xref: /llvm-project/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp (revision b8f9b7a965756c532cbcd1ffdac05675fe65af39)
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/MDNode.h"
23 #include "llvm/Module.h"
24 #include "llvm/TypeSymbolTable.h"
25 #include "llvm/ValueSymbolTable.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/Streams.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/System/Program.h"
30 using namespace llvm;
31 
32 /// These are manifest constants used by the bitcode writer. They do not need to
33 /// be kept in sync with the reader, but need to be consistent within this file.
34 enum {
35   CurVersion = 0,
36 
37   // VALUE_SYMTAB_BLOCK abbrev id's.
38   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
39   VST_ENTRY_7_ABBREV,
40   VST_ENTRY_6_ABBREV,
41   VST_BBENTRY_6_ABBREV,
42 
43   // CONSTANTS_BLOCK abbrev id's.
44   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
45   CONSTANTS_INTEGER_ABBREV,
46   CONSTANTS_CE_CAST_Abbrev,
47   CONSTANTS_NULL_Abbrev,
48 
49   // FUNCTION_BLOCK abbrev id's.
50   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
51   FUNCTION_INST_BINOP_ABBREV,
52   FUNCTION_INST_CAST_ABBREV,
53   FUNCTION_INST_RET_VOID_ABBREV,
54   FUNCTION_INST_RET_VAL_ABBREV,
55   FUNCTION_INST_UNREACHABLE_ABBREV
56 };
57 
58 
59 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
60   switch (Opcode) {
61   default: assert(0 && "Unknown cast instruction!");
62   case Instruction::Trunc   : return bitc::CAST_TRUNC;
63   case Instruction::ZExt    : return bitc::CAST_ZEXT;
64   case Instruction::SExt    : return bitc::CAST_SEXT;
65   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
66   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
67   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
68   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
69   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
70   case Instruction::FPExt   : return bitc::CAST_FPEXT;
71   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
72   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
73   case Instruction::BitCast : return bitc::CAST_BITCAST;
74   }
75 }
76 
77 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
78   switch (Opcode) {
79   default: assert(0 && "Unknown binary instruction!");
80   case Instruction::Add:  return bitc::BINOP_ADD;
81   case Instruction::Sub:  return bitc::BINOP_SUB;
82   case Instruction::Mul:  return bitc::BINOP_MUL;
83   case Instruction::UDiv: return bitc::BINOP_UDIV;
84   case Instruction::FDiv:
85   case Instruction::SDiv: return bitc::BINOP_SDIV;
86   case Instruction::URem: return bitc::BINOP_UREM;
87   case Instruction::FRem:
88   case Instruction::SRem: return bitc::BINOP_SREM;
89   case Instruction::Shl:  return bitc::BINOP_SHL;
90   case Instruction::LShr: return bitc::BINOP_LSHR;
91   case Instruction::AShr: return bitc::BINOP_ASHR;
92   case Instruction::And:  return bitc::BINOP_AND;
93   case Instruction::Or:   return bitc::BINOP_OR;
94   case Instruction::Xor:  return bitc::BINOP_XOR;
95   }
96 }
97 
98 
99 
100 static void WriteStringRecord(unsigned Code, const std::string &Str,
101                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
102   SmallVector<unsigned, 64> Vals;
103 
104   // Code: [strchar x N]
105   for (unsigned i = 0, e = Str.size(); i != e; ++i)
106     Vals.push_back(Str[i]);
107 
108   // Emit the finished record.
109   Stream.EmitRecord(Code, Vals, AbbrevToUse);
110 }
111 
112 // Emit information about parameter attributes.
113 static void WriteAttributeTable(const ValueEnumerator &VE,
114                                 BitstreamWriter &Stream) {
115   const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
116   if (Attrs.empty()) return;
117 
118   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
119 
120   SmallVector<uint64_t, 64> Record;
121   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
122     const AttrListPtr &A = Attrs[i];
123     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
124       const AttributeWithIndex &PAWI = A.getSlot(i);
125       Record.push_back(PAWI.Index);
126 
127       // FIXME: remove in LLVM 3.0
128       // Store the alignment in the bitcode as a 16-bit raw value instead of a
129       // 5-bit log2 encoded value. Shift the bits above the alignment up by
130       // 11 bits.
131       uint64_t FauxAttr = PAWI.Attrs & 0xffff;
132       if (PAWI.Attrs & Attribute::Alignment)
133         FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
134       FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
135 
136       Record.push_back(FauxAttr);
137     }
138 
139     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
140     Record.clear();
141   }
142 
143   Stream.ExitBlock();
144 }
145 
146 /// WriteTypeTable - Write out the type table for a module.
147 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
148   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
149 
150   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
151   SmallVector<uint64_t, 64> TypeVals;
152 
153   // Abbrev for TYPE_CODE_POINTER.
154   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
155   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
156   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
157                             Log2_32_Ceil(VE.getTypes().size()+1)));
158   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
159   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
160 
161   // Abbrev for TYPE_CODE_FUNCTION.
162   Abbv = new BitCodeAbbrev();
163   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
164   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
165   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
166   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
167   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
168                             Log2_32_Ceil(VE.getTypes().size()+1)));
169   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
170 
171   // Abbrev for TYPE_CODE_STRUCT.
172   Abbv = new BitCodeAbbrev();
173   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
174   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
175   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
176   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
177                             Log2_32_Ceil(VE.getTypes().size()+1)));
178   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
179 
180   // Abbrev for TYPE_CODE_ARRAY.
181   Abbv = new BitCodeAbbrev();
182   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
183   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
184   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
185                             Log2_32_Ceil(VE.getTypes().size()+1)));
186   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
187 
188   // Emit an entry count so the reader can reserve space.
189   TypeVals.push_back(TypeList.size());
190   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
191   TypeVals.clear();
192 
193   // Loop over all of the types, emitting each in turn.
194   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
195     const Type *T = TypeList[i].first;
196     int AbbrevToUse = 0;
197     unsigned Code = 0;
198 
199     switch (T->getTypeID()) {
200     default: assert(0 && "Unknown type!");
201     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
202     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
203     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
204     case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
205     case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
206     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
207     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
208     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
209     case Type::IntegerTyID:
210       // INTEGER: [width]
211       Code = bitc::TYPE_CODE_INTEGER;
212       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
213       break;
214     case Type::PointerTyID: {
215       const PointerType *PTy = cast<PointerType>(T);
216       // POINTER: [pointee type, address space]
217       Code = bitc::TYPE_CODE_POINTER;
218       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
219       unsigned AddressSpace = PTy->getAddressSpace();
220       TypeVals.push_back(AddressSpace);
221       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
222       break;
223     }
224     case Type::FunctionTyID: {
225       const FunctionType *FT = cast<FunctionType>(T);
226       // FUNCTION: [isvararg, attrid, retty, paramty x N]
227       Code = bitc::TYPE_CODE_FUNCTION;
228       TypeVals.push_back(FT->isVarArg());
229       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
230       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
231       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
232         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
233       AbbrevToUse = FunctionAbbrev;
234       break;
235     }
236     case Type::StructTyID: {
237       const StructType *ST = cast<StructType>(T);
238       // STRUCT: [ispacked, eltty x N]
239       Code = bitc::TYPE_CODE_STRUCT;
240       TypeVals.push_back(ST->isPacked());
241       // Output all of the element types.
242       for (StructType::element_iterator I = ST->element_begin(),
243            E = ST->element_end(); I != E; ++I)
244         TypeVals.push_back(VE.getTypeID(*I));
245       AbbrevToUse = StructAbbrev;
246       break;
247     }
248     case Type::ArrayTyID: {
249       const ArrayType *AT = cast<ArrayType>(T);
250       // ARRAY: [numelts, eltty]
251       Code = bitc::TYPE_CODE_ARRAY;
252       TypeVals.push_back(AT->getNumElements());
253       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
254       AbbrevToUse = ArrayAbbrev;
255       break;
256     }
257     case Type::VectorTyID: {
258       const VectorType *VT = cast<VectorType>(T);
259       // VECTOR [numelts, eltty]
260       Code = bitc::TYPE_CODE_VECTOR;
261       TypeVals.push_back(VT->getNumElements());
262       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
263       break;
264     }
265     }
266 
267     // Emit the finished record.
268     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
269     TypeVals.clear();
270   }
271 
272   Stream.ExitBlock();
273 }
274 
275 static unsigned getEncodedLinkage(const GlobalValue *GV) {
276   switch (GV->getLinkage()) {
277   default: assert(0 && "Invalid linkage!");
278   case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
279   case GlobalValue::ExternalLinkage:     return 0;
280   case GlobalValue::WeakAnyLinkage:      return 1;
281   case GlobalValue::AppendingLinkage:    return 2;
282   case GlobalValue::InternalLinkage:     return 3;
283   case GlobalValue::LinkOnceAnyLinkage:  return 4;
284   case GlobalValue::DLLImportLinkage:    return 5;
285   case GlobalValue::DLLExportLinkage:    return 6;
286   case GlobalValue::ExternalWeakLinkage: return 7;
287   case GlobalValue::CommonLinkage:       return 8;
288   case GlobalValue::PrivateLinkage:      return 9;
289   case GlobalValue::WeakODRLinkage:      return 10;
290   case GlobalValue::LinkOnceODRLinkage:  return 11;
291   case GlobalValue::AvailableExternallyLinkage:  return 12;
292   }
293 }
294 
295 static unsigned getEncodedVisibility(const GlobalValue *GV) {
296   switch (GV->getVisibility()) {
297   default: assert(0 && "Invalid visibility!");
298   case GlobalValue::DefaultVisibility:   return 0;
299   case GlobalValue::HiddenVisibility:    return 1;
300   case GlobalValue::ProtectedVisibility: return 2;
301   }
302 }
303 
304 // Emit top-level description of module, including target triple, inline asm,
305 // descriptors for global variables, and function prototype info.
306 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
307                             BitstreamWriter &Stream) {
308   // Emit the list of dependent libraries for the Module.
309   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
310     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
311 
312   // Emit various pieces of data attached to a module.
313   if (!M->getTargetTriple().empty())
314     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
315                       0/*TODO*/, Stream);
316   if (!M->getDataLayout().empty())
317     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
318                       0/*TODO*/, Stream);
319   if (!M->getModuleInlineAsm().empty())
320     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
321                       0/*TODO*/, Stream);
322 
323   // Emit information about sections and GC, computing how many there are. Also
324   // compute the maximum alignment value.
325   std::map<std::string, unsigned> SectionMap;
326   std::map<std::string, unsigned> GCMap;
327   unsigned MaxAlignment = 0;
328   unsigned MaxGlobalType = 0;
329   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
330        GV != E; ++GV) {
331     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
332     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
333 
334     if (!GV->hasSection()) continue;
335     // Give section names unique ID's.
336     unsigned &Entry = SectionMap[GV->getSection()];
337     if (Entry != 0) continue;
338     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
339                       0/*TODO*/, Stream);
340     Entry = SectionMap.size();
341   }
342   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
343     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
344     if (F->hasSection()) {
345       // Give section names unique ID's.
346       unsigned &Entry = SectionMap[F->getSection()];
347       if (!Entry) {
348         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
349                           0/*TODO*/, Stream);
350         Entry = SectionMap.size();
351       }
352     }
353     if (F->hasGC()) {
354       // Same for GC names.
355       unsigned &Entry = GCMap[F->getGC()];
356       if (!Entry) {
357         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
358                           0/*TODO*/, Stream);
359         Entry = GCMap.size();
360       }
361     }
362   }
363 
364   // Emit abbrev for globals, now that we know # sections and max alignment.
365   unsigned SimpleGVarAbbrev = 0;
366   if (!M->global_empty()) {
367     // Add an abbrev for common globals with no visibility or thread localness.
368     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
369     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
370     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
371                               Log2_32_Ceil(MaxGlobalType+1)));
372     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
373     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
374     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
375     if (MaxAlignment == 0)                                      // Alignment.
376       Abbv->Add(BitCodeAbbrevOp(0));
377     else {
378       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
379       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
380                                Log2_32_Ceil(MaxEncAlignment+1)));
381     }
382     if (SectionMap.empty())                                    // Section.
383       Abbv->Add(BitCodeAbbrevOp(0));
384     else
385       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
386                                Log2_32_Ceil(SectionMap.size()+1)));
387     // Don't bother emitting vis + thread local.
388     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
389   }
390 
391   // Emit the global variable information.
392   SmallVector<unsigned, 64> Vals;
393   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
394        GV != E; ++GV) {
395     unsigned AbbrevToUse = 0;
396 
397     // GLOBALVAR: [type, isconst, initid,
398     //             linkage, alignment, section, visibility, threadlocal]
399     Vals.push_back(VE.getTypeID(GV->getType()));
400     Vals.push_back(GV->isConstant());
401     Vals.push_back(GV->isDeclaration() ? 0 :
402                    (VE.getValueID(GV->getInitializer()) + 1));
403     Vals.push_back(getEncodedLinkage(GV));
404     Vals.push_back(Log2_32(GV->getAlignment())+1);
405     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
406     if (GV->isThreadLocal() ||
407         GV->getVisibility() != GlobalValue::DefaultVisibility) {
408       Vals.push_back(getEncodedVisibility(GV));
409       Vals.push_back(GV->isThreadLocal());
410     } else {
411       AbbrevToUse = SimpleGVarAbbrev;
412     }
413 
414     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
415     Vals.clear();
416   }
417 
418   // Emit the function proto information.
419   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
420     // FUNCTION:  [type, callingconv, isproto, paramattr,
421     //             linkage, alignment, section, visibility, gc]
422     Vals.push_back(VE.getTypeID(F->getType()));
423     Vals.push_back(F->getCallingConv());
424     Vals.push_back(F->isDeclaration());
425     Vals.push_back(getEncodedLinkage(F));
426     Vals.push_back(VE.getAttributeID(F->getAttributes()));
427     Vals.push_back(Log2_32(F->getAlignment())+1);
428     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
429     Vals.push_back(getEncodedVisibility(F));
430     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
431 
432     unsigned AbbrevToUse = 0;
433     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
434     Vals.clear();
435   }
436 
437 
438   // Emit the alias information.
439   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
440        AI != E; ++AI) {
441     Vals.push_back(VE.getTypeID(AI->getType()));
442     Vals.push_back(VE.getValueID(AI->getAliasee()));
443     Vals.push_back(getEncodedLinkage(AI));
444     Vals.push_back(getEncodedVisibility(AI));
445     unsigned AbbrevToUse = 0;
446     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
447     Vals.clear();
448   }
449 }
450 
451 
452 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
453                            const ValueEnumerator &VE,
454                            BitstreamWriter &Stream, bool isGlobal) {
455   if (FirstVal == LastVal) return;
456 
457   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
458 
459   unsigned AggregateAbbrev = 0;
460   unsigned String8Abbrev = 0;
461   unsigned CString7Abbrev = 0;
462   unsigned CString6Abbrev = 0;
463   unsigned MDString8Abbrev = 0;
464   unsigned MDString6Abbrev = 0;
465   // If this is a constant pool for the module, emit module-specific abbrevs.
466   if (isGlobal) {
467     // Abbrev for CST_CODE_AGGREGATE.
468     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
469     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
470     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
471     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
472     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
473 
474     // Abbrev for CST_CODE_STRING.
475     Abbv = new BitCodeAbbrev();
476     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
477     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
478     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
479     String8Abbrev = Stream.EmitAbbrev(Abbv);
480     // Abbrev for CST_CODE_CSTRING.
481     Abbv = new BitCodeAbbrev();
482     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
483     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
484     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
485     CString7Abbrev = Stream.EmitAbbrev(Abbv);
486     // Abbrev for CST_CODE_CSTRING.
487     Abbv = new BitCodeAbbrev();
488     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
489     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
490     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
491     CString6Abbrev = Stream.EmitAbbrev(Abbv);
492 
493     // Abbrev for CST_CODE_MDSTRING.
494     Abbv = new BitCodeAbbrev();
495     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_MDSTRING));
496     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
497     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
498     MDString8Abbrev = Stream.EmitAbbrev(Abbv);
499     // Abbrev for CST_CODE_MDSTRING.
500     Abbv = new BitCodeAbbrev();
501     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_MDSTRING));
502     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
503     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
504     MDString6Abbrev = Stream.EmitAbbrev(Abbv);
505   }
506 
507   SmallVector<uint64_t, 64> Record;
508 
509   const ValueEnumerator::ValueList &Vals = VE.getValues();
510   const Type *LastTy = 0;
511   for (unsigned i = FirstVal; i != LastVal; ++i) {
512     const Value *V = Vals[i].first;
513     // If we need to switch types, do so now.
514     if (V->getType() != LastTy) {
515       LastTy = V->getType();
516       Record.push_back(VE.getTypeID(LastTy));
517       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
518                         CONSTANTS_SETTYPE_ABBREV);
519       Record.clear();
520     }
521 
522     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
523       Record.push_back(unsigned(IA->hasSideEffects()));
524 
525       // Add the asm string.
526       const std::string &AsmStr = IA->getAsmString();
527       Record.push_back(AsmStr.size());
528       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
529         Record.push_back(AsmStr[i]);
530 
531       // Add the constraint string.
532       const std::string &ConstraintStr = IA->getConstraintString();
533       Record.push_back(ConstraintStr.size());
534       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
535         Record.push_back(ConstraintStr[i]);
536       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
537       Record.clear();
538       continue;
539     }
540     const Constant *C = cast<Constant>(V);
541     unsigned Code = -1U;
542     unsigned AbbrevToUse = 0;
543     if (C->isNullValue()) {
544       Code = bitc::CST_CODE_NULL;
545     } else if (isa<UndefValue>(C)) {
546       Code = bitc::CST_CODE_UNDEF;
547     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
548       if (IV->getBitWidth() <= 64) {
549         int64_t V = IV->getSExtValue();
550         if (V >= 0)
551           Record.push_back(V << 1);
552         else
553           Record.push_back((-V << 1) | 1);
554         Code = bitc::CST_CODE_INTEGER;
555         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
556       } else {                             // Wide integers, > 64 bits in size.
557         // We have an arbitrary precision integer value to write whose
558         // bit width is > 64. However, in canonical unsigned integer
559         // format it is likely that the high bits are going to be zero.
560         // So, we only write the number of active words.
561         unsigned NWords = IV->getValue().getActiveWords();
562         const uint64_t *RawWords = IV->getValue().getRawData();
563         for (unsigned i = 0; i != NWords; ++i) {
564           int64_t V = RawWords[i];
565           if (V >= 0)
566             Record.push_back(V << 1);
567           else
568             Record.push_back((-V << 1) | 1);
569         }
570         Code = bitc::CST_CODE_WIDE_INTEGER;
571       }
572     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
573       Code = bitc::CST_CODE_FLOAT;
574       const Type *Ty = CFP->getType();
575       if (Ty == Type::FloatTy || Ty == Type::DoubleTy) {
576         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
577       } else if (Ty == Type::X86_FP80Ty) {
578         // api needed to prevent premature destruction
579         // bits are not in the same order as a normal i80 APInt, compensate.
580         APInt api = CFP->getValueAPF().bitcastToAPInt();
581         const uint64_t *p = api.getRawData();
582         Record.push_back((p[1] << 48) | (p[0] >> 16));
583         Record.push_back(p[0] & 0xffffLL);
584       } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) {
585         APInt api = CFP->getValueAPF().bitcastToAPInt();
586         const uint64_t *p = api.getRawData();
587         Record.push_back(p[0]);
588         Record.push_back(p[1]);
589       } else {
590         assert (0 && "Unknown FP type!");
591       }
592     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
593       // Emit constant strings specially.
594       unsigned NumOps = C->getNumOperands();
595       // If this is a null-terminated string, use the denser CSTRING encoding.
596       if (C->getOperand(NumOps-1)->isNullValue()) {
597         Code = bitc::CST_CODE_CSTRING;
598         --NumOps;  // Don't encode the null, which isn't allowed by char6.
599       } else {
600         Code = bitc::CST_CODE_STRING;
601         AbbrevToUse = String8Abbrev;
602       }
603       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
604       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
605       for (unsigned i = 0; i != NumOps; ++i) {
606         unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
607         Record.push_back(V);
608         isCStr7 &= (V & 128) == 0;
609         if (isCStrChar6)
610           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
611       }
612 
613       if (isCStrChar6)
614         AbbrevToUse = CString6Abbrev;
615       else if (isCStr7)
616         AbbrevToUse = CString7Abbrev;
617     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
618                isa<ConstantVector>(V)) {
619       Code = bitc::CST_CODE_AGGREGATE;
620       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
621         Record.push_back(VE.getValueID(C->getOperand(i)));
622       AbbrevToUse = AggregateAbbrev;
623     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
624       switch (CE->getOpcode()) {
625       default:
626         if (Instruction::isCast(CE->getOpcode())) {
627           Code = bitc::CST_CODE_CE_CAST;
628           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
629           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
630           Record.push_back(VE.getValueID(C->getOperand(0)));
631           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
632         } else {
633           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
634           Code = bitc::CST_CODE_CE_BINOP;
635           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
636           Record.push_back(VE.getValueID(C->getOperand(0)));
637           Record.push_back(VE.getValueID(C->getOperand(1)));
638         }
639         break;
640       case Instruction::GetElementPtr:
641         Code = bitc::CST_CODE_CE_GEP;
642         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
643           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
644           Record.push_back(VE.getValueID(C->getOperand(i)));
645         }
646         break;
647       case Instruction::Select:
648         Code = bitc::CST_CODE_CE_SELECT;
649         Record.push_back(VE.getValueID(C->getOperand(0)));
650         Record.push_back(VE.getValueID(C->getOperand(1)));
651         Record.push_back(VE.getValueID(C->getOperand(2)));
652         break;
653       case Instruction::ExtractElement:
654         Code = bitc::CST_CODE_CE_EXTRACTELT;
655         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
656         Record.push_back(VE.getValueID(C->getOperand(0)));
657         Record.push_back(VE.getValueID(C->getOperand(1)));
658         break;
659       case Instruction::InsertElement:
660         Code = bitc::CST_CODE_CE_INSERTELT;
661         Record.push_back(VE.getValueID(C->getOperand(0)));
662         Record.push_back(VE.getValueID(C->getOperand(1)));
663         Record.push_back(VE.getValueID(C->getOperand(2)));
664         break;
665       case Instruction::ShuffleVector:
666         // If the return type and argument types are the same, this is a
667         // standard shufflevector instruction.  If the types are different,
668         // then the shuffle is widening or truncating the input vectors, and
669         // the argument type must also be encoded.
670         if (C->getType() == C->getOperand(0)->getType()) {
671           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
672         } else {
673           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
674           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
675         }
676         Record.push_back(VE.getValueID(C->getOperand(0)));
677         Record.push_back(VE.getValueID(C->getOperand(1)));
678         Record.push_back(VE.getValueID(C->getOperand(2)));
679         break;
680       case Instruction::ICmp:
681       case Instruction::FCmp:
682       case Instruction::VICmp:
683       case Instruction::VFCmp:
684         if (isa<VectorType>(C->getOperand(0)->getType())
685             && (CE->getOpcode() == Instruction::ICmp
686                 || CE->getOpcode() == Instruction::FCmp)) {
687           // compare returning vector of Int1Ty
688           assert(0 && "Unsupported constant!");
689         } else {
690           Code = bitc::CST_CODE_CE_CMP;
691         }
692         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
693         Record.push_back(VE.getValueID(C->getOperand(0)));
694         Record.push_back(VE.getValueID(C->getOperand(1)));
695         Record.push_back(CE->getPredicate());
696         break;
697       }
698     } else if (const MDString *S = dyn_cast<MDString>(C)) {
699       Code = bitc::CST_CODE_MDSTRING;
700       AbbrevToUse = MDString6Abbrev;
701       for (unsigned i = 0, e = S->size(); i != e; ++i) {
702         char V = S->begin()[i];
703         Record.push_back(V);
704 
705         if (!BitCodeAbbrevOp::isChar6(V))
706           AbbrevToUse = MDString8Abbrev;
707       }
708     } else if (const MDNode *N = dyn_cast<MDNode>(C)) {
709       Code = bitc::CST_CODE_MDNODE;
710       for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
711         if (N->getElement(i)) {
712           Record.push_back(VE.getTypeID(N->getElement(i)->getType()));
713           Record.push_back(VE.getValueID(N->getElement(i)));
714         } else {
715           Record.push_back(VE.getTypeID(Type::VoidTy));
716           Record.push_back(0);
717         }
718       }
719     } else {
720       assert(0 && "Unknown constant!");
721     }
722     Stream.EmitRecord(Code, Record, AbbrevToUse);
723     Record.clear();
724   }
725 
726   Stream.ExitBlock();
727 }
728 
729 static void WriteModuleConstants(const ValueEnumerator &VE,
730                                  BitstreamWriter &Stream) {
731   const ValueEnumerator::ValueList &Vals = VE.getValues();
732 
733   // Find the first constant to emit, which is the first non-globalvalue value.
734   // We know globalvalues have been emitted by WriteModuleInfo.
735   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
736     if (!isa<GlobalValue>(Vals[i].first)) {
737       WriteConstants(i, Vals.size(), VE, Stream, true);
738       return;
739     }
740   }
741 }
742 
743 /// PushValueAndType - The file has to encode both the value and type id for
744 /// many values, because we need to know what type to create for forward
745 /// references.  However, most operands are not forward references, so this type
746 /// field is not needed.
747 ///
748 /// This function adds V's value ID to Vals.  If the value ID is higher than the
749 /// instruction ID, then it is a forward reference, and it also includes the
750 /// type ID.
751 static bool PushValueAndType(const Value *V, unsigned InstID,
752                              SmallVector<unsigned, 64> &Vals,
753                              ValueEnumerator &VE) {
754   unsigned ValID = VE.getValueID(V);
755   Vals.push_back(ValID);
756   if (ValID >= InstID) {
757     Vals.push_back(VE.getTypeID(V->getType()));
758     return true;
759   }
760   return false;
761 }
762 
763 /// WriteInstruction - Emit an instruction to the specified stream.
764 static void WriteInstruction(const Instruction &I, unsigned InstID,
765                              ValueEnumerator &VE, BitstreamWriter &Stream,
766                              SmallVector<unsigned, 64> &Vals) {
767   unsigned Code = 0;
768   unsigned AbbrevToUse = 0;
769   switch (I.getOpcode()) {
770   default:
771     if (Instruction::isCast(I.getOpcode())) {
772       Code = bitc::FUNC_CODE_INST_CAST;
773       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
774         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
775       Vals.push_back(VE.getTypeID(I.getType()));
776       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
777     } else {
778       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
779       Code = bitc::FUNC_CODE_INST_BINOP;
780       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
781         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
782       Vals.push_back(VE.getValueID(I.getOperand(1)));
783       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
784     }
785     break;
786 
787   case Instruction::GetElementPtr:
788     Code = bitc::FUNC_CODE_INST_GEP;
789     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
790       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
791     break;
792   case Instruction::ExtractValue: {
793     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
794     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
795     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
796     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
797       Vals.push_back(*i);
798     break;
799   }
800   case Instruction::InsertValue: {
801     Code = bitc::FUNC_CODE_INST_INSERTVAL;
802     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
803     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
804     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
805     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
806       Vals.push_back(*i);
807     break;
808   }
809   case Instruction::Select:
810     Code = bitc::FUNC_CODE_INST_VSELECT;
811     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
812     Vals.push_back(VE.getValueID(I.getOperand(2)));
813     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
814     break;
815   case Instruction::ExtractElement:
816     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
817     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
818     Vals.push_back(VE.getValueID(I.getOperand(1)));
819     break;
820   case Instruction::InsertElement:
821     Code = bitc::FUNC_CODE_INST_INSERTELT;
822     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
823     Vals.push_back(VE.getValueID(I.getOperand(1)));
824     Vals.push_back(VE.getValueID(I.getOperand(2)));
825     break;
826   case Instruction::ShuffleVector:
827     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
828     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
829     Vals.push_back(VE.getValueID(I.getOperand(1)));
830     Vals.push_back(VE.getValueID(I.getOperand(2)));
831     break;
832   case Instruction::ICmp:
833   case Instruction::FCmp:
834   case Instruction::VICmp:
835   case Instruction::VFCmp:
836     if (I.getOpcode() == Instruction::ICmp
837         || I.getOpcode() == Instruction::FCmp) {
838       // compare returning Int1Ty or vector of Int1Ty
839       Code = bitc::FUNC_CODE_INST_CMP2;
840     } else {
841       Code = bitc::FUNC_CODE_INST_CMP;
842     }
843     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
844     Vals.push_back(VE.getValueID(I.getOperand(1)));
845     Vals.push_back(cast<CmpInst>(I).getPredicate());
846     break;
847 
848   case Instruction::Ret:
849     {
850       Code = bitc::FUNC_CODE_INST_RET;
851       unsigned NumOperands = I.getNumOperands();
852       if (NumOperands == 0)
853         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
854       else if (NumOperands == 1) {
855         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
856           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
857       } else {
858         for (unsigned i = 0, e = NumOperands; i != e; ++i)
859           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
860       }
861     }
862     break;
863   case Instruction::Br:
864     {
865       Code = bitc::FUNC_CODE_INST_BR;
866       BranchInst &II(cast<BranchInst>(I));
867       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
868       if (II.isConditional()) {
869         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
870         Vals.push_back(VE.getValueID(II.getCondition()));
871       }
872     }
873     break;
874   case Instruction::Switch:
875     Code = bitc::FUNC_CODE_INST_SWITCH;
876     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
877     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
878       Vals.push_back(VE.getValueID(I.getOperand(i)));
879     break;
880   case Instruction::Invoke: {
881     const InvokeInst *II = cast<InvokeInst>(&I);
882     const Value *Callee(II->getCalledValue());
883     const PointerType *PTy = cast<PointerType>(Callee->getType());
884     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
885     Code = bitc::FUNC_CODE_INST_INVOKE;
886 
887     Vals.push_back(VE.getAttributeID(II->getAttributes()));
888     Vals.push_back(II->getCallingConv());
889     Vals.push_back(VE.getValueID(II->getNormalDest()));
890     Vals.push_back(VE.getValueID(II->getUnwindDest()));
891     PushValueAndType(Callee, InstID, Vals, VE);
892 
893     // Emit value #'s for the fixed parameters.
894     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
895       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
896 
897     // Emit type/value pairs for varargs params.
898     if (FTy->isVarArg()) {
899       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
900            i != e; ++i)
901         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
902     }
903     break;
904   }
905   case Instruction::Unwind:
906     Code = bitc::FUNC_CODE_INST_UNWIND;
907     break;
908   case Instruction::Unreachable:
909     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
910     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
911     break;
912 
913   case Instruction::PHI:
914     Code = bitc::FUNC_CODE_INST_PHI;
915     Vals.push_back(VE.getTypeID(I.getType()));
916     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
917       Vals.push_back(VE.getValueID(I.getOperand(i)));
918     break;
919 
920   case Instruction::Malloc:
921     Code = bitc::FUNC_CODE_INST_MALLOC;
922     Vals.push_back(VE.getTypeID(I.getType()));
923     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
924     Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
925     break;
926 
927   case Instruction::Free:
928     Code = bitc::FUNC_CODE_INST_FREE;
929     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
930     break;
931 
932   case Instruction::Alloca:
933     Code = bitc::FUNC_CODE_INST_ALLOCA;
934     Vals.push_back(VE.getTypeID(I.getType()));
935     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
936     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
937     break;
938 
939   case Instruction::Load:
940     Code = bitc::FUNC_CODE_INST_LOAD;
941     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
942       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
943 
944     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
945     Vals.push_back(cast<LoadInst>(I).isVolatile());
946     break;
947   case Instruction::Store:
948     Code = bitc::FUNC_CODE_INST_STORE2;
949     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
950     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
951     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
952     Vals.push_back(cast<StoreInst>(I).isVolatile());
953     break;
954   case Instruction::Call: {
955     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
956     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
957 
958     Code = bitc::FUNC_CODE_INST_CALL;
959 
960     const CallInst *CI = cast<CallInst>(&I);
961     Vals.push_back(VE.getAttributeID(CI->getAttributes()));
962     Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
963     PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
964 
965     // Emit value #'s for the fixed parameters.
966     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
967       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
968 
969     // Emit type/value pairs for varargs params.
970     if (FTy->isVarArg()) {
971       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
972       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
973            i != e; ++i)
974         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
975     }
976     break;
977   }
978   case Instruction::VAArg:
979     Code = bitc::FUNC_CODE_INST_VAARG;
980     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
981     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
982     Vals.push_back(VE.getTypeID(I.getType())); // restype.
983     break;
984   }
985 
986   Stream.EmitRecord(Code, Vals, AbbrevToUse);
987   Vals.clear();
988 }
989 
990 // Emit names for globals/functions etc.
991 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
992                                   const ValueEnumerator &VE,
993                                   BitstreamWriter &Stream) {
994   if (VST.empty()) return;
995   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
996 
997   // FIXME: Set up the abbrev, we know how many values there are!
998   // FIXME: We know if the type names can use 7-bit ascii.
999   SmallVector<unsigned, 64> NameVals;
1000 
1001   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1002        SI != SE; ++SI) {
1003 
1004     const ValueName &Name = *SI;
1005 
1006     // Figure out the encoding to use for the name.
1007     bool is7Bit = true;
1008     bool isChar6 = true;
1009     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1010          C != E; ++C) {
1011       if (isChar6)
1012         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1013       if ((unsigned char)*C & 128) {
1014         is7Bit = false;
1015         break;  // don't bother scanning the rest.
1016       }
1017     }
1018 
1019     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1020 
1021     // VST_ENTRY:   [valueid, namechar x N]
1022     // VST_BBENTRY: [bbid, namechar x N]
1023     unsigned Code;
1024     if (isa<BasicBlock>(SI->getValue())) {
1025       Code = bitc::VST_CODE_BBENTRY;
1026       if (isChar6)
1027         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1028     } else {
1029       Code = bitc::VST_CODE_ENTRY;
1030       if (isChar6)
1031         AbbrevToUse = VST_ENTRY_6_ABBREV;
1032       else if (is7Bit)
1033         AbbrevToUse = VST_ENTRY_7_ABBREV;
1034     }
1035 
1036     NameVals.push_back(VE.getValueID(SI->getValue()));
1037     for (const char *P = Name.getKeyData(),
1038          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1039       NameVals.push_back((unsigned char)*P);
1040 
1041     // Emit the finished record.
1042     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1043     NameVals.clear();
1044   }
1045   Stream.ExitBlock();
1046 }
1047 
1048 /// WriteFunction - Emit a function body to the module stream.
1049 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1050                           BitstreamWriter &Stream) {
1051   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1052   VE.incorporateFunction(F);
1053 
1054   SmallVector<unsigned, 64> Vals;
1055 
1056   // Emit the number of basic blocks, so the reader can create them ahead of
1057   // time.
1058   Vals.push_back(VE.getBasicBlocks().size());
1059   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1060   Vals.clear();
1061 
1062   // If there are function-local constants, emit them now.
1063   unsigned CstStart, CstEnd;
1064   VE.getFunctionConstantRange(CstStart, CstEnd);
1065   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1066 
1067   // Keep a running idea of what the instruction ID is.
1068   unsigned InstID = CstEnd;
1069 
1070   // Finally, emit all the instructions, in order.
1071   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1072     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1073          I != E; ++I) {
1074       WriteInstruction(*I, InstID, VE, Stream, Vals);
1075       if (I->getType() != Type::VoidTy)
1076         ++InstID;
1077     }
1078 
1079   // Emit names for all the instructions etc.
1080   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1081 
1082   VE.purgeFunction();
1083   Stream.ExitBlock();
1084 }
1085 
1086 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
1087 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
1088                                  const ValueEnumerator &VE,
1089                                  BitstreamWriter &Stream) {
1090   if (TST.empty()) return;
1091 
1092   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1093 
1094   // 7-bit fixed width VST_CODE_ENTRY strings.
1095   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1096   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1097   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1098                             Log2_32_Ceil(VE.getTypes().size()+1)));
1099   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1100   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1101   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1102 
1103   SmallVector<unsigned, 64> NameVals;
1104 
1105   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
1106        TI != TE; ++TI) {
1107     // TST_ENTRY: [typeid, namechar x N]
1108     NameVals.push_back(VE.getTypeID(TI->second));
1109 
1110     const std::string &Str = TI->first;
1111     bool is7Bit = true;
1112     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1113       NameVals.push_back((unsigned char)Str[i]);
1114       if (Str[i] & 128)
1115         is7Bit = false;
1116     }
1117 
1118     // Emit the finished record.
1119     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1120     NameVals.clear();
1121   }
1122 
1123   Stream.ExitBlock();
1124 }
1125 
1126 // Emit blockinfo, which defines the standard abbreviations etc.
1127 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1128   // We only want to emit block info records for blocks that have multiple
1129   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1130   // blocks can defined their abbrevs inline.
1131   Stream.EnterBlockInfoBlock(2);
1132 
1133   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1134     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1135     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1136     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1137     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1138     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1139     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1140                                    Abbv) != VST_ENTRY_8_ABBREV)
1141       assert(0 && "Unexpected abbrev ordering!");
1142   }
1143 
1144   { // 7-bit fixed width VST_ENTRY strings.
1145     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1146     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1147     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1148     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1149     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1150     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1151                                    Abbv) != VST_ENTRY_7_ABBREV)
1152       assert(0 && "Unexpected abbrev ordering!");
1153   }
1154   { // 6-bit char6 VST_ENTRY strings.
1155     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1156     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1157     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1158     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1159     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1160     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1161                                    Abbv) != VST_ENTRY_6_ABBREV)
1162       assert(0 && "Unexpected abbrev ordering!");
1163   }
1164   { // 6-bit char6 VST_BBENTRY strings.
1165     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1166     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1167     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1168     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1169     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1170     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1171                                    Abbv) != VST_BBENTRY_6_ABBREV)
1172       assert(0 && "Unexpected abbrev ordering!");
1173   }
1174 
1175 
1176 
1177   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1178     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1179     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1180     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1181                               Log2_32_Ceil(VE.getTypes().size()+1)));
1182     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1183                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1184       assert(0 && "Unexpected abbrev ordering!");
1185   }
1186 
1187   { // INTEGER abbrev for CONSTANTS_BLOCK.
1188     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1189     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1190     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1191     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1192                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1193       assert(0 && "Unexpected abbrev ordering!");
1194   }
1195 
1196   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1197     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1198     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1199     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1200     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1201                               Log2_32_Ceil(VE.getTypes().size()+1)));
1202     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1203 
1204     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1205                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1206       assert(0 && "Unexpected abbrev ordering!");
1207   }
1208   { // NULL abbrev for CONSTANTS_BLOCK.
1209     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1210     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1211     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1212                                    Abbv) != CONSTANTS_NULL_Abbrev)
1213       assert(0 && "Unexpected abbrev ordering!");
1214   }
1215 
1216   // FIXME: This should only use space for first class types!
1217 
1218   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1219     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1220     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1221     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1222     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1223     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1224     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1225                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1226       assert(0 && "Unexpected abbrev ordering!");
1227   }
1228   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1229     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1230     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1231     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1232     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1233     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1234     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1235                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1236       assert(0 && "Unexpected abbrev ordering!");
1237   }
1238   { // INST_CAST abbrev for FUNCTION_BLOCK.
1239     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1240     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1241     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1242     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1243                               Log2_32_Ceil(VE.getTypes().size()+1)));
1244     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1245     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1246                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1247       assert(0 && "Unexpected abbrev ordering!");
1248   }
1249 
1250   { // INST_RET abbrev for FUNCTION_BLOCK.
1251     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1252     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1253     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1254                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1255       assert(0 && "Unexpected abbrev ordering!");
1256   }
1257   { // INST_RET abbrev for FUNCTION_BLOCK.
1258     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1259     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1260     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1261     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1262                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1263       assert(0 && "Unexpected abbrev ordering!");
1264   }
1265   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1266     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1267     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1268     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1269                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1270       assert(0 && "Unexpected abbrev ordering!");
1271   }
1272 
1273   Stream.ExitBlock();
1274 }
1275 
1276 
1277 /// WriteModule - Emit the specified module to the bitstream.
1278 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1279   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1280 
1281   // Emit the version number if it is non-zero.
1282   if (CurVersion) {
1283     SmallVector<unsigned, 1> Vals;
1284     Vals.push_back(CurVersion);
1285     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1286   }
1287 
1288   // Analyze the module, enumerating globals, functions, etc.
1289   ValueEnumerator VE(M);
1290 
1291   // Emit blockinfo, which defines the standard abbreviations etc.
1292   WriteBlockInfo(VE, Stream);
1293 
1294   // Emit information about parameter attributes.
1295   WriteAttributeTable(VE, Stream);
1296 
1297   // Emit information describing all of the types in the module.
1298   WriteTypeTable(VE, Stream);
1299 
1300   // Emit top-level description of module, including target triple, inline asm,
1301   // descriptors for global variables, and function prototype info.
1302   WriteModuleInfo(M, VE, Stream);
1303 
1304   // Emit constants.
1305   WriteModuleConstants(VE, Stream);
1306 
1307   // If we have any aggregate values in the value table, purge them - these can
1308   // only be used to initialize global variables.  Doing so makes the value
1309   // namespace smaller for code in functions.
1310   int NumNonAggregates = VE.PurgeAggregateValues();
1311   if (NumNonAggregates != -1) {
1312     SmallVector<unsigned, 1> Vals;
1313     Vals.push_back(NumNonAggregates);
1314     Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
1315   }
1316 
1317   // Emit function bodies.
1318   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1319     if (!I->isDeclaration())
1320       WriteFunction(*I, VE, Stream);
1321 
1322   // Emit the type symbol table information.
1323   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1324 
1325   // Emit names for globals/functions etc.
1326   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1327 
1328   Stream.ExitBlock();
1329 }
1330 
1331 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1332 /// header and trailer to make it compatible with the system archiver.  To do
1333 /// this we emit the following header, and then emit a trailer that pads the
1334 /// file out to be a multiple of 16 bytes.
1335 ///
1336 /// struct bc_header {
1337 ///   uint32_t Magic;         // 0x0B17C0DE
1338 ///   uint32_t Version;       // Version, currently always 0.
1339 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1340 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1341 ///   uint32_t CPUType;       // CPU specifier.
1342 ///   ... potentially more later ...
1343 /// };
1344 enum {
1345   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1346   DarwinBCHeaderSize = 5*4
1347 };
1348 
1349 static void EmitDarwinBCHeader(BitstreamWriter &Stream,
1350                                const std::string &TT) {
1351   unsigned CPUType = ~0U;
1352 
1353   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*.  The CPUType is a
1354   // magic number from /usr/include/mach/machine.h.  It is ok to reproduce the
1355   // specific constants here because they are implicitly part of the Darwin ABI.
1356   enum {
1357     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1358     DARWIN_CPU_TYPE_X86        = 7,
1359     DARWIN_CPU_TYPE_POWERPC    = 18
1360   };
1361 
1362   if (TT.find("x86_64-") == 0)
1363     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1364   else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
1365            TT[4] == '-' && TT[1] - '3' < 6)
1366     CPUType = DARWIN_CPU_TYPE_X86;
1367   else if (TT.find("powerpc-") == 0)
1368     CPUType = DARWIN_CPU_TYPE_POWERPC;
1369   else if (TT.find("powerpc64-") == 0)
1370     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1371 
1372   // Traditional Bitcode starts after header.
1373   unsigned BCOffset = DarwinBCHeaderSize;
1374 
1375   Stream.Emit(0x0B17C0DE, 32);
1376   Stream.Emit(0         , 32);  // Version.
1377   Stream.Emit(BCOffset  , 32);
1378   Stream.Emit(0         , 32);  // Filled in later.
1379   Stream.Emit(CPUType   , 32);
1380 }
1381 
1382 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1383 /// finalize the header.
1384 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1385   // Update the size field in the header.
1386   Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1387 
1388   // If the file is not a multiple of 16 bytes, insert dummy padding.
1389   while (BufferSize & 15) {
1390     Stream.Emit(0, 8);
1391     ++BufferSize;
1392   }
1393 }
1394 
1395 
1396 /// WriteBitcodeToFile - Write the specified module to the specified output
1397 /// stream.
1398 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
1399   raw_os_ostream RawOut(Out);
1400   // If writing to stdout, set binary mode.
1401   if (llvm::cout == Out)
1402     sys::Program::ChangeStdoutToBinary();
1403   WriteBitcodeToFile(M, RawOut);
1404 }
1405 
1406 /// WriteBitcodeToFile - Write the specified module to the specified output
1407 /// stream.
1408 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1409   std::vector<unsigned char> Buffer;
1410   BitstreamWriter Stream(Buffer);
1411 
1412   Buffer.reserve(256*1024);
1413 
1414   WriteBitcodeToStream( M, Stream );
1415 
1416   // If writing to stdout, set binary mode.
1417   if (&llvm::outs() == &Out)
1418     sys::Program::ChangeStdoutToBinary();
1419 
1420   // Write the generated bitstream to "Out".
1421   Out.write((char*)&Buffer.front(), Buffer.size());
1422 
1423   // Make sure it hits disk now.
1424   Out.flush();
1425 }
1426 
1427 /// WriteBitcodeToStream - Write the specified module to the specified output
1428 /// stream.
1429 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1430   // If this is darwin, emit a file header and trailer if needed.
1431   bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
1432   if (isDarwin)
1433     EmitDarwinBCHeader(Stream, M->getTargetTriple());
1434 
1435   // Emit the file header.
1436   Stream.Emit((unsigned)'B', 8);
1437   Stream.Emit((unsigned)'C', 8);
1438   Stream.Emit(0x0, 4);
1439   Stream.Emit(0xC, 4);
1440   Stream.Emit(0xE, 4);
1441   Stream.Emit(0xD, 4);
1442 
1443   // Emit the module.
1444   WriteModule(M, Stream);
1445 
1446   if (isDarwin)
1447     EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
1448 }
1449