xref: /llvm-project/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp (revision b8fd152d9400a7a6573e04e4b38e7d458a7d2253)
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/Operator.h"
24 #include "llvm/TypeSymbolTable.h"
25 #include "llvm/ValueSymbolTable.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/System/Program.h"
30 using namespace llvm;
31 
32 /// These are manifest constants used by the bitcode writer. They do not need to
33 /// be kept in sync with the reader, but need to be consistent within this file.
34 enum {
35   CurVersion = 0,
36 
37   // VALUE_SYMTAB_BLOCK abbrev id's.
38   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
39   VST_ENTRY_7_ABBREV,
40   VST_ENTRY_6_ABBREV,
41   VST_BBENTRY_6_ABBREV,
42 
43   // CONSTANTS_BLOCK abbrev id's.
44   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
45   CONSTANTS_INTEGER_ABBREV,
46   CONSTANTS_CE_CAST_Abbrev,
47   CONSTANTS_NULL_Abbrev,
48 
49   // FUNCTION_BLOCK abbrev id's.
50   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
51   FUNCTION_INST_BINOP_ABBREV,
52   FUNCTION_INST_BINOP_FLAGS_ABBREV,
53   FUNCTION_INST_CAST_ABBREV,
54   FUNCTION_INST_RET_VOID_ABBREV,
55   FUNCTION_INST_RET_VAL_ABBREV,
56   FUNCTION_INST_UNREACHABLE_ABBREV
57 };
58 
59 
60 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
61   switch (Opcode) {
62   default: llvm_unreachable("Unknown cast instruction!");
63   case Instruction::Trunc   : return bitc::CAST_TRUNC;
64   case Instruction::ZExt    : return bitc::CAST_ZEXT;
65   case Instruction::SExt    : return bitc::CAST_SEXT;
66   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
67   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
68   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
69   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
70   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
71   case Instruction::FPExt   : return bitc::CAST_FPEXT;
72   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
73   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
74   case Instruction::BitCast : return bitc::CAST_BITCAST;
75   }
76 }
77 
78 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
79   switch (Opcode) {
80   default: llvm_unreachable("Unknown binary instruction!");
81   case Instruction::Add:
82   case Instruction::FAdd: return bitc::BINOP_ADD;
83   case Instruction::Sub:
84   case Instruction::FSub: return bitc::BINOP_SUB;
85   case Instruction::Mul:
86   case Instruction::FMul: return bitc::BINOP_MUL;
87   case Instruction::UDiv: return bitc::BINOP_UDIV;
88   case Instruction::FDiv:
89   case Instruction::SDiv: return bitc::BINOP_SDIV;
90   case Instruction::URem: return bitc::BINOP_UREM;
91   case Instruction::FRem:
92   case Instruction::SRem: return bitc::BINOP_SREM;
93   case Instruction::Shl:  return bitc::BINOP_SHL;
94   case Instruction::LShr: return bitc::BINOP_LSHR;
95   case Instruction::AShr: return bitc::BINOP_ASHR;
96   case Instruction::And:  return bitc::BINOP_AND;
97   case Instruction::Or:   return bitc::BINOP_OR;
98   case Instruction::Xor:  return bitc::BINOP_XOR;
99   }
100 }
101 
102 
103 
104 static void WriteStringRecord(unsigned Code, const std::string &Str,
105                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
106   SmallVector<unsigned, 64> Vals;
107 
108   // Code: [strchar x N]
109   for (unsigned i = 0, e = Str.size(); i != e; ++i)
110     Vals.push_back(Str[i]);
111 
112   // Emit the finished record.
113   Stream.EmitRecord(Code, Vals, AbbrevToUse);
114 }
115 
116 // Emit information about parameter attributes.
117 static void WriteAttributeTable(const ValueEnumerator &VE,
118                                 BitstreamWriter &Stream) {
119   const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
120   if (Attrs.empty()) return;
121 
122   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
123 
124   SmallVector<uint64_t, 64> Record;
125   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
126     const AttrListPtr &A = Attrs[i];
127     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
128       const AttributeWithIndex &PAWI = A.getSlot(i);
129       Record.push_back(PAWI.Index);
130 
131       // FIXME: remove in LLVM 3.0
132       // Store the alignment in the bitcode as a 16-bit raw value instead of a
133       // 5-bit log2 encoded value. Shift the bits above the alignment up by
134       // 11 bits.
135       uint64_t FauxAttr = PAWI.Attrs & 0xffff;
136       if (PAWI.Attrs & Attribute::Alignment)
137         FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
138       FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
139 
140       Record.push_back(FauxAttr);
141     }
142 
143     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
144     Record.clear();
145   }
146 
147   Stream.ExitBlock();
148 }
149 
150 /// WriteTypeTable - Write out the type table for a module.
151 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
152   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
153 
154   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
155   SmallVector<uint64_t, 64> TypeVals;
156 
157   // Abbrev for TYPE_CODE_POINTER.
158   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
159   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
160   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
161                             Log2_32_Ceil(VE.getTypes().size()+1)));
162   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
163   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
164 
165   // Abbrev for TYPE_CODE_FUNCTION.
166   Abbv = new BitCodeAbbrev();
167   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
168   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
169   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
170   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
171   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
172                             Log2_32_Ceil(VE.getTypes().size()+1)));
173   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
174 
175   // Abbrev for TYPE_CODE_STRUCT.
176   Abbv = new BitCodeAbbrev();
177   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
178   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
179   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
180   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
181                             Log2_32_Ceil(VE.getTypes().size()+1)));
182   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
183 
184   // Abbrev for TYPE_CODE_ARRAY.
185   Abbv = new BitCodeAbbrev();
186   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
187   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
188   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
189                             Log2_32_Ceil(VE.getTypes().size()+1)));
190   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
191 
192   // Emit an entry count so the reader can reserve space.
193   TypeVals.push_back(TypeList.size());
194   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
195   TypeVals.clear();
196 
197   // Loop over all of the types, emitting each in turn.
198   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
199     const Type *T = TypeList[i].first;
200     int AbbrevToUse = 0;
201     unsigned Code = 0;
202 
203     switch (T->getTypeID()) {
204     default: llvm_unreachable("Unknown type!");
205     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
206     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
207     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
208     case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
209     case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
210     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
211     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
212     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
213     case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
214     case Type::IntegerTyID:
215       // INTEGER: [width]
216       Code = bitc::TYPE_CODE_INTEGER;
217       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
218       break;
219     case Type::PointerTyID: {
220       const PointerType *PTy = cast<PointerType>(T);
221       // POINTER: [pointee type, address space]
222       Code = bitc::TYPE_CODE_POINTER;
223       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
224       unsigned AddressSpace = PTy->getAddressSpace();
225       TypeVals.push_back(AddressSpace);
226       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
227       break;
228     }
229     case Type::FunctionTyID: {
230       const FunctionType *FT = cast<FunctionType>(T);
231       // FUNCTION: [isvararg, attrid, retty, paramty x N]
232       Code = bitc::TYPE_CODE_FUNCTION;
233       TypeVals.push_back(FT->isVarArg());
234       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
235       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
236       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
237         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
238       AbbrevToUse = FunctionAbbrev;
239       break;
240     }
241     case Type::StructTyID: {
242       const StructType *ST = cast<StructType>(T);
243       // STRUCT: [ispacked, eltty x N]
244       Code = bitc::TYPE_CODE_STRUCT;
245       TypeVals.push_back(ST->isPacked());
246       // Output all of the element types.
247       for (StructType::element_iterator I = ST->element_begin(),
248            E = ST->element_end(); I != E; ++I)
249         TypeVals.push_back(VE.getTypeID(*I));
250       AbbrevToUse = StructAbbrev;
251       break;
252     }
253     case Type::ArrayTyID: {
254       const ArrayType *AT = cast<ArrayType>(T);
255       // ARRAY: [numelts, eltty]
256       Code = bitc::TYPE_CODE_ARRAY;
257       TypeVals.push_back(AT->getNumElements());
258       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
259       AbbrevToUse = ArrayAbbrev;
260       break;
261     }
262     case Type::VectorTyID: {
263       const VectorType *VT = cast<VectorType>(T);
264       // VECTOR [numelts, eltty]
265       Code = bitc::TYPE_CODE_VECTOR;
266       TypeVals.push_back(VT->getNumElements());
267       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
268       break;
269     }
270     }
271 
272     // Emit the finished record.
273     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
274     TypeVals.clear();
275   }
276 
277   Stream.ExitBlock();
278 }
279 
280 static unsigned getEncodedLinkage(const GlobalValue *GV) {
281   switch (GV->getLinkage()) {
282   default: llvm_unreachable("Invalid linkage!");
283   case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
284   case GlobalValue::ExternalLinkage:            return 0;
285   case GlobalValue::WeakAnyLinkage:             return 1;
286   case GlobalValue::AppendingLinkage:           return 2;
287   case GlobalValue::InternalLinkage:            return 3;
288   case GlobalValue::LinkOnceAnyLinkage:         return 4;
289   case GlobalValue::DLLImportLinkage:           return 5;
290   case GlobalValue::DLLExportLinkage:           return 6;
291   case GlobalValue::ExternalWeakLinkage:        return 7;
292   case GlobalValue::CommonLinkage:              return 8;
293   case GlobalValue::PrivateLinkage:             return 9;
294   case GlobalValue::WeakODRLinkage:             return 10;
295   case GlobalValue::LinkOnceODRLinkage:         return 11;
296   case GlobalValue::AvailableExternallyLinkage: return 12;
297   case GlobalValue::LinkerPrivateLinkage:       return 13;
298   }
299 }
300 
301 static unsigned getEncodedVisibility(const GlobalValue *GV) {
302   switch (GV->getVisibility()) {
303   default: llvm_unreachable("Invalid visibility!");
304   case GlobalValue::DefaultVisibility:   return 0;
305   case GlobalValue::HiddenVisibility:    return 1;
306   case GlobalValue::ProtectedVisibility: return 2;
307   }
308 }
309 
310 // Emit top-level description of module, including target triple, inline asm,
311 // descriptors for global variables, and function prototype info.
312 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
313                             BitstreamWriter &Stream) {
314   // Emit the list of dependent libraries for the Module.
315   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
316     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
317 
318   // Emit various pieces of data attached to a module.
319   if (!M->getTargetTriple().empty())
320     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
321                       0/*TODO*/, Stream);
322   if (!M->getDataLayout().empty())
323     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
324                       0/*TODO*/, Stream);
325   if (!M->getModuleInlineAsm().empty())
326     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
327                       0/*TODO*/, Stream);
328 
329   // Emit information about sections and GC, computing how many there are. Also
330   // compute the maximum alignment value.
331   std::map<std::string, unsigned> SectionMap;
332   std::map<std::string, unsigned> GCMap;
333   unsigned MaxAlignment = 0;
334   unsigned MaxGlobalType = 0;
335   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
336        GV != E; ++GV) {
337     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
338     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
339 
340     if (!GV->hasSection()) continue;
341     // Give section names unique ID's.
342     unsigned &Entry = SectionMap[GV->getSection()];
343     if (Entry != 0) continue;
344     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
345                       0/*TODO*/, Stream);
346     Entry = SectionMap.size();
347   }
348   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
349     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
350     if (F->hasSection()) {
351       // Give section names unique ID's.
352       unsigned &Entry = SectionMap[F->getSection()];
353       if (!Entry) {
354         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
355                           0/*TODO*/, Stream);
356         Entry = SectionMap.size();
357       }
358     }
359     if (F->hasGC()) {
360       // Same for GC names.
361       unsigned &Entry = GCMap[F->getGC()];
362       if (!Entry) {
363         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
364                           0/*TODO*/, Stream);
365         Entry = GCMap.size();
366       }
367     }
368   }
369 
370   // Emit abbrev for globals, now that we know # sections and max alignment.
371   unsigned SimpleGVarAbbrev = 0;
372   if (!M->global_empty()) {
373     // Add an abbrev for common globals with no visibility or thread localness.
374     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
375     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
376     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
377                               Log2_32_Ceil(MaxGlobalType+1)));
378     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
379     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
380     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
381     if (MaxAlignment == 0)                                      // Alignment.
382       Abbv->Add(BitCodeAbbrevOp(0));
383     else {
384       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
385       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
386                                Log2_32_Ceil(MaxEncAlignment+1)));
387     }
388     if (SectionMap.empty())                                    // Section.
389       Abbv->Add(BitCodeAbbrevOp(0));
390     else
391       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
392                                Log2_32_Ceil(SectionMap.size()+1)));
393     // Don't bother emitting vis + thread local.
394     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
395   }
396 
397   // Emit the global variable information.
398   SmallVector<unsigned, 64> Vals;
399   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
400        GV != E; ++GV) {
401     unsigned AbbrevToUse = 0;
402 
403     // GLOBALVAR: [type, isconst, initid,
404     //             linkage, alignment, section, visibility, threadlocal]
405     Vals.push_back(VE.getTypeID(GV->getType()));
406     Vals.push_back(GV->isConstant());
407     Vals.push_back(GV->isDeclaration() ? 0 :
408                    (VE.getValueID(GV->getInitializer()) + 1));
409     Vals.push_back(getEncodedLinkage(GV));
410     Vals.push_back(Log2_32(GV->getAlignment())+1);
411     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
412     if (GV->isThreadLocal() ||
413         GV->getVisibility() != GlobalValue::DefaultVisibility) {
414       Vals.push_back(getEncodedVisibility(GV));
415       Vals.push_back(GV->isThreadLocal());
416     } else {
417       AbbrevToUse = SimpleGVarAbbrev;
418     }
419 
420     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
421     Vals.clear();
422   }
423 
424   // Emit the function proto information.
425   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
426     // FUNCTION:  [type, callingconv, isproto, paramattr,
427     //             linkage, alignment, section, visibility, gc]
428     Vals.push_back(VE.getTypeID(F->getType()));
429     Vals.push_back(F->getCallingConv());
430     Vals.push_back(F->isDeclaration());
431     Vals.push_back(getEncodedLinkage(F));
432     Vals.push_back(VE.getAttributeID(F->getAttributes()));
433     Vals.push_back(Log2_32(F->getAlignment())+1);
434     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
435     Vals.push_back(getEncodedVisibility(F));
436     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
437 
438     unsigned AbbrevToUse = 0;
439     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
440     Vals.clear();
441   }
442 
443 
444   // Emit the alias information.
445   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
446        AI != E; ++AI) {
447     Vals.push_back(VE.getTypeID(AI->getType()));
448     Vals.push_back(VE.getValueID(AI->getAliasee()));
449     Vals.push_back(getEncodedLinkage(AI));
450     Vals.push_back(getEncodedVisibility(AI));
451     unsigned AbbrevToUse = 0;
452     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
453     Vals.clear();
454   }
455 }
456 
457 static uint64_t GetOptimizationFlags(const Value *V) {
458   uint64_t Flags = 0;
459 
460   if (const OverflowingBinaryOperator *OBO =
461         dyn_cast<OverflowingBinaryOperator>(V)) {
462     if (OBO->hasNoSignedWrap())
463       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
464     if (OBO->hasNoUnsignedWrap())
465       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
466   } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) {
467     if (Div->isExact())
468       Flags |= 1 << bitc::SDIV_EXACT;
469   }
470 
471   return Flags;
472 }
473 
474 static void WriteMDNode(const MDNode *N,
475                         const ValueEnumerator &VE,
476                         BitstreamWriter &Stream,
477                         SmallVector<uint64_t, 64> &Record) {
478   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
479     if (N->getOperand(i)) {
480       Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
481       Record.push_back(VE.getValueID(N->getOperand(i)));
482     } else {
483       Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
484       Record.push_back(0);
485     }
486   }
487   unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
488                                            bitc::METADATA_NODE;
489   Stream.EmitRecord(MDCode, Record, 0);
490   Record.clear();
491 }
492 
493 static void WriteModuleMetadata(const ValueEnumerator &VE,
494                                 BitstreamWriter &Stream) {
495   const ValueEnumerator::ValueList &Vals = VE.getMDValues();
496   bool StartedMetadataBlock = false;
497   unsigned MDSAbbrev = 0;
498   SmallVector<uint64_t, 64> Record;
499   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
500 
501     if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
502       if (!StartedMetadataBlock) {
503         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
504         StartedMetadataBlock = true;
505       }
506       WriteMDNode(N, VE, Stream, Record);
507     } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
508       if (!StartedMetadataBlock)  {
509         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
510 
511         // Abbrev for METADATA_STRING.
512         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
513         Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
514         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
515         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
516         MDSAbbrev = Stream.EmitAbbrev(Abbv);
517         StartedMetadataBlock = true;
518       }
519 
520       // Code: [strchar x N]
521       Record.append(MDS->begin(), MDS->end());
522 
523       // Emit the finished record.
524       Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
525       Record.clear();
526     } else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(Vals[i].first)) {
527       if (!StartedMetadataBlock)  {
528         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
529         StartedMetadataBlock = true;
530       }
531 
532       // Write name.
533       StringRef Str = NMD->getName();
534       for (unsigned i = 0, e = Str.size(); i != e; ++i)
535         Record.push_back(Str[i]);
536       Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
537       Record.clear();
538 
539       // Write named metadata operands.
540       for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
541         if (NMD->getOperand(i))
542           Record.push_back(VE.getValueID(NMD->getOperand(i)));
543         else
544           Record.push_back(~0U);
545       }
546       Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
547       Record.clear();
548     }
549   }
550 
551   if (StartedMetadataBlock)
552     Stream.ExitBlock();
553 }
554 
555 static void WriteMetadataAttachment(const Function &F,
556                                     const ValueEnumerator &VE,
557                                     BitstreamWriter &Stream) {
558   bool StartedMetadataBlock = false;
559   SmallVector<uint64_t, 64> Record;
560 
561   // Write metadata attachments
562   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
563   SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
564 
565   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
566     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
567          I != E; ++I) {
568       MDs.clear();
569       I->getAllMetadata(MDs);
570 
571       // If no metadata, ignore instruction.
572       if (MDs.empty()) continue;
573 
574       Record.push_back(VE.getInstructionID(I));
575 
576       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
577         Record.push_back(MDs[i].first);
578         Record.push_back(VE.getValueID(MDs[i].second));
579       }
580       if (!StartedMetadataBlock)  {
581         Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
582         StartedMetadataBlock = true;
583       }
584       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
585       Record.clear();
586     }
587 
588   if (StartedMetadataBlock)
589     Stream.ExitBlock();
590 }
591 
592 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
593   SmallVector<uint64_t, 64> Record;
594 
595   // Write metadata kinds
596   // METADATA_KIND - [n x [id, name]]
597   SmallVector<StringRef, 4> Names;
598   M->getMDKindNames(Names);
599 
600   assert(Names[0] == "" && "MDKind #0 is invalid");
601   if (Names.size() == 1) return;
602 
603   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
604 
605   for (unsigned MDKindID = 1, e = Names.size(); MDKindID != e; ++MDKindID) {
606     Record.push_back(MDKindID);
607     StringRef KName = Names[MDKindID];
608     Record.append(KName.begin(), KName.end());
609 
610     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
611     Record.clear();
612   }
613 
614   Stream.ExitBlock();
615 }
616 
617 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
618                            const ValueEnumerator &VE,
619                            BitstreamWriter &Stream, bool isGlobal) {
620   if (FirstVal == LastVal) return;
621 
622   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
623 
624   unsigned AggregateAbbrev = 0;
625   unsigned String8Abbrev = 0;
626   unsigned CString7Abbrev = 0;
627   unsigned CString6Abbrev = 0;
628   // If this is a constant pool for the module, emit module-specific abbrevs.
629   if (isGlobal) {
630     // Abbrev for CST_CODE_AGGREGATE.
631     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
632     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
633     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
634     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
635     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
636 
637     // Abbrev for CST_CODE_STRING.
638     Abbv = new BitCodeAbbrev();
639     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
640     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
641     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
642     String8Abbrev = Stream.EmitAbbrev(Abbv);
643     // Abbrev for CST_CODE_CSTRING.
644     Abbv = new BitCodeAbbrev();
645     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
646     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
647     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
648     CString7Abbrev = Stream.EmitAbbrev(Abbv);
649     // Abbrev for CST_CODE_CSTRING.
650     Abbv = new BitCodeAbbrev();
651     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
652     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
653     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
654     CString6Abbrev = Stream.EmitAbbrev(Abbv);
655   }
656 
657   SmallVector<uint64_t, 64> Record;
658 
659   const ValueEnumerator::ValueList &Vals = VE.getValues();
660   const Type *LastTy = 0;
661   for (unsigned i = FirstVal; i != LastVal; ++i) {
662     const Value *V = Vals[i].first;
663     // If we need to switch types, do so now.
664     if (V->getType() != LastTy) {
665       LastTy = V->getType();
666       Record.push_back(VE.getTypeID(LastTy));
667       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
668                         CONSTANTS_SETTYPE_ABBREV);
669       Record.clear();
670     }
671 
672     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
673       Record.push_back(unsigned(IA->hasSideEffects()) |
674                        unsigned(IA->isAlignStack()) << 1);
675 
676       // Add the asm string.
677       const std::string &AsmStr = IA->getAsmString();
678       Record.push_back(AsmStr.size());
679       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
680         Record.push_back(AsmStr[i]);
681 
682       // Add the constraint string.
683       const std::string &ConstraintStr = IA->getConstraintString();
684       Record.push_back(ConstraintStr.size());
685       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
686         Record.push_back(ConstraintStr[i]);
687       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
688       Record.clear();
689       continue;
690     }
691     const Constant *C = cast<Constant>(V);
692     unsigned Code = -1U;
693     unsigned AbbrevToUse = 0;
694     if (C->isNullValue()) {
695       Code = bitc::CST_CODE_NULL;
696     } else if (isa<UndefValue>(C)) {
697       Code = bitc::CST_CODE_UNDEF;
698     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
699       if (IV->getBitWidth() <= 64) {
700         int64_t V = IV->getSExtValue();
701         if (V >= 0)
702           Record.push_back(V << 1);
703         else
704           Record.push_back((-V << 1) | 1);
705         Code = bitc::CST_CODE_INTEGER;
706         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
707       } else {                             // Wide integers, > 64 bits in size.
708         // We have an arbitrary precision integer value to write whose
709         // bit width is > 64. However, in canonical unsigned integer
710         // format it is likely that the high bits are going to be zero.
711         // So, we only write the number of active words.
712         unsigned NWords = IV->getValue().getActiveWords();
713         const uint64_t *RawWords = IV->getValue().getRawData();
714         for (unsigned i = 0; i != NWords; ++i) {
715           int64_t V = RawWords[i];
716           if (V >= 0)
717             Record.push_back(V << 1);
718           else
719             Record.push_back((-V << 1) | 1);
720         }
721         Code = bitc::CST_CODE_WIDE_INTEGER;
722       }
723     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
724       Code = bitc::CST_CODE_FLOAT;
725       const Type *Ty = CFP->getType();
726       if (Ty->isFloatTy() || Ty->isDoubleTy()) {
727         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
728       } else if (Ty->isX86_FP80Ty()) {
729         // api needed to prevent premature destruction
730         // bits are not in the same order as a normal i80 APInt, compensate.
731         APInt api = CFP->getValueAPF().bitcastToAPInt();
732         const uint64_t *p = api.getRawData();
733         Record.push_back((p[1] << 48) | (p[0] >> 16));
734         Record.push_back(p[0] & 0xffffLL);
735       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
736         APInt api = CFP->getValueAPF().bitcastToAPInt();
737         const uint64_t *p = api.getRawData();
738         Record.push_back(p[0]);
739         Record.push_back(p[1]);
740       } else {
741         assert (0 && "Unknown FP type!");
742       }
743     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
744       const ConstantArray *CA = cast<ConstantArray>(C);
745       // Emit constant strings specially.
746       unsigned NumOps = CA->getNumOperands();
747       // If this is a null-terminated string, use the denser CSTRING encoding.
748       if (CA->getOperand(NumOps-1)->isNullValue()) {
749         Code = bitc::CST_CODE_CSTRING;
750         --NumOps;  // Don't encode the null, which isn't allowed by char6.
751       } else {
752         Code = bitc::CST_CODE_STRING;
753         AbbrevToUse = String8Abbrev;
754       }
755       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
756       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
757       for (unsigned i = 0; i != NumOps; ++i) {
758         unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue();
759         Record.push_back(V);
760         isCStr7 &= (V & 128) == 0;
761         if (isCStrChar6)
762           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
763       }
764 
765       if (isCStrChar6)
766         AbbrevToUse = CString6Abbrev;
767       else if (isCStr7)
768         AbbrevToUse = CString7Abbrev;
769     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
770                isa<ConstantVector>(V)) {
771       Code = bitc::CST_CODE_AGGREGATE;
772       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
773         Record.push_back(VE.getValueID(C->getOperand(i)));
774       AbbrevToUse = AggregateAbbrev;
775     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
776       switch (CE->getOpcode()) {
777       default:
778         if (Instruction::isCast(CE->getOpcode())) {
779           Code = bitc::CST_CODE_CE_CAST;
780           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
781           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
782           Record.push_back(VE.getValueID(C->getOperand(0)));
783           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
784         } else {
785           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
786           Code = bitc::CST_CODE_CE_BINOP;
787           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
788           Record.push_back(VE.getValueID(C->getOperand(0)));
789           Record.push_back(VE.getValueID(C->getOperand(1)));
790           uint64_t Flags = GetOptimizationFlags(CE);
791           if (Flags != 0)
792             Record.push_back(Flags);
793         }
794         break;
795       case Instruction::GetElementPtr:
796         Code = bitc::CST_CODE_CE_GEP;
797         if (cast<GEPOperator>(C)->isInBounds())
798           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
799         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
800           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
801           Record.push_back(VE.getValueID(C->getOperand(i)));
802         }
803         break;
804       case Instruction::Select:
805         Code = bitc::CST_CODE_CE_SELECT;
806         Record.push_back(VE.getValueID(C->getOperand(0)));
807         Record.push_back(VE.getValueID(C->getOperand(1)));
808         Record.push_back(VE.getValueID(C->getOperand(2)));
809         break;
810       case Instruction::ExtractElement:
811         Code = bitc::CST_CODE_CE_EXTRACTELT;
812         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
813         Record.push_back(VE.getValueID(C->getOperand(0)));
814         Record.push_back(VE.getValueID(C->getOperand(1)));
815         break;
816       case Instruction::InsertElement:
817         Code = bitc::CST_CODE_CE_INSERTELT;
818         Record.push_back(VE.getValueID(C->getOperand(0)));
819         Record.push_back(VE.getValueID(C->getOperand(1)));
820         Record.push_back(VE.getValueID(C->getOperand(2)));
821         break;
822       case Instruction::ShuffleVector:
823         // If the return type and argument types are the same, this is a
824         // standard shufflevector instruction.  If the types are different,
825         // then the shuffle is widening or truncating the input vectors, and
826         // the argument type must also be encoded.
827         if (C->getType() == C->getOperand(0)->getType()) {
828           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
829         } else {
830           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
831           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
832         }
833         Record.push_back(VE.getValueID(C->getOperand(0)));
834         Record.push_back(VE.getValueID(C->getOperand(1)));
835         Record.push_back(VE.getValueID(C->getOperand(2)));
836         break;
837       case Instruction::ICmp:
838       case Instruction::FCmp:
839         Code = bitc::CST_CODE_CE_CMP;
840         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
841         Record.push_back(VE.getValueID(C->getOperand(0)));
842         Record.push_back(VE.getValueID(C->getOperand(1)));
843         Record.push_back(CE->getPredicate());
844         break;
845       }
846     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
847       assert(BA->getFunction() == BA->getBasicBlock()->getParent() &&
848              "Malformed blockaddress");
849       Code = bitc::CST_CODE_BLOCKADDRESS;
850       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
851       Record.push_back(VE.getValueID(BA->getFunction()));
852       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
853     } else {
854       llvm_unreachable("Unknown constant!");
855     }
856     Stream.EmitRecord(Code, Record, AbbrevToUse);
857     Record.clear();
858   }
859 
860   Stream.ExitBlock();
861 }
862 
863 static void WriteModuleConstants(const ValueEnumerator &VE,
864                                  BitstreamWriter &Stream) {
865   const ValueEnumerator::ValueList &Vals = VE.getValues();
866 
867   // Find the first constant to emit, which is the first non-globalvalue value.
868   // We know globalvalues have been emitted by WriteModuleInfo.
869   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
870     if (!isa<GlobalValue>(Vals[i].first)) {
871       WriteConstants(i, Vals.size(), VE, Stream, true);
872       return;
873     }
874   }
875 }
876 
877 /// PushValueAndType - The file has to encode both the value and type id for
878 /// many values, because we need to know what type to create for forward
879 /// references.  However, most operands are not forward references, so this type
880 /// field is not needed.
881 ///
882 /// This function adds V's value ID to Vals.  If the value ID is higher than the
883 /// instruction ID, then it is a forward reference, and it also includes the
884 /// type ID.
885 static bool PushValueAndType(const Value *V, unsigned InstID,
886                              SmallVector<unsigned, 64> &Vals,
887                              ValueEnumerator &VE) {
888   unsigned ValID = VE.getValueID(V);
889   Vals.push_back(ValID);
890   if (ValID >= InstID) {
891     Vals.push_back(VE.getTypeID(V->getType()));
892     return true;
893   }
894   return false;
895 }
896 
897 /// WriteInstruction - Emit an instruction to the specified stream.
898 static void WriteInstruction(const Instruction &I, unsigned InstID,
899                              ValueEnumerator &VE, BitstreamWriter &Stream,
900                              SmallVector<unsigned, 64> &Vals) {
901   unsigned Code = 0;
902   unsigned AbbrevToUse = 0;
903   VE.setInstructionID(&I);
904   switch (I.getOpcode()) {
905   default:
906     if (Instruction::isCast(I.getOpcode())) {
907       Code = bitc::FUNC_CODE_INST_CAST;
908       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
909         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
910       Vals.push_back(VE.getTypeID(I.getType()));
911       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
912     } else {
913       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
914       Code = bitc::FUNC_CODE_INST_BINOP;
915       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
916         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
917       Vals.push_back(VE.getValueID(I.getOperand(1)));
918       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
919       uint64_t Flags = GetOptimizationFlags(&I);
920       if (Flags != 0) {
921         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
922           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
923         Vals.push_back(Flags);
924       }
925     }
926     break;
927 
928   case Instruction::GetElementPtr:
929     Code = bitc::FUNC_CODE_INST_GEP;
930     if (cast<GEPOperator>(&I)->isInBounds())
931       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
932     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
933       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
934     break;
935   case Instruction::ExtractValue: {
936     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
937     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
938     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
939     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
940       Vals.push_back(*i);
941     break;
942   }
943   case Instruction::InsertValue: {
944     Code = bitc::FUNC_CODE_INST_INSERTVAL;
945     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
946     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
947     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
948     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
949       Vals.push_back(*i);
950     break;
951   }
952   case Instruction::Select:
953     Code = bitc::FUNC_CODE_INST_VSELECT;
954     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
955     Vals.push_back(VE.getValueID(I.getOperand(2)));
956     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
957     break;
958   case Instruction::ExtractElement:
959     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
960     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
961     Vals.push_back(VE.getValueID(I.getOperand(1)));
962     break;
963   case Instruction::InsertElement:
964     Code = bitc::FUNC_CODE_INST_INSERTELT;
965     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
966     Vals.push_back(VE.getValueID(I.getOperand(1)));
967     Vals.push_back(VE.getValueID(I.getOperand(2)));
968     break;
969   case Instruction::ShuffleVector:
970     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
971     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
972     Vals.push_back(VE.getValueID(I.getOperand(1)));
973     Vals.push_back(VE.getValueID(I.getOperand(2)));
974     break;
975   case Instruction::ICmp:
976   case Instruction::FCmp:
977     // compare returning Int1Ty or vector of Int1Ty
978     Code = bitc::FUNC_CODE_INST_CMP2;
979     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
980     Vals.push_back(VE.getValueID(I.getOperand(1)));
981     Vals.push_back(cast<CmpInst>(I).getPredicate());
982     break;
983 
984   case Instruction::Ret:
985     {
986       Code = bitc::FUNC_CODE_INST_RET;
987       unsigned NumOperands = I.getNumOperands();
988       if (NumOperands == 0)
989         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
990       else if (NumOperands == 1) {
991         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
992           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
993       } else {
994         for (unsigned i = 0, e = NumOperands; i != e; ++i)
995           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
996       }
997     }
998     break;
999   case Instruction::Br:
1000     {
1001       Code = bitc::FUNC_CODE_INST_BR;
1002       BranchInst &II = cast<BranchInst>(I);
1003       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1004       if (II.isConditional()) {
1005         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1006         Vals.push_back(VE.getValueID(II.getCondition()));
1007       }
1008     }
1009     break;
1010   case Instruction::Switch:
1011     Code = bitc::FUNC_CODE_INST_SWITCH;
1012     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1013     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1014       Vals.push_back(VE.getValueID(I.getOperand(i)));
1015     break;
1016   case Instruction::IndirectBr:
1017     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1018     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1019     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1020       Vals.push_back(VE.getValueID(I.getOperand(i)));
1021     break;
1022 
1023   case Instruction::Invoke: {
1024     const InvokeInst *II = cast<InvokeInst>(&I);
1025     const Value *Callee(II->getCalledValue());
1026     const PointerType *PTy = cast<PointerType>(Callee->getType());
1027     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1028     Code = bitc::FUNC_CODE_INST_INVOKE;
1029 
1030     Vals.push_back(VE.getAttributeID(II->getAttributes()));
1031     Vals.push_back(II->getCallingConv());
1032     Vals.push_back(VE.getValueID(II->getNormalDest()));
1033     Vals.push_back(VE.getValueID(II->getUnwindDest()));
1034     PushValueAndType(Callee, InstID, Vals, VE);
1035 
1036     // Emit value #'s for the fixed parameters.
1037     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1038       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
1039 
1040     // Emit type/value pairs for varargs params.
1041     if (FTy->isVarArg()) {
1042       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
1043            i != e; ++i)
1044         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1045     }
1046     break;
1047   }
1048   case Instruction::Unwind:
1049     Code = bitc::FUNC_CODE_INST_UNWIND;
1050     break;
1051   case Instruction::Unreachable:
1052     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1053     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1054     break;
1055 
1056   case Instruction::PHI:
1057     Code = bitc::FUNC_CODE_INST_PHI;
1058     Vals.push_back(VE.getTypeID(I.getType()));
1059     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1060       Vals.push_back(VE.getValueID(I.getOperand(i)));
1061     break;
1062 
1063   case Instruction::Alloca:
1064     Code = bitc::FUNC_CODE_INST_ALLOCA;
1065     Vals.push_back(VE.getTypeID(I.getType()));
1066     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1067     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1068     break;
1069 
1070   case Instruction::Load:
1071     Code = bitc::FUNC_CODE_INST_LOAD;
1072     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1073       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1074 
1075     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1076     Vals.push_back(cast<LoadInst>(I).isVolatile());
1077     break;
1078   case Instruction::Store:
1079     Code = bitc::FUNC_CODE_INST_STORE2;
1080     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1081     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
1082     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1083     Vals.push_back(cast<StoreInst>(I).isVolatile());
1084     break;
1085   case Instruction::Call: {
1086     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
1087     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1088 
1089     Code = bitc::FUNC_CODE_INST_CALL;
1090 
1091     const CallInst *CI = cast<CallInst>(&I);
1092     Vals.push_back(VE.getAttributeID(CI->getAttributes()));
1093     Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
1094     PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
1095 
1096     // Emit value #'s for the fixed parameters.
1097     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1098       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
1099 
1100     // Emit type/value pairs for varargs params.
1101     if (FTy->isVarArg()) {
1102       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
1103       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
1104            i != e; ++i)
1105         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
1106     }
1107     break;
1108   }
1109   case Instruction::VAArg:
1110     Code = bitc::FUNC_CODE_INST_VAARG;
1111     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1112     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1113     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1114     break;
1115   }
1116 
1117   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1118   Vals.clear();
1119 }
1120 
1121 // Emit names for globals/functions etc.
1122 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1123                                   const ValueEnumerator &VE,
1124                                   BitstreamWriter &Stream) {
1125   if (VST.empty()) return;
1126   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1127 
1128   // FIXME: Set up the abbrev, we know how many values there are!
1129   // FIXME: We know if the type names can use 7-bit ascii.
1130   SmallVector<unsigned, 64> NameVals;
1131 
1132   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1133        SI != SE; ++SI) {
1134 
1135     const ValueName &Name = *SI;
1136 
1137     // Figure out the encoding to use for the name.
1138     bool is7Bit = true;
1139     bool isChar6 = true;
1140     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1141          C != E; ++C) {
1142       if (isChar6)
1143         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1144       if ((unsigned char)*C & 128) {
1145         is7Bit = false;
1146         break;  // don't bother scanning the rest.
1147       }
1148     }
1149 
1150     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1151 
1152     // VST_ENTRY:   [valueid, namechar x N]
1153     // VST_BBENTRY: [bbid, namechar x N]
1154     unsigned Code;
1155     if (isa<BasicBlock>(SI->getValue())) {
1156       Code = bitc::VST_CODE_BBENTRY;
1157       if (isChar6)
1158         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1159     } else {
1160       Code = bitc::VST_CODE_ENTRY;
1161       if (isChar6)
1162         AbbrevToUse = VST_ENTRY_6_ABBREV;
1163       else if (is7Bit)
1164         AbbrevToUse = VST_ENTRY_7_ABBREV;
1165     }
1166 
1167     NameVals.push_back(VE.getValueID(SI->getValue()));
1168     for (const char *P = Name.getKeyData(),
1169          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1170       NameVals.push_back((unsigned char)*P);
1171 
1172     // Emit the finished record.
1173     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1174     NameVals.clear();
1175   }
1176   Stream.ExitBlock();
1177 }
1178 
1179 /// WriteFunction - Emit a function body to the module stream.
1180 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1181                           BitstreamWriter &Stream) {
1182   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1183   VE.incorporateFunction(F);
1184 
1185   SmallVector<unsigned, 64> Vals;
1186 
1187   // Emit the number of basic blocks, so the reader can create them ahead of
1188   // time.
1189   Vals.push_back(VE.getBasicBlocks().size());
1190   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1191   Vals.clear();
1192 
1193   // If there are function-local constants, emit them now.
1194   unsigned CstStart, CstEnd;
1195   VE.getFunctionConstantRange(CstStart, CstEnd);
1196   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1197 
1198   // Keep a running idea of what the instruction ID is.
1199   unsigned InstID = CstEnd;
1200 
1201   // Finally, emit all the instructions, in order.
1202   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1203     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1204          I != E; ++I) {
1205       WriteInstruction(*I, InstID, VE, Stream, Vals);
1206       if (!I->getType()->isVoidTy())
1207         ++InstID;
1208     }
1209 
1210   // Emit names for all the instructions etc.
1211   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1212 
1213   WriteMetadataAttachment(F, VE, Stream);
1214   VE.purgeFunction();
1215   Stream.ExitBlock();
1216 }
1217 
1218 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
1219 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
1220                                  const ValueEnumerator &VE,
1221                                  BitstreamWriter &Stream) {
1222   if (TST.empty()) return;
1223 
1224   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1225 
1226   // 7-bit fixed width VST_CODE_ENTRY strings.
1227   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1228   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1229   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1230                             Log2_32_Ceil(VE.getTypes().size()+1)));
1231   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1232   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1233   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1234 
1235   SmallVector<unsigned, 64> NameVals;
1236 
1237   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
1238        TI != TE; ++TI) {
1239     // TST_ENTRY: [typeid, namechar x N]
1240     NameVals.push_back(VE.getTypeID(TI->second));
1241 
1242     const std::string &Str = TI->first;
1243     bool is7Bit = true;
1244     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1245       NameVals.push_back((unsigned char)Str[i]);
1246       if (Str[i] & 128)
1247         is7Bit = false;
1248     }
1249 
1250     // Emit the finished record.
1251     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1252     NameVals.clear();
1253   }
1254 
1255   Stream.ExitBlock();
1256 }
1257 
1258 // Emit blockinfo, which defines the standard abbreviations etc.
1259 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1260   // We only want to emit block info records for blocks that have multiple
1261   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1262   // blocks can defined their abbrevs inline.
1263   Stream.EnterBlockInfoBlock(2);
1264 
1265   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1266     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1267     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1268     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1269     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1270     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1271     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1272                                    Abbv) != VST_ENTRY_8_ABBREV)
1273       llvm_unreachable("Unexpected abbrev ordering!");
1274   }
1275 
1276   { // 7-bit fixed width VST_ENTRY strings.
1277     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1278     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1279     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1280     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1281     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1282     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1283                                    Abbv) != VST_ENTRY_7_ABBREV)
1284       llvm_unreachable("Unexpected abbrev ordering!");
1285   }
1286   { // 6-bit char6 VST_ENTRY strings.
1287     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1288     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1289     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1290     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1291     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1292     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1293                                    Abbv) != VST_ENTRY_6_ABBREV)
1294       llvm_unreachable("Unexpected abbrev ordering!");
1295   }
1296   { // 6-bit char6 VST_BBENTRY strings.
1297     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1298     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1299     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1300     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1301     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1302     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1303                                    Abbv) != VST_BBENTRY_6_ABBREV)
1304       llvm_unreachable("Unexpected abbrev ordering!");
1305   }
1306 
1307 
1308 
1309   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1310     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1311     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1312     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1313                               Log2_32_Ceil(VE.getTypes().size()+1)));
1314     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1315                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1316       llvm_unreachable("Unexpected abbrev ordering!");
1317   }
1318 
1319   { // INTEGER abbrev for CONSTANTS_BLOCK.
1320     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1321     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1322     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1323     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1324                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1325       llvm_unreachable("Unexpected abbrev ordering!");
1326   }
1327 
1328   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1329     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1330     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1331     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1332     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1333                               Log2_32_Ceil(VE.getTypes().size()+1)));
1334     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1335 
1336     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1337                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1338       llvm_unreachable("Unexpected abbrev ordering!");
1339   }
1340   { // NULL abbrev for CONSTANTS_BLOCK.
1341     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1342     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1343     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1344                                    Abbv) != CONSTANTS_NULL_Abbrev)
1345       llvm_unreachable("Unexpected abbrev ordering!");
1346   }
1347 
1348   // FIXME: This should only use space for first class types!
1349 
1350   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1351     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1352     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1353     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1354     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1355     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1356     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1357                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1358       llvm_unreachable("Unexpected abbrev ordering!");
1359   }
1360   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1361     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1362     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1363     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1364     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1365     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1366     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1367                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1368       llvm_unreachable("Unexpected abbrev ordering!");
1369   }
1370   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1371     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1372     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1373     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1374     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1375     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1376     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1377     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1378                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1379       llvm_unreachable("Unexpected abbrev ordering!");
1380   }
1381   { // INST_CAST abbrev for FUNCTION_BLOCK.
1382     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1383     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1384     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1385     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1386                               Log2_32_Ceil(VE.getTypes().size()+1)));
1387     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1388     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1389                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1390       llvm_unreachable("Unexpected abbrev ordering!");
1391   }
1392 
1393   { // INST_RET abbrev for FUNCTION_BLOCK.
1394     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1395     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1396     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1397                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1398       llvm_unreachable("Unexpected abbrev ordering!");
1399   }
1400   { // INST_RET abbrev for FUNCTION_BLOCK.
1401     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1402     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1403     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1404     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1405                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1406       llvm_unreachable("Unexpected abbrev ordering!");
1407   }
1408   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1409     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1410     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1411     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1412                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1413       llvm_unreachable("Unexpected abbrev ordering!");
1414   }
1415 
1416   Stream.ExitBlock();
1417 }
1418 
1419 
1420 /// WriteModule - Emit the specified module to the bitstream.
1421 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1422   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1423 
1424   // Emit the version number if it is non-zero.
1425   if (CurVersion) {
1426     SmallVector<unsigned, 1> Vals;
1427     Vals.push_back(CurVersion);
1428     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1429   }
1430 
1431   // Analyze the module, enumerating globals, functions, etc.
1432   ValueEnumerator VE(M);
1433 
1434   // Emit blockinfo, which defines the standard abbreviations etc.
1435   WriteBlockInfo(VE, Stream);
1436 
1437   // Emit information about parameter attributes.
1438   WriteAttributeTable(VE, Stream);
1439 
1440   // Emit information describing all of the types in the module.
1441   WriteTypeTable(VE, Stream);
1442 
1443   // Emit top-level description of module, including target triple, inline asm,
1444   // descriptors for global variables, and function prototype info.
1445   WriteModuleInfo(M, VE, Stream);
1446 
1447   // Emit constants.
1448   WriteModuleConstants(VE, Stream);
1449 
1450   // Emit metadata.
1451   WriteModuleMetadata(VE, Stream);
1452 
1453   // Emit function bodies.
1454   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1455     if (!I->isDeclaration())
1456       WriteFunction(*I, VE, Stream);
1457 
1458   // Emit metadata.
1459   WriteModuleMetadataStore(M, Stream);
1460 
1461   // Emit the type symbol table information.
1462   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1463 
1464   // Emit names for globals/functions etc.
1465   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1466 
1467   Stream.ExitBlock();
1468 }
1469 
1470 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1471 /// header and trailer to make it compatible with the system archiver.  To do
1472 /// this we emit the following header, and then emit a trailer that pads the
1473 /// file out to be a multiple of 16 bytes.
1474 ///
1475 /// struct bc_header {
1476 ///   uint32_t Magic;         // 0x0B17C0DE
1477 ///   uint32_t Version;       // Version, currently always 0.
1478 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1479 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1480 ///   uint32_t CPUType;       // CPU specifier.
1481 ///   ... potentially more later ...
1482 /// };
1483 enum {
1484   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1485   DarwinBCHeaderSize = 5*4
1486 };
1487 
1488 static void EmitDarwinBCHeader(BitstreamWriter &Stream,
1489                                const std::string &TT) {
1490   unsigned CPUType = ~0U;
1491 
1492   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*.  The CPUType is a
1493   // magic number from /usr/include/mach/machine.h.  It is ok to reproduce the
1494   // specific constants here because they are implicitly part of the Darwin ABI.
1495   enum {
1496     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1497     DARWIN_CPU_TYPE_X86        = 7,
1498     DARWIN_CPU_TYPE_POWERPC    = 18
1499   };
1500 
1501   if (TT.find("x86_64-") == 0)
1502     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1503   else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
1504            TT[4] == '-' && TT[1] - '3' < 6)
1505     CPUType = DARWIN_CPU_TYPE_X86;
1506   else if (TT.find("powerpc-") == 0)
1507     CPUType = DARWIN_CPU_TYPE_POWERPC;
1508   else if (TT.find("powerpc64-") == 0)
1509     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1510 
1511   // Traditional Bitcode starts after header.
1512   unsigned BCOffset = DarwinBCHeaderSize;
1513 
1514   Stream.Emit(0x0B17C0DE, 32);
1515   Stream.Emit(0         , 32);  // Version.
1516   Stream.Emit(BCOffset  , 32);
1517   Stream.Emit(0         , 32);  // Filled in later.
1518   Stream.Emit(CPUType   , 32);
1519 }
1520 
1521 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1522 /// finalize the header.
1523 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1524   // Update the size field in the header.
1525   Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1526 
1527   // If the file is not a multiple of 16 bytes, insert dummy padding.
1528   while (BufferSize & 15) {
1529     Stream.Emit(0, 8);
1530     ++BufferSize;
1531   }
1532 }
1533 
1534 
1535 /// WriteBitcodeToFile - Write the specified module to the specified output
1536 /// stream.
1537 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1538   std::vector<unsigned char> Buffer;
1539   BitstreamWriter Stream(Buffer);
1540 
1541   Buffer.reserve(256*1024);
1542 
1543   WriteBitcodeToStream( M, Stream );
1544 
1545   // If writing to stdout, set binary mode.
1546   if (&llvm::outs() == &Out)
1547     sys::Program::ChangeStdoutToBinary();
1548 
1549   // Write the generated bitstream to "Out".
1550   Out.write((char*)&Buffer.front(), Buffer.size());
1551 
1552   // Make sure it hits disk now.
1553   Out.flush();
1554 }
1555 
1556 /// WriteBitcodeToStream - Write the specified module to the specified output
1557 /// stream.
1558 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1559   // If this is darwin, emit a file header and trailer if needed.
1560   bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
1561   if (isDarwin)
1562     EmitDarwinBCHeader(Stream, M->getTargetTriple());
1563 
1564   // Emit the file header.
1565   Stream.Emit((unsigned)'B', 8);
1566   Stream.Emit((unsigned)'C', 8);
1567   Stream.Emit(0x0, 4);
1568   Stream.Emit(0xC, 4);
1569   Stream.Emit(0xE, 4);
1570   Stream.Emit(0xD, 4);
1571 
1572   // Emit the module.
1573   WriteModule(M, Stream);
1574 
1575   if (isDarwin)
1576     EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
1577 }
1578