1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/Operator.h" 24 #include "llvm/TypeSymbolTable.h" 25 #include "llvm/ValueSymbolTable.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/System/Program.h" 30 using namespace llvm; 31 32 /// These are manifest constants used by the bitcode writer. They do not need to 33 /// be kept in sync with the reader, but need to be consistent within this file. 34 enum { 35 CurVersion = 0, 36 37 // VALUE_SYMTAB_BLOCK abbrev id's. 38 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 39 VST_ENTRY_7_ABBREV, 40 VST_ENTRY_6_ABBREV, 41 VST_BBENTRY_6_ABBREV, 42 43 // CONSTANTS_BLOCK abbrev id's. 44 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 45 CONSTANTS_INTEGER_ABBREV, 46 CONSTANTS_CE_CAST_Abbrev, 47 CONSTANTS_NULL_Abbrev, 48 49 // FUNCTION_BLOCK abbrev id's. 50 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 51 FUNCTION_INST_BINOP_ABBREV, 52 FUNCTION_INST_BINOP_FLAGS_ABBREV, 53 FUNCTION_INST_CAST_ABBREV, 54 FUNCTION_INST_RET_VOID_ABBREV, 55 FUNCTION_INST_RET_VAL_ABBREV, 56 FUNCTION_INST_UNREACHABLE_ABBREV 57 }; 58 59 60 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 61 switch (Opcode) { 62 default: llvm_unreachable("Unknown cast instruction!"); 63 case Instruction::Trunc : return bitc::CAST_TRUNC; 64 case Instruction::ZExt : return bitc::CAST_ZEXT; 65 case Instruction::SExt : return bitc::CAST_SEXT; 66 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 67 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 68 case Instruction::UIToFP : return bitc::CAST_UITOFP; 69 case Instruction::SIToFP : return bitc::CAST_SITOFP; 70 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 71 case Instruction::FPExt : return bitc::CAST_FPEXT; 72 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 73 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 74 case Instruction::BitCast : return bitc::CAST_BITCAST; 75 } 76 } 77 78 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 79 switch (Opcode) { 80 default: llvm_unreachable("Unknown binary instruction!"); 81 case Instruction::Add: 82 case Instruction::FAdd: return bitc::BINOP_ADD; 83 case Instruction::Sub: 84 case Instruction::FSub: return bitc::BINOP_SUB; 85 case Instruction::Mul: 86 case Instruction::FMul: return bitc::BINOP_MUL; 87 case Instruction::UDiv: return bitc::BINOP_UDIV; 88 case Instruction::FDiv: 89 case Instruction::SDiv: return bitc::BINOP_SDIV; 90 case Instruction::URem: return bitc::BINOP_UREM; 91 case Instruction::FRem: 92 case Instruction::SRem: return bitc::BINOP_SREM; 93 case Instruction::Shl: return bitc::BINOP_SHL; 94 case Instruction::LShr: return bitc::BINOP_LSHR; 95 case Instruction::AShr: return bitc::BINOP_ASHR; 96 case Instruction::And: return bitc::BINOP_AND; 97 case Instruction::Or: return bitc::BINOP_OR; 98 case Instruction::Xor: return bitc::BINOP_XOR; 99 } 100 } 101 102 103 104 static void WriteStringRecord(unsigned Code, const std::string &Str, 105 unsigned AbbrevToUse, BitstreamWriter &Stream) { 106 SmallVector<unsigned, 64> Vals; 107 108 // Code: [strchar x N] 109 for (unsigned i = 0, e = Str.size(); i != e; ++i) 110 Vals.push_back(Str[i]); 111 112 // Emit the finished record. 113 Stream.EmitRecord(Code, Vals, AbbrevToUse); 114 } 115 116 // Emit information about parameter attributes. 117 static void WriteAttributeTable(const ValueEnumerator &VE, 118 BitstreamWriter &Stream) { 119 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 120 if (Attrs.empty()) return; 121 122 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 123 124 SmallVector<uint64_t, 64> Record; 125 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 126 const AttrListPtr &A = Attrs[i]; 127 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 128 const AttributeWithIndex &PAWI = A.getSlot(i); 129 Record.push_back(PAWI.Index); 130 131 // FIXME: remove in LLVM 3.0 132 // Store the alignment in the bitcode as a 16-bit raw value instead of a 133 // 5-bit log2 encoded value. Shift the bits above the alignment up by 134 // 11 bits. 135 uint64_t FauxAttr = PAWI.Attrs & 0xffff; 136 if (PAWI.Attrs & Attribute::Alignment) 137 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16); 138 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11; 139 140 Record.push_back(FauxAttr); 141 } 142 143 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 144 Record.clear(); 145 } 146 147 Stream.ExitBlock(); 148 } 149 150 /// WriteTypeTable - Write out the type table for a module. 151 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 152 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 153 154 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 155 SmallVector<uint64_t, 64> TypeVals; 156 157 // Abbrev for TYPE_CODE_POINTER. 158 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 159 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 161 Log2_32_Ceil(VE.getTypes().size()+1))); 162 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 163 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 164 165 // Abbrev for TYPE_CODE_FUNCTION. 166 Abbv = new BitCodeAbbrev(); 167 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 169 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 172 Log2_32_Ceil(VE.getTypes().size()+1))); 173 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 174 175 // Abbrev for TYPE_CODE_STRUCT. 176 Abbv = new BitCodeAbbrev(); 177 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 181 Log2_32_Ceil(VE.getTypes().size()+1))); 182 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 183 184 // Abbrev for TYPE_CODE_ARRAY. 185 Abbv = new BitCodeAbbrev(); 186 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 189 Log2_32_Ceil(VE.getTypes().size()+1))); 190 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 191 192 // Emit an entry count so the reader can reserve space. 193 TypeVals.push_back(TypeList.size()); 194 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 195 TypeVals.clear(); 196 197 // Loop over all of the types, emitting each in turn. 198 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 199 const Type *T = TypeList[i].first; 200 int AbbrevToUse = 0; 201 unsigned Code = 0; 202 203 switch (T->getTypeID()) { 204 default: llvm_unreachable("Unknown type!"); 205 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 206 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 207 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 208 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 209 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 210 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 211 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 212 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 213 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 214 case Type::IntegerTyID: 215 // INTEGER: [width] 216 Code = bitc::TYPE_CODE_INTEGER; 217 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 218 break; 219 case Type::PointerTyID: { 220 const PointerType *PTy = cast<PointerType>(T); 221 // POINTER: [pointee type, address space] 222 Code = bitc::TYPE_CODE_POINTER; 223 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 224 unsigned AddressSpace = PTy->getAddressSpace(); 225 TypeVals.push_back(AddressSpace); 226 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 227 break; 228 } 229 case Type::FunctionTyID: { 230 const FunctionType *FT = cast<FunctionType>(T); 231 // FUNCTION: [isvararg, attrid, retty, paramty x N] 232 Code = bitc::TYPE_CODE_FUNCTION; 233 TypeVals.push_back(FT->isVarArg()); 234 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 235 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 236 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 237 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 238 AbbrevToUse = FunctionAbbrev; 239 break; 240 } 241 case Type::StructTyID: { 242 const StructType *ST = cast<StructType>(T); 243 // STRUCT: [ispacked, eltty x N] 244 Code = bitc::TYPE_CODE_STRUCT; 245 TypeVals.push_back(ST->isPacked()); 246 // Output all of the element types. 247 for (StructType::element_iterator I = ST->element_begin(), 248 E = ST->element_end(); I != E; ++I) 249 TypeVals.push_back(VE.getTypeID(*I)); 250 AbbrevToUse = StructAbbrev; 251 break; 252 } 253 case Type::ArrayTyID: { 254 const ArrayType *AT = cast<ArrayType>(T); 255 // ARRAY: [numelts, eltty] 256 Code = bitc::TYPE_CODE_ARRAY; 257 TypeVals.push_back(AT->getNumElements()); 258 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 259 AbbrevToUse = ArrayAbbrev; 260 break; 261 } 262 case Type::VectorTyID: { 263 const VectorType *VT = cast<VectorType>(T); 264 // VECTOR [numelts, eltty] 265 Code = bitc::TYPE_CODE_VECTOR; 266 TypeVals.push_back(VT->getNumElements()); 267 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 268 break; 269 } 270 } 271 272 // Emit the finished record. 273 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 274 TypeVals.clear(); 275 } 276 277 Stream.ExitBlock(); 278 } 279 280 static unsigned getEncodedLinkage(const GlobalValue *GV) { 281 switch (GV->getLinkage()) { 282 default: llvm_unreachable("Invalid linkage!"); 283 case GlobalValue::GhostLinkage: // Map ghost linkage onto external. 284 case GlobalValue::ExternalLinkage: return 0; 285 case GlobalValue::WeakAnyLinkage: return 1; 286 case GlobalValue::AppendingLinkage: return 2; 287 case GlobalValue::InternalLinkage: return 3; 288 case GlobalValue::LinkOnceAnyLinkage: return 4; 289 case GlobalValue::DLLImportLinkage: return 5; 290 case GlobalValue::DLLExportLinkage: return 6; 291 case GlobalValue::ExternalWeakLinkage: return 7; 292 case GlobalValue::CommonLinkage: return 8; 293 case GlobalValue::PrivateLinkage: return 9; 294 case GlobalValue::WeakODRLinkage: return 10; 295 case GlobalValue::LinkOnceODRLinkage: return 11; 296 case GlobalValue::AvailableExternallyLinkage: return 12; 297 case GlobalValue::LinkerPrivateLinkage: return 13; 298 } 299 } 300 301 static unsigned getEncodedVisibility(const GlobalValue *GV) { 302 switch (GV->getVisibility()) { 303 default: llvm_unreachable("Invalid visibility!"); 304 case GlobalValue::DefaultVisibility: return 0; 305 case GlobalValue::HiddenVisibility: return 1; 306 case GlobalValue::ProtectedVisibility: return 2; 307 } 308 } 309 310 // Emit top-level description of module, including target triple, inline asm, 311 // descriptors for global variables, and function prototype info. 312 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 313 BitstreamWriter &Stream) { 314 // Emit the list of dependent libraries for the Module. 315 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 316 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 317 318 // Emit various pieces of data attached to a module. 319 if (!M->getTargetTriple().empty()) 320 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 321 0/*TODO*/, Stream); 322 if (!M->getDataLayout().empty()) 323 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 324 0/*TODO*/, Stream); 325 if (!M->getModuleInlineAsm().empty()) 326 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 327 0/*TODO*/, Stream); 328 329 // Emit information about sections and GC, computing how many there are. Also 330 // compute the maximum alignment value. 331 std::map<std::string, unsigned> SectionMap; 332 std::map<std::string, unsigned> GCMap; 333 unsigned MaxAlignment = 0; 334 unsigned MaxGlobalType = 0; 335 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 336 GV != E; ++GV) { 337 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 338 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 339 340 if (!GV->hasSection()) continue; 341 // Give section names unique ID's. 342 unsigned &Entry = SectionMap[GV->getSection()]; 343 if (Entry != 0) continue; 344 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 345 0/*TODO*/, Stream); 346 Entry = SectionMap.size(); 347 } 348 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 349 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 350 if (F->hasSection()) { 351 // Give section names unique ID's. 352 unsigned &Entry = SectionMap[F->getSection()]; 353 if (!Entry) { 354 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 355 0/*TODO*/, Stream); 356 Entry = SectionMap.size(); 357 } 358 } 359 if (F->hasGC()) { 360 // Same for GC names. 361 unsigned &Entry = GCMap[F->getGC()]; 362 if (!Entry) { 363 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 364 0/*TODO*/, Stream); 365 Entry = GCMap.size(); 366 } 367 } 368 } 369 370 // Emit abbrev for globals, now that we know # sections and max alignment. 371 unsigned SimpleGVarAbbrev = 0; 372 if (!M->global_empty()) { 373 // Add an abbrev for common globals with no visibility or thread localness. 374 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 375 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 377 Log2_32_Ceil(MaxGlobalType+1))); 378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 381 if (MaxAlignment == 0) // Alignment. 382 Abbv->Add(BitCodeAbbrevOp(0)); 383 else { 384 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 386 Log2_32_Ceil(MaxEncAlignment+1))); 387 } 388 if (SectionMap.empty()) // Section. 389 Abbv->Add(BitCodeAbbrevOp(0)); 390 else 391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 392 Log2_32_Ceil(SectionMap.size()+1))); 393 // Don't bother emitting vis + thread local. 394 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 395 } 396 397 // Emit the global variable information. 398 SmallVector<unsigned, 64> Vals; 399 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 400 GV != E; ++GV) { 401 unsigned AbbrevToUse = 0; 402 403 // GLOBALVAR: [type, isconst, initid, 404 // linkage, alignment, section, visibility, threadlocal] 405 Vals.push_back(VE.getTypeID(GV->getType())); 406 Vals.push_back(GV->isConstant()); 407 Vals.push_back(GV->isDeclaration() ? 0 : 408 (VE.getValueID(GV->getInitializer()) + 1)); 409 Vals.push_back(getEncodedLinkage(GV)); 410 Vals.push_back(Log2_32(GV->getAlignment())+1); 411 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 412 if (GV->isThreadLocal() || 413 GV->getVisibility() != GlobalValue::DefaultVisibility) { 414 Vals.push_back(getEncodedVisibility(GV)); 415 Vals.push_back(GV->isThreadLocal()); 416 } else { 417 AbbrevToUse = SimpleGVarAbbrev; 418 } 419 420 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 421 Vals.clear(); 422 } 423 424 // Emit the function proto information. 425 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 426 // FUNCTION: [type, callingconv, isproto, paramattr, 427 // linkage, alignment, section, visibility, gc] 428 Vals.push_back(VE.getTypeID(F->getType())); 429 Vals.push_back(F->getCallingConv()); 430 Vals.push_back(F->isDeclaration()); 431 Vals.push_back(getEncodedLinkage(F)); 432 Vals.push_back(VE.getAttributeID(F->getAttributes())); 433 Vals.push_back(Log2_32(F->getAlignment())+1); 434 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 435 Vals.push_back(getEncodedVisibility(F)); 436 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 437 438 unsigned AbbrevToUse = 0; 439 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 440 Vals.clear(); 441 } 442 443 444 // Emit the alias information. 445 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 446 AI != E; ++AI) { 447 Vals.push_back(VE.getTypeID(AI->getType())); 448 Vals.push_back(VE.getValueID(AI->getAliasee())); 449 Vals.push_back(getEncodedLinkage(AI)); 450 Vals.push_back(getEncodedVisibility(AI)); 451 unsigned AbbrevToUse = 0; 452 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 453 Vals.clear(); 454 } 455 } 456 457 static uint64_t GetOptimizationFlags(const Value *V) { 458 uint64_t Flags = 0; 459 460 if (const OverflowingBinaryOperator *OBO = 461 dyn_cast<OverflowingBinaryOperator>(V)) { 462 if (OBO->hasNoSignedWrap()) 463 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 464 if (OBO->hasNoUnsignedWrap()) 465 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 466 } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) { 467 if (Div->isExact()) 468 Flags |= 1 << bitc::SDIV_EXACT; 469 } 470 471 return Flags; 472 } 473 474 static void WriteMDNode(const MDNode *N, 475 const ValueEnumerator &VE, 476 BitstreamWriter &Stream, 477 SmallVector<uint64_t, 64> &Record) { 478 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 479 if (N->getOperand(i)) { 480 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 481 Record.push_back(VE.getValueID(N->getOperand(i))); 482 } else { 483 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 484 Record.push_back(0); 485 } 486 } 487 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE : 488 bitc::METADATA_NODE; 489 Stream.EmitRecord(MDCode, Record, 0); 490 Record.clear(); 491 } 492 493 static void WriteModuleMetadata(const ValueEnumerator &VE, 494 BitstreamWriter &Stream) { 495 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 496 bool StartedMetadataBlock = false; 497 unsigned MDSAbbrev = 0; 498 SmallVector<uint64_t, 64> Record; 499 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 500 501 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 502 if (!StartedMetadataBlock) { 503 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 504 StartedMetadataBlock = true; 505 } 506 WriteMDNode(N, VE, Stream, Record); 507 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 508 if (!StartedMetadataBlock) { 509 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 510 511 // Abbrev for METADATA_STRING. 512 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 513 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 516 MDSAbbrev = Stream.EmitAbbrev(Abbv); 517 StartedMetadataBlock = true; 518 } 519 520 // Code: [strchar x N] 521 Record.append(MDS->begin(), MDS->end()); 522 523 // Emit the finished record. 524 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 525 Record.clear(); 526 } else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(Vals[i].first)) { 527 if (!StartedMetadataBlock) { 528 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 529 StartedMetadataBlock = true; 530 } 531 532 // Write name. 533 StringRef Str = NMD->getName(); 534 for (unsigned i = 0, e = Str.size(); i != e; ++i) 535 Record.push_back(Str[i]); 536 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 537 Record.clear(); 538 539 // Write named metadata operands. 540 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 541 if (NMD->getOperand(i)) 542 Record.push_back(VE.getValueID(NMD->getOperand(i))); 543 else 544 Record.push_back(~0U); 545 } 546 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 547 Record.clear(); 548 } 549 } 550 551 if (StartedMetadataBlock) 552 Stream.ExitBlock(); 553 } 554 555 static void WriteMetadataAttachment(const Function &F, 556 const ValueEnumerator &VE, 557 BitstreamWriter &Stream) { 558 bool StartedMetadataBlock = false; 559 SmallVector<uint64_t, 64> Record; 560 561 // Write metadata attachments 562 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 563 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 564 565 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 566 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 567 I != E; ++I) { 568 MDs.clear(); 569 I->getAllMetadata(MDs); 570 571 // If no metadata, ignore instruction. 572 if (MDs.empty()) continue; 573 574 Record.push_back(VE.getInstructionID(I)); 575 576 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 577 Record.push_back(MDs[i].first); 578 Record.push_back(VE.getValueID(MDs[i].second)); 579 } 580 if (!StartedMetadataBlock) { 581 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 582 StartedMetadataBlock = true; 583 } 584 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 585 Record.clear(); 586 } 587 588 if (StartedMetadataBlock) 589 Stream.ExitBlock(); 590 } 591 592 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 593 SmallVector<uint64_t, 64> Record; 594 595 // Write metadata kinds 596 // METADATA_KIND - [n x [id, name]] 597 SmallVector<StringRef, 4> Names; 598 M->getMDKindNames(Names); 599 600 assert(Names[0] == "" && "MDKind #0 is invalid"); 601 if (Names.size() == 1) return; 602 603 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 604 605 for (unsigned MDKindID = 1, e = Names.size(); MDKindID != e; ++MDKindID) { 606 Record.push_back(MDKindID); 607 StringRef KName = Names[MDKindID]; 608 Record.append(KName.begin(), KName.end()); 609 610 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 611 Record.clear(); 612 } 613 614 Stream.ExitBlock(); 615 } 616 617 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 618 const ValueEnumerator &VE, 619 BitstreamWriter &Stream, bool isGlobal) { 620 if (FirstVal == LastVal) return; 621 622 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 623 624 unsigned AggregateAbbrev = 0; 625 unsigned String8Abbrev = 0; 626 unsigned CString7Abbrev = 0; 627 unsigned CString6Abbrev = 0; 628 // If this is a constant pool for the module, emit module-specific abbrevs. 629 if (isGlobal) { 630 // Abbrev for CST_CODE_AGGREGATE. 631 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 632 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 635 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 636 637 // Abbrev for CST_CODE_STRING. 638 Abbv = new BitCodeAbbrev(); 639 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 640 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 641 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 642 String8Abbrev = Stream.EmitAbbrev(Abbv); 643 // Abbrev for CST_CODE_CSTRING. 644 Abbv = new BitCodeAbbrev(); 645 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 646 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 648 CString7Abbrev = Stream.EmitAbbrev(Abbv); 649 // Abbrev for CST_CODE_CSTRING. 650 Abbv = new BitCodeAbbrev(); 651 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 652 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 653 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 654 CString6Abbrev = Stream.EmitAbbrev(Abbv); 655 } 656 657 SmallVector<uint64_t, 64> Record; 658 659 const ValueEnumerator::ValueList &Vals = VE.getValues(); 660 const Type *LastTy = 0; 661 for (unsigned i = FirstVal; i != LastVal; ++i) { 662 const Value *V = Vals[i].first; 663 // If we need to switch types, do so now. 664 if (V->getType() != LastTy) { 665 LastTy = V->getType(); 666 Record.push_back(VE.getTypeID(LastTy)); 667 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 668 CONSTANTS_SETTYPE_ABBREV); 669 Record.clear(); 670 } 671 672 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 673 Record.push_back(unsigned(IA->hasSideEffects()) | 674 unsigned(IA->isAlignStack()) << 1); 675 676 // Add the asm string. 677 const std::string &AsmStr = IA->getAsmString(); 678 Record.push_back(AsmStr.size()); 679 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 680 Record.push_back(AsmStr[i]); 681 682 // Add the constraint string. 683 const std::string &ConstraintStr = IA->getConstraintString(); 684 Record.push_back(ConstraintStr.size()); 685 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 686 Record.push_back(ConstraintStr[i]); 687 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 688 Record.clear(); 689 continue; 690 } 691 const Constant *C = cast<Constant>(V); 692 unsigned Code = -1U; 693 unsigned AbbrevToUse = 0; 694 if (C->isNullValue()) { 695 Code = bitc::CST_CODE_NULL; 696 } else if (isa<UndefValue>(C)) { 697 Code = bitc::CST_CODE_UNDEF; 698 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 699 if (IV->getBitWidth() <= 64) { 700 int64_t V = IV->getSExtValue(); 701 if (V >= 0) 702 Record.push_back(V << 1); 703 else 704 Record.push_back((-V << 1) | 1); 705 Code = bitc::CST_CODE_INTEGER; 706 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 707 } else { // Wide integers, > 64 bits in size. 708 // We have an arbitrary precision integer value to write whose 709 // bit width is > 64. However, in canonical unsigned integer 710 // format it is likely that the high bits are going to be zero. 711 // So, we only write the number of active words. 712 unsigned NWords = IV->getValue().getActiveWords(); 713 const uint64_t *RawWords = IV->getValue().getRawData(); 714 for (unsigned i = 0; i != NWords; ++i) { 715 int64_t V = RawWords[i]; 716 if (V >= 0) 717 Record.push_back(V << 1); 718 else 719 Record.push_back((-V << 1) | 1); 720 } 721 Code = bitc::CST_CODE_WIDE_INTEGER; 722 } 723 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 724 Code = bitc::CST_CODE_FLOAT; 725 const Type *Ty = CFP->getType(); 726 if (Ty->isFloatTy() || Ty->isDoubleTy()) { 727 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 728 } else if (Ty->isX86_FP80Ty()) { 729 // api needed to prevent premature destruction 730 // bits are not in the same order as a normal i80 APInt, compensate. 731 APInt api = CFP->getValueAPF().bitcastToAPInt(); 732 const uint64_t *p = api.getRawData(); 733 Record.push_back((p[1] << 48) | (p[0] >> 16)); 734 Record.push_back(p[0] & 0xffffLL); 735 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 736 APInt api = CFP->getValueAPF().bitcastToAPInt(); 737 const uint64_t *p = api.getRawData(); 738 Record.push_back(p[0]); 739 Record.push_back(p[1]); 740 } else { 741 assert (0 && "Unknown FP type!"); 742 } 743 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 744 const ConstantArray *CA = cast<ConstantArray>(C); 745 // Emit constant strings specially. 746 unsigned NumOps = CA->getNumOperands(); 747 // If this is a null-terminated string, use the denser CSTRING encoding. 748 if (CA->getOperand(NumOps-1)->isNullValue()) { 749 Code = bitc::CST_CODE_CSTRING; 750 --NumOps; // Don't encode the null, which isn't allowed by char6. 751 } else { 752 Code = bitc::CST_CODE_STRING; 753 AbbrevToUse = String8Abbrev; 754 } 755 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 756 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 757 for (unsigned i = 0; i != NumOps; ++i) { 758 unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue(); 759 Record.push_back(V); 760 isCStr7 &= (V & 128) == 0; 761 if (isCStrChar6) 762 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 763 } 764 765 if (isCStrChar6) 766 AbbrevToUse = CString6Abbrev; 767 else if (isCStr7) 768 AbbrevToUse = CString7Abbrev; 769 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 770 isa<ConstantVector>(V)) { 771 Code = bitc::CST_CODE_AGGREGATE; 772 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 773 Record.push_back(VE.getValueID(C->getOperand(i))); 774 AbbrevToUse = AggregateAbbrev; 775 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 776 switch (CE->getOpcode()) { 777 default: 778 if (Instruction::isCast(CE->getOpcode())) { 779 Code = bitc::CST_CODE_CE_CAST; 780 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 781 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 782 Record.push_back(VE.getValueID(C->getOperand(0))); 783 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 784 } else { 785 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 786 Code = bitc::CST_CODE_CE_BINOP; 787 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 788 Record.push_back(VE.getValueID(C->getOperand(0))); 789 Record.push_back(VE.getValueID(C->getOperand(1))); 790 uint64_t Flags = GetOptimizationFlags(CE); 791 if (Flags != 0) 792 Record.push_back(Flags); 793 } 794 break; 795 case Instruction::GetElementPtr: 796 Code = bitc::CST_CODE_CE_GEP; 797 if (cast<GEPOperator>(C)->isInBounds()) 798 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 799 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 800 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 801 Record.push_back(VE.getValueID(C->getOperand(i))); 802 } 803 break; 804 case Instruction::Select: 805 Code = bitc::CST_CODE_CE_SELECT; 806 Record.push_back(VE.getValueID(C->getOperand(0))); 807 Record.push_back(VE.getValueID(C->getOperand(1))); 808 Record.push_back(VE.getValueID(C->getOperand(2))); 809 break; 810 case Instruction::ExtractElement: 811 Code = bitc::CST_CODE_CE_EXTRACTELT; 812 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 813 Record.push_back(VE.getValueID(C->getOperand(0))); 814 Record.push_back(VE.getValueID(C->getOperand(1))); 815 break; 816 case Instruction::InsertElement: 817 Code = bitc::CST_CODE_CE_INSERTELT; 818 Record.push_back(VE.getValueID(C->getOperand(0))); 819 Record.push_back(VE.getValueID(C->getOperand(1))); 820 Record.push_back(VE.getValueID(C->getOperand(2))); 821 break; 822 case Instruction::ShuffleVector: 823 // If the return type and argument types are the same, this is a 824 // standard shufflevector instruction. If the types are different, 825 // then the shuffle is widening or truncating the input vectors, and 826 // the argument type must also be encoded. 827 if (C->getType() == C->getOperand(0)->getType()) { 828 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 829 } else { 830 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 831 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 832 } 833 Record.push_back(VE.getValueID(C->getOperand(0))); 834 Record.push_back(VE.getValueID(C->getOperand(1))); 835 Record.push_back(VE.getValueID(C->getOperand(2))); 836 break; 837 case Instruction::ICmp: 838 case Instruction::FCmp: 839 Code = bitc::CST_CODE_CE_CMP; 840 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 841 Record.push_back(VE.getValueID(C->getOperand(0))); 842 Record.push_back(VE.getValueID(C->getOperand(1))); 843 Record.push_back(CE->getPredicate()); 844 break; 845 } 846 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 847 assert(BA->getFunction() == BA->getBasicBlock()->getParent() && 848 "Malformed blockaddress"); 849 Code = bitc::CST_CODE_BLOCKADDRESS; 850 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 851 Record.push_back(VE.getValueID(BA->getFunction())); 852 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 853 } else { 854 llvm_unreachable("Unknown constant!"); 855 } 856 Stream.EmitRecord(Code, Record, AbbrevToUse); 857 Record.clear(); 858 } 859 860 Stream.ExitBlock(); 861 } 862 863 static void WriteModuleConstants(const ValueEnumerator &VE, 864 BitstreamWriter &Stream) { 865 const ValueEnumerator::ValueList &Vals = VE.getValues(); 866 867 // Find the first constant to emit, which is the first non-globalvalue value. 868 // We know globalvalues have been emitted by WriteModuleInfo. 869 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 870 if (!isa<GlobalValue>(Vals[i].first)) { 871 WriteConstants(i, Vals.size(), VE, Stream, true); 872 return; 873 } 874 } 875 } 876 877 /// PushValueAndType - The file has to encode both the value and type id for 878 /// many values, because we need to know what type to create for forward 879 /// references. However, most operands are not forward references, so this type 880 /// field is not needed. 881 /// 882 /// This function adds V's value ID to Vals. If the value ID is higher than the 883 /// instruction ID, then it is a forward reference, and it also includes the 884 /// type ID. 885 static bool PushValueAndType(const Value *V, unsigned InstID, 886 SmallVector<unsigned, 64> &Vals, 887 ValueEnumerator &VE) { 888 unsigned ValID = VE.getValueID(V); 889 Vals.push_back(ValID); 890 if (ValID >= InstID) { 891 Vals.push_back(VE.getTypeID(V->getType())); 892 return true; 893 } 894 return false; 895 } 896 897 /// WriteInstruction - Emit an instruction to the specified stream. 898 static void WriteInstruction(const Instruction &I, unsigned InstID, 899 ValueEnumerator &VE, BitstreamWriter &Stream, 900 SmallVector<unsigned, 64> &Vals) { 901 unsigned Code = 0; 902 unsigned AbbrevToUse = 0; 903 VE.setInstructionID(&I); 904 switch (I.getOpcode()) { 905 default: 906 if (Instruction::isCast(I.getOpcode())) { 907 Code = bitc::FUNC_CODE_INST_CAST; 908 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 909 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 910 Vals.push_back(VE.getTypeID(I.getType())); 911 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 912 } else { 913 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 914 Code = bitc::FUNC_CODE_INST_BINOP; 915 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 916 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 917 Vals.push_back(VE.getValueID(I.getOperand(1))); 918 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 919 uint64_t Flags = GetOptimizationFlags(&I); 920 if (Flags != 0) { 921 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 922 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 923 Vals.push_back(Flags); 924 } 925 } 926 break; 927 928 case Instruction::GetElementPtr: 929 Code = bitc::FUNC_CODE_INST_GEP; 930 if (cast<GEPOperator>(&I)->isInBounds()) 931 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 932 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 933 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 934 break; 935 case Instruction::ExtractValue: { 936 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 937 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 938 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 939 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 940 Vals.push_back(*i); 941 break; 942 } 943 case Instruction::InsertValue: { 944 Code = bitc::FUNC_CODE_INST_INSERTVAL; 945 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 946 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 947 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 948 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 949 Vals.push_back(*i); 950 break; 951 } 952 case Instruction::Select: 953 Code = bitc::FUNC_CODE_INST_VSELECT; 954 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 955 Vals.push_back(VE.getValueID(I.getOperand(2))); 956 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 957 break; 958 case Instruction::ExtractElement: 959 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 960 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 961 Vals.push_back(VE.getValueID(I.getOperand(1))); 962 break; 963 case Instruction::InsertElement: 964 Code = bitc::FUNC_CODE_INST_INSERTELT; 965 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 966 Vals.push_back(VE.getValueID(I.getOperand(1))); 967 Vals.push_back(VE.getValueID(I.getOperand(2))); 968 break; 969 case Instruction::ShuffleVector: 970 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 971 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 972 Vals.push_back(VE.getValueID(I.getOperand(1))); 973 Vals.push_back(VE.getValueID(I.getOperand(2))); 974 break; 975 case Instruction::ICmp: 976 case Instruction::FCmp: 977 // compare returning Int1Ty or vector of Int1Ty 978 Code = bitc::FUNC_CODE_INST_CMP2; 979 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 980 Vals.push_back(VE.getValueID(I.getOperand(1))); 981 Vals.push_back(cast<CmpInst>(I).getPredicate()); 982 break; 983 984 case Instruction::Ret: 985 { 986 Code = bitc::FUNC_CODE_INST_RET; 987 unsigned NumOperands = I.getNumOperands(); 988 if (NumOperands == 0) 989 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 990 else if (NumOperands == 1) { 991 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 992 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 993 } else { 994 for (unsigned i = 0, e = NumOperands; i != e; ++i) 995 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 996 } 997 } 998 break; 999 case Instruction::Br: 1000 { 1001 Code = bitc::FUNC_CODE_INST_BR; 1002 BranchInst &II = cast<BranchInst>(I); 1003 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1004 if (II.isConditional()) { 1005 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1006 Vals.push_back(VE.getValueID(II.getCondition())); 1007 } 1008 } 1009 break; 1010 case Instruction::Switch: 1011 Code = bitc::FUNC_CODE_INST_SWITCH; 1012 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1013 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1014 Vals.push_back(VE.getValueID(I.getOperand(i))); 1015 break; 1016 case Instruction::IndirectBr: 1017 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1018 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1019 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1020 Vals.push_back(VE.getValueID(I.getOperand(i))); 1021 break; 1022 1023 case Instruction::Invoke: { 1024 const InvokeInst *II = cast<InvokeInst>(&I); 1025 const Value *Callee(II->getCalledValue()); 1026 const PointerType *PTy = cast<PointerType>(Callee->getType()); 1027 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1028 Code = bitc::FUNC_CODE_INST_INVOKE; 1029 1030 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1031 Vals.push_back(II->getCallingConv()); 1032 Vals.push_back(VE.getValueID(II->getNormalDest())); 1033 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1034 PushValueAndType(Callee, InstID, Vals, VE); 1035 1036 // Emit value #'s for the fixed parameters. 1037 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1038 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 1039 1040 // Emit type/value pairs for varargs params. 1041 if (FTy->isVarArg()) { 1042 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); 1043 i != e; ++i) 1044 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1045 } 1046 break; 1047 } 1048 case Instruction::Unwind: 1049 Code = bitc::FUNC_CODE_INST_UNWIND; 1050 break; 1051 case Instruction::Unreachable: 1052 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1053 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1054 break; 1055 1056 case Instruction::PHI: 1057 Code = bitc::FUNC_CODE_INST_PHI; 1058 Vals.push_back(VE.getTypeID(I.getType())); 1059 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1060 Vals.push_back(VE.getValueID(I.getOperand(i))); 1061 break; 1062 1063 case Instruction::Alloca: 1064 Code = bitc::FUNC_CODE_INST_ALLOCA; 1065 Vals.push_back(VE.getTypeID(I.getType())); 1066 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1067 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1068 break; 1069 1070 case Instruction::Load: 1071 Code = bitc::FUNC_CODE_INST_LOAD; 1072 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1073 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1074 1075 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1076 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1077 break; 1078 case Instruction::Store: 1079 Code = bitc::FUNC_CODE_INST_STORE2; 1080 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1081 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 1082 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1083 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1084 break; 1085 case Instruction::Call: { 1086 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 1087 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1088 1089 Code = bitc::FUNC_CODE_INST_CALL; 1090 1091 const CallInst *CI = cast<CallInst>(&I); 1092 Vals.push_back(VE.getAttributeID(CI->getAttributes())); 1093 Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall())); 1094 PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee 1095 1096 // Emit value #'s for the fixed parameters. 1097 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1098 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 1099 1100 // Emit type/value pairs for varargs params. 1101 if (FTy->isVarArg()) { 1102 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 1103 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 1104 i != e; ++i) 1105 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs 1106 } 1107 break; 1108 } 1109 case Instruction::VAArg: 1110 Code = bitc::FUNC_CODE_INST_VAARG; 1111 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1112 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 1113 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1114 break; 1115 } 1116 1117 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1118 Vals.clear(); 1119 } 1120 1121 // Emit names for globals/functions etc. 1122 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1123 const ValueEnumerator &VE, 1124 BitstreamWriter &Stream) { 1125 if (VST.empty()) return; 1126 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1127 1128 // FIXME: Set up the abbrev, we know how many values there are! 1129 // FIXME: We know if the type names can use 7-bit ascii. 1130 SmallVector<unsigned, 64> NameVals; 1131 1132 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1133 SI != SE; ++SI) { 1134 1135 const ValueName &Name = *SI; 1136 1137 // Figure out the encoding to use for the name. 1138 bool is7Bit = true; 1139 bool isChar6 = true; 1140 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1141 C != E; ++C) { 1142 if (isChar6) 1143 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1144 if ((unsigned char)*C & 128) { 1145 is7Bit = false; 1146 break; // don't bother scanning the rest. 1147 } 1148 } 1149 1150 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1151 1152 // VST_ENTRY: [valueid, namechar x N] 1153 // VST_BBENTRY: [bbid, namechar x N] 1154 unsigned Code; 1155 if (isa<BasicBlock>(SI->getValue())) { 1156 Code = bitc::VST_CODE_BBENTRY; 1157 if (isChar6) 1158 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1159 } else { 1160 Code = bitc::VST_CODE_ENTRY; 1161 if (isChar6) 1162 AbbrevToUse = VST_ENTRY_6_ABBREV; 1163 else if (is7Bit) 1164 AbbrevToUse = VST_ENTRY_7_ABBREV; 1165 } 1166 1167 NameVals.push_back(VE.getValueID(SI->getValue())); 1168 for (const char *P = Name.getKeyData(), 1169 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1170 NameVals.push_back((unsigned char)*P); 1171 1172 // Emit the finished record. 1173 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1174 NameVals.clear(); 1175 } 1176 Stream.ExitBlock(); 1177 } 1178 1179 /// WriteFunction - Emit a function body to the module stream. 1180 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1181 BitstreamWriter &Stream) { 1182 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1183 VE.incorporateFunction(F); 1184 1185 SmallVector<unsigned, 64> Vals; 1186 1187 // Emit the number of basic blocks, so the reader can create them ahead of 1188 // time. 1189 Vals.push_back(VE.getBasicBlocks().size()); 1190 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1191 Vals.clear(); 1192 1193 // If there are function-local constants, emit them now. 1194 unsigned CstStart, CstEnd; 1195 VE.getFunctionConstantRange(CstStart, CstEnd); 1196 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1197 1198 // Keep a running idea of what the instruction ID is. 1199 unsigned InstID = CstEnd; 1200 1201 // Finally, emit all the instructions, in order. 1202 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1203 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1204 I != E; ++I) { 1205 WriteInstruction(*I, InstID, VE, Stream, Vals); 1206 if (!I->getType()->isVoidTy()) 1207 ++InstID; 1208 } 1209 1210 // Emit names for all the instructions etc. 1211 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1212 1213 WriteMetadataAttachment(F, VE, Stream); 1214 VE.purgeFunction(); 1215 Stream.ExitBlock(); 1216 } 1217 1218 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 1219 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 1220 const ValueEnumerator &VE, 1221 BitstreamWriter &Stream) { 1222 if (TST.empty()) return; 1223 1224 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 1225 1226 // 7-bit fixed width VST_CODE_ENTRY strings. 1227 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1228 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1230 Log2_32_Ceil(VE.getTypes().size()+1))); 1231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1233 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 1234 1235 SmallVector<unsigned, 64> NameVals; 1236 1237 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 1238 TI != TE; ++TI) { 1239 // TST_ENTRY: [typeid, namechar x N] 1240 NameVals.push_back(VE.getTypeID(TI->second)); 1241 1242 const std::string &Str = TI->first; 1243 bool is7Bit = true; 1244 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 1245 NameVals.push_back((unsigned char)Str[i]); 1246 if (Str[i] & 128) 1247 is7Bit = false; 1248 } 1249 1250 // Emit the finished record. 1251 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1252 NameVals.clear(); 1253 } 1254 1255 Stream.ExitBlock(); 1256 } 1257 1258 // Emit blockinfo, which defines the standard abbreviations etc. 1259 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1260 // We only want to emit block info records for blocks that have multiple 1261 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1262 // blocks can defined their abbrevs inline. 1263 Stream.EnterBlockInfoBlock(2); 1264 1265 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1266 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1267 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1268 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1270 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1271 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1272 Abbv) != VST_ENTRY_8_ABBREV) 1273 llvm_unreachable("Unexpected abbrev ordering!"); 1274 } 1275 1276 { // 7-bit fixed width VST_ENTRY strings. 1277 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1278 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1279 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1282 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1283 Abbv) != VST_ENTRY_7_ABBREV) 1284 llvm_unreachable("Unexpected abbrev ordering!"); 1285 } 1286 { // 6-bit char6 VST_ENTRY strings. 1287 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1288 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1291 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1292 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1293 Abbv) != VST_ENTRY_6_ABBREV) 1294 llvm_unreachable("Unexpected abbrev ordering!"); 1295 } 1296 { // 6-bit char6 VST_BBENTRY strings. 1297 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1298 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1302 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1303 Abbv) != VST_BBENTRY_6_ABBREV) 1304 llvm_unreachable("Unexpected abbrev ordering!"); 1305 } 1306 1307 1308 1309 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1310 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1311 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1313 Log2_32_Ceil(VE.getTypes().size()+1))); 1314 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1315 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1316 llvm_unreachable("Unexpected abbrev ordering!"); 1317 } 1318 1319 { // INTEGER abbrev for CONSTANTS_BLOCK. 1320 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1321 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1323 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1324 Abbv) != CONSTANTS_INTEGER_ABBREV) 1325 llvm_unreachable("Unexpected abbrev ordering!"); 1326 } 1327 1328 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1329 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1330 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1333 Log2_32_Ceil(VE.getTypes().size()+1))); 1334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1335 1336 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1337 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1338 llvm_unreachable("Unexpected abbrev ordering!"); 1339 } 1340 { // NULL abbrev for CONSTANTS_BLOCK. 1341 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1342 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1343 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1344 Abbv) != CONSTANTS_NULL_Abbrev) 1345 llvm_unreachable("Unexpected abbrev ordering!"); 1346 } 1347 1348 // FIXME: This should only use space for first class types! 1349 1350 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1351 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1352 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1356 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1357 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1358 llvm_unreachable("Unexpected abbrev ordering!"); 1359 } 1360 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1361 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1362 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1366 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1367 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1368 llvm_unreachable("Unexpected abbrev ordering!"); 1369 } 1370 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1371 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1372 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1377 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1378 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1379 llvm_unreachable("Unexpected abbrev ordering!"); 1380 } 1381 { // INST_CAST abbrev for FUNCTION_BLOCK. 1382 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1383 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1386 Log2_32_Ceil(VE.getTypes().size()+1))); 1387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1388 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1389 Abbv) != FUNCTION_INST_CAST_ABBREV) 1390 llvm_unreachable("Unexpected abbrev ordering!"); 1391 } 1392 1393 { // INST_RET abbrev for FUNCTION_BLOCK. 1394 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1395 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1396 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1397 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1398 llvm_unreachable("Unexpected abbrev ordering!"); 1399 } 1400 { // INST_RET abbrev for FUNCTION_BLOCK. 1401 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1402 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1404 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1405 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1406 llvm_unreachable("Unexpected abbrev ordering!"); 1407 } 1408 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1409 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1410 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1411 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1412 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1413 llvm_unreachable("Unexpected abbrev ordering!"); 1414 } 1415 1416 Stream.ExitBlock(); 1417 } 1418 1419 1420 /// WriteModule - Emit the specified module to the bitstream. 1421 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1422 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1423 1424 // Emit the version number if it is non-zero. 1425 if (CurVersion) { 1426 SmallVector<unsigned, 1> Vals; 1427 Vals.push_back(CurVersion); 1428 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1429 } 1430 1431 // Analyze the module, enumerating globals, functions, etc. 1432 ValueEnumerator VE(M); 1433 1434 // Emit blockinfo, which defines the standard abbreviations etc. 1435 WriteBlockInfo(VE, Stream); 1436 1437 // Emit information about parameter attributes. 1438 WriteAttributeTable(VE, Stream); 1439 1440 // Emit information describing all of the types in the module. 1441 WriteTypeTable(VE, Stream); 1442 1443 // Emit top-level description of module, including target triple, inline asm, 1444 // descriptors for global variables, and function prototype info. 1445 WriteModuleInfo(M, VE, Stream); 1446 1447 // Emit constants. 1448 WriteModuleConstants(VE, Stream); 1449 1450 // Emit metadata. 1451 WriteModuleMetadata(VE, Stream); 1452 1453 // Emit function bodies. 1454 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1455 if (!I->isDeclaration()) 1456 WriteFunction(*I, VE, Stream); 1457 1458 // Emit metadata. 1459 WriteModuleMetadataStore(M, Stream); 1460 1461 // Emit the type symbol table information. 1462 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1463 1464 // Emit names for globals/functions etc. 1465 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1466 1467 Stream.ExitBlock(); 1468 } 1469 1470 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1471 /// header and trailer to make it compatible with the system archiver. To do 1472 /// this we emit the following header, and then emit a trailer that pads the 1473 /// file out to be a multiple of 16 bytes. 1474 /// 1475 /// struct bc_header { 1476 /// uint32_t Magic; // 0x0B17C0DE 1477 /// uint32_t Version; // Version, currently always 0. 1478 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1479 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1480 /// uint32_t CPUType; // CPU specifier. 1481 /// ... potentially more later ... 1482 /// }; 1483 enum { 1484 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1485 DarwinBCHeaderSize = 5*4 1486 }; 1487 1488 static void EmitDarwinBCHeader(BitstreamWriter &Stream, 1489 const std::string &TT) { 1490 unsigned CPUType = ~0U; 1491 1492 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*. The CPUType is a 1493 // magic number from /usr/include/mach/machine.h. It is ok to reproduce the 1494 // specific constants here because they are implicitly part of the Darwin ABI. 1495 enum { 1496 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1497 DARWIN_CPU_TYPE_X86 = 7, 1498 DARWIN_CPU_TYPE_POWERPC = 18 1499 }; 1500 1501 if (TT.find("x86_64-") == 0) 1502 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1503 else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' && 1504 TT[4] == '-' && TT[1] - '3' < 6) 1505 CPUType = DARWIN_CPU_TYPE_X86; 1506 else if (TT.find("powerpc-") == 0) 1507 CPUType = DARWIN_CPU_TYPE_POWERPC; 1508 else if (TT.find("powerpc64-") == 0) 1509 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1510 1511 // Traditional Bitcode starts after header. 1512 unsigned BCOffset = DarwinBCHeaderSize; 1513 1514 Stream.Emit(0x0B17C0DE, 32); 1515 Stream.Emit(0 , 32); // Version. 1516 Stream.Emit(BCOffset , 32); 1517 Stream.Emit(0 , 32); // Filled in later. 1518 Stream.Emit(CPUType , 32); 1519 } 1520 1521 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and 1522 /// finalize the header. 1523 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { 1524 // Update the size field in the header. 1525 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); 1526 1527 // If the file is not a multiple of 16 bytes, insert dummy padding. 1528 while (BufferSize & 15) { 1529 Stream.Emit(0, 8); 1530 ++BufferSize; 1531 } 1532 } 1533 1534 1535 /// WriteBitcodeToFile - Write the specified module to the specified output 1536 /// stream. 1537 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1538 std::vector<unsigned char> Buffer; 1539 BitstreamWriter Stream(Buffer); 1540 1541 Buffer.reserve(256*1024); 1542 1543 WriteBitcodeToStream( M, Stream ); 1544 1545 // If writing to stdout, set binary mode. 1546 if (&llvm::outs() == &Out) 1547 sys::Program::ChangeStdoutToBinary(); 1548 1549 // Write the generated bitstream to "Out". 1550 Out.write((char*)&Buffer.front(), Buffer.size()); 1551 1552 // Make sure it hits disk now. 1553 Out.flush(); 1554 } 1555 1556 /// WriteBitcodeToStream - Write the specified module to the specified output 1557 /// stream. 1558 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) { 1559 // If this is darwin, emit a file header and trailer if needed. 1560 bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos; 1561 if (isDarwin) 1562 EmitDarwinBCHeader(Stream, M->getTargetTriple()); 1563 1564 // Emit the file header. 1565 Stream.Emit((unsigned)'B', 8); 1566 Stream.Emit((unsigned)'C', 8); 1567 Stream.Emit(0x0, 4); 1568 Stream.Emit(0xC, 4); 1569 Stream.Emit(0xE, 4); 1570 Stream.Emit(0xD, 4); 1571 1572 // Emit the module. 1573 WriteModule(M, Stream); 1574 1575 if (isDarwin) 1576 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size()); 1577 } 1578