1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/TargetRegistry.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 static cl::opt<unsigned> 86 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 87 cl::desc("Number of metadatas above which we emit an index " 88 "to enable lazy-loading")); 89 90 static cl::opt<bool> WriteRelBFToSummary( 91 "write-relbf-to-summary", cl::Hidden, cl::init(false), 92 cl::desc("Write relative block frequency to function summary ")); 93 94 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 95 96 namespace { 97 98 /// These are manifest constants used by the bitcode writer. They do not need to 99 /// be kept in sync with the reader, but need to be consistent within this file. 100 enum { 101 // VALUE_SYMTAB_BLOCK abbrev id's. 102 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 103 VST_ENTRY_7_ABBREV, 104 VST_ENTRY_6_ABBREV, 105 VST_BBENTRY_6_ABBREV, 106 107 // CONSTANTS_BLOCK abbrev id's. 108 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 109 CONSTANTS_INTEGER_ABBREV, 110 CONSTANTS_CE_CAST_Abbrev, 111 CONSTANTS_NULL_Abbrev, 112 113 // FUNCTION_BLOCK abbrev id's. 114 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 115 FUNCTION_INST_UNOP_ABBREV, 116 FUNCTION_INST_UNOP_FLAGS_ABBREV, 117 FUNCTION_INST_BINOP_ABBREV, 118 FUNCTION_INST_BINOP_FLAGS_ABBREV, 119 FUNCTION_INST_CAST_ABBREV, 120 FUNCTION_INST_RET_VOID_ABBREV, 121 FUNCTION_INST_RET_VAL_ABBREV, 122 FUNCTION_INST_UNREACHABLE_ABBREV, 123 FUNCTION_INST_GEP_ABBREV, 124 }; 125 126 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 127 /// file type. 128 class BitcodeWriterBase { 129 protected: 130 /// The stream created and owned by the client. 131 BitstreamWriter &Stream; 132 133 StringTableBuilder &StrtabBuilder; 134 135 public: 136 /// Constructs a BitcodeWriterBase object that writes to the provided 137 /// \p Stream. 138 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 139 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 140 141 protected: 142 void writeBitcodeHeader(); 143 void writeModuleVersion(); 144 }; 145 146 void BitcodeWriterBase::writeModuleVersion() { 147 // VERSION: [version#] 148 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 149 } 150 151 /// Base class to manage the module bitcode writing, currently subclassed for 152 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 153 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 154 protected: 155 /// The Module to write to bitcode. 156 const Module &M; 157 158 /// Enumerates ids for all values in the module. 159 ValueEnumerator VE; 160 161 /// Optional per-module index to write for ThinLTO. 162 const ModuleSummaryIndex *Index; 163 164 /// Map that holds the correspondence between GUIDs in the summary index, 165 /// that came from indirect call profiles, and a value id generated by this 166 /// class to use in the VST and summary block records. 167 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 168 169 /// Tracks the last value id recorded in the GUIDToValueMap. 170 unsigned GlobalValueId; 171 172 /// Saves the offset of the VSTOffset record that must eventually be 173 /// backpatched with the offset of the actual VST. 174 uint64_t VSTOffsetPlaceholder = 0; 175 176 public: 177 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 178 /// writing to the provided \p Buffer. 179 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 180 BitstreamWriter &Stream, 181 bool ShouldPreserveUseListOrder, 182 const ModuleSummaryIndex *Index) 183 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 184 VE(M, ShouldPreserveUseListOrder), Index(Index) { 185 // Assign ValueIds to any callee values in the index that came from 186 // indirect call profiles and were recorded as a GUID not a Value* 187 // (which would have been assigned an ID by the ValueEnumerator). 188 // The starting ValueId is just after the number of values in the 189 // ValueEnumerator, so that they can be emitted in the VST. 190 GlobalValueId = VE.getValues().size(); 191 if (!Index) 192 return; 193 for (const auto &GUIDSummaryLists : *Index) 194 // Examine all summaries for this GUID. 195 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 196 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 197 // For each call in the function summary, see if the call 198 // is to a GUID (which means it is for an indirect call, 199 // otherwise we would have a Value for it). If so, synthesize 200 // a value id. 201 for (auto &CallEdge : FS->calls()) 202 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 203 assignValueId(CallEdge.first.getGUID()); 204 } 205 206 protected: 207 void writePerModuleGlobalValueSummary(); 208 209 private: 210 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 211 GlobalValueSummary *Summary, 212 unsigned ValueID, 213 unsigned FSCallsAbbrev, 214 unsigned FSCallsProfileAbbrev, 215 const Function &F); 216 void writeModuleLevelReferences(const GlobalVariable &V, 217 SmallVector<uint64_t, 64> &NameVals, 218 unsigned FSModRefsAbbrev, 219 unsigned FSModVTableRefsAbbrev); 220 221 void assignValueId(GlobalValue::GUID ValGUID) { 222 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 223 } 224 225 unsigned getValueId(GlobalValue::GUID ValGUID) { 226 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 227 // Expect that any GUID value had a value Id assigned by an 228 // earlier call to assignValueId. 229 assert(VMI != GUIDToValueIdMap.end() && 230 "GUID does not have assigned value Id"); 231 return VMI->second; 232 } 233 234 // Helper to get the valueId for the type of value recorded in VI. 235 unsigned getValueId(ValueInfo VI) { 236 if (!VI.haveGVs() || !VI.getValue()) 237 return getValueId(VI.getGUID()); 238 return VE.getValueID(VI.getValue()); 239 } 240 241 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 242 }; 243 244 /// Class to manage the bitcode writing for a module. 245 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 246 /// Pointer to the buffer allocated by caller for bitcode writing. 247 const SmallVectorImpl<char> &Buffer; 248 249 /// True if a module hash record should be written. 250 bool GenerateHash; 251 252 /// If non-null, when GenerateHash is true, the resulting hash is written 253 /// into ModHash. 254 ModuleHash *ModHash; 255 256 SHA1 Hasher; 257 258 /// The start bit of the identification block. 259 uint64_t BitcodeStartBit; 260 261 public: 262 /// Constructs a ModuleBitcodeWriter object for the given Module, 263 /// writing to the provided \p Buffer. 264 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 265 StringTableBuilder &StrtabBuilder, 266 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 267 const ModuleSummaryIndex *Index, bool GenerateHash, 268 ModuleHash *ModHash = nullptr) 269 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 270 ShouldPreserveUseListOrder, Index), 271 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 272 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 273 274 /// Emit the current module to the bitstream. 275 void write(); 276 277 private: 278 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 279 280 size_t addToStrtab(StringRef Str); 281 282 void writeAttributeGroupTable(); 283 void writeAttributeTable(); 284 void writeTypeTable(); 285 void writeComdats(); 286 void writeValueSymbolTableForwardDecl(); 287 void writeModuleInfo(); 288 void writeValueAsMetadata(const ValueAsMetadata *MD, 289 SmallVectorImpl<uint64_t> &Record); 290 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 291 unsigned Abbrev); 292 unsigned createDILocationAbbrev(); 293 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 294 unsigned &Abbrev); 295 unsigned createGenericDINodeAbbrev(); 296 void writeGenericDINode(const GenericDINode *N, 297 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 298 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 299 unsigned Abbrev); 300 void writeDIEnumerator(const DIEnumerator *N, 301 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 302 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 303 unsigned Abbrev); 304 void writeDIDerivedType(const DIDerivedType *N, 305 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 306 void writeDICompositeType(const DICompositeType *N, 307 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 308 void writeDISubroutineType(const DISubroutineType *N, 309 SmallVectorImpl<uint64_t> &Record, 310 unsigned Abbrev); 311 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 312 unsigned Abbrev); 313 void writeDICompileUnit(const DICompileUnit *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDISubprogram(const DISubprogram *N, 316 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 317 void writeDILexicalBlock(const DILexicalBlock *N, 318 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 319 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 320 SmallVectorImpl<uint64_t> &Record, 321 unsigned Abbrev); 322 void writeDICommonBlock(const DICommonBlock *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 325 unsigned Abbrev); 326 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 327 unsigned Abbrev); 328 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 331 unsigned Abbrev); 332 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 333 SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 336 SmallVectorImpl<uint64_t> &Record, 337 unsigned Abbrev); 338 void writeDIGlobalVariable(const DIGlobalVariable *N, 339 SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDILocalVariable(const DILocalVariable *N, 342 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 343 void writeDILabel(const DILabel *N, 344 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 345 void writeDIExpression(const DIExpression *N, 346 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 347 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 348 SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 void writeDIObjCProperty(const DIObjCProperty *N, 351 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 352 void writeDIImportedEntity(const DIImportedEntity *N, 353 SmallVectorImpl<uint64_t> &Record, 354 unsigned Abbrev); 355 unsigned createNamedMetadataAbbrev(); 356 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 357 unsigned createMetadataStringsAbbrev(); 358 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 359 SmallVectorImpl<uint64_t> &Record); 360 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 361 SmallVectorImpl<uint64_t> &Record, 362 std::vector<unsigned> *MDAbbrevs = nullptr, 363 std::vector<uint64_t> *IndexPos = nullptr); 364 void writeModuleMetadata(); 365 void writeFunctionMetadata(const Function &F); 366 void writeFunctionMetadataAttachment(const Function &F); 367 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 368 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 369 const GlobalObject &GO); 370 void writeModuleMetadataKinds(); 371 void writeOperandBundleTags(); 372 void writeSyncScopeNames(); 373 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 374 void writeModuleConstants(); 375 bool pushValueAndType(const Value *V, unsigned InstID, 376 SmallVectorImpl<unsigned> &Vals); 377 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 378 void pushValue(const Value *V, unsigned InstID, 379 SmallVectorImpl<unsigned> &Vals); 380 void pushValueSigned(const Value *V, unsigned InstID, 381 SmallVectorImpl<uint64_t> &Vals); 382 void writeInstruction(const Instruction &I, unsigned InstID, 383 SmallVectorImpl<unsigned> &Vals); 384 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 385 void writeGlobalValueSymbolTable( 386 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 387 void writeUseList(UseListOrder &&Order); 388 void writeUseListBlock(const Function *F); 389 void 390 writeFunction(const Function &F, 391 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 392 void writeBlockInfo(); 393 void writeModuleHash(size_t BlockStartPos); 394 395 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 396 return unsigned(SSID); 397 } 398 }; 399 400 /// Class to manage the bitcode writing for a combined index. 401 class IndexBitcodeWriter : public BitcodeWriterBase { 402 /// The combined index to write to bitcode. 403 const ModuleSummaryIndex &Index; 404 405 /// When writing a subset of the index for distributed backends, client 406 /// provides a map of modules to the corresponding GUIDs/summaries to write. 407 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 408 409 /// Map that holds the correspondence between the GUID used in the combined 410 /// index and a value id generated by this class to use in references. 411 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 412 413 /// Tracks the last value id recorded in the GUIDToValueMap. 414 unsigned GlobalValueId = 0; 415 416 public: 417 /// Constructs a IndexBitcodeWriter object for the given combined index, 418 /// writing to the provided \p Buffer. When writing a subset of the index 419 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 420 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 421 const ModuleSummaryIndex &Index, 422 const std::map<std::string, GVSummaryMapTy> 423 *ModuleToSummariesForIndex = nullptr) 424 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 425 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 426 // Assign unique value ids to all summaries to be written, for use 427 // in writing out the call graph edges. Save the mapping from GUID 428 // to the new global value id to use when writing those edges, which 429 // are currently saved in the index in terms of GUID. 430 forEachSummary([&](GVInfo I, bool) { 431 GUIDToValueIdMap[I.first] = ++GlobalValueId; 432 }); 433 } 434 435 /// The below iterator returns the GUID and associated summary. 436 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 437 438 /// Calls the callback for each value GUID and summary to be written to 439 /// bitcode. This hides the details of whether they are being pulled from the 440 /// entire index or just those in a provided ModuleToSummariesForIndex map. 441 template<typename Functor> 442 void forEachSummary(Functor Callback) { 443 if (ModuleToSummariesForIndex) { 444 for (auto &M : *ModuleToSummariesForIndex) 445 for (auto &Summary : M.second) { 446 Callback(Summary, false); 447 // Ensure aliasee is handled, e.g. for assigning a valueId, 448 // even if we are not importing the aliasee directly (the 449 // imported alias will contain a copy of aliasee). 450 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 451 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 452 } 453 } else { 454 for (auto &Summaries : Index) 455 for (auto &Summary : Summaries.second.SummaryList) 456 Callback({Summaries.first, Summary.get()}, false); 457 } 458 } 459 460 /// Calls the callback for each entry in the modulePaths StringMap that 461 /// should be written to the module path string table. This hides the details 462 /// of whether they are being pulled from the entire index or just those in a 463 /// provided ModuleToSummariesForIndex map. 464 template <typename Functor> void forEachModule(Functor Callback) { 465 if (ModuleToSummariesForIndex) { 466 for (const auto &M : *ModuleToSummariesForIndex) { 467 const auto &MPI = Index.modulePaths().find(M.first); 468 if (MPI == Index.modulePaths().end()) { 469 // This should only happen if the bitcode file was empty, in which 470 // case we shouldn't be importing (the ModuleToSummariesForIndex 471 // would only include the module we are writing and index for). 472 assert(ModuleToSummariesForIndex->size() == 1); 473 continue; 474 } 475 Callback(*MPI); 476 } 477 } else { 478 for (const auto &MPSE : Index.modulePaths()) 479 Callback(MPSE); 480 } 481 } 482 483 /// Main entry point for writing a combined index to bitcode. 484 void write(); 485 486 private: 487 void writeModStrings(); 488 void writeCombinedGlobalValueSummary(); 489 490 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 491 auto VMI = GUIDToValueIdMap.find(ValGUID); 492 if (VMI == GUIDToValueIdMap.end()) 493 return None; 494 return VMI->second; 495 } 496 497 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 498 }; 499 500 } // end anonymous namespace 501 502 static unsigned getEncodedCastOpcode(unsigned Opcode) { 503 switch (Opcode) { 504 default: llvm_unreachable("Unknown cast instruction!"); 505 case Instruction::Trunc : return bitc::CAST_TRUNC; 506 case Instruction::ZExt : return bitc::CAST_ZEXT; 507 case Instruction::SExt : return bitc::CAST_SEXT; 508 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 509 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 510 case Instruction::UIToFP : return bitc::CAST_UITOFP; 511 case Instruction::SIToFP : return bitc::CAST_SITOFP; 512 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 513 case Instruction::FPExt : return bitc::CAST_FPEXT; 514 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 515 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 516 case Instruction::BitCast : return bitc::CAST_BITCAST; 517 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 518 } 519 } 520 521 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 522 switch (Opcode) { 523 default: llvm_unreachable("Unknown binary instruction!"); 524 case Instruction::FNeg: return bitc::UNOP_FNEG; 525 } 526 } 527 528 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 529 switch (Opcode) { 530 default: llvm_unreachable("Unknown binary instruction!"); 531 case Instruction::Add: 532 case Instruction::FAdd: return bitc::BINOP_ADD; 533 case Instruction::Sub: 534 case Instruction::FSub: return bitc::BINOP_SUB; 535 case Instruction::Mul: 536 case Instruction::FMul: return bitc::BINOP_MUL; 537 case Instruction::UDiv: return bitc::BINOP_UDIV; 538 case Instruction::FDiv: 539 case Instruction::SDiv: return bitc::BINOP_SDIV; 540 case Instruction::URem: return bitc::BINOP_UREM; 541 case Instruction::FRem: 542 case Instruction::SRem: return bitc::BINOP_SREM; 543 case Instruction::Shl: return bitc::BINOP_SHL; 544 case Instruction::LShr: return bitc::BINOP_LSHR; 545 case Instruction::AShr: return bitc::BINOP_ASHR; 546 case Instruction::And: return bitc::BINOP_AND; 547 case Instruction::Or: return bitc::BINOP_OR; 548 case Instruction::Xor: return bitc::BINOP_XOR; 549 } 550 } 551 552 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 553 switch (Op) { 554 default: llvm_unreachable("Unknown RMW operation!"); 555 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 556 case AtomicRMWInst::Add: return bitc::RMW_ADD; 557 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 558 case AtomicRMWInst::And: return bitc::RMW_AND; 559 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 560 case AtomicRMWInst::Or: return bitc::RMW_OR; 561 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 562 case AtomicRMWInst::Max: return bitc::RMW_MAX; 563 case AtomicRMWInst::Min: return bitc::RMW_MIN; 564 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 565 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 566 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 567 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 568 } 569 } 570 571 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 572 switch (Ordering) { 573 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 574 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 575 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 576 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 577 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 578 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 579 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 580 } 581 llvm_unreachable("Invalid ordering"); 582 } 583 584 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 585 StringRef Str, unsigned AbbrevToUse) { 586 SmallVector<unsigned, 64> Vals; 587 588 // Code: [strchar x N] 589 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 590 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 591 AbbrevToUse = 0; 592 Vals.push_back(Str[i]); 593 } 594 595 // Emit the finished record. 596 Stream.EmitRecord(Code, Vals, AbbrevToUse); 597 } 598 599 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 600 switch (Kind) { 601 case Attribute::Alignment: 602 return bitc::ATTR_KIND_ALIGNMENT; 603 case Attribute::AllocSize: 604 return bitc::ATTR_KIND_ALLOC_SIZE; 605 case Attribute::AlwaysInline: 606 return bitc::ATTR_KIND_ALWAYS_INLINE; 607 case Attribute::ArgMemOnly: 608 return bitc::ATTR_KIND_ARGMEMONLY; 609 case Attribute::Builtin: 610 return bitc::ATTR_KIND_BUILTIN; 611 case Attribute::ByVal: 612 return bitc::ATTR_KIND_BY_VAL; 613 case Attribute::Convergent: 614 return bitc::ATTR_KIND_CONVERGENT; 615 case Attribute::InAlloca: 616 return bitc::ATTR_KIND_IN_ALLOCA; 617 case Attribute::Cold: 618 return bitc::ATTR_KIND_COLD; 619 case Attribute::InaccessibleMemOnly: 620 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 621 case Attribute::InaccessibleMemOrArgMemOnly: 622 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 623 case Attribute::InlineHint: 624 return bitc::ATTR_KIND_INLINE_HINT; 625 case Attribute::InReg: 626 return bitc::ATTR_KIND_IN_REG; 627 case Attribute::JumpTable: 628 return bitc::ATTR_KIND_JUMP_TABLE; 629 case Attribute::MinSize: 630 return bitc::ATTR_KIND_MIN_SIZE; 631 case Attribute::Naked: 632 return bitc::ATTR_KIND_NAKED; 633 case Attribute::Nest: 634 return bitc::ATTR_KIND_NEST; 635 case Attribute::NoAlias: 636 return bitc::ATTR_KIND_NO_ALIAS; 637 case Attribute::NoBuiltin: 638 return bitc::ATTR_KIND_NO_BUILTIN; 639 case Attribute::NoCapture: 640 return bitc::ATTR_KIND_NO_CAPTURE; 641 case Attribute::NoDuplicate: 642 return bitc::ATTR_KIND_NO_DUPLICATE; 643 case Attribute::NoFree: 644 return bitc::ATTR_KIND_NOFREE; 645 case Attribute::NoImplicitFloat: 646 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 647 case Attribute::NoInline: 648 return bitc::ATTR_KIND_NO_INLINE; 649 case Attribute::NoRecurse: 650 return bitc::ATTR_KIND_NO_RECURSE; 651 case Attribute::NonLazyBind: 652 return bitc::ATTR_KIND_NON_LAZY_BIND; 653 case Attribute::NonNull: 654 return bitc::ATTR_KIND_NON_NULL; 655 case Attribute::Dereferenceable: 656 return bitc::ATTR_KIND_DEREFERENCEABLE; 657 case Attribute::DereferenceableOrNull: 658 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 659 case Attribute::NoRedZone: 660 return bitc::ATTR_KIND_NO_RED_ZONE; 661 case Attribute::NoReturn: 662 return bitc::ATTR_KIND_NO_RETURN; 663 case Attribute::NoSync: 664 return bitc::ATTR_KIND_NOSYNC; 665 case Attribute::NoCfCheck: 666 return bitc::ATTR_KIND_NOCF_CHECK; 667 case Attribute::NoUnwind: 668 return bitc::ATTR_KIND_NO_UNWIND; 669 case Attribute::OptForFuzzing: 670 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 671 case Attribute::OptimizeForSize: 672 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 673 case Attribute::OptimizeNone: 674 return bitc::ATTR_KIND_OPTIMIZE_NONE; 675 case Attribute::ReadNone: 676 return bitc::ATTR_KIND_READ_NONE; 677 case Attribute::ReadOnly: 678 return bitc::ATTR_KIND_READ_ONLY; 679 case Attribute::Returned: 680 return bitc::ATTR_KIND_RETURNED; 681 case Attribute::ReturnsTwice: 682 return bitc::ATTR_KIND_RETURNS_TWICE; 683 case Attribute::SExt: 684 return bitc::ATTR_KIND_S_EXT; 685 case Attribute::Speculatable: 686 return bitc::ATTR_KIND_SPECULATABLE; 687 case Attribute::StackAlignment: 688 return bitc::ATTR_KIND_STACK_ALIGNMENT; 689 case Attribute::StackProtect: 690 return bitc::ATTR_KIND_STACK_PROTECT; 691 case Attribute::StackProtectReq: 692 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 693 case Attribute::StackProtectStrong: 694 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 695 case Attribute::SafeStack: 696 return bitc::ATTR_KIND_SAFESTACK; 697 case Attribute::ShadowCallStack: 698 return bitc::ATTR_KIND_SHADOWCALLSTACK; 699 case Attribute::StrictFP: 700 return bitc::ATTR_KIND_STRICT_FP; 701 case Attribute::StructRet: 702 return bitc::ATTR_KIND_STRUCT_RET; 703 case Attribute::SanitizeAddress: 704 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 705 case Attribute::SanitizeHWAddress: 706 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 707 case Attribute::SanitizeThread: 708 return bitc::ATTR_KIND_SANITIZE_THREAD; 709 case Attribute::SanitizeMemory: 710 return bitc::ATTR_KIND_SANITIZE_MEMORY; 711 case Attribute::SpeculativeLoadHardening: 712 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 713 case Attribute::SwiftError: 714 return bitc::ATTR_KIND_SWIFT_ERROR; 715 case Attribute::SwiftSelf: 716 return bitc::ATTR_KIND_SWIFT_SELF; 717 case Attribute::UWTable: 718 return bitc::ATTR_KIND_UW_TABLE; 719 case Attribute::WillReturn: 720 return bitc::ATTR_KIND_WILLRETURN; 721 case Attribute::WriteOnly: 722 return bitc::ATTR_KIND_WRITEONLY; 723 case Attribute::ZExt: 724 return bitc::ATTR_KIND_Z_EXT; 725 case Attribute::ImmArg: 726 return bitc::ATTR_KIND_IMMARG; 727 case Attribute::SanitizeMemTag: 728 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 729 case Attribute::EndAttrKinds: 730 llvm_unreachable("Can not encode end-attribute kinds marker."); 731 case Attribute::None: 732 llvm_unreachable("Can not encode none-attribute."); 733 } 734 735 llvm_unreachable("Trying to encode unknown attribute"); 736 } 737 738 void ModuleBitcodeWriter::writeAttributeGroupTable() { 739 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 740 VE.getAttributeGroups(); 741 if (AttrGrps.empty()) return; 742 743 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 744 745 SmallVector<uint64_t, 64> Record; 746 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 747 unsigned AttrListIndex = Pair.first; 748 AttributeSet AS = Pair.second; 749 Record.push_back(VE.getAttributeGroupID(Pair)); 750 Record.push_back(AttrListIndex); 751 752 for (Attribute Attr : AS) { 753 if (Attr.isEnumAttribute()) { 754 Record.push_back(0); 755 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 756 } else if (Attr.isIntAttribute()) { 757 Record.push_back(1); 758 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 759 Record.push_back(Attr.getValueAsInt()); 760 } else if (Attr.isStringAttribute()) { 761 StringRef Kind = Attr.getKindAsString(); 762 StringRef Val = Attr.getValueAsString(); 763 764 Record.push_back(Val.empty() ? 3 : 4); 765 Record.append(Kind.begin(), Kind.end()); 766 Record.push_back(0); 767 if (!Val.empty()) { 768 Record.append(Val.begin(), Val.end()); 769 Record.push_back(0); 770 } 771 } else { 772 assert(Attr.isTypeAttribute()); 773 Type *Ty = Attr.getValueAsType(); 774 Record.push_back(Ty ? 6 : 5); 775 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 776 if (Ty) 777 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 778 } 779 } 780 781 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 782 Record.clear(); 783 } 784 785 Stream.ExitBlock(); 786 } 787 788 void ModuleBitcodeWriter::writeAttributeTable() { 789 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 790 if (Attrs.empty()) return; 791 792 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 793 794 SmallVector<uint64_t, 64> Record; 795 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 796 AttributeList AL = Attrs[i]; 797 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 798 AttributeSet AS = AL.getAttributes(i); 799 if (AS.hasAttributes()) 800 Record.push_back(VE.getAttributeGroupID({i, AS})); 801 } 802 803 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 804 Record.clear(); 805 } 806 807 Stream.ExitBlock(); 808 } 809 810 /// WriteTypeTable - Write out the type table for a module. 811 void ModuleBitcodeWriter::writeTypeTable() { 812 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 813 814 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 815 SmallVector<uint64_t, 64> TypeVals; 816 817 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 818 819 // Abbrev for TYPE_CODE_POINTER. 820 auto Abbv = std::make_shared<BitCodeAbbrev>(); 821 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 823 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 824 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 825 826 // Abbrev for TYPE_CODE_FUNCTION. 827 Abbv = std::make_shared<BitCodeAbbrev>(); 828 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 832 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 833 834 // Abbrev for TYPE_CODE_STRUCT_ANON. 835 Abbv = std::make_shared<BitCodeAbbrev>(); 836 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 840 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 841 842 // Abbrev for TYPE_CODE_STRUCT_NAME. 843 Abbv = std::make_shared<BitCodeAbbrev>(); 844 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 846 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 847 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 848 849 // Abbrev for TYPE_CODE_STRUCT_NAMED. 850 Abbv = std::make_shared<BitCodeAbbrev>(); 851 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 852 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 855 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 856 857 // Abbrev for TYPE_CODE_ARRAY. 858 Abbv = std::make_shared<BitCodeAbbrev>(); 859 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 862 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 863 864 // Emit an entry count so the reader can reserve space. 865 TypeVals.push_back(TypeList.size()); 866 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 867 TypeVals.clear(); 868 869 // Loop over all of the types, emitting each in turn. 870 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 871 Type *T = TypeList[i]; 872 int AbbrevToUse = 0; 873 unsigned Code = 0; 874 875 switch (T->getTypeID()) { 876 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 877 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 878 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 879 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 880 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 881 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 882 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 883 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 884 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 885 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 886 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 887 case Type::IntegerTyID: 888 // INTEGER: [width] 889 Code = bitc::TYPE_CODE_INTEGER; 890 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 891 break; 892 case Type::PointerTyID: { 893 PointerType *PTy = cast<PointerType>(T); 894 // POINTER: [pointee type, address space] 895 Code = bitc::TYPE_CODE_POINTER; 896 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 897 unsigned AddressSpace = PTy->getAddressSpace(); 898 TypeVals.push_back(AddressSpace); 899 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 900 break; 901 } 902 case Type::FunctionTyID: { 903 FunctionType *FT = cast<FunctionType>(T); 904 // FUNCTION: [isvararg, retty, paramty x N] 905 Code = bitc::TYPE_CODE_FUNCTION; 906 TypeVals.push_back(FT->isVarArg()); 907 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 908 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 909 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 910 AbbrevToUse = FunctionAbbrev; 911 break; 912 } 913 case Type::StructTyID: { 914 StructType *ST = cast<StructType>(T); 915 // STRUCT: [ispacked, eltty x N] 916 TypeVals.push_back(ST->isPacked()); 917 // Output all of the element types. 918 for (StructType::element_iterator I = ST->element_begin(), 919 E = ST->element_end(); I != E; ++I) 920 TypeVals.push_back(VE.getTypeID(*I)); 921 922 if (ST->isLiteral()) { 923 Code = bitc::TYPE_CODE_STRUCT_ANON; 924 AbbrevToUse = StructAnonAbbrev; 925 } else { 926 if (ST->isOpaque()) { 927 Code = bitc::TYPE_CODE_OPAQUE; 928 } else { 929 Code = bitc::TYPE_CODE_STRUCT_NAMED; 930 AbbrevToUse = StructNamedAbbrev; 931 } 932 933 // Emit the name if it is present. 934 if (!ST->getName().empty()) 935 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 936 StructNameAbbrev); 937 } 938 break; 939 } 940 case Type::ArrayTyID: { 941 ArrayType *AT = cast<ArrayType>(T); 942 // ARRAY: [numelts, eltty] 943 Code = bitc::TYPE_CODE_ARRAY; 944 TypeVals.push_back(AT->getNumElements()); 945 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 946 AbbrevToUse = ArrayAbbrev; 947 break; 948 } 949 case Type::VectorTyID: { 950 VectorType *VT = cast<VectorType>(T); 951 // VECTOR [numelts, eltty] or 952 // [numelts, eltty, scalable] 953 Code = bitc::TYPE_CODE_VECTOR; 954 TypeVals.push_back(VT->getNumElements()); 955 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 956 if (VT->isScalable()) 957 TypeVals.push_back(VT->isScalable()); 958 break; 959 } 960 } 961 962 // Emit the finished record. 963 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 964 TypeVals.clear(); 965 } 966 967 Stream.ExitBlock(); 968 } 969 970 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 971 switch (Linkage) { 972 case GlobalValue::ExternalLinkage: 973 return 0; 974 case GlobalValue::WeakAnyLinkage: 975 return 16; 976 case GlobalValue::AppendingLinkage: 977 return 2; 978 case GlobalValue::InternalLinkage: 979 return 3; 980 case GlobalValue::LinkOnceAnyLinkage: 981 return 18; 982 case GlobalValue::ExternalWeakLinkage: 983 return 7; 984 case GlobalValue::CommonLinkage: 985 return 8; 986 case GlobalValue::PrivateLinkage: 987 return 9; 988 case GlobalValue::WeakODRLinkage: 989 return 17; 990 case GlobalValue::LinkOnceODRLinkage: 991 return 19; 992 case GlobalValue::AvailableExternallyLinkage: 993 return 12; 994 } 995 llvm_unreachable("Invalid linkage"); 996 } 997 998 static unsigned getEncodedLinkage(const GlobalValue &GV) { 999 return getEncodedLinkage(GV.getLinkage()); 1000 } 1001 1002 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1003 uint64_t RawFlags = 0; 1004 RawFlags |= Flags.ReadNone; 1005 RawFlags |= (Flags.ReadOnly << 1); 1006 RawFlags |= (Flags.NoRecurse << 2); 1007 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1008 RawFlags |= (Flags.NoInline << 4); 1009 RawFlags |= (Flags.AlwaysInline << 5); 1010 return RawFlags; 1011 } 1012 1013 // Decode the flags for GlobalValue in the summary 1014 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1015 uint64_t RawFlags = 0; 1016 1017 RawFlags |= Flags.NotEligibleToImport; // bool 1018 RawFlags |= (Flags.Live << 1); 1019 RawFlags |= (Flags.DSOLocal << 2); 1020 RawFlags |= (Flags.CanAutoHide << 3); 1021 1022 // Linkage don't need to be remapped at that time for the summary. Any future 1023 // change to the getEncodedLinkage() function will need to be taken into 1024 // account here as well. 1025 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1026 1027 return RawFlags; 1028 } 1029 1030 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1031 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1032 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1033 return RawFlags; 1034 } 1035 1036 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1037 switch (GV.getVisibility()) { 1038 case GlobalValue::DefaultVisibility: return 0; 1039 case GlobalValue::HiddenVisibility: return 1; 1040 case GlobalValue::ProtectedVisibility: return 2; 1041 } 1042 llvm_unreachable("Invalid visibility"); 1043 } 1044 1045 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1046 switch (GV.getDLLStorageClass()) { 1047 case GlobalValue::DefaultStorageClass: return 0; 1048 case GlobalValue::DLLImportStorageClass: return 1; 1049 case GlobalValue::DLLExportStorageClass: return 2; 1050 } 1051 llvm_unreachable("Invalid DLL storage class"); 1052 } 1053 1054 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1055 switch (GV.getThreadLocalMode()) { 1056 case GlobalVariable::NotThreadLocal: return 0; 1057 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1058 case GlobalVariable::LocalDynamicTLSModel: return 2; 1059 case GlobalVariable::InitialExecTLSModel: return 3; 1060 case GlobalVariable::LocalExecTLSModel: return 4; 1061 } 1062 llvm_unreachable("Invalid TLS model"); 1063 } 1064 1065 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1066 switch (C.getSelectionKind()) { 1067 case Comdat::Any: 1068 return bitc::COMDAT_SELECTION_KIND_ANY; 1069 case Comdat::ExactMatch: 1070 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1071 case Comdat::Largest: 1072 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1073 case Comdat::NoDuplicates: 1074 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1075 case Comdat::SameSize: 1076 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1077 } 1078 llvm_unreachable("Invalid selection kind"); 1079 } 1080 1081 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1082 switch (GV.getUnnamedAddr()) { 1083 case GlobalValue::UnnamedAddr::None: return 0; 1084 case GlobalValue::UnnamedAddr::Local: return 2; 1085 case GlobalValue::UnnamedAddr::Global: return 1; 1086 } 1087 llvm_unreachable("Invalid unnamed_addr"); 1088 } 1089 1090 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1091 if (GenerateHash) 1092 Hasher.update(Str); 1093 return StrtabBuilder.add(Str); 1094 } 1095 1096 void ModuleBitcodeWriter::writeComdats() { 1097 SmallVector<unsigned, 64> Vals; 1098 for (const Comdat *C : VE.getComdats()) { 1099 // COMDAT: [strtab offset, strtab size, selection_kind] 1100 Vals.push_back(addToStrtab(C->getName())); 1101 Vals.push_back(C->getName().size()); 1102 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1103 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1104 Vals.clear(); 1105 } 1106 } 1107 1108 /// Write a record that will eventually hold the word offset of the 1109 /// module-level VST. For now the offset is 0, which will be backpatched 1110 /// after the real VST is written. Saves the bit offset to backpatch. 1111 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1112 // Write a placeholder value in for the offset of the real VST, 1113 // which is written after the function blocks so that it can include 1114 // the offset of each function. The placeholder offset will be 1115 // updated when the real VST is written. 1116 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1117 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1118 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1119 // hold the real VST offset. Must use fixed instead of VBR as we don't 1120 // know how many VBR chunks to reserve ahead of time. 1121 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1122 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1123 1124 // Emit the placeholder 1125 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1126 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1127 1128 // Compute and save the bit offset to the placeholder, which will be 1129 // patched when the real VST is written. We can simply subtract the 32-bit 1130 // fixed size from the current bit number to get the location to backpatch. 1131 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1132 } 1133 1134 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1135 1136 /// Determine the encoding to use for the given string name and length. 1137 static StringEncoding getStringEncoding(StringRef Str) { 1138 bool isChar6 = true; 1139 for (char C : Str) { 1140 if (isChar6) 1141 isChar6 = BitCodeAbbrevOp::isChar6(C); 1142 if ((unsigned char)C & 128) 1143 // don't bother scanning the rest. 1144 return SE_Fixed8; 1145 } 1146 if (isChar6) 1147 return SE_Char6; 1148 return SE_Fixed7; 1149 } 1150 1151 /// Emit top-level description of module, including target triple, inline asm, 1152 /// descriptors for global variables, and function prototype info. 1153 /// Returns the bit offset to backpatch with the location of the real VST. 1154 void ModuleBitcodeWriter::writeModuleInfo() { 1155 // Emit various pieces of data attached to a module. 1156 if (!M.getTargetTriple().empty()) 1157 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1158 0 /*TODO*/); 1159 const std::string &DL = M.getDataLayoutStr(); 1160 if (!DL.empty()) 1161 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1162 if (!M.getModuleInlineAsm().empty()) 1163 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1164 0 /*TODO*/); 1165 1166 // Emit information about sections and GC, computing how many there are. Also 1167 // compute the maximum alignment value. 1168 std::map<std::string, unsigned> SectionMap; 1169 std::map<std::string, unsigned> GCMap; 1170 unsigned MaxAlignment = 0; 1171 unsigned MaxGlobalType = 0; 1172 for (const GlobalValue &GV : M.globals()) { 1173 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1174 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1175 if (GV.hasSection()) { 1176 // Give section names unique ID's. 1177 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1178 if (!Entry) { 1179 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1180 0 /*TODO*/); 1181 Entry = SectionMap.size(); 1182 } 1183 } 1184 } 1185 for (const Function &F : M) { 1186 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1187 if (F.hasSection()) { 1188 // Give section names unique ID's. 1189 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1190 if (!Entry) { 1191 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1192 0 /*TODO*/); 1193 Entry = SectionMap.size(); 1194 } 1195 } 1196 if (F.hasGC()) { 1197 // Same for GC names. 1198 unsigned &Entry = GCMap[F.getGC()]; 1199 if (!Entry) { 1200 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1201 0 /*TODO*/); 1202 Entry = GCMap.size(); 1203 } 1204 } 1205 } 1206 1207 // Emit abbrev for globals, now that we know # sections and max alignment. 1208 unsigned SimpleGVarAbbrev = 0; 1209 if (!M.global_empty()) { 1210 // Add an abbrev for common globals with no visibility or thread localness. 1211 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1212 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1215 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1216 Log2_32_Ceil(MaxGlobalType+1))); 1217 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1218 //| explicitType << 1 1219 //| constant 1220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1222 if (MaxAlignment == 0) // Alignment. 1223 Abbv->Add(BitCodeAbbrevOp(0)); 1224 else { 1225 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1226 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1227 Log2_32_Ceil(MaxEncAlignment+1))); 1228 } 1229 if (SectionMap.empty()) // Section. 1230 Abbv->Add(BitCodeAbbrevOp(0)); 1231 else 1232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1233 Log2_32_Ceil(SectionMap.size()+1))); 1234 // Don't bother emitting vis + thread local. 1235 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1236 } 1237 1238 SmallVector<unsigned, 64> Vals; 1239 // Emit the module's source file name. 1240 { 1241 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1242 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1243 if (Bits == SE_Char6) 1244 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1245 else if (Bits == SE_Fixed7) 1246 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1247 1248 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1249 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1250 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1251 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1252 Abbv->Add(AbbrevOpToUse); 1253 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1254 1255 for (const auto P : M.getSourceFileName()) 1256 Vals.push_back((unsigned char)P); 1257 1258 // Emit the finished record. 1259 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1260 Vals.clear(); 1261 } 1262 1263 // Emit the global variable information. 1264 for (const GlobalVariable &GV : M.globals()) { 1265 unsigned AbbrevToUse = 0; 1266 1267 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1268 // linkage, alignment, section, visibility, threadlocal, 1269 // unnamed_addr, externally_initialized, dllstorageclass, 1270 // comdat, attributes, DSO_Local] 1271 Vals.push_back(addToStrtab(GV.getName())); 1272 Vals.push_back(GV.getName().size()); 1273 Vals.push_back(VE.getTypeID(GV.getValueType())); 1274 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1275 Vals.push_back(GV.isDeclaration() ? 0 : 1276 (VE.getValueID(GV.getInitializer()) + 1)); 1277 Vals.push_back(getEncodedLinkage(GV)); 1278 Vals.push_back(Log2_32(GV.getAlignment())+1); 1279 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1280 : 0); 1281 if (GV.isThreadLocal() || 1282 GV.getVisibility() != GlobalValue::DefaultVisibility || 1283 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1284 GV.isExternallyInitialized() || 1285 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1286 GV.hasComdat() || 1287 GV.hasAttributes() || 1288 GV.isDSOLocal() || 1289 GV.hasPartition()) { 1290 Vals.push_back(getEncodedVisibility(GV)); 1291 Vals.push_back(getEncodedThreadLocalMode(GV)); 1292 Vals.push_back(getEncodedUnnamedAddr(GV)); 1293 Vals.push_back(GV.isExternallyInitialized()); 1294 Vals.push_back(getEncodedDLLStorageClass(GV)); 1295 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1296 1297 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1298 Vals.push_back(VE.getAttributeListID(AL)); 1299 1300 Vals.push_back(GV.isDSOLocal()); 1301 Vals.push_back(addToStrtab(GV.getPartition())); 1302 Vals.push_back(GV.getPartition().size()); 1303 } else { 1304 AbbrevToUse = SimpleGVarAbbrev; 1305 } 1306 1307 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1308 Vals.clear(); 1309 } 1310 1311 // Emit the function proto information. 1312 for (const Function &F : M) { 1313 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1314 // linkage, paramattrs, alignment, section, visibility, gc, 1315 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1316 // prefixdata, personalityfn, DSO_Local, addrspace] 1317 Vals.push_back(addToStrtab(F.getName())); 1318 Vals.push_back(F.getName().size()); 1319 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1320 Vals.push_back(F.getCallingConv()); 1321 Vals.push_back(F.isDeclaration()); 1322 Vals.push_back(getEncodedLinkage(F)); 1323 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1324 Vals.push_back(Log2_32(F.getAlignment())+1); 1325 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1326 : 0); 1327 Vals.push_back(getEncodedVisibility(F)); 1328 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1329 Vals.push_back(getEncodedUnnamedAddr(F)); 1330 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1331 : 0); 1332 Vals.push_back(getEncodedDLLStorageClass(F)); 1333 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1334 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1335 : 0); 1336 Vals.push_back( 1337 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1338 1339 Vals.push_back(F.isDSOLocal()); 1340 Vals.push_back(F.getAddressSpace()); 1341 Vals.push_back(addToStrtab(F.getPartition())); 1342 Vals.push_back(F.getPartition().size()); 1343 1344 unsigned AbbrevToUse = 0; 1345 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1346 Vals.clear(); 1347 } 1348 1349 // Emit the alias information. 1350 for (const GlobalAlias &A : M.aliases()) { 1351 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1352 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1353 // DSO_Local] 1354 Vals.push_back(addToStrtab(A.getName())); 1355 Vals.push_back(A.getName().size()); 1356 Vals.push_back(VE.getTypeID(A.getValueType())); 1357 Vals.push_back(A.getType()->getAddressSpace()); 1358 Vals.push_back(VE.getValueID(A.getAliasee())); 1359 Vals.push_back(getEncodedLinkage(A)); 1360 Vals.push_back(getEncodedVisibility(A)); 1361 Vals.push_back(getEncodedDLLStorageClass(A)); 1362 Vals.push_back(getEncodedThreadLocalMode(A)); 1363 Vals.push_back(getEncodedUnnamedAddr(A)); 1364 Vals.push_back(A.isDSOLocal()); 1365 Vals.push_back(addToStrtab(A.getPartition())); 1366 Vals.push_back(A.getPartition().size()); 1367 1368 unsigned AbbrevToUse = 0; 1369 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1370 Vals.clear(); 1371 } 1372 1373 // Emit the ifunc information. 1374 for (const GlobalIFunc &I : M.ifuncs()) { 1375 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1376 // val#, linkage, visibility, DSO_Local] 1377 Vals.push_back(addToStrtab(I.getName())); 1378 Vals.push_back(I.getName().size()); 1379 Vals.push_back(VE.getTypeID(I.getValueType())); 1380 Vals.push_back(I.getType()->getAddressSpace()); 1381 Vals.push_back(VE.getValueID(I.getResolver())); 1382 Vals.push_back(getEncodedLinkage(I)); 1383 Vals.push_back(getEncodedVisibility(I)); 1384 Vals.push_back(I.isDSOLocal()); 1385 Vals.push_back(addToStrtab(I.getPartition())); 1386 Vals.push_back(I.getPartition().size()); 1387 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1388 Vals.clear(); 1389 } 1390 1391 writeValueSymbolTableForwardDecl(); 1392 } 1393 1394 static uint64_t getOptimizationFlags(const Value *V) { 1395 uint64_t Flags = 0; 1396 1397 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1398 if (OBO->hasNoSignedWrap()) 1399 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1400 if (OBO->hasNoUnsignedWrap()) 1401 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1402 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1403 if (PEO->isExact()) 1404 Flags |= 1 << bitc::PEO_EXACT; 1405 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1406 if (FPMO->hasAllowReassoc()) 1407 Flags |= bitc::AllowReassoc; 1408 if (FPMO->hasNoNaNs()) 1409 Flags |= bitc::NoNaNs; 1410 if (FPMO->hasNoInfs()) 1411 Flags |= bitc::NoInfs; 1412 if (FPMO->hasNoSignedZeros()) 1413 Flags |= bitc::NoSignedZeros; 1414 if (FPMO->hasAllowReciprocal()) 1415 Flags |= bitc::AllowReciprocal; 1416 if (FPMO->hasAllowContract()) 1417 Flags |= bitc::AllowContract; 1418 if (FPMO->hasApproxFunc()) 1419 Flags |= bitc::ApproxFunc; 1420 } 1421 1422 return Flags; 1423 } 1424 1425 void ModuleBitcodeWriter::writeValueAsMetadata( 1426 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1427 // Mimic an MDNode with a value as one operand. 1428 Value *V = MD->getValue(); 1429 Record.push_back(VE.getTypeID(V->getType())); 1430 Record.push_back(VE.getValueID(V)); 1431 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1432 Record.clear(); 1433 } 1434 1435 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1436 SmallVectorImpl<uint64_t> &Record, 1437 unsigned Abbrev) { 1438 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1439 Metadata *MD = N->getOperand(i); 1440 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1441 "Unexpected function-local metadata"); 1442 Record.push_back(VE.getMetadataOrNullID(MD)); 1443 } 1444 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1445 : bitc::METADATA_NODE, 1446 Record, Abbrev); 1447 Record.clear(); 1448 } 1449 1450 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1451 // Assume the column is usually under 128, and always output the inlined-at 1452 // location (it's never more expensive than building an array size 1). 1453 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1454 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1461 return Stream.EmitAbbrev(std::move(Abbv)); 1462 } 1463 1464 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1465 SmallVectorImpl<uint64_t> &Record, 1466 unsigned &Abbrev) { 1467 if (!Abbrev) 1468 Abbrev = createDILocationAbbrev(); 1469 1470 Record.push_back(N->isDistinct()); 1471 Record.push_back(N->getLine()); 1472 Record.push_back(N->getColumn()); 1473 Record.push_back(VE.getMetadataID(N->getScope())); 1474 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1475 Record.push_back(N->isImplicitCode()); 1476 1477 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1478 Record.clear(); 1479 } 1480 1481 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1482 // Assume the column is usually under 128, and always output the inlined-at 1483 // location (it's never more expensive than building an array size 1). 1484 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1485 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1490 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1491 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1492 return Stream.EmitAbbrev(std::move(Abbv)); 1493 } 1494 1495 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1496 SmallVectorImpl<uint64_t> &Record, 1497 unsigned &Abbrev) { 1498 if (!Abbrev) 1499 Abbrev = createGenericDINodeAbbrev(); 1500 1501 Record.push_back(N->isDistinct()); 1502 Record.push_back(N->getTag()); 1503 Record.push_back(0); // Per-tag version field; unused for now. 1504 1505 for (auto &I : N->operands()) 1506 Record.push_back(VE.getMetadataOrNullID(I)); 1507 1508 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1509 Record.clear(); 1510 } 1511 1512 static uint64_t rotateSign(int64_t I) { 1513 uint64_t U = I; 1514 return I < 0 ? ~(U << 1) : U << 1; 1515 } 1516 1517 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1518 SmallVectorImpl<uint64_t> &Record, 1519 unsigned Abbrev) { 1520 const uint64_t Version = 1 << 1; 1521 Record.push_back((uint64_t)N->isDistinct() | Version); 1522 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1523 Record.push_back(rotateSign(N->getLowerBound())); 1524 1525 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1526 Record.clear(); 1527 } 1528 1529 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1530 SmallVectorImpl<uint64_t> &Record, 1531 unsigned Abbrev) { 1532 Record.push_back((N->isUnsigned() << 1) | N->isDistinct()); 1533 Record.push_back(rotateSign(N->getValue())); 1534 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1535 1536 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1537 Record.clear(); 1538 } 1539 1540 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1541 SmallVectorImpl<uint64_t> &Record, 1542 unsigned Abbrev) { 1543 Record.push_back(N->isDistinct()); 1544 Record.push_back(N->getTag()); 1545 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1546 Record.push_back(N->getSizeInBits()); 1547 Record.push_back(N->getAlignInBits()); 1548 Record.push_back(N->getEncoding()); 1549 Record.push_back(N->getFlags()); 1550 1551 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1552 Record.clear(); 1553 } 1554 1555 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1556 SmallVectorImpl<uint64_t> &Record, 1557 unsigned Abbrev) { 1558 Record.push_back(N->isDistinct()); 1559 Record.push_back(N->getTag()); 1560 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1561 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1562 Record.push_back(N->getLine()); 1563 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1564 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1565 Record.push_back(N->getSizeInBits()); 1566 Record.push_back(N->getAlignInBits()); 1567 Record.push_back(N->getOffsetInBits()); 1568 Record.push_back(N->getFlags()); 1569 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1570 1571 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1572 // that there is no DWARF address space associated with DIDerivedType. 1573 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1574 Record.push_back(*DWARFAddressSpace + 1); 1575 else 1576 Record.push_back(0); 1577 1578 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1579 Record.clear(); 1580 } 1581 1582 void ModuleBitcodeWriter::writeDICompositeType( 1583 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1584 unsigned Abbrev) { 1585 const unsigned IsNotUsedInOldTypeRef = 0x2; 1586 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1587 Record.push_back(N->getTag()); 1588 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1589 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1590 Record.push_back(N->getLine()); 1591 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1592 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1593 Record.push_back(N->getSizeInBits()); 1594 Record.push_back(N->getAlignInBits()); 1595 Record.push_back(N->getOffsetInBits()); 1596 Record.push_back(N->getFlags()); 1597 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1598 Record.push_back(N->getRuntimeLang()); 1599 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1600 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1601 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1602 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1603 1604 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1605 Record.clear(); 1606 } 1607 1608 void ModuleBitcodeWriter::writeDISubroutineType( 1609 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1610 unsigned Abbrev) { 1611 const unsigned HasNoOldTypeRefs = 0x2; 1612 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1613 Record.push_back(N->getFlags()); 1614 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1615 Record.push_back(N->getCC()); 1616 1617 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1618 Record.clear(); 1619 } 1620 1621 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1622 SmallVectorImpl<uint64_t> &Record, 1623 unsigned Abbrev) { 1624 Record.push_back(N->isDistinct()); 1625 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1626 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1627 if (N->getRawChecksum()) { 1628 Record.push_back(N->getRawChecksum()->Kind); 1629 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1630 } else { 1631 // Maintain backwards compatibility with the old internal representation of 1632 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1633 Record.push_back(0); 1634 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1635 } 1636 auto Source = N->getRawSource(); 1637 if (Source) 1638 Record.push_back(VE.getMetadataOrNullID(*Source)); 1639 1640 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1641 Record.clear(); 1642 } 1643 1644 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1645 SmallVectorImpl<uint64_t> &Record, 1646 unsigned Abbrev) { 1647 assert(N->isDistinct() && "Expected distinct compile units"); 1648 Record.push_back(/* IsDistinct */ true); 1649 Record.push_back(N->getSourceLanguage()); 1650 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1651 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1652 Record.push_back(N->isOptimized()); 1653 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1654 Record.push_back(N->getRuntimeVersion()); 1655 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1656 Record.push_back(N->getEmissionKind()); 1657 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1658 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1659 Record.push_back(/* subprograms */ 0); 1660 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1661 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1662 Record.push_back(N->getDWOId()); 1663 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1664 Record.push_back(N->getSplitDebugInlining()); 1665 Record.push_back(N->getDebugInfoForProfiling()); 1666 Record.push_back((unsigned)N->getNameTableKind()); 1667 Record.push_back(N->getRangesBaseAddress()); 1668 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1669 1670 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1671 Record.clear(); 1672 } 1673 1674 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1675 SmallVectorImpl<uint64_t> &Record, 1676 unsigned Abbrev) { 1677 const uint64_t HasUnitFlag = 1 << 1; 1678 const uint64_t HasSPFlagsFlag = 1 << 2; 1679 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1680 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1681 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1682 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1683 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1684 Record.push_back(N->getLine()); 1685 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1686 Record.push_back(N->getScopeLine()); 1687 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1688 Record.push_back(N->getSPFlags()); 1689 Record.push_back(N->getVirtualIndex()); 1690 Record.push_back(N->getFlags()); 1691 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1692 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1693 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1694 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1695 Record.push_back(N->getThisAdjustment()); 1696 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1697 1698 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1699 Record.clear(); 1700 } 1701 1702 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1703 SmallVectorImpl<uint64_t> &Record, 1704 unsigned Abbrev) { 1705 Record.push_back(N->isDistinct()); 1706 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1707 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1708 Record.push_back(N->getLine()); 1709 Record.push_back(N->getColumn()); 1710 1711 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1712 Record.clear(); 1713 } 1714 1715 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1716 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1717 unsigned Abbrev) { 1718 Record.push_back(N->isDistinct()); 1719 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1720 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1721 Record.push_back(N->getDiscriminator()); 1722 1723 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1724 Record.clear(); 1725 } 1726 1727 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1728 SmallVectorImpl<uint64_t> &Record, 1729 unsigned Abbrev) { 1730 Record.push_back(N->isDistinct()); 1731 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1732 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1733 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1734 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1735 Record.push_back(N->getLineNo()); 1736 1737 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1738 Record.clear(); 1739 } 1740 1741 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1742 SmallVectorImpl<uint64_t> &Record, 1743 unsigned Abbrev) { 1744 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1745 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1746 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1747 1748 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1749 Record.clear(); 1750 } 1751 1752 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1753 SmallVectorImpl<uint64_t> &Record, 1754 unsigned Abbrev) { 1755 Record.push_back(N->isDistinct()); 1756 Record.push_back(N->getMacinfoType()); 1757 Record.push_back(N->getLine()); 1758 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1759 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1760 1761 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1762 Record.clear(); 1763 } 1764 1765 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1766 SmallVectorImpl<uint64_t> &Record, 1767 unsigned Abbrev) { 1768 Record.push_back(N->isDistinct()); 1769 Record.push_back(N->getMacinfoType()); 1770 Record.push_back(N->getLine()); 1771 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1772 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1773 1774 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1775 Record.clear(); 1776 } 1777 1778 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1779 SmallVectorImpl<uint64_t> &Record, 1780 unsigned Abbrev) { 1781 Record.push_back(N->isDistinct()); 1782 for (auto &I : N->operands()) 1783 Record.push_back(VE.getMetadataOrNullID(I)); 1784 1785 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1786 Record.clear(); 1787 } 1788 1789 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1790 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1791 unsigned Abbrev) { 1792 Record.push_back(N->isDistinct()); 1793 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1794 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1795 Record.push_back(N->isDefault()); 1796 1797 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1798 Record.clear(); 1799 } 1800 1801 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1802 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1803 unsigned Abbrev) { 1804 Record.push_back(N->isDistinct()); 1805 Record.push_back(N->getTag()); 1806 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1807 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1808 Record.push_back(N->isDefault()); 1809 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1810 1811 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1812 Record.clear(); 1813 } 1814 1815 void ModuleBitcodeWriter::writeDIGlobalVariable( 1816 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1817 unsigned Abbrev) { 1818 const uint64_t Version = 2 << 1; 1819 Record.push_back((uint64_t)N->isDistinct() | Version); 1820 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1821 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1822 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1823 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1824 Record.push_back(N->getLine()); 1825 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1826 Record.push_back(N->isLocalToUnit()); 1827 Record.push_back(N->isDefinition()); 1828 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1829 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1830 Record.push_back(N->getAlignInBits()); 1831 1832 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1833 Record.clear(); 1834 } 1835 1836 void ModuleBitcodeWriter::writeDILocalVariable( 1837 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1838 unsigned Abbrev) { 1839 // In order to support all possible bitcode formats in BitcodeReader we need 1840 // to distinguish the following cases: 1841 // 1) Record has no artificial tag (Record[1]), 1842 // has no obsolete inlinedAt field (Record[9]). 1843 // In this case Record size will be 8, HasAlignment flag is false. 1844 // 2) Record has artificial tag (Record[1]), 1845 // has no obsolete inlignedAt field (Record[9]). 1846 // In this case Record size will be 9, HasAlignment flag is false. 1847 // 3) Record has both artificial tag (Record[1]) and 1848 // obsolete inlignedAt field (Record[9]). 1849 // In this case Record size will be 10, HasAlignment flag is false. 1850 // 4) Record has neither artificial tag, nor inlignedAt field, but 1851 // HasAlignment flag is true and Record[8] contains alignment value. 1852 const uint64_t HasAlignmentFlag = 1 << 1; 1853 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1854 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1855 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1856 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1857 Record.push_back(N->getLine()); 1858 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1859 Record.push_back(N->getArg()); 1860 Record.push_back(N->getFlags()); 1861 Record.push_back(N->getAlignInBits()); 1862 1863 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1864 Record.clear(); 1865 } 1866 1867 void ModuleBitcodeWriter::writeDILabel( 1868 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1869 unsigned Abbrev) { 1870 Record.push_back((uint64_t)N->isDistinct()); 1871 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1872 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1873 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1874 Record.push_back(N->getLine()); 1875 1876 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 1877 Record.clear(); 1878 } 1879 1880 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1881 SmallVectorImpl<uint64_t> &Record, 1882 unsigned Abbrev) { 1883 Record.reserve(N->getElements().size() + 1); 1884 const uint64_t Version = 3 << 1; 1885 Record.push_back((uint64_t)N->isDistinct() | Version); 1886 Record.append(N->elements_begin(), N->elements_end()); 1887 1888 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1889 Record.clear(); 1890 } 1891 1892 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1893 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1894 unsigned Abbrev) { 1895 Record.push_back(N->isDistinct()); 1896 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1897 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1898 1899 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1900 Record.clear(); 1901 } 1902 1903 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1904 SmallVectorImpl<uint64_t> &Record, 1905 unsigned Abbrev) { 1906 Record.push_back(N->isDistinct()); 1907 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1908 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1909 Record.push_back(N->getLine()); 1910 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1911 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1912 Record.push_back(N->getAttributes()); 1913 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1914 1915 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1916 Record.clear(); 1917 } 1918 1919 void ModuleBitcodeWriter::writeDIImportedEntity( 1920 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1921 unsigned Abbrev) { 1922 Record.push_back(N->isDistinct()); 1923 Record.push_back(N->getTag()); 1924 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1925 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1926 Record.push_back(N->getLine()); 1927 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1928 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1929 1930 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1931 Record.clear(); 1932 } 1933 1934 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1935 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1936 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1939 return Stream.EmitAbbrev(std::move(Abbv)); 1940 } 1941 1942 void ModuleBitcodeWriter::writeNamedMetadata( 1943 SmallVectorImpl<uint64_t> &Record) { 1944 if (M.named_metadata_empty()) 1945 return; 1946 1947 unsigned Abbrev = createNamedMetadataAbbrev(); 1948 for (const NamedMDNode &NMD : M.named_metadata()) { 1949 // Write name. 1950 StringRef Str = NMD.getName(); 1951 Record.append(Str.bytes_begin(), Str.bytes_end()); 1952 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1953 Record.clear(); 1954 1955 // Write named metadata operands. 1956 for (const MDNode *N : NMD.operands()) 1957 Record.push_back(VE.getMetadataID(N)); 1958 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1959 Record.clear(); 1960 } 1961 } 1962 1963 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1964 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1965 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1969 return Stream.EmitAbbrev(std::move(Abbv)); 1970 } 1971 1972 /// Write out a record for MDString. 1973 /// 1974 /// All the metadata strings in a metadata block are emitted in a single 1975 /// record. The sizes and strings themselves are shoved into a blob. 1976 void ModuleBitcodeWriter::writeMetadataStrings( 1977 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1978 if (Strings.empty()) 1979 return; 1980 1981 // Start the record with the number of strings. 1982 Record.push_back(bitc::METADATA_STRINGS); 1983 Record.push_back(Strings.size()); 1984 1985 // Emit the sizes of the strings in the blob. 1986 SmallString<256> Blob; 1987 { 1988 BitstreamWriter W(Blob); 1989 for (const Metadata *MD : Strings) 1990 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1991 W.FlushToWord(); 1992 } 1993 1994 // Add the offset to the strings to the record. 1995 Record.push_back(Blob.size()); 1996 1997 // Add the strings to the blob. 1998 for (const Metadata *MD : Strings) 1999 Blob.append(cast<MDString>(MD)->getString()); 2000 2001 // Emit the final record. 2002 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2003 Record.clear(); 2004 } 2005 2006 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2007 enum MetadataAbbrev : unsigned { 2008 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2009 #include "llvm/IR/Metadata.def" 2010 LastPlusOne 2011 }; 2012 2013 void ModuleBitcodeWriter::writeMetadataRecords( 2014 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2015 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2016 if (MDs.empty()) 2017 return; 2018 2019 // Initialize MDNode abbreviations. 2020 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2021 #include "llvm/IR/Metadata.def" 2022 2023 for (const Metadata *MD : MDs) { 2024 if (IndexPos) 2025 IndexPos->push_back(Stream.GetCurrentBitNo()); 2026 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2027 assert(N->isResolved() && "Expected forward references to be resolved"); 2028 2029 switch (N->getMetadataID()) { 2030 default: 2031 llvm_unreachable("Invalid MDNode subclass"); 2032 #define HANDLE_MDNODE_LEAF(CLASS) \ 2033 case Metadata::CLASS##Kind: \ 2034 if (MDAbbrevs) \ 2035 write##CLASS(cast<CLASS>(N), Record, \ 2036 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2037 else \ 2038 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2039 continue; 2040 #include "llvm/IR/Metadata.def" 2041 } 2042 } 2043 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2044 } 2045 } 2046 2047 void ModuleBitcodeWriter::writeModuleMetadata() { 2048 if (!VE.hasMDs() && M.named_metadata_empty()) 2049 return; 2050 2051 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2052 SmallVector<uint64_t, 64> Record; 2053 2054 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2055 // block and load any metadata. 2056 std::vector<unsigned> MDAbbrevs; 2057 2058 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2059 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2060 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2061 createGenericDINodeAbbrev(); 2062 2063 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2064 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2067 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2068 2069 Abbv = std::make_shared<BitCodeAbbrev>(); 2070 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2072 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2073 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2074 2075 // Emit MDStrings together upfront. 2076 writeMetadataStrings(VE.getMDStrings(), Record); 2077 2078 // We only emit an index for the metadata record if we have more than a given 2079 // (naive) threshold of metadatas, otherwise it is not worth it. 2080 if (VE.getNonMDStrings().size() > IndexThreshold) { 2081 // Write a placeholder value in for the offset of the metadata index, 2082 // which is written after the records, so that it can include 2083 // the offset of each entry. The placeholder offset will be 2084 // updated after all records are emitted. 2085 uint64_t Vals[] = {0, 0}; 2086 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2087 } 2088 2089 // Compute and save the bit offset to the current position, which will be 2090 // patched when we emit the index later. We can simply subtract the 64-bit 2091 // fixed size from the current bit number to get the location to backpatch. 2092 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2093 2094 // This index will contain the bitpos for each individual record. 2095 std::vector<uint64_t> IndexPos; 2096 IndexPos.reserve(VE.getNonMDStrings().size()); 2097 2098 // Write all the records 2099 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2100 2101 if (VE.getNonMDStrings().size() > IndexThreshold) { 2102 // Now that we have emitted all the records we will emit the index. But 2103 // first 2104 // backpatch the forward reference so that the reader can skip the records 2105 // efficiently. 2106 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2107 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2108 2109 // Delta encode the index. 2110 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2111 for (auto &Elt : IndexPos) { 2112 auto EltDelta = Elt - PreviousValue; 2113 PreviousValue = Elt; 2114 Elt = EltDelta; 2115 } 2116 // Emit the index record. 2117 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2118 IndexPos.clear(); 2119 } 2120 2121 // Write the named metadata now. 2122 writeNamedMetadata(Record); 2123 2124 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2125 SmallVector<uint64_t, 4> Record; 2126 Record.push_back(VE.getValueID(&GO)); 2127 pushGlobalMetadataAttachment(Record, GO); 2128 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2129 }; 2130 for (const Function &F : M) 2131 if (F.isDeclaration() && F.hasMetadata()) 2132 AddDeclAttachedMetadata(F); 2133 // FIXME: Only store metadata for declarations here, and move data for global 2134 // variable definitions to a separate block (PR28134). 2135 for (const GlobalVariable &GV : M.globals()) 2136 if (GV.hasMetadata()) 2137 AddDeclAttachedMetadata(GV); 2138 2139 Stream.ExitBlock(); 2140 } 2141 2142 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2143 if (!VE.hasMDs()) 2144 return; 2145 2146 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2147 SmallVector<uint64_t, 64> Record; 2148 writeMetadataStrings(VE.getMDStrings(), Record); 2149 writeMetadataRecords(VE.getNonMDStrings(), Record); 2150 Stream.ExitBlock(); 2151 } 2152 2153 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2154 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2155 // [n x [id, mdnode]] 2156 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2157 GO.getAllMetadata(MDs); 2158 for (const auto &I : MDs) { 2159 Record.push_back(I.first); 2160 Record.push_back(VE.getMetadataID(I.second)); 2161 } 2162 } 2163 2164 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2165 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2166 2167 SmallVector<uint64_t, 64> Record; 2168 2169 if (F.hasMetadata()) { 2170 pushGlobalMetadataAttachment(Record, F); 2171 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2172 Record.clear(); 2173 } 2174 2175 // Write metadata attachments 2176 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2177 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2178 for (const BasicBlock &BB : F) 2179 for (const Instruction &I : BB) { 2180 MDs.clear(); 2181 I.getAllMetadataOtherThanDebugLoc(MDs); 2182 2183 // If no metadata, ignore instruction. 2184 if (MDs.empty()) continue; 2185 2186 Record.push_back(VE.getInstructionID(&I)); 2187 2188 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2189 Record.push_back(MDs[i].first); 2190 Record.push_back(VE.getMetadataID(MDs[i].second)); 2191 } 2192 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2193 Record.clear(); 2194 } 2195 2196 Stream.ExitBlock(); 2197 } 2198 2199 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2200 SmallVector<uint64_t, 64> Record; 2201 2202 // Write metadata kinds 2203 // METADATA_KIND - [n x [id, name]] 2204 SmallVector<StringRef, 8> Names; 2205 M.getMDKindNames(Names); 2206 2207 if (Names.empty()) return; 2208 2209 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2210 2211 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2212 Record.push_back(MDKindID); 2213 StringRef KName = Names[MDKindID]; 2214 Record.append(KName.begin(), KName.end()); 2215 2216 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2217 Record.clear(); 2218 } 2219 2220 Stream.ExitBlock(); 2221 } 2222 2223 void ModuleBitcodeWriter::writeOperandBundleTags() { 2224 // Write metadata kinds 2225 // 2226 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2227 // 2228 // OPERAND_BUNDLE_TAG - [strchr x N] 2229 2230 SmallVector<StringRef, 8> Tags; 2231 M.getOperandBundleTags(Tags); 2232 2233 if (Tags.empty()) 2234 return; 2235 2236 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2237 2238 SmallVector<uint64_t, 64> Record; 2239 2240 for (auto Tag : Tags) { 2241 Record.append(Tag.begin(), Tag.end()); 2242 2243 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2244 Record.clear(); 2245 } 2246 2247 Stream.ExitBlock(); 2248 } 2249 2250 void ModuleBitcodeWriter::writeSyncScopeNames() { 2251 SmallVector<StringRef, 8> SSNs; 2252 M.getContext().getSyncScopeNames(SSNs); 2253 if (SSNs.empty()) 2254 return; 2255 2256 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2257 2258 SmallVector<uint64_t, 64> Record; 2259 for (auto SSN : SSNs) { 2260 Record.append(SSN.begin(), SSN.end()); 2261 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2262 Record.clear(); 2263 } 2264 2265 Stream.ExitBlock(); 2266 } 2267 2268 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2269 if ((int64_t)V >= 0) 2270 Vals.push_back(V << 1); 2271 else 2272 Vals.push_back((-V << 1) | 1); 2273 } 2274 2275 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2276 bool isGlobal) { 2277 if (FirstVal == LastVal) return; 2278 2279 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2280 2281 unsigned AggregateAbbrev = 0; 2282 unsigned String8Abbrev = 0; 2283 unsigned CString7Abbrev = 0; 2284 unsigned CString6Abbrev = 0; 2285 // If this is a constant pool for the module, emit module-specific abbrevs. 2286 if (isGlobal) { 2287 // Abbrev for CST_CODE_AGGREGATE. 2288 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2289 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2291 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2292 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2293 2294 // Abbrev for CST_CODE_STRING. 2295 Abbv = std::make_shared<BitCodeAbbrev>(); 2296 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2299 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2300 // Abbrev for CST_CODE_CSTRING. 2301 Abbv = std::make_shared<BitCodeAbbrev>(); 2302 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2303 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2304 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2305 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2306 // Abbrev for CST_CODE_CSTRING. 2307 Abbv = std::make_shared<BitCodeAbbrev>(); 2308 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2310 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2311 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2312 } 2313 2314 SmallVector<uint64_t, 64> Record; 2315 2316 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2317 Type *LastTy = nullptr; 2318 for (unsigned i = FirstVal; i != LastVal; ++i) { 2319 const Value *V = Vals[i].first; 2320 // If we need to switch types, do so now. 2321 if (V->getType() != LastTy) { 2322 LastTy = V->getType(); 2323 Record.push_back(VE.getTypeID(LastTy)); 2324 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2325 CONSTANTS_SETTYPE_ABBREV); 2326 Record.clear(); 2327 } 2328 2329 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2330 Record.push_back(unsigned(IA->hasSideEffects()) | 2331 unsigned(IA->isAlignStack()) << 1 | 2332 unsigned(IA->getDialect()&1) << 2); 2333 2334 // Add the asm string. 2335 const std::string &AsmStr = IA->getAsmString(); 2336 Record.push_back(AsmStr.size()); 2337 Record.append(AsmStr.begin(), AsmStr.end()); 2338 2339 // Add the constraint string. 2340 const std::string &ConstraintStr = IA->getConstraintString(); 2341 Record.push_back(ConstraintStr.size()); 2342 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2343 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2344 Record.clear(); 2345 continue; 2346 } 2347 const Constant *C = cast<Constant>(V); 2348 unsigned Code = -1U; 2349 unsigned AbbrevToUse = 0; 2350 if (C->isNullValue()) { 2351 Code = bitc::CST_CODE_NULL; 2352 } else if (isa<UndefValue>(C)) { 2353 Code = bitc::CST_CODE_UNDEF; 2354 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2355 if (IV->getBitWidth() <= 64) { 2356 uint64_t V = IV->getSExtValue(); 2357 emitSignedInt64(Record, V); 2358 Code = bitc::CST_CODE_INTEGER; 2359 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2360 } else { // Wide integers, > 64 bits in size. 2361 // We have an arbitrary precision integer value to write whose 2362 // bit width is > 64. However, in canonical unsigned integer 2363 // format it is likely that the high bits are going to be zero. 2364 // So, we only write the number of active words. 2365 unsigned NWords = IV->getValue().getActiveWords(); 2366 const uint64_t *RawWords = IV->getValue().getRawData(); 2367 for (unsigned i = 0; i != NWords; ++i) { 2368 emitSignedInt64(Record, RawWords[i]); 2369 } 2370 Code = bitc::CST_CODE_WIDE_INTEGER; 2371 } 2372 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2373 Code = bitc::CST_CODE_FLOAT; 2374 Type *Ty = CFP->getType(); 2375 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2376 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2377 } else if (Ty->isX86_FP80Ty()) { 2378 // api needed to prevent premature destruction 2379 // bits are not in the same order as a normal i80 APInt, compensate. 2380 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2381 const uint64_t *p = api.getRawData(); 2382 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2383 Record.push_back(p[0] & 0xffffLL); 2384 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2385 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2386 const uint64_t *p = api.getRawData(); 2387 Record.push_back(p[0]); 2388 Record.push_back(p[1]); 2389 } else { 2390 assert(0 && "Unknown FP type!"); 2391 } 2392 } else if (isa<ConstantDataSequential>(C) && 2393 cast<ConstantDataSequential>(C)->isString()) { 2394 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2395 // Emit constant strings specially. 2396 unsigned NumElts = Str->getNumElements(); 2397 // If this is a null-terminated string, use the denser CSTRING encoding. 2398 if (Str->isCString()) { 2399 Code = bitc::CST_CODE_CSTRING; 2400 --NumElts; // Don't encode the null, which isn't allowed by char6. 2401 } else { 2402 Code = bitc::CST_CODE_STRING; 2403 AbbrevToUse = String8Abbrev; 2404 } 2405 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2406 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2407 for (unsigned i = 0; i != NumElts; ++i) { 2408 unsigned char V = Str->getElementAsInteger(i); 2409 Record.push_back(V); 2410 isCStr7 &= (V & 128) == 0; 2411 if (isCStrChar6) 2412 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2413 } 2414 2415 if (isCStrChar6) 2416 AbbrevToUse = CString6Abbrev; 2417 else if (isCStr7) 2418 AbbrevToUse = CString7Abbrev; 2419 } else if (const ConstantDataSequential *CDS = 2420 dyn_cast<ConstantDataSequential>(C)) { 2421 Code = bitc::CST_CODE_DATA; 2422 Type *EltTy = CDS->getType()->getElementType(); 2423 if (isa<IntegerType>(EltTy)) { 2424 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2425 Record.push_back(CDS->getElementAsInteger(i)); 2426 } else { 2427 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2428 Record.push_back( 2429 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2430 } 2431 } else if (isa<ConstantAggregate>(C)) { 2432 Code = bitc::CST_CODE_AGGREGATE; 2433 for (const Value *Op : C->operands()) 2434 Record.push_back(VE.getValueID(Op)); 2435 AbbrevToUse = AggregateAbbrev; 2436 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2437 switch (CE->getOpcode()) { 2438 default: 2439 if (Instruction::isCast(CE->getOpcode())) { 2440 Code = bitc::CST_CODE_CE_CAST; 2441 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2442 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2443 Record.push_back(VE.getValueID(C->getOperand(0))); 2444 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2445 } else { 2446 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2447 Code = bitc::CST_CODE_CE_BINOP; 2448 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2449 Record.push_back(VE.getValueID(C->getOperand(0))); 2450 Record.push_back(VE.getValueID(C->getOperand(1))); 2451 uint64_t Flags = getOptimizationFlags(CE); 2452 if (Flags != 0) 2453 Record.push_back(Flags); 2454 } 2455 break; 2456 case Instruction::FNeg: { 2457 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2458 Code = bitc::CST_CODE_CE_UNOP; 2459 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2460 Record.push_back(VE.getValueID(C->getOperand(0))); 2461 uint64_t Flags = getOptimizationFlags(CE); 2462 if (Flags != 0) 2463 Record.push_back(Flags); 2464 break; 2465 } 2466 case Instruction::GetElementPtr: { 2467 Code = bitc::CST_CODE_CE_GEP; 2468 const auto *GO = cast<GEPOperator>(C); 2469 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2470 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2471 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2472 Record.push_back((*Idx << 1) | GO->isInBounds()); 2473 } else if (GO->isInBounds()) 2474 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2475 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2476 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2477 Record.push_back(VE.getValueID(C->getOperand(i))); 2478 } 2479 break; 2480 } 2481 case Instruction::Select: 2482 Code = bitc::CST_CODE_CE_SELECT; 2483 Record.push_back(VE.getValueID(C->getOperand(0))); 2484 Record.push_back(VE.getValueID(C->getOperand(1))); 2485 Record.push_back(VE.getValueID(C->getOperand(2))); 2486 break; 2487 case Instruction::ExtractElement: 2488 Code = bitc::CST_CODE_CE_EXTRACTELT; 2489 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2490 Record.push_back(VE.getValueID(C->getOperand(0))); 2491 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2492 Record.push_back(VE.getValueID(C->getOperand(1))); 2493 break; 2494 case Instruction::InsertElement: 2495 Code = bitc::CST_CODE_CE_INSERTELT; 2496 Record.push_back(VE.getValueID(C->getOperand(0))); 2497 Record.push_back(VE.getValueID(C->getOperand(1))); 2498 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2499 Record.push_back(VE.getValueID(C->getOperand(2))); 2500 break; 2501 case Instruction::ShuffleVector: 2502 // If the return type and argument types are the same, this is a 2503 // standard shufflevector instruction. If the types are different, 2504 // then the shuffle is widening or truncating the input vectors, and 2505 // the argument type must also be encoded. 2506 if (C->getType() == C->getOperand(0)->getType()) { 2507 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2508 } else { 2509 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2510 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2511 } 2512 Record.push_back(VE.getValueID(C->getOperand(0))); 2513 Record.push_back(VE.getValueID(C->getOperand(1))); 2514 Record.push_back(VE.getValueID(C->getOperand(2))); 2515 break; 2516 case Instruction::ICmp: 2517 case Instruction::FCmp: 2518 Code = bitc::CST_CODE_CE_CMP; 2519 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2520 Record.push_back(VE.getValueID(C->getOperand(0))); 2521 Record.push_back(VE.getValueID(C->getOperand(1))); 2522 Record.push_back(CE->getPredicate()); 2523 break; 2524 } 2525 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2526 Code = bitc::CST_CODE_BLOCKADDRESS; 2527 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2528 Record.push_back(VE.getValueID(BA->getFunction())); 2529 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2530 } else { 2531 #ifndef NDEBUG 2532 C->dump(); 2533 #endif 2534 llvm_unreachable("Unknown constant!"); 2535 } 2536 Stream.EmitRecord(Code, Record, AbbrevToUse); 2537 Record.clear(); 2538 } 2539 2540 Stream.ExitBlock(); 2541 } 2542 2543 void ModuleBitcodeWriter::writeModuleConstants() { 2544 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2545 2546 // Find the first constant to emit, which is the first non-globalvalue value. 2547 // We know globalvalues have been emitted by WriteModuleInfo. 2548 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2549 if (!isa<GlobalValue>(Vals[i].first)) { 2550 writeConstants(i, Vals.size(), true); 2551 return; 2552 } 2553 } 2554 } 2555 2556 /// pushValueAndType - The file has to encode both the value and type id for 2557 /// many values, because we need to know what type to create for forward 2558 /// references. However, most operands are not forward references, so this type 2559 /// field is not needed. 2560 /// 2561 /// This function adds V's value ID to Vals. If the value ID is higher than the 2562 /// instruction ID, then it is a forward reference, and it also includes the 2563 /// type ID. The value ID that is written is encoded relative to the InstID. 2564 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2565 SmallVectorImpl<unsigned> &Vals) { 2566 unsigned ValID = VE.getValueID(V); 2567 // Make encoding relative to the InstID. 2568 Vals.push_back(InstID - ValID); 2569 if (ValID >= InstID) { 2570 Vals.push_back(VE.getTypeID(V->getType())); 2571 return true; 2572 } 2573 return false; 2574 } 2575 2576 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2577 unsigned InstID) { 2578 SmallVector<unsigned, 64> Record; 2579 LLVMContext &C = CS.getInstruction()->getContext(); 2580 2581 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2582 const auto &Bundle = CS.getOperandBundleAt(i); 2583 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2584 2585 for (auto &Input : Bundle.Inputs) 2586 pushValueAndType(Input, InstID, Record); 2587 2588 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2589 Record.clear(); 2590 } 2591 } 2592 2593 /// pushValue - Like pushValueAndType, but where the type of the value is 2594 /// omitted (perhaps it was already encoded in an earlier operand). 2595 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2596 SmallVectorImpl<unsigned> &Vals) { 2597 unsigned ValID = VE.getValueID(V); 2598 Vals.push_back(InstID - ValID); 2599 } 2600 2601 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2602 SmallVectorImpl<uint64_t> &Vals) { 2603 unsigned ValID = VE.getValueID(V); 2604 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2605 emitSignedInt64(Vals, diff); 2606 } 2607 2608 /// WriteInstruction - Emit an instruction to the specified stream. 2609 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2610 unsigned InstID, 2611 SmallVectorImpl<unsigned> &Vals) { 2612 unsigned Code = 0; 2613 unsigned AbbrevToUse = 0; 2614 VE.setInstructionID(&I); 2615 switch (I.getOpcode()) { 2616 default: 2617 if (Instruction::isCast(I.getOpcode())) { 2618 Code = bitc::FUNC_CODE_INST_CAST; 2619 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2620 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2621 Vals.push_back(VE.getTypeID(I.getType())); 2622 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2623 } else { 2624 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2625 Code = bitc::FUNC_CODE_INST_BINOP; 2626 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2627 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2628 pushValue(I.getOperand(1), InstID, Vals); 2629 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2630 uint64_t Flags = getOptimizationFlags(&I); 2631 if (Flags != 0) { 2632 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2633 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2634 Vals.push_back(Flags); 2635 } 2636 } 2637 break; 2638 case Instruction::FNeg: { 2639 Code = bitc::FUNC_CODE_INST_UNOP; 2640 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2641 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2642 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2643 uint64_t Flags = getOptimizationFlags(&I); 2644 if (Flags != 0) { 2645 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2646 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2647 Vals.push_back(Flags); 2648 } 2649 break; 2650 } 2651 case Instruction::GetElementPtr: { 2652 Code = bitc::FUNC_CODE_INST_GEP; 2653 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2654 auto &GEPInst = cast<GetElementPtrInst>(I); 2655 Vals.push_back(GEPInst.isInBounds()); 2656 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2657 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2658 pushValueAndType(I.getOperand(i), InstID, Vals); 2659 break; 2660 } 2661 case Instruction::ExtractValue: { 2662 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2663 pushValueAndType(I.getOperand(0), InstID, Vals); 2664 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2665 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2666 break; 2667 } 2668 case Instruction::InsertValue: { 2669 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2670 pushValueAndType(I.getOperand(0), InstID, Vals); 2671 pushValueAndType(I.getOperand(1), InstID, Vals); 2672 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2673 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2674 break; 2675 } 2676 case Instruction::Select: { 2677 Code = bitc::FUNC_CODE_INST_VSELECT; 2678 pushValueAndType(I.getOperand(1), InstID, Vals); 2679 pushValue(I.getOperand(2), InstID, Vals); 2680 pushValueAndType(I.getOperand(0), InstID, Vals); 2681 uint64_t Flags = getOptimizationFlags(&I); 2682 if (Flags != 0) 2683 Vals.push_back(Flags); 2684 break; 2685 } 2686 case Instruction::ExtractElement: 2687 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2688 pushValueAndType(I.getOperand(0), InstID, Vals); 2689 pushValueAndType(I.getOperand(1), InstID, Vals); 2690 break; 2691 case Instruction::InsertElement: 2692 Code = bitc::FUNC_CODE_INST_INSERTELT; 2693 pushValueAndType(I.getOperand(0), InstID, Vals); 2694 pushValue(I.getOperand(1), InstID, Vals); 2695 pushValueAndType(I.getOperand(2), InstID, Vals); 2696 break; 2697 case Instruction::ShuffleVector: 2698 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2699 pushValueAndType(I.getOperand(0), InstID, Vals); 2700 pushValue(I.getOperand(1), InstID, Vals); 2701 pushValue(I.getOperand(2), InstID, Vals); 2702 break; 2703 case Instruction::ICmp: 2704 case Instruction::FCmp: { 2705 // compare returning Int1Ty or vector of Int1Ty 2706 Code = bitc::FUNC_CODE_INST_CMP2; 2707 pushValueAndType(I.getOperand(0), InstID, Vals); 2708 pushValue(I.getOperand(1), InstID, Vals); 2709 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2710 uint64_t Flags = getOptimizationFlags(&I); 2711 if (Flags != 0) 2712 Vals.push_back(Flags); 2713 break; 2714 } 2715 2716 case Instruction::Ret: 2717 { 2718 Code = bitc::FUNC_CODE_INST_RET; 2719 unsigned NumOperands = I.getNumOperands(); 2720 if (NumOperands == 0) 2721 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2722 else if (NumOperands == 1) { 2723 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2724 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2725 } else { 2726 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2727 pushValueAndType(I.getOperand(i), InstID, Vals); 2728 } 2729 } 2730 break; 2731 case Instruction::Br: 2732 { 2733 Code = bitc::FUNC_CODE_INST_BR; 2734 const BranchInst &II = cast<BranchInst>(I); 2735 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2736 if (II.isConditional()) { 2737 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2738 pushValue(II.getCondition(), InstID, Vals); 2739 } 2740 } 2741 break; 2742 case Instruction::Switch: 2743 { 2744 Code = bitc::FUNC_CODE_INST_SWITCH; 2745 const SwitchInst &SI = cast<SwitchInst>(I); 2746 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2747 pushValue(SI.getCondition(), InstID, Vals); 2748 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2749 for (auto Case : SI.cases()) { 2750 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2751 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2752 } 2753 } 2754 break; 2755 case Instruction::IndirectBr: 2756 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2757 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2758 // Encode the address operand as relative, but not the basic blocks. 2759 pushValue(I.getOperand(0), InstID, Vals); 2760 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2761 Vals.push_back(VE.getValueID(I.getOperand(i))); 2762 break; 2763 2764 case Instruction::Invoke: { 2765 const InvokeInst *II = cast<InvokeInst>(&I); 2766 const Value *Callee = II->getCalledValue(); 2767 FunctionType *FTy = II->getFunctionType(); 2768 2769 if (II->hasOperandBundles()) 2770 writeOperandBundles(II, InstID); 2771 2772 Code = bitc::FUNC_CODE_INST_INVOKE; 2773 2774 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2775 Vals.push_back(II->getCallingConv() | 1 << 13); 2776 Vals.push_back(VE.getValueID(II->getNormalDest())); 2777 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2778 Vals.push_back(VE.getTypeID(FTy)); 2779 pushValueAndType(Callee, InstID, Vals); 2780 2781 // Emit value #'s for the fixed parameters. 2782 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2783 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2784 2785 // Emit type/value pairs for varargs params. 2786 if (FTy->isVarArg()) { 2787 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2788 i != e; ++i) 2789 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2790 } 2791 break; 2792 } 2793 case Instruction::Resume: 2794 Code = bitc::FUNC_CODE_INST_RESUME; 2795 pushValueAndType(I.getOperand(0), InstID, Vals); 2796 break; 2797 case Instruction::CleanupRet: { 2798 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2799 const auto &CRI = cast<CleanupReturnInst>(I); 2800 pushValue(CRI.getCleanupPad(), InstID, Vals); 2801 if (CRI.hasUnwindDest()) 2802 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2803 break; 2804 } 2805 case Instruction::CatchRet: { 2806 Code = bitc::FUNC_CODE_INST_CATCHRET; 2807 const auto &CRI = cast<CatchReturnInst>(I); 2808 pushValue(CRI.getCatchPad(), InstID, Vals); 2809 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2810 break; 2811 } 2812 case Instruction::CleanupPad: 2813 case Instruction::CatchPad: { 2814 const auto &FuncletPad = cast<FuncletPadInst>(I); 2815 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2816 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2817 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2818 2819 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2820 Vals.push_back(NumArgOperands); 2821 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2822 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2823 break; 2824 } 2825 case Instruction::CatchSwitch: { 2826 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2827 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2828 2829 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2830 2831 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2832 Vals.push_back(NumHandlers); 2833 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2834 Vals.push_back(VE.getValueID(CatchPadBB)); 2835 2836 if (CatchSwitch.hasUnwindDest()) 2837 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2838 break; 2839 } 2840 case Instruction::CallBr: { 2841 const CallBrInst *CBI = cast<CallBrInst>(&I); 2842 const Value *Callee = CBI->getCalledValue(); 2843 FunctionType *FTy = CBI->getFunctionType(); 2844 2845 if (CBI->hasOperandBundles()) 2846 writeOperandBundles(CBI, InstID); 2847 2848 Code = bitc::FUNC_CODE_INST_CALLBR; 2849 2850 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2851 2852 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2853 1 << bitc::CALL_EXPLICIT_TYPE); 2854 2855 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2856 Vals.push_back(CBI->getNumIndirectDests()); 2857 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2858 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2859 2860 Vals.push_back(VE.getTypeID(FTy)); 2861 pushValueAndType(Callee, InstID, Vals); 2862 2863 // Emit value #'s for the fixed parameters. 2864 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2865 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2866 2867 // Emit type/value pairs for varargs params. 2868 if (FTy->isVarArg()) { 2869 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2870 i != e; ++i) 2871 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2872 } 2873 break; 2874 } 2875 case Instruction::Unreachable: 2876 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2877 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2878 break; 2879 2880 case Instruction::PHI: { 2881 const PHINode &PN = cast<PHINode>(I); 2882 Code = bitc::FUNC_CODE_INST_PHI; 2883 // With the newer instruction encoding, forward references could give 2884 // negative valued IDs. This is most common for PHIs, so we use 2885 // signed VBRs. 2886 SmallVector<uint64_t, 128> Vals64; 2887 Vals64.push_back(VE.getTypeID(PN.getType())); 2888 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2889 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2890 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2891 } 2892 2893 uint64_t Flags = getOptimizationFlags(&I); 2894 if (Flags != 0) 2895 Vals64.push_back(Flags); 2896 2897 // Emit a Vals64 vector and exit. 2898 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2899 Vals64.clear(); 2900 return; 2901 } 2902 2903 case Instruction::LandingPad: { 2904 const LandingPadInst &LP = cast<LandingPadInst>(I); 2905 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2906 Vals.push_back(VE.getTypeID(LP.getType())); 2907 Vals.push_back(LP.isCleanup()); 2908 Vals.push_back(LP.getNumClauses()); 2909 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2910 if (LP.isCatch(I)) 2911 Vals.push_back(LandingPadInst::Catch); 2912 else 2913 Vals.push_back(LandingPadInst::Filter); 2914 pushValueAndType(LP.getClause(I), InstID, Vals); 2915 } 2916 break; 2917 } 2918 2919 case Instruction::Alloca: { 2920 Code = bitc::FUNC_CODE_INST_ALLOCA; 2921 const AllocaInst &AI = cast<AllocaInst>(I); 2922 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2923 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2924 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2925 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2926 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2927 "not enough bits for maximum alignment"); 2928 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2929 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2930 AlignRecord |= 1 << 6; 2931 AlignRecord |= AI.isSwiftError() << 7; 2932 Vals.push_back(AlignRecord); 2933 break; 2934 } 2935 2936 case Instruction::Load: 2937 if (cast<LoadInst>(I).isAtomic()) { 2938 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2939 pushValueAndType(I.getOperand(0), InstID, Vals); 2940 } else { 2941 Code = bitc::FUNC_CODE_INST_LOAD; 2942 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2943 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2944 } 2945 Vals.push_back(VE.getTypeID(I.getType())); 2946 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2947 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2948 if (cast<LoadInst>(I).isAtomic()) { 2949 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2950 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2951 } 2952 break; 2953 case Instruction::Store: 2954 if (cast<StoreInst>(I).isAtomic()) 2955 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2956 else 2957 Code = bitc::FUNC_CODE_INST_STORE; 2958 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2959 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2960 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2961 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2962 if (cast<StoreInst>(I).isAtomic()) { 2963 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2964 Vals.push_back( 2965 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2966 } 2967 break; 2968 case Instruction::AtomicCmpXchg: 2969 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2970 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2971 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2972 pushValue(I.getOperand(2), InstID, Vals); // newval. 2973 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2974 Vals.push_back( 2975 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2976 Vals.push_back( 2977 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2978 Vals.push_back( 2979 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2980 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2981 break; 2982 case Instruction::AtomicRMW: 2983 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2984 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2985 pushValue(I.getOperand(1), InstID, Vals); // val. 2986 Vals.push_back( 2987 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2988 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2989 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2990 Vals.push_back( 2991 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2992 break; 2993 case Instruction::Fence: 2994 Code = bitc::FUNC_CODE_INST_FENCE; 2995 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2996 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2997 break; 2998 case Instruction::Call: { 2999 const CallInst &CI = cast<CallInst>(I); 3000 FunctionType *FTy = CI.getFunctionType(); 3001 3002 if (CI.hasOperandBundles()) 3003 writeOperandBundles(&CI, InstID); 3004 3005 Code = bitc::FUNC_CODE_INST_CALL; 3006 3007 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3008 3009 unsigned Flags = getOptimizationFlags(&I); 3010 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3011 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3012 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3013 1 << bitc::CALL_EXPLICIT_TYPE | 3014 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3015 unsigned(Flags != 0) << bitc::CALL_FMF); 3016 if (Flags != 0) 3017 Vals.push_back(Flags); 3018 3019 Vals.push_back(VE.getTypeID(FTy)); 3020 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 3021 3022 // Emit value #'s for the fixed parameters. 3023 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3024 // Check for labels (can happen with asm labels). 3025 if (FTy->getParamType(i)->isLabelTy()) 3026 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3027 else 3028 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3029 } 3030 3031 // Emit type/value pairs for varargs params. 3032 if (FTy->isVarArg()) { 3033 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3034 i != e; ++i) 3035 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3036 } 3037 break; 3038 } 3039 case Instruction::VAArg: 3040 Code = bitc::FUNC_CODE_INST_VAARG; 3041 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3042 pushValue(I.getOperand(0), InstID, Vals); // valist. 3043 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3044 break; 3045 case Instruction::Freeze: 3046 Code = bitc::FUNC_CODE_INST_FREEZE; 3047 pushValueAndType(I.getOperand(0), InstID, Vals); 3048 break; 3049 } 3050 3051 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3052 Vals.clear(); 3053 } 3054 3055 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3056 /// to allow clients to efficiently find the function body. 3057 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3058 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3059 // Get the offset of the VST we are writing, and backpatch it into 3060 // the VST forward declaration record. 3061 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3062 // The BitcodeStartBit was the stream offset of the identification block. 3063 VSTOffset -= bitcodeStartBit(); 3064 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3065 // Note that we add 1 here because the offset is relative to one word 3066 // before the start of the identification block, which was historically 3067 // always the start of the regular bitcode header. 3068 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3069 3070 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3071 3072 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3073 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3076 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3077 3078 for (const Function &F : M) { 3079 uint64_t Record[2]; 3080 3081 if (F.isDeclaration()) 3082 continue; 3083 3084 Record[0] = VE.getValueID(&F); 3085 3086 // Save the word offset of the function (from the start of the 3087 // actual bitcode written to the stream). 3088 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3089 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3090 // Note that we add 1 here because the offset is relative to one word 3091 // before the start of the identification block, which was historically 3092 // always the start of the regular bitcode header. 3093 Record[1] = BitcodeIndex / 32 + 1; 3094 3095 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3096 } 3097 3098 Stream.ExitBlock(); 3099 } 3100 3101 /// Emit names for arguments, instructions and basic blocks in a function. 3102 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3103 const ValueSymbolTable &VST) { 3104 if (VST.empty()) 3105 return; 3106 3107 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3108 3109 // FIXME: Set up the abbrev, we know how many values there are! 3110 // FIXME: We know if the type names can use 7-bit ascii. 3111 SmallVector<uint64_t, 64> NameVals; 3112 3113 for (const ValueName &Name : VST) { 3114 // Figure out the encoding to use for the name. 3115 StringEncoding Bits = getStringEncoding(Name.getKey()); 3116 3117 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3118 NameVals.push_back(VE.getValueID(Name.getValue())); 3119 3120 // VST_CODE_ENTRY: [valueid, namechar x N] 3121 // VST_CODE_BBENTRY: [bbid, namechar x N] 3122 unsigned Code; 3123 if (isa<BasicBlock>(Name.getValue())) { 3124 Code = bitc::VST_CODE_BBENTRY; 3125 if (Bits == SE_Char6) 3126 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3127 } else { 3128 Code = bitc::VST_CODE_ENTRY; 3129 if (Bits == SE_Char6) 3130 AbbrevToUse = VST_ENTRY_6_ABBREV; 3131 else if (Bits == SE_Fixed7) 3132 AbbrevToUse = VST_ENTRY_7_ABBREV; 3133 } 3134 3135 for (const auto P : Name.getKey()) 3136 NameVals.push_back((unsigned char)P); 3137 3138 // Emit the finished record. 3139 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3140 NameVals.clear(); 3141 } 3142 3143 Stream.ExitBlock(); 3144 } 3145 3146 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3147 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3148 unsigned Code; 3149 if (isa<BasicBlock>(Order.V)) 3150 Code = bitc::USELIST_CODE_BB; 3151 else 3152 Code = bitc::USELIST_CODE_DEFAULT; 3153 3154 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3155 Record.push_back(VE.getValueID(Order.V)); 3156 Stream.EmitRecord(Code, Record); 3157 } 3158 3159 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3160 assert(VE.shouldPreserveUseListOrder() && 3161 "Expected to be preserving use-list order"); 3162 3163 auto hasMore = [&]() { 3164 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3165 }; 3166 if (!hasMore()) 3167 // Nothing to do. 3168 return; 3169 3170 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3171 while (hasMore()) { 3172 writeUseList(std::move(VE.UseListOrders.back())); 3173 VE.UseListOrders.pop_back(); 3174 } 3175 Stream.ExitBlock(); 3176 } 3177 3178 /// Emit a function body to the module stream. 3179 void ModuleBitcodeWriter::writeFunction( 3180 const Function &F, 3181 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3182 // Save the bitcode index of the start of this function block for recording 3183 // in the VST. 3184 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3185 3186 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3187 VE.incorporateFunction(F); 3188 3189 SmallVector<unsigned, 64> Vals; 3190 3191 // Emit the number of basic blocks, so the reader can create them ahead of 3192 // time. 3193 Vals.push_back(VE.getBasicBlocks().size()); 3194 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3195 Vals.clear(); 3196 3197 // If there are function-local constants, emit them now. 3198 unsigned CstStart, CstEnd; 3199 VE.getFunctionConstantRange(CstStart, CstEnd); 3200 writeConstants(CstStart, CstEnd, false); 3201 3202 // If there is function-local metadata, emit it now. 3203 writeFunctionMetadata(F); 3204 3205 // Keep a running idea of what the instruction ID is. 3206 unsigned InstID = CstEnd; 3207 3208 bool NeedsMetadataAttachment = F.hasMetadata(); 3209 3210 DILocation *LastDL = nullptr; 3211 // Finally, emit all the instructions, in order. 3212 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3213 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3214 I != E; ++I) { 3215 writeInstruction(*I, InstID, Vals); 3216 3217 if (!I->getType()->isVoidTy()) 3218 ++InstID; 3219 3220 // If the instruction has metadata, write a metadata attachment later. 3221 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3222 3223 // If the instruction has a debug location, emit it. 3224 DILocation *DL = I->getDebugLoc(); 3225 if (!DL) 3226 continue; 3227 3228 if (DL == LastDL) { 3229 // Just repeat the same debug loc as last time. 3230 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3231 continue; 3232 } 3233 3234 Vals.push_back(DL->getLine()); 3235 Vals.push_back(DL->getColumn()); 3236 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3237 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3238 Vals.push_back(DL->isImplicitCode()); 3239 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3240 Vals.clear(); 3241 3242 LastDL = DL; 3243 } 3244 3245 // Emit names for all the instructions etc. 3246 if (auto *Symtab = F.getValueSymbolTable()) 3247 writeFunctionLevelValueSymbolTable(*Symtab); 3248 3249 if (NeedsMetadataAttachment) 3250 writeFunctionMetadataAttachment(F); 3251 if (VE.shouldPreserveUseListOrder()) 3252 writeUseListBlock(&F); 3253 VE.purgeFunction(); 3254 Stream.ExitBlock(); 3255 } 3256 3257 // Emit blockinfo, which defines the standard abbreviations etc. 3258 void ModuleBitcodeWriter::writeBlockInfo() { 3259 // We only want to emit block info records for blocks that have multiple 3260 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3261 // Other blocks can define their abbrevs inline. 3262 Stream.EnterBlockInfoBlock(); 3263 3264 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3265 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3266 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3267 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3268 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3270 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3271 VST_ENTRY_8_ABBREV) 3272 llvm_unreachable("Unexpected abbrev ordering!"); 3273 } 3274 3275 { // 7-bit fixed width VST_CODE_ENTRY strings. 3276 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3277 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3279 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3281 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3282 VST_ENTRY_7_ABBREV) 3283 llvm_unreachable("Unexpected abbrev ordering!"); 3284 } 3285 { // 6-bit char6 VST_CODE_ENTRY strings. 3286 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3287 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3291 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3292 VST_ENTRY_6_ABBREV) 3293 llvm_unreachable("Unexpected abbrev ordering!"); 3294 } 3295 { // 6-bit char6 VST_CODE_BBENTRY strings. 3296 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3297 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3301 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3302 VST_BBENTRY_6_ABBREV) 3303 llvm_unreachable("Unexpected abbrev ordering!"); 3304 } 3305 3306 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3307 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3308 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3310 VE.computeBitsRequiredForTypeIndicies())); 3311 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3312 CONSTANTS_SETTYPE_ABBREV) 3313 llvm_unreachable("Unexpected abbrev ordering!"); 3314 } 3315 3316 { // INTEGER abbrev for CONSTANTS_BLOCK. 3317 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3318 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3320 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3321 CONSTANTS_INTEGER_ABBREV) 3322 llvm_unreachable("Unexpected abbrev ordering!"); 3323 } 3324 3325 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3326 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3327 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3330 VE.computeBitsRequiredForTypeIndicies())); 3331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3332 3333 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3334 CONSTANTS_CE_CAST_Abbrev) 3335 llvm_unreachable("Unexpected abbrev ordering!"); 3336 } 3337 { // NULL abbrev for CONSTANTS_BLOCK. 3338 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3339 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3340 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3341 CONSTANTS_NULL_Abbrev) 3342 llvm_unreachable("Unexpected abbrev ordering!"); 3343 } 3344 3345 // FIXME: This should only use space for first class types! 3346 3347 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3348 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3349 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3352 VE.computeBitsRequiredForTypeIndicies())); 3353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3355 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3356 FUNCTION_INST_LOAD_ABBREV) 3357 llvm_unreachable("Unexpected abbrev ordering!"); 3358 } 3359 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3360 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3361 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3364 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3365 FUNCTION_INST_UNOP_ABBREV) 3366 llvm_unreachable("Unexpected abbrev ordering!"); 3367 } 3368 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3369 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3370 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3374 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3375 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3376 llvm_unreachable("Unexpected abbrev ordering!"); 3377 } 3378 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3379 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3380 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3384 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3385 FUNCTION_INST_BINOP_ABBREV) 3386 llvm_unreachable("Unexpected abbrev ordering!"); 3387 } 3388 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3389 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3390 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3395 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3396 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3397 llvm_unreachable("Unexpected abbrev ordering!"); 3398 } 3399 { // INST_CAST abbrev for FUNCTION_BLOCK. 3400 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3401 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3402 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3404 VE.computeBitsRequiredForTypeIndicies())); 3405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3406 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3407 FUNCTION_INST_CAST_ABBREV) 3408 llvm_unreachable("Unexpected abbrev ordering!"); 3409 } 3410 3411 { // INST_RET abbrev for FUNCTION_BLOCK. 3412 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3413 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3414 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3415 FUNCTION_INST_RET_VOID_ABBREV) 3416 llvm_unreachable("Unexpected abbrev ordering!"); 3417 } 3418 { // INST_RET abbrev for FUNCTION_BLOCK. 3419 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3420 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3421 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3422 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3423 FUNCTION_INST_RET_VAL_ABBREV) 3424 llvm_unreachable("Unexpected abbrev ordering!"); 3425 } 3426 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3427 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3428 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3429 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3430 FUNCTION_INST_UNREACHABLE_ABBREV) 3431 llvm_unreachable("Unexpected abbrev ordering!"); 3432 } 3433 { 3434 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3435 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3438 Log2_32_Ceil(VE.getTypes().size() + 1))); 3439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3441 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3442 FUNCTION_INST_GEP_ABBREV) 3443 llvm_unreachable("Unexpected abbrev ordering!"); 3444 } 3445 3446 Stream.ExitBlock(); 3447 } 3448 3449 /// Write the module path strings, currently only used when generating 3450 /// a combined index file. 3451 void IndexBitcodeWriter::writeModStrings() { 3452 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3453 3454 // TODO: See which abbrev sizes we actually need to emit 3455 3456 // 8-bit fixed-width MST_ENTRY strings. 3457 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3458 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3462 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3463 3464 // 7-bit fixed width MST_ENTRY strings. 3465 Abbv = std::make_shared<BitCodeAbbrev>(); 3466 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3470 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3471 3472 // 6-bit char6 MST_ENTRY strings. 3473 Abbv = std::make_shared<BitCodeAbbrev>(); 3474 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3475 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3478 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3479 3480 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3481 Abbv = std::make_shared<BitCodeAbbrev>(); 3482 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3484 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3485 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3488 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3489 3490 SmallVector<unsigned, 64> Vals; 3491 forEachModule( 3492 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3493 StringRef Key = MPSE.getKey(); 3494 const auto &Value = MPSE.getValue(); 3495 StringEncoding Bits = getStringEncoding(Key); 3496 unsigned AbbrevToUse = Abbrev8Bit; 3497 if (Bits == SE_Char6) 3498 AbbrevToUse = Abbrev6Bit; 3499 else if (Bits == SE_Fixed7) 3500 AbbrevToUse = Abbrev7Bit; 3501 3502 Vals.push_back(Value.first); 3503 Vals.append(Key.begin(), Key.end()); 3504 3505 // Emit the finished record. 3506 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3507 3508 // Emit an optional hash for the module now 3509 const auto &Hash = Value.second; 3510 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3511 Vals.assign(Hash.begin(), Hash.end()); 3512 // Emit the hash record. 3513 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3514 } 3515 3516 Vals.clear(); 3517 }); 3518 Stream.ExitBlock(); 3519 } 3520 3521 /// Write the function type metadata related records that need to appear before 3522 /// a function summary entry (whether per-module or combined). 3523 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3524 FunctionSummary *FS) { 3525 if (!FS->type_tests().empty()) 3526 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3527 3528 SmallVector<uint64_t, 64> Record; 3529 3530 auto WriteVFuncIdVec = [&](uint64_t Ty, 3531 ArrayRef<FunctionSummary::VFuncId> VFs) { 3532 if (VFs.empty()) 3533 return; 3534 Record.clear(); 3535 for (auto &VF : VFs) { 3536 Record.push_back(VF.GUID); 3537 Record.push_back(VF.Offset); 3538 } 3539 Stream.EmitRecord(Ty, Record); 3540 }; 3541 3542 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3543 FS->type_test_assume_vcalls()); 3544 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3545 FS->type_checked_load_vcalls()); 3546 3547 auto WriteConstVCallVec = [&](uint64_t Ty, 3548 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3549 for (auto &VC : VCs) { 3550 Record.clear(); 3551 Record.push_back(VC.VFunc.GUID); 3552 Record.push_back(VC.VFunc.Offset); 3553 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3554 Stream.EmitRecord(Ty, Record); 3555 } 3556 }; 3557 3558 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3559 FS->type_test_assume_const_vcalls()); 3560 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3561 FS->type_checked_load_const_vcalls()); 3562 } 3563 3564 /// Collect type IDs from type tests used by function. 3565 static void 3566 getReferencedTypeIds(FunctionSummary *FS, 3567 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3568 if (!FS->type_tests().empty()) 3569 for (auto &TT : FS->type_tests()) 3570 ReferencedTypeIds.insert(TT); 3571 3572 auto GetReferencedTypesFromVFuncIdVec = 3573 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3574 for (auto &VF : VFs) 3575 ReferencedTypeIds.insert(VF.GUID); 3576 }; 3577 3578 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3579 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3580 3581 auto GetReferencedTypesFromConstVCallVec = 3582 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3583 for (auto &VC : VCs) 3584 ReferencedTypeIds.insert(VC.VFunc.GUID); 3585 }; 3586 3587 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3588 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3589 } 3590 3591 static void writeWholeProgramDevirtResolutionByArg( 3592 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3593 const WholeProgramDevirtResolution::ByArg &ByArg) { 3594 NameVals.push_back(args.size()); 3595 NameVals.insert(NameVals.end(), args.begin(), args.end()); 3596 3597 NameVals.push_back(ByArg.TheKind); 3598 NameVals.push_back(ByArg.Info); 3599 NameVals.push_back(ByArg.Byte); 3600 NameVals.push_back(ByArg.Bit); 3601 } 3602 3603 static void writeWholeProgramDevirtResolution( 3604 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3605 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3606 NameVals.push_back(Id); 3607 3608 NameVals.push_back(Wpd.TheKind); 3609 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3610 NameVals.push_back(Wpd.SingleImplName.size()); 3611 3612 NameVals.push_back(Wpd.ResByArg.size()); 3613 for (auto &A : Wpd.ResByArg) 3614 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3615 } 3616 3617 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3618 StringTableBuilder &StrtabBuilder, 3619 const std::string &Id, 3620 const TypeIdSummary &Summary) { 3621 NameVals.push_back(StrtabBuilder.add(Id)); 3622 NameVals.push_back(Id.size()); 3623 3624 NameVals.push_back(Summary.TTRes.TheKind); 3625 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3626 NameVals.push_back(Summary.TTRes.AlignLog2); 3627 NameVals.push_back(Summary.TTRes.SizeM1); 3628 NameVals.push_back(Summary.TTRes.BitMask); 3629 NameVals.push_back(Summary.TTRes.InlineBits); 3630 3631 for (auto &W : Summary.WPDRes) 3632 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3633 W.second); 3634 } 3635 3636 static void writeTypeIdCompatibleVtableSummaryRecord( 3637 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3638 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3639 ValueEnumerator &VE) { 3640 NameVals.push_back(StrtabBuilder.add(Id)); 3641 NameVals.push_back(Id.size()); 3642 3643 for (auto &P : Summary) { 3644 NameVals.push_back(P.AddressPointOffset); 3645 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3646 } 3647 } 3648 3649 // Helper to emit a single function summary record. 3650 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3651 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3652 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3653 const Function &F) { 3654 NameVals.push_back(ValueID); 3655 3656 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3657 writeFunctionTypeMetadataRecords(Stream, FS); 3658 3659 auto SpecialRefCnts = FS->specialRefCounts(); 3660 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3661 NameVals.push_back(FS->instCount()); 3662 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3663 NameVals.push_back(FS->refs().size()); 3664 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3665 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3666 3667 for (auto &RI : FS->refs()) 3668 NameVals.push_back(VE.getValueID(RI.getValue())); 3669 3670 bool HasProfileData = 3671 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3672 for (auto &ECI : FS->calls()) { 3673 NameVals.push_back(getValueId(ECI.first)); 3674 if (HasProfileData) 3675 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3676 else if (WriteRelBFToSummary) 3677 NameVals.push_back(ECI.second.RelBlockFreq); 3678 } 3679 3680 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3681 unsigned Code = 3682 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3683 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3684 : bitc::FS_PERMODULE)); 3685 3686 // Emit the finished record. 3687 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3688 NameVals.clear(); 3689 } 3690 3691 // Collect the global value references in the given variable's initializer, 3692 // and emit them in a summary record. 3693 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3694 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3695 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3696 auto VI = Index->getValueInfo(V.getGUID()); 3697 if (!VI || VI.getSummaryList().empty()) { 3698 // Only declarations should not have a summary (a declaration might however 3699 // have a summary if the def was in module level asm). 3700 assert(V.isDeclaration()); 3701 return; 3702 } 3703 auto *Summary = VI.getSummaryList()[0].get(); 3704 NameVals.push_back(VE.getValueID(&V)); 3705 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3706 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3707 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3708 3709 auto VTableFuncs = VS->vTableFuncs(); 3710 if (!VTableFuncs.empty()) 3711 NameVals.push_back(VS->refs().size()); 3712 3713 unsigned SizeBeforeRefs = NameVals.size(); 3714 for (auto &RI : VS->refs()) 3715 NameVals.push_back(VE.getValueID(RI.getValue())); 3716 // Sort the refs for determinism output, the vector returned by FS->refs() has 3717 // been initialized from a DenseSet. 3718 llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3719 3720 if (VTableFuncs.empty()) 3721 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3722 FSModRefsAbbrev); 3723 else { 3724 // VTableFuncs pairs should already be sorted by offset. 3725 for (auto &P : VTableFuncs) { 3726 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3727 NameVals.push_back(P.VTableOffset); 3728 } 3729 3730 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3731 FSModVTableRefsAbbrev); 3732 } 3733 NameVals.clear(); 3734 } 3735 3736 /// Emit the per-module summary section alongside the rest of 3737 /// the module's bitcode. 3738 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3739 // By default we compile with ThinLTO if the module has a summary, but the 3740 // client can request full LTO with a module flag. 3741 bool IsThinLTO = true; 3742 if (auto *MD = 3743 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3744 IsThinLTO = MD->getZExtValue(); 3745 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3746 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3747 4); 3748 3749 Stream.EmitRecord( 3750 bitc::FS_VERSION, 3751 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3752 3753 // Write the index flags. 3754 uint64_t Flags = 0; 3755 // Bits 1-3 are set only in the combined index, skip them. 3756 if (Index->enableSplitLTOUnit()) 3757 Flags |= 0x8; 3758 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3759 3760 if (Index->begin() == Index->end()) { 3761 Stream.ExitBlock(); 3762 return; 3763 } 3764 3765 for (const auto &GVI : valueIds()) { 3766 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3767 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3768 } 3769 3770 // Abbrev for FS_PERMODULE_PROFILE. 3771 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3772 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3773 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3780 // numrefs x valueid, n x (valueid, hotness) 3781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3783 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3784 3785 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3786 Abbv = std::make_shared<BitCodeAbbrev>(); 3787 if (WriteRelBFToSummary) 3788 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3789 else 3790 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3798 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3801 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3802 3803 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3804 Abbv = std::make_shared<BitCodeAbbrev>(); 3805 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3808 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3809 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3810 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3811 3812 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3813 Abbv = std::make_shared<BitCodeAbbrev>(); 3814 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3818 // numrefs x valueid, n x (valueid , offset) 3819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3821 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3822 3823 // Abbrev for FS_ALIAS. 3824 Abbv = std::make_shared<BitCodeAbbrev>(); 3825 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3826 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3827 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3829 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3830 3831 // Abbrev for FS_TYPE_ID_METADATA 3832 Abbv = std::make_shared<BitCodeAbbrev>(); 3833 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 3834 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 3835 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 3836 // n x (valueid , offset) 3837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3839 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3840 3841 SmallVector<uint64_t, 64> NameVals; 3842 // Iterate over the list of functions instead of the Index to 3843 // ensure the ordering is stable. 3844 for (const Function &F : M) { 3845 // Summary emission does not support anonymous functions, they have to 3846 // renamed using the anonymous function renaming pass. 3847 if (!F.hasName()) 3848 report_fatal_error("Unexpected anonymous function when writing summary"); 3849 3850 ValueInfo VI = Index->getValueInfo(F.getGUID()); 3851 if (!VI || VI.getSummaryList().empty()) { 3852 // Only declarations should not have a summary (a declaration might 3853 // however have a summary if the def was in module level asm). 3854 assert(F.isDeclaration()); 3855 continue; 3856 } 3857 auto *Summary = VI.getSummaryList()[0].get(); 3858 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3859 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3860 } 3861 3862 // Capture references from GlobalVariable initializers, which are outside 3863 // of a function scope. 3864 for (const GlobalVariable &G : M.globals()) 3865 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 3866 FSModVTableRefsAbbrev); 3867 3868 for (const GlobalAlias &A : M.aliases()) { 3869 auto *Aliasee = A.getBaseObject(); 3870 if (!Aliasee->hasName()) 3871 // Nameless function don't have an entry in the summary, skip it. 3872 continue; 3873 auto AliasId = VE.getValueID(&A); 3874 auto AliaseeId = VE.getValueID(Aliasee); 3875 NameVals.push_back(AliasId); 3876 auto *Summary = Index->getGlobalValueSummary(A); 3877 AliasSummary *AS = cast<AliasSummary>(Summary); 3878 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3879 NameVals.push_back(AliaseeId); 3880 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3881 NameVals.clear(); 3882 } 3883 3884 for (auto &S : Index->typeIdCompatibleVtableMap()) { 3885 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 3886 S.second, VE); 3887 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 3888 TypeIdCompatibleVtableAbbrev); 3889 NameVals.clear(); 3890 } 3891 3892 Stream.ExitBlock(); 3893 } 3894 3895 /// Emit the combined summary section into the combined index file. 3896 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3897 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3898 Stream.EmitRecord( 3899 bitc::FS_VERSION, 3900 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3901 3902 // Write the index flags. 3903 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 3904 3905 for (const auto &GVI : valueIds()) { 3906 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3907 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3908 } 3909 3910 // Abbrev for FS_COMBINED. 3911 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3912 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3913 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3915 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3916 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3917 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3918 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3919 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3920 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3921 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3922 // numrefs x valueid, n x (valueid) 3923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3924 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3925 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3926 3927 // Abbrev for FS_COMBINED_PROFILE. 3928 Abbv = std::make_shared<BitCodeAbbrev>(); 3929 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3932 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3934 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3935 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3939 // numrefs x valueid, n x (valueid, hotness) 3940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3942 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3943 3944 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3945 Abbv = std::make_shared<BitCodeAbbrev>(); 3946 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3952 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3953 3954 // Abbrev for FS_COMBINED_ALIAS. 3955 Abbv = std::make_shared<BitCodeAbbrev>(); 3956 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3961 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3962 3963 // The aliases are emitted as a post-pass, and will point to the value 3964 // id of the aliasee. Save them in a vector for post-processing. 3965 SmallVector<AliasSummary *, 64> Aliases; 3966 3967 // Save the value id for each summary for alias emission. 3968 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3969 3970 SmallVector<uint64_t, 64> NameVals; 3971 3972 // Set that will be populated during call to writeFunctionTypeMetadataRecords 3973 // with the type ids referenced by this index file. 3974 std::set<GlobalValue::GUID> ReferencedTypeIds; 3975 3976 // For local linkage, we also emit the original name separately 3977 // immediately after the record. 3978 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3979 if (!GlobalValue::isLocalLinkage(S.linkage())) 3980 return; 3981 NameVals.push_back(S.getOriginalName()); 3982 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3983 NameVals.clear(); 3984 }; 3985 3986 std::set<GlobalValue::GUID> DefOrUseGUIDs; 3987 forEachSummary([&](GVInfo I, bool IsAliasee) { 3988 GlobalValueSummary *S = I.second; 3989 assert(S); 3990 DefOrUseGUIDs.insert(I.first); 3991 for (const ValueInfo &VI : S->refs()) 3992 DefOrUseGUIDs.insert(VI.getGUID()); 3993 3994 auto ValueId = getValueId(I.first); 3995 assert(ValueId); 3996 SummaryToValueIdMap[S] = *ValueId; 3997 3998 // If this is invoked for an aliasee, we want to record the above 3999 // mapping, but then not emit a summary entry (if the aliasee is 4000 // to be imported, we will invoke this separately with IsAliasee=false). 4001 if (IsAliasee) 4002 return; 4003 4004 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4005 // Will process aliases as a post-pass because the reader wants all 4006 // global to be loaded first. 4007 Aliases.push_back(AS); 4008 return; 4009 } 4010 4011 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4012 NameVals.push_back(*ValueId); 4013 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4014 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4015 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4016 for (auto &RI : VS->refs()) { 4017 auto RefValueId = getValueId(RI.getGUID()); 4018 if (!RefValueId) 4019 continue; 4020 NameVals.push_back(*RefValueId); 4021 } 4022 4023 // Emit the finished record. 4024 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4025 FSModRefsAbbrev); 4026 NameVals.clear(); 4027 MaybeEmitOriginalName(*S); 4028 return; 4029 } 4030 4031 auto *FS = cast<FunctionSummary>(S); 4032 writeFunctionTypeMetadataRecords(Stream, FS); 4033 getReferencedTypeIds(FS, ReferencedTypeIds); 4034 4035 NameVals.push_back(*ValueId); 4036 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4037 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4038 NameVals.push_back(FS->instCount()); 4039 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4040 NameVals.push_back(FS->entryCount()); 4041 4042 // Fill in below 4043 NameVals.push_back(0); // numrefs 4044 NameVals.push_back(0); // rorefcnt 4045 NameVals.push_back(0); // worefcnt 4046 4047 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4048 for (auto &RI : FS->refs()) { 4049 auto RefValueId = getValueId(RI.getGUID()); 4050 if (!RefValueId) 4051 continue; 4052 NameVals.push_back(*RefValueId); 4053 if (RI.isReadOnly()) 4054 RORefCnt++; 4055 else if (RI.isWriteOnly()) 4056 WORefCnt++; 4057 Count++; 4058 } 4059 NameVals[6] = Count; 4060 NameVals[7] = RORefCnt; 4061 NameVals[8] = WORefCnt; 4062 4063 bool HasProfileData = false; 4064 for (auto &EI : FS->calls()) { 4065 HasProfileData |= 4066 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4067 if (HasProfileData) 4068 break; 4069 } 4070 4071 for (auto &EI : FS->calls()) { 4072 // If this GUID doesn't have a value id, it doesn't have a function 4073 // summary and we don't need to record any calls to it. 4074 GlobalValue::GUID GUID = EI.first.getGUID(); 4075 auto CallValueId = getValueId(GUID); 4076 if (!CallValueId) { 4077 // For SamplePGO, the indirect call targets for local functions will 4078 // have its original name annotated in profile. We try to find the 4079 // corresponding PGOFuncName as the GUID. 4080 GUID = Index.getGUIDFromOriginalID(GUID); 4081 if (GUID == 0) 4082 continue; 4083 CallValueId = getValueId(GUID); 4084 if (!CallValueId) 4085 continue; 4086 // The mapping from OriginalId to GUID may return a GUID 4087 // that corresponds to a static variable. Filter it out here. 4088 // This can happen when 4089 // 1) There is a call to a library function which does not have 4090 // a CallValidId; 4091 // 2) There is a static variable with the OriginalGUID identical 4092 // to the GUID of the library function in 1); 4093 // When this happens, the logic for SamplePGO kicks in and 4094 // the static variable in 2) will be found, which needs to be 4095 // filtered out. 4096 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 4097 if (GVSum && 4098 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4099 continue; 4100 } 4101 NameVals.push_back(*CallValueId); 4102 if (HasProfileData) 4103 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4104 } 4105 4106 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4107 unsigned Code = 4108 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4109 4110 // Emit the finished record. 4111 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4112 NameVals.clear(); 4113 MaybeEmitOriginalName(*S); 4114 }); 4115 4116 for (auto *AS : Aliases) { 4117 auto AliasValueId = SummaryToValueIdMap[AS]; 4118 assert(AliasValueId); 4119 NameVals.push_back(AliasValueId); 4120 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4121 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4122 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4123 assert(AliaseeValueId); 4124 NameVals.push_back(AliaseeValueId); 4125 4126 // Emit the finished record. 4127 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4128 NameVals.clear(); 4129 MaybeEmitOriginalName(*AS); 4130 4131 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4132 getReferencedTypeIds(FS, ReferencedTypeIds); 4133 } 4134 4135 if (!Index.cfiFunctionDefs().empty()) { 4136 for (auto &S : Index.cfiFunctionDefs()) { 4137 if (DefOrUseGUIDs.count( 4138 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4139 NameVals.push_back(StrtabBuilder.add(S)); 4140 NameVals.push_back(S.size()); 4141 } 4142 } 4143 if (!NameVals.empty()) { 4144 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4145 NameVals.clear(); 4146 } 4147 } 4148 4149 if (!Index.cfiFunctionDecls().empty()) { 4150 for (auto &S : Index.cfiFunctionDecls()) { 4151 if (DefOrUseGUIDs.count( 4152 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4153 NameVals.push_back(StrtabBuilder.add(S)); 4154 NameVals.push_back(S.size()); 4155 } 4156 } 4157 if (!NameVals.empty()) { 4158 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4159 NameVals.clear(); 4160 } 4161 } 4162 4163 // Walk the GUIDs that were referenced, and write the 4164 // corresponding type id records. 4165 for (auto &T : ReferencedTypeIds) { 4166 auto TidIter = Index.typeIds().equal_range(T); 4167 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4168 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4169 It->second.second); 4170 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4171 NameVals.clear(); 4172 } 4173 } 4174 4175 Stream.ExitBlock(); 4176 } 4177 4178 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4179 /// current llvm version, and a record for the epoch number. 4180 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4181 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4182 4183 // Write the "user readable" string identifying the bitcode producer 4184 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4185 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4188 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4189 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4190 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4191 4192 // Write the epoch version 4193 Abbv = std::make_shared<BitCodeAbbrev>(); 4194 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4196 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4197 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4198 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4199 Stream.ExitBlock(); 4200 } 4201 4202 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4203 // Emit the module's hash. 4204 // MODULE_CODE_HASH: [5*i32] 4205 if (GenerateHash) { 4206 uint32_t Vals[5]; 4207 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4208 Buffer.size() - BlockStartPos)); 4209 StringRef Hash = Hasher.result(); 4210 for (int Pos = 0; Pos < 20; Pos += 4) { 4211 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4212 } 4213 4214 // Emit the finished record. 4215 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4216 4217 if (ModHash) 4218 // Save the written hash value. 4219 llvm::copy(Vals, std::begin(*ModHash)); 4220 } 4221 } 4222 4223 void ModuleBitcodeWriter::write() { 4224 writeIdentificationBlock(Stream); 4225 4226 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4227 size_t BlockStartPos = Buffer.size(); 4228 4229 writeModuleVersion(); 4230 4231 // Emit blockinfo, which defines the standard abbreviations etc. 4232 writeBlockInfo(); 4233 4234 // Emit information describing all of the types in the module. 4235 writeTypeTable(); 4236 4237 // Emit information about attribute groups. 4238 writeAttributeGroupTable(); 4239 4240 // Emit information about parameter attributes. 4241 writeAttributeTable(); 4242 4243 writeComdats(); 4244 4245 // Emit top-level description of module, including target triple, inline asm, 4246 // descriptors for global variables, and function prototype info. 4247 writeModuleInfo(); 4248 4249 // Emit constants. 4250 writeModuleConstants(); 4251 4252 // Emit metadata kind names. 4253 writeModuleMetadataKinds(); 4254 4255 // Emit metadata. 4256 writeModuleMetadata(); 4257 4258 // Emit module-level use-lists. 4259 if (VE.shouldPreserveUseListOrder()) 4260 writeUseListBlock(nullptr); 4261 4262 writeOperandBundleTags(); 4263 writeSyncScopeNames(); 4264 4265 // Emit function bodies. 4266 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4267 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4268 if (!F->isDeclaration()) 4269 writeFunction(*F, FunctionToBitcodeIndex); 4270 4271 // Need to write after the above call to WriteFunction which populates 4272 // the summary information in the index. 4273 if (Index) 4274 writePerModuleGlobalValueSummary(); 4275 4276 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4277 4278 writeModuleHash(BlockStartPos); 4279 4280 Stream.ExitBlock(); 4281 } 4282 4283 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4284 uint32_t &Position) { 4285 support::endian::write32le(&Buffer[Position], Value); 4286 Position += 4; 4287 } 4288 4289 /// If generating a bc file on darwin, we have to emit a 4290 /// header and trailer to make it compatible with the system archiver. To do 4291 /// this we emit the following header, and then emit a trailer that pads the 4292 /// file out to be a multiple of 16 bytes. 4293 /// 4294 /// struct bc_header { 4295 /// uint32_t Magic; // 0x0B17C0DE 4296 /// uint32_t Version; // Version, currently always 0. 4297 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4298 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4299 /// uint32_t CPUType; // CPU specifier. 4300 /// ... potentially more later ... 4301 /// }; 4302 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4303 const Triple &TT) { 4304 unsigned CPUType = ~0U; 4305 4306 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4307 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4308 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4309 // specific constants here because they are implicitly part of the Darwin ABI. 4310 enum { 4311 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4312 DARWIN_CPU_TYPE_X86 = 7, 4313 DARWIN_CPU_TYPE_ARM = 12, 4314 DARWIN_CPU_TYPE_POWERPC = 18 4315 }; 4316 4317 Triple::ArchType Arch = TT.getArch(); 4318 if (Arch == Triple::x86_64) 4319 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4320 else if (Arch == Triple::x86) 4321 CPUType = DARWIN_CPU_TYPE_X86; 4322 else if (Arch == Triple::ppc) 4323 CPUType = DARWIN_CPU_TYPE_POWERPC; 4324 else if (Arch == Triple::ppc64) 4325 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4326 else if (Arch == Triple::arm || Arch == Triple::thumb) 4327 CPUType = DARWIN_CPU_TYPE_ARM; 4328 4329 // Traditional Bitcode starts after header. 4330 assert(Buffer.size() >= BWH_HeaderSize && 4331 "Expected header size to be reserved"); 4332 unsigned BCOffset = BWH_HeaderSize; 4333 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4334 4335 // Write the magic and version. 4336 unsigned Position = 0; 4337 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4338 writeInt32ToBuffer(0, Buffer, Position); // Version. 4339 writeInt32ToBuffer(BCOffset, Buffer, Position); 4340 writeInt32ToBuffer(BCSize, Buffer, Position); 4341 writeInt32ToBuffer(CPUType, Buffer, Position); 4342 4343 // If the file is not a multiple of 16 bytes, insert dummy padding. 4344 while (Buffer.size() & 15) 4345 Buffer.push_back(0); 4346 } 4347 4348 /// Helper to write the header common to all bitcode files. 4349 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4350 // Emit the file header. 4351 Stream.Emit((unsigned)'B', 8); 4352 Stream.Emit((unsigned)'C', 8); 4353 Stream.Emit(0x0, 4); 4354 Stream.Emit(0xC, 4); 4355 Stream.Emit(0xE, 4); 4356 Stream.Emit(0xD, 4); 4357 } 4358 4359 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 4360 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 4361 writeBitcodeHeader(*Stream); 4362 } 4363 4364 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4365 4366 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4367 Stream->EnterSubblock(Block, 3); 4368 4369 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4370 Abbv->Add(BitCodeAbbrevOp(Record)); 4371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4372 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4373 4374 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4375 4376 Stream->ExitBlock(); 4377 } 4378 4379 void BitcodeWriter::writeSymtab() { 4380 assert(!WroteStrtab && !WroteSymtab); 4381 4382 // If any module has module-level inline asm, we will require a registered asm 4383 // parser for the target so that we can create an accurate symbol table for 4384 // the module. 4385 for (Module *M : Mods) { 4386 if (M->getModuleInlineAsm().empty()) 4387 continue; 4388 4389 std::string Err; 4390 const Triple TT(M->getTargetTriple()); 4391 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4392 if (!T || !T->hasMCAsmParser()) 4393 return; 4394 } 4395 4396 WroteSymtab = true; 4397 SmallVector<char, 0> Symtab; 4398 // The irsymtab::build function may be unable to create a symbol table if the 4399 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4400 // table is not required for correctness, but we still want to be able to 4401 // write malformed modules to bitcode files, so swallow the error. 4402 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4403 consumeError(std::move(E)); 4404 return; 4405 } 4406 4407 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4408 {Symtab.data(), Symtab.size()}); 4409 } 4410 4411 void BitcodeWriter::writeStrtab() { 4412 assert(!WroteStrtab); 4413 4414 std::vector<char> Strtab; 4415 StrtabBuilder.finalizeInOrder(); 4416 Strtab.resize(StrtabBuilder.getSize()); 4417 StrtabBuilder.write((uint8_t *)Strtab.data()); 4418 4419 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4420 {Strtab.data(), Strtab.size()}); 4421 4422 WroteStrtab = true; 4423 } 4424 4425 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4426 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4427 WroteStrtab = true; 4428 } 4429 4430 void BitcodeWriter::writeModule(const Module &M, 4431 bool ShouldPreserveUseListOrder, 4432 const ModuleSummaryIndex *Index, 4433 bool GenerateHash, ModuleHash *ModHash) { 4434 assert(!WroteStrtab); 4435 4436 // The Mods vector is used by irsymtab::build, which requires non-const 4437 // Modules in case it needs to materialize metadata. But the bitcode writer 4438 // requires that the module is materialized, so we can cast to non-const here, 4439 // after checking that it is in fact materialized. 4440 assert(M.isMaterialized()); 4441 Mods.push_back(const_cast<Module *>(&M)); 4442 4443 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4444 ShouldPreserveUseListOrder, Index, 4445 GenerateHash, ModHash); 4446 ModuleWriter.write(); 4447 } 4448 4449 void BitcodeWriter::writeIndex( 4450 const ModuleSummaryIndex *Index, 4451 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4452 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4453 ModuleToSummariesForIndex); 4454 IndexWriter.write(); 4455 } 4456 4457 /// Write the specified module to the specified output stream. 4458 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4459 bool ShouldPreserveUseListOrder, 4460 const ModuleSummaryIndex *Index, 4461 bool GenerateHash, ModuleHash *ModHash) { 4462 SmallVector<char, 0> Buffer; 4463 Buffer.reserve(256*1024); 4464 4465 // If this is darwin or another generic macho target, reserve space for the 4466 // header. 4467 Triple TT(M.getTargetTriple()); 4468 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4469 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4470 4471 BitcodeWriter Writer(Buffer); 4472 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4473 ModHash); 4474 Writer.writeSymtab(); 4475 Writer.writeStrtab(); 4476 4477 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4478 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4479 4480 // Write the generated bitstream to "Out". 4481 Out.write((char*)&Buffer.front(), Buffer.size()); 4482 } 4483 4484 void IndexBitcodeWriter::write() { 4485 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4486 4487 writeModuleVersion(); 4488 4489 // Write the module paths in the combined index. 4490 writeModStrings(); 4491 4492 // Write the summary combined index records. 4493 writeCombinedGlobalValueSummary(); 4494 4495 Stream.ExitBlock(); 4496 } 4497 4498 // Write the specified module summary index to the given raw output stream, 4499 // where it will be written in a new bitcode block. This is used when 4500 // writing the combined index file for ThinLTO. When writing a subset of the 4501 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4502 void llvm::WriteIndexToFile( 4503 const ModuleSummaryIndex &Index, raw_ostream &Out, 4504 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4505 SmallVector<char, 0> Buffer; 4506 Buffer.reserve(256 * 1024); 4507 4508 BitcodeWriter Writer(Buffer); 4509 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4510 Writer.writeStrtab(); 4511 4512 Out.write((char *)&Buffer.front(), Buffer.size()); 4513 } 4514 4515 namespace { 4516 4517 /// Class to manage the bitcode writing for a thin link bitcode file. 4518 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4519 /// ModHash is for use in ThinLTO incremental build, generated while writing 4520 /// the module bitcode file. 4521 const ModuleHash *ModHash; 4522 4523 public: 4524 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4525 BitstreamWriter &Stream, 4526 const ModuleSummaryIndex &Index, 4527 const ModuleHash &ModHash) 4528 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4529 /*ShouldPreserveUseListOrder=*/false, &Index), 4530 ModHash(&ModHash) {} 4531 4532 void write(); 4533 4534 private: 4535 void writeSimplifiedModuleInfo(); 4536 }; 4537 4538 } // end anonymous namespace 4539 4540 // This function writes a simpilified module info for thin link bitcode file. 4541 // It only contains the source file name along with the name(the offset and 4542 // size in strtab) and linkage for global values. For the global value info 4543 // entry, in order to keep linkage at offset 5, there are three zeros used 4544 // as padding. 4545 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4546 SmallVector<unsigned, 64> Vals; 4547 // Emit the module's source file name. 4548 { 4549 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4550 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4551 if (Bits == SE_Char6) 4552 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4553 else if (Bits == SE_Fixed7) 4554 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4555 4556 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4557 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4558 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4560 Abbv->Add(AbbrevOpToUse); 4561 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4562 4563 for (const auto P : M.getSourceFileName()) 4564 Vals.push_back((unsigned char)P); 4565 4566 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4567 Vals.clear(); 4568 } 4569 4570 // Emit the global variable information. 4571 for (const GlobalVariable &GV : M.globals()) { 4572 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4573 Vals.push_back(StrtabBuilder.add(GV.getName())); 4574 Vals.push_back(GV.getName().size()); 4575 Vals.push_back(0); 4576 Vals.push_back(0); 4577 Vals.push_back(0); 4578 Vals.push_back(getEncodedLinkage(GV)); 4579 4580 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4581 Vals.clear(); 4582 } 4583 4584 // Emit the function proto information. 4585 for (const Function &F : M) { 4586 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4587 Vals.push_back(StrtabBuilder.add(F.getName())); 4588 Vals.push_back(F.getName().size()); 4589 Vals.push_back(0); 4590 Vals.push_back(0); 4591 Vals.push_back(0); 4592 Vals.push_back(getEncodedLinkage(F)); 4593 4594 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4595 Vals.clear(); 4596 } 4597 4598 // Emit the alias information. 4599 for (const GlobalAlias &A : M.aliases()) { 4600 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4601 Vals.push_back(StrtabBuilder.add(A.getName())); 4602 Vals.push_back(A.getName().size()); 4603 Vals.push_back(0); 4604 Vals.push_back(0); 4605 Vals.push_back(0); 4606 Vals.push_back(getEncodedLinkage(A)); 4607 4608 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4609 Vals.clear(); 4610 } 4611 4612 // Emit the ifunc information. 4613 for (const GlobalIFunc &I : M.ifuncs()) { 4614 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4615 Vals.push_back(StrtabBuilder.add(I.getName())); 4616 Vals.push_back(I.getName().size()); 4617 Vals.push_back(0); 4618 Vals.push_back(0); 4619 Vals.push_back(0); 4620 Vals.push_back(getEncodedLinkage(I)); 4621 4622 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4623 Vals.clear(); 4624 } 4625 } 4626 4627 void ThinLinkBitcodeWriter::write() { 4628 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4629 4630 writeModuleVersion(); 4631 4632 writeSimplifiedModuleInfo(); 4633 4634 writePerModuleGlobalValueSummary(); 4635 4636 // Write module hash. 4637 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4638 4639 Stream.ExitBlock(); 4640 } 4641 4642 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4643 const ModuleSummaryIndex &Index, 4644 const ModuleHash &ModHash) { 4645 assert(!WroteStrtab); 4646 4647 // The Mods vector is used by irsymtab::build, which requires non-const 4648 // Modules in case it needs to materialize metadata. But the bitcode writer 4649 // requires that the module is materialized, so we can cast to non-const here, 4650 // after checking that it is in fact materialized. 4651 assert(M.isMaterialized()); 4652 Mods.push_back(const_cast<Module *>(&M)); 4653 4654 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4655 ModHash); 4656 ThinLinkWriter.write(); 4657 } 4658 4659 // Write the specified thin link bitcode file to the given raw output stream, 4660 // where it will be written in a new bitcode block. This is used when 4661 // writing the per-module index file for ThinLTO. 4662 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4663 const ModuleSummaryIndex &Index, 4664 const ModuleHash &ModHash) { 4665 SmallVector<char, 0> Buffer; 4666 Buffer.reserve(256 * 1024); 4667 4668 BitcodeWriter Writer(Buffer); 4669 Writer.writeThinLinkBitcode(M, Index, ModHash); 4670 Writer.writeSymtab(); 4671 Writer.writeStrtab(); 4672 4673 Out.write((char *)&Buffer.front(), Buffer.size()); 4674 } 4675 4676 static const char *getSectionNameForBitcode(const Triple &T) { 4677 switch (T.getObjectFormat()) { 4678 case Triple::MachO: 4679 return "__LLVM,__bitcode"; 4680 case Triple::COFF: 4681 case Triple::ELF: 4682 case Triple::Wasm: 4683 case Triple::UnknownObjectFormat: 4684 return ".llvmbc"; 4685 case Triple::XCOFF: 4686 llvm_unreachable("XCOFF is not yet implemented"); 4687 break; 4688 } 4689 llvm_unreachable("Unimplemented ObjectFormatType"); 4690 } 4691 4692 static const char *getSectionNameForCommandline(const Triple &T) { 4693 switch (T.getObjectFormat()) { 4694 case Triple::MachO: 4695 return "__LLVM,__cmdline"; 4696 case Triple::COFF: 4697 case Triple::ELF: 4698 case Triple::Wasm: 4699 case Triple::UnknownObjectFormat: 4700 return ".llvmcmd"; 4701 case Triple::XCOFF: 4702 llvm_unreachable("XCOFF is not yet implemented"); 4703 break; 4704 } 4705 llvm_unreachable("Unimplemented ObjectFormatType"); 4706 } 4707 4708 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4709 bool EmbedBitcode, bool EmbedMarker, 4710 const std::vector<uint8_t> *CmdArgs) { 4711 // Save llvm.compiler.used and remove it. 4712 SmallVector<Constant *, 2> UsedArray; 4713 SmallPtrSet<GlobalValue *, 4> UsedGlobals; 4714 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4715 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4716 for (auto *GV : UsedGlobals) { 4717 if (GV->getName() != "llvm.embedded.module" && 4718 GV->getName() != "llvm.cmdline") 4719 UsedArray.push_back( 4720 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4721 } 4722 if (Used) 4723 Used->eraseFromParent(); 4724 4725 // Embed the bitcode for the llvm module. 4726 std::string Data; 4727 ArrayRef<uint8_t> ModuleData; 4728 Triple T(M.getTargetTriple()); 4729 // Create a constant that contains the bitcode. 4730 // In case of embedding a marker, ignore the input Buf and use the empty 4731 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 4732 if (EmbedBitcode) { 4733 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 4734 (const unsigned char *)Buf.getBufferEnd())) { 4735 // If the input is LLVM Assembly, bitcode is produced by serializing 4736 // the module. Use-lists order need to be preserved in this case. 4737 llvm::raw_string_ostream OS(Data); 4738 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4739 ModuleData = 4740 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4741 } else 4742 // If the input is LLVM bitcode, write the input byte stream directly. 4743 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4744 Buf.getBufferSize()); 4745 } 4746 llvm::Constant *ModuleConstant = 4747 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4748 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4749 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4750 ModuleConstant); 4751 GV->setSection(getSectionNameForBitcode(T)); 4752 UsedArray.push_back( 4753 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4754 if (llvm::GlobalVariable *Old = 4755 M.getGlobalVariable("llvm.embedded.module", true)) { 4756 assert(Old->hasOneUse() && 4757 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4758 GV->takeName(Old); 4759 Old->eraseFromParent(); 4760 } else { 4761 GV->setName("llvm.embedded.module"); 4762 } 4763 4764 // Skip if only bitcode needs to be embedded. 4765 if (EmbedMarker) { 4766 // Embed command-line options. 4767 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs->data()), 4768 CmdArgs->size()); 4769 llvm::Constant *CmdConstant = 4770 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4771 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4772 llvm::GlobalValue::PrivateLinkage, 4773 CmdConstant); 4774 GV->setSection(getSectionNameForCommandline(T)); 4775 UsedArray.push_back( 4776 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4777 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4778 assert(Old->hasOneUse() && 4779 "llvm.cmdline can only be used once in llvm.compiler.used"); 4780 GV->takeName(Old); 4781 Old->eraseFromParent(); 4782 } else { 4783 GV->setName("llvm.cmdline"); 4784 } 4785 } 4786 4787 if (UsedArray.empty()) 4788 return; 4789 4790 // Recreate llvm.compiler.used. 4791 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4792 auto *NewUsed = new GlobalVariable( 4793 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4794 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4795 NewUsed->setSection("llvm.metadata"); 4796 } 4797