1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by Chris Lattner and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/ParameterAttributes.h" 24 #include "llvm/TypeSymbolTable.h" 25 #include "llvm/ValueSymbolTable.h" 26 #include "llvm/Support/MathExtras.h" 27 using namespace llvm; 28 29 /// These are manifest constants used by the bitcode writer. They do not need to 30 /// be kept in sync with the reader, but need to be consistent within this file. 31 enum { 32 CurVersion = 0, 33 34 // VALUE_SYMTAB_BLOCK abbrev id's. 35 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 36 VST_ENTRY_7_ABBREV, 37 VST_ENTRY_6_ABBREV, 38 VST_BBENTRY_6_ABBREV, 39 40 // CONSTANTS_BLOCK abbrev id's. 41 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 CONSTANTS_INTEGER_ABBREV, 43 CONSTANTS_CE_CAST_Abbrev, 44 CONSTANTS_NULL_Abbrev, 45 46 // FUNCTION_BLOCK abbrev id's. 47 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 FUNCTION_INST_BINOP_ABBREV, 49 FUNCTION_INST_CAST_ABBREV, 50 FUNCTION_INST_RET_VOID_ABBREV, 51 FUNCTION_INST_RET_VAL_ABBREV, 52 FUNCTION_INST_UNREACHABLE_ABBREV 53 }; 54 55 56 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 57 switch (Opcode) { 58 default: assert(0 && "Unknown cast instruction!"); 59 case Instruction::Trunc : return bitc::CAST_TRUNC; 60 case Instruction::ZExt : return bitc::CAST_ZEXT; 61 case Instruction::SExt : return bitc::CAST_SEXT; 62 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 63 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 64 case Instruction::UIToFP : return bitc::CAST_UITOFP; 65 case Instruction::SIToFP : return bitc::CAST_SITOFP; 66 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 67 case Instruction::FPExt : return bitc::CAST_FPEXT; 68 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 69 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 70 case Instruction::BitCast : return bitc::CAST_BITCAST; 71 } 72 } 73 74 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 75 switch (Opcode) { 76 default: assert(0 && "Unknown binary instruction!"); 77 case Instruction::Add: return bitc::BINOP_ADD; 78 case Instruction::Sub: return bitc::BINOP_SUB; 79 case Instruction::Mul: return bitc::BINOP_MUL; 80 case Instruction::UDiv: return bitc::BINOP_UDIV; 81 case Instruction::FDiv: 82 case Instruction::SDiv: return bitc::BINOP_SDIV; 83 case Instruction::URem: return bitc::BINOP_UREM; 84 case Instruction::FRem: 85 case Instruction::SRem: return bitc::BINOP_SREM; 86 case Instruction::Shl: return bitc::BINOP_SHL; 87 case Instruction::LShr: return bitc::BINOP_LSHR; 88 case Instruction::AShr: return bitc::BINOP_ASHR; 89 case Instruction::And: return bitc::BINOP_AND; 90 case Instruction::Or: return bitc::BINOP_OR; 91 case Instruction::Xor: return bitc::BINOP_XOR; 92 } 93 } 94 95 96 97 static void WriteStringRecord(unsigned Code, const std::string &Str, 98 unsigned AbbrevToUse, BitstreamWriter &Stream) { 99 SmallVector<unsigned, 64> Vals; 100 101 // Code: [strchar x N] 102 for (unsigned i = 0, e = Str.size(); i != e; ++i) 103 Vals.push_back(Str[i]); 104 105 // Emit the finished record. 106 Stream.EmitRecord(Code, Vals, AbbrevToUse); 107 } 108 109 // Emit information about parameter attributes. 110 static void WriteParamAttrTable(const ValueEnumerator &VE, 111 BitstreamWriter &Stream) { 112 const std::vector<const ParamAttrsList*> &Attrs = VE.getParamAttrs(); 113 if (Attrs.empty()) return; 114 115 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 116 117 SmallVector<uint64_t, 64> Record; 118 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 119 const ParamAttrsList *A = Attrs[i]; 120 for (unsigned op = 0, e = A->size(); op != e; ++op) { 121 Record.push_back(A->getParamIndex(op)); 122 Record.push_back(A->getParamAttrsAtIndex(op)); 123 } 124 125 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 126 Record.clear(); 127 } 128 129 Stream.ExitBlock(); 130 } 131 132 /// WriteTypeTable - Write out the type table for a module. 133 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 134 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 135 136 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 137 SmallVector<uint64_t, 64> TypeVals; 138 139 // Abbrev for TYPE_CODE_POINTER. 140 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 141 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 143 Log2_32_Ceil(VE.getTypes().size()+1))); 144 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 145 146 // Abbrev for TYPE_CODE_FUNCTION. 147 Abbv = new BitCodeAbbrev(); 148 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 151 Log2_32_Ceil(VE.getParamAttrs().size()+1))); 152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 154 Log2_32_Ceil(VE.getTypes().size()+1))); 155 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 156 157 // Abbrev for TYPE_CODE_STRUCT. 158 Abbv = new BitCodeAbbrev(); 159 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 163 Log2_32_Ceil(VE.getTypes().size()+1))); 164 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 165 166 // Abbrev for TYPE_CODE_ARRAY. 167 Abbv = new BitCodeAbbrev(); 168 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 171 Log2_32_Ceil(VE.getTypes().size()+1))); 172 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 173 174 // Emit an entry count so the reader can reserve space. 175 TypeVals.push_back(TypeList.size()); 176 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 177 TypeVals.clear(); 178 179 // Loop over all of the types, emitting each in turn. 180 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 181 const Type *T = TypeList[i].first; 182 int AbbrevToUse = 0; 183 unsigned Code = 0; 184 185 switch (T->getTypeID()) { 186 default: assert(0 && "Unknown type!"); 187 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 188 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 189 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 190 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 191 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 192 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 193 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 194 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 195 case Type::IntegerTyID: 196 // INTEGER: [width] 197 Code = bitc::TYPE_CODE_INTEGER; 198 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 199 break; 200 case Type::PointerTyID: 201 // POINTER: [pointee type] 202 Code = bitc::TYPE_CODE_POINTER; 203 TypeVals.push_back(VE.getTypeID(cast<PointerType>(T)->getElementType())); 204 AbbrevToUse = PtrAbbrev; 205 break; 206 207 case Type::FunctionTyID: { 208 const FunctionType *FT = cast<FunctionType>(T); 209 // FUNCTION: [isvararg, attrid, retty, paramty x N] 210 Code = bitc::TYPE_CODE_FUNCTION; 211 TypeVals.push_back(FT->isVarArg()); 212 TypeVals.push_back(VE.getParamAttrID(FT->getParamAttrs())); 213 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 214 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 215 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 216 AbbrevToUse = FunctionAbbrev; 217 break; 218 } 219 case Type::StructTyID: { 220 const StructType *ST = cast<StructType>(T); 221 // STRUCT: [ispacked, eltty x N] 222 Code = bitc::TYPE_CODE_STRUCT; 223 TypeVals.push_back(ST->isPacked()); 224 // Output all of the element types. 225 for (StructType::element_iterator I = ST->element_begin(), 226 E = ST->element_end(); I != E; ++I) 227 TypeVals.push_back(VE.getTypeID(*I)); 228 AbbrevToUse = StructAbbrev; 229 break; 230 } 231 case Type::ArrayTyID: { 232 const ArrayType *AT = cast<ArrayType>(T); 233 // ARRAY: [numelts, eltty] 234 Code = bitc::TYPE_CODE_ARRAY; 235 TypeVals.push_back(AT->getNumElements()); 236 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 237 AbbrevToUse = ArrayAbbrev; 238 break; 239 } 240 case Type::VectorTyID: { 241 const VectorType *VT = cast<VectorType>(T); 242 // VECTOR [numelts, eltty] 243 Code = bitc::TYPE_CODE_VECTOR; 244 TypeVals.push_back(VT->getNumElements()); 245 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 246 break; 247 } 248 } 249 250 // Emit the finished record. 251 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 252 TypeVals.clear(); 253 } 254 255 Stream.ExitBlock(); 256 } 257 258 static unsigned getEncodedLinkage(const GlobalValue *GV) { 259 switch (GV->getLinkage()) { 260 default: assert(0 && "Invalid linkage!"); 261 case GlobalValue::GhostLinkage: // Map ghost linkage onto external. 262 case GlobalValue::ExternalLinkage: return 0; 263 case GlobalValue::WeakLinkage: return 1; 264 case GlobalValue::AppendingLinkage: return 2; 265 case GlobalValue::InternalLinkage: return 3; 266 case GlobalValue::LinkOnceLinkage: return 4; 267 case GlobalValue::DLLImportLinkage: return 5; 268 case GlobalValue::DLLExportLinkage: return 6; 269 case GlobalValue::ExternalWeakLinkage: return 7; 270 } 271 } 272 273 static unsigned getEncodedVisibility(const GlobalValue *GV) { 274 switch (GV->getVisibility()) { 275 default: assert(0 && "Invalid visibility!"); 276 case GlobalValue::DefaultVisibility: return 0; 277 case GlobalValue::HiddenVisibility: return 1; 278 case GlobalValue::ProtectedVisibility: return 2; 279 } 280 } 281 282 // Emit top-level description of module, including target triple, inline asm, 283 // descriptors for global variables, and function prototype info. 284 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 285 BitstreamWriter &Stream) { 286 // Emit the list of dependent libraries for the Module. 287 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 288 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 289 290 // Emit various pieces of data attached to a module. 291 if (!M->getTargetTriple().empty()) 292 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 293 0/*TODO*/, Stream); 294 if (!M->getDataLayout().empty()) 295 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 296 0/*TODO*/, Stream); 297 if (!M->getModuleInlineAsm().empty()) 298 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 299 0/*TODO*/, Stream); 300 301 // Emit information about sections, computing how many there are. Also 302 // compute the maximum alignment value. 303 std::map<std::string, unsigned> SectionMap; 304 unsigned MaxAlignment = 0; 305 unsigned MaxGlobalType = 0; 306 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 307 GV != E; ++GV) { 308 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 309 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 310 311 if (!GV->hasSection()) continue; 312 // Give section names unique ID's. 313 unsigned &Entry = SectionMap[GV->getSection()]; 314 if (Entry != 0) continue; 315 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 316 0/*TODO*/, Stream); 317 Entry = SectionMap.size(); 318 } 319 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 320 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 321 if (!F->hasSection()) continue; 322 // Give section names unique ID's. 323 unsigned &Entry = SectionMap[F->getSection()]; 324 if (Entry != 0) continue; 325 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 326 0/*TODO*/, Stream); 327 Entry = SectionMap.size(); 328 } 329 330 // Emit abbrev for globals, now that we know # sections and max alignment. 331 unsigned SimpleGVarAbbrev = 0; 332 if (!M->global_empty()) { 333 // Add an abbrev for common globals with no visibility or thread localness. 334 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 335 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 337 Log2_32_Ceil(MaxGlobalType+1))); 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Linkage. 341 if (MaxAlignment == 0) // Alignment. 342 Abbv->Add(BitCodeAbbrevOp(0)); 343 else { 344 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 346 Log2_32_Ceil(MaxEncAlignment+1))); 347 } 348 if (SectionMap.empty()) // Section. 349 Abbv->Add(BitCodeAbbrevOp(0)); 350 else 351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 352 Log2_32_Ceil(SectionMap.size()+1))); 353 // Don't bother emitting vis + thread local. 354 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 355 } 356 357 // Emit the global variable information. 358 SmallVector<unsigned, 64> Vals; 359 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 360 GV != E; ++GV) { 361 unsigned AbbrevToUse = 0; 362 363 // GLOBALVAR: [type, isconst, initid, 364 // linkage, alignment, section, visibility, threadlocal] 365 Vals.push_back(VE.getTypeID(GV->getType())); 366 Vals.push_back(GV->isConstant()); 367 Vals.push_back(GV->isDeclaration() ? 0 : 368 (VE.getValueID(GV->getInitializer()) + 1)); 369 Vals.push_back(getEncodedLinkage(GV)); 370 Vals.push_back(Log2_32(GV->getAlignment())+1); 371 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 372 if (GV->isThreadLocal() || 373 GV->getVisibility() != GlobalValue::DefaultVisibility) { 374 Vals.push_back(getEncodedVisibility(GV)); 375 Vals.push_back(GV->isThreadLocal()); 376 } else { 377 AbbrevToUse = SimpleGVarAbbrev; 378 } 379 380 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 381 Vals.clear(); 382 } 383 384 // Emit the function proto information. 385 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 386 // FUNCTION: [type, callingconv, isproto, linkage, alignment, section, 387 // visibility] 388 Vals.push_back(VE.getTypeID(F->getType())); 389 Vals.push_back(F->getCallingConv()); 390 Vals.push_back(F->isDeclaration()); 391 Vals.push_back(getEncodedLinkage(F)); 392 393 // Note: we emit the param attr ID number for the function type of this 394 // function. In the future, we intend for attrs to be properties of 395 // functions, instead of on the type. This is to support this future work. 396 Vals.push_back(VE.getParamAttrID(F->getFunctionType()->getParamAttrs())); 397 398 Vals.push_back(Log2_32(F->getAlignment())+1); 399 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 400 Vals.push_back(getEncodedVisibility(F)); 401 402 unsigned AbbrevToUse = 0; 403 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 404 Vals.clear(); 405 } 406 407 408 // Emit the alias information. 409 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 410 AI != E; ++AI) { 411 Vals.push_back(VE.getTypeID(AI->getType())); 412 Vals.push_back(VE.getValueID(AI->getAliasee())); 413 Vals.push_back(getEncodedLinkage(AI)); 414 unsigned AbbrevToUse = 0; 415 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 416 Vals.clear(); 417 } 418 } 419 420 421 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 422 const ValueEnumerator &VE, 423 BitstreamWriter &Stream, bool isGlobal) { 424 if (FirstVal == LastVal) return; 425 426 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 427 428 unsigned AggregateAbbrev = 0; 429 unsigned String8Abbrev = 0; 430 unsigned CString7Abbrev = 0; 431 unsigned CString6Abbrev = 0; 432 // If this is a constant pool for the module, emit module-specific abbrevs. 433 if (isGlobal) { 434 // Abbrev for CST_CODE_AGGREGATE. 435 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 436 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 439 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 440 441 // Abbrev for CST_CODE_STRING. 442 Abbv = new BitCodeAbbrev(); 443 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 446 String8Abbrev = Stream.EmitAbbrev(Abbv); 447 // Abbrev for CST_CODE_CSTRING. 448 Abbv = new BitCodeAbbrev(); 449 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 452 CString7Abbrev = Stream.EmitAbbrev(Abbv); 453 // Abbrev for CST_CODE_CSTRING. 454 Abbv = new BitCodeAbbrev(); 455 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 458 CString6Abbrev = Stream.EmitAbbrev(Abbv); 459 } 460 461 SmallVector<uint64_t, 64> Record; 462 463 const ValueEnumerator::ValueList &Vals = VE.getValues(); 464 const Type *LastTy = 0; 465 for (unsigned i = FirstVal; i != LastVal; ++i) { 466 const Value *V = Vals[i].first; 467 // If we need to switch types, do so now. 468 if (V->getType() != LastTy) { 469 LastTy = V->getType(); 470 Record.push_back(VE.getTypeID(LastTy)); 471 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 472 CONSTANTS_SETTYPE_ABBREV); 473 Record.clear(); 474 } 475 476 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 477 Record.push_back(unsigned(IA->hasSideEffects())); 478 479 // Add the asm string. 480 const std::string &AsmStr = IA->getAsmString(); 481 Record.push_back(AsmStr.size()); 482 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 483 Record.push_back(AsmStr[i]); 484 485 // Add the constraint string. 486 const std::string &ConstraintStr = IA->getConstraintString(); 487 Record.push_back(ConstraintStr.size()); 488 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 489 Record.push_back(ConstraintStr[i]); 490 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 491 Record.clear(); 492 continue; 493 } 494 const Constant *C = cast<Constant>(V); 495 unsigned Code = -1U; 496 unsigned AbbrevToUse = 0; 497 if (C->isNullValue()) { 498 Code = bitc::CST_CODE_NULL; 499 } else if (isa<UndefValue>(C)) { 500 Code = bitc::CST_CODE_UNDEF; 501 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 502 if (IV->getBitWidth() <= 64) { 503 int64_t V = IV->getSExtValue(); 504 if (V >= 0) 505 Record.push_back(V << 1); 506 else 507 Record.push_back((-V << 1) | 1); 508 Code = bitc::CST_CODE_INTEGER; 509 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 510 } else { // Wide integers, > 64 bits in size. 511 // We have an arbitrary precision integer value to write whose 512 // bit width is > 64. However, in canonical unsigned integer 513 // format it is likely that the high bits are going to be zero. 514 // So, we only write the number of active words. 515 unsigned NWords = IV->getValue().getActiveWords(); 516 const uint64_t *RawWords = IV->getValue().getRawData(); 517 for (unsigned i = 0; i != NWords; ++i) { 518 int64_t V = RawWords[i]; 519 if (V >= 0) 520 Record.push_back(V << 1); 521 else 522 Record.push_back((-V << 1) | 1); 523 } 524 Code = bitc::CST_CODE_WIDE_INTEGER; 525 } 526 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 527 Code = bitc::CST_CODE_FLOAT; 528 const Type *Ty = CFP->getType(); 529 if (Ty == Type::FloatTy) { 530 Record.push_back(DoubleToBits((double)CFP->getValueAPF(). 531 convertToFloat())); 532 } else if (Ty == Type::DoubleTy) { 533 Record.push_back(DoubleToBits(CFP->getValueAPF().convertToDouble())); 534 // FIXME: make long double constants work. 535 } else if (Ty == Type::X86_FP80Ty || 536 Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) { 537 assert (0 && "Long double constants not handled yet."); 538 } else { 539 assert (0 && "Unknown FP type!"); 540 } 541 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 542 // Emit constant strings specially. 543 unsigned NumOps = C->getNumOperands(); 544 // If this is a null-terminated string, use the denser CSTRING encoding. 545 if (C->getOperand(NumOps-1)->isNullValue()) { 546 Code = bitc::CST_CODE_CSTRING; 547 --NumOps; // Don't encode the null, which isn't allowed by char6. 548 } else { 549 Code = bitc::CST_CODE_STRING; 550 AbbrevToUse = String8Abbrev; 551 } 552 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 553 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 554 for (unsigned i = 0; i != NumOps; ++i) { 555 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue(); 556 Record.push_back(V); 557 isCStr7 &= (V & 128) == 0; 558 if (isCStrChar6) 559 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 560 } 561 562 if (isCStrChar6) 563 AbbrevToUse = CString6Abbrev; 564 else if (isCStr7) 565 AbbrevToUse = CString7Abbrev; 566 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 567 isa<ConstantVector>(V)) { 568 Code = bitc::CST_CODE_AGGREGATE; 569 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 570 Record.push_back(VE.getValueID(C->getOperand(i))); 571 AbbrevToUse = AggregateAbbrev; 572 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 573 switch (CE->getOpcode()) { 574 default: 575 if (Instruction::isCast(CE->getOpcode())) { 576 Code = bitc::CST_CODE_CE_CAST; 577 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 578 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 579 Record.push_back(VE.getValueID(C->getOperand(0))); 580 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 581 } else { 582 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 583 Code = bitc::CST_CODE_CE_BINOP; 584 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 585 Record.push_back(VE.getValueID(C->getOperand(0))); 586 Record.push_back(VE.getValueID(C->getOperand(1))); 587 } 588 break; 589 case Instruction::GetElementPtr: 590 Code = bitc::CST_CODE_CE_GEP; 591 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 592 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 593 Record.push_back(VE.getValueID(C->getOperand(i))); 594 } 595 break; 596 case Instruction::Select: 597 Code = bitc::CST_CODE_CE_SELECT; 598 Record.push_back(VE.getValueID(C->getOperand(0))); 599 Record.push_back(VE.getValueID(C->getOperand(1))); 600 Record.push_back(VE.getValueID(C->getOperand(2))); 601 break; 602 case Instruction::ExtractElement: 603 Code = bitc::CST_CODE_CE_EXTRACTELT; 604 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 605 Record.push_back(VE.getValueID(C->getOperand(0))); 606 Record.push_back(VE.getValueID(C->getOperand(1))); 607 break; 608 case Instruction::InsertElement: 609 Code = bitc::CST_CODE_CE_INSERTELT; 610 Record.push_back(VE.getValueID(C->getOperand(0))); 611 Record.push_back(VE.getValueID(C->getOperand(1))); 612 Record.push_back(VE.getValueID(C->getOperand(2))); 613 break; 614 case Instruction::ShuffleVector: 615 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 616 Record.push_back(VE.getValueID(C->getOperand(0))); 617 Record.push_back(VE.getValueID(C->getOperand(1))); 618 Record.push_back(VE.getValueID(C->getOperand(2))); 619 break; 620 case Instruction::ICmp: 621 case Instruction::FCmp: 622 Code = bitc::CST_CODE_CE_CMP; 623 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 624 Record.push_back(VE.getValueID(C->getOperand(0))); 625 Record.push_back(VE.getValueID(C->getOperand(1))); 626 Record.push_back(CE->getPredicate()); 627 break; 628 } 629 } else { 630 assert(0 && "Unknown constant!"); 631 } 632 Stream.EmitRecord(Code, Record, AbbrevToUse); 633 Record.clear(); 634 } 635 636 Stream.ExitBlock(); 637 } 638 639 static void WriteModuleConstants(const ValueEnumerator &VE, 640 BitstreamWriter &Stream) { 641 const ValueEnumerator::ValueList &Vals = VE.getValues(); 642 643 // Find the first constant to emit, which is the first non-globalvalue value. 644 // We know globalvalues have been emitted by WriteModuleInfo. 645 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 646 if (!isa<GlobalValue>(Vals[i].first)) { 647 WriteConstants(i, Vals.size(), VE, Stream, true); 648 return; 649 } 650 } 651 } 652 653 /// PushValueAndType - The file has to encode both the value and type id for 654 /// many values, because we need to know what type to create for forward 655 /// references. However, most operands are not forward references, so this type 656 /// field is not needed. 657 /// 658 /// This function adds V's value ID to Vals. If the value ID is higher than the 659 /// instruction ID, then it is a forward reference, and it also includes the 660 /// type ID. 661 static bool PushValueAndType(Value *V, unsigned InstID, 662 SmallVector<unsigned, 64> &Vals, 663 ValueEnumerator &VE) { 664 unsigned ValID = VE.getValueID(V); 665 Vals.push_back(ValID); 666 if (ValID >= InstID) { 667 Vals.push_back(VE.getTypeID(V->getType())); 668 return true; 669 } 670 return false; 671 } 672 673 /// WriteInstruction - Emit an instruction to the specified stream. 674 static void WriteInstruction(const Instruction &I, unsigned InstID, 675 ValueEnumerator &VE, BitstreamWriter &Stream, 676 SmallVector<unsigned, 64> &Vals) { 677 unsigned Code = 0; 678 unsigned AbbrevToUse = 0; 679 switch (I.getOpcode()) { 680 default: 681 if (Instruction::isCast(I.getOpcode())) { 682 Code = bitc::FUNC_CODE_INST_CAST; 683 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 684 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 685 Vals.push_back(VE.getTypeID(I.getType())); 686 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 687 } else { 688 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 689 Code = bitc::FUNC_CODE_INST_BINOP; 690 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 691 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 692 Vals.push_back(VE.getValueID(I.getOperand(1))); 693 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 694 } 695 break; 696 697 case Instruction::GetElementPtr: 698 Code = bitc::FUNC_CODE_INST_GEP; 699 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 700 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 701 break; 702 case Instruction::Select: 703 Code = bitc::FUNC_CODE_INST_SELECT; 704 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 705 Vals.push_back(VE.getValueID(I.getOperand(2))); 706 Vals.push_back(VE.getValueID(I.getOperand(0))); 707 break; 708 case Instruction::ExtractElement: 709 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 710 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 711 Vals.push_back(VE.getValueID(I.getOperand(1))); 712 break; 713 case Instruction::InsertElement: 714 Code = bitc::FUNC_CODE_INST_INSERTELT; 715 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 716 Vals.push_back(VE.getValueID(I.getOperand(1))); 717 Vals.push_back(VE.getValueID(I.getOperand(2))); 718 break; 719 case Instruction::ShuffleVector: 720 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 721 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 722 Vals.push_back(VE.getValueID(I.getOperand(1))); 723 Vals.push_back(VE.getValueID(I.getOperand(2))); 724 break; 725 case Instruction::ICmp: 726 case Instruction::FCmp: 727 Code = bitc::FUNC_CODE_INST_CMP; 728 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 729 Vals.push_back(VE.getValueID(I.getOperand(1))); 730 Vals.push_back(cast<CmpInst>(I).getPredicate()); 731 break; 732 733 case Instruction::Ret: 734 Code = bitc::FUNC_CODE_INST_RET; 735 if (!I.getNumOperands()) 736 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 737 else if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 738 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 739 break; 740 case Instruction::Br: 741 Code = bitc::FUNC_CODE_INST_BR; 742 Vals.push_back(VE.getValueID(I.getOperand(0))); 743 if (cast<BranchInst>(I).isConditional()) { 744 Vals.push_back(VE.getValueID(I.getOperand(1))); 745 Vals.push_back(VE.getValueID(I.getOperand(2))); 746 } 747 break; 748 case Instruction::Switch: 749 Code = bitc::FUNC_CODE_INST_SWITCH; 750 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 751 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 752 Vals.push_back(VE.getValueID(I.getOperand(i))); 753 break; 754 case Instruction::Invoke: { 755 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 756 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 757 Code = bitc::FUNC_CODE_INST_INVOKE; 758 759 // Note: we emit the param attr ID number for the function type of this 760 // function. In the future, we intend for attrs to be properties of 761 // functions, instead of on the type. This is to support this future work. 762 Vals.push_back(VE.getParamAttrID(FTy->getParamAttrs())); 763 764 Vals.push_back(cast<InvokeInst>(I).getCallingConv()); 765 Vals.push_back(VE.getValueID(I.getOperand(1))); // normal dest 766 Vals.push_back(VE.getValueID(I.getOperand(2))); // unwind dest 767 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee 768 769 // Emit value #'s for the fixed parameters. 770 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 771 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 772 773 // Emit type/value pairs for varargs params. 774 if (FTy->isVarArg()) { 775 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); 776 i != e; ++i) 777 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 778 } 779 break; 780 } 781 case Instruction::Unwind: 782 Code = bitc::FUNC_CODE_INST_UNWIND; 783 break; 784 case Instruction::Unreachable: 785 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 786 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 787 break; 788 789 case Instruction::PHI: 790 Code = bitc::FUNC_CODE_INST_PHI; 791 Vals.push_back(VE.getTypeID(I.getType())); 792 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 793 Vals.push_back(VE.getValueID(I.getOperand(i))); 794 break; 795 796 case Instruction::Malloc: 797 Code = bitc::FUNC_CODE_INST_MALLOC; 798 Vals.push_back(VE.getTypeID(I.getType())); 799 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 800 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); 801 break; 802 803 case Instruction::Free: 804 Code = bitc::FUNC_CODE_INST_FREE; 805 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 806 break; 807 808 case Instruction::Alloca: 809 Code = bitc::FUNC_CODE_INST_ALLOCA; 810 Vals.push_back(VE.getTypeID(I.getType())); 811 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 812 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 813 break; 814 815 case Instruction::Load: 816 Code = bitc::FUNC_CODE_INST_LOAD; 817 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 818 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 819 820 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 821 Vals.push_back(cast<LoadInst>(I).isVolatile()); 822 break; 823 case Instruction::Store: 824 Code = bitc::FUNC_CODE_INST_STORE; 825 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // val. 826 Vals.push_back(VE.getValueID(I.getOperand(1))); // ptr. 827 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 828 Vals.push_back(cast<StoreInst>(I).isVolatile()); 829 break; 830 case Instruction::Call: { 831 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 832 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 833 834 Code = bitc::FUNC_CODE_INST_CALL; 835 836 // Note: we emit the param attr ID number for the function type of this 837 // function. In the future, we intend for attrs to be properties of 838 // functions, instead of on the type. This is to support this future work. 839 Vals.push_back(VE.getParamAttrID(FTy->getParamAttrs())); 840 841 Vals.push_back((cast<CallInst>(I).getCallingConv() << 1) | 842 unsigned(cast<CallInst>(I).isTailCall())); 843 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // Callee 844 845 // Emit value #'s for the fixed parameters. 846 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 847 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 848 849 // Emit type/value pairs for varargs params. 850 if (FTy->isVarArg()) { 851 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 852 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 853 i != e; ++i) 854 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs 855 } 856 break; 857 } 858 case Instruction::VAArg: 859 Code = bitc::FUNC_CODE_INST_VAARG; 860 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 861 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 862 Vals.push_back(VE.getTypeID(I.getType())); // restype. 863 break; 864 } 865 866 Stream.EmitRecord(Code, Vals, AbbrevToUse); 867 Vals.clear(); 868 } 869 870 // Emit names for globals/functions etc. 871 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 872 const ValueEnumerator &VE, 873 BitstreamWriter &Stream) { 874 if (VST.empty()) return; 875 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 876 877 // FIXME: Set up the abbrev, we know how many values there are! 878 // FIXME: We know if the type names can use 7-bit ascii. 879 SmallVector<unsigned, 64> NameVals; 880 881 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 882 SI != SE; ++SI) { 883 884 const ValueName &Name = *SI; 885 886 // Figure out the encoding to use for the name. 887 bool is7Bit = true; 888 bool isChar6 = true; 889 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 890 C != E; ++C) { 891 if (isChar6) 892 isChar6 = BitCodeAbbrevOp::isChar6(*C); 893 if ((unsigned char)*C & 128) { 894 is7Bit = false; 895 break; // don't bother scanning the rest. 896 } 897 } 898 899 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 900 901 // VST_ENTRY: [valueid, namechar x N] 902 // VST_BBENTRY: [bbid, namechar x N] 903 unsigned Code; 904 if (isa<BasicBlock>(SI->getValue())) { 905 Code = bitc::VST_CODE_BBENTRY; 906 if (isChar6) 907 AbbrevToUse = VST_BBENTRY_6_ABBREV; 908 } else { 909 Code = bitc::VST_CODE_ENTRY; 910 if (isChar6) 911 AbbrevToUse = VST_ENTRY_6_ABBREV; 912 else if (is7Bit) 913 AbbrevToUse = VST_ENTRY_7_ABBREV; 914 } 915 916 NameVals.push_back(VE.getValueID(SI->getValue())); 917 for (const char *P = Name.getKeyData(), 918 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 919 NameVals.push_back((unsigned char)*P); 920 921 // Emit the finished record. 922 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 923 NameVals.clear(); 924 } 925 Stream.ExitBlock(); 926 } 927 928 /// WriteFunction - Emit a function body to the module stream. 929 static void WriteFunction(const Function &F, ValueEnumerator &VE, 930 BitstreamWriter &Stream) { 931 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 932 VE.incorporateFunction(F); 933 934 SmallVector<unsigned, 64> Vals; 935 936 // Emit the number of basic blocks, so the reader can create them ahead of 937 // time. 938 Vals.push_back(VE.getBasicBlocks().size()); 939 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 940 Vals.clear(); 941 942 // If there are function-local constants, emit them now. 943 unsigned CstStart, CstEnd; 944 VE.getFunctionConstantRange(CstStart, CstEnd); 945 WriteConstants(CstStart, CstEnd, VE, Stream, false); 946 947 // Keep a running idea of what the instruction ID is. 948 unsigned InstID = CstEnd; 949 950 // Finally, emit all the instructions, in order. 951 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 952 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 953 I != E; ++I) { 954 WriteInstruction(*I, InstID, VE, Stream, Vals); 955 if (I->getType() != Type::VoidTy) 956 ++InstID; 957 } 958 959 // Emit names for all the instructions etc. 960 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 961 962 VE.purgeFunction(); 963 Stream.ExitBlock(); 964 } 965 966 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 967 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 968 const ValueEnumerator &VE, 969 BitstreamWriter &Stream) { 970 if (TST.empty()) return; 971 972 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 973 974 // 7-bit fixed width VST_CODE_ENTRY strings. 975 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 976 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 977 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 978 Log2_32_Ceil(VE.getTypes().size()+1))); 979 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 980 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 981 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 982 983 SmallVector<unsigned, 64> NameVals; 984 985 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 986 TI != TE; ++TI) { 987 // TST_ENTRY: [typeid, namechar x N] 988 NameVals.push_back(VE.getTypeID(TI->second)); 989 990 const std::string &Str = TI->first; 991 bool is7Bit = true; 992 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 993 NameVals.push_back((unsigned char)Str[i]); 994 if (Str[i] & 128) 995 is7Bit = false; 996 } 997 998 // Emit the finished record. 999 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1000 NameVals.clear(); 1001 } 1002 1003 Stream.ExitBlock(); 1004 } 1005 1006 // Emit blockinfo, which defines the standard abbreviations etc. 1007 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1008 // We only want to emit block info records for blocks that have multiple 1009 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1010 // blocks can defined their abbrevs inline. 1011 Stream.EnterBlockInfoBlock(2); 1012 1013 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1014 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1015 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1016 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1017 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1018 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1019 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1020 Abbv) != VST_ENTRY_8_ABBREV) 1021 assert(0 && "Unexpected abbrev ordering!"); 1022 } 1023 1024 { // 7-bit fixed width VST_ENTRY strings. 1025 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1026 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1027 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1028 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1029 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1030 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1031 Abbv) != VST_ENTRY_7_ABBREV) 1032 assert(0 && "Unexpected abbrev ordering!"); 1033 } 1034 { // 6-bit char6 VST_ENTRY strings. 1035 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1036 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1037 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1038 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1039 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1040 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1041 Abbv) != VST_ENTRY_6_ABBREV) 1042 assert(0 && "Unexpected abbrev ordering!"); 1043 } 1044 { // 6-bit char6 VST_BBENTRY strings. 1045 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1046 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1047 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1048 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1049 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1050 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1051 Abbv) != VST_BBENTRY_6_ABBREV) 1052 assert(0 && "Unexpected abbrev ordering!"); 1053 } 1054 1055 1056 1057 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1058 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1059 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1061 Log2_32_Ceil(VE.getTypes().size()+1))); 1062 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1063 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1064 assert(0 && "Unexpected abbrev ordering!"); 1065 } 1066 1067 { // INTEGER abbrev for CONSTANTS_BLOCK. 1068 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1069 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1071 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1072 Abbv) != CONSTANTS_INTEGER_ABBREV) 1073 assert(0 && "Unexpected abbrev ordering!"); 1074 } 1075 1076 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1077 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1078 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1080 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1081 Log2_32_Ceil(VE.getTypes().size()+1))); 1082 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1083 1084 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1085 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1086 assert(0 && "Unexpected abbrev ordering!"); 1087 } 1088 { // NULL abbrev for CONSTANTS_BLOCK. 1089 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1090 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1091 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1092 Abbv) != CONSTANTS_NULL_Abbrev) 1093 assert(0 && "Unexpected abbrev ordering!"); 1094 } 1095 1096 // FIXME: This should only use space for first class types! 1097 1098 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1099 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1100 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1103 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1104 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1105 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1106 assert(0 && "Unexpected abbrev ordering!"); 1107 } 1108 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1109 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1110 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1113 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1114 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1115 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1116 assert(0 && "Unexpected abbrev ordering!"); 1117 } 1118 { // INST_CAST abbrev for FUNCTION_BLOCK. 1119 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1120 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1121 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1122 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1123 Log2_32_Ceil(VE.getTypes().size()+1))); 1124 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1125 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1126 Abbv) != FUNCTION_INST_CAST_ABBREV) 1127 assert(0 && "Unexpected abbrev ordering!"); 1128 } 1129 1130 { // INST_RET abbrev for FUNCTION_BLOCK. 1131 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1132 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1133 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1134 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1135 assert(0 && "Unexpected abbrev ordering!"); 1136 } 1137 { // INST_RET abbrev for FUNCTION_BLOCK. 1138 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1139 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1140 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1141 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1142 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1143 assert(0 && "Unexpected abbrev ordering!"); 1144 } 1145 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1146 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1147 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1148 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1149 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1150 assert(0 && "Unexpected abbrev ordering!"); 1151 } 1152 1153 Stream.ExitBlock(); 1154 } 1155 1156 1157 /// WriteModule - Emit the specified module to the bitstream. 1158 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1159 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1160 1161 // Emit the version number if it is non-zero. 1162 if (CurVersion) { 1163 SmallVector<unsigned, 1> Vals; 1164 Vals.push_back(CurVersion); 1165 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1166 } 1167 1168 // Analyze the module, enumerating globals, functions, etc. 1169 ValueEnumerator VE(M); 1170 1171 // Emit blockinfo, which defines the standard abbreviations etc. 1172 WriteBlockInfo(VE, Stream); 1173 1174 // Emit information about parameter attributes. 1175 WriteParamAttrTable(VE, Stream); 1176 1177 // Emit information describing all of the types in the module. 1178 WriteTypeTable(VE, Stream); 1179 1180 // Emit top-level description of module, including target triple, inline asm, 1181 // descriptors for global variables, and function prototype info. 1182 WriteModuleInfo(M, VE, Stream); 1183 1184 // Emit constants. 1185 WriteModuleConstants(VE, Stream); 1186 1187 // If we have any aggregate values in the value table, purge them - these can 1188 // only be used to initialize global variables. Doing so makes the value 1189 // namespace smaller for code in functions. 1190 int NumNonAggregates = VE.PurgeAggregateValues(); 1191 if (NumNonAggregates != -1) { 1192 SmallVector<unsigned, 1> Vals; 1193 Vals.push_back(NumNonAggregates); 1194 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals); 1195 } 1196 1197 // Emit function bodies. 1198 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1199 if (!I->isDeclaration()) 1200 WriteFunction(*I, VE, Stream); 1201 1202 // Emit the type symbol table information. 1203 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1204 1205 // Emit names for globals/functions etc. 1206 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1207 1208 Stream.ExitBlock(); 1209 } 1210 1211 1212 /// WriteBitcodeToFile - Write the specified module to the specified output 1213 /// stream. 1214 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { 1215 std::vector<unsigned char> Buffer; 1216 BitstreamWriter Stream(Buffer); 1217 1218 Buffer.reserve(256*1024); 1219 1220 // Emit the file header. 1221 Stream.Emit((unsigned)'B', 8); 1222 Stream.Emit((unsigned)'C', 8); 1223 Stream.Emit(0x0, 4); 1224 Stream.Emit(0xC, 4); 1225 Stream.Emit(0xE, 4); 1226 Stream.Emit(0xD, 4); 1227 1228 // Emit the module. 1229 WriteModule(M, Stream); 1230 1231 // Write the generated bitstream to "Out". 1232 Out.write((char*)&Buffer.front(), Buffer.size()); 1233 1234 // Make sure it hits disk now. 1235 Out.flush(); 1236 } 1237