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4728 } 4729 if (Used) 4730 Used->eraseFromParent(); 4731 4732 // Embed the bitcode for the llvm module. 4733 std::string Data; 4734 ArrayRef<uint8_t> ModuleData; 4735 Triple T(M.getTargetTriple()); 4736 // Create a constant that contains the bitcode. 4737 // In case of embedding a marker, ignore the input Buf and use the empty 4738 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 4739 if (EmbedBitcode) { 4740 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 4741 (const unsigned char *)Buf.getBufferEnd())) { 4742 // If the input is LLVM Assembly, bitcode is produced by serializing 4743 // the module. Use-lists order need to be preserved in this case. 4744 llvm::raw_string_ostream OS(Data); 4745 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4746 ModuleData = 4747 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4748 } else 4749 // If the input is LLVM bitcode, write the input byte stream directly. 4750 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4751 Buf.getBufferSize()); 4752 } 4753 llvm::Constant *ModuleConstant = 4754 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4755 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4756 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4757 ModuleConstant); 4758 GV->setSection(getSectionNameForBitcode(T)); 4759 UsedArray.push_back( 4760 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4761 if (llvm::GlobalVariable *Old = 4762 M.getGlobalVariable("llvm.embedded.module", true)) { 4763 assert(Old->hasOneUse() && 4764 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4765 GV->takeName(Old); 4766 Old->eraseFromParent(); 4767 } else { 4768 GV->setName("llvm.embedded.module"); 4769 } 4770 4771 // Skip if only bitcode needs to be embedded. 4772 if (EmbedMarker) { 4773 // Embed command-line options. 4774 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs->data()), 4775 CmdArgs->size()); 4776 llvm::Constant *CmdConstant = 4777 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4778 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4779 llvm::GlobalValue::PrivateLinkage, 4780 CmdConstant); 4781 GV->setSection(getSectionNameForCommandline(T)); 4782 UsedArray.push_back( 4783 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4784 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4785 assert(Old->hasOneUse() && 4786 "llvm.cmdline can only be used once in llvm.compiler.used"); 4787 GV->takeName(Old); 4788 Old->eraseFromParent(); 4789 } else { 4790 GV->setName("llvm.cmdline"); 4791 } 4792 } 4793 4794 if (UsedArray.empty()) 4795 return; 4796 4797 // Recreate llvm.compiler.used. 4798 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4799 auto *NewUsed = new GlobalVariable( 4800 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4801 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4802 NewUsed->setSection("llvm.metadata"); 4803 } 4804