1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Bitcode/BitcodeCommon.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/MC/TargetRegistry.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/TargetParser/Triple.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <optional> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 static cl::opt<unsigned> 87 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 88 cl::desc("Number of metadatas above which we emit an index " 89 "to enable lazy-loading")); 90 static cl::opt<uint32_t> FlushThreshold( 91 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 92 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 93 94 static cl::opt<bool> WriteRelBFToSummary( 95 "write-relbf-to-summary", cl::Hidden, cl::init(false), 96 cl::desc("Write relative block frequency to function summary ")); 97 98 namespace llvm { 99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 100 } 101 102 namespace { 103 104 /// These are manifest constants used by the bitcode writer. They do not need to 105 /// be kept in sync with the reader, but need to be consistent within this file. 106 enum { 107 // VALUE_SYMTAB_BLOCK abbrev id's. 108 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 109 VST_ENTRY_7_ABBREV, 110 VST_ENTRY_6_ABBREV, 111 VST_BBENTRY_6_ABBREV, 112 113 // CONSTANTS_BLOCK abbrev id's. 114 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 115 CONSTANTS_INTEGER_ABBREV, 116 CONSTANTS_CE_CAST_Abbrev, 117 CONSTANTS_NULL_Abbrev, 118 119 // FUNCTION_BLOCK abbrev id's. 120 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 121 FUNCTION_INST_UNOP_ABBREV, 122 FUNCTION_INST_UNOP_FLAGS_ABBREV, 123 FUNCTION_INST_BINOP_ABBREV, 124 FUNCTION_INST_BINOP_FLAGS_ABBREV, 125 FUNCTION_INST_CAST_ABBREV, 126 FUNCTION_INST_RET_VOID_ABBREV, 127 FUNCTION_INST_RET_VAL_ABBREV, 128 FUNCTION_INST_UNREACHABLE_ABBREV, 129 FUNCTION_INST_GEP_ABBREV, 130 }; 131 132 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 133 /// file type. 134 class BitcodeWriterBase { 135 protected: 136 /// The stream created and owned by the client. 137 BitstreamWriter &Stream; 138 139 StringTableBuilder &StrtabBuilder; 140 141 public: 142 /// Constructs a BitcodeWriterBase object that writes to the provided 143 /// \p Stream. 144 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 145 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 146 147 protected: 148 void writeModuleVersion(); 149 }; 150 151 void BitcodeWriterBase::writeModuleVersion() { 152 // VERSION: [version#] 153 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 154 } 155 156 /// Base class to manage the module bitcode writing, currently subclassed for 157 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 158 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 159 protected: 160 /// The Module to write to bitcode. 161 const Module &M; 162 163 /// Enumerates ids for all values in the module. 164 ValueEnumerator VE; 165 166 /// Optional per-module index to write for ThinLTO. 167 const ModuleSummaryIndex *Index; 168 169 /// Map that holds the correspondence between GUIDs in the summary index, 170 /// that came from indirect call profiles, and a value id generated by this 171 /// class to use in the VST and summary block records. 172 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 173 174 /// Tracks the last value id recorded in the GUIDToValueMap. 175 unsigned GlobalValueId; 176 177 /// Saves the offset of the VSTOffset record that must eventually be 178 /// backpatched with the offset of the actual VST. 179 uint64_t VSTOffsetPlaceholder = 0; 180 181 public: 182 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 183 /// writing to the provided \p Buffer. 184 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 185 BitstreamWriter &Stream, 186 bool ShouldPreserveUseListOrder, 187 const ModuleSummaryIndex *Index) 188 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 189 VE(M, ShouldPreserveUseListOrder), Index(Index) { 190 // Assign ValueIds to any callee values in the index that came from 191 // indirect call profiles and were recorded as a GUID not a Value* 192 // (which would have been assigned an ID by the ValueEnumerator). 193 // The starting ValueId is just after the number of values in the 194 // ValueEnumerator, so that they can be emitted in the VST. 195 GlobalValueId = VE.getValues().size(); 196 if (!Index) 197 return; 198 for (const auto &GUIDSummaryLists : *Index) 199 // Examine all summaries for this GUID. 200 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 201 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 202 // For each call in the function summary, see if the call 203 // is to a GUID (which means it is for an indirect call, 204 // otherwise we would have a Value for it). If so, synthesize 205 // a value id. 206 for (auto &CallEdge : FS->calls()) 207 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 208 assignValueId(CallEdge.first.getGUID()); 209 } 210 211 protected: 212 void writePerModuleGlobalValueSummary(); 213 214 private: 215 void writePerModuleFunctionSummaryRecord( 216 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 217 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 218 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F); 219 void writeModuleLevelReferences(const GlobalVariable &V, 220 SmallVector<uint64_t, 64> &NameVals, 221 unsigned FSModRefsAbbrev, 222 unsigned FSModVTableRefsAbbrev); 223 224 void assignValueId(GlobalValue::GUID ValGUID) { 225 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 226 } 227 228 unsigned getValueId(GlobalValue::GUID ValGUID) { 229 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 230 // Expect that any GUID value had a value Id assigned by an 231 // earlier call to assignValueId. 232 assert(VMI != GUIDToValueIdMap.end() && 233 "GUID does not have assigned value Id"); 234 return VMI->second; 235 } 236 237 // Helper to get the valueId for the type of value recorded in VI. 238 unsigned getValueId(ValueInfo VI) { 239 if (!VI.haveGVs() || !VI.getValue()) 240 return getValueId(VI.getGUID()); 241 return VE.getValueID(VI.getValue()); 242 } 243 244 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 245 }; 246 247 /// Class to manage the bitcode writing for a module. 248 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 249 /// Pointer to the buffer allocated by caller for bitcode writing. 250 const SmallVectorImpl<char> &Buffer; 251 252 /// True if a module hash record should be written. 253 bool GenerateHash; 254 255 /// If non-null, when GenerateHash is true, the resulting hash is written 256 /// into ModHash. 257 ModuleHash *ModHash; 258 259 SHA1 Hasher; 260 261 /// The start bit of the identification block. 262 uint64_t BitcodeStartBit; 263 264 public: 265 /// Constructs a ModuleBitcodeWriter object for the given Module, 266 /// writing to the provided \p Buffer. 267 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 268 StringTableBuilder &StrtabBuilder, 269 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 270 const ModuleSummaryIndex *Index, bool GenerateHash, 271 ModuleHash *ModHash = nullptr) 272 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 273 ShouldPreserveUseListOrder, Index), 274 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 275 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 276 277 /// Emit the current module to the bitstream. 278 void write(); 279 280 private: 281 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 282 283 size_t addToStrtab(StringRef Str); 284 285 void writeAttributeGroupTable(); 286 void writeAttributeTable(); 287 void writeTypeTable(); 288 void writeComdats(); 289 void writeValueSymbolTableForwardDecl(); 290 void writeModuleInfo(); 291 void writeValueAsMetadata(const ValueAsMetadata *MD, 292 SmallVectorImpl<uint64_t> &Record); 293 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 294 unsigned Abbrev); 295 unsigned createDILocationAbbrev(); 296 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 297 unsigned &Abbrev); 298 unsigned createGenericDINodeAbbrev(); 299 void writeGenericDINode(const GenericDINode *N, 300 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 301 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDIGenericSubrange(const DIGenericSubrange *N, 304 SmallVectorImpl<uint64_t> &Record, 305 unsigned Abbrev); 306 void writeDIEnumerator(const DIEnumerator *N, 307 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 308 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 void writeDIStringType(const DIStringType *N, 311 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 312 void writeDIDerivedType(const DIDerivedType *N, 313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 314 void writeDICompositeType(const DICompositeType *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 316 void writeDISubroutineType(const DISubroutineType *N, 317 SmallVectorImpl<uint64_t> &Record, 318 unsigned Abbrev); 319 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDICompileUnit(const DICompileUnit *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDISubprogram(const DISubprogram *N, 324 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 325 void writeDILexicalBlock(const DILexicalBlock *N, 326 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 327 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 328 SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDICommonBlock(const DICommonBlock *N, 331 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 332 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 335 unsigned Abbrev); 336 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 337 unsigned Abbrev); 338 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 339 unsigned Abbrev); 340 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 341 unsigned Abbrev); 342 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 343 unsigned Abbrev); 344 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 345 SmallVectorImpl<uint64_t> &Record, 346 unsigned Abbrev); 347 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 348 SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 void writeDIGlobalVariable(const DIGlobalVariable *N, 351 SmallVectorImpl<uint64_t> &Record, 352 unsigned Abbrev); 353 void writeDILocalVariable(const DILocalVariable *N, 354 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 355 void writeDILabel(const DILabel *N, 356 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 357 void writeDIExpression(const DIExpression *N, 358 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 359 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 360 SmallVectorImpl<uint64_t> &Record, 361 unsigned Abbrev); 362 void writeDIObjCProperty(const DIObjCProperty *N, 363 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 364 void writeDIImportedEntity(const DIImportedEntity *N, 365 SmallVectorImpl<uint64_t> &Record, 366 unsigned Abbrev); 367 unsigned createNamedMetadataAbbrev(); 368 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 369 unsigned createMetadataStringsAbbrev(); 370 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 371 SmallVectorImpl<uint64_t> &Record); 372 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 373 SmallVectorImpl<uint64_t> &Record, 374 std::vector<unsigned> *MDAbbrevs = nullptr, 375 std::vector<uint64_t> *IndexPos = nullptr); 376 void writeModuleMetadata(); 377 void writeFunctionMetadata(const Function &F); 378 void writeFunctionMetadataAttachment(const Function &F); 379 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 380 const GlobalObject &GO); 381 void writeModuleMetadataKinds(); 382 void writeOperandBundleTags(); 383 void writeSyncScopeNames(); 384 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 385 void writeModuleConstants(); 386 bool pushValueAndType(const Value *V, unsigned InstID, 387 SmallVectorImpl<unsigned> &Vals); 388 void writeOperandBundles(const CallBase &CB, unsigned InstID); 389 void pushValue(const Value *V, unsigned InstID, 390 SmallVectorImpl<unsigned> &Vals); 391 void pushValueSigned(const Value *V, unsigned InstID, 392 SmallVectorImpl<uint64_t> &Vals); 393 void writeInstruction(const Instruction &I, unsigned InstID, 394 SmallVectorImpl<unsigned> &Vals); 395 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 396 void writeGlobalValueSymbolTable( 397 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 398 void writeUseList(UseListOrder &&Order); 399 void writeUseListBlock(const Function *F); 400 void 401 writeFunction(const Function &F, 402 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 403 void writeBlockInfo(); 404 void writeModuleHash(size_t BlockStartPos); 405 406 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 407 return unsigned(SSID); 408 } 409 410 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 411 }; 412 413 /// Class to manage the bitcode writing for a combined index. 414 class IndexBitcodeWriter : public BitcodeWriterBase { 415 /// The combined index to write to bitcode. 416 const ModuleSummaryIndex &Index; 417 418 /// When writing a subset of the index for distributed backends, client 419 /// provides a map of modules to the corresponding GUIDs/summaries to write. 420 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 421 422 /// Map that holds the correspondence between the GUID used in the combined 423 /// index and a value id generated by this class to use in references. 424 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 425 426 // The sorted stack id indices actually used in the summary entries being 427 // written, which will be a subset of those in the full index in the case of 428 // distributed indexes. 429 std::vector<unsigned> StackIdIndices; 430 431 /// Tracks the last value id recorded in the GUIDToValueMap. 432 unsigned GlobalValueId = 0; 433 434 public: 435 /// Constructs a IndexBitcodeWriter object for the given combined index, 436 /// writing to the provided \p Buffer. When writing a subset of the index 437 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 438 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 439 const ModuleSummaryIndex &Index, 440 const std::map<std::string, GVSummaryMapTy> 441 *ModuleToSummariesForIndex = nullptr) 442 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 443 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 444 // Assign unique value ids to all summaries to be written, for use 445 // in writing out the call graph edges. Save the mapping from GUID 446 // to the new global value id to use when writing those edges, which 447 // are currently saved in the index in terms of GUID. 448 forEachSummary([&](GVInfo I, bool IsAliasee) { 449 GUIDToValueIdMap[I.first] = ++GlobalValueId; 450 if (IsAliasee) 451 return; 452 auto *FS = dyn_cast<FunctionSummary>(I.second); 453 if (!FS) 454 return; 455 // Record all stack id indices actually used in the summary entries being 456 // written, so that we can compact them in the case of distributed ThinLTO 457 // indexes. 458 for (auto &CI : FS->callsites()) 459 for (auto Idx : CI.StackIdIndices) 460 StackIdIndices.push_back(Idx); 461 for (auto &AI : FS->allocs()) 462 for (auto &MIB : AI.MIBs) 463 for (auto Idx : MIB.StackIdIndices) 464 StackIdIndices.push_back(Idx); 465 }); 466 llvm::sort(StackIdIndices); 467 StackIdIndices.erase( 468 std::unique(StackIdIndices.begin(), StackIdIndices.end()), 469 StackIdIndices.end()); 470 } 471 472 /// The below iterator returns the GUID and associated summary. 473 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 474 475 /// Calls the callback for each value GUID and summary to be written to 476 /// bitcode. This hides the details of whether they are being pulled from the 477 /// entire index or just those in a provided ModuleToSummariesForIndex map. 478 template<typename Functor> 479 void forEachSummary(Functor Callback) { 480 if (ModuleToSummariesForIndex) { 481 for (auto &M : *ModuleToSummariesForIndex) 482 for (auto &Summary : M.second) { 483 Callback(Summary, false); 484 // Ensure aliasee is handled, e.g. for assigning a valueId, 485 // even if we are not importing the aliasee directly (the 486 // imported alias will contain a copy of aliasee). 487 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 488 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 489 } 490 } else { 491 for (auto &Summaries : Index) 492 for (auto &Summary : Summaries.second.SummaryList) 493 Callback({Summaries.first, Summary.get()}, false); 494 } 495 } 496 497 /// Calls the callback for each entry in the modulePaths StringMap that 498 /// should be written to the module path string table. This hides the details 499 /// of whether they are being pulled from the entire index or just those in a 500 /// provided ModuleToSummariesForIndex map. 501 template <typename Functor> void forEachModule(Functor Callback) { 502 if (ModuleToSummariesForIndex) { 503 for (const auto &M : *ModuleToSummariesForIndex) { 504 const auto &MPI = Index.modulePaths().find(M.first); 505 if (MPI == Index.modulePaths().end()) { 506 // This should only happen if the bitcode file was empty, in which 507 // case we shouldn't be importing (the ModuleToSummariesForIndex 508 // would only include the module we are writing and index for). 509 assert(ModuleToSummariesForIndex->size() == 1); 510 continue; 511 } 512 Callback(*MPI); 513 } 514 } else { 515 for (const auto &MPSE : Index.modulePaths()) 516 Callback(MPSE); 517 } 518 } 519 520 /// Main entry point for writing a combined index to bitcode. 521 void write(); 522 523 private: 524 void writeModStrings(); 525 void writeCombinedGlobalValueSummary(); 526 527 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 528 auto VMI = GUIDToValueIdMap.find(ValGUID); 529 if (VMI == GUIDToValueIdMap.end()) 530 return std::nullopt; 531 return VMI->second; 532 } 533 534 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 535 }; 536 537 } // end anonymous namespace 538 539 static unsigned getEncodedCastOpcode(unsigned Opcode) { 540 switch (Opcode) { 541 default: llvm_unreachable("Unknown cast instruction!"); 542 case Instruction::Trunc : return bitc::CAST_TRUNC; 543 case Instruction::ZExt : return bitc::CAST_ZEXT; 544 case Instruction::SExt : return bitc::CAST_SEXT; 545 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 546 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 547 case Instruction::UIToFP : return bitc::CAST_UITOFP; 548 case Instruction::SIToFP : return bitc::CAST_SITOFP; 549 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 550 case Instruction::FPExt : return bitc::CAST_FPEXT; 551 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 552 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 553 case Instruction::BitCast : return bitc::CAST_BITCAST; 554 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 555 } 556 } 557 558 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 559 switch (Opcode) { 560 default: llvm_unreachable("Unknown binary instruction!"); 561 case Instruction::FNeg: return bitc::UNOP_FNEG; 562 } 563 } 564 565 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 566 switch (Opcode) { 567 default: llvm_unreachable("Unknown binary instruction!"); 568 case Instruction::Add: 569 case Instruction::FAdd: return bitc::BINOP_ADD; 570 case Instruction::Sub: 571 case Instruction::FSub: return bitc::BINOP_SUB; 572 case Instruction::Mul: 573 case Instruction::FMul: return bitc::BINOP_MUL; 574 case Instruction::UDiv: return bitc::BINOP_UDIV; 575 case Instruction::FDiv: 576 case Instruction::SDiv: return bitc::BINOP_SDIV; 577 case Instruction::URem: return bitc::BINOP_UREM; 578 case Instruction::FRem: 579 case Instruction::SRem: return bitc::BINOP_SREM; 580 case Instruction::Shl: return bitc::BINOP_SHL; 581 case Instruction::LShr: return bitc::BINOP_LSHR; 582 case Instruction::AShr: return bitc::BINOP_ASHR; 583 case Instruction::And: return bitc::BINOP_AND; 584 case Instruction::Or: return bitc::BINOP_OR; 585 case Instruction::Xor: return bitc::BINOP_XOR; 586 } 587 } 588 589 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 590 switch (Op) { 591 default: llvm_unreachable("Unknown RMW operation!"); 592 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 593 case AtomicRMWInst::Add: return bitc::RMW_ADD; 594 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 595 case AtomicRMWInst::And: return bitc::RMW_AND; 596 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 597 case AtomicRMWInst::Or: return bitc::RMW_OR; 598 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 599 case AtomicRMWInst::Max: return bitc::RMW_MAX; 600 case AtomicRMWInst::Min: return bitc::RMW_MIN; 601 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 602 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 603 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 604 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 605 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 606 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 607 case AtomicRMWInst::UIncWrap: 608 return bitc::RMW_UINC_WRAP; 609 case AtomicRMWInst::UDecWrap: 610 return bitc::RMW_UDEC_WRAP; 611 } 612 } 613 614 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 615 switch (Ordering) { 616 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 617 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 618 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 619 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 620 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 621 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 622 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 623 } 624 llvm_unreachable("Invalid ordering"); 625 } 626 627 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 628 StringRef Str, unsigned AbbrevToUse) { 629 SmallVector<unsigned, 64> Vals; 630 631 // Code: [strchar x N] 632 for (char C : Str) { 633 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 634 AbbrevToUse = 0; 635 Vals.push_back(C); 636 } 637 638 // Emit the finished record. 639 Stream.EmitRecord(Code, Vals, AbbrevToUse); 640 } 641 642 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 643 switch (Kind) { 644 case Attribute::Alignment: 645 return bitc::ATTR_KIND_ALIGNMENT; 646 case Attribute::AllocAlign: 647 return bitc::ATTR_KIND_ALLOC_ALIGN; 648 case Attribute::AllocSize: 649 return bitc::ATTR_KIND_ALLOC_SIZE; 650 case Attribute::AlwaysInline: 651 return bitc::ATTR_KIND_ALWAYS_INLINE; 652 case Attribute::Builtin: 653 return bitc::ATTR_KIND_BUILTIN; 654 case Attribute::ByVal: 655 return bitc::ATTR_KIND_BY_VAL; 656 case Attribute::Convergent: 657 return bitc::ATTR_KIND_CONVERGENT; 658 case Attribute::InAlloca: 659 return bitc::ATTR_KIND_IN_ALLOCA; 660 case Attribute::Cold: 661 return bitc::ATTR_KIND_COLD; 662 case Attribute::DisableSanitizerInstrumentation: 663 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 664 case Attribute::FnRetThunkExtern: 665 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 666 case Attribute::Hot: 667 return bitc::ATTR_KIND_HOT; 668 case Attribute::ElementType: 669 return bitc::ATTR_KIND_ELEMENTTYPE; 670 case Attribute::InlineHint: 671 return bitc::ATTR_KIND_INLINE_HINT; 672 case Attribute::InReg: 673 return bitc::ATTR_KIND_IN_REG; 674 case Attribute::JumpTable: 675 return bitc::ATTR_KIND_JUMP_TABLE; 676 case Attribute::MinSize: 677 return bitc::ATTR_KIND_MIN_SIZE; 678 case Attribute::AllocatedPointer: 679 return bitc::ATTR_KIND_ALLOCATED_POINTER; 680 case Attribute::AllocKind: 681 return bitc::ATTR_KIND_ALLOC_KIND; 682 case Attribute::Memory: 683 return bitc::ATTR_KIND_MEMORY; 684 case Attribute::NoFPClass: 685 return bitc::ATTR_KIND_NOFPCLASS; 686 case Attribute::Naked: 687 return bitc::ATTR_KIND_NAKED; 688 case Attribute::Nest: 689 return bitc::ATTR_KIND_NEST; 690 case Attribute::NoAlias: 691 return bitc::ATTR_KIND_NO_ALIAS; 692 case Attribute::NoBuiltin: 693 return bitc::ATTR_KIND_NO_BUILTIN; 694 case Attribute::NoCallback: 695 return bitc::ATTR_KIND_NO_CALLBACK; 696 case Attribute::NoCapture: 697 return bitc::ATTR_KIND_NO_CAPTURE; 698 case Attribute::NoDuplicate: 699 return bitc::ATTR_KIND_NO_DUPLICATE; 700 case Attribute::NoFree: 701 return bitc::ATTR_KIND_NOFREE; 702 case Attribute::NoImplicitFloat: 703 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 704 case Attribute::NoInline: 705 return bitc::ATTR_KIND_NO_INLINE; 706 case Attribute::NoRecurse: 707 return bitc::ATTR_KIND_NO_RECURSE; 708 case Attribute::NoMerge: 709 return bitc::ATTR_KIND_NO_MERGE; 710 case Attribute::NonLazyBind: 711 return bitc::ATTR_KIND_NON_LAZY_BIND; 712 case Attribute::NonNull: 713 return bitc::ATTR_KIND_NON_NULL; 714 case Attribute::Dereferenceable: 715 return bitc::ATTR_KIND_DEREFERENCEABLE; 716 case Attribute::DereferenceableOrNull: 717 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 718 case Attribute::NoRedZone: 719 return bitc::ATTR_KIND_NO_RED_ZONE; 720 case Attribute::NoReturn: 721 return bitc::ATTR_KIND_NO_RETURN; 722 case Attribute::NoSync: 723 return bitc::ATTR_KIND_NOSYNC; 724 case Attribute::NoCfCheck: 725 return bitc::ATTR_KIND_NOCF_CHECK; 726 case Attribute::NoProfile: 727 return bitc::ATTR_KIND_NO_PROFILE; 728 case Attribute::SkipProfile: 729 return bitc::ATTR_KIND_SKIP_PROFILE; 730 case Attribute::NoUnwind: 731 return bitc::ATTR_KIND_NO_UNWIND; 732 case Attribute::NoSanitizeBounds: 733 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 734 case Attribute::NoSanitizeCoverage: 735 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 736 case Attribute::NullPointerIsValid: 737 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 738 case Attribute::OptForFuzzing: 739 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 740 case Attribute::OptimizeForSize: 741 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 742 case Attribute::OptimizeNone: 743 return bitc::ATTR_KIND_OPTIMIZE_NONE; 744 case Attribute::ReadNone: 745 return bitc::ATTR_KIND_READ_NONE; 746 case Attribute::ReadOnly: 747 return bitc::ATTR_KIND_READ_ONLY; 748 case Attribute::Returned: 749 return bitc::ATTR_KIND_RETURNED; 750 case Attribute::ReturnsTwice: 751 return bitc::ATTR_KIND_RETURNS_TWICE; 752 case Attribute::SExt: 753 return bitc::ATTR_KIND_S_EXT; 754 case Attribute::Speculatable: 755 return bitc::ATTR_KIND_SPECULATABLE; 756 case Attribute::StackAlignment: 757 return bitc::ATTR_KIND_STACK_ALIGNMENT; 758 case Attribute::StackProtect: 759 return bitc::ATTR_KIND_STACK_PROTECT; 760 case Attribute::StackProtectReq: 761 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 762 case Attribute::StackProtectStrong: 763 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 764 case Attribute::SafeStack: 765 return bitc::ATTR_KIND_SAFESTACK; 766 case Attribute::ShadowCallStack: 767 return bitc::ATTR_KIND_SHADOWCALLSTACK; 768 case Attribute::StrictFP: 769 return bitc::ATTR_KIND_STRICT_FP; 770 case Attribute::StructRet: 771 return bitc::ATTR_KIND_STRUCT_RET; 772 case Attribute::SanitizeAddress: 773 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 774 case Attribute::SanitizeHWAddress: 775 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 776 case Attribute::SanitizeThread: 777 return bitc::ATTR_KIND_SANITIZE_THREAD; 778 case Attribute::SanitizeMemory: 779 return bitc::ATTR_KIND_SANITIZE_MEMORY; 780 case Attribute::SpeculativeLoadHardening: 781 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 782 case Attribute::SwiftError: 783 return bitc::ATTR_KIND_SWIFT_ERROR; 784 case Attribute::SwiftSelf: 785 return bitc::ATTR_KIND_SWIFT_SELF; 786 case Attribute::SwiftAsync: 787 return bitc::ATTR_KIND_SWIFT_ASYNC; 788 case Attribute::UWTable: 789 return bitc::ATTR_KIND_UW_TABLE; 790 case Attribute::VScaleRange: 791 return bitc::ATTR_KIND_VSCALE_RANGE; 792 case Attribute::WillReturn: 793 return bitc::ATTR_KIND_WILLRETURN; 794 case Attribute::WriteOnly: 795 return bitc::ATTR_KIND_WRITEONLY; 796 case Attribute::ZExt: 797 return bitc::ATTR_KIND_Z_EXT; 798 case Attribute::ImmArg: 799 return bitc::ATTR_KIND_IMMARG; 800 case Attribute::SanitizeMemTag: 801 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 802 case Attribute::Preallocated: 803 return bitc::ATTR_KIND_PREALLOCATED; 804 case Attribute::NoUndef: 805 return bitc::ATTR_KIND_NOUNDEF; 806 case Attribute::ByRef: 807 return bitc::ATTR_KIND_BYREF; 808 case Attribute::MustProgress: 809 return bitc::ATTR_KIND_MUSTPROGRESS; 810 case Attribute::PresplitCoroutine: 811 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 812 case Attribute::EndAttrKinds: 813 llvm_unreachable("Can not encode end-attribute kinds marker."); 814 case Attribute::None: 815 llvm_unreachable("Can not encode none-attribute."); 816 case Attribute::EmptyKey: 817 case Attribute::TombstoneKey: 818 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 819 } 820 821 llvm_unreachable("Trying to encode unknown attribute"); 822 } 823 824 void ModuleBitcodeWriter::writeAttributeGroupTable() { 825 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 826 VE.getAttributeGroups(); 827 if (AttrGrps.empty()) return; 828 829 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 830 831 SmallVector<uint64_t, 64> Record; 832 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 833 unsigned AttrListIndex = Pair.first; 834 AttributeSet AS = Pair.second; 835 Record.push_back(VE.getAttributeGroupID(Pair)); 836 Record.push_back(AttrListIndex); 837 838 for (Attribute Attr : AS) { 839 if (Attr.isEnumAttribute()) { 840 Record.push_back(0); 841 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 842 } else if (Attr.isIntAttribute()) { 843 Record.push_back(1); 844 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 845 Record.push_back(Attr.getValueAsInt()); 846 } else if (Attr.isStringAttribute()) { 847 StringRef Kind = Attr.getKindAsString(); 848 StringRef Val = Attr.getValueAsString(); 849 850 Record.push_back(Val.empty() ? 3 : 4); 851 Record.append(Kind.begin(), Kind.end()); 852 Record.push_back(0); 853 if (!Val.empty()) { 854 Record.append(Val.begin(), Val.end()); 855 Record.push_back(0); 856 } 857 } else { 858 assert(Attr.isTypeAttribute()); 859 Type *Ty = Attr.getValueAsType(); 860 Record.push_back(Ty ? 6 : 5); 861 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 862 if (Ty) 863 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 864 } 865 } 866 867 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 868 Record.clear(); 869 } 870 871 Stream.ExitBlock(); 872 } 873 874 void ModuleBitcodeWriter::writeAttributeTable() { 875 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 876 if (Attrs.empty()) return; 877 878 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 879 880 SmallVector<uint64_t, 64> Record; 881 for (const AttributeList &AL : Attrs) { 882 for (unsigned i : AL.indexes()) { 883 AttributeSet AS = AL.getAttributes(i); 884 if (AS.hasAttributes()) 885 Record.push_back(VE.getAttributeGroupID({i, AS})); 886 } 887 888 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 889 Record.clear(); 890 } 891 892 Stream.ExitBlock(); 893 } 894 895 /// WriteTypeTable - Write out the type table for a module. 896 void ModuleBitcodeWriter::writeTypeTable() { 897 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 898 899 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 900 SmallVector<uint64_t, 64> TypeVals; 901 902 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 903 904 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 905 auto Abbv = std::make_shared<BitCodeAbbrev>(); 906 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 907 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 908 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 909 910 // Abbrev for TYPE_CODE_FUNCTION. 911 Abbv = std::make_shared<BitCodeAbbrev>(); 912 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 913 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 915 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 916 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 917 918 // Abbrev for TYPE_CODE_STRUCT_ANON. 919 Abbv = std::make_shared<BitCodeAbbrev>(); 920 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 921 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 924 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 925 926 // Abbrev for TYPE_CODE_STRUCT_NAME. 927 Abbv = std::make_shared<BitCodeAbbrev>(); 928 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 931 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 932 933 // Abbrev for TYPE_CODE_STRUCT_NAMED. 934 Abbv = std::make_shared<BitCodeAbbrev>(); 935 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 939 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 940 941 // Abbrev for TYPE_CODE_ARRAY. 942 Abbv = std::make_shared<BitCodeAbbrev>(); 943 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 946 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 947 948 // Emit an entry count so the reader can reserve space. 949 TypeVals.push_back(TypeList.size()); 950 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 951 TypeVals.clear(); 952 953 // Loop over all of the types, emitting each in turn. 954 for (Type *T : TypeList) { 955 int AbbrevToUse = 0; 956 unsigned Code = 0; 957 958 switch (T->getTypeID()) { 959 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 960 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 961 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 962 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 963 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 964 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 965 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 966 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 967 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 968 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 969 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 970 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 971 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 972 case Type::IntegerTyID: 973 // INTEGER: [width] 974 Code = bitc::TYPE_CODE_INTEGER; 975 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 976 break; 977 case Type::PointerTyID: { 978 PointerType *PTy = cast<PointerType>(T); 979 unsigned AddressSpace = PTy->getAddressSpace(); 980 if (PTy->isOpaque()) { 981 // OPAQUE_POINTER: [address space] 982 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 983 TypeVals.push_back(AddressSpace); 984 if (AddressSpace == 0) 985 AbbrevToUse = OpaquePtrAbbrev; 986 } else { 987 // POINTER: [pointee type, address space] 988 Code = bitc::TYPE_CODE_POINTER; 989 TypeVals.push_back(VE.getTypeID(PTy->getNonOpaquePointerElementType())); 990 TypeVals.push_back(AddressSpace); 991 } 992 break; 993 } 994 case Type::FunctionTyID: { 995 FunctionType *FT = cast<FunctionType>(T); 996 // FUNCTION: [isvararg, retty, paramty x N] 997 Code = bitc::TYPE_CODE_FUNCTION; 998 TypeVals.push_back(FT->isVarArg()); 999 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 1000 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 1001 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 1002 AbbrevToUse = FunctionAbbrev; 1003 break; 1004 } 1005 case Type::StructTyID: { 1006 StructType *ST = cast<StructType>(T); 1007 // STRUCT: [ispacked, eltty x N] 1008 TypeVals.push_back(ST->isPacked()); 1009 // Output all of the element types. 1010 for (Type *ET : ST->elements()) 1011 TypeVals.push_back(VE.getTypeID(ET)); 1012 1013 if (ST->isLiteral()) { 1014 Code = bitc::TYPE_CODE_STRUCT_ANON; 1015 AbbrevToUse = StructAnonAbbrev; 1016 } else { 1017 if (ST->isOpaque()) { 1018 Code = bitc::TYPE_CODE_OPAQUE; 1019 } else { 1020 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1021 AbbrevToUse = StructNamedAbbrev; 1022 } 1023 1024 // Emit the name if it is present. 1025 if (!ST->getName().empty()) 1026 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1027 StructNameAbbrev); 1028 } 1029 break; 1030 } 1031 case Type::ArrayTyID: { 1032 ArrayType *AT = cast<ArrayType>(T); 1033 // ARRAY: [numelts, eltty] 1034 Code = bitc::TYPE_CODE_ARRAY; 1035 TypeVals.push_back(AT->getNumElements()); 1036 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1037 AbbrevToUse = ArrayAbbrev; 1038 break; 1039 } 1040 case Type::FixedVectorTyID: 1041 case Type::ScalableVectorTyID: { 1042 VectorType *VT = cast<VectorType>(T); 1043 // VECTOR [numelts, eltty] or 1044 // [numelts, eltty, scalable] 1045 Code = bitc::TYPE_CODE_VECTOR; 1046 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1047 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1048 if (isa<ScalableVectorType>(VT)) 1049 TypeVals.push_back(true); 1050 break; 1051 } 1052 case Type::TargetExtTyID: { 1053 TargetExtType *TET = cast<TargetExtType>(T); 1054 Code = bitc::TYPE_CODE_TARGET_TYPE; 1055 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), 1056 StructNameAbbrev); 1057 TypeVals.push_back(TET->getNumTypeParameters()); 1058 for (Type *InnerTy : TET->type_params()) 1059 TypeVals.push_back(VE.getTypeID(InnerTy)); 1060 for (unsigned IntParam : TET->int_params()) 1061 TypeVals.push_back(IntParam); 1062 break; 1063 } 1064 case Type::TypedPointerTyID: 1065 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1066 } 1067 1068 // Emit the finished record. 1069 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1070 TypeVals.clear(); 1071 } 1072 1073 Stream.ExitBlock(); 1074 } 1075 1076 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1077 switch (Linkage) { 1078 case GlobalValue::ExternalLinkage: 1079 return 0; 1080 case GlobalValue::WeakAnyLinkage: 1081 return 16; 1082 case GlobalValue::AppendingLinkage: 1083 return 2; 1084 case GlobalValue::InternalLinkage: 1085 return 3; 1086 case GlobalValue::LinkOnceAnyLinkage: 1087 return 18; 1088 case GlobalValue::ExternalWeakLinkage: 1089 return 7; 1090 case GlobalValue::CommonLinkage: 1091 return 8; 1092 case GlobalValue::PrivateLinkage: 1093 return 9; 1094 case GlobalValue::WeakODRLinkage: 1095 return 17; 1096 case GlobalValue::LinkOnceODRLinkage: 1097 return 19; 1098 case GlobalValue::AvailableExternallyLinkage: 1099 return 12; 1100 } 1101 llvm_unreachable("Invalid linkage"); 1102 } 1103 1104 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1105 return getEncodedLinkage(GV.getLinkage()); 1106 } 1107 1108 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1109 uint64_t RawFlags = 0; 1110 RawFlags |= Flags.ReadNone; 1111 RawFlags |= (Flags.ReadOnly << 1); 1112 RawFlags |= (Flags.NoRecurse << 2); 1113 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1114 RawFlags |= (Flags.NoInline << 4); 1115 RawFlags |= (Flags.AlwaysInline << 5); 1116 RawFlags |= (Flags.NoUnwind << 6); 1117 RawFlags |= (Flags.MayThrow << 7); 1118 RawFlags |= (Flags.HasUnknownCall << 8); 1119 RawFlags |= (Flags.MustBeUnreachable << 9); 1120 return RawFlags; 1121 } 1122 1123 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1124 // in BitcodeReader.cpp. 1125 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1126 uint64_t RawFlags = 0; 1127 1128 RawFlags |= Flags.NotEligibleToImport; // bool 1129 RawFlags |= (Flags.Live << 1); 1130 RawFlags |= (Flags.DSOLocal << 2); 1131 RawFlags |= (Flags.CanAutoHide << 3); 1132 1133 // Linkage don't need to be remapped at that time for the summary. Any future 1134 // change to the getEncodedLinkage() function will need to be taken into 1135 // account here as well. 1136 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1137 1138 RawFlags |= (Flags.Visibility << 8); // 2 bits 1139 1140 return RawFlags; 1141 } 1142 1143 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1144 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1145 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1146 return RawFlags; 1147 } 1148 1149 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1150 switch (GV.getVisibility()) { 1151 case GlobalValue::DefaultVisibility: return 0; 1152 case GlobalValue::HiddenVisibility: return 1; 1153 case GlobalValue::ProtectedVisibility: return 2; 1154 } 1155 llvm_unreachable("Invalid visibility"); 1156 } 1157 1158 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1159 switch (GV.getDLLStorageClass()) { 1160 case GlobalValue::DefaultStorageClass: return 0; 1161 case GlobalValue::DLLImportStorageClass: return 1; 1162 case GlobalValue::DLLExportStorageClass: return 2; 1163 } 1164 llvm_unreachable("Invalid DLL storage class"); 1165 } 1166 1167 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1168 switch (GV.getThreadLocalMode()) { 1169 case GlobalVariable::NotThreadLocal: return 0; 1170 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1171 case GlobalVariable::LocalDynamicTLSModel: return 2; 1172 case GlobalVariable::InitialExecTLSModel: return 3; 1173 case GlobalVariable::LocalExecTLSModel: return 4; 1174 } 1175 llvm_unreachable("Invalid TLS model"); 1176 } 1177 1178 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1179 switch (C.getSelectionKind()) { 1180 case Comdat::Any: 1181 return bitc::COMDAT_SELECTION_KIND_ANY; 1182 case Comdat::ExactMatch: 1183 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1184 case Comdat::Largest: 1185 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1186 case Comdat::NoDeduplicate: 1187 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1188 case Comdat::SameSize: 1189 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1190 } 1191 llvm_unreachable("Invalid selection kind"); 1192 } 1193 1194 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1195 switch (GV.getUnnamedAddr()) { 1196 case GlobalValue::UnnamedAddr::None: return 0; 1197 case GlobalValue::UnnamedAddr::Local: return 2; 1198 case GlobalValue::UnnamedAddr::Global: return 1; 1199 } 1200 llvm_unreachable("Invalid unnamed_addr"); 1201 } 1202 1203 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1204 if (GenerateHash) 1205 Hasher.update(Str); 1206 return StrtabBuilder.add(Str); 1207 } 1208 1209 void ModuleBitcodeWriter::writeComdats() { 1210 SmallVector<unsigned, 64> Vals; 1211 for (const Comdat *C : VE.getComdats()) { 1212 // COMDAT: [strtab offset, strtab size, selection_kind] 1213 Vals.push_back(addToStrtab(C->getName())); 1214 Vals.push_back(C->getName().size()); 1215 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1216 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1217 Vals.clear(); 1218 } 1219 } 1220 1221 /// Write a record that will eventually hold the word offset of the 1222 /// module-level VST. For now the offset is 0, which will be backpatched 1223 /// after the real VST is written. Saves the bit offset to backpatch. 1224 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1225 // Write a placeholder value in for the offset of the real VST, 1226 // which is written after the function blocks so that it can include 1227 // the offset of each function. The placeholder offset will be 1228 // updated when the real VST is written. 1229 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1230 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1231 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1232 // hold the real VST offset. Must use fixed instead of VBR as we don't 1233 // know how many VBR chunks to reserve ahead of time. 1234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1235 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1236 1237 // Emit the placeholder 1238 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1239 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1240 1241 // Compute and save the bit offset to the placeholder, which will be 1242 // patched when the real VST is written. We can simply subtract the 32-bit 1243 // fixed size from the current bit number to get the location to backpatch. 1244 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1245 } 1246 1247 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1248 1249 /// Determine the encoding to use for the given string name and length. 1250 static StringEncoding getStringEncoding(StringRef Str) { 1251 bool isChar6 = true; 1252 for (char C : Str) { 1253 if (isChar6) 1254 isChar6 = BitCodeAbbrevOp::isChar6(C); 1255 if ((unsigned char)C & 128) 1256 // don't bother scanning the rest. 1257 return SE_Fixed8; 1258 } 1259 if (isChar6) 1260 return SE_Char6; 1261 return SE_Fixed7; 1262 } 1263 1264 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1265 "Sanitizer Metadata is too large for naive serialization."); 1266 static unsigned 1267 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1268 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1269 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1270 } 1271 1272 /// Emit top-level description of module, including target triple, inline asm, 1273 /// descriptors for global variables, and function prototype info. 1274 /// Returns the bit offset to backpatch with the location of the real VST. 1275 void ModuleBitcodeWriter::writeModuleInfo() { 1276 // Emit various pieces of data attached to a module. 1277 if (!M.getTargetTriple().empty()) 1278 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1279 0 /*TODO*/); 1280 const std::string &DL = M.getDataLayoutStr(); 1281 if (!DL.empty()) 1282 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1283 if (!M.getModuleInlineAsm().empty()) 1284 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1285 0 /*TODO*/); 1286 1287 // Emit information about sections and GC, computing how many there are. Also 1288 // compute the maximum alignment value. 1289 std::map<std::string, unsigned> SectionMap; 1290 std::map<std::string, unsigned> GCMap; 1291 MaybeAlign MaxAlignment; 1292 unsigned MaxGlobalType = 0; 1293 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1294 if (A) 1295 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1296 }; 1297 for (const GlobalVariable &GV : M.globals()) { 1298 UpdateMaxAlignment(GV.getAlign()); 1299 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1300 if (GV.hasSection()) { 1301 // Give section names unique ID's. 1302 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1303 if (!Entry) { 1304 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1305 0 /*TODO*/); 1306 Entry = SectionMap.size(); 1307 } 1308 } 1309 } 1310 for (const Function &F : M) { 1311 UpdateMaxAlignment(F.getAlign()); 1312 if (F.hasSection()) { 1313 // Give section names unique ID's. 1314 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1315 if (!Entry) { 1316 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1317 0 /*TODO*/); 1318 Entry = SectionMap.size(); 1319 } 1320 } 1321 if (F.hasGC()) { 1322 // Same for GC names. 1323 unsigned &Entry = GCMap[F.getGC()]; 1324 if (!Entry) { 1325 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1326 0 /*TODO*/); 1327 Entry = GCMap.size(); 1328 } 1329 } 1330 } 1331 1332 // Emit abbrev for globals, now that we know # sections and max alignment. 1333 unsigned SimpleGVarAbbrev = 0; 1334 if (!M.global_empty()) { 1335 // Add an abbrev for common globals with no visibility or thread localness. 1336 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1337 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1341 Log2_32_Ceil(MaxGlobalType+1))); 1342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1343 //| explicitType << 1 1344 //| constant 1345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1347 if (!MaxAlignment) // Alignment. 1348 Abbv->Add(BitCodeAbbrevOp(0)); 1349 else { 1350 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1352 Log2_32_Ceil(MaxEncAlignment+1))); 1353 } 1354 if (SectionMap.empty()) // Section. 1355 Abbv->Add(BitCodeAbbrevOp(0)); 1356 else 1357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1358 Log2_32_Ceil(SectionMap.size()+1))); 1359 // Don't bother emitting vis + thread local. 1360 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1361 } 1362 1363 SmallVector<unsigned, 64> Vals; 1364 // Emit the module's source file name. 1365 { 1366 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1367 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1368 if (Bits == SE_Char6) 1369 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1370 else if (Bits == SE_Fixed7) 1371 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1372 1373 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1374 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1375 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1377 Abbv->Add(AbbrevOpToUse); 1378 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1379 1380 for (const auto P : M.getSourceFileName()) 1381 Vals.push_back((unsigned char)P); 1382 1383 // Emit the finished record. 1384 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1385 Vals.clear(); 1386 } 1387 1388 // Emit the global variable information. 1389 for (const GlobalVariable &GV : M.globals()) { 1390 unsigned AbbrevToUse = 0; 1391 1392 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1393 // linkage, alignment, section, visibility, threadlocal, 1394 // unnamed_addr, externally_initialized, dllstorageclass, 1395 // comdat, attributes, DSO_Local, GlobalSanitizer] 1396 Vals.push_back(addToStrtab(GV.getName())); 1397 Vals.push_back(GV.getName().size()); 1398 Vals.push_back(VE.getTypeID(GV.getValueType())); 1399 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1400 Vals.push_back(GV.isDeclaration() ? 0 : 1401 (VE.getValueID(GV.getInitializer()) + 1)); 1402 Vals.push_back(getEncodedLinkage(GV)); 1403 Vals.push_back(getEncodedAlign(GV.getAlign())); 1404 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1405 : 0); 1406 if (GV.isThreadLocal() || 1407 GV.getVisibility() != GlobalValue::DefaultVisibility || 1408 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1409 GV.isExternallyInitialized() || 1410 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1411 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1412 GV.hasPartition() || GV.hasSanitizerMetadata()) { 1413 Vals.push_back(getEncodedVisibility(GV)); 1414 Vals.push_back(getEncodedThreadLocalMode(GV)); 1415 Vals.push_back(getEncodedUnnamedAddr(GV)); 1416 Vals.push_back(GV.isExternallyInitialized()); 1417 Vals.push_back(getEncodedDLLStorageClass(GV)); 1418 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1419 1420 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1421 Vals.push_back(VE.getAttributeListID(AL)); 1422 1423 Vals.push_back(GV.isDSOLocal()); 1424 Vals.push_back(addToStrtab(GV.getPartition())); 1425 Vals.push_back(GV.getPartition().size()); 1426 1427 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1428 GV.getSanitizerMetadata()) 1429 : 0)); 1430 } else { 1431 AbbrevToUse = SimpleGVarAbbrev; 1432 } 1433 1434 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1435 Vals.clear(); 1436 } 1437 1438 // Emit the function proto information. 1439 for (const Function &F : M) { 1440 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1441 // linkage, paramattrs, alignment, section, visibility, gc, 1442 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1443 // prefixdata, personalityfn, DSO_Local, addrspace] 1444 Vals.push_back(addToStrtab(F.getName())); 1445 Vals.push_back(F.getName().size()); 1446 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1447 Vals.push_back(F.getCallingConv()); 1448 Vals.push_back(F.isDeclaration()); 1449 Vals.push_back(getEncodedLinkage(F)); 1450 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1451 Vals.push_back(getEncodedAlign(F.getAlign())); 1452 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1453 : 0); 1454 Vals.push_back(getEncodedVisibility(F)); 1455 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1456 Vals.push_back(getEncodedUnnamedAddr(F)); 1457 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1458 : 0); 1459 Vals.push_back(getEncodedDLLStorageClass(F)); 1460 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1461 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1462 : 0); 1463 Vals.push_back( 1464 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1465 1466 Vals.push_back(F.isDSOLocal()); 1467 Vals.push_back(F.getAddressSpace()); 1468 Vals.push_back(addToStrtab(F.getPartition())); 1469 Vals.push_back(F.getPartition().size()); 1470 1471 unsigned AbbrevToUse = 0; 1472 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1473 Vals.clear(); 1474 } 1475 1476 // Emit the alias information. 1477 for (const GlobalAlias &A : M.aliases()) { 1478 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1479 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1480 // DSO_Local] 1481 Vals.push_back(addToStrtab(A.getName())); 1482 Vals.push_back(A.getName().size()); 1483 Vals.push_back(VE.getTypeID(A.getValueType())); 1484 Vals.push_back(A.getType()->getAddressSpace()); 1485 Vals.push_back(VE.getValueID(A.getAliasee())); 1486 Vals.push_back(getEncodedLinkage(A)); 1487 Vals.push_back(getEncodedVisibility(A)); 1488 Vals.push_back(getEncodedDLLStorageClass(A)); 1489 Vals.push_back(getEncodedThreadLocalMode(A)); 1490 Vals.push_back(getEncodedUnnamedAddr(A)); 1491 Vals.push_back(A.isDSOLocal()); 1492 Vals.push_back(addToStrtab(A.getPartition())); 1493 Vals.push_back(A.getPartition().size()); 1494 1495 unsigned AbbrevToUse = 0; 1496 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1497 Vals.clear(); 1498 } 1499 1500 // Emit the ifunc information. 1501 for (const GlobalIFunc &I : M.ifuncs()) { 1502 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1503 // val#, linkage, visibility, DSO_Local] 1504 Vals.push_back(addToStrtab(I.getName())); 1505 Vals.push_back(I.getName().size()); 1506 Vals.push_back(VE.getTypeID(I.getValueType())); 1507 Vals.push_back(I.getType()->getAddressSpace()); 1508 Vals.push_back(VE.getValueID(I.getResolver())); 1509 Vals.push_back(getEncodedLinkage(I)); 1510 Vals.push_back(getEncodedVisibility(I)); 1511 Vals.push_back(I.isDSOLocal()); 1512 Vals.push_back(addToStrtab(I.getPartition())); 1513 Vals.push_back(I.getPartition().size()); 1514 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1515 Vals.clear(); 1516 } 1517 1518 writeValueSymbolTableForwardDecl(); 1519 } 1520 1521 static uint64_t getOptimizationFlags(const Value *V) { 1522 uint64_t Flags = 0; 1523 1524 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1525 if (OBO->hasNoSignedWrap()) 1526 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1527 if (OBO->hasNoUnsignedWrap()) 1528 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1529 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1530 if (PEO->isExact()) 1531 Flags |= 1 << bitc::PEO_EXACT; 1532 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1533 if (FPMO->hasAllowReassoc()) 1534 Flags |= bitc::AllowReassoc; 1535 if (FPMO->hasNoNaNs()) 1536 Flags |= bitc::NoNaNs; 1537 if (FPMO->hasNoInfs()) 1538 Flags |= bitc::NoInfs; 1539 if (FPMO->hasNoSignedZeros()) 1540 Flags |= bitc::NoSignedZeros; 1541 if (FPMO->hasAllowReciprocal()) 1542 Flags |= bitc::AllowReciprocal; 1543 if (FPMO->hasAllowContract()) 1544 Flags |= bitc::AllowContract; 1545 if (FPMO->hasApproxFunc()) 1546 Flags |= bitc::ApproxFunc; 1547 } 1548 1549 return Flags; 1550 } 1551 1552 void ModuleBitcodeWriter::writeValueAsMetadata( 1553 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1554 // Mimic an MDNode with a value as one operand. 1555 Value *V = MD->getValue(); 1556 Record.push_back(VE.getTypeID(V->getType())); 1557 Record.push_back(VE.getValueID(V)); 1558 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1559 Record.clear(); 1560 } 1561 1562 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1563 SmallVectorImpl<uint64_t> &Record, 1564 unsigned Abbrev) { 1565 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1566 Metadata *MD = N->getOperand(i); 1567 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1568 "Unexpected function-local metadata"); 1569 Record.push_back(VE.getMetadataOrNullID(MD)); 1570 } 1571 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1572 : bitc::METADATA_NODE, 1573 Record, Abbrev); 1574 Record.clear(); 1575 } 1576 1577 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1578 // Assume the column is usually under 128, and always output the inlined-at 1579 // location (it's never more expensive than building an array size 1). 1580 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1581 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1587 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1588 return Stream.EmitAbbrev(std::move(Abbv)); 1589 } 1590 1591 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1592 SmallVectorImpl<uint64_t> &Record, 1593 unsigned &Abbrev) { 1594 if (!Abbrev) 1595 Abbrev = createDILocationAbbrev(); 1596 1597 Record.push_back(N->isDistinct()); 1598 Record.push_back(N->getLine()); 1599 Record.push_back(N->getColumn()); 1600 Record.push_back(VE.getMetadataID(N->getScope())); 1601 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1602 Record.push_back(N->isImplicitCode()); 1603 1604 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1605 Record.clear(); 1606 } 1607 1608 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1609 // Assume the column is usually under 128, and always output the inlined-at 1610 // location (it's never more expensive than building an array size 1). 1611 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1612 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1614 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1616 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1618 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1619 return Stream.EmitAbbrev(std::move(Abbv)); 1620 } 1621 1622 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1623 SmallVectorImpl<uint64_t> &Record, 1624 unsigned &Abbrev) { 1625 if (!Abbrev) 1626 Abbrev = createGenericDINodeAbbrev(); 1627 1628 Record.push_back(N->isDistinct()); 1629 Record.push_back(N->getTag()); 1630 Record.push_back(0); // Per-tag version field; unused for now. 1631 1632 for (auto &I : N->operands()) 1633 Record.push_back(VE.getMetadataOrNullID(I)); 1634 1635 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1636 Record.clear(); 1637 } 1638 1639 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1640 SmallVectorImpl<uint64_t> &Record, 1641 unsigned Abbrev) { 1642 const uint64_t Version = 2 << 1; 1643 Record.push_back((uint64_t)N->isDistinct() | Version); 1644 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1645 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1646 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1647 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1648 1649 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1650 Record.clear(); 1651 } 1652 1653 void ModuleBitcodeWriter::writeDIGenericSubrange( 1654 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1655 unsigned Abbrev) { 1656 Record.push_back((uint64_t)N->isDistinct()); 1657 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1658 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1659 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1660 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1661 1662 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1663 Record.clear(); 1664 } 1665 1666 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1667 if ((int64_t)V >= 0) 1668 Vals.push_back(V << 1); 1669 else 1670 Vals.push_back((-V << 1) | 1); 1671 } 1672 1673 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1674 // We have an arbitrary precision integer value to write whose 1675 // bit width is > 64. However, in canonical unsigned integer 1676 // format it is likely that the high bits are going to be zero. 1677 // So, we only write the number of active words. 1678 unsigned NumWords = A.getActiveWords(); 1679 const uint64_t *RawData = A.getRawData(); 1680 for (unsigned i = 0; i < NumWords; i++) 1681 emitSignedInt64(Vals, RawData[i]); 1682 } 1683 1684 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1685 SmallVectorImpl<uint64_t> &Record, 1686 unsigned Abbrev) { 1687 const uint64_t IsBigInt = 1 << 2; 1688 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1689 Record.push_back(N->getValue().getBitWidth()); 1690 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1691 emitWideAPInt(Record, N->getValue()); 1692 1693 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1694 Record.clear(); 1695 } 1696 1697 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1698 SmallVectorImpl<uint64_t> &Record, 1699 unsigned Abbrev) { 1700 Record.push_back(N->isDistinct()); 1701 Record.push_back(N->getTag()); 1702 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1703 Record.push_back(N->getSizeInBits()); 1704 Record.push_back(N->getAlignInBits()); 1705 Record.push_back(N->getEncoding()); 1706 Record.push_back(N->getFlags()); 1707 1708 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1709 Record.clear(); 1710 } 1711 1712 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1713 SmallVectorImpl<uint64_t> &Record, 1714 unsigned Abbrev) { 1715 Record.push_back(N->isDistinct()); 1716 Record.push_back(N->getTag()); 1717 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1718 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1719 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1720 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1721 Record.push_back(N->getSizeInBits()); 1722 Record.push_back(N->getAlignInBits()); 1723 Record.push_back(N->getEncoding()); 1724 1725 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1726 Record.clear(); 1727 } 1728 1729 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1730 SmallVectorImpl<uint64_t> &Record, 1731 unsigned Abbrev) { 1732 Record.push_back(N->isDistinct()); 1733 Record.push_back(N->getTag()); 1734 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1735 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1736 Record.push_back(N->getLine()); 1737 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1738 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1739 Record.push_back(N->getSizeInBits()); 1740 Record.push_back(N->getAlignInBits()); 1741 Record.push_back(N->getOffsetInBits()); 1742 Record.push_back(N->getFlags()); 1743 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1744 1745 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1746 // that there is no DWARF address space associated with DIDerivedType. 1747 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1748 Record.push_back(*DWARFAddressSpace + 1); 1749 else 1750 Record.push_back(0); 1751 1752 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1753 1754 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1755 Record.clear(); 1756 } 1757 1758 void ModuleBitcodeWriter::writeDICompositeType( 1759 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1760 unsigned Abbrev) { 1761 const unsigned IsNotUsedInOldTypeRef = 0x2; 1762 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1763 Record.push_back(N->getTag()); 1764 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1765 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1766 Record.push_back(N->getLine()); 1767 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1768 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1769 Record.push_back(N->getSizeInBits()); 1770 Record.push_back(N->getAlignInBits()); 1771 Record.push_back(N->getOffsetInBits()); 1772 Record.push_back(N->getFlags()); 1773 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1774 Record.push_back(N->getRuntimeLang()); 1775 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1776 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1777 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1778 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1779 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1780 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1781 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1782 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1783 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1784 1785 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1786 Record.clear(); 1787 } 1788 1789 void ModuleBitcodeWriter::writeDISubroutineType( 1790 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1791 unsigned Abbrev) { 1792 const unsigned HasNoOldTypeRefs = 0x2; 1793 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1794 Record.push_back(N->getFlags()); 1795 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1796 Record.push_back(N->getCC()); 1797 1798 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1799 Record.clear(); 1800 } 1801 1802 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1803 SmallVectorImpl<uint64_t> &Record, 1804 unsigned Abbrev) { 1805 Record.push_back(N->isDistinct()); 1806 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1807 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1808 if (N->getRawChecksum()) { 1809 Record.push_back(N->getRawChecksum()->Kind); 1810 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1811 } else { 1812 // Maintain backwards compatibility with the old internal representation of 1813 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1814 Record.push_back(0); 1815 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1816 } 1817 auto Source = N->getRawSource(); 1818 if (Source) 1819 Record.push_back(VE.getMetadataOrNullID(Source)); 1820 1821 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1822 Record.clear(); 1823 } 1824 1825 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1826 SmallVectorImpl<uint64_t> &Record, 1827 unsigned Abbrev) { 1828 assert(N->isDistinct() && "Expected distinct compile units"); 1829 Record.push_back(/* IsDistinct */ true); 1830 Record.push_back(N->getSourceLanguage()); 1831 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1832 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1833 Record.push_back(N->isOptimized()); 1834 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1835 Record.push_back(N->getRuntimeVersion()); 1836 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1837 Record.push_back(N->getEmissionKind()); 1838 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1839 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1840 Record.push_back(/* subprograms */ 0); 1841 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1842 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1843 Record.push_back(N->getDWOId()); 1844 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1845 Record.push_back(N->getSplitDebugInlining()); 1846 Record.push_back(N->getDebugInfoForProfiling()); 1847 Record.push_back((unsigned)N->getNameTableKind()); 1848 Record.push_back(N->getRangesBaseAddress()); 1849 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1850 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1851 1852 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1853 Record.clear(); 1854 } 1855 1856 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1857 SmallVectorImpl<uint64_t> &Record, 1858 unsigned Abbrev) { 1859 const uint64_t HasUnitFlag = 1 << 1; 1860 const uint64_t HasSPFlagsFlag = 1 << 2; 1861 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1862 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1863 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1864 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1865 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1866 Record.push_back(N->getLine()); 1867 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1868 Record.push_back(N->getScopeLine()); 1869 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1870 Record.push_back(N->getSPFlags()); 1871 Record.push_back(N->getVirtualIndex()); 1872 Record.push_back(N->getFlags()); 1873 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1874 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1875 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1876 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1877 Record.push_back(N->getThisAdjustment()); 1878 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1879 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1880 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 1881 1882 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1883 Record.clear(); 1884 } 1885 1886 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1887 SmallVectorImpl<uint64_t> &Record, 1888 unsigned Abbrev) { 1889 Record.push_back(N->isDistinct()); 1890 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1891 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1892 Record.push_back(N->getLine()); 1893 Record.push_back(N->getColumn()); 1894 1895 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1896 Record.clear(); 1897 } 1898 1899 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1900 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1901 unsigned Abbrev) { 1902 Record.push_back(N->isDistinct()); 1903 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1904 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1905 Record.push_back(N->getDiscriminator()); 1906 1907 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1908 Record.clear(); 1909 } 1910 1911 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1912 SmallVectorImpl<uint64_t> &Record, 1913 unsigned Abbrev) { 1914 Record.push_back(N->isDistinct()); 1915 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1916 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1917 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1918 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1919 Record.push_back(N->getLineNo()); 1920 1921 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1922 Record.clear(); 1923 } 1924 1925 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1926 SmallVectorImpl<uint64_t> &Record, 1927 unsigned Abbrev) { 1928 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1929 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1930 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1931 1932 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1933 Record.clear(); 1934 } 1935 1936 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1937 SmallVectorImpl<uint64_t> &Record, 1938 unsigned Abbrev) { 1939 Record.push_back(N->isDistinct()); 1940 Record.push_back(N->getMacinfoType()); 1941 Record.push_back(N->getLine()); 1942 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1943 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1944 1945 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1946 Record.clear(); 1947 } 1948 1949 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1950 SmallVectorImpl<uint64_t> &Record, 1951 unsigned Abbrev) { 1952 Record.push_back(N->isDistinct()); 1953 Record.push_back(N->getMacinfoType()); 1954 Record.push_back(N->getLine()); 1955 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1956 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1957 1958 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1959 Record.clear(); 1960 } 1961 1962 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1963 SmallVectorImpl<uint64_t> &Record, 1964 unsigned Abbrev) { 1965 Record.reserve(N->getArgs().size()); 1966 for (ValueAsMetadata *MD : N->getArgs()) 1967 Record.push_back(VE.getMetadataID(MD)); 1968 1969 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1970 Record.clear(); 1971 } 1972 1973 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1974 SmallVectorImpl<uint64_t> &Record, 1975 unsigned Abbrev) { 1976 Record.push_back(N->isDistinct()); 1977 for (auto &I : N->operands()) 1978 Record.push_back(VE.getMetadataOrNullID(I)); 1979 Record.push_back(N->getLineNo()); 1980 Record.push_back(N->getIsDecl()); 1981 1982 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1983 Record.clear(); 1984 } 1985 1986 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 1987 SmallVectorImpl<uint64_t> &Record, 1988 unsigned Abbrev) { 1989 // There are no arguments for this metadata type. 1990 Record.push_back(N->isDistinct()); 1991 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 1992 Record.clear(); 1993 } 1994 1995 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1996 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1997 unsigned Abbrev) { 1998 Record.push_back(N->isDistinct()); 1999 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2000 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2001 Record.push_back(N->isDefault()); 2002 2003 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 2004 Record.clear(); 2005 } 2006 2007 void ModuleBitcodeWriter::writeDITemplateValueParameter( 2008 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 2009 unsigned Abbrev) { 2010 Record.push_back(N->isDistinct()); 2011 Record.push_back(N->getTag()); 2012 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2013 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2014 Record.push_back(N->isDefault()); 2015 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 2016 2017 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 2018 Record.clear(); 2019 } 2020 2021 void ModuleBitcodeWriter::writeDIGlobalVariable( 2022 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 2023 unsigned Abbrev) { 2024 const uint64_t Version = 2 << 1; 2025 Record.push_back((uint64_t)N->isDistinct() | Version); 2026 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2027 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2028 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2029 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2030 Record.push_back(N->getLine()); 2031 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2032 Record.push_back(N->isLocalToUnit()); 2033 Record.push_back(N->isDefinition()); 2034 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2035 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2036 Record.push_back(N->getAlignInBits()); 2037 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2038 2039 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2040 Record.clear(); 2041 } 2042 2043 void ModuleBitcodeWriter::writeDILocalVariable( 2044 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2045 unsigned Abbrev) { 2046 // In order to support all possible bitcode formats in BitcodeReader we need 2047 // to distinguish the following cases: 2048 // 1) Record has no artificial tag (Record[1]), 2049 // has no obsolete inlinedAt field (Record[9]). 2050 // In this case Record size will be 8, HasAlignment flag is false. 2051 // 2) Record has artificial tag (Record[1]), 2052 // has no obsolete inlignedAt field (Record[9]). 2053 // In this case Record size will be 9, HasAlignment flag is false. 2054 // 3) Record has both artificial tag (Record[1]) and 2055 // obsolete inlignedAt field (Record[9]). 2056 // In this case Record size will be 10, HasAlignment flag is false. 2057 // 4) Record has neither artificial tag, nor inlignedAt field, but 2058 // HasAlignment flag is true and Record[8] contains alignment value. 2059 const uint64_t HasAlignmentFlag = 1 << 1; 2060 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2061 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2062 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2063 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2064 Record.push_back(N->getLine()); 2065 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2066 Record.push_back(N->getArg()); 2067 Record.push_back(N->getFlags()); 2068 Record.push_back(N->getAlignInBits()); 2069 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2070 2071 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2072 Record.clear(); 2073 } 2074 2075 void ModuleBitcodeWriter::writeDILabel( 2076 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2077 unsigned Abbrev) { 2078 Record.push_back((uint64_t)N->isDistinct()); 2079 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2080 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2081 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2082 Record.push_back(N->getLine()); 2083 2084 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2085 Record.clear(); 2086 } 2087 2088 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2089 SmallVectorImpl<uint64_t> &Record, 2090 unsigned Abbrev) { 2091 Record.reserve(N->getElements().size() + 1); 2092 const uint64_t Version = 3 << 1; 2093 Record.push_back((uint64_t)N->isDistinct() | Version); 2094 Record.append(N->elements_begin(), N->elements_end()); 2095 2096 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2097 Record.clear(); 2098 } 2099 2100 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2101 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2102 unsigned Abbrev) { 2103 Record.push_back(N->isDistinct()); 2104 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2105 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2106 2107 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2108 Record.clear(); 2109 } 2110 2111 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2112 SmallVectorImpl<uint64_t> &Record, 2113 unsigned Abbrev) { 2114 Record.push_back(N->isDistinct()); 2115 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2116 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2117 Record.push_back(N->getLine()); 2118 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2119 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2120 Record.push_back(N->getAttributes()); 2121 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2122 2123 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2124 Record.clear(); 2125 } 2126 2127 void ModuleBitcodeWriter::writeDIImportedEntity( 2128 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2129 unsigned Abbrev) { 2130 Record.push_back(N->isDistinct()); 2131 Record.push_back(N->getTag()); 2132 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2133 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2134 Record.push_back(N->getLine()); 2135 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2136 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2137 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2138 2139 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2140 Record.clear(); 2141 } 2142 2143 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2144 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2145 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2148 return Stream.EmitAbbrev(std::move(Abbv)); 2149 } 2150 2151 void ModuleBitcodeWriter::writeNamedMetadata( 2152 SmallVectorImpl<uint64_t> &Record) { 2153 if (M.named_metadata_empty()) 2154 return; 2155 2156 unsigned Abbrev = createNamedMetadataAbbrev(); 2157 for (const NamedMDNode &NMD : M.named_metadata()) { 2158 // Write name. 2159 StringRef Str = NMD.getName(); 2160 Record.append(Str.bytes_begin(), Str.bytes_end()); 2161 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2162 Record.clear(); 2163 2164 // Write named metadata operands. 2165 for (const MDNode *N : NMD.operands()) 2166 Record.push_back(VE.getMetadataID(N)); 2167 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2168 Record.clear(); 2169 } 2170 } 2171 2172 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2173 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2174 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2178 return Stream.EmitAbbrev(std::move(Abbv)); 2179 } 2180 2181 /// Write out a record for MDString. 2182 /// 2183 /// All the metadata strings in a metadata block are emitted in a single 2184 /// record. The sizes and strings themselves are shoved into a blob. 2185 void ModuleBitcodeWriter::writeMetadataStrings( 2186 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2187 if (Strings.empty()) 2188 return; 2189 2190 // Start the record with the number of strings. 2191 Record.push_back(bitc::METADATA_STRINGS); 2192 Record.push_back(Strings.size()); 2193 2194 // Emit the sizes of the strings in the blob. 2195 SmallString<256> Blob; 2196 { 2197 BitstreamWriter W(Blob); 2198 for (const Metadata *MD : Strings) 2199 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2200 W.FlushToWord(); 2201 } 2202 2203 // Add the offset to the strings to the record. 2204 Record.push_back(Blob.size()); 2205 2206 // Add the strings to the blob. 2207 for (const Metadata *MD : Strings) 2208 Blob.append(cast<MDString>(MD)->getString()); 2209 2210 // Emit the final record. 2211 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2212 Record.clear(); 2213 } 2214 2215 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2216 enum MetadataAbbrev : unsigned { 2217 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2218 #include "llvm/IR/Metadata.def" 2219 LastPlusOne 2220 }; 2221 2222 void ModuleBitcodeWriter::writeMetadataRecords( 2223 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2224 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2225 if (MDs.empty()) 2226 return; 2227 2228 // Initialize MDNode abbreviations. 2229 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2230 #include "llvm/IR/Metadata.def" 2231 2232 for (const Metadata *MD : MDs) { 2233 if (IndexPos) 2234 IndexPos->push_back(Stream.GetCurrentBitNo()); 2235 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2236 assert(N->isResolved() && "Expected forward references to be resolved"); 2237 2238 switch (N->getMetadataID()) { 2239 default: 2240 llvm_unreachable("Invalid MDNode subclass"); 2241 #define HANDLE_MDNODE_LEAF(CLASS) \ 2242 case Metadata::CLASS##Kind: \ 2243 if (MDAbbrevs) \ 2244 write##CLASS(cast<CLASS>(N), Record, \ 2245 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2246 else \ 2247 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2248 continue; 2249 #include "llvm/IR/Metadata.def" 2250 } 2251 } 2252 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2253 } 2254 } 2255 2256 void ModuleBitcodeWriter::writeModuleMetadata() { 2257 if (!VE.hasMDs() && M.named_metadata_empty()) 2258 return; 2259 2260 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2261 SmallVector<uint64_t, 64> Record; 2262 2263 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2264 // block and load any metadata. 2265 std::vector<unsigned> MDAbbrevs; 2266 2267 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2268 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2269 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2270 createGenericDINodeAbbrev(); 2271 2272 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2273 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2274 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2275 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2276 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2277 2278 Abbv = std::make_shared<BitCodeAbbrev>(); 2279 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2282 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2283 2284 // Emit MDStrings together upfront. 2285 writeMetadataStrings(VE.getMDStrings(), Record); 2286 2287 // We only emit an index for the metadata record if we have more than a given 2288 // (naive) threshold of metadatas, otherwise it is not worth it. 2289 if (VE.getNonMDStrings().size() > IndexThreshold) { 2290 // Write a placeholder value in for the offset of the metadata index, 2291 // which is written after the records, so that it can include 2292 // the offset of each entry. The placeholder offset will be 2293 // updated after all records are emitted. 2294 uint64_t Vals[] = {0, 0}; 2295 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2296 } 2297 2298 // Compute and save the bit offset to the current position, which will be 2299 // patched when we emit the index later. We can simply subtract the 64-bit 2300 // fixed size from the current bit number to get the location to backpatch. 2301 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2302 2303 // This index will contain the bitpos for each individual record. 2304 std::vector<uint64_t> IndexPos; 2305 IndexPos.reserve(VE.getNonMDStrings().size()); 2306 2307 // Write all the records 2308 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2309 2310 if (VE.getNonMDStrings().size() > IndexThreshold) { 2311 // Now that we have emitted all the records we will emit the index. But 2312 // first 2313 // backpatch the forward reference so that the reader can skip the records 2314 // efficiently. 2315 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2316 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2317 2318 // Delta encode the index. 2319 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2320 for (auto &Elt : IndexPos) { 2321 auto EltDelta = Elt - PreviousValue; 2322 PreviousValue = Elt; 2323 Elt = EltDelta; 2324 } 2325 // Emit the index record. 2326 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2327 IndexPos.clear(); 2328 } 2329 2330 // Write the named metadata now. 2331 writeNamedMetadata(Record); 2332 2333 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2334 SmallVector<uint64_t, 4> Record; 2335 Record.push_back(VE.getValueID(&GO)); 2336 pushGlobalMetadataAttachment(Record, GO); 2337 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2338 }; 2339 for (const Function &F : M) 2340 if (F.isDeclaration() && F.hasMetadata()) 2341 AddDeclAttachedMetadata(F); 2342 // FIXME: Only store metadata for declarations here, and move data for global 2343 // variable definitions to a separate block (PR28134). 2344 for (const GlobalVariable &GV : M.globals()) 2345 if (GV.hasMetadata()) 2346 AddDeclAttachedMetadata(GV); 2347 2348 Stream.ExitBlock(); 2349 } 2350 2351 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2352 if (!VE.hasMDs()) 2353 return; 2354 2355 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2356 SmallVector<uint64_t, 64> Record; 2357 writeMetadataStrings(VE.getMDStrings(), Record); 2358 writeMetadataRecords(VE.getNonMDStrings(), Record); 2359 Stream.ExitBlock(); 2360 } 2361 2362 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2363 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2364 // [n x [id, mdnode]] 2365 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2366 GO.getAllMetadata(MDs); 2367 for (const auto &I : MDs) { 2368 Record.push_back(I.first); 2369 Record.push_back(VE.getMetadataID(I.second)); 2370 } 2371 } 2372 2373 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2374 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2375 2376 SmallVector<uint64_t, 64> Record; 2377 2378 if (F.hasMetadata()) { 2379 pushGlobalMetadataAttachment(Record, F); 2380 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2381 Record.clear(); 2382 } 2383 2384 // Write metadata attachments 2385 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2386 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2387 for (const BasicBlock &BB : F) 2388 for (const Instruction &I : BB) { 2389 MDs.clear(); 2390 I.getAllMetadataOtherThanDebugLoc(MDs); 2391 2392 // If no metadata, ignore instruction. 2393 if (MDs.empty()) continue; 2394 2395 Record.push_back(VE.getInstructionID(&I)); 2396 2397 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2398 Record.push_back(MDs[i].first); 2399 Record.push_back(VE.getMetadataID(MDs[i].second)); 2400 } 2401 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2402 Record.clear(); 2403 } 2404 2405 Stream.ExitBlock(); 2406 } 2407 2408 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2409 SmallVector<uint64_t, 64> Record; 2410 2411 // Write metadata kinds 2412 // METADATA_KIND - [n x [id, name]] 2413 SmallVector<StringRef, 8> Names; 2414 M.getMDKindNames(Names); 2415 2416 if (Names.empty()) return; 2417 2418 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2419 2420 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2421 Record.push_back(MDKindID); 2422 StringRef KName = Names[MDKindID]; 2423 Record.append(KName.begin(), KName.end()); 2424 2425 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2426 Record.clear(); 2427 } 2428 2429 Stream.ExitBlock(); 2430 } 2431 2432 void ModuleBitcodeWriter::writeOperandBundleTags() { 2433 // Write metadata kinds 2434 // 2435 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2436 // 2437 // OPERAND_BUNDLE_TAG - [strchr x N] 2438 2439 SmallVector<StringRef, 8> Tags; 2440 M.getOperandBundleTags(Tags); 2441 2442 if (Tags.empty()) 2443 return; 2444 2445 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2446 2447 SmallVector<uint64_t, 64> Record; 2448 2449 for (auto Tag : Tags) { 2450 Record.append(Tag.begin(), Tag.end()); 2451 2452 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2453 Record.clear(); 2454 } 2455 2456 Stream.ExitBlock(); 2457 } 2458 2459 void ModuleBitcodeWriter::writeSyncScopeNames() { 2460 SmallVector<StringRef, 8> SSNs; 2461 M.getContext().getSyncScopeNames(SSNs); 2462 if (SSNs.empty()) 2463 return; 2464 2465 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2466 2467 SmallVector<uint64_t, 64> Record; 2468 for (auto SSN : SSNs) { 2469 Record.append(SSN.begin(), SSN.end()); 2470 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2471 Record.clear(); 2472 } 2473 2474 Stream.ExitBlock(); 2475 } 2476 2477 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2478 bool isGlobal) { 2479 if (FirstVal == LastVal) return; 2480 2481 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2482 2483 unsigned AggregateAbbrev = 0; 2484 unsigned String8Abbrev = 0; 2485 unsigned CString7Abbrev = 0; 2486 unsigned CString6Abbrev = 0; 2487 // If this is a constant pool for the module, emit module-specific abbrevs. 2488 if (isGlobal) { 2489 // Abbrev for CST_CODE_AGGREGATE. 2490 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2491 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2494 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2495 2496 // Abbrev for CST_CODE_STRING. 2497 Abbv = std::make_shared<BitCodeAbbrev>(); 2498 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2499 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2501 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2502 // Abbrev for CST_CODE_CSTRING. 2503 Abbv = std::make_shared<BitCodeAbbrev>(); 2504 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2505 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2507 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2508 // Abbrev for CST_CODE_CSTRING. 2509 Abbv = std::make_shared<BitCodeAbbrev>(); 2510 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2511 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2513 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2514 } 2515 2516 SmallVector<uint64_t, 64> Record; 2517 2518 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2519 Type *LastTy = nullptr; 2520 for (unsigned i = FirstVal; i != LastVal; ++i) { 2521 const Value *V = Vals[i].first; 2522 // If we need to switch types, do so now. 2523 if (V->getType() != LastTy) { 2524 LastTy = V->getType(); 2525 Record.push_back(VE.getTypeID(LastTy)); 2526 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2527 CONSTANTS_SETTYPE_ABBREV); 2528 Record.clear(); 2529 } 2530 2531 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2532 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2533 Record.push_back( 2534 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2535 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2536 2537 // Add the asm string. 2538 const std::string &AsmStr = IA->getAsmString(); 2539 Record.push_back(AsmStr.size()); 2540 Record.append(AsmStr.begin(), AsmStr.end()); 2541 2542 // Add the constraint string. 2543 const std::string &ConstraintStr = IA->getConstraintString(); 2544 Record.push_back(ConstraintStr.size()); 2545 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2546 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2547 Record.clear(); 2548 continue; 2549 } 2550 const Constant *C = cast<Constant>(V); 2551 unsigned Code = -1U; 2552 unsigned AbbrevToUse = 0; 2553 if (C->isNullValue()) { 2554 Code = bitc::CST_CODE_NULL; 2555 } else if (isa<PoisonValue>(C)) { 2556 Code = bitc::CST_CODE_POISON; 2557 } else if (isa<UndefValue>(C)) { 2558 Code = bitc::CST_CODE_UNDEF; 2559 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2560 if (IV->getBitWidth() <= 64) { 2561 uint64_t V = IV->getSExtValue(); 2562 emitSignedInt64(Record, V); 2563 Code = bitc::CST_CODE_INTEGER; 2564 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2565 } else { // Wide integers, > 64 bits in size. 2566 emitWideAPInt(Record, IV->getValue()); 2567 Code = bitc::CST_CODE_WIDE_INTEGER; 2568 } 2569 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2570 Code = bitc::CST_CODE_FLOAT; 2571 Type *Ty = CFP->getType(); 2572 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2573 Ty->isDoubleTy()) { 2574 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2575 } else if (Ty->isX86_FP80Ty()) { 2576 // api needed to prevent premature destruction 2577 // bits are not in the same order as a normal i80 APInt, compensate. 2578 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2579 const uint64_t *p = api.getRawData(); 2580 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2581 Record.push_back(p[0] & 0xffffLL); 2582 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2583 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2584 const uint64_t *p = api.getRawData(); 2585 Record.push_back(p[0]); 2586 Record.push_back(p[1]); 2587 } else { 2588 assert(0 && "Unknown FP type!"); 2589 } 2590 } else if (isa<ConstantDataSequential>(C) && 2591 cast<ConstantDataSequential>(C)->isString()) { 2592 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2593 // Emit constant strings specially. 2594 unsigned NumElts = Str->getNumElements(); 2595 // If this is a null-terminated string, use the denser CSTRING encoding. 2596 if (Str->isCString()) { 2597 Code = bitc::CST_CODE_CSTRING; 2598 --NumElts; // Don't encode the null, which isn't allowed by char6. 2599 } else { 2600 Code = bitc::CST_CODE_STRING; 2601 AbbrevToUse = String8Abbrev; 2602 } 2603 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2604 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2605 for (unsigned i = 0; i != NumElts; ++i) { 2606 unsigned char V = Str->getElementAsInteger(i); 2607 Record.push_back(V); 2608 isCStr7 &= (V & 128) == 0; 2609 if (isCStrChar6) 2610 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2611 } 2612 2613 if (isCStrChar6) 2614 AbbrevToUse = CString6Abbrev; 2615 else if (isCStr7) 2616 AbbrevToUse = CString7Abbrev; 2617 } else if (const ConstantDataSequential *CDS = 2618 dyn_cast<ConstantDataSequential>(C)) { 2619 Code = bitc::CST_CODE_DATA; 2620 Type *EltTy = CDS->getElementType(); 2621 if (isa<IntegerType>(EltTy)) { 2622 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2623 Record.push_back(CDS->getElementAsInteger(i)); 2624 } else { 2625 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2626 Record.push_back( 2627 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2628 } 2629 } else if (isa<ConstantAggregate>(C)) { 2630 Code = bitc::CST_CODE_AGGREGATE; 2631 for (const Value *Op : C->operands()) 2632 Record.push_back(VE.getValueID(Op)); 2633 AbbrevToUse = AggregateAbbrev; 2634 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2635 switch (CE->getOpcode()) { 2636 default: 2637 if (Instruction::isCast(CE->getOpcode())) { 2638 Code = bitc::CST_CODE_CE_CAST; 2639 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2640 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2641 Record.push_back(VE.getValueID(C->getOperand(0))); 2642 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2643 } else { 2644 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2645 Code = bitc::CST_CODE_CE_BINOP; 2646 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2647 Record.push_back(VE.getValueID(C->getOperand(0))); 2648 Record.push_back(VE.getValueID(C->getOperand(1))); 2649 uint64_t Flags = getOptimizationFlags(CE); 2650 if (Flags != 0) 2651 Record.push_back(Flags); 2652 } 2653 break; 2654 case Instruction::FNeg: { 2655 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2656 Code = bitc::CST_CODE_CE_UNOP; 2657 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2658 Record.push_back(VE.getValueID(C->getOperand(0))); 2659 uint64_t Flags = getOptimizationFlags(CE); 2660 if (Flags != 0) 2661 Record.push_back(Flags); 2662 break; 2663 } 2664 case Instruction::GetElementPtr: { 2665 Code = bitc::CST_CODE_CE_GEP; 2666 const auto *GO = cast<GEPOperator>(C); 2667 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2668 if (std::optional<unsigned> Idx = GO->getInRangeIndex()) { 2669 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2670 Record.push_back((*Idx << 1) | GO->isInBounds()); 2671 } else if (GO->isInBounds()) 2672 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2673 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2674 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2675 Record.push_back(VE.getValueID(C->getOperand(i))); 2676 } 2677 break; 2678 } 2679 case Instruction::ExtractElement: 2680 Code = bitc::CST_CODE_CE_EXTRACTELT; 2681 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2682 Record.push_back(VE.getValueID(C->getOperand(0))); 2683 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2684 Record.push_back(VE.getValueID(C->getOperand(1))); 2685 break; 2686 case Instruction::InsertElement: 2687 Code = bitc::CST_CODE_CE_INSERTELT; 2688 Record.push_back(VE.getValueID(C->getOperand(0))); 2689 Record.push_back(VE.getValueID(C->getOperand(1))); 2690 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2691 Record.push_back(VE.getValueID(C->getOperand(2))); 2692 break; 2693 case Instruction::ShuffleVector: 2694 // If the return type and argument types are the same, this is a 2695 // standard shufflevector instruction. If the types are different, 2696 // then the shuffle is widening or truncating the input vectors, and 2697 // the argument type must also be encoded. 2698 if (C->getType() == C->getOperand(0)->getType()) { 2699 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2700 } else { 2701 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2702 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2703 } 2704 Record.push_back(VE.getValueID(C->getOperand(0))); 2705 Record.push_back(VE.getValueID(C->getOperand(1))); 2706 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2707 break; 2708 case Instruction::ICmp: 2709 case Instruction::FCmp: 2710 Code = bitc::CST_CODE_CE_CMP; 2711 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2712 Record.push_back(VE.getValueID(C->getOperand(0))); 2713 Record.push_back(VE.getValueID(C->getOperand(1))); 2714 Record.push_back(CE->getPredicate()); 2715 break; 2716 } 2717 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2718 Code = bitc::CST_CODE_BLOCKADDRESS; 2719 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2720 Record.push_back(VE.getValueID(BA->getFunction())); 2721 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2722 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2723 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2724 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2725 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2726 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2727 Code = bitc::CST_CODE_NO_CFI_VALUE; 2728 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2729 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2730 } else { 2731 #ifndef NDEBUG 2732 C->dump(); 2733 #endif 2734 llvm_unreachable("Unknown constant!"); 2735 } 2736 Stream.EmitRecord(Code, Record, AbbrevToUse); 2737 Record.clear(); 2738 } 2739 2740 Stream.ExitBlock(); 2741 } 2742 2743 void ModuleBitcodeWriter::writeModuleConstants() { 2744 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2745 2746 // Find the first constant to emit, which is the first non-globalvalue value. 2747 // We know globalvalues have been emitted by WriteModuleInfo. 2748 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2749 if (!isa<GlobalValue>(Vals[i].first)) { 2750 writeConstants(i, Vals.size(), true); 2751 return; 2752 } 2753 } 2754 } 2755 2756 /// pushValueAndType - The file has to encode both the value and type id for 2757 /// many values, because we need to know what type to create for forward 2758 /// references. However, most operands are not forward references, so this type 2759 /// field is not needed. 2760 /// 2761 /// This function adds V's value ID to Vals. If the value ID is higher than the 2762 /// instruction ID, then it is a forward reference, and it also includes the 2763 /// type ID. The value ID that is written is encoded relative to the InstID. 2764 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2765 SmallVectorImpl<unsigned> &Vals) { 2766 unsigned ValID = VE.getValueID(V); 2767 // Make encoding relative to the InstID. 2768 Vals.push_back(InstID - ValID); 2769 if (ValID >= InstID) { 2770 Vals.push_back(VE.getTypeID(V->getType())); 2771 return true; 2772 } 2773 return false; 2774 } 2775 2776 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2777 unsigned InstID) { 2778 SmallVector<unsigned, 64> Record; 2779 LLVMContext &C = CS.getContext(); 2780 2781 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2782 const auto &Bundle = CS.getOperandBundleAt(i); 2783 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2784 2785 for (auto &Input : Bundle.Inputs) 2786 pushValueAndType(Input, InstID, Record); 2787 2788 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2789 Record.clear(); 2790 } 2791 } 2792 2793 /// pushValue - Like pushValueAndType, but where the type of the value is 2794 /// omitted (perhaps it was already encoded in an earlier operand). 2795 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2796 SmallVectorImpl<unsigned> &Vals) { 2797 unsigned ValID = VE.getValueID(V); 2798 Vals.push_back(InstID - ValID); 2799 } 2800 2801 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2802 SmallVectorImpl<uint64_t> &Vals) { 2803 unsigned ValID = VE.getValueID(V); 2804 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2805 emitSignedInt64(Vals, diff); 2806 } 2807 2808 /// WriteInstruction - Emit an instruction to the specified stream. 2809 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2810 unsigned InstID, 2811 SmallVectorImpl<unsigned> &Vals) { 2812 unsigned Code = 0; 2813 unsigned AbbrevToUse = 0; 2814 VE.setInstructionID(&I); 2815 switch (I.getOpcode()) { 2816 default: 2817 if (Instruction::isCast(I.getOpcode())) { 2818 Code = bitc::FUNC_CODE_INST_CAST; 2819 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2820 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2821 Vals.push_back(VE.getTypeID(I.getType())); 2822 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2823 } else { 2824 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2825 Code = bitc::FUNC_CODE_INST_BINOP; 2826 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2827 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2828 pushValue(I.getOperand(1), InstID, Vals); 2829 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2830 uint64_t Flags = getOptimizationFlags(&I); 2831 if (Flags != 0) { 2832 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2833 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2834 Vals.push_back(Flags); 2835 } 2836 } 2837 break; 2838 case Instruction::FNeg: { 2839 Code = bitc::FUNC_CODE_INST_UNOP; 2840 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2841 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2842 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2843 uint64_t Flags = getOptimizationFlags(&I); 2844 if (Flags != 0) { 2845 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2846 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2847 Vals.push_back(Flags); 2848 } 2849 break; 2850 } 2851 case Instruction::GetElementPtr: { 2852 Code = bitc::FUNC_CODE_INST_GEP; 2853 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2854 auto &GEPInst = cast<GetElementPtrInst>(I); 2855 Vals.push_back(GEPInst.isInBounds()); 2856 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2857 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2858 pushValueAndType(I.getOperand(i), InstID, Vals); 2859 break; 2860 } 2861 case Instruction::ExtractValue: { 2862 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2863 pushValueAndType(I.getOperand(0), InstID, Vals); 2864 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2865 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2866 break; 2867 } 2868 case Instruction::InsertValue: { 2869 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2870 pushValueAndType(I.getOperand(0), InstID, Vals); 2871 pushValueAndType(I.getOperand(1), InstID, Vals); 2872 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2873 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2874 break; 2875 } 2876 case Instruction::Select: { 2877 Code = bitc::FUNC_CODE_INST_VSELECT; 2878 pushValueAndType(I.getOperand(1), InstID, Vals); 2879 pushValue(I.getOperand(2), InstID, Vals); 2880 pushValueAndType(I.getOperand(0), InstID, Vals); 2881 uint64_t Flags = getOptimizationFlags(&I); 2882 if (Flags != 0) 2883 Vals.push_back(Flags); 2884 break; 2885 } 2886 case Instruction::ExtractElement: 2887 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2888 pushValueAndType(I.getOperand(0), InstID, Vals); 2889 pushValueAndType(I.getOperand(1), InstID, Vals); 2890 break; 2891 case Instruction::InsertElement: 2892 Code = bitc::FUNC_CODE_INST_INSERTELT; 2893 pushValueAndType(I.getOperand(0), InstID, Vals); 2894 pushValue(I.getOperand(1), InstID, Vals); 2895 pushValueAndType(I.getOperand(2), InstID, Vals); 2896 break; 2897 case Instruction::ShuffleVector: 2898 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2899 pushValueAndType(I.getOperand(0), InstID, Vals); 2900 pushValue(I.getOperand(1), InstID, Vals); 2901 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2902 Vals); 2903 break; 2904 case Instruction::ICmp: 2905 case Instruction::FCmp: { 2906 // compare returning Int1Ty or vector of Int1Ty 2907 Code = bitc::FUNC_CODE_INST_CMP2; 2908 pushValueAndType(I.getOperand(0), InstID, Vals); 2909 pushValue(I.getOperand(1), InstID, Vals); 2910 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2911 uint64_t Flags = getOptimizationFlags(&I); 2912 if (Flags != 0) 2913 Vals.push_back(Flags); 2914 break; 2915 } 2916 2917 case Instruction::Ret: 2918 { 2919 Code = bitc::FUNC_CODE_INST_RET; 2920 unsigned NumOperands = I.getNumOperands(); 2921 if (NumOperands == 0) 2922 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2923 else if (NumOperands == 1) { 2924 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2925 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2926 } else { 2927 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2928 pushValueAndType(I.getOperand(i), InstID, Vals); 2929 } 2930 } 2931 break; 2932 case Instruction::Br: 2933 { 2934 Code = bitc::FUNC_CODE_INST_BR; 2935 const BranchInst &II = cast<BranchInst>(I); 2936 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2937 if (II.isConditional()) { 2938 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2939 pushValue(II.getCondition(), InstID, Vals); 2940 } 2941 } 2942 break; 2943 case Instruction::Switch: 2944 { 2945 Code = bitc::FUNC_CODE_INST_SWITCH; 2946 const SwitchInst &SI = cast<SwitchInst>(I); 2947 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2948 pushValue(SI.getCondition(), InstID, Vals); 2949 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2950 for (auto Case : SI.cases()) { 2951 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2952 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2953 } 2954 } 2955 break; 2956 case Instruction::IndirectBr: 2957 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2958 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2959 // Encode the address operand as relative, but not the basic blocks. 2960 pushValue(I.getOperand(0), InstID, Vals); 2961 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2962 Vals.push_back(VE.getValueID(I.getOperand(i))); 2963 break; 2964 2965 case Instruction::Invoke: { 2966 const InvokeInst *II = cast<InvokeInst>(&I); 2967 const Value *Callee = II->getCalledOperand(); 2968 FunctionType *FTy = II->getFunctionType(); 2969 2970 if (II->hasOperandBundles()) 2971 writeOperandBundles(*II, InstID); 2972 2973 Code = bitc::FUNC_CODE_INST_INVOKE; 2974 2975 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2976 Vals.push_back(II->getCallingConv() | 1 << 13); 2977 Vals.push_back(VE.getValueID(II->getNormalDest())); 2978 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2979 Vals.push_back(VE.getTypeID(FTy)); 2980 pushValueAndType(Callee, InstID, Vals); 2981 2982 // Emit value #'s for the fixed parameters. 2983 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2984 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2985 2986 // Emit type/value pairs for varargs params. 2987 if (FTy->isVarArg()) { 2988 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 2989 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2990 } 2991 break; 2992 } 2993 case Instruction::Resume: 2994 Code = bitc::FUNC_CODE_INST_RESUME; 2995 pushValueAndType(I.getOperand(0), InstID, Vals); 2996 break; 2997 case Instruction::CleanupRet: { 2998 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2999 const auto &CRI = cast<CleanupReturnInst>(I); 3000 pushValue(CRI.getCleanupPad(), InstID, Vals); 3001 if (CRI.hasUnwindDest()) 3002 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 3003 break; 3004 } 3005 case Instruction::CatchRet: { 3006 Code = bitc::FUNC_CODE_INST_CATCHRET; 3007 const auto &CRI = cast<CatchReturnInst>(I); 3008 pushValue(CRI.getCatchPad(), InstID, Vals); 3009 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 3010 break; 3011 } 3012 case Instruction::CleanupPad: 3013 case Instruction::CatchPad: { 3014 const auto &FuncletPad = cast<FuncletPadInst>(I); 3015 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 3016 : bitc::FUNC_CODE_INST_CLEANUPPAD; 3017 pushValue(FuncletPad.getParentPad(), InstID, Vals); 3018 3019 unsigned NumArgOperands = FuncletPad.arg_size(); 3020 Vals.push_back(NumArgOperands); 3021 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 3022 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 3023 break; 3024 } 3025 case Instruction::CatchSwitch: { 3026 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3027 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3028 3029 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3030 3031 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3032 Vals.push_back(NumHandlers); 3033 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3034 Vals.push_back(VE.getValueID(CatchPadBB)); 3035 3036 if (CatchSwitch.hasUnwindDest()) 3037 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3038 break; 3039 } 3040 case Instruction::CallBr: { 3041 const CallBrInst *CBI = cast<CallBrInst>(&I); 3042 const Value *Callee = CBI->getCalledOperand(); 3043 FunctionType *FTy = CBI->getFunctionType(); 3044 3045 if (CBI->hasOperandBundles()) 3046 writeOperandBundles(*CBI, InstID); 3047 3048 Code = bitc::FUNC_CODE_INST_CALLBR; 3049 3050 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3051 3052 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3053 1 << bitc::CALL_EXPLICIT_TYPE); 3054 3055 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3056 Vals.push_back(CBI->getNumIndirectDests()); 3057 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3058 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3059 3060 Vals.push_back(VE.getTypeID(FTy)); 3061 pushValueAndType(Callee, InstID, Vals); 3062 3063 // Emit value #'s for the fixed parameters. 3064 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3065 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3066 3067 // Emit type/value pairs for varargs params. 3068 if (FTy->isVarArg()) { 3069 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3070 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3071 } 3072 break; 3073 } 3074 case Instruction::Unreachable: 3075 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3076 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3077 break; 3078 3079 case Instruction::PHI: { 3080 const PHINode &PN = cast<PHINode>(I); 3081 Code = bitc::FUNC_CODE_INST_PHI; 3082 // With the newer instruction encoding, forward references could give 3083 // negative valued IDs. This is most common for PHIs, so we use 3084 // signed VBRs. 3085 SmallVector<uint64_t, 128> Vals64; 3086 Vals64.push_back(VE.getTypeID(PN.getType())); 3087 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3088 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3089 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3090 } 3091 3092 uint64_t Flags = getOptimizationFlags(&I); 3093 if (Flags != 0) 3094 Vals64.push_back(Flags); 3095 3096 // Emit a Vals64 vector and exit. 3097 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3098 Vals64.clear(); 3099 return; 3100 } 3101 3102 case Instruction::LandingPad: { 3103 const LandingPadInst &LP = cast<LandingPadInst>(I); 3104 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3105 Vals.push_back(VE.getTypeID(LP.getType())); 3106 Vals.push_back(LP.isCleanup()); 3107 Vals.push_back(LP.getNumClauses()); 3108 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3109 if (LP.isCatch(I)) 3110 Vals.push_back(LandingPadInst::Catch); 3111 else 3112 Vals.push_back(LandingPadInst::Filter); 3113 pushValueAndType(LP.getClause(I), InstID, Vals); 3114 } 3115 break; 3116 } 3117 3118 case Instruction::Alloca: { 3119 Code = bitc::FUNC_CODE_INST_ALLOCA; 3120 const AllocaInst &AI = cast<AllocaInst>(I); 3121 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3122 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3123 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3124 using APV = AllocaPackedValues; 3125 unsigned Record = 0; 3126 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3127 Bitfield::set<APV::AlignLower>( 3128 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3129 Bitfield::set<APV::AlignUpper>(Record, 3130 EncodedAlign >> APV::AlignLower::Bits); 3131 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3132 Bitfield::set<APV::ExplicitType>(Record, true); 3133 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3134 Vals.push_back(Record); 3135 3136 unsigned AS = AI.getAddressSpace(); 3137 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3138 Vals.push_back(AS); 3139 break; 3140 } 3141 3142 case Instruction::Load: 3143 if (cast<LoadInst>(I).isAtomic()) { 3144 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3145 pushValueAndType(I.getOperand(0), InstID, Vals); 3146 } else { 3147 Code = bitc::FUNC_CODE_INST_LOAD; 3148 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3149 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3150 } 3151 Vals.push_back(VE.getTypeID(I.getType())); 3152 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3153 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3154 if (cast<LoadInst>(I).isAtomic()) { 3155 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3156 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3157 } 3158 break; 3159 case Instruction::Store: 3160 if (cast<StoreInst>(I).isAtomic()) 3161 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3162 else 3163 Code = bitc::FUNC_CODE_INST_STORE; 3164 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3165 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3166 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3167 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3168 if (cast<StoreInst>(I).isAtomic()) { 3169 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3170 Vals.push_back( 3171 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3172 } 3173 break; 3174 case Instruction::AtomicCmpXchg: 3175 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3176 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3177 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3178 pushValue(I.getOperand(2), InstID, Vals); // newval. 3179 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3180 Vals.push_back( 3181 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3182 Vals.push_back( 3183 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3184 Vals.push_back( 3185 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3186 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3187 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3188 break; 3189 case Instruction::AtomicRMW: 3190 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3191 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3192 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3193 Vals.push_back( 3194 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3195 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3196 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3197 Vals.push_back( 3198 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3199 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3200 break; 3201 case Instruction::Fence: 3202 Code = bitc::FUNC_CODE_INST_FENCE; 3203 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3204 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3205 break; 3206 case Instruction::Call: { 3207 const CallInst &CI = cast<CallInst>(I); 3208 FunctionType *FTy = CI.getFunctionType(); 3209 3210 if (CI.hasOperandBundles()) 3211 writeOperandBundles(CI, InstID); 3212 3213 Code = bitc::FUNC_CODE_INST_CALL; 3214 3215 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3216 3217 unsigned Flags = getOptimizationFlags(&I); 3218 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3219 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3220 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3221 1 << bitc::CALL_EXPLICIT_TYPE | 3222 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3223 unsigned(Flags != 0) << bitc::CALL_FMF); 3224 if (Flags != 0) 3225 Vals.push_back(Flags); 3226 3227 Vals.push_back(VE.getTypeID(FTy)); 3228 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3229 3230 // Emit value #'s for the fixed parameters. 3231 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3232 // Check for labels (can happen with asm labels). 3233 if (FTy->getParamType(i)->isLabelTy()) 3234 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3235 else 3236 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3237 } 3238 3239 // Emit type/value pairs for varargs params. 3240 if (FTy->isVarArg()) { 3241 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3242 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3243 } 3244 break; 3245 } 3246 case Instruction::VAArg: 3247 Code = bitc::FUNC_CODE_INST_VAARG; 3248 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3249 pushValue(I.getOperand(0), InstID, Vals); // valist. 3250 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3251 break; 3252 case Instruction::Freeze: 3253 Code = bitc::FUNC_CODE_INST_FREEZE; 3254 pushValueAndType(I.getOperand(0), InstID, Vals); 3255 break; 3256 } 3257 3258 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3259 Vals.clear(); 3260 } 3261 3262 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3263 /// to allow clients to efficiently find the function body. 3264 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3265 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3266 // Get the offset of the VST we are writing, and backpatch it into 3267 // the VST forward declaration record. 3268 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3269 // The BitcodeStartBit was the stream offset of the identification block. 3270 VSTOffset -= bitcodeStartBit(); 3271 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3272 // Note that we add 1 here because the offset is relative to one word 3273 // before the start of the identification block, which was historically 3274 // always the start of the regular bitcode header. 3275 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3276 3277 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3278 3279 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3280 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3283 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3284 3285 for (const Function &F : M) { 3286 uint64_t Record[2]; 3287 3288 if (F.isDeclaration()) 3289 continue; 3290 3291 Record[0] = VE.getValueID(&F); 3292 3293 // Save the word offset of the function (from the start of the 3294 // actual bitcode written to the stream). 3295 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3296 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3297 // Note that we add 1 here because the offset is relative to one word 3298 // before the start of the identification block, which was historically 3299 // always the start of the regular bitcode header. 3300 Record[1] = BitcodeIndex / 32 + 1; 3301 3302 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3303 } 3304 3305 Stream.ExitBlock(); 3306 } 3307 3308 /// Emit names for arguments, instructions and basic blocks in a function. 3309 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3310 const ValueSymbolTable &VST) { 3311 if (VST.empty()) 3312 return; 3313 3314 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3315 3316 // FIXME: Set up the abbrev, we know how many values there are! 3317 // FIXME: We know if the type names can use 7-bit ascii. 3318 SmallVector<uint64_t, 64> NameVals; 3319 3320 for (const ValueName &Name : VST) { 3321 // Figure out the encoding to use for the name. 3322 StringEncoding Bits = getStringEncoding(Name.getKey()); 3323 3324 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3325 NameVals.push_back(VE.getValueID(Name.getValue())); 3326 3327 // VST_CODE_ENTRY: [valueid, namechar x N] 3328 // VST_CODE_BBENTRY: [bbid, namechar x N] 3329 unsigned Code; 3330 if (isa<BasicBlock>(Name.getValue())) { 3331 Code = bitc::VST_CODE_BBENTRY; 3332 if (Bits == SE_Char6) 3333 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3334 } else { 3335 Code = bitc::VST_CODE_ENTRY; 3336 if (Bits == SE_Char6) 3337 AbbrevToUse = VST_ENTRY_6_ABBREV; 3338 else if (Bits == SE_Fixed7) 3339 AbbrevToUse = VST_ENTRY_7_ABBREV; 3340 } 3341 3342 for (const auto P : Name.getKey()) 3343 NameVals.push_back((unsigned char)P); 3344 3345 // Emit the finished record. 3346 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3347 NameVals.clear(); 3348 } 3349 3350 Stream.ExitBlock(); 3351 } 3352 3353 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3354 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3355 unsigned Code; 3356 if (isa<BasicBlock>(Order.V)) 3357 Code = bitc::USELIST_CODE_BB; 3358 else 3359 Code = bitc::USELIST_CODE_DEFAULT; 3360 3361 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3362 Record.push_back(VE.getValueID(Order.V)); 3363 Stream.EmitRecord(Code, Record); 3364 } 3365 3366 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3367 assert(VE.shouldPreserveUseListOrder() && 3368 "Expected to be preserving use-list order"); 3369 3370 auto hasMore = [&]() { 3371 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3372 }; 3373 if (!hasMore()) 3374 // Nothing to do. 3375 return; 3376 3377 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3378 while (hasMore()) { 3379 writeUseList(std::move(VE.UseListOrders.back())); 3380 VE.UseListOrders.pop_back(); 3381 } 3382 Stream.ExitBlock(); 3383 } 3384 3385 /// Emit a function body to the module stream. 3386 void ModuleBitcodeWriter::writeFunction( 3387 const Function &F, 3388 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3389 // Save the bitcode index of the start of this function block for recording 3390 // in the VST. 3391 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3392 3393 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3394 VE.incorporateFunction(F); 3395 3396 SmallVector<unsigned, 64> Vals; 3397 3398 // Emit the number of basic blocks, so the reader can create them ahead of 3399 // time. 3400 Vals.push_back(VE.getBasicBlocks().size()); 3401 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3402 Vals.clear(); 3403 3404 // If there are function-local constants, emit them now. 3405 unsigned CstStart, CstEnd; 3406 VE.getFunctionConstantRange(CstStart, CstEnd); 3407 writeConstants(CstStart, CstEnd, false); 3408 3409 // If there is function-local metadata, emit it now. 3410 writeFunctionMetadata(F); 3411 3412 // Keep a running idea of what the instruction ID is. 3413 unsigned InstID = CstEnd; 3414 3415 bool NeedsMetadataAttachment = F.hasMetadata(); 3416 3417 DILocation *LastDL = nullptr; 3418 SmallSetVector<Function *, 4> BlockAddressUsers; 3419 3420 // Finally, emit all the instructions, in order. 3421 for (const BasicBlock &BB : F) { 3422 for (const Instruction &I : BB) { 3423 writeInstruction(I, InstID, Vals); 3424 3425 if (!I.getType()->isVoidTy()) 3426 ++InstID; 3427 3428 // If the instruction has metadata, write a metadata attachment later. 3429 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3430 3431 // If the instruction has a debug location, emit it. 3432 DILocation *DL = I.getDebugLoc(); 3433 if (!DL) 3434 continue; 3435 3436 if (DL == LastDL) { 3437 // Just repeat the same debug loc as last time. 3438 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3439 continue; 3440 } 3441 3442 Vals.push_back(DL->getLine()); 3443 Vals.push_back(DL->getColumn()); 3444 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3445 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3446 Vals.push_back(DL->isImplicitCode()); 3447 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3448 Vals.clear(); 3449 3450 LastDL = DL; 3451 } 3452 3453 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3454 SmallVector<Value *> Worklist{BA}; 3455 SmallPtrSet<Value *, 8> Visited{BA}; 3456 while (!Worklist.empty()) { 3457 Value *V = Worklist.pop_back_val(); 3458 for (User *U : V->users()) { 3459 if (auto *I = dyn_cast<Instruction>(U)) { 3460 Function *P = I->getFunction(); 3461 if (P != &F) 3462 BlockAddressUsers.insert(P); 3463 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3464 Visited.insert(U).second) 3465 Worklist.push_back(U); 3466 } 3467 } 3468 } 3469 } 3470 3471 if (!BlockAddressUsers.empty()) { 3472 Vals.resize(BlockAddressUsers.size()); 3473 for (auto I : llvm::enumerate(BlockAddressUsers)) 3474 Vals[I.index()] = VE.getValueID(I.value()); 3475 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3476 Vals.clear(); 3477 } 3478 3479 // Emit names for all the instructions etc. 3480 if (auto *Symtab = F.getValueSymbolTable()) 3481 writeFunctionLevelValueSymbolTable(*Symtab); 3482 3483 if (NeedsMetadataAttachment) 3484 writeFunctionMetadataAttachment(F); 3485 if (VE.shouldPreserveUseListOrder()) 3486 writeUseListBlock(&F); 3487 VE.purgeFunction(); 3488 Stream.ExitBlock(); 3489 } 3490 3491 // Emit blockinfo, which defines the standard abbreviations etc. 3492 void ModuleBitcodeWriter::writeBlockInfo() { 3493 // We only want to emit block info records for blocks that have multiple 3494 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3495 // Other blocks can define their abbrevs inline. 3496 Stream.EnterBlockInfoBlock(); 3497 3498 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3499 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3504 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3505 VST_ENTRY_8_ABBREV) 3506 llvm_unreachable("Unexpected abbrev ordering!"); 3507 } 3508 3509 { // 7-bit fixed width VST_CODE_ENTRY strings. 3510 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3511 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3515 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3516 VST_ENTRY_7_ABBREV) 3517 llvm_unreachable("Unexpected abbrev ordering!"); 3518 } 3519 { // 6-bit char6 VST_CODE_ENTRY strings. 3520 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3521 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3525 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3526 VST_ENTRY_6_ABBREV) 3527 llvm_unreachable("Unexpected abbrev ordering!"); 3528 } 3529 { // 6-bit char6 VST_CODE_BBENTRY strings. 3530 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3531 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3533 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3534 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3535 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3536 VST_BBENTRY_6_ABBREV) 3537 llvm_unreachable("Unexpected abbrev ordering!"); 3538 } 3539 3540 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3541 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3542 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3543 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3544 VE.computeBitsRequiredForTypeIndicies())); 3545 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3546 CONSTANTS_SETTYPE_ABBREV) 3547 llvm_unreachable("Unexpected abbrev ordering!"); 3548 } 3549 3550 { // INTEGER abbrev for CONSTANTS_BLOCK. 3551 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3552 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3554 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3555 CONSTANTS_INTEGER_ABBREV) 3556 llvm_unreachable("Unexpected abbrev ordering!"); 3557 } 3558 3559 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3560 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3561 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3564 VE.computeBitsRequiredForTypeIndicies())); 3565 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3566 3567 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3568 CONSTANTS_CE_CAST_Abbrev) 3569 llvm_unreachable("Unexpected abbrev ordering!"); 3570 } 3571 { // NULL abbrev for CONSTANTS_BLOCK. 3572 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3573 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3574 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3575 CONSTANTS_NULL_Abbrev) 3576 llvm_unreachable("Unexpected abbrev ordering!"); 3577 } 3578 3579 // FIXME: This should only use space for first class types! 3580 3581 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3582 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3583 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3586 VE.computeBitsRequiredForTypeIndicies())); 3587 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3588 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3589 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3590 FUNCTION_INST_LOAD_ABBREV) 3591 llvm_unreachable("Unexpected abbrev ordering!"); 3592 } 3593 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3594 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3595 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3598 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3599 FUNCTION_INST_UNOP_ABBREV) 3600 llvm_unreachable("Unexpected abbrev ordering!"); 3601 } 3602 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3603 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3604 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3605 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3608 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3609 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3610 llvm_unreachable("Unexpected abbrev ordering!"); 3611 } 3612 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3613 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3614 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3616 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3618 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3619 FUNCTION_INST_BINOP_ABBREV) 3620 llvm_unreachable("Unexpected abbrev ordering!"); 3621 } 3622 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3623 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3624 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3625 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3626 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3627 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3628 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3629 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3630 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3631 llvm_unreachable("Unexpected abbrev ordering!"); 3632 } 3633 { // INST_CAST abbrev for FUNCTION_BLOCK. 3634 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3635 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3637 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3638 VE.computeBitsRequiredForTypeIndicies())); 3639 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3640 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3641 FUNCTION_INST_CAST_ABBREV) 3642 llvm_unreachable("Unexpected abbrev ordering!"); 3643 } 3644 3645 { // INST_RET abbrev for FUNCTION_BLOCK. 3646 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3647 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3648 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3649 FUNCTION_INST_RET_VOID_ABBREV) 3650 llvm_unreachable("Unexpected abbrev ordering!"); 3651 } 3652 { // INST_RET abbrev for FUNCTION_BLOCK. 3653 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3654 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3655 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3656 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3657 FUNCTION_INST_RET_VAL_ABBREV) 3658 llvm_unreachable("Unexpected abbrev ordering!"); 3659 } 3660 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3661 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3662 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3663 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3664 FUNCTION_INST_UNREACHABLE_ABBREV) 3665 llvm_unreachable("Unexpected abbrev ordering!"); 3666 } 3667 { 3668 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3669 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3670 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3671 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3672 Log2_32_Ceil(VE.getTypes().size() + 1))); 3673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3674 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3675 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3676 FUNCTION_INST_GEP_ABBREV) 3677 llvm_unreachable("Unexpected abbrev ordering!"); 3678 } 3679 3680 Stream.ExitBlock(); 3681 } 3682 3683 /// Write the module path strings, currently only used when generating 3684 /// a combined index file. 3685 void IndexBitcodeWriter::writeModStrings() { 3686 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3687 3688 // TODO: See which abbrev sizes we actually need to emit 3689 3690 // 8-bit fixed-width MST_ENTRY strings. 3691 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3692 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3693 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3694 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3695 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3696 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3697 3698 // 7-bit fixed width MST_ENTRY strings. 3699 Abbv = std::make_shared<BitCodeAbbrev>(); 3700 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3701 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3702 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3703 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3704 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3705 3706 // 6-bit char6 MST_ENTRY strings. 3707 Abbv = std::make_shared<BitCodeAbbrev>(); 3708 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3711 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3712 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3713 3714 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3715 Abbv = std::make_shared<BitCodeAbbrev>(); 3716 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3717 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3718 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3719 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3721 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3722 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3723 3724 SmallVector<unsigned, 64> Vals; 3725 forEachModule( 3726 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3727 StringRef Key = MPSE.getKey(); 3728 const auto &Value = MPSE.getValue(); 3729 StringEncoding Bits = getStringEncoding(Key); 3730 unsigned AbbrevToUse = Abbrev8Bit; 3731 if (Bits == SE_Char6) 3732 AbbrevToUse = Abbrev6Bit; 3733 else if (Bits == SE_Fixed7) 3734 AbbrevToUse = Abbrev7Bit; 3735 3736 Vals.push_back(Value.first); 3737 Vals.append(Key.begin(), Key.end()); 3738 3739 // Emit the finished record. 3740 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3741 3742 // Emit an optional hash for the module now 3743 const auto &Hash = Value.second; 3744 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3745 Vals.assign(Hash.begin(), Hash.end()); 3746 // Emit the hash record. 3747 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3748 } 3749 3750 Vals.clear(); 3751 }); 3752 Stream.ExitBlock(); 3753 } 3754 3755 /// Write the function type metadata related records that need to appear before 3756 /// a function summary entry (whether per-module or combined). 3757 template <typename Fn> 3758 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3759 FunctionSummary *FS, 3760 Fn GetValueID) { 3761 if (!FS->type_tests().empty()) 3762 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3763 3764 SmallVector<uint64_t, 64> Record; 3765 3766 auto WriteVFuncIdVec = [&](uint64_t Ty, 3767 ArrayRef<FunctionSummary::VFuncId> VFs) { 3768 if (VFs.empty()) 3769 return; 3770 Record.clear(); 3771 for (auto &VF : VFs) { 3772 Record.push_back(VF.GUID); 3773 Record.push_back(VF.Offset); 3774 } 3775 Stream.EmitRecord(Ty, Record); 3776 }; 3777 3778 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3779 FS->type_test_assume_vcalls()); 3780 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3781 FS->type_checked_load_vcalls()); 3782 3783 auto WriteConstVCallVec = [&](uint64_t Ty, 3784 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3785 for (auto &VC : VCs) { 3786 Record.clear(); 3787 Record.push_back(VC.VFunc.GUID); 3788 Record.push_back(VC.VFunc.Offset); 3789 llvm::append_range(Record, VC.Args); 3790 Stream.EmitRecord(Ty, Record); 3791 } 3792 }; 3793 3794 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3795 FS->type_test_assume_const_vcalls()); 3796 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3797 FS->type_checked_load_const_vcalls()); 3798 3799 auto WriteRange = [&](ConstantRange Range) { 3800 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3801 assert(Range.getLower().getNumWords() == 1); 3802 assert(Range.getUpper().getNumWords() == 1); 3803 emitSignedInt64(Record, *Range.getLower().getRawData()); 3804 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3805 }; 3806 3807 if (!FS->paramAccesses().empty()) { 3808 Record.clear(); 3809 for (auto &Arg : FS->paramAccesses()) { 3810 size_t UndoSize = Record.size(); 3811 Record.push_back(Arg.ParamNo); 3812 WriteRange(Arg.Use); 3813 Record.push_back(Arg.Calls.size()); 3814 for (auto &Call : Arg.Calls) { 3815 Record.push_back(Call.ParamNo); 3816 std::optional<unsigned> ValueID = GetValueID(Call.Callee); 3817 if (!ValueID) { 3818 // If ValueID is unknown we can't drop just this call, we must drop 3819 // entire parameter. 3820 Record.resize(UndoSize); 3821 break; 3822 } 3823 Record.push_back(*ValueID); 3824 WriteRange(Call.Offsets); 3825 } 3826 } 3827 if (!Record.empty()) 3828 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3829 } 3830 } 3831 3832 /// Collect type IDs from type tests used by function. 3833 static void 3834 getReferencedTypeIds(FunctionSummary *FS, 3835 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3836 if (!FS->type_tests().empty()) 3837 for (auto &TT : FS->type_tests()) 3838 ReferencedTypeIds.insert(TT); 3839 3840 auto GetReferencedTypesFromVFuncIdVec = 3841 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3842 for (auto &VF : VFs) 3843 ReferencedTypeIds.insert(VF.GUID); 3844 }; 3845 3846 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3847 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3848 3849 auto GetReferencedTypesFromConstVCallVec = 3850 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3851 for (auto &VC : VCs) 3852 ReferencedTypeIds.insert(VC.VFunc.GUID); 3853 }; 3854 3855 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3856 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3857 } 3858 3859 static void writeWholeProgramDevirtResolutionByArg( 3860 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3861 const WholeProgramDevirtResolution::ByArg &ByArg) { 3862 NameVals.push_back(args.size()); 3863 llvm::append_range(NameVals, args); 3864 3865 NameVals.push_back(ByArg.TheKind); 3866 NameVals.push_back(ByArg.Info); 3867 NameVals.push_back(ByArg.Byte); 3868 NameVals.push_back(ByArg.Bit); 3869 } 3870 3871 static void writeWholeProgramDevirtResolution( 3872 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3873 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3874 NameVals.push_back(Id); 3875 3876 NameVals.push_back(Wpd.TheKind); 3877 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3878 NameVals.push_back(Wpd.SingleImplName.size()); 3879 3880 NameVals.push_back(Wpd.ResByArg.size()); 3881 for (auto &A : Wpd.ResByArg) 3882 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3883 } 3884 3885 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3886 StringTableBuilder &StrtabBuilder, 3887 const std::string &Id, 3888 const TypeIdSummary &Summary) { 3889 NameVals.push_back(StrtabBuilder.add(Id)); 3890 NameVals.push_back(Id.size()); 3891 3892 NameVals.push_back(Summary.TTRes.TheKind); 3893 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3894 NameVals.push_back(Summary.TTRes.AlignLog2); 3895 NameVals.push_back(Summary.TTRes.SizeM1); 3896 NameVals.push_back(Summary.TTRes.BitMask); 3897 NameVals.push_back(Summary.TTRes.InlineBits); 3898 3899 for (auto &W : Summary.WPDRes) 3900 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3901 W.second); 3902 } 3903 3904 static void writeTypeIdCompatibleVtableSummaryRecord( 3905 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3906 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3907 ValueEnumerator &VE) { 3908 NameVals.push_back(StrtabBuilder.add(Id)); 3909 NameVals.push_back(Id.size()); 3910 3911 for (auto &P : Summary) { 3912 NameVals.push_back(P.AddressPointOffset); 3913 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3914 } 3915 } 3916 3917 static void writeFunctionHeapProfileRecords( 3918 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, 3919 unsigned AllocAbbrev, bool PerModule, 3920 std::function<unsigned(const ValueInfo &VI)> GetValueID, 3921 std::function<unsigned(unsigned)> GetStackIndex) { 3922 SmallVector<uint64_t> Record; 3923 3924 for (auto &CI : FS->callsites()) { 3925 Record.clear(); 3926 // Per module callsite clones should always have a single entry of 3927 // value 0. 3928 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); 3929 Record.push_back(GetValueID(CI.Callee)); 3930 if (!PerModule) { 3931 Record.push_back(CI.StackIdIndices.size()); 3932 Record.push_back(CI.Clones.size()); 3933 } 3934 for (auto Id : CI.StackIdIndices) 3935 Record.push_back(GetStackIndex(Id)); 3936 if (!PerModule) { 3937 for (auto V : CI.Clones) 3938 Record.push_back(V); 3939 } 3940 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO 3941 : bitc::FS_COMBINED_CALLSITE_INFO, 3942 Record, CallsiteAbbrev); 3943 } 3944 3945 for (auto &AI : FS->allocs()) { 3946 Record.clear(); 3947 // Per module alloc versions should always have a single entry of 3948 // value 0. 3949 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); 3950 if (!PerModule) { 3951 Record.push_back(AI.MIBs.size()); 3952 Record.push_back(AI.Versions.size()); 3953 } 3954 for (auto &MIB : AI.MIBs) { 3955 Record.push_back((uint8_t)MIB.AllocType); 3956 Record.push_back(MIB.StackIdIndices.size()); 3957 for (auto Id : MIB.StackIdIndices) 3958 Record.push_back(GetStackIndex(Id)); 3959 } 3960 if (!PerModule) { 3961 for (auto V : AI.Versions) 3962 Record.push_back(V); 3963 } 3964 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO 3965 : bitc::FS_COMBINED_ALLOC_INFO, 3966 Record, AllocAbbrev); 3967 } 3968 } 3969 3970 // Helper to emit a single function summary record. 3971 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3972 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3973 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3974 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F) { 3975 NameVals.push_back(ValueID); 3976 3977 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3978 3979 writeFunctionTypeMetadataRecords( 3980 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> { 3981 return {VE.getValueID(VI.getValue())}; 3982 }); 3983 3984 writeFunctionHeapProfileRecords( 3985 Stream, FS, CallsiteAbbrev, AllocAbbrev, 3986 /*PerModule*/ true, 3987 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, 3988 /*GetStackIndex*/ [&](unsigned I) { return I; }); 3989 3990 auto SpecialRefCnts = FS->specialRefCounts(); 3991 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3992 NameVals.push_back(FS->instCount()); 3993 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3994 NameVals.push_back(FS->refs().size()); 3995 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3996 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3997 3998 for (auto &RI : FS->refs()) 3999 NameVals.push_back(VE.getValueID(RI.getValue())); 4000 4001 bool HasProfileData = 4002 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 4003 for (auto &ECI : FS->calls()) { 4004 NameVals.push_back(getValueId(ECI.first)); 4005 if (HasProfileData) 4006 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 4007 else if (WriteRelBFToSummary) 4008 NameVals.push_back(ECI.second.RelBlockFreq); 4009 } 4010 4011 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4012 unsigned Code = 4013 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 4014 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 4015 : bitc::FS_PERMODULE)); 4016 4017 // Emit the finished record. 4018 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4019 NameVals.clear(); 4020 } 4021 4022 // Collect the global value references in the given variable's initializer, 4023 // and emit them in a summary record. 4024 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 4025 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 4026 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 4027 auto VI = Index->getValueInfo(V.getGUID()); 4028 if (!VI || VI.getSummaryList().empty()) { 4029 // Only declarations should not have a summary (a declaration might however 4030 // have a summary if the def was in module level asm). 4031 assert(V.isDeclaration()); 4032 return; 4033 } 4034 auto *Summary = VI.getSummaryList()[0].get(); 4035 NameVals.push_back(VE.getValueID(&V)); 4036 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 4037 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4038 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4039 4040 auto VTableFuncs = VS->vTableFuncs(); 4041 if (!VTableFuncs.empty()) 4042 NameVals.push_back(VS->refs().size()); 4043 4044 unsigned SizeBeforeRefs = NameVals.size(); 4045 for (auto &RI : VS->refs()) 4046 NameVals.push_back(VE.getValueID(RI.getValue())); 4047 // Sort the refs for determinism output, the vector returned by FS->refs() has 4048 // been initialized from a DenseSet. 4049 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 4050 4051 if (VTableFuncs.empty()) 4052 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 4053 FSModRefsAbbrev); 4054 else { 4055 // VTableFuncs pairs should already be sorted by offset. 4056 for (auto &P : VTableFuncs) { 4057 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 4058 NameVals.push_back(P.VTableOffset); 4059 } 4060 4061 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 4062 FSModVTableRefsAbbrev); 4063 } 4064 NameVals.clear(); 4065 } 4066 4067 /// Emit the per-module summary section alongside the rest of 4068 /// the module's bitcode. 4069 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 4070 // By default we compile with ThinLTO if the module has a summary, but the 4071 // client can request full LTO with a module flag. 4072 bool IsThinLTO = true; 4073 if (auto *MD = 4074 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 4075 IsThinLTO = MD->getZExtValue(); 4076 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 4077 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 4078 4); 4079 4080 Stream.EmitRecord( 4081 bitc::FS_VERSION, 4082 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4083 4084 // Write the index flags. 4085 uint64_t Flags = 0; 4086 // Bits 1-3 are set only in the combined index, skip them. 4087 if (Index->enableSplitLTOUnit()) 4088 Flags |= 0x8; 4089 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4090 4091 if (Index->begin() == Index->end()) { 4092 Stream.ExitBlock(); 4093 return; 4094 } 4095 4096 for (const auto &GVI : valueIds()) { 4097 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4098 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4099 } 4100 4101 if (!Index->stackIds().empty()) { 4102 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4103 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4104 // numids x stackid 4105 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4106 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4107 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4108 Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId); 4109 } 4110 4111 // Abbrev for FS_PERMODULE_PROFILE. 4112 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4113 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4114 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4115 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4116 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4117 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4118 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4119 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4120 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4121 // numrefs x valueid, n x (valueid, hotness) 4122 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4123 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4124 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4125 4126 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 4127 Abbv = std::make_shared<BitCodeAbbrev>(); 4128 if (WriteRelBFToSummary) 4129 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4130 else 4131 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 4132 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4133 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4134 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4135 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4139 // numrefs x valueid, n x (valueid [, rel_block_freq]) 4140 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4141 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4142 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4143 4144 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4145 Abbv = std::make_shared<BitCodeAbbrev>(); 4146 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4151 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4152 4153 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4154 Abbv = std::make_shared<BitCodeAbbrev>(); 4155 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4159 // numrefs x valueid, n x (valueid , offset) 4160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4162 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4163 4164 // Abbrev for FS_ALIAS. 4165 Abbv = std::make_shared<BitCodeAbbrev>(); 4166 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4170 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4171 4172 // Abbrev for FS_TYPE_ID_METADATA 4173 Abbv = std::make_shared<BitCodeAbbrev>(); 4174 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4177 // n x (valueid , offset) 4178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4180 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4181 4182 Abbv = std::make_shared<BitCodeAbbrev>(); 4183 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); 4184 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4185 // n x stackidindex 4186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4188 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4189 4190 Abbv = std::make_shared<BitCodeAbbrev>(); 4191 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); 4192 // n x (alloc type, numstackids, numstackids x stackidindex) 4193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4195 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4196 4197 SmallVector<uint64_t, 64> NameVals; 4198 // Iterate over the list of functions instead of the Index to 4199 // ensure the ordering is stable. 4200 for (const Function &F : M) { 4201 // Summary emission does not support anonymous functions, they have to 4202 // renamed using the anonymous function renaming pass. 4203 if (!F.hasName()) 4204 report_fatal_error("Unexpected anonymous function when writing summary"); 4205 4206 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4207 if (!VI || VI.getSummaryList().empty()) { 4208 // Only declarations should not have a summary (a declaration might 4209 // however have a summary if the def was in module level asm). 4210 assert(F.isDeclaration()); 4211 continue; 4212 } 4213 auto *Summary = VI.getSummaryList()[0].get(); 4214 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4215 FSCallsAbbrev, FSCallsProfileAbbrev, 4216 CallsiteAbbrev, AllocAbbrev, F); 4217 } 4218 4219 // Capture references from GlobalVariable initializers, which are outside 4220 // of a function scope. 4221 for (const GlobalVariable &G : M.globals()) 4222 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4223 FSModVTableRefsAbbrev); 4224 4225 for (const GlobalAlias &A : M.aliases()) { 4226 auto *Aliasee = A.getAliaseeObject(); 4227 // Skip ifunc and nameless functions which don't have an entry in the 4228 // summary. 4229 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4230 continue; 4231 auto AliasId = VE.getValueID(&A); 4232 auto AliaseeId = VE.getValueID(Aliasee); 4233 NameVals.push_back(AliasId); 4234 auto *Summary = Index->getGlobalValueSummary(A); 4235 AliasSummary *AS = cast<AliasSummary>(Summary); 4236 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4237 NameVals.push_back(AliaseeId); 4238 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4239 NameVals.clear(); 4240 } 4241 4242 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4243 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4244 S.second, VE); 4245 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4246 TypeIdCompatibleVtableAbbrev); 4247 NameVals.clear(); 4248 } 4249 4250 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4251 ArrayRef<uint64_t>{Index->getBlockCount()}); 4252 4253 Stream.ExitBlock(); 4254 } 4255 4256 /// Emit the combined summary section into the combined index file. 4257 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4258 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 4259 Stream.EmitRecord( 4260 bitc::FS_VERSION, 4261 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4262 4263 // Write the index flags. 4264 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4265 4266 for (const auto &GVI : valueIds()) { 4267 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4268 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4269 } 4270 4271 if (!StackIdIndices.empty()) { 4272 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4273 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4274 // numids x stackid 4275 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4276 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4277 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4278 // Write the stack ids used by this index, which will be a subset of those in 4279 // the full index in the case of distributed indexes. 4280 std::vector<uint64_t> StackIds; 4281 for (auto &I : StackIdIndices) 4282 StackIds.push_back(Index.getStackIdAtIndex(I)); 4283 Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId); 4284 } 4285 4286 // Abbrev for FS_COMBINED. 4287 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4288 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4291 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4293 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4298 // numrefs x valueid, n x (valueid) 4299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4301 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4302 4303 // Abbrev for FS_COMBINED_PROFILE. 4304 Abbv = std::make_shared<BitCodeAbbrev>(); 4305 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4307 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4310 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4315 // numrefs x valueid, n x (valueid, hotness) 4316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4318 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4319 4320 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4321 Abbv = std::make_shared<BitCodeAbbrev>(); 4322 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4328 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4329 4330 // Abbrev for FS_COMBINED_ALIAS. 4331 Abbv = std::make_shared<BitCodeAbbrev>(); 4332 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4337 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4338 4339 Abbv = std::make_shared<BitCodeAbbrev>(); 4340 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); 4341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices 4343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4344 // numstackindices x stackidindex, numver x version 4345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4347 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4348 4349 Abbv = std::make_shared<BitCodeAbbrev>(); 4350 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); 4351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4353 // nummib x (alloc type, numstackids, numstackids x stackidindex), 4354 // numver x version 4355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4357 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4358 4359 // The aliases are emitted as a post-pass, and will point to the value 4360 // id of the aliasee. Save them in a vector for post-processing. 4361 SmallVector<AliasSummary *, 64> Aliases; 4362 4363 // Save the value id for each summary for alias emission. 4364 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4365 4366 SmallVector<uint64_t, 64> NameVals; 4367 4368 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4369 // with the type ids referenced by this index file. 4370 std::set<GlobalValue::GUID> ReferencedTypeIds; 4371 4372 // For local linkage, we also emit the original name separately 4373 // immediately after the record. 4374 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4375 // We don't need to emit the original name if we are writing the index for 4376 // distributed backends (in which case ModuleToSummariesForIndex is 4377 // non-null). The original name is only needed during the thin link, since 4378 // for SamplePGO the indirect call targets for local functions have 4379 // have the original name annotated in profile. 4380 // Continue to emit it when writing out the entire combined index, which is 4381 // used in testing the thin link via llvm-lto. 4382 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4383 return; 4384 NameVals.push_back(S.getOriginalName()); 4385 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4386 NameVals.clear(); 4387 }; 4388 4389 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4390 forEachSummary([&](GVInfo I, bool IsAliasee) { 4391 GlobalValueSummary *S = I.second; 4392 assert(S); 4393 DefOrUseGUIDs.insert(I.first); 4394 for (const ValueInfo &VI : S->refs()) 4395 DefOrUseGUIDs.insert(VI.getGUID()); 4396 4397 auto ValueId = getValueId(I.first); 4398 assert(ValueId); 4399 SummaryToValueIdMap[S] = *ValueId; 4400 4401 // If this is invoked for an aliasee, we want to record the above 4402 // mapping, but then not emit a summary entry (if the aliasee is 4403 // to be imported, we will invoke this separately with IsAliasee=false). 4404 if (IsAliasee) 4405 return; 4406 4407 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4408 // Will process aliases as a post-pass because the reader wants all 4409 // global to be loaded first. 4410 Aliases.push_back(AS); 4411 return; 4412 } 4413 4414 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4415 NameVals.push_back(*ValueId); 4416 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4417 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4418 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4419 for (auto &RI : VS->refs()) { 4420 auto RefValueId = getValueId(RI.getGUID()); 4421 if (!RefValueId) 4422 continue; 4423 NameVals.push_back(*RefValueId); 4424 } 4425 4426 // Emit the finished record. 4427 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4428 FSModRefsAbbrev); 4429 NameVals.clear(); 4430 MaybeEmitOriginalName(*S); 4431 return; 4432 } 4433 4434 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { 4435 if (!VI) 4436 return std::nullopt; 4437 return getValueId(VI.getGUID()); 4438 }; 4439 4440 auto *FS = cast<FunctionSummary>(S); 4441 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4442 getReferencedTypeIds(FS, ReferencedTypeIds); 4443 4444 writeFunctionHeapProfileRecords( 4445 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4446 /*PerModule*/ false, 4447 /*GetValueId*/ [&](const ValueInfo &VI) -> unsigned { 4448 std::optional<unsigned> ValueID = GetValueId(VI); 4449 // This can happen in shared index files for distributed ThinLTO if 4450 // the callee function summary is not included. Record 0 which we 4451 // will have to deal with conservatively when doing any kind of 4452 // validation in the ThinLTO backends. 4453 if (!ValueID) 4454 return 0; 4455 return *ValueID; 4456 }, 4457 /*GetStackIndex*/ [&](unsigned I) { 4458 // Get the corresponding index into the list of StackIdIndices 4459 // actually being written for this combined index (which may be a 4460 // subset in the case of distributed indexes). 4461 auto Lower = llvm::lower_bound(StackIdIndices, I); 4462 return std::distance(StackIdIndices.begin(), Lower); 4463 }); 4464 4465 NameVals.push_back(*ValueId); 4466 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4467 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4468 NameVals.push_back(FS->instCount()); 4469 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4470 NameVals.push_back(FS->entryCount()); 4471 4472 // Fill in below 4473 NameVals.push_back(0); // numrefs 4474 NameVals.push_back(0); // rorefcnt 4475 NameVals.push_back(0); // worefcnt 4476 4477 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4478 for (auto &RI : FS->refs()) { 4479 auto RefValueId = getValueId(RI.getGUID()); 4480 if (!RefValueId) 4481 continue; 4482 NameVals.push_back(*RefValueId); 4483 if (RI.isReadOnly()) 4484 RORefCnt++; 4485 else if (RI.isWriteOnly()) 4486 WORefCnt++; 4487 Count++; 4488 } 4489 NameVals[6] = Count; 4490 NameVals[7] = RORefCnt; 4491 NameVals[8] = WORefCnt; 4492 4493 bool HasProfileData = false; 4494 for (auto &EI : FS->calls()) { 4495 HasProfileData |= 4496 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4497 if (HasProfileData) 4498 break; 4499 } 4500 4501 for (auto &EI : FS->calls()) { 4502 // If this GUID doesn't have a value id, it doesn't have a function 4503 // summary and we don't need to record any calls to it. 4504 std::optional<unsigned> CallValueId = GetValueId(EI.first); 4505 if (!CallValueId) 4506 continue; 4507 NameVals.push_back(*CallValueId); 4508 if (HasProfileData) 4509 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4510 } 4511 4512 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4513 unsigned Code = 4514 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4515 4516 // Emit the finished record. 4517 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4518 NameVals.clear(); 4519 MaybeEmitOriginalName(*S); 4520 }); 4521 4522 for (auto *AS : Aliases) { 4523 auto AliasValueId = SummaryToValueIdMap[AS]; 4524 assert(AliasValueId); 4525 NameVals.push_back(AliasValueId); 4526 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4527 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4528 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4529 assert(AliaseeValueId); 4530 NameVals.push_back(AliaseeValueId); 4531 4532 // Emit the finished record. 4533 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4534 NameVals.clear(); 4535 MaybeEmitOriginalName(*AS); 4536 4537 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4538 getReferencedTypeIds(FS, ReferencedTypeIds); 4539 } 4540 4541 if (!Index.cfiFunctionDefs().empty()) { 4542 for (auto &S : Index.cfiFunctionDefs()) { 4543 if (DefOrUseGUIDs.count( 4544 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4545 NameVals.push_back(StrtabBuilder.add(S)); 4546 NameVals.push_back(S.size()); 4547 } 4548 } 4549 if (!NameVals.empty()) { 4550 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4551 NameVals.clear(); 4552 } 4553 } 4554 4555 if (!Index.cfiFunctionDecls().empty()) { 4556 for (auto &S : Index.cfiFunctionDecls()) { 4557 if (DefOrUseGUIDs.count( 4558 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4559 NameVals.push_back(StrtabBuilder.add(S)); 4560 NameVals.push_back(S.size()); 4561 } 4562 } 4563 if (!NameVals.empty()) { 4564 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4565 NameVals.clear(); 4566 } 4567 } 4568 4569 // Walk the GUIDs that were referenced, and write the 4570 // corresponding type id records. 4571 for (auto &T : ReferencedTypeIds) { 4572 auto TidIter = Index.typeIds().equal_range(T); 4573 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4574 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4575 It->second.second); 4576 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4577 NameVals.clear(); 4578 } 4579 } 4580 4581 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4582 ArrayRef<uint64_t>{Index.getBlockCount()}); 4583 4584 Stream.ExitBlock(); 4585 } 4586 4587 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4588 /// current llvm version, and a record for the epoch number. 4589 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4590 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4591 4592 // Write the "user readable" string identifying the bitcode producer 4593 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4594 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4597 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4598 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4599 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4600 4601 // Write the epoch version 4602 Abbv = std::make_shared<BitCodeAbbrev>(); 4603 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4604 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4605 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4606 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4607 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4608 Stream.ExitBlock(); 4609 } 4610 4611 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4612 // Emit the module's hash. 4613 // MODULE_CODE_HASH: [5*i32] 4614 if (GenerateHash) { 4615 uint32_t Vals[5]; 4616 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4617 Buffer.size() - BlockStartPos)); 4618 std::array<uint8_t, 20> Hash = Hasher.result(); 4619 for (int Pos = 0; Pos < 20; Pos += 4) { 4620 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4621 } 4622 4623 // Emit the finished record. 4624 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4625 4626 if (ModHash) 4627 // Save the written hash value. 4628 llvm::copy(Vals, std::begin(*ModHash)); 4629 } 4630 } 4631 4632 void ModuleBitcodeWriter::write() { 4633 writeIdentificationBlock(Stream); 4634 4635 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4636 size_t BlockStartPos = Buffer.size(); 4637 4638 writeModuleVersion(); 4639 4640 // Emit blockinfo, which defines the standard abbreviations etc. 4641 writeBlockInfo(); 4642 4643 // Emit information describing all of the types in the module. 4644 writeTypeTable(); 4645 4646 // Emit information about attribute groups. 4647 writeAttributeGroupTable(); 4648 4649 // Emit information about parameter attributes. 4650 writeAttributeTable(); 4651 4652 writeComdats(); 4653 4654 // Emit top-level description of module, including target triple, inline asm, 4655 // descriptors for global variables, and function prototype info. 4656 writeModuleInfo(); 4657 4658 // Emit constants. 4659 writeModuleConstants(); 4660 4661 // Emit metadata kind names. 4662 writeModuleMetadataKinds(); 4663 4664 // Emit metadata. 4665 writeModuleMetadata(); 4666 4667 // Emit module-level use-lists. 4668 if (VE.shouldPreserveUseListOrder()) 4669 writeUseListBlock(nullptr); 4670 4671 writeOperandBundleTags(); 4672 writeSyncScopeNames(); 4673 4674 // Emit function bodies. 4675 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4676 for (const Function &F : M) 4677 if (!F.isDeclaration()) 4678 writeFunction(F, FunctionToBitcodeIndex); 4679 4680 // Need to write after the above call to WriteFunction which populates 4681 // the summary information in the index. 4682 if (Index) 4683 writePerModuleGlobalValueSummary(); 4684 4685 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4686 4687 writeModuleHash(BlockStartPos); 4688 4689 Stream.ExitBlock(); 4690 } 4691 4692 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4693 uint32_t &Position) { 4694 support::endian::write32le(&Buffer[Position], Value); 4695 Position += 4; 4696 } 4697 4698 /// If generating a bc file on darwin, we have to emit a 4699 /// header and trailer to make it compatible with the system archiver. To do 4700 /// this we emit the following header, and then emit a trailer that pads the 4701 /// file out to be a multiple of 16 bytes. 4702 /// 4703 /// struct bc_header { 4704 /// uint32_t Magic; // 0x0B17C0DE 4705 /// uint32_t Version; // Version, currently always 0. 4706 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4707 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4708 /// uint32_t CPUType; // CPU specifier. 4709 /// ... potentially more later ... 4710 /// }; 4711 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4712 const Triple &TT) { 4713 unsigned CPUType = ~0U; 4714 4715 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4716 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4717 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4718 // specific constants here because they are implicitly part of the Darwin ABI. 4719 enum { 4720 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4721 DARWIN_CPU_TYPE_X86 = 7, 4722 DARWIN_CPU_TYPE_ARM = 12, 4723 DARWIN_CPU_TYPE_POWERPC = 18 4724 }; 4725 4726 Triple::ArchType Arch = TT.getArch(); 4727 if (Arch == Triple::x86_64) 4728 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4729 else if (Arch == Triple::x86) 4730 CPUType = DARWIN_CPU_TYPE_X86; 4731 else if (Arch == Triple::ppc) 4732 CPUType = DARWIN_CPU_TYPE_POWERPC; 4733 else if (Arch == Triple::ppc64) 4734 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4735 else if (Arch == Triple::arm || Arch == Triple::thumb) 4736 CPUType = DARWIN_CPU_TYPE_ARM; 4737 4738 // Traditional Bitcode starts after header. 4739 assert(Buffer.size() >= BWH_HeaderSize && 4740 "Expected header size to be reserved"); 4741 unsigned BCOffset = BWH_HeaderSize; 4742 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4743 4744 // Write the magic and version. 4745 unsigned Position = 0; 4746 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4747 writeInt32ToBuffer(0, Buffer, Position); // Version. 4748 writeInt32ToBuffer(BCOffset, Buffer, Position); 4749 writeInt32ToBuffer(BCSize, Buffer, Position); 4750 writeInt32ToBuffer(CPUType, Buffer, Position); 4751 4752 // If the file is not a multiple of 16 bytes, insert dummy padding. 4753 while (Buffer.size() & 15) 4754 Buffer.push_back(0); 4755 } 4756 4757 /// Helper to write the header common to all bitcode files. 4758 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4759 // Emit the file header. 4760 Stream.Emit((unsigned)'B', 8); 4761 Stream.Emit((unsigned)'C', 8); 4762 Stream.Emit(0x0, 4); 4763 Stream.Emit(0xC, 4); 4764 Stream.Emit(0xE, 4); 4765 Stream.Emit(0xD, 4); 4766 } 4767 4768 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4769 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4770 writeBitcodeHeader(*Stream); 4771 } 4772 4773 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4774 4775 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4776 Stream->EnterSubblock(Block, 3); 4777 4778 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4779 Abbv->Add(BitCodeAbbrevOp(Record)); 4780 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4781 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4782 4783 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4784 4785 Stream->ExitBlock(); 4786 } 4787 4788 void BitcodeWriter::writeSymtab() { 4789 assert(!WroteStrtab && !WroteSymtab); 4790 4791 // If any module has module-level inline asm, we will require a registered asm 4792 // parser for the target so that we can create an accurate symbol table for 4793 // the module. 4794 for (Module *M : Mods) { 4795 if (M->getModuleInlineAsm().empty()) 4796 continue; 4797 4798 std::string Err; 4799 const Triple TT(M->getTargetTriple()); 4800 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4801 if (!T || !T->hasMCAsmParser()) 4802 return; 4803 } 4804 4805 WroteSymtab = true; 4806 SmallVector<char, 0> Symtab; 4807 // The irsymtab::build function may be unable to create a symbol table if the 4808 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4809 // table is not required for correctness, but we still want to be able to 4810 // write malformed modules to bitcode files, so swallow the error. 4811 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4812 consumeError(std::move(E)); 4813 return; 4814 } 4815 4816 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4817 {Symtab.data(), Symtab.size()}); 4818 } 4819 4820 void BitcodeWriter::writeStrtab() { 4821 assert(!WroteStrtab); 4822 4823 std::vector<char> Strtab; 4824 StrtabBuilder.finalizeInOrder(); 4825 Strtab.resize(StrtabBuilder.getSize()); 4826 StrtabBuilder.write((uint8_t *)Strtab.data()); 4827 4828 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4829 {Strtab.data(), Strtab.size()}); 4830 4831 WroteStrtab = true; 4832 } 4833 4834 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4835 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4836 WroteStrtab = true; 4837 } 4838 4839 void BitcodeWriter::writeModule(const Module &M, 4840 bool ShouldPreserveUseListOrder, 4841 const ModuleSummaryIndex *Index, 4842 bool GenerateHash, ModuleHash *ModHash) { 4843 assert(!WroteStrtab); 4844 4845 // The Mods vector is used by irsymtab::build, which requires non-const 4846 // Modules in case it needs to materialize metadata. But the bitcode writer 4847 // requires that the module is materialized, so we can cast to non-const here, 4848 // after checking that it is in fact materialized. 4849 assert(M.isMaterialized()); 4850 Mods.push_back(const_cast<Module *>(&M)); 4851 4852 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4853 ShouldPreserveUseListOrder, Index, 4854 GenerateHash, ModHash); 4855 ModuleWriter.write(); 4856 } 4857 4858 void BitcodeWriter::writeIndex( 4859 const ModuleSummaryIndex *Index, 4860 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4861 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4862 ModuleToSummariesForIndex); 4863 IndexWriter.write(); 4864 } 4865 4866 /// Write the specified module to the specified output stream. 4867 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4868 bool ShouldPreserveUseListOrder, 4869 const ModuleSummaryIndex *Index, 4870 bool GenerateHash, ModuleHash *ModHash) { 4871 SmallVector<char, 0> Buffer; 4872 Buffer.reserve(256*1024); 4873 4874 // If this is darwin or another generic macho target, reserve space for the 4875 // header. 4876 Triple TT(M.getTargetTriple()); 4877 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4878 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4879 4880 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4881 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4882 ModHash); 4883 Writer.writeSymtab(); 4884 Writer.writeStrtab(); 4885 4886 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4887 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4888 4889 // Write the generated bitstream to "Out". 4890 if (!Buffer.empty()) 4891 Out.write((char *)&Buffer.front(), Buffer.size()); 4892 } 4893 4894 void IndexBitcodeWriter::write() { 4895 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4896 4897 writeModuleVersion(); 4898 4899 // Write the module paths in the combined index. 4900 writeModStrings(); 4901 4902 // Write the summary combined index records. 4903 writeCombinedGlobalValueSummary(); 4904 4905 Stream.ExitBlock(); 4906 } 4907 4908 // Write the specified module summary index to the given raw output stream, 4909 // where it will be written in a new bitcode block. This is used when 4910 // writing the combined index file for ThinLTO. When writing a subset of the 4911 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4912 void llvm::writeIndexToFile( 4913 const ModuleSummaryIndex &Index, raw_ostream &Out, 4914 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4915 SmallVector<char, 0> Buffer; 4916 Buffer.reserve(256 * 1024); 4917 4918 BitcodeWriter Writer(Buffer); 4919 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4920 Writer.writeStrtab(); 4921 4922 Out.write((char *)&Buffer.front(), Buffer.size()); 4923 } 4924 4925 namespace { 4926 4927 /// Class to manage the bitcode writing for a thin link bitcode file. 4928 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4929 /// ModHash is for use in ThinLTO incremental build, generated while writing 4930 /// the module bitcode file. 4931 const ModuleHash *ModHash; 4932 4933 public: 4934 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4935 BitstreamWriter &Stream, 4936 const ModuleSummaryIndex &Index, 4937 const ModuleHash &ModHash) 4938 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4939 /*ShouldPreserveUseListOrder=*/false, &Index), 4940 ModHash(&ModHash) {} 4941 4942 void write(); 4943 4944 private: 4945 void writeSimplifiedModuleInfo(); 4946 }; 4947 4948 } // end anonymous namespace 4949 4950 // This function writes a simpilified module info for thin link bitcode file. 4951 // It only contains the source file name along with the name(the offset and 4952 // size in strtab) and linkage for global values. For the global value info 4953 // entry, in order to keep linkage at offset 5, there are three zeros used 4954 // as padding. 4955 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4956 SmallVector<unsigned, 64> Vals; 4957 // Emit the module's source file name. 4958 { 4959 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4960 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4961 if (Bits == SE_Char6) 4962 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4963 else if (Bits == SE_Fixed7) 4964 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4965 4966 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4967 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4968 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4970 Abbv->Add(AbbrevOpToUse); 4971 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4972 4973 for (const auto P : M.getSourceFileName()) 4974 Vals.push_back((unsigned char)P); 4975 4976 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4977 Vals.clear(); 4978 } 4979 4980 // Emit the global variable information. 4981 for (const GlobalVariable &GV : M.globals()) { 4982 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4983 Vals.push_back(StrtabBuilder.add(GV.getName())); 4984 Vals.push_back(GV.getName().size()); 4985 Vals.push_back(0); 4986 Vals.push_back(0); 4987 Vals.push_back(0); 4988 Vals.push_back(getEncodedLinkage(GV)); 4989 4990 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4991 Vals.clear(); 4992 } 4993 4994 // Emit the function proto information. 4995 for (const Function &F : M) { 4996 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4997 Vals.push_back(StrtabBuilder.add(F.getName())); 4998 Vals.push_back(F.getName().size()); 4999 Vals.push_back(0); 5000 Vals.push_back(0); 5001 Vals.push_back(0); 5002 Vals.push_back(getEncodedLinkage(F)); 5003 5004 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 5005 Vals.clear(); 5006 } 5007 5008 // Emit the alias information. 5009 for (const GlobalAlias &A : M.aliases()) { 5010 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 5011 Vals.push_back(StrtabBuilder.add(A.getName())); 5012 Vals.push_back(A.getName().size()); 5013 Vals.push_back(0); 5014 Vals.push_back(0); 5015 Vals.push_back(0); 5016 Vals.push_back(getEncodedLinkage(A)); 5017 5018 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 5019 Vals.clear(); 5020 } 5021 5022 // Emit the ifunc information. 5023 for (const GlobalIFunc &I : M.ifuncs()) { 5024 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 5025 Vals.push_back(StrtabBuilder.add(I.getName())); 5026 Vals.push_back(I.getName().size()); 5027 Vals.push_back(0); 5028 Vals.push_back(0); 5029 Vals.push_back(0); 5030 Vals.push_back(getEncodedLinkage(I)); 5031 5032 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 5033 Vals.clear(); 5034 } 5035 } 5036 5037 void ThinLinkBitcodeWriter::write() { 5038 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5039 5040 writeModuleVersion(); 5041 5042 writeSimplifiedModuleInfo(); 5043 5044 writePerModuleGlobalValueSummary(); 5045 5046 // Write module hash. 5047 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 5048 5049 Stream.ExitBlock(); 5050 } 5051 5052 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 5053 const ModuleSummaryIndex &Index, 5054 const ModuleHash &ModHash) { 5055 assert(!WroteStrtab); 5056 5057 // The Mods vector is used by irsymtab::build, which requires non-const 5058 // Modules in case it needs to materialize metadata. But the bitcode writer 5059 // requires that the module is materialized, so we can cast to non-const here, 5060 // after checking that it is in fact materialized. 5061 assert(M.isMaterialized()); 5062 Mods.push_back(const_cast<Module *>(&M)); 5063 5064 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 5065 ModHash); 5066 ThinLinkWriter.write(); 5067 } 5068 5069 // Write the specified thin link bitcode file to the given raw output stream, 5070 // where it will be written in a new bitcode block. This is used when 5071 // writing the per-module index file for ThinLTO. 5072 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 5073 const ModuleSummaryIndex &Index, 5074 const ModuleHash &ModHash) { 5075 SmallVector<char, 0> Buffer; 5076 Buffer.reserve(256 * 1024); 5077 5078 BitcodeWriter Writer(Buffer); 5079 Writer.writeThinLinkBitcode(M, Index, ModHash); 5080 Writer.writeSymtab(); 5081 Writer.writeStrtab(); 5082 5083 Out.write((char *)&Buffer.front(), Buffer.size()); 5084 } 5085 5086 static const char *getSectionNameForBitcode(const Triple &T) { 5087 switch (T.getObjectFormat()) { 5088 case Triple::MachO: 5089 return "__LLVM,__bitcode"; 5090 case Triple::COFF: 5091 case Triple::ELF: 5092 case Triple::Wasm: 5093 case Triple::UnknownObjectFormat: 5094 return ".llvmbc"; 5095 case Triple::GOFF: 5096 llvm_unreachable("GOFF is not yet implemented"); 5097 break; 5098 case Triple::SPIRV: 5099 llvm_unreachable("SPIRV is not yet implemented"); 5100 break; 5101 case Triple::XCOFF: 5102 llvm_unreachable("XCOFF is not yet implemented"); 5103 break; 5104 case Triple::DXContainer: 5105 llvm_unreachable("DXContainer is not yet implemented"); 5106 break; 5107 } 5108 llvm_unreachable("Unimplemented ObjectFormatType"); 5109 } 5110 5111 static const char *getSectionNameForCommandline(const Triple &T) { 5112 switch (T.getObjectFormat()) { 5113 case Triple::MachO: 5114 return "__LLVM,__cmdline"; 5115 case Triple::COFF: 5116 case Triple::ELF: 5117 case Triple::Wasm: 5118 case Triple::UnknownObjectFormat: 5119 return ".llvmcmd"; 5120 case Triple::GOFF: 5121 llvm_unreachable("GOFF is not yet implemented"); 5122 break; 5123 case Triple::SPIRV: 5124 llvm_unreachable("SPIRV is not yet implemented"); 5125 break; 5126 case Triple::XCOFF: 5127 llvm_unreachable("XCOFF is not yet implemented"); 5128 break; 5129 case Triple::DXContainer: 5130 llvm_unreachable("DXC is not yet implemented"); 5131 break; 5132 } 5133 llvm_unreachable("Unimplemented ObjectFormatType"); 5134 } 5135 5136 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 5137 bool EmbedBitcode, bool EmbedCmdline, 5138 const std::vector<uint8_t> &CmdArgs) { 5139 // Save llvm.compiler.used and remove it. 5140 SmallVector<Constant *, 2> UsedArray; 5141 SmallVector<GlobalValue *, 4> UsedGlobals; 5142 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 5143 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 5144 for (auto *GV : UsedGlobals) { 5145 if (GV->getName() != "llvm.embedded.module" && 5146 GV->getName() != "llvm.cmdline") 5147 UsedArray.push_back( 5148 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5149 } 5150 if (Used) 5151 Used->eraseFromParent(); 5152 5153 // Embed the bitcode for the llvm module. 5154 std::string Data; 5155 ArrayRef<uint8_t> ModuleData; 5156 Triple T(M.getTargetTriple()); 5157 5158 if (EmbedBitcode) { 5159 if (Buf.getBufferSize() == 0 || 5160 !isBitcode((const unsigned char *)Buf.getBufferStart(), 5161 (const unsigned char *)Buf.getBufferEnd())) { 5162 // If the input is LLVM Assembly, bitcode is produced by serializing 5163 // the module. Use-lists order need to be preserved in this case. 5164 llvm::raw_string_ostream OS(Data); 5165 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 5166 ModuleData = 5167 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 5168 } else 5169 // If the input is LLVM bitcode, write the input byte stream directly. 5170 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5171 Buf.getBufferSize()); 5172 } 5173 llvm::Constant *ModuleConstant = 5174 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5175 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5176 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5177 ModuleConstant); 5178 GV->setSection(getSectionNameForBitcode(T)); 5179 // Set alignment to 1 to prevent padding between two contributions from input 5180 // sections after linking. 5181 GV->setAlignment(Align(1)); 5182 UsedArray.push_back( 5183 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5184 if (llvm::GlobalVariable *Old = 5185 M.getGlobalVariable("llvm.embedded.module", true)) { 5186 assert(Old->hasZeroLiveUses() && 5187 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5188 GV->takeName(Old); 5189 Old->eraseFromParent(); 5190 } else { 5191 GV->setName("llvm.embedded.module"); 5192 } 5193 5194 // Skip if only bitcode needs to be embedded. 5195 if (EmbedCmdline) { 5196 // Embed command-line options. 5197 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5198 CmdArgs.size()); 5199 llvm::Constant *CmdConstant = 5200 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5201 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5202 llvm::GlobalValue::PrivateLinkage, 5203 CmdConstant); 5204 GV->setSection(getSectionNameForCommandline(T)); 5205 GV->setAlignment(Align(1)); 5206 UsedArray.push_back( 5207 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5208 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5209 assert(Old->hasZeroLiveUses() && 5210 "llvm.cmdline can only be used once in llvm.compiler.used"); 5211 GV->takeName(Old); 5212 Old->eraseFromParent(); 5213 } else { 5214 GV->setName("llvm.cmdline"); 5215 } 5216 } 5217 5218 if (UsedArray.empty()) 5219 return; 5220 5221 // Recreate llvm.compiler.used. 5222 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5223 auto *NewUsed = new GlobalVariable( 5224 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5225 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5226 NewUsed->setSection("llvm.metadata"); 5227 } 5228