1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Bitcode/BitcodeCommon.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/MC/TargetRegistry.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/TargetParser/Triple.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <optional> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 static cl::opt<unsigned> 87 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 88 cl::desc("Number of metadatas above which we emit an index " 89 "to enable lazy-loading")); 90 static cl::opt<uint32_t> FlushThreshold( 91 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 92 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 93 94 static cl::opt<bool> WriteRelBFToSummary( 95 "write-relbf-to-summary", cl::Hidden, cl::init(false), 96 cl::desc("Write relative block frequency to function summary ")); 97 98 namespace llvm { 99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 100 } 101 102 namespace { 103 104 /// These are manifest constants used by the bitcode writer. They do not need to 105 /// be kept in sync with the reader, but need to be consistent within this file. 106 enum { 107 // VALUE_SYMTAB_BLOCK abbrev id's. 108 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 109 VST_ENTRY_7_ABBREV, 110 VST_ENTRY_6_ABBREV, 111 VST_BBENTRY_6_ABBREV, 112 113 // CONSTANTS_BLOCK abbrev id's. 114 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 115 CONSTANTS_INTEGER_ABBREV, 116 CONSTANTS_CE_CAST_Abbrev, 117 CONSTANTS_NULL_Abbrev, 118 119 // FUNCTION_BLOCK abbrev id's. 120 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 121 FUNCTION_INST_UNOP_ABBREV, 122 FUNCTION_INST_UNOP_FLAGS_ABBREV, 123 FUNCTION_INST_BINOP_ABBREV, 124 FUNCTION_INST_BINOP_FLAGS_ABBREV, 125 FUNCTION_INST_CAST_ABBREV, 126 FUNCTION_INST_CAST_FLAGS_ABBREV, 127 FUNCTION_INST_RET_VOID_ABBREV, 128 FUNCTION_INST_RET_VAL_ABBREV, 129 FUNCTION_INST_UNREACHABLE_ABBREV, 130 FUNCTION_INST_GEP_ABBREV, 131 }; 132 133 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 134 /// file type. 135 class BitcodeWriterBase { 136 protected: 137 /// The stream created and owned by the client. 138 BitstreamWriter &Stream; 139 140 StringTableBuilder &StrtabBuilder; 141 142 public: 143 /// Constructs a BitcodeWriterBase object that writes to the provided 144 /// \p Stream. 145 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 146 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 147 148 protected: 149 void writeModuleVersion(); 150 }; 151 152 void BitcodeWriterBase::writeModuleVersion() { 153 // VERSION: [version#] 154 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 155 } 156 157 /// Base class to manage the module bitcode writing, currently subclassed for 158 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 159 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 160 protected: 161 /// The Module to write to bitcode. 162 const Module &M; 163 164 /// Enumerates ids for all values in the module. 165 ValueEnumerator VE; 166 167 /// Optional per-module index to write for ThinLTO. 168 const ModuleSummaryIndex *Index; 169 170 /// Map that holds the correspondence between GUIDs in the summary index, 171 /// that came from indirect call profiles, and a value id generated by this 172 /// class to use in the VST and summary block records. 173 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 174 175 /// Tracks the last value id recorded in the GUIDToValueMap. 176 unsigned GlobalValueId; 177 178 /// Saves the offset of the VSTOffset record that must eventually be 179 /// backpatched with the offset of the actual VST. 180 uint64_t VSTOffsetPlaceholder = 0; 181 182 public: 183 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 184 /// writing to the provided \p Buffer. 185 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 186 BitstreamWriter &Stream, 187 bool ShouldPreserveUseListOrder, 188 const ModuleSummaryIndex *Index) 189 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 190 VE(M, ShouldPreserveUseListOrder), Index(Index) { 191 // Assign ValueIds to any callee values in the index that came from 192 // indirect call profiles and were recorded as a GUID not a Value* 193 // (which would have been assigned an ID by the ValueEnumerator). 194 // The starting ValueId is just after the number of values in the 195 // ValueEnumerator, so that they can be emitted in the VST. 196 GlobalValueId = VE.getValues().size(); 197 if (!Index) 198 return; 199 for (const auto &GUIDSummaryLists : *Index) 200 // Examine all summaries for this GUID. 201 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 202 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 203 // For each call in the function summary, see if the call 204 // is to a GUID (which means it is for an indirect call, 205 // otherwise we would have a Value for it). If so, synthesize 206 // a value id. 207 for (auto &CallEdge : FS->calls()) 208 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 209 assignValueId(CallEdge.first.getGUID()); 210 } 211 212 protected: 213 void writePerModuleGlobalValueSummary(); 214 215 private: 216 void writePerModuleFunctionSummaryRecord( 217 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 218 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 219 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F); 220 void writeModuleLevelReferences(const GlobalVariable &V, 221 SmallVector<uint64_t, 64> &NameVals, 222 unsigned FSModRefsAbbrev, 223 unsigned FSModVTableRefsAbbrev); 224 225 void assignValueId(GlobalValue::GUID ValGUID) { 226 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 227 } 228 229 unsigned getValueId(GlobalValue::GUID ValGUID) { 230 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 231 // Expect that any GUID value had a value Id assigned by an 232 // earlier call to assignValueId. 233 assert(VMI != GUIDToValueIdMap.end() && 234 "GUID does not have assigned value Id"); 235 return VMI->second; 236 } 237 238 // Helper to get the valueId for the type of value recorded in VI. 239 unsigned getValueId(ValueInfo VI) { 240 if (!VI.haveGVs() || !VI.getValue()) 241 return getValueId(VI.getGUID()); 242 return VE.getValueID(VI.getValue()); 243 } 244 245 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 246 }; 247 248 /// Class to manage the bitcode writing for a module. 249 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 250 /// Pointer to the buffer allocated by caller for bitcode writing. 251 const SmallVectorImpl<char> &Buffer; 252 253 /// True if a module hash record should be written. 254 bool GenerateHash; 255 256 /// If non-null, when GenerateHash is true, the resulting hash is written 257 /// into ModHash. 258 ModuleHash *ModHash; 259 260 SHA1 Hasher; 261 262 /// The start bit of the identification block. 263 uint64_t BitcodeStartBit; 264 265 public: 266 /// Constructs a ModuleBitcodeWriter object for the given Module, 267 /// writing to the provided \p Buffer. 268 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 269 StringTableBuilder &StrtabBuilder, 270 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 271 const ModuleSummaryIndex *Index, bool GenerateHash, 272 ModuleHash *ModHash = nullptr) 273 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 274 ShouldPreserveUseListOrder, Index), 275 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 276 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 277 278 /// Emit the current module to the bitstream. 279 void write(); 280 281 private: 282 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 283 284 size_t addToStrtab(StringRef Str); 285 286 void writeAttributeGroupTable(); 287 void writeAttributeTable(); 288 void writeTypeTable(); 289 void writeComdats(); 290 void writeValueSymbolTableForwardDecl(); 291 void writeModuleInfo(); 292 void writeValueAsMetadata(const ValueAsMetadata *MD, 293 SmallVectorImpl<uint64_t> &Record); 294 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 295 unsigned Abbrev); 296 unsigned createDILocationAbbrev(); 297 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 298 unsigned &Abbrev); 299 unsigned createGenericDINodeAbbrev(); 300 void writeGenericDINode(const GenericDINode *N, 301 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 302 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 303 unsigned Abbrev); 304 void writeDIGenericSubrange(const DIGenericSubrange *N, 305 SmallVectorImpl<uint64_t> &Record, 306 unsigned Abbrev); 307 void writeDIEnumerator(const DIEnumerator *N, 308 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 309 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 310 unsigned Abbrev); 311 void writeDIStringType(const DIStringType *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDIDerivedType(const DIDerivedType *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDICompositeType(const DICompositeType *N, 316 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 317 void writeDISubroutineType(const DISubroutineType *N, 318 SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 321 unsigned Abbrev); 322 void writeDICompileUnit(const DICompileUnit *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDISubprogram(const DISubprogram *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDILexicalBlock(const DILexicalBlock *N, 327 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 328 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 329 SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDICommonBlock(const DICommonBlock *N, 332 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 333 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 342 unsigned Abbrev); 343 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 344 unsigned Abbrev); 345 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 346 SmallVectorImpl<uint64_t> &Record, 347 unsigned Abbrev); 348 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 349 SmallVectorImpl<uint64_t> &Record, 350 unsigned Abbrev); 351 void writeDIGlobalVariable(const DIGlobalVariable *N, 352 SmallVectorImpl<uint64_t> &Record, 353 unsigned Abbrev); 354 void writeDILocalVariable(const DILocalVariable *N, 355 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 356 void writeDILabel(const DILabel *N, 357 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 358 void writeDIExpression(const DIExpression *N, 359 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 360 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 361 SmallVectorImpl<uint64_t> &Record, 362 unsigned Abbrev); 363 void writeDIObjCProperty(const DIObjCProperty *N, 364 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 365 void writeDIImportedEntity(const DIImportedEntity *N, 366 SmallVectorImpl<uint64_t> &Record, 367 unsigned Abbrev); 368 unsigned createNamedMetadataAbbrev(); 369 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 370 unsigned createMetadataStringsAbbrev(); 371 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 372 SmallVectorImpl<uint64_t> &Record); 373 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 374 SmallVectorImpl<uint64_t> &Record, 375 std::vector<unsigned> *MDAbbrevs = nullptr, 376 std::vector<uint64_t> *IndexPos = nullptr); 377 void writeModuleMetadata(); 378 void writeFunctionMetadata(const Function &F); 379 void writeFunctionMetadataAttachment(const Function &F); 380 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 381 const GlobalObject &GO); 382 void writeModuleMetadataKinds(); 383 void writeOperandBundleTags(); 384 void writeSyncScopeNames(); 385 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 386 void writeModuleConstants(); 387 bool pushValueAndType(const Value *V, unsigned InstID, 388 SmallVectorImpl<unsigned> &Vals); 389 void writeOperandBundles(const CallBase &CB, unsigned InstID); 390 void pushValue(const Value *V, unsigned InstID, 391 SmallVectorImpl<unsigned> &Vals); 392 void pushValueSigned(const Value *V, unsigned InstID, 393 SmallVectorImpl<uint64_t> &Vals); 394 void writeInstruction(const Instruction &I, unsigned InstID, 395 SmallVectorImpl<unsigned> &Vals); 396 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 397 void writeGlobalValueSymbolTable( 398 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 399 void writeUseList(UseListOrder &&Order); 400 void writeUseListBlock(const Function *F); 401 void 402 writeFunction(const Function &F, 403 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 404 void writeBlockInfo(); 405 void writeModuleHash(size_t BlockStartPos); 406 407 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 408 return unsigned(SSID); 409 } 410 411 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 412 }; 413 414 /// Class to manage the bitcode writing for a combined index. 415 class IndexBitcodeWriter : public BitcodeWriterBase { 416 /// The combined index to write to bitcode. 417 const ModuleSummaryIndex &Index; 418 419 /// When writing a subset of the index for distributed backends, client 420 /// provides a map of modules to the corresponding GUIDs/summaries to write. 421 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 422 423 /// Map that holds the correspondence between the GUID used in the combined 424 /// index and a value id generated by this class to use in references. 425 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 426 427 // The sorted stack id indices actually used in the summary entries being 428 // written, which will be a subset of those in the full index in the case of 429 // distributed indexes. 430 std::vector<unsigned> StackIdIndices; 431 432 /// Tracks the last value id recorded in the GUIDToValueMap. 433 unsigned GlobalValueId = 0; 434 435 /// Tracks the assignment of module paths in the module path string table to 436 /// an id assigned for use in summary references to the module path. 437 DenseMap<StringRef, uint64_t> ModuleIdMap; 438 439 public: 440 /// Constructs a IndexBitcodeWriter object for the given combined index, 441 /// writing to the provided \p Buffer. When writing a subset of the index 442 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 443 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 444 const ModuleSummaryIndex &Index, 445 const std::map<std::string, GVSummaryMapTy> 446 *ModuleToSummariesForIndex = nullptr) 447 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 448 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 449 // Assign unique value ids to all summaries to be written, for use 450 // in writing out the call graph edges. Save the mapping from GUID 451 // to the new global value id to use when writing those edges, which 452 // are currently saved in the index in terms of GUID. 453 forEachSummary([&](GVInfo I, bool IsAliasee) { 454 GUIDToValueIdMap[I.first] = ++GlobalValueId; 455 if (IsAliasee) 456 return; 457 auto *FS = dyn_cast<FunctionSummary>(I.second); 458 if (!FS) 459 return; 460 // Record all stack id indices actually used in the summary entries being 461 // written, so that we can compact them in the case of distributed ThinLTO 462 // indexes. 463 for (auto &CI : FS->callsites()) 464 for (auto Idx : CI.StackIdIndices) 465 StackIdIndices.push_back(Idx); 466 for (auto &AI : FS->allocs()) 467 for (auto &MIB : AI.MIBs) 468 for (auto Idx : MIB.StackIdIndices) 469 StackIdIndices.push_back(Idx); 470 }); 471 llvm::sort(StackIdIndices); 472 StackIdIndices.erase( 473 std::unique(StackIdIndices.begin(), StackIdIndices.end()), 474 StackIdIndices.end()); 475 } 476 477 /// The below iterator returns the GUID and associated summary. 478 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 479 480 /// Calls the callback for each value GUID and summary to be written to 481 /// bitcode. This hides the details of whether they are being pulled from the 482 /// entire index or just those in a provided ModuleToSummariesForIndex map. 483 template<typename Functor> 484 void forEachSummary(Functor Callback) { 485 if (ModuleToSummariesForIndex) { 486 for (auto &M : *ModuleToSummariesForIndex) 487 for (auto &Summary : M.second) { 488 Callback(Summary, false); 489 // Ensure aliasee is handled, e.g. for assigning a valueId, 490 // even if we are not importing the aliasee directly (the 491 // imported alias will contain a copy of aliasee). 492 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 493 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 494 } 495 } else { 496 for (auto &Summaries : Index) 497 for (auto &Summary : Summaries.second.SummaryList) 498 Callback({Summaries.first, Summary.get()}, false); 499 } 500 } 501 502 /// Calls the callback for each entry in the modulePaths StringMap that 503 /// should be written to the module path string table. This hides the details 504 /// of whether they are being pulled from the entire index or just those in a 505 /// provided ModuleToSummariesForIndex map. 506 template <typename Functor> void forEachModule(Functor Callback) { 507 if (ModuleToSummariesForIndex) { 508 for (const auto &M : *ModuleToSummariesForIndex) { 509 const auto &MPI = Index.modulePaths().find(M.first); 510 if (MPI == Index.modulePaths().end()) { 511 // This should only happen if the bitcode file was empty, in which 512 // case we shouldn't be importing (the ModuleToSummariesForIndex 513 // would only include the module we are writing and index for). 514 assert(ModuleToSummariesForIndex->size() == 1); 515 continue; 516 } 517 Callback(*MPI); 518 } 519 } else { 520 // Since StringMap iteration order isn't guaranteed, order by path string 521 // first. 522 // FIXME: Make this a vector of StringMapEntry instead to avoid the later 523 // map lookup. 524 std::vector<StringRef> ModulePaths; 525 for (auto &[ModPath, _] : Index.modulePaths()) 526 ModulePaths.push_back(ModPath); 527 llvm::sort(ModulePaths.begin(), ModulePaths.end()); 528 for (auto &ModPath : ModulePaths) 529 Callback(*Index.modulePaths().find(ModPath)); 530 } 531 } 532 533 /// Main entry point for writing a combined index to bitcode. 534 void write(); 535 536 private: 537 void writeModStrings(); 538 void writeCombinedGlobalValueSummary(); 539 540 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 541 auto VMI = GUIDToValueIdMap.find(ValGUID); 542 if (VMI == GUIDToValueIdMap.end()) 543 return std::nullopt; 544 return VMI->second; 545 } 546 547 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 548 }; 549 550 } // end anonymous namespace 551 552 static unsigned getEncodedCastOpcode(unsigned Opcode) { 553 switch (Opcode) { 554 default: llvm_unreachable("Unknown cast instruction!"); 555 case Instruction::Trunc : return bitc::CAST_TRUNC; 556 case Instruction::ZExt : return bitc::CAST_ZEXT; 557 case Instruction::SExt : return bitc::CAST_SEXT; 558 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 559 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 560 case Instruction::UIToFP : return bitc::CAST_UITOFP; 561 case Instruction::SIToFP : return bitc::CAST_SITOFP; 562 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 563 case Instruction::FPExt : return bitc::CAST_FPEXT; 564 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 565 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 566 case Instruction::BitCast : return bitc::CAST_BITCAST; 567 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 568 } 569 } 570 571 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 572 switch (Opcode) { 573 default: llvm_unreachable("Unknown binary instruction!"); 574 case Instruction::FNeg: return bitc::UNOP_FNEG; 575 } 576 } 577 578 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 579 switch (Opcode) { 580 default: llvm_unreachable("Unknown binary instruction!"); 581 case Instruction::Add: 582 case Instruction::FAdd: return bitc::BINOP_ADD; 583 case Instruction::Sub: 584 case Instruction::FSub: return bitc::BINOP_SUB; 585 case Instruction::Mul: 586 case Instruction::FMul: return bitc::BINOP_MUL; 587 case Instruction::UDiv: return bitc::BINOP_UDIV; 588 case Instruction::FDiv: 589 case Instruction::SDiv: return bitc::BINOP_SDIV; 590 case Instruction::URem: return bitc::BINOP_UREM; 591 case Instruction::FRem: 592 case Instruction::SRem: return bitc::BINOP_SREM; 593 case Instruction::Shl: return bitc::BINOP_SHL; 594 case Instruction::LShr: return bitc::BINOP_LSHR; 595 case Instruction::AShr: return bitc::BINOP_ASHR; 596 case Instruction::And: return bitc::BINOP_AND; 597 case Instruction::Or: return bitc::BINOP_OR; 598 case Instruction::Xor: return bitc::BINOP_XOR; 599 } 600 } 601 602 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 603 switch (Op) { 604 default: llvm_unreachable("Unknown RMW operation!"); 605 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 606 case AtomicRMWInst::Add: return bitc::RMW_ADD; 607 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 608 case AtomicRMWInst::And: return bitc::RMW_AND; 609 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 610 case AtomicRMWInst::Or: return bitc::RMW_OR; 611 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 612 case AtomicRMWInst::Max: return bitc::RMW_MAX; 613 case AtomicRMWInst::Min: return bitc::RMW_MIN; 614 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 615 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 616 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 617 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 618 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 619 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 620 case AtomicRMWInst::UIncWrap: 621 return bitc::RMW_UINC_WRAP; 622 case AtomicRMWInst::UDecWrap: 623 return bitc::RMW_UDEC_WRAP; 624 } 625 } 626 627 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 628 switch (Ordering) { 629 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 630 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 631 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 632 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 633 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 634 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 635 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 636 } 637 llvm_unreachable("Invalid ordering"); 638 } 639 640 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 641 StringRef Str, unsigned AbbrevToUse) { 642 SmallVector<unsigned, 64> Vals; 643 644 // Code: [strchar x N] 645 for (char C : Str) { 646 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 647 AbbrevToUse = 0; 648 Vals.push_back(C); 649 } 650 651 // Emit the finished record. 652 Stream.EmitRecord(Code, Vals, AbbrevToUse); 653 } 654 655 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 656 switch (Kind) { 657 case Attribute::Alignment: 658 return bitc::ATTR_KIND_ALIGNMENT; 659 case Attribute::AllocAlign: 660 return bitc::ATTR_KIND_ALLOC_ALIGN; 661 case Attribute::AllocSize: 662 return bitc::ATTR_KIND_ALLOC_SIZE; 663 case Attribute::AlwaysInline: 664 return bitc::ATTR_KIND_ALWAYS_INLINE; 665 case Attribute::Builtin: 666 return bitc::ATTR_KIND_BUILTIN; 667 case Attribute::ByVal: 668 return bitc::ATTR_KIND_BY_VAL; 669 case Attribute::Convergent: 670 return bitc::ATTR_KIND_CONVERGENT; 671 case Attribute::InAlloca: 672 return bitc::ATTR_KIND_IN_ALLOCA; 673 case Attribute::Cold: 674 return bitc::ATTR_KIND_COLD; 675 case Attribute::DisableSanitizerInstrumentation: 676 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 677 case Attribute::FnRetThunkExtern: 678 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 679 case Attribute::Hot: 680 return bitc::ATTR_KIND_HOT; 681 case Attribute::ElementType: 682 return bitc::ATTR_KIND_ELEMENTTYPE; 683 case Attribute::InlineHint: 684 return bitc::ATTR_KIND_INLINE_HINT; 685 case Attribute::InReg: 686 return bitc::ATTR_KIND_IN_REG; 687 case Attribute::JumpTable: 688 return bitc::ATTR_KIND_JUMP_TABLE; 689 case Attribute::MinSize: 690 return bitc::ATTR_KIND_MIN_SIZE; 691 case Attribute::AllocatedPointer: 692 return bitc::ATTR_KIND_ALLOCATED_POINTER; 693 case Attribute::AllocKind: 694 return bitc::ATTR_KIND_ALLOC_KIND; 695 case Attribute::Memory: 696 return bitc::ATTR_KIND_MEMORY; 697 case Attribute::NoFPClass: 698 return bitc::ATTR_KIND_NOFPCLASS; 699 case Attribute::Naked: 700 return bitc::ATTR_KIND_NAKED; 701 case Attribute::Nest: 702 return bitc::ATTR_KIND_NEST; 703 case Attribute::NoAlias: 704 return bitc::ATTR_KIND_NO_ALIAS; 705 case Attribute::NoBuiltin: 706 return bitc::ATTR_KIND_NO_BUILTIN; 707 case Attribute::NoCallback: 708 return bitc::ATTR_KIND_NO_CALLBACK; 709 case Attribute::NoCapture: 710 return bitc::ATTR_KIND_NO_CAPTURE; 711 case Attribute::NoDuplicate: 712 return bitc::ATTR_KIND_NO_DUPLICATE; 713 case Attribute::NoFree: 714 return bitc::ATTR_KIND_NOFREE; 715 case Attribute::NoImplicitFloat: 716 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 717 case Attribute::NoInline: 718 return bitc::ATTR_KIND_NO_INLINE; 719 case Attribute::NoRecurse: 720 return bitc::ATTR_KIND_NO_RECURSE; 721 case Attribute::NoMerge: 722 return bitc::ATTR_KIND_NO_MERGE; 723 case Attribute::NonLazyBind: 724 return bitc::ATTR_KIND_NON_LAZY_BIND; 725 case Attribute::NonNull: 726 return bitc::ATTR_KIND_NON_NULL; 727 case Attribute::Dereferenceable: 728 return bitc::ATTR_KIND_DEREFERENCEABLE; 729 case Attribute::DereferenceableOrNull: 730 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 731 case Attribute::NoRedZone: 732 return bitc::ATTR_KIND_NO_RED_ZONE; 733 case Attribute::NoReturn: 734 return bitc::ATTR_KIND_NO_RETURN; 735 case Attribute::NoSync: 736 return bitc::ATTR_KIND_NOSYNC; 737 case Attribute::NoCfCheck: 738 return bitc::ATTR_KIND_NOCF_CHECK; 739 case Attribute::NoProfile: 740 return bitc::ATTR_KIND_NO_PROFILE; 741 case Attribute::SkipProfile: 742 return bitc::ATTR_KIND_SKIP_PROFILE; 743 case Attribute::NoUnwind: 744 return bitc::ATTR_KIND_NO_UNWIND; 745 case Attribute::NoSanitizeBounds: 746 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 747 case Attribute::NoSanitizeCoverage: 748 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 749 case Attribute::NullPointerIsValid: 750 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 751 case Attribute::OptimizeForDebugging: 752 return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING; 753 case Attribute::OptForFuzzing: 754 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 755 case Attribute::OptimizeForSize: 756 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 757 case Attribute::OptimizeNone: 758 return bitc::ATTR_KIND_OPTIMIZE_NONE; 759 case Attribute::ReadNone: 760 return bitc::ATTR_KIND_READ_NONE; 761 case Attribute::ReadOnly: 762 return bitc::ATTR_KIND_READ_ONLY; 763 case Attribute::Returned: 764 return bitc::ATTR_KIND_RETURNED; 765 case Attribute::ReturnsTwice: 766 return bitc::ATTR_KIND_RETURNS_TWICE; 767 case Attribute::SExt: 768 return bitc::ATTR_KIND_S_EXT; 769 case Attribute::Speculatable: 770 return bitc::ATTR_KIND_SPECULATABLE; 771 case Attribute::StackAlignment: 772 return bitc::ATTR_KIND_STACK_ALIGNMENT; 773 case Attribute::StackProtect: 774 return bitc::ATTR_KIND_STACK_PROTECT; 775 case Attribute::StackProtectReq: 776 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 777 case Attribute::StackProtectStrong: 778 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 779 case Attribute::SafeStack: 780 return bitc::ATTR_KIND_SAFESTACK; 781 case Attribute::ShadowCallStack: 782 return bitc::ATTR_KIND_SHADOWCALLSTACK; 783 case Attribute::StrictFP: 784 return bitc::ATTR_KIND_STRICT_FP; 785 case Attribute::StructRet: 786 return bitc::ATTR_KIND_STRUCT_RET; 787 case Attribute::SanitizeAddress: 788 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 789 case Attribute::SanitizeHWAddress: 790 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 791 case Attribute::SanitizeThread: 792 return bitc::ATTR_KIND_SANITIZE_THREAD; 793 case Attribute::SanitizeMemory: 794 return bitc::ATTR_KIND_SANITIZE_MEMORY; 795 case Attribute::SpeculativeLoadHardening: 796 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 797 case Attribute::SwiftError: 798 return bitc::ATTR_KIND_SWIFT_ERROR; 799 case Attribute::SwiftSelf: 800 return bitc::ATTR_KIND_SWIFT_SELF; 801 case Attribute::SwiftAsync: 802 return bitc::ATTR_KIND_SWIFT_ASYNC; 803 case Attribute::UWTable: 804 return bitc::ATTR_KIND_UW_TABLE; 805 case Attribute::VScaleRange: 806 return bitc::ATTR_KIND_VSCALE_RANGE; 807 case Attribute::WillReturn: 808 return bitc::ATTR_KIND_WILLRETURN; 809 case Attribute::WriteOnly: 810 return bitc::ATTR_KIND_WRITEONLY; 811 case Attribute::ZExt: 812 return bitc::ATTR_KIND_Z_EXT; 813 case Attribute::ImmArg: 814 return bitc::ATTR_KIND_IMMARG; 815 case Attribute::SanitizeMemTag: 816 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 817 case Attribute::Preallocated: 818 return bitc::ATTR_KIND_PREALLOCATED; 819 case Attribute::NoUndef: 820 return bitc::ATTR_KIND_NOUNDEF; 821 case Attribute::ByRef: 822 return bitc::ATTR_KIND_BYREF; 823 case Attribute::MustProgress: 824 return bitc::ATTR_KIND_MUSTPROGRESS; 825 case Attribute::PresplitCoroutine: 826 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 827 case Attribute::Writable: 828 return bitc::ATTR_KIND_WRITABLE; 829 case Attribute::CoroDestroyOnlyWhenComplete: 830 return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE; 831 case Attribute::EndAttrKinds: 832 llvm_unreachable("Can not encode end-attribute kinds marker."); 833 case Attribute::None: 834 llvm_unreachable("Can not encode none-attribute."); 835 case Attribute::EmptyKey: 836 case Attribute::TombstoneKey: 837 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 838 } 839 840 llvm_unreachable("Trying to encode unknown attribute"); 841 } 842 843 void ModuleBitcodeWriter::writeAttributeGroupTable() { 844 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 845 VE.getAttributeGroups(); 846 if (AttrGrps.empty()) return; 847 848 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 849 850 SmallVector<uint64_t, 64> Record; 851 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 852 unsigned AttrListIndex = Pair.first; 853 AttributeSet AS = Pair.second; 854 Record.push_back(VE.getAttributeGroupID(Pair)); 855 Record.push_back(AttrListIndex); 856 857 for (Attribute Attr : AS) { 858 if (Attr.isEnumAttribute()) { 859 Record.push_back(0); 860 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 861 } else if (Attr.isIntAttribute()) { 862 Record.push_back(1); 863 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 864 Record.push_back(Attr.getValueAsInt()); 865 } else if (Attr.isStringAttribute()) { 866 StringRef Kind = Attr.getKindAsString(); 867 StringRef Val = Attr.getValueAsString(); 868 869 Record.push_back(Val.empty() ? 3 : 4); 870 Record.append(Kind.begin(), Kind.end()); 871 Record.push_back(0); 872 if (!Val.empty()) { 873 Record.append(Val.begin(), Val.end()); 874 Record.push_back(0); 875 } 876 } else { 877 assert(Attr.isTypeAttribute()); 878 Type *Ty = Attr.getValueAsType(); 879 Record.push_back(Ty ? 6 : 5); 880 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 881 if (Ty) 882 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 883 } 884 } 885 886 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 887 Record.clear(); 888 } 889 890 Stream.ExitBlock(); 891 } 892 893 void ModuleBitcodeWriter::writeAttributeTable() { 894 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 895 if (Attrs.empty()) return; 896 897 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 898 899 SmallVector<uint64_t, 64> Record; 900 for (const AttributeList &AL : Attrs) { 901 for (unsigned i : AL.indexes()) { 902 AttributeSet AS = AL.getAttributes(i); 903 if (AS.hasAttributes()) 904 Record.push_back(VE.getAttributeGroupID({i, AS})); 905 } 906 907 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 908 Record.clear(); 909 } 910 911 Stream.ExitBlock(); 912 } 913 914 /// WriteTypeTable - Write out the type table for a module. 915 void ModuleBitcodeWriter::writeTypeTable() { 916 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 917 918 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 919 SmallVector<uint64_t, 64> TypeVals; 920 921 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 922 923 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 924 auto Abbv = std::make_shared<BitCodeAbbrev>(); 925 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 926 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 927 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 928 929 // Abbrev for TYPE_CODE_FUNCTION. 930 Abbv = std::make_shared<BitCodeAbbrev>(); 931 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 932 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 934 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 935 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 936 937 // Abbrev for TYPE_CODE_STRUCT_ANON. 938 Abbv = std::make_shared<BitCodeAbbrev>(); 939 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 943 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 944 945 // Abbrev for TYPE_CODE_STRUCT_NAME. 946 Abbv = std::make_shared<BitCodeAbbrev>(); 947 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 950 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 951 952 // Abbrev for TYPE_CODE_STRUCT_NAMED. 953 Abbv = std::make_shared<BitCodeAbbrev>(); 954 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 958 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 959 960 // Abbrev for TYPE_CODE_ARRAY. 961 Abbv = std::make_shared<BitCodeAbbrev>(); 962 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 965 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 966 967 // Emit an entry count so the reader can reserve space. 968 TypeVals.push_back(TypeList.size()); 969 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 970 TypeVals.clear(); 971 972 // Loop over all of the types, emitting each in turn. 973 for (Type *T : TypeList) { 974 int AbbrevToUse = 0; 975 unsigned Code = 0; 976 977 switch (T->getTypeID()) { 978 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 979 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 980 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 981 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 982 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 983 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 984 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 985 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 986 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 987 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 988 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 989 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 990 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 991 case Type::IntegerTyID: 992 // INTEGER: [width] 993 Code = bitc::TYPE_CODE_INTEGER; 994 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 995 break; 996 case Type::PointerTyID: { 997 PointerType *PTy = cast<PointerType>(T); 998 unsigned AddressSpace = PTy->getAddressSpace(); 999 // OPAQUE_POINTER: [address space] 1000 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 1001 TypeVals.push_back(AddressSpace); 1002 if (AddressSpace == 0) 1003 AbbrevToUse = OpaquePtrAbbrev; 1004 break; 1005 } 1006 case Type::FunctionTyID: { 1007 FunctionType *FT = cast<FunctionType>(T); 1008 // FUNCTION: [isvararg, retty, paramty x N] 1009 Code = bitc::TYPE_CODE_FUNCTION; 1010 TypeVals.push_back(FT->isVarArg()); 1011 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 1012 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 1013 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 1014 AbbrevToUse = FunctionAbbrev; 1015 break; 1016 } 1017 case Type::StructTyID: { 1018 StructType *ST = cast<StructType>(T); 1019 // STRUCT: [ispacked, eltty x N] 1020 TypeVals.push_back(ST->isPacked()); 1021 // Output all of the element types. 1022 for (Type *ET : ST->elements()) 1023 TypeVals.push_back(VE.getTypeID(ET)); 1024 1025 if (ST->isLiteral()) { 1026 Code = bitc::TYPE_CODE_STRUCT_ANON; 1027 AbbrevToUse = StructAnonAbbrev; 1028 } else { 1029 if (ST->isOpaque()) { 1030 Code = bitc::TYPE_CODE_OPAQUE; 1031 } else { 1032 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1033 AbbrevToUse = StructNamedAbbrev; 1034 } 1035 1036 // Emit the name if it is present. 1037 if (!ST->getName().empty()) 1038 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1039 StructNameAbbrev); 1040 } 1041 break; 1042 } 1043 case Type::ArrayTyID: { 1044 ArrayType *AT = cast<ArrayType>(T); 1045 // ARRAY: [numelts, eltty] 1046 Code = bitc::TYPE_CODE_ARRAY; 1047 TypeVals.push_back(AT->getNumElements()); 1048 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1049 AbbrevToUse = ArrayAbbrev; 1050 break; 1051 } 1052 case Type::FixedVectorTyID: 1053 case Type::ScalableVectorTyID: { 1054 VectorType *VT = cast<VectorType>(T); 1055 // VECTOR [numelts, eltty] or 1056 // [numelts, eltty, scalable] 1057 Code = bitc::TYPE_CODE_VECTOR; 1058 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1059 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1060 if (isa<ScalableVectorType>(VT)) 1061 TypeVals.push_back(true); 1062 break; 1063 } 1064 case Type::TargetExtTyID: { 1065 TargetExtType *TET = cast<TargetExtType>(T); 1066 Code = bitc::TYPE_CODE_TARGET_TYPE; 1067 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), 1068 StructNameAbbrev); 1069 TypeVals.push_back(TET->getNumTypeParameters()); 1070 for (Type *InnerTy : TET->type_params()) 1071 TypeVals.push_back(VE.getTypeID(InnerTy)); 1072 for (unsigned IntParam : TET->int_params()) 1073 TypeVals.push_back(IntParam); 1074 break; 1075 } 1076 case Type::TypedPointerTyID: 1077 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1078 } 1079 1080 // Emit the finished record. 1081 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1082 TypeVals.clear(); 1083 } 1084 1085 Stream.ExitBlock(); 1086 } 1087 1088 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1089 switch (Linkage) { 1090 case GlobalValue::ExternalLinkage: 1091 return 0; 1092 case GlobalValue::WeakAnyLinkage: 1093 return 16; 1094 case GlobalValue::AppendingLinkage: 1095 return 2; 1096 case GlobalValue::InternalLinkage: 1097 return 3; 1098 case GlobalValue::LinkOnceAnyLinkage: 1099 return 18; 1100 case GlobalValue::ExternalWeakLinkage: 1101 return 7; 1102 case GlobalValue::CommonLinkage: 1103 return 8; 1104 case GlobalValue::PrivateLinkage: 1105 return 9; 1106 case GlobalValue::WeakODRLinkage: 1107 return 17; 1108 case GlobalValue::LinkOnceODRLinkage: 1109 return 19; 1110 case GlobalValue::AvailableExternallyLinkage: 1111 return 12; 1112 } 1113 llvm_unreachable("Invalid linkage"); 1114 } 1115 1116 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1117 return getEncodedLinkage(GV.getLinkage()); 1118 } 1119 1120 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1121 uint64_t RawFlags = 0; 1122 RawFlags |= Flags.ReadNone; 1123 RawFlags |= (Flags.ReadOnly << 1); 1124 RawFlags |= (Flags.NoRecurse << 2); 1125 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1126 RawFlags |= (Flags.NoInline << 4); 1127 RawFlags |= (Flags.AlwaysInline << 5); 1128 RawFlags |= (Flags.NoUnwind << 6); 1129 RawFlags |= (Flags.MayThrow << 7); 1130 RawFlags |= (Flags.HasUnknownCall << 8); 1131 RawFlags |= (Flags.MustBeUnreachable << 9); 1132 return RawFlags; 1133 } 1134 1135 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1136 // in BitcodeReader.cpp. 1137 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1138 uint64_t RawFlags = 0; 1139 1140 RawFlags |= Flags.NotEligibleToImport; // bool 1141 RawFlags |= (Flags.Live << 1); 1142 RawFlags |= (Flags.DSOLocal << 2); 1143 RawFlags |= (Flags.CanAutoHide << 3); 1144 1145 // Linkage don't need to be remapped at that time for the summary. Any future 1146 // change to the getEncodedLinkage() function will need to be taken into 1147 // account here as well. 1148 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1149 1150 RawFlags |= (Flags.Visibility << 8); // 2 bits 1151 1152 return RawFlags; 1153 } 1154 1155 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1156 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1157 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1158 return RawFlags; 1159 } 1160 1161 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1162 switch (GV.getVisibility()) { 1163 case GlobalValue::DefaultVisibility: return 0; 1164 case GlobalValue::HiddenVisibility: return 1; 1165 case GlobalValue::ProtectedVisibility: return 2; 1166 } 1167 llvm_unreachable("Invalid visibility"); 1168 } 1169 1170 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1171 switch (GV.getDLLStorageClass()) { 1172 case GlobalValue::DefaultStorageClass: return 0; 1173 case GlobalValue::DLLImportStorageClass: return 1; 1174 case GlobalValue::DLLExportStorageClass: return 2; 1175 } 1176 llvm_unreachable("Invalid DLL storage class"); 1177 } 1178 1179 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1180 switch (GV.getThreadLocalMode()) { 1181 case GlobalVariable::NotThreadLocal: return 0; 1182 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1183 case GlobalVariable::LocalDynamicTLSModel: return 2; 1184 case GlobalVariable::InitialExecTLSModel: return 3; 1185 case GlobalVariable::LocalExecTLSModel: return 4; 1186 } 1187 llvm_unreachable("Invalid TLS model"); 1188 } 1189 1190 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1191 switch (C.getSelectionKind()) { 1192 case Comdat::Any: 1193 return bitc::COMDAT_SELECTION_KIND_ANY; 1194 case Comdat::ExactMatch: 1195 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1196 case Comdat::Largest: 1197 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1198 case Comdat::NoDeduplicate: 1199 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1200 case Comdat::SameSize: 1201 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1202 } 1203 llvm_unreachable("Invalid selection kind"); 1204 } 1205 1206 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1207 switch (GV.getUnnamedAddr()) { 1208 case GlobalValue::UnnamedAddr::None: return 0; 1209 case GlobalValue::UnnamedAddr::Local: return 2; 1210 case GlobalValue::UnnamedAddr::Global: return 1; 1211 } 1212 llvm_unreachable("Invalid unnamed_addr"); 1213 } 1214 1215 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1216 if (GenerateHash) 1217 Hasher.update(Str); 1218 return StrtabBuilder.add(Str); 1219 } 1220 1221 void ModuleBitcodeWriter::writeComdats() { 1222 SmallVector<unsigned, 64> Vals; 1223 for (const Comdat *C : VE.getComdats()) { 1224 // COMDAT: [strtab offset, strtab size, selection_kind] 1225 Vals.push_back(addToStrtab(C->getName())); 1226 Vals.push_back(C->getName().size()); 1227 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1228 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1229 Vals.clear(); 1230 } 1231 } 1232 1233 /// Write a record that will eventually hold the word offset of the 1234 /// module-level VST. For now the offset is 0, which will be backpatched 1235 /// after the real VST is written. Saves the bit offset to backpatch. 1236 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1237 // Write a placeholder value in for the offset of the real VST, 1238 // which is written after the function blocks so that it can include 1239 // the offset of each function. The placeholder offset will be 1240 // updated when the real VST is written. 1241 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1242 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1243 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1244 // hold the real VST offset. Must use fixed instead of VBR as we don't 1245 // know how many VBR chunks to reserve ahead of time. 1246 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1247 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1248 1249 // Emit the placeholder 1250 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1251 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1252 1253 // Compute and save the bit offset to the placeholder, which will be 1254 // patched when the real VST is written. We can simply subtract the 32-bit 1255 // fixed size from the current bit number to get the location to backpatch. 1256 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1257 } 1258 1259 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1260 1261 /// Determine the encoding to use for the given string name and length. 1262 static StringEncoding getStringEncoding(StringRef Str) { 1263 bool isChar6 = true; 1264 for (char C : Str) { 1265 if (isChar6) 1266 isChar6 = BitCodeAbbrevOp::isChar6(C); 1267 if ((unsigned char)C & 128) 1268 // don't bother scanning the rest. 1269 return SE_Fixed8; 1270 } 1271 if (isChar6) 1272 return SE_Char6; 1273 return SE_Fixed7; 1274 } 1275 1276 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1277 "Sanitizer Metadata is too large for naive serialization."); 1278 static unsigned 1279 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1280 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1281 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1282 } 1283 1284 /// Emit top-level description of module, including target triple, inline asm, 1285 /// descriptors for global variables, and function prototype info. 1286 /// Returns the bit offset to backpatch with the location of the real VST. 1287 void ModuleBitcodeWriter::writeModuleInfo() { 1288 // Emit various pieces of data attached to a module. 1289 if (!M.getTargetTriple().empty()) 1290 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1291 0 /*TODO*/); 1292 const std::string &DL = M.getDataLayoutStr(); 1293 if (!DL.empty()) 1294 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1295 if (!M.getModuleInlineAsm().empty()) 1296 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1297 0 /*TODO*/); 1298 1299 // Emit information about sections and GC, computing how many there are. Also 1300 // compute the maximum alignment value. 1301 std::map<std::string, unsigned> SectionMap; 1302 std::map<std::string, unsigned> GCMap; 1303 MaybeAlign MaxAlignment; 1304 unsigned MaxGlobalType = 0; 1305 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1306 if (A) 1307 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1308 }; 1309 for (const GlobalVariable &GV : M.globals()) { 1310 UpdateMaxAlignment(GV.getAlign()); 1311 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1312 if (GV.hasSection()) { 1313 // Give section names unique ID's. 1314 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1315 if (!Entry) { 1316 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1317 0 /*TODO*/); 1318 Entry = SectionMap.size(); 1319 } 1320 } 1321 } 1322 for (const Function &F : M) { 1323 UpdateMaxAlignment(F.getAlign()); 1324 if (F.hasSection()) { 1325 // Give section names unique ID's. 1326 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1327 if (!Entry) { 1328 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1329 0 /*TODO*/); 1330 Entry = SectionMap.size(); 1331 } 1332 } 1333 if (F.hasGC()) { 1334 // Same for GC names. 1335 unsigned &Entry = GCMap[F.getGC()]; 1336 if (!Entry) { 1337 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1338 0 /*TODO*/); 1339 Entry = GCMap.size(); 1340 } 1341 } 1342 } 1343 1344 // Emit abbrev for globals, now that we know # sections and max alignment. 1345 unsigned SimpleGVarAbbrev = 0; 1346 if (!M.global_empty()) { 1347 // Add an abbrev for common globals with no visibility or thread localness. 1348 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1349 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1353 Log2_32_Ceil(MaxGlobalType+1))); 1354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1355 //| explicitType << 1 1356 //| constant 1357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1359 if (!MaxAlignment) // Alignment. 1360 Abbv->Add(BitCodeAbbrevOp(0)); 1361 else { 1362 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1364 Log2_32_Ceil(MaxEncAlignment+1))); 1365 } 1366 if (SectionMap.empty()) // Section. 1367 Abbv->Add(BitCodeAbbrevOp(0)); 1368 else 1369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1370 Log2_32_Ceil(SectionMap.size()+1))); 1371 // Don't bother emitting vis + thread local. 1372 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1373 } 1374 1375 SmallVector<unsigned, 64> Vals; 1376 // Emit the module's source file name. 1377 { 1378 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1379 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1380 if (Bits == SE_Char6) 1381 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1382 else if (Bits == SE_Fixed7) 1383 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1384 1385 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1386 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1387 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1389 Abbv->Add(AbbrevOpToUse); 1390 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1391 1392 for (const auto P : M.getSourceFileName()) 1393 Vals.push_back((unsigned char)P); 1394 1395 // Emit the finished record. 1396 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1397 Vals.clear(); 1398 } 1399 1400 // Emit the global variable information. 1401 for (const GlobalVariable &GV : M.globals()) { 1402 unsigned AbbrevToUse = 0; 1403 1404 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1405 // linkage, alignment, section, visibility, threadlocal, 1406 // unnamed_addr, externally_initialized, dllstorageclass, 1407 // comdat, attributes, DSO_Local, GlobalSanitizer] 1408 Vals.push_back(addToStrtab(GV.getName())); 1409 Vals.push_back(GV.getName().size()); 1410 Vals.push_back(VE.getTypeID(GV.getValueType())); 1411 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1412 Vals.push_back(GV.isDeclaration() ? 0 : 1413 (VE.getValueID(GV.getInitializer()) + 1)); 1414 Vals.push_back(getEncodedLinkage(GV)); 1415 Vals.push_back(getEncodedAlign(GV.getAlign())); 1416 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1417 : 0); 1418 if (GV.isThreadLocal() || 1419 GV.getVisibility() != GlobalValue::DefaultVisibility || 1420 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1421 GV.isExternallyInitialized() || 1422 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1423 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1424 GV.hasPartition() || GV.hasSanitizerMetadata()) { 1425 Vals.push_back(getEncodedVisibility(GV)); 1426 Vals.push_back(getEncodedThreadLocalMode(GV)); 1427 Vals.push_back(getEncodedUnnamedAddr(GV)); 1428 Vals.push_back(GV.isExternallyInitialized()); 1429 Vals.push_back(getEncodedDLLStorageClass(GV)); 1430 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1431 1432 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1433 Vals.push_back(VE.getAttributeListID(AL)); 1434 1435 Vals.push_back(GV.isDSOLocal()); 1436 Vals.push_back(addToStrtab(GV.getPartition())); 1437 Vals.push_back(GV.getPartition().size()); 1438 1439 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1440 GV.getSanitizerMetadata()) 1441 : 0)); 1442 } else { 1443 AbbrevToUse = SimpleGVarAbbrev; 1444 } 1445 1446 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1447 Vals.clear(); 1448 } 1449 1450 // Emit the function proto information. 1451 for (const Function &F : M) { 1452 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1453 // linkage, paramattrs, alignment, section, visibility, gc, 1454 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1455 // prefixdata, personalityfn, DSO_Local, addrspace] 1456 Vals.push_back(addToStrtab(F.getName())); 1457 Vals.push_back(F.getName().size()); 1458 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1459 Vals.push_back(F.getCallingConv()); 1460 Vals.push_back(F.isDeclaration()); 1461 Vals.push_back(getEncodedLinkage(F)); 1462 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1463 Vals.push_back(getEncodedAlign(F.getAlign())); 1464 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1465 : 0); 1466 Vals.push_back(getEncodedVisibility(F)); 1467 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1468 Vals.push_back(getEncodedUnnamedAddr(F)); 1469 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1470 : 0); 1471 Vals.push_back(getEncodedDLLStorageClass(F)); 1472 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1473 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1474 : 0); 1475 Vals.push_back( 1476 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1477 1478 Vals.push_back(F.isDSOLocal()); 1479 Vals.push_back(F.getAddressSpace()); 1480 Vals.push_back(addToStrtab(F.getPartition())); 1481 Vals.push_back(F.getPartition().size()); 1482 1483 unsigned AbbrevToUse = 0; 1484 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1485 Vals.clear(); 1486 } 1487 1488 // Emit the alias information. 1489 for (const GlobalAlias &A : M.aliases()) { 1490 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1491 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1492 // DSO_Local] 1493 Vals.push_back(addToStrtab(A.getName())); 1494 Vals.push_back(A.getName().size()); 1495 Vals.push_back(VE.getTypeID(A.getValueType())); 1496 Vals.push_back(A.getType()->getAddressSpace()); 1497 Vals.push_back(VE.getValueID(A.getAliasee())); 1498 Vals.push_back(getEncodedLinkage(A)); 1499 Vals.push_back(getEncodedVisibility(A)); 1500 Vals.push_back(getEncodedDLLStorageClass(A)); 1501 Vals.push_back(getEncodedThreadLocalMode(A)); 1502 Vals.push_back(getEncodedUnnamedAddr(A)); 1503 Vals.push_back(A.isDSOLocal()); 1504 Vals.push_back(addToStrtab(A.getPartition())); 1505 Vals.push_back(A.getPartition().size()); 1506 1507 unsigned AbbrevToUse = 0; 1508 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1509 Vals.clear(); 1510 } 1511 1512 // Emit the ifunc information. 1513 for (const GlobalIFunc &I : M.ifuncs()) { 1514 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1515 // val#, linkage, visibility, DSO_Local] 1516 Vals.push_back(addToStrtab(I.getName())); 1517 Vals.push_back(I.getName().size()); 1518 Vals.push_back(VE.getTypeID(I.getValueType())); 1519 Vals.push_back(I.getType()->getAddressSpace()); 1520 Vals.push_back(VE.getValueID(I.getResolver())); 1521 Vals.push_back(getEncodedLinkage(I)); 1522 Vals.push_back(getEncodedVisibility(I)); 1523 Vals.push_back(I.isDSOLocal()); 1524 Vals.push_back(addToStrtab(I.getPartition())); 1525 Vals.push_back(I.getPartition().size()); 1526 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1527 Vals.clear(); 1528 } 1529 1530 writeValueSymbolTableForwardDecl(); 1531 } 1532 1533 static uint64_t getOptimizationFlags(const Value *V) { 1534 uint64_t Flags = 0; 1535 1536 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1537 if (OBO->hasNoSignedWrap()) 1538 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1539 if (OBO->hasNoUnsignedWrap()) 1540 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1541 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1542 if (PEO->isExact()) 1543 Flags |= 1 << bitc::PEO_EXACT; 1544 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1545 if (FPMO->hasAllowReassoc()) 1546 Flags |= bitc::AllowReassoc; 1547 if (FPMO->hasNoNaNs()) 1548 Flags |= bitc::NoNaNs; 1549 if (FPMO->hasNoInfs()) 1550 Flags |= bitc::NoInfs; 1551 if (FPMO->hasNoSignedZeros()) 1552 Flags |= bitc::NoSignedZeros; 1553 if (FPMO->hasAllowReciprocal()) 1554 Flags |= bitc::AllowReciprocal; 1555 if (FPMO->hasAllowContract()) 1556 Flags |= bitc::AllowContract; 1557 if (FPMO->hasApproxFunc()) 1558 Flags |= bitc::ApproxFunc; 1559 } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) { 1560 if (NNI->hasNonNeg()) 1561 Flags |= 1 << bitc::PNNI_NON_NEG; 1562 } 1563 1564 return Flags; 1565 } 1566 1567 void ModuleBitcodeWriter::writeValueAsMetadata( 1568 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1569 // Mimic an MDNode with a value as one operand. 1570 Value *V = MD->getValue(); 1571 Record.push_back(VE.getTypeID(V->getType())); 1572 Record.push_back(VE.getValueID(V)); 1573 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1574 Record.clear(); 1575 } 1576 1577 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1578 SmallVectorImpl<uint64_t> &Record, 1579 unsigned Abbrev) { 1580 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1581 Metadata *MD = N->getOperand(i); 1582 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1583 "Unexpected function-local metadata"); 1584 Record.push_back(VE.getMetadataOrNullID(MD)); 1585 } 1586 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1587 : bitc::METADATA_NODE, 1588 Record, Abbrev); 1589 Record.clear(); 1590 } 1591 1592 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1593 // Assume the column is usually under 128, and always output the inlined-at 1594 // location (it's never more expensive than building an array size 1). 1595 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1596 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1599 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1603 return Stream.EmitAbbrev(std::move(Abbv)); 1604 } 1605 1606 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1607 SmallVectorImpl<uint64_t> &Record, 1608 unsigned &Abbrev) { 1609 if (!Abbrev) 1610 Abbrev = createDILocationAbbrev(); 1611 1612 Record.push_back(N->isDistinct()); 1613 Record.push_back(N->getLine()); 1614 Record.push_back(N->getColumn()); 1615 Record.push_back(VE.getMetadataID(N->getScope())); 1616 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1617 Record.push_back(N->isImplicitCode()); 1618 1619 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1620 Record.clear(); 1621 } 1622 1623 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1624 // Assume the column is usually under 128, and always output the inlined-at 1625 // location (it's never more expensive than building an array size 1). 1626 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1627 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1628 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1630 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1634 return Stream.EmitAbbrev(std::move(Abbv)); 1635 } 1636 1637 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1638 SmallVectorImpl<uint64_t> &Record, 1639 unsigned &Abbrev) { 1640 if (!Abbrev) 1641 Abbrev = createGenericDINodeAbbrev(); 1642 1643 Record.push_back(N->isDistinct()); 1644 Record.push_back(N->getTag()); 1645 Record.push_back(0); // Per-tag version field; unused for now. 1646 1647 for (auto &I : N->operands()) 1648 Record.push_back(VE.getMetadataOrNullID(I)); 1649 1650 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1651 Record.clear(); 1652 } 1653 1654 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1655 SmallVectorImpl<uint64_t> &Record, 1656 unsigned Abbrev) { 1657 const uint64_t Version = 2 << 1; 1658 Record.push_back((uint64_t)N->isDistinct() | Version); 1659 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1660 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1661 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1662 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1663 1664 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1665 Record.clear(); 1666 } 1667 1668 void ModuleBitcodeWriter::writeDIGenericSubrange( 1669 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1670 unsigned Abbrev) { 1671 Record.push_back((uint64_t)N->isDistinct()); 1672 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1673 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1674 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1675 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1676 1677 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1678 Record.clear(); 1679 } 1680 1681 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1682 if ((int64_t)V >= 0) 1683 Vals.push_back(V << 1); 1684 else 1685 Vals.push_back((-V << 1) | 1); 1686 } 1687 1688 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1689 // We have an arbitrary precision integer value to write whose 1690 // bit width is > 64. However, in canonical unsigned integer 1691 // format it is likely that the high bits are going to be zero. 1692 // So, we only write the number of active words. 1693 unsigned NumWords = A.getActiveWords(); 1694 const uint64_t *RawData = A.getRawData(); 1695 for (unsigned i = 0; i < NumWords; i++) 1696 emitSignedInt64(Vals, RawData[i]); 1697 } 1698 1699 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1700 SmallVectorImpl<uint64_t> &Record, 1701 unsigned Abbrev) { 1702 const uint64_t IsBigInt = 1 << 2; 1703 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1704 Record.push_back(N->getValue().getBitWidth()); 1705 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1706 emitWideAPInt(Record, N->getValue()); 1707 1708 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1709 Record.clear(); 1710 } 1711 1712 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1713 SmallVectorImpl<uint64_t> &Record, 1714 unsigned Abbrev) { 1715 Record.push_back(N->isDistinct()); 1716 Record.push_back(N->getTag()); 1717 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1718 Record.push_back(N->getSizeInBits()); 1719 Record.push_back(N->getAlignInBits()); 1720 Record.push_back(N->getEncoding()); 1721 Record.push_back(N->getFlags()); 1722 1723 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1724 Record.clear(); 1725 } 1726 1727 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1728 SmallVectorImpl<uint64_t> &Record, 1729 unsigned Abbrev) { 1730 Record.push_back(N->isDistinct()); 1731 Record.push_back(N->getTag()); 1732 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1733 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1734 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1735 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1736 Record.push_back(N->getSizeInBits()); 1737 Record.push_back(N->getAlignInBits()); 1738 Record.push_back(N->getEncoding()); 1739 1740 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1741 Record.clear(); 1742 } 1743 1744 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1745 SmallVectorImpl<uint64_t> &Record, 1746 unsigned Abbrev) { 1747 Record.push_back(N->isDistinct()); 1748 Record.push_back(N->getTag()); 1749 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1750 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1751 Record.push_back(N->getLine()); 1752 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1753 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1754 Record.push_back(N->getSizeInBits()); 1755 Record.push_back(N->getAlignInBits()); 1756 Record.push_back(N->getOffsetInBits()); 1757 Record.push_back(N->getFlags()); 1758 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1759 1760 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1761 // that there is no DWARF address space associated with DIDerivedType. 1762 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1763 Record.push_back(*DWARFAddressSpace + 1); 1764 else 1765 Record.push_back(0); 1766 1767 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1768 1769 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1770 Record.clear(); 1771 } 1772 1773 void ModuleBitcodeWriter::writeDICompositeType( 1774 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1775 unsigned Abbrev) { 1776 const unsigned IsNotUsedInOldTypeRef = 0x2; 1777 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1778 Record.push_back(N->getTag()); 1779 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1780 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1781 Record.push_back(N->getLine()); 1782 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1783 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1784 Record.push_back(N->getSizeInBits()); 1785 Record.push_back(N->getAlignInBits()); 1786 Record.push_back(N->getOffsetInBits()); 1787 Record.push_back(N->getFlags()); 1788 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1789 Record.push_back(N->getRuntimeLang()); 1790 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1791 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1792 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1793 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1794 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1795 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1796 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1797 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1798 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1799 1800 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1801 Record.clear(); 1802 } 1803 1804 void ModuleBitcodeWriter::writeDISubroutineType( 1805 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1806 unsigned Abbrev) { 1807 const unsigned HasNoOldTypeRefs = 0x2; 1808 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1809 Record.push_back(N->getFlags()); 1810 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1811 Record.push_back(N->getCC()); 1812 1813 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1814 Record.clear(); 1815 } 1816 1817 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1818 SmallVectorImpl<uint64_t> &Record, 1819 unsigned Abbrev) { 1820 Record.push_back(N->isDistinct()); 1821 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1822 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1823 if (N->getRawChecksum()) { 1824 Record.push_back(N->getRawChecksum()->Kind); 1825 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1826 } else { 1827 // Maintain backwards compatibility with the old internal representation of 1828 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1829 Record.push_back(0); 1830 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1831 } 1832 auto Source = N->getRawSource(); 1833 if (Source) 1834 Record.push_back(VE.getMetadataOrNullID(Source)); 1835 1836 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1837 Record.clear(); 1838 } 1839 1840 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1841 SmallVectorImpl<uint64_t> &Record, 1842 unsigned Abbrev) { 1843 assert(N->isDistinct() && "Expected distinct compile units"); 1844 Record.push_back(/* IsDistinct */ true); 1845 Record.push_back(N->getSourceLanguage()); 1846 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1847 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1848 Record.push_back(N->isOptimized()); 1849 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1850 Record.push_back(N->getRuntimeVersion()); 1851 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1852 Record.push_back(N->getEmissionKind()); 1853 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1854 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1855 Record.push_back(/* subprograms */ 0); 1856 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1857 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1858 Record.push_back(N->getDWOId()); 1859 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1860 Record.push_back(N->getSplitDebugInlining()); 1861 Record.push_back(N->getDebugInfoForProfiling()); 1862 Record.push_back((unsigned)N->getNameTableKind()); 1863 Record.push_back(N->getRangesBaseAddress()); 1864 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1865 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1866 1867 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1868 Record.clear(); 1869 } 1870 1871 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1872 SmallVectorImpl<uint64_t> &Record, 1873 unsigned Abbrev) { 1874 const uint64_t HasUnitFlag = 1 << 1; 1875 const uint64_t HasSPFlagsFlag = 1 << 2; 1876 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1877 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1878 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1879 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1880 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1881 Record.push_back(N->getLine()); 1882 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1883 Record.push_back(N->getScopeLine()); 1884 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1885 Record.push_back(N->getSPFlags()); 1886 Record.push_back(N->getVirtualIndex()); 1887 Record.push_back(N->getFlags()); 1888 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1889 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1890 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1891 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1892 Record.push_back(N->getThisAdjustment()); 1893 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1894 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1895 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 1896 1897 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1898 Record.clear(); 1899 } 1900 1901 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1902 SmallVectorImpl<uint64_t> &Record, 1903 unsigned Abbrev) { 1904 Record.push_back(N->isDistinct()); 1905 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1906 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1907 Record.push_back(N->getLine()); 1908 Record.push_back(N->getColumn()); 1909 1910 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1911 Record.clear(); 1912 } 1913 1914 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1915 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1916 unsigned Abbrev) { 1917 Record.push_back(N->isDistinct()); 1918 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1919 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1920 Record.push_back(N->getDiscriminator()); 1921 1922 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1923 Record.clear(); 1924 } 1925 1926 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1927 SmallVectorImpl<uint64_t> &Record, 1928 unsigned Abbrev) { 1929 Record.push_back(N->isDistinct()); 1930 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1931 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1932 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1933 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1934 Record.push_back(N->getLineNo()); 1935 1936 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1937 Record.clear(); 1938 } 1939 1940 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1941 SmallVectorImpl<uint64_t> &Record, 1942 unsigned Abbrev) { 1943 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1944 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1945 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1946 1947 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1948 Record.clear(); 1949 } 1950 1951 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1952 SmallVectorImpl<uint64_t> &Record, 1953 unsigned Abbrev) { 1954 Record.push_back(N->isDistinct()); 1955 Record.push_back(N->getMacinfoType()); 1956 Record.push_back(N->getLine()); 1957 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1958 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1959 1960 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1961 Record.clear(); 1962 } 1963 1964 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1965 SmallVectorImpl<uint64_t> &Record, 1966 unsigned Abbrev) { 1967 Record.push_back(N->isDistinct()); 1968 Record.push_back(N->getMacinfoType()); 1969 Record.push_back(N->getLine()); 1970 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1971 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1972 1973 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1974 Record.clear(); 1975 } 1976 1977 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1978 SmallVectorImpl<uint64_t> &Record, 1979 unsigned Abbrev) { 1980 Record.reserve(N->getArgs().size()); 1981 for (ValueAsMetadata *MD : N->getArgs()) 1982 Record.push_back(VE.getMetadataID(MD)); 1983 1984 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1985 Record.clear(); 1986 } 1987 1988 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1989 SmallVectorImpl<uint64_t> &Record, 1990 unsigned Abbrev) { 1991 Record.push_back(N->isDistinct()); 1992 for (auto &I : N->operands()) 1993 Record.push_back(VE.getMetadataOrNullID(I)); 1994 Record.push_back(N->getLineNo()); 1995 Record.push_back(N->getIsDecl()); 1996 1997 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1998 Record.clear(); 1999 } 2000 2001 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 2002 SmallVectorImpl<uint64_t> &Record, 2003 unsigned Abbrev) { 2004 // There are no arguments for this metadata type. 2005 Record.push_back(N->isDistinct()); 2006 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 2007 Record.clear(); 2008 } 2009 2010 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 2011 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 2012 unsigned Abbrev) { 2013 Record.push_back(N->isDistinct()); 2014 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2015 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2016 Record.push_back(N->isDefault()); 2017 2018 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 2019 Record.clear(); 2020 } 2021 2022 void ModuleBitcodeWriter::writeDITemplateValueParameter( 2023 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 2024 unsigned Abbrev) { 2025 Record.push_back(N->isDistinct()); 2026 Record.push_back(N->getTag()); 2027 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2028 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2029 Record.push_back(N->isDefault()); 2030 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 2031 2032 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 2033 Record.clear(); 2034 } 2035 2036 void ModuleBitcodeWriter::writeDIGlobalVariable( 2037 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 2038 unsigned Abbrev) { 2039 const uint64_t Version = 2 << 1; 2040 Record.push_back((uint64_t)N->isDistinct() | Version); 2041 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2042 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2043 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2044 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2045 Record.push_back(N->getLine()); 2046 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2047 Record.push_back(N->isLocalToUnit()); 2048 Record.push_back(N->isDefinition()); 2049 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2050 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2051 Record.push_back(N->getAlignInBits()); 2052 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2053 2054 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2055 Record.clear(); 2056 } 2057 2058 void ModuleBitcodeWriter::writeDILocalVariable( 2059 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2060 unsigned Abbrev) { 2061 // In order to support all possible bitcode formats in BitcodeReader we need 2062 // to distinguish the following cases: 2063 // 1) Record has no artificial tag (Record[1]), 2064 // has no obsolete inlinedAt field (Record[9]). 2065 // In this case Record size will be 8, HasAlignment flag is false. 2066 // 2) Record has artificial tag (Record[1]), 2067 // has no obsolete inlignedAt field (Record[9]). 2068 // In this case Record size will be 9, HasAlignment flag is false. 2069 // 3) Record has both artificial tag (Record[1]) and 2070 // obsolete inlignedAt field (Record[9]). 2071 // In this case Record size will be 10, HasAlignment flag is false. 2072 // 4) Record has neither artificial tag, nor inlignedAt field, but 2073 // HasAlignment flag is true and Record[8] contains alignment value. 2074 const uint64_t HasAlignmentFlag = 1 << 1; 2075 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2076 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2077 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2078 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2079 Record.push_back(N->getLine()); 2080 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2081 Record.push_back(N->getArg()); 2082 Record.push_back(N->getFlags()); 2083 Record.push_back(N->getAlignInBits()); 2084 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2085 2086 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2087 Record.clear(); 2088 } 2089 2090 void ModuleBitcodeWriter::writeDILabel( 2091 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2092 unsigned Abbrev) { 2093 Record.push_back((uint64_t)N->isDistinct()); 2094 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2095 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2096 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2097 Record.push_back(N->getLine()); 2098 2099 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2100 Record.clear(); 2101 } 2102 2103 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2104 SmallVectorImpl<uint64_t> &Record, 2105 unsigned Abbrev) { 2106 Record.reserve(N->getElements().size() + 1); 2107 const uint64_t Version = 3 << 1; 2108 Record.push_back((uint64_t)N->isDistinct() | Version); 2109 Record.append(N->elements_begin(), N->elements_end()); 2110 2111 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2112 Record.clear(); 2113 } 2114 2115 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2116 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2117 unsigned Abbrev) { 2118 Record.push_back(N->isDistinct()); 2119 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2120 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2121 2122 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2123 Record.clear(); 2124 } 2125 2126 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2127 SmallVectorImpl<uint64_t> &Record, 2128 unsigned Abbrev) { 2129 Record.push_back(N->isDistinct()); 2130 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2131 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2132 Record.push_back(N->getLine()); 2133 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2134 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2135 Record.push_back(N->getAttributes()); 2136 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2137 2138 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2139 Record.clear(); 2140 } 2141 2142 void ModuleBitcodeWriter::writeDIImportedEntity( 2143 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2144 unsigned Abbrev) { 2145 Record.push_back(N->isDistinct()); 2146 Record.push_back(N->getTag()); 2147 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2148 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2149 Record.push_back(N->getLine()); 2150 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2151 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2152 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2153 2154 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2155 Record.clear(); 2156 } 2157 2158 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2159 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2160 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2163 return Stream.EmitAbbrev(std::move(Abbv)); 2164 } 2165 2166 void ModuleBitcodeWriter::writeNamedMetadata( 2167 SmallVectorImpl<uint64_t> &Record) { 2168 if (M.named_metadata_empty()) 2169 return; 2170 2171 unsigned Abbrev = createNamedMetadataAbbrev(); 2172 for (const NamedMDNode &NMD : M.named_metadata()) { 2173 // Write name. 2174 StringRef Str = NMD.getName(); 2175 Record.append(Str.bytes_begin(), Str.bytes_end()); 2176 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2177 Record.clear(); 2178 2179 // Write named metadata operands. 2180 for (const MDNode *N : NMD.operands()) 2181 Record.push_back(VE.getMetadataID(N)); 2182 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2183 Record.clear(); 2184 } 2185 } 2186 2187 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2188 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2189 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2193 return Stream.EmitAbbrev(std::move(Abbv)); 2194 } 2195 2196 /// Write out a record for MDString. 2197 /// 2198 /// All the metadata strings in a metadata block are emitted in a single 2199 /// record. The sizes and strings themselves are shoved into a blob. 2200 void ModuleBitcodeWriter::writeMetadataStrings( 2201 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2202 if (Strings.empty()) 2203 return; 2204 2205 // Start the record with the number of strings. 2206 Record.push_back(bitc::METADATA_STRINGS); 2207 Record.push_back(Strings.size()); 2208 2209 // Emit the sizes of the strings in the blob. 2210 SmallString<256> Blob; 2211 { 2212 BitstreamWriter W(Blob); 2213 for (const Metadata *MD : Strings) 2214 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2215 W.FlushToWord(); 2216 } 2217 2218 // Add the offset to the strings to the record. 2219 Record.push_back(Blob.size()); 2220 2221 // Add the strings to the blob. 2222 for (const Metadata *MD : Strings) 2223 Blob.append(cast<MDString>(MD)->getString()); 2224 2225 // Emit the final record. 2226 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2227 Record.clear(); 2228 } 2229 2230 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2231 enum MetadataAbbrev : unsigned { 2232 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2233 #include "llvm/IR/Metadata.def" 2234 LastPlusOne 2235 }; 2236 2237 void ModuleBitcodeWriter::writeMetadataRecords( 2238 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2239 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2240 if (MDs.empty()) 2241 return; 2242 2243 // Initialize MDNode abbreviations. 2244 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2245 #include "llvm/IR/Metadata.def" 2246 2247 for (const Metadata *MD : MDs) { 2248 if (IndexPos) 2249 IndexPos->push_back(Stream.GetCurrentBitNo()); 2250 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2251 assert(N->isResolved() && "Expected forward references to be resolved"); 2252 2253 switch (N->getMetadataID()) { 2254 default: 2255 llvm_unreachable("Invalid MDNode subclass"); 2256 #define HANDLE_MDNODE_LEAF(CLASS) \ 2257 case Metadata::CLASS##Kind: \ 2258 if (MDAbbrevs) \ 2259 write##CLASS(cast<CLASS>(N), Record, \ 2260 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2261 else \ 2262 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2263 continue; 2264 #include "llvm/IR/Metadata.def" 2265 } 2266 } 2267 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2268 } 2269 } 2270 2271 void ModuleBitcodeWriter::writeModuleMetadata() { 2272 if (!VE.hasMDs() && M.named_metadata_empty()) 2273 return; 2274 2275 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2276 SmallVector<uint64_t, 64> Record; 2277 2278 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2279 // block and load any metadata. 2280 std::vector<unsigned> MDAbbrevs; 2281 2282 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2283 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2284 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2285 createGenericDINodeAbbrev(); 2286 2287 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2288 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2291 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2292 2293 Abbv = std::make_shared<BitCodeAbbrev>(); 2294 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2297 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2298 2299 // Emit MDStrings together upfront. 2300 writeMetadataStrings(VE.getMDStrings(), Record); 2301 2302 // We only emit an index for the metadata record if we have more than a given 2303 // (naive) threshold of metadatas, otherwise it is not worth it. 2304 if (VE.getNonMDStrings().size() > IndexThreshold) { 2305 // Write a placeholder value in for the offset of the metadata index, 2306 // which is written after the records, so that it can include 2307 // the offset of each entry. The placeholder offset will be 2308 // updated after all records are emitted. 2309 uint64_t Vals[] = {0, 0}; 2310 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2311 } 2312 2313 // Compute and save the bit offset to the current position, which will be 2314 // patched when we emit the index later. We can simply subtract the 64-bit 2315 // fixed size from the current bit number to get the location to backpatch. 2316 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2317 2318 // This index will contain the bitpos for each individual record. 2319 std::vector<uint64_t> IndexPos; 2320 IndexPos.reserve(VE.getNonMDStrings().size()); 2321 2322 // Write all the records 2323 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2324 2325 if (VE.getNonMDStrings().size() > IndexThreshold) { 2326 // Now that we have emitted all the records we will emit the index. But 2327 // first 2328 // backpatch the forward reference so that the reader can skip the records 2329 // efficiently. 2330 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2331 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2332 2333 // Delta encode the index. 2334 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2335 for (auto &Elt : IndexPos) { 2336 auto EltDelta = Elt - PreviousValue; 2337 PreviousValue = Elt; 2338 Elt = EltDelta; 2339 } 2340 // Emit the index record. 2341 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2342 IndexPos.clear(); 2343 } 2344 2345 // Write the named metadata now. 2346 writeNamedMetadata(Record); 2347 2348 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2349 SmallVector<uint64_t, 4> Record; 2350 Record.push_back(VE.getValueID(&GO)); 2351 pushGlobalMetadataAttachment(Record, GO); 2352 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2353 }; 2354 for (const Function &F : M) 2355 if (F.isDeclaration() && F.hasMetadata()) 2356 AddDeclAttachedMetadata(F); 2357 // FIXME: Only store metadata for declarations here, and move data for global 2358 // variable definitions to a separate block (PR28134). 2359 for (const GlobalVariable &GV : M.globals()) 2360 if (GV.hasMetadata()) 2361 AddDeclAttachedMetadata(GV); 2362 2363 Stream.ExitBlock(); 2364 } 2365 2366 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2367 if (!VE.hasMDs()) 2368 return; 2369 2370 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2371 SmallVector<uint64_t, 64> Record; 2372 writeMetadataStrings(VE.getMDStrings(), Record); 2373 writeMetadataRecords(VE.getNonMDStrings(), Record); 2374 Stream.ExitBlock(); 2375 } 2376 2377 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2378 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2379 // [n x [id, mdnode]] 2380 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2381 GO.getAllMetadata(MDs); 2382 for (const auto &I : MDs) { 2383 Record.push_back(I.first); 2384 Record.push_back(VE.getMetadataID(I.second)); 2385 } 2386 } 2387 2388 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2389 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2390 2391 SmallVector<uint64_t, 64> Record; 2392 2393 if (F.hasMetadata()) { 2394 pushGlobalMetadataAttachment(Record, F); 2395 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2396 Record.clear(); 2397 } 2398 2399 // Write metadata attachments 2400 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2401 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2402 for (const BasicBlock &BB : F) 2403 for (const Instruction &I : BB) { 2404 MDs.clear(); 2405 I.getAllMetadataOtherThanDebugLoc(MDs); 2406 2407 // If no metadata, ignore instruction. 2408 if (MDs.empty()) continue; 2409 2410 Record.push_back(VE.getInstructionID(&I)); 2411 2412 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2413 Record.push_back(MDs[i].first); 2414 Record.push_back(VE.getMetadataID(MDs[i].second)); 2415 } 2416 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2417 Record.clear(); 2418 } 2419 2420 Stream.ExitBlock(); 2421 } 2422 2423 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2424 SmallVector<uint64_t, 64> Record; 2425 2426 // Write metadata kinds 2427 // METADATA_KIND - [n x [id, name]] 2428 SmallVector<StringRef, 8> Names; 2429 M.getMDKindNames(Names); 2430 2431 if (Names.empty()) return; 2432 2433 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2434 2435 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2436 Record.push_back(MDKindID); 2437 StringRef KName = Names[MDKindID]; 2438 Record.append(KName.begin(), KName.end()); 2439 2440 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2441 Record.clear(); 2442 } 2443 2444 Stream.ExitBlock(); 2445 } 2446 2447 void ModuleBitcodeWriter::writeOperandBundleTags() { 2448 // Write metadata kinds 2449 // 2450 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2451 // 2452 // OPERAND_BUNDLE_TAG - [strchr x N] 2453 2454 SmallVector<StringRef, 8> Tags; 2455 M.getOperandBundleTags(Tags); 2456 2457 if (Tags.empty()) 2458 return; 2459 2460 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2461 2462 SmallVector<uint64_t, 64> Record; 2463 2464 for (auto Tag : Tags) { 2465 Record.append(Tag.begin(), Tag.end()); 2466 2467 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2468 Record.clear(); 2469 } 2470 2471 Stream.ExitBlock(); 2472 } 2473 2474 void ModuleBitcodeWriter::writeSyncScopeNames() { 2475 SmallVector<StringRef, 8> SSNs; 2476 M.getContext().getSyncScopeNames(SSNs); 2477 if (SSNs.empty()) 2478 return; 2479 2480 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2481 2482 SmallVector<uint64_t, 64> Record; 2483 for (auto SSN : SSNs) { 2484 Record.append(SSN.begin(), SSN.end()); 2485 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2486 Record.clear(); 2487 } 2488 2489 Stream.ExitBlock(); 2490 } 2491 2492 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2493 bool isGlobal) { 2494 if (FirstVal == LastVal) return; 2495 2496 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2497 2498 unsigned AggregateAbbrev = 0; 2499 unsigned String8Abbrev = 0; 2500 unsigned CString7Abbrev = 0; 2501 unsigned CString6Abbrev = 0; 2502 // If this is a constant pool for the module, emit module-specific abbrevs. 2503 if (isGlobal) { 2504 // Abbrev for CST_CODE_AGGREGATE. 2505 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2506 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2507 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2508 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2509 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2510 2511 // Abbrev for CST_CODE_STRING. 2512 Abbv = std::make_shared<BitCodeAbbrev>(); 2513 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2516 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2517 // Abbrev for CST_CODE_CSTRING. 2518 Abbv = std::make_shared<BitCodeAbbrev>(); 2519 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2522 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2523 // Abbrev for CST_CODE_CSTRING. 2524 Abbv = std::make_shared<BitCodeAbbrev>(); 2525 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2528 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2529 } 2530 2531 SmallVector<uint64_t, 64> Record; 2532 2533 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2534 Type *LastTy = nullptr; 2535 for (unsigned i = FirstVal; i != LastVal; ++i) { 2536 const Value *V = Vals[i].first; 2537 // If we need to switch types, do so now. 2538 if (V->getType() != LastTy) { 2539 LastTy = V->getType(); 2540 Record.push_back(VE.getTypeID(LastTy)); 2541 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2542 CONSTANTS_SETTYPE_ABBREV); 2543 Record.clear(); 2544 } 2545 2546 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2547 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2548 Record.push_back( 2549 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2550 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2551 2552 // Add the asm string. 2553 const std::string &AsmStr = IA->getAsmString(); 2554 Record.push_back(AsmStr.size()); 2555 Record.append(AsmStr.begin(), AsmStr.end()); 2556 2557 // Add the constraint string. 2558 const std::string &ConstraintStr = IA->getConstraintString(); 2559 Record.push_back(ConstraintStr.size()); 2560 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2561 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2562 Record.clear(); 2563 continue; 2564 } 2565 const Constant *C = cast<Constant>(V); 2566 unsigned Code = -1U; 2567 unsigned AbbrevToUse = 0; 2568 if (C->isNullValue()) { 2569 Code = bitc::CST_CODE_NULL; 2570 } else if (isa<PoisonValue>(C)) { 2571 Code = bitc::CST_CODE_POISON; 2572 } else if (isa<UndefValue>(C)) { 2573 Code = bitc::CST_CODE_UNDEF; 2574 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2575 if (IV->getBitWidth() <= 64) { 2576 uint64_t V = IV->getSExtValue(); 2577 emitSignedInt64(Record, V); 2578 Code = bitc::CST_CODE_INTEGER; 2579 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2580 } else { // Wide integers, > 64 bits in size. 2581 emitWideAPInt(Record, IV->getValue()); 2582 Code = bitc::CST_CODE_WIDE_INTEGER; 2583 } 2584 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2585 Code = bitc::CST_CODE_FLOAT; 2586 Type *Ty = CFP->getType(); 2587 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2588 Ty->isDoubleTy()) { 2589 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2590 } else if (Ty->isX86_FP80Ty()) { 2591 // api needed to prevent premature destruction 2592 // bits are not in the same order as a normal i80 APInt, compensate. 2593 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2594 const uint64_t *p = api.getRawData(); 2595 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2596 Record.push_back(p[0] & 0xffffLL); 2597 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2598 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2599 const uint64_t *p = api.getRawData(); 2600 Record.push_back(p[0]); 2601 Record.push_back(p[1]); 2602 } else { 2603 assert(0 && "Unknown FP type!"); 2604 } 2605 } else if (isa<ConstantDataSequential>(C) && 2606 cast<ConstantDataSequential>(C)->isString()) { 2607 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2608 // Emit constant strings specially. 2609 unsigned NumElts = Str->getNumElements(); 2610 // If this is a null-terminated string, use the denser CSTRING encoding. 2611 if (Str->isCString()) { 2612 Code = bitc::CST_CODE_CSTRING; 2613 --NumElts; // Don't encode the null, which isn't allowed by char6. 2614 } else { 2615 Code = bitc::CST_CODE_STRING; 2616 AbbrevToUse = String8Abbrev; 2617 } 2618 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2619 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2620 for (unsigned i = 0; i != NumElts; ++i) { 2621 unsigned char V = Str->getElementAsInteger(i); 2622 Record.push_back(V); 2623 isCStr7 &= (V & 128) == 0; 2624 if (isCStrChar6) 2625 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2626 } 2627 2628 if (isCStrChar6) 2629 AbbrevToUse = CString6Abbrev; 2630 else if (isCStr7) 2631 AbbrevToUse = CString7Abbrev; 2632 } else if (const ConstantDataSequential *CDS = 2633 dyn_cast<ConstantDataSequential>(C)) { 2634 Code = bitc::CST_CODE_DATA; 2635 Type *EltTy = CDS->getElementType(); 2636 if (isa<IntegerType>(EltTy)) { 2637 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2638 Record.push_back(CDS->getElementAsInteger(i)); 2639 } else { 2640 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2641 Record.push_back( 2642 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2643 } 2644 } else if (isa<ConstantAggregate>(C)) { 2645 Code = bitc::CST_CODE_AGGREGATE; 2646 for (const Value *Op : C->operands()) 2647 Record.push_back(VE.getValueID(Op)); 2648 AbbrevToUse = AggregateAbbrev; 2649 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2650 switch (CE->getOpcode()) { 2651 default: 2652 if (Instruction::isCast(CE->getOpcode())) { 2653 Code = bitc::CST_CODE_CE_CAST; 2654 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2655 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2656 Record.push_back(VE.getValueID(C->getOperand(0))); 2657 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2658 } else { 2659 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2660 Code = bitc::CST_CODE_CE_BINOP; 2661 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2662 Record.push_back(VE.getValueID(C->getOperand(0))); 2663 Record.push_back(VE.getValueID(C->getOperand(1))); 2664 uint64_t Flags = getOptimizationFlags(CE); 2665 if (Flags != 0) 2666 Record.push_back(Flags); 2667 } 2668 break; 2669 case Instruction::FNeg: { 2670 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2671 Code = bitc::CST_CODE_CE_UNOP; 2672 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2673 Record.push_back(VE.getValueID(C->getOperand(0))); 2674 uint64_t Flags = getOptimizationFlags(CE); 2675 if (Flags != 0) 2676 Record.push_back(Flags); 2677 break; 2678 } 2679 case Instruction::GetElementPtr: { 2680 Code = bitc::CST_CODE_CE_GEP; 2681 const auto *GO = cast<GEPOperator>(C); 2682 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2683 if (std::optional<unsigned> Idx = GO->getInRangeIndex()) { 2684 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2685 Record.push_back((*Idx << 1) | GO->isInBounds()); 2686 } else if (GO->isInBounds()) 2687 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2688 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2689 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2690 Record.push_back(VE.getValueID(C->getOperand(i))); 2691 } 2692 break; 2693 } 2694 case Instruction::ExtractElement: 2695 Code = bitc::CST_CODE_CE_EXTRACTELT; 2696 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2697 Record.push_back(VE.getValueID(C->getOperand(0))); 2698 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2699 Record.push_back(VE.getValueID(C->getOperand(1))); 2700 break; 2701 case Instruction::InsertElement: 2702 Code = bitc::CST_CODE_CE_INSERTELT; 2703 Record.push_back(VE.getValueID(C->getOperand(0))); 2704 Record.push_back(VE.getValueID(C->getOperand(1))); 2705 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2706 Record.push_back(VE.getValueID(C->getOperand(2))); 2707 break; 2708 case Instruction::ShuffleVector: 2709 // If the return type and argument types are the same, this is a 2710 // standard shufflevector instruction. If the types are different, 2711 // then the shuffle is widening or truncating the input vectors, and 2712 // the argument type must also be encoded. 2713 if (C->getType() == C->getOperand(0)->getType()) { 2714 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2715 } else { 2716 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2717 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2718 } 2719 Record.push_back(VE.getValueID(C->getOperand(0))); 2720 Record.push_back(VE.getValueID(C->getOperand(1))); 2721 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2722 break; 2723 case Instruction::ICmp: 2724 case Instruction::FCmp: 2725 Code = bitc::CST_CODE_CE_CMP; 2726 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2727 Record.push_back(VE.getValueID(C->getOperand(0))); 2728 Record.push_back(VE.getValueID(C->getOperand(1))); 2729 Record.push_back(CE->getPredicate()); 2730 break; 2731 } 2732 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2733 Code = bitc::CST_CODE_BLOCKADDRESS; 2734 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2735 Record.push_back(VE.getValueID(BA->getFunction())); 2736 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2737 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2738 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2739 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2740 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2741 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2742 Code = bitc::CST_CODE_NO_CFI_VALUE; 2743 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2744 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2745 } else { 2746 #ifndef NDEBUG 2747 C->dump(); 2748 #endif 2749 llvm_unreachable("Unknown constant!"); 2750 } 2751 Stream.EmitRecord(Code, Record, AbbrevToUse); 2752 Record.clear(); 2753 } 2754 2755 Stream.ExitBlock(); 2756 } 2757 2758 void ModuleBitcodeWriter::writeModuleConstants() { 2759 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2760 2761 // Find the first constant to emit, which is the first non-globalvalue value. 2762 // We know globalvalues have been emitted by WriteModuleInfo. 2763 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2764 if (!isa<GlobalValue>(Vals[i].first)) { 2765 writeConstants(i, Vals.size(), true); 2766 return; 2767 } 2768 } 2769 } 2770 2771 /// pushValueAndType - The file has to encode both the value and type id for 2772 /// many values, because we need to know what type to create for forward 2773 /// references. However, most operands are not forward references, so this type 2774 /// field is not needed. 2775 /// 2776 /// This function adds V's value ID to Vals. If the value ID is higher than the 2777 /// instruction ID, then it is a forward reference, and it also includes the 2778 /// type ID. The value ID that is written is encoded relative to the InstID. 2779 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2780 SmallVectorImpl<unsigned> &Vals) { 2781 unsigned ValID = VE.getValueID(V); 2782 // Make encoding relative to the InstID. 2783 Vals.push_back(InstID - ValID); 2784 if (ValID >= InstID) { 2785 Vals.push_back(VE.getTypeID(V->getType())); 2786 return true; 2787 } 2788 return false; 2789 } 2790 2791 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2792 unsigned InstID) { 2793 SmallVector<unsigned, 64> Record; 2794 LLVMContext &C = CS.getContext(); 2795 2796 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2797 const auto &Bundle = CS.getOperandBundleAt(i); 2798 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2799 2800 for (auto &Input : Bundle.Inputs) 2801 pushValueAndType(Input, InstID, Record); 2802 2803 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2804 Record.clear(); 2805 } 2806 } 2807 2808 /// pushValue - Like pushValueAndType, but where the type of the value is 2809 /// omitted (perhaps it was already encoded in an earlier operand). 2810 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2811 SmallVectorImpl<unsigned> &Vals) { 2812 unsigned ValID = VE.getValueID(V); 2813 Vals.push_back(InstID - ValID); 2814 } 2815 2816 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2817 SmallVectorImpl<uint64_t> &Vals) { 2818 unsigned ValID = VE.getValueID(V); 2819 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2820 emitSignedInt64(Vals, diff); 2821 } 2822 2823 /// WriteInstruction - Emit an instruction to the specified stream. 2824 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2825 unsigned InstID, 2826 SmallVectorImpl<unsigned> &Vals) { 2827 unsigned Code = 0; 2828 unsigned AbbrevToUse = 0; 2829 VE.setInstructionID(&I); 2830 switch (I.getOpcode()) { 2831 default: 2832 if (Instruction::isCast(I.getOpcode())) { 2833 Code = bitc::FUNC_CODE_INST_CAST; 2834 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2835 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2836 Vals.push_back(VE.getTypeID(I.getType())); 2837 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2838 uint64_t Flags = getOptimizationFlags(&I); 2839 if (Flags != 0) { 2840 if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV) 2841 AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV; 2842 Vals.push_back(Flags); 2843 } 2844 } else { 2845 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2846 Code = bitc::FUNC_CODE_INST_BINOP; 2847 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2848 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2849 pushValue(I.getOperand(1), InstID, Vals); 2850 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2851 uint64_t Flags = getOptimizationFlags(&I); 2852 if (Flags != 0) { 2853 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2854 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2855 Vals.push_back(Flags); 2856 } 2857 } 2858 break; 2859 case Instruction::FNeg: { 2860 Code = bitc::FUNC_CODE_INST_UNOP; 2861 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2862 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2863 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2864 uint64_t Flags = getOptimizationFlags(&I); 2865 if (Flags != 0) { 2866 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2867 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2868 Vals.push_back(Flags); 2869 } 2870 break; 2871 } 2872 case Instruction::GetElementPtr: { 2873 Code = bitc::FUNC_CODE_INST_GEP; 2874 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2875 auto &GEPInst = cast<GetElementPtrInst>(I); 2876 Vals.push_back(GEPInst.isInBounds()); 2877 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2878 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2879 pushValueAndType(I.getOperand(i), InstID, Vals); 2880 break; 2881 } 2882 case Instruction::ExtractValue: { 2883 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2884 pushValueAndType(I.getOperand(0), InstID, Vals); 2885 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2886 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2887 break; 2888 } 2889 case Instruction::InsertValue: { 2890 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2891 pushValueAndType(I.getOperand(0), InstID, Vals); 2892 pushValueAndType(I.getOperand(1), InstID, Vals); 2893 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2894 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2895 break; 2896 } 2897 case Instruction::Select: { 2898 Code = bitc::FUNC_CODE_INST_VSELECT; 2899 pushValueAndType(I.getOperand(1), InstID, Vals); 2900 pushValue(I.getOperand(2), InstID, Vals); 2901 pushValueAndType(I.getOperand(0), InstID, Vals); 2902 uint64_t Flags = getOptimizationFlags(&I); 2903 if (Flags != 0) 2904 Vals.push_back(Flags); 2905 break; 2906 } 2907 case Instruction::ExtractElement: 2908 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2909 pushValueAndType(I.getOperand(0), InstID, Vals); 2910 pushValueAndType(I.getOperand(1), InstID, Vals); 2911 break; 2912 case Instruction::InsertElement: 2913 Code = bitc::FUNC_CODE_INST_INSERTELT; 2914 pushValueAndType(I.getOperand(0), InstID, Vals); 2915 pushValue(I.getOperand(1), InstID, Vals); 2916 pushValueAndType(I.getOperand(2), InstID, Vals); 2917 break; 2918 case Instruction::ShuffleVector: 2919 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2920 pushValueAndType(I.getOperand(0), InstID, Vals); 2921 pushValue(I.getOperand(1), InstID, Vals); 2922 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2923 Vals); 2924 break; 2925 case Instruction::ICmp: 2926 case Instruction::FCmp: { 2927 // compare returning Int1Ty or vector of Int1Ty 2928 Code = bitc::FUNC_CODE_INST_CMP2; 2929 pushValueAndType(I.getOperand(0), InstID, Vals); 2930 pushValue(I.getOperand(1), InstID, Vals); 2931 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2932 uint64_t Flags = getOptimizationFlags(&I); 2933 if (Flags != 0) 2934 Vals.push_back(Flags); 2935 break; 2936 } 2937 2938 case Instruction::Ret: 2939 { 2940 Code = bitc::FUNC_CODE_INST_RET; 2941 unsigned NumOperands = I.getNumOperands(); 2942 if (NumOperands == 0) 2943 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2944 else if (NumOperands == 1) { 2945 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2946 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2947 } else { 2948 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2949 pushValueAndType(I.getOperand(i), InstID, Vals); 2950 } 2951 } 2952 break; 2953 case Instruction::Br: 2954 { 2955 Code = bitc::FUNC_CODE_INST_BR; 2956 const BranchInst &II = cast<BranchInst>(I); 2957 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2958 if (II.isConditional()) { 2959 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2960 pushValue(II.getCondition(), InstID, Vals); 2961 } 2962 } 2963 break; 2964 case Instruction::Switch: 2965 { 2966 Code = bitc::FUNC_CODE_INST_SWITCH; 2967 const SwitchInst &SI = cast<SwitchInst>(I); 2968 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2969 pushValue(SI.getCondition(), InstID, Vals); 2970 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2971 for (auto Case : SI.cases()) { 2972 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2973 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2974 } 2975 } 2976 break; 2977 case Instruction::IndirectBr: 2978 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2979 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2980 // Encode the address operand as relative, but not the basic blocks. 2981 pushValue(I.getOperand(0), InstID, Vals); 2982 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2983 Vals.push_back(VE.getValueID(I.getOperand(i))); 2984 break; 2985 2986 case Instruction::Invoke: { 2987 const InvokeInst *II = cast<InvokeInst>(&I); 2988 const Value *Callee = II->getCalledOperand(); 2989 FunctionType *FTy = II->getFunctionType(); 2990 2991 if (II->hasOperandBundles()) 2992 writeOperandBundles(*II, InstID); 2993 2994 Code = bitc::FUNC_CODE_INST_INVOKE; 2995 2996 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2997 Vals.push_back(II->getCallingConv() | 1 << 13); 2998 Vals.push_back(VE.getValueID(II->getNormalDest())); 2999 Vals.push_back(VE.getValueID(II->getUnwindDest())); 3000 Vals.push_back(VE.getTypeID(FTy)); 3001 pushValueAndType(Callee, InstID, Vals); 3002 3003 // Emit value #'s for the fixed parameters. 3004 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3005 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3006 3007 // Emit type/value pairs for varargs params. 3008 if (FTy->isVarArg()) { 3009 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 3010 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3011 } 3012 break; 3013 } 3014 case Instruction::Resume: 3015 Code = bitc::FUNC_CODE_INST_RESUME; 3016 pushValueAndType(I.getOperand(0), InstID, Vals); 3017 break; 3018 case Instruction::CleanupRet: { 3019 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 3020 const auto &CRI = cast<CleanupReturnInst>(I); 3021 pushValue(CRI.getCleanupPad(), InstID, Vals); 3022 if (CRI.hasUnwindDest()) 3023 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 3024 break; 3025 } 3026 case Instruction::CatchRet: { 3027 Code = bitc::FUNC_CODE_INST_CATCHRET; 3028 const auto &CRI = cast<CatchReturnInst>(I); 3029 pushValue(CRI.getCatchPad(), InstID, Vals); 3030 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 3031 break; 3032 } 3033 case Instruction::CleanupPad: 3034 case Instruction::CatchPad: { 3035 const auto &FuncletPad = cast<FuncletPadInst>(I); 3036 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 3037 : bitc::FUNC_CODE_INST_CLEANUPPAD; 3038 pushValue(FuncletPad.getParentPad(), InstID, Vals); 3039 3040 unsigned NumArgOperands = FuncletPad.arg_size(); 3041 Vals.push_back(NumArgOperands); 3042 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 3043 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 3044 break; 3045 } 3046 case Instruction::CatchSwitch: { 3047 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3048 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3049 3050 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3051 3052 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3053 Vals.push_back(NumHandlers); 3054 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3055 Vals.push_back(VE.getValueID(CatchPadBB)); 3056 3057 if (CatchSwitch.hasUnwindDest()) 3058 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3059 break; 3060 } 3061 case Instruction::CallBr: { 3062 const CallBrInst *CBI = cast<CallBrInst>(&I); 3063 const Value *Callee = CBI->getCalledOperand(); 3064 FunctionType *FTy = CBI->getFunctionType(); 3065 3066 if (CBI->hasOperandBundles()) 3067 writeOperandBundles(*CBI, InstID); 3068 3069 Code = bitc::FUNC_CODE_INST_CALLBR; 3070 3071 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3072 3073 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3074 1 << bitc::CALL_EXPLICIT_TYPE); 3075 3076 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3077 Vals.push_back(CBI->getNumIndirectDests()); 3078 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3079 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3080 3081 Vals.push_back(VE.getTypeID(FTy)); 3082 pushValueAndType(Callee, InstID, Vals); 3083 3084 // Emit value #'s for the fixed parameters. 3085 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3086 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3087 3088 // Emit type/value pairs for varargs params. 3089 if (FTy->isVarArg()) { 3090 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3091 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3092 } 3093 break; 3094 } 3095 case Instruction::Unreachable: 3096 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3097 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3098 break; 3099 3100 case Instruction::PHI: { 3101 const PHINode &PN = cast<PHINode>(I); 3102 Code = bitc::FUNC_CODE_INST_PHI; 3103 // With the newer instruction encoding, forward references could give 3104 // negative valued IDs. This is most common for PHIs, so we use 3105 // signed VBRs. 3106 SmallVector<uint64_t, 128> Vals64; 3107 Vals64.push_back(VE.getTypeID(PN.getType())); 3108 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3109 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3110 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3111 } 3112 3113 uint64_t Flags = getOptimizationFlags(&I); 3114 if (Flags != 0) 3115 Vals64.push_back(Flags); 3116 3117 // Emit a Vals64 vector and exit. 3118 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3119 Vals64.clear(); 3120 return; 3121 } 3122 3123 case Instruction::LandingPad: { 3124 const LandingPadInst &LP = cast<LandingPadInst>(I); 3125 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3126 Vals.push_back(VE.getTypeID(LP.getType())); 3127 Vals.push_back(LP.isCleanup()); 3128 Vals.push_back(LP.getNumClauses()); 3129 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3130 if (LP.isCatch(I)) 3131 Vals.push_back(LandingPadInst::Catch); 3132 else 3133 Vals.push_back(LandingPadInst::Filter); 3134 pushValueAndType(LP.getClause(I), InstID, Vals); 3135 } 3136 break; 3137 } 3138 3139 case Instruction::Alloca: { 3140 Code = bitc::FUNC_CODE_INST_ALLOCA; 3141 const AllocaInst &AI = cast<AllocaInst>(I); 3142 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3143 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3144 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3145 using APV = AllocaPackedValues; 3146 unsigned Record = 0; 3147 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3148 Bitfield::set<APV::AlignLower>( 3149 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3150 Bitfield::set<APV::AlignUpper>(Record, 3151 EncodedAlign >> APV::AlignLower::Bits); 3152 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3153 Bitfield::set<APV::ExplicitType>(Record, true); 3154 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3155 Vals.push_back(Record); 3156 3157 unsigned AS = AI.getAddressSpace(); 3158 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3159 Vals.push_back(AS); 3160 break; 3161 } 3162 3163 case Instruction::Load: 3164 if (cast<LoadInst>(I).isAtomic()) { 3165 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3166 pushValueAndType(I.getOperand(0), InstID, Vals); 3167 } else { 3168 Code = bitc::FUNC_CODE_INST_LOAD; 3169 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3170 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3171 } 3172 Vals.push_back(VE.getTypeID(I.getType())); 3173 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3174 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3175 if (cast<LoadInst>(I).isAtomic()) { 3176 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3177 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3178 } 3179 break; 3180 case Instruction::Store: 3181 if (cast<StoreInst>(I).isAtomic()) 3182 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3183 else 3184 Code = bitc::FUNC_CODE_INST_STORE; 3185 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3186 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3187 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3188 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3189 if (cast<StoreInst>(I).isAtomic()) { 3190 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3191 Vals.push_back( 3192 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3193 } 3194 break; 3195 case Instruction::AtomicCmpXchg: 3196 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3197 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3198 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3199 pushValue(I.getOperand(2), InstID, Vals); // newval. 3200 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3201 Vals.push_back( 3202 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3203 Vals.push_back( 3204 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3205 Vals.push_back( 3206 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3207 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3208 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3209 break; 3210 case Instruction::AtomicRMW: 3211 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3212 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3213 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3214 Vals.push_back( 3215 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3216 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3217 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3218 Vals.push_back( 3219 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3220 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3221 break; 3222 case Instruction::Fence: 3223 Code = bitc::FUNC_CODE_INST_FENCE; 3224 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3225 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3226 break; 3227 case Instruction::Call: { 3228 const CallInst &CI = cast<CallInst>(I); 3229 FunctionType *FTy = CI.getFunctionType(); 3230 3231 if (CI.hasOperandBundles()) 3232 writeOperandBundles(CI, InstID); 3233 3234 Code = bitc::FUNC_CODE_INST_CALL; 3235 3236 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3237 3238 unsigned Flags = getOptimizationFlags(&I); 3239 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3240 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3241 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3242 1 << bitc::CALL_EXPLICIT_TYPE | 3243 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3244 unsigned(Flags != 0) << bitc::CALL_FMF); 3245 if (Flags != 0) 3246 Vals.push_back(Flags); 3247 3248 Vals.push_back(VE.getTypeID(FTy)); 3249 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3250 3251 // Emit value #'s for the fixed parameters. 3252 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3253 // Check for labels (can happen with asm labels). 3254 if (FTy->getParamType(i)->isLabelTy()) 3255 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3256 else 3257 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3258 } 3259 3260 // Emit type/value pairs for varargs params. 3261 if (FTy->isVarArg()) { 3262 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3263 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3264 } 3265 break; 3266 } 3267 case Instruction::VAArg: 3268 Code = bitc::FUNC_CODE_INST_VAARG; 3269 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3270 pushValue(I.getOperand(0), InstID, Vals); // valist. 3271 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3272 break; 3273 case Instruction::Freeze: 3274 Code = bitc::FUNC_CODE_INST_FREEZE; 3275 pushValueAndType(I.getOperand(0), InstID, Vals); 3276 break; 3277 } 3278 3279 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3280 Vals.clear(); 3281 } 3282 3283 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3284 /// to allow clients to efficiently find the function body. 3285 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3286 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3287 // Get the offset of the VST we are writing, and backpatch it into 3288 // the VST forward declaration record. 3289 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3290 // The BitcodeStartBit was the stream offset of the identification block. 3291 VSTOffset -= bitcodeStartBit(); 3292 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3293 // Note that we add 1 here because the offset is relative to one word 3294 // before the start of the identification block, which was historically 3295 // always the start of the regular bitcode header. 3296 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3297 3298 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3299 3300 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3301 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3303 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3304 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3305 3306 for (const Function &F : M) { 3307 uint64_t Record[2]; 3308 3309 if (F.isDeclaration()) 3310 continue; 3311 3312 Record[0] = VE.getValueID(&F); 3313 3314 // Save the word offset of the function (from the start of the 3315 // actual bitcode written to the stream). 3316 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3317 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3318 // Note that we add 1 here because the offset is relative to one word 3319 // before the start of the identification block, which was historically 3320 // always the start of the regular bitcode header. 3321 Record[1] = BitcodeIndex / 32 + 1; 3322 3323 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3324 } 3325 3326 Stream.ExitBlock(); 3327 } 3328 3329 /// Emit names for arguments, instructions and basic blocks in a function. 3330 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3331 const ValueSymbolTable &VST) { 3332 if (VST.empty()) 3333 return; 3334 3335 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3336 3337 // FIXME: Set up the abbrev, we know how many values there are! 3338 // FIXME: We know if the type names can use 7-bit ascii. 3339 SmallVector<uint64_t, 64> NameVals; 3340 3341 for (const ValueName &Name : VST) { 3342 // Figure out the encoding to use for the name. 3343 StringEncoding Bits = getStringEncoding(Name.getKey()); 3344 3345 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3346 NameVals.push_back(VE.getValueID(Name.getValue())); 3347 3348 // VST_CODE_ENTRY: [valueid, namechar x N] 3349 // VST_CODE_BBENTRY: [bbid, namechar x N] 3350 unsigned Code; 3351 if (isa<BasicBlock>(Name.getValue())) { 3352 Code = bitc::VST_CODE_BBENTRY; 3353 if (Bits == SE_Char6) 3354 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3355 } else { 3356 Code = bitc::VST_CODE_ENTRY; 3357 if (Bits == SE_Char6) 3358 AbbrevToUse = VST_ENTRY_6_ABBREV; 3359 else if (Bits == SE_Fixed7) 3360 AbbrevToUse = VST_ENTRY_7_ABBREV; 3361 } 3362 3363 for (const auto P : Name.getKey()) 3364 NameVals.push_back((unsigned char)P); 3365 3366 // Emit the finished record. 3367 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3368 NameVals.clear(); 3369 } 3370 3371 Stream.ExitBlock(); 3372 } 3373 3374 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3375 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3376 unsigned Code; 3377 if (isa<BasicBlock>(Order.V)) 3378 Code = bitc::USELIST_CODE_BB; 3379 else 3380 Code = bitc::USELIST_CODE_DEFAULT; 3381 3382 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3383 Record.push_back(VE.getValueID(Order.V)); 3384 Stream.EmitRecord(Code, Record); 3385 } 3386 3387 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3388 assert(VE.shouldPreserveUseListOrder() && 3389 "Expected to be preserving use-list order"); 3390 3391 auto hasMore = [&]() { 3392 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3393 }; 3394 if (!hasMore()) 3395 // Nothing to do. 3396 return; 3397 3398 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3399 while (hasMore()) { 3400 writeUseList(std::move(VE.UseListOrders.back())); 3401 VE.UseListOrders.pop_back(); 3402 } 3403 Stream.ExitBlock(); 3404 } 3405 3406 /// Emit a function body to the module stream. 3407 void ModuleBitcodeWriter::writeFunction( 3408 const Function &F, 3409 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3410 // Save the bitcode index of the start of this function block for recording 3411 // in the VST. 3412 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3413 3414 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3415 VE.incorporateFunction(F); 3416 3417 SmallVector<unsigned, 64> Vals; 3418 3419 // Emit the number of basic blocks, so the reader can create them ahead of 3420 // time. 3421 Vals.push_back(VE.getBasicBlocks().size()); 3422 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3423 Vals.clear(); 3424 3425 // If there are function-local constants, emit them now. 3426 unsigned CstStart, CstEnd; 3427 VE.getFunctionConstantRange(CstStart, CstEnd); 3428 writeConstants(CstStart, CstEnd, false); 3429 3430 // If there is function-local metadata, emit it now. 3431 writeFunctionMetadata(F); 3432 3433 // Keep a running idea of what the instruction ID is. 3434 unsigned InstID = CstEnd; 3435 3436 bool NeedsMetadataAttachment = F.hasMetadata(); 3437 3438 DILocation *LastDL = nullptr; 3439 SmallSetVector<Function *, 4> BlockAddressUsers; 3440 3441 // Finally, emit all the instructions, in order. 3442 for (const BasicBlock &BB : F) { 3443 for (const Instruction &I : BB) { 3444 writeInstruction(I, InstID, Vals); 3445 3446 if (!I.getType()->isVoidTy()) 3447 ++InstID; 3448 3449 // If the instruction has metadata, write a metadata attachment later. 3450 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3451 3452 // If the instruction has a debug location, emit it. 3453 DILocation *DL = I.getDebugLoc(); 3454 if (!DL) 3455 continue; 3456 3457 if (DL == LastDL) { 3458 // Just repeat the same debug loc as last time. 3459 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3460 continue; 3461 } 3462 3463 Vals.push_back(DL->getLine()); 3464 Vals.push_back(DL->getColumn()); 3465 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3466 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3467 Vals.push_back(DL->isImplicitCode()); 3468 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3469 Vals.clear(); 3470 3471 LastDL = DL; 3472 } 3473 3474 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3475 SmallVector<Value *> Worklist{BA}; 3476 SmallPtrSet<Value *, 8> Visited{BA}; 3477 while (!Worklist.empty()) { 3478 Value *V = Worklist.pop_back_val(); 3479 for (User *U : V->users()) { 3480 if (auto *I = dyn_cast<Instruction>(U)) { 3481 Function *P = I->getFunction(); 3482 if (P != &F) 3483 BlockAddressUsers.insert(P); 3484 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3485 Visited.insert(U).second) 3486 Worklist.push_back(U); 3487 } 3488 } 3489 } 3490 } 3491 3492 if (!BlockAddressUsers.empty()) { 3493 Vals.resize(BlockAddressUsers.size()); 3494 for (auto I : llvm::enumerate(BlockAddressUsers)) 3495 Vals[I.index()] = VE.getValueID(I.value()); 3496 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3497 Vals.clear(); 3498 } 3499 3500 // Emit names for all the instructions etc. 3501 if (auto *Symtab = F.getValueSymbolTable()) 3502 writeFunctionLevelValueSymbolTable(*Symtab); 3503 3504 if (NeedsMetadataAttachment) 3505 writeFunctionMetadataAttachment(F); 3506 if (VE.shouldPreserveUseListOrder()) 3507 writeUseListBlock(&F); 3508 VE.purgeFunction(); 3509 Stream.ExitBlock(); 3510 } 3511 3512 // Emit blockinfo, which defines the standard abbreviations etc. 3513 void ModuleBitcodeWriter::writeBlockInfo() { 3514 // We only want to emit block info records for blocks that have multiple 3515 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3516 // Other blocks can define their abbrevs inline. 3517 Stream.EnterBlockInfoBlock(); 3518 3519 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3520 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3525 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3526 VST_ENTRY_8_ABBREV) 3527 llvm_unreachable("Unexpected abbrev ordering!"); 3528 } 3529 3530 { // 7-bit fixed width VST_CODE_ENTRY strings. 3531 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3532 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3533 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3534 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3535 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3536 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3537 VST_ENTRY_7_ABBREV) 3538 llvm_unreachable("Unexpected abbrev ordering!"); 3539 } 3540 { // 6-bit char6 VST_CODE_ENTRY strings. 3541 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3542 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3543 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3544 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3545 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3546 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3547 VST_ENTRY_6_ABBREV) 3548 llvm_unreachable("Unexpected abbrev ordering!"); 3549 } 3550 { // 6-bit char6 VST_CODE_BBENTRY strings. 3551 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3552 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3556 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3557 VST_BBENTRY_6_ABBREV) 3558 llvm_unreachable("Unexpected abbrev ordering!"); 3559 } 3560 3561 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3562 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3563 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3564 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3565 VE.computeBitsRequiredForTypeIndicies())); 3566 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3567 CONSTANTS_SETTYPE_ABBREV) 3568 llvm_unreachable("Unexpected abbrev ordering!"); 3569 } 3570 3571 { // INTEGER abbrev for CONSTANTS_BLOCK. 3572 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3573 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3574 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3575 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3576 CONSTANTS_INTEGER_ABBREV) 3577 llvm_unreachable("Unexpected abbrev ordering!"); 3578 } 3579 3580 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3581 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3582 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3585 VE.computeBitsRequiredForTypeIndicies())); 3586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3587 3588 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3589 CONSTANTS_CE_CAST_Abbrev) 3590 llvm_unreachable("Unexpected abbrev ordering!"); 3591 } 3592 { // NULL abbrev for CONSTANTS_BLOCK. 3593 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3594 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3595 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3596 CONSTANTS_NULL_Abbrev) 3597 llvm_unreachable("Unexpected abbrev ordering!"); 3598 } 3599 3600 // FIXME: This should only use space for first class types! 3601 3602 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3603 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3604 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3605 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3607 VE.computeBitsRequiredForTypeIndicies())); 3608 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3610 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3611 FUNCTION_INST_LOAD_ABBREV) 3612 llvm_unreachable("Unexpected abbrev ordering!"); 3613 } 3614 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3615 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3616 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3618 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3619 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3620 FUNCTION_INST_UNOP_ABBREV) 3621 llvm_unreachable("Unexpected abbrev ordering!"); 3622 } 3623 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3624 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3625 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3626 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3627 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3628 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3629 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3630 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3631 llvm_unreachable("Unexpected abbrev ordering!"); 3632 } 3633 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3634 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3635 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3637 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3639 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3640 FUNCTION_INST_BINOP_ABBREV) 3641 llvm_unreachable("Unexpected abbrev ordering!"); 3642 } 3643 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3644 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3645 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3646 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3648 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3649 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3650 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3651 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3652 llvm_unreachable("Unexpected abbrev ordering!"); 3653 } 3654 { // INST_CAST abbrev for FUNCTION_BLOCK. 3655 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3656 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3657 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3658 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3659 VE.computeBitsRequiredForTypeIndicies())); 3660 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3661 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3662 FUNCTION_INST_CAST_ABBREV) 3663 llvm_unreachable("Unexpected abbrev ordering!"); 3664 } 3665 { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK. 3666 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3667 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3668 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3669 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3670 VE.computeBitsRequiredForTypeIndicies())); 3671 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3672 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3673 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3674 FUNCTION_INST_CAST_FLAGS_ABBREV) 3675 llvm_unreachable("Unexpected abbrev ordering!"); 3676 } 3677 3678 { // INST_RET abbrev for FUNCTION_BLOCK. 3679 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3680 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3681 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3682 FUNCTION_INST_RET_VOID_ABBREV) 3683 llvm_unreachable("Unexpected abbrev ordering!"); 3684 } 3685 { // INST_RET abbrev for FUNCTION_BLOCK. 3686 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3687 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3688 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3689 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3690 FUNCTION_INST_RET_VAL_ABBREV) 3691 llvm_unreachable("Unexpected abbrev ordering!"); 3692 } 3693 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3694 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3695 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3696 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3697 FUNCTION_INST_UNREACHABLE_ABBREV) 3698 llvm_unreachable("Unexpected abbrev ordering!"); 3699 } 3700 { 3701 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3702 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3703 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3704 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3705 Log2_32_Ceil(VE.getTypes().size() + 1))); 3706 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3707 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3708 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3709 FUNCTION_INST_GEP_ABBREV) 3710 llvm_unreachable("Unexpected abbrev ordering!"); 3711 } 3712 3713 Stream.ExitBlock(); 3714 } 3715 3716 /// Write the module path strings, currently only used when generating 3717 /// a combined index file. 3718 void IndexBitcodeWriter::writeModStrings() { 3719 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3720 3721 // TODO: See which abbrev sizes we actually need to emit 3722 3723 // 8-bit fixed-width MST_ENTRY strings. 3724 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3725 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3726 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3727 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3728 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3729 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3730 3731 // 7-bit fixed width MST_ENTRY strings. 3732 Abbv = std::make_shared<BitCodeAbbrev>(); 3733 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3734 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3735 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3736 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3737 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3738 3739 // 6-bit char6 MST_ENTRY strings. 3740 Abbv = std::make_shared<BitCodeAbbrev>(); 3741 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3742 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3743 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3744 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3745 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3746 3747 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3748 Abbv = std::make_shared<BitCodeAbbrev>(); 3749 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3751 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3752 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3754 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3755 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3756 3757 SmallVector<unsigned, 64> Vals; 3758 forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) { 3759 StringRef Key = MPSE.getKey(); 3760 const auto &Hash = MPSE.getValue(); 3761 StringEncoding Bits = getStringEncoding(Key); 3762 unsigned AbbrevToUse = Abbrev8Bit; 3763 if (Bits == SE_Char6) 3764 AbbrevToUse = Abbrev6Bit; 3765 else if (Bits == SE_Fixed7) 3766 AbbrevToUse = Abbrev7Bit; 3767 3768 auto ModuleId = ModuleIdMap.size(); 3769 ModuleIdMap[Key] = ModuleId; 3770 Vals.push_back(ModuleId); 3771 Vals.append(Key.begin(), Key.end()); 3772 3773 // Emit the finished record. 3774 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3775 3776 // Emit an optional hash for the module now 3777 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3778 Vals.assign(Hash.begin(), Hash.end()); 3779 // Emit the hash record. 3780 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3781 } 3782 3783 Vals.clear(); 3784 }); 3785 Stream.ExitBlock(); 3786 } 3787 3788 /// Write the function type metadata related records that need to appear before 3789 /// a function summary entry (whether per-module or combined). 3790 template <typename Fn> 3791 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3792 FunctionSummary *FS, 3793 Fn GetValueID) { 3794 if (!FS->type_tests().empty()) 3795 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3796 3797 SmallVector<uint64_t, 64> Record; 3798 3799 auto WriteVFuncIdVec = [&](uint64_t Ty, 3800 ArrayRef<FunctionSummary::VFuncId> VFs) { 3801 if (VFs.empty()) 3802 return; 3803 Record.clear(); 3804 for (auto &VF : VFs) { 3805 Record.push_back(VF.GUID); 3806 Record.push_back(VF.Offset); 3807 } 3808 Stream.EmitRecord(Ty, Record); 3809 }; 3810 3811 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3812 FS->type_test_assume_vcalls()); 3813 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3814 FS->type_checked_load_vcalls()); 3815 3816 auto WriteConstVCallVec = [&](uint64_t Ty, 3817 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3818 for (auto &VC : VCs) { 3819 Record.clear(); 3820 Record.push_back(VC.VFunc.GUID); 3821 Record.push_back(VC.VFunc.Offset); 3822 llvm::append_range(Record, VC.Args); 3823 Stream.EmitRecord(Ty, Record); 3824 } 3825 }; 3826 3827 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3828 FS->type_test_assume_const_vcalls()); 3829 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3830 FS->type_checked_load_const_vcalls()); 3831 3832 auto WriteRange = [&](ConstantRange Range) { 3833 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3834 assert(Range.getLower().getNumWords() == 1); 3835 assert(Range.getUpper().getNumWords() == 1); 3836 emitSignedInt64(Record, *Range.getLower().getRawData()); 3837 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3838 }; 3839 3840 if (!FS->paramAccesses().empty()) { 3841 Record.clear(); 3842 for (auto &Arg : FS->paramAccesses()) { 3843 size_t UndoSize = Record.size(); 3844 Record.push_back(Arg.ParamNo); 3845 WriteRange(Arg.Use); 3846 Record.push_back(Arg.Calls.size()); 3847 for (auto &Call : Arg.Calls) { 3848 Record.push_back(Call.ParamNo); 3849 std::optional<unsigned> ValueID = GetValueID(Call.Callee); 3850 if (!ValueID) { 3851 // If ValueID is unknown we can't drop just this call, we must drop 3852 // entire parameter. 3853 Record.resize(UndoSize); 3854 break; 3855 } 3856 Record.push_back(*ValueID); 3857 WriteRange(Call.Offsets); 3858 } 3859 } 3860 if (!Record.empty()) 3861 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3862 } 3863 } 3864 3865 /// Collect type IDs from type tests used by function. 3866 static void 3867 getReferencedTypeIds(FunctionSummary *FS, 3868 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3869 if (!FS->type_tests().empty()) 3870 for (auto &TT : FS->type_tests()) 3871 ReferencedTypeIds.insert(TT); 3872 3873 auto GetReferencedTypesFromVFuncIdVec = 3874 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3875 for (auto &VF : VFs) 3876 ReferencedTypeIds.insert(VF.GUID); 3877 }; 3878 3879 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3880 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3881 3882 auto GetReferencedTypesFromConstVCallVec = 3883 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3884 for (auto &VC : VCs) 3885 ReferencedTypeIds.insert(VC.VFunc.GUID); 3886 }; 3887 3888 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3889 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3890 } 3891 3892 static void writeWholeProgramDevirtResolutionByArg( 3893 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3894 const WholeProgramDevirtResolution::ByArg &ByArg) { 3895 NameVals.push_back(args.size()); 3896 llvm::append_range(NameVals, args); 3897 3898 NameVals.push_back(ByArg.TheKind); 3899 NameVals.push_back(ByArg.Info); 3900 NameVals.push_back(ByArg.Byte); 3901 NameVals.push_back(ByArg.Bit); 3902 } 3903 3904 static void writeWholeProgramDevirtResolution( 3905 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3906 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3907 NameVals.push_back(Id); 3908 3909 NameVals.push_back(Wpd.TheKind); 3910 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3911 NameVals.push_back(Wpd.SingleImplName.size()); 3912 3913 NameVals.push_back(Wpd.ResByArg.size()); 3914 for (auto &A : Wpd.ResByArg) 3915 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3916 } 3917 3918 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3919 StringTableBuilder &StrtabBuilder, 3920 const std::string &Id, 3921 const TypeIdSummary &Summary) { 3922 NameVals.push_back(StrtabBuilder.add(Id)); 3923 NameVals.push_back(Id.size()); 3924 3925 NameVals.push_back(Summary.TTRes.TheKind); 3926 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3927 NameVals.push_back(Summary.TTRes.AlignLog2); 3928 NameVals.push_back(Summary.TTRes.SizeM1); 3929 NameVals.push_back(Summary.TTRes.BitMask); 3930 NameVals.push_back(Summary.TTRes.InlineBits); 3931 3932 for (auto &W : Summary.WPDRes) 3933 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3934 W.second); 3935 } 3936 3937 static void writeTypeIdCompatibleVtableSummaryRecord( 3938 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3939 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3940 ValueEnumerator &VE) { 3941 NameVals.push_back(StrtabBuilder.add(Id)); 3942 NameVals.push_back(Id.size()); 3943 3944 for (auto &P : Summary) { 3945 NameVals.push_back(P.AddressPointOffset); 3946 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3947 } 3948 } 3949 3950 static void writeFunctionHeapProfileRecords( 3951 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, 3952 unsigned AllocAbbrev, bool PerModule, 3953 std::function<unsigned(const ValueInfo &VI)> GetValueID, 3954 std::function<unsigned(unsigned)> GetStackIndex) { 3955 SmallVector<uint64_t> Record; 3956 3957 for (auto &CI : FS->callsites()) { 3958 Record.clear(); 3959 // Per module callsite clones should always have a single entry of 3960 // value 0. 3961 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); 3962 Record.push_back(GetValueID(CI.Callee)); 3963 if (!PerModule) { 3964 Record.push_back(CI.StackIdIndices.size()); 3965 Record.push_back(CI.Clones.size()); 3966 } 3967 for (auto Id : CI.StackIdIndices) 3968 Record.push_back(GetStackIndex(Id)); 3969 if (!PerModule) { 3970 for (auto V : CI.Clones) 3971 Record.push_back(V); 3972 } 3973 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO 3974 : bitc::FS_COMBINED_CALLSITE_INFO, 3975 Record, CallsiteAbbrev); 3976 } 3977 3978 for (auto &AI : FS->allocs()) { 3979 Record.clear(); 3980 // Per module alloc versions should always have a single entry of 3981 // value 0. 3982 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); 3983 if (!PerModule) { 3984 Record.push_back(AI.MIBs.size()); 3985 Record.push_back(AI.Versions.size()); 3986 } 3987 for (auto &MIB : AI.MIBs) { 3988 Record.push_back((uint8_t)MIB.AllocType); 3989 Record.push_back(MIB.StackIdIndices.size()); 3990 for (auto Id : MIB.StackIdIndices) 3991 Record.push_back(GetStackIndex(Id)); 3992 } 3993 if (!PerModule) { 3994 for (auto V : AI.Versions) 3995 Record.push_back(V); 3996 } 3997 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO 3998 : bitc::FS_COMBINED_ALLOC_INFO, 3999 Record, AllocAbbrev); 4000 } 4001 } 4002 4003 // Helper to emit a single function summary record. 4004 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 4005 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 4006 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 4007 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F) { 4008 NameVals.push_back(ValueID); 4009 4010 FunctionSummary *FS = cast<FunctionSummary>(Summary); 4011 4012 writeFunctionTypeMetadataRecords( 4013 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> { 4014 return {VE.getValueID(VI.getValue())}; 4015 }); 4016 4017 writeFunctionHeapProfileRecords( 4018 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4019 /*PerModule*/ true, 4020 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, 4021 /*GetStackIndex*/ [&](unsigned I) { return I; }); 4022 4023 auto SpecialRefCnts = FS->specialRefCounts(); 4024 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4025 NameVals.push_back(FS->instCount()); 4026 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4027 NameVals.push_back(FS->refs().size()); 4028 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 4029 NameVals.push_back(SpecialRefCnts.second); // worefcnt 4030 4031 for (auto &RI : FS->refs()) 4032 NameVals.push_back(VE.getValueID(RI.getValue())); 4033 4034 bool HasProfileData = 4035 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 4036 for (auto &ECI : FS->calls()) { 4037 NameVals.push_back(getValueId(ECI.first)); 4038 if (HasProfileData) 4039 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 4040 else if (WriteRelBFToSummary) 4041 NameVals.push_back(ECI.second.RelBlockFreq); 4042 } 4043 4044 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4045 unsigned Code = 4046 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 4047 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 4048 : bitc::FS_PERMODULE)); 4049 4050 // Emit the finished record. 4051 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4052 NameVals.clear(); 4053 } 4054 4055 // Collect the global value references in the given variable's initializer, 4056 // and emit them in a summary record. 4057 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 4058 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 4059 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 4060 auto VI = Index->getValueInfo(V.getGUID()); 4061 if (!VI || VI.getSummaryList().empty()) { 4062 // Only declarations should not have a summary (a declaration might however 4063 // have a summary if the def was in module level asm). 4064 assert(V.isDeclaration()); 4065 return; 4066 } 4067 auto *Summary = VI.getSummaryList()[0].get(); 4068 NameVals.push_back(VE.getValueID(&V)); 4069 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 4070 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4071 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4072 4073 auto VTableFuncs = VS->vTableFuncs(); 4074 if (!VTableFuncs.empty()) 4075 NameVals.push_back(VS->refs().size()); 4076 4077 unsigned SizeBeforeRefs = NameVals.size(); 4078 for (auto &RI : VS->refs()) 4079 NameVals.push_back(VE.getValueID(RI.getValue())); 4080 // Sort the refs for determinism output, the vector returned by FS->refs() has 4081 // been initialized from a DenseSet. 4082 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 4083 4084 if (VTableFuncs.empty()) 4085 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 4086 FSModRefsAbbrev); 4087 else { 4088 // VTableFuncs pairs should already be sorted by offset. 4089 for (auto &P : VTableFuncs) { 4090 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 4091 NameVals.push_back(P.VTableOffset); 4092 } 4093 4094 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 4095 FSModVTableRefsAbbrev); 4096 } 4097 NameVals.clear(); 4098 } 4099 4100 /// Emit the per-module summary section alongside the rest of 4101 /// the module's bitcode. 4102 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 4103 // By default we compile with ThinLTO if the module has a summary, but the 4104 // client can request full LTO with a module flag. 4105 bool IsThinLTO = true; 4106 if (auto *MD = 4107 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 4108 IsThinLTO = MD->getZExtValue(); 4109 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 4110 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 4111 4); 4112 4113 Stream.EmitRecord( 4114 bitc::FS_VERSION, 4115 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4116 4117 // Write the index flags. 4118 uint64_t Flags = 0; 4119 // Bits 1-3 are set only in the combined index, skip them. 4120 if (Index->enableSplitLTOUnit()) 4121 Flags |= 0x8; 4122 if (Index->hasUnifiedLTO()) 4123 Flags |= 0x200; 4124 4125 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4126 4127 if (Index->begin() == Index->end()) { 4128 Stream.ExitBlock(); 4129 return; 4130 } 4131 4132 for (const auto &GVI : valueIds()) { 4133 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4134 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4135 } 4136 4137 if (!Index->stackIds().empty()) { 4138 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4139 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4140 // numids x stackid 4141 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4142 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4143 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4144 Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId); 4145 } 4146 4147 // Abbrev for FS_PERMODULE_PROFILE. 4148 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4149 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags 4152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4157 // numrefs x valueid, n x (valueid, hotness) 4158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4160 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4161 4162 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 4163 Abbv = std::make_shared<BitCodeAbbrev>(); 4164 if (WriteRelBFToSummary) 4165 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4166 else 4167 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 4168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4175 // numrefs x valueid, n x (valueid [, rel_block_freq]) 4176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4178 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4179 4180 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4181 Abbv = std::make_shared<BitCodeAbbrev>(); 4182 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4184 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4185 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4187 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4188 4189 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4190 Abbv = std::make_shared<BitCodeAbbrev>(); 4191 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4195 // numrefs x valueid, n x (valueid , offset) 4196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4198 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4199 4200 // Abbrev for FS_ALIAS. 4201 Abbv = std::make_shared<BitCodeAbbrev>(); 4202 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4205 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4206 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4207 4208 // Abbrev for FS_TYPE_ID_METADATA 4209 Abbv = std::make_shared<BitCodeAbbrev>(); 4210 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4213 // n x (valueid , offset) 4214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4215 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4216 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4217 4218 Abbv = std::make_shared<BitCodeAbbrev>(); 4219 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); 4220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4221 // n x stackidindex 4222 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4224 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4225 4226 Abbv = std::make_shared<BitCodeAbbrev>(); 4227 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); 4228 // n x (alloc type, numstackids, numstackids x stackidindex) 4229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4230 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4231 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4232 4233 SmallVector<uint64_t, 64> NameVals; 4234 // Iterate over the list of functions instead of the Index to 4235 // ensure the ordering is stable. 4236 for (const Function &F : M) { 4237 // Summary emission does not support anonymous functions, they have to 4238 // renamed using the anonymous function renaming pass. 4239 if (!F.hasName()) 4240 report_fatal_error("Unexpected anonymous function when writing summary"); 4241 4242 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4243 if (!VI || VI.getSummaryList().empty()) { 4244 // Only declarations should not have a summary (a declaration might 4245 // however have a summary if the def was in module level asm). 4246 assert(F.isDeclaration()); 4247 continue; 4248 } 4249 auto *Summary = VI.getSummaryList()[0].get(); 4250 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4251 FSCallsAbbrev, FSCallsProfileAbbrev, 4252 CallsiteAbbrev, AllocAbbrev, F); 4253 } 4254 4255 // Capture references from GlobalVariable initializers, which are outside 4256 // of a function scope. 4257 for (const GlobalVariable &G : M.globals()) 4258 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4259 FSModVTableRefsAbbrev); 4260 4261 for (const GlobalAlias &A : M.aliases()) { 4262 auto *Aliasee = A.getAliaseeObject(); 4263 // Skip ifunc and nameless functions which don't have an entry in the 4264 // summary. 4265 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4266 continue; 4267 auto AliasId = VE.getValueID(&A); 4268 auto AliaseeId = VE.getValueID(Aliasee); 4269 NameVals.push_back(AliasId); 4270 auto *Summary = Index->getGlobalValueSummary(A); 4271 AliasSummary *AS = cast<AliasSummary>(Summary); 4272 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4273 NameVals.push_back(AliaseeId); 4274 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4275 NameVals.clear(); 4276 } 4277 4278 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4279 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4280 S.second, VE); 4281 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4282 TypeIdCompatibleVtableAbbrev); 4283 NameVals.clear(); 4284 } 4285 4286 if (Index->getBlockCount()) 4287 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4288 ArrayRef<uint64_t>{Index->getBlockCount()}); 4289 4290 Stream.ExitBlock(); 4291 } 4292 4293 /// Emit the combined summary section into the combined index file. 4294 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4295 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 4296 Stream.EmitRecord( 4297 bitc::FS_VERSION, 4298 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4299 4300 // Write the index flags. 4301 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4302 4303 for (const auto &GVI : valueIds()) { 4304 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4305 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4306 } 4307 4308 if (!StackIdIndices.empty()) { 4309 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4310 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4311 // numids x stackid 4312 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4313 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4314 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4315 // Write the stack ids used by this index, which will be a subset of those in 4316 // the full index in the case of distributed indexes. 4317 std::vector<uint64_t> StackIds; 4318 for (auto &I : StackIdIndices) 4319 StackIds.push_back(Index.getStackIdAtIndex(I)); 4320 Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId); 4321 } 4322 4323 // Abbrev for FS_COMBINED. 4324 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4325 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4335 // numrefs x valueid, n x (valueid) 4336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4338 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4339 4340 // Abbrev for FS_COMBINED_PROFILE. 4341 Abbv = std::make_shared<BitCodeAbbrev>(); 4342 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4352 // numrefs x valueid, n x (valueid, hotness) 4353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4355 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4356 4357 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4358 Abbv = std::make_shared<BitCodeAbbrev>(); 4359 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4365 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4366 4367 // Abbrev for FS_COMBINED_ALIAS. 4368 Abbv = std::make_shared<BitCodeAbbrev>(); 4369 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4374 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4375 4376 Abbv = std::make_shared<BitCodeAbbrev>(); 4377 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); 4378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices 4380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4381 // numstackindices x stackidindex, numver x version 4382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4384 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4385 4386 Abbv = std::make_shared<BitCodeAbbrev>(); 4387 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); 4388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4390 // nummib x (alloc type, numstackids, numstackids x stackidindex), 4391 // numver x version 4392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4394 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4395 4396 // The aliases are emitted as a post-pass, and will point to the value 4397 // id of the aliasee. Save them in a vector for post-processing. 4398 SmallVector<AliasSummary *, 64> Aliases; 4399 4400 // Save the value id for each summary for alias emission. 4401 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4402 4403 SmallVector<uint64_t, 64> NameVals; 4404 4405 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4406 // with the type ids referenced by this index file. 4407 std::set<GlobalValue::GUID> ReferencedTypeIds; 4408 4409 // For local linkage, we also emit the original name separately 4410 // immediately after the record. 4411 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4412 // We don't need to emit the original name if we are writing the index for 4413 // distributed backends (in which case ModuleToSummariesForIndex is 4414 // non-null). The original name is only needed during the thin link, since 4415 // for SamplePGO the indirect call targets for local functions have 4416 // have the original name annotated in profile. 4417 // Continue to emit it when writing out the entire combined index, which is 4418 // used in testing the thin link via llvm-lto. 4419 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4420 return; 4421 NameVals.push_back(S.getOriginalName()); 4422 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4423 NameVals.clear(); 4424 }; 4425 4426 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4427 forEachSummary([&](GVInfo I, bool IsAliasee) { 4428 GlobalValueSummary *S = I.second; 4429 assert(S); 4430 DefOrUseGUIDs.insert(I.first); 4431 for (const ValueInfo &VI : S->refs()) 4432 DefOrUseGUIDs.insert(VI.getGUID()); 4433 4434 auto ValueId = getValueId(I.first); 4435 assert(ValueId); 4436 SummaryToValueIdMap[S] = *ValueId; 4437 4438 // If this is invoked for an aliasee, we want to record the above 4439 // mapping, but then not emit a summary entry (if the aliasee is 4440 // to be imported, we will invoke this separately with IsAliasee=false). 4441 if (IsAliasee) 4442 return; 4443 4444 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4445 // Will process aliases as a post-pass because the reader wants all 4446 // global to be loaded first. 4447 Aliases.push_back(AS); 4448 return; 4449 } 4450 4451 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4452 NameVals.push_back(*ValueId); 4453 assert(ModuleIdMap.count(VS->modulePath())); 4454 NameVals.push_back(ModuleIdMap[VS->modulePath()]); 4455 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4456 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4457 for (auto &RI : VS->refs()) { 4458 auto RefValueId = getValueId(RI.getGUID()); 4459 if (!RefValueId) 4460 continue; 4461 NameVals.push_back(*RefValueId); 4462 } 4463 4464 // Emit the finished record. 4465 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4466 FSModRefsAbbrev); 4467 NameVals.clear(); 4468 MaybeEmitOriginalName(*S); 4469 return; 4470 } 4471 4472 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { 4473 if (!VI) 4474 return std::nullopt; 4475 return getValueId(VI.getGUID()); 4476 }; 4477 4478 auto *FS = cast<FunctionSummary>(S); 4479 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4480 getReferencedTypeIds(FS, ReferencedTypeIds); 4481 4482 writeFunctionHeapProfileRecords( 4483 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4484 /*PerModule*/ false, 4485 /*GetValueId*/ [&](const ValueInfo &VI) -> unsigned { 4486 std::optional<unsigned> ValueID = GetValueId(VI); 4487 // This can happen in shared index files for distributed ThinLTO if 4488 // the callee function summary is not included. Record 0 which we 4489 // will have to deal with conservatively when doing any kind of 4490 // validation in the ThinLTO backends. 4491 if (!ValueID) 4492 return 0; 4493 return *ValueID; 4494 }, 4495 /*GetStackIndex*/ [&](unsigned I) { 4496 // Get the corresponding index into the list of StackIdIndices 4497 // actually being written for this combined index (which may be a 4498 // subset in the case of distributed indexes). 4499 auto Lower = llvm::lower_bound(StackIdIndices, I); 4500 return std::distance(StackIdIndices.begin(), Lower); 4501 }); 4502 4503 NameVals.push_back(*ValueId); 4504 assert(ModuleIdMap.count(FS->modulePath())); 4505 NameVals.push_back(ModuleIdMap[FS->modulePath()]); 4506 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4507 NameVals.push_back(FS->instCount()); 4508 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4509 NameVals.push_back(FS->entryCount()); 4510 4511 // Fill in below 4512 NameVals.push_back(0); // numrefs 4513 NameVals.push_back(0); // rorefcnt 4514 NameVals.push_back(0); // worefcnt 4515 4516 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4517 for (auto &RI : FS->refs()) { 4518 auto RefValueId = getValueId(RI.getGUID()); 4519 if (!RefValueId) 4520 continue; 4521 NameVals.push_back(*RefValueId); 4522 if (RI.isReadOnly()) 4523 RORefCnt++; 4524 else if (RI.isWriteOnly()) 4525 WORefCnt++; 4526 Count++; 4527 } 4528 NameVals[6] = Count; 4529 NameVals[7] = RORefCnt; 4530 NameVals[8] = WORefCnt; 4531 4532 bool HasProfileData = false; 4533 for (auto &EI : FS->calls()) { 4534 HasProfileData |= 4535 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4536 if (HasProfileData) 4537 break; 4538 } 4539 4540 for (auto &EI : FS->calls()) { 4541 // If this GUID doesn't have a value id, it doesn't have a function 4542 // summary and we don't need to record any calls to it. 4543 std::optional<unsigned> CallValueId = GetValueId(EI.first); 4544 if (!CallValueId) 4545 continue; 4546 NameVals.push_back(*CallValueId); 4547 if (HasProfileData) 4548 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4549 } 4550 4551 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4552 unsigned Code = 4553 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4554 4555 // Emit the finished record. 4556 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4557 NameVals.clear(); 4558 MaybeEmitOriginalName(*S); 4559 }); 4560 4561 for (auto *AS : Aliases) { 4562 auto AliasValueId = SummaryToValueIdMap[AS]; 4563 assert(AliasValueId); 4564 NameVals.push_back(AliasValueId); 4565 assert(ModuleIdMap.count(AS->modulePath())); 4566 NameVals.push_back(ModuleIdMap[AS->modulePath()]); 4567 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4568 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4569 assert(AliaseeValueId); 4570 NameVals.push_back(AliaseeValueId); 4571 4572 // Emit the finished record. 4573 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4574 NameVals.clear(); 4575 MaybeEmitOriginalName(*AS); 4576 4577 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4578 getReferencedTypeIds(FS, ReferencedTypeIds); 4579 } 4580 4581 if (!Index.cfiFunctionDefs().empty()) { 4582 for (auto &S : Index.cfiFunctionDefs()) { 4583 if (DefOrUseGUIDs.count( 4584 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4585 NameVals.push_back(StrtabBuilder.add(S)); 4586 NameVals.push_back(S.size()); 4587 } 4588 } 4589 if (!NameVals.empty()) { 4590 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4591 NameVals.clear(); 4592 } 4593 } 4594 4595 if (!Index.cfiFunctionDecls().empty()) { 4596 for (auto &S : Index.cfiFunctionDecls()) { 4597 if (DefOrUseGUIDs.count( 4598 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4599 NameVals.push_back(StrtabBuilder.add(S)); 4600 NameVals.push_back(S.size()); 4601 } 4602 } 4603 if (!NameVals.empty()) { 4604 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4605 NameVals.clear(); 4606 } 4607 } 4608 4609 // Walk the GUIDs that were referenced, and write the 4610 // corresponding type id records. 4611 for (auto &T : ReferencedTypeIds) { 4612 auto TidIter = Index.typeIds().equal_range(T); 4613 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4614 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4615 It->second.second); 4616 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4617 NameVals.clear(); 4618 } 4619 } 4620 4621 if (Index.getBlockCount()) 4622 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4623 ArrayRef<uint64_t>{Index.getBlockCount()}); 4624 4625 Stream.ExitBlock(); 4626 } 4627 4628 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4629 /// current llvm version, and a record for the epoch number. 4630 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4631 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4632 4633 // Write the "user readable" string identifying the bitcode producer 4634 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4635 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4637 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4638 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4639 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4640 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4641 4642 // Write the epoch version 4643 Abbv = std::make_shared<BitCodeAbbrev>(); 4644 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4645 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4646 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4647 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4648 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4649 Stream.ExitBlock(); 4650 } 4651 4652 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4653 // Emit the module's hash. 4654 // MODULE_CODE_HASH: [5*i32] 4655 if (GenerateHash) { 4656 uint32_t Vals[5]; 4657 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4658 Buffer.size() - BlockStartPos)); 4659 std::array<uint8_t, 20> Hash = Hasher.result(); 4660 for (int Pos = 0; Pos < 20; Pos += 4) { 4661 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4662 } 4663 4664 // Emit the finished record. 4665 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4666 4667 if (ModHash) 4668 // Save the written hash value. 4669 llvm::copy(Vals, std::begin(*ModHash)); 4670 } 4671 } 4672 4673 void ModuleBitcodeWriter::write() { 4674 writeIdentificationBlock(Stream); 4675 4676 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4677 size_t BlockStartPos = Buffer.size(); 4678 4679 writeModuleVersion(); 4680 4681 // Emit blockinfo, which defines the standard abbreviations etc. 4682 writeBlockInfo(); 4683 4684 // Emit information describing all of the types in the module. 4685 writeTypeTable(); 4686 4687 // Emit information about attribute groups. 4688 writeAttributeGroupTable(); 4689 4690 // Emit information about parameter attributes. 4691 writeAttributeTable(); 4692 4693 writeComdats(); 4694 4695 // Emit top-level description of module, including target triple, inline asm, 4696 // descriptors for global variables, and function prototype info. 4697 writeModuleInfo(); 4698 4699 // Emit constants. 4700 writeModuleConstants(); 4701 4702 // Emit metadata kind names. 4703 writeModuleMetadataKinds(); 4704 4705 // Emit metadata. 4706 writeModuleMetadata(); 4707 4708 // Emit module-level use-lists. 4709 if (VE.shouldPreserveUseListOrder()) 4710 writeUseListBlock(nullptr); 4711 4712 writeOperandBundleTags(); 4713 writeSyncScopeNames(); 4714 4715 // Emit function bodies. 4716 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4717 for (const Function &F : M) 4718 if (!F.isDeclaration()) 4719 writeFunction(F, FunctionToBitcodeIndex); 4720 4721 // Need to write after the above call to WriteFunction which populates 4722 // the summary information in the index. 4723 if (Index) 4724 writePerModuleGlobalValueSummary(); 4725 4726 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4727 4728 writeModuleHash(BlockStartPos); 4729 4730 Stream.ExitBlock(); 4731 } 4732 4733 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4734 uint32_t &Position) { 4735 support::endian::write32le(&Buffer[Position], Value); 4736 Position += 4; 4737 } 4738 4739 /// If generating a bc file on darwin, we have to emit a 4740 /// header and trailer to make it compatible with the system archiver. To do 4741 /// this we emit the following header, and then emit a trailer that pads the 4742 /// file out to be a multiple of 16 bytes. 4743 /// 4744 /// struct bc_header { 4745 /// uint32_t Magic; // 0x0B17C0DE 4746 /// uint32_t Version; // Version, currently always 0. 4747 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4748 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4749 /// uint32_t CPUType; // CPU specifier. 4750 /// ... potentially more later ... 4751 /// }; 4752 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4753 const Triple &TT) { 4754 unsigned CPUType = ~0U; 4755 4756 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4757 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4758 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4759 // specific constants here because they are implicitly part of the Darwin ABI. 4760 enum { 4761 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4762 DARWIN_CPU_TYPE_X86 = 7, 4763 DARWIN_CPU_TYPE_ARM = 12, 4764 DARWIN_CPU_TYPE_POWERPC = 18 4765 }; 4766 4767 Triple::ArchType Arch = TT.getArch(); 4768 if (Arch == Triple::x86_64) 4769 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4770 else if (Arch == Triple::x86) 4771 CPUType = DARWIN_CPU_TYPE_X86; 4772 else if (Arch == Triple::ppc) 4773 CPUType = DARWIN_CPU_TYPE_POWERPC; 4774 else if (Arch == Triple::ppc64) 4775 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4776 else if (Arch == Triple::arm || Arch == Triple::thumb) 4777 CPUType = DARWIN_CPU_TYPE_ARM; 4778 4779 // Traditional Bitcode starts after header. 4780 assert(Buffer.size() >= BWH_HeaderSize && 4781 "Expected header size to be reserved"); 4782 unsigned BCOffset = BWH_HeaderSize; 4783 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4784 4785 // Write the magic and version. 4786 unsigned Position = 0; 4787 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4788 writeInt32ToBuffer(0, Buffer, Position); // Version. 4789 writeInt32ToBuffer(BCOffset, Buffer, Position); 4790 writeInt32ToBuffer(BCSize, Buffer, Position); 4791 writeInt32ToBuffer(CPUType, Buffer, Position); 4792 4793 // If the file is not a multiple of 16 bytes, insert dummy padding. 4794 while (Buffer.size() & 15) 4795 Buffer.push_back(0); 4796 } 4797 4798 /// Helper to write the header common to all bitcode files. 4799 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4800 // Emit the file header. 4801 Stream.Emit((unsigned)'B', 8); 4802 Stream.Emit((unsigned)'C', 8); 4803 Stream.Emit(0x0, 4); 4804 Stream.Emit(0xC, 4); 4805 Stream.Emit(0xE, 4); 4806 Stream.Emit(0xD, 4); 4807 } 4808 4809 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4810 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4811 writeBitcodeHeader(*Stream); 4812 } 4813 4814 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4815 4816 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4817 Stream->EnterSubblock(Block, 3); 4818 4819 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4820 Abbv->Add(BitCodeAbbrevOp(Record)); 4821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4822 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4823 4824 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4825 4826 Stream->ExitBlock(); 4827 } 4828 4829 void BitcodeWriter::writeSymtab() { 4830 assert(!WroteStrtab && !WroteSymtab); 4831 4832 // If any module has module-level inline asm, we will require a registered asm 4833 // parser for the target so that we can create an accurate symbol table for 4834 // the module. 4835 for (Module *M : Mods) { 4836 if (M->getModuleInlineAsm().empty()) 4837 continue; 4838 4839 std::string Err; 4840 const Triple TT(M->getTargetTriple()); 4841 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4842 if (!T || !T->hasMCAsmParser()) 4843 return; 4844 } 4845 4846 WroteSymtab = true; 4847 SmallVector<char, 0> Symtab; 4848 // The irsymtab::build function may be unable to create a symbol table if the 4849 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4850 // table is not required for correctness, but we still want to be able to 4851 // write malformed modules to bitcode files, so swallow the error. 4852 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4853 consumeError(std::move(E)); 4854 return; 4855 } 4856 4857 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4858 {Symtab.data(), Symtab.size()}); 4859 } 4860 4861 void BitcodeWriter::writeStrtab() { 4862 assert(!WroteStrtab); 4863 4864 std::vector<char> Strtab; 4865 StrtabBuilder.finalizeInOrder(); 4866 Strtab.resize(StrtabBuilder.getSize()); 4867 StrtabBuilder.write((uint8_t *)Strtab.data()); 4868 4869 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4870 {Strtab.data(), Strtab.size()}); 4871 4872 WroteStrtab = true; 4873 } 4874 4875 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4876 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4877 WroteStrtab = true; 4878 } 4879 4880 void BitcodeWriter::writeModule(const Module &M, 4881 bool ShouldPreserveUseListOrder, 4882 const ModuleSummaryIndex *Index, 4883 bool GenerateHash, ModuleHash *ModHash) { 4884 assert(!WroteStrtab); 4885 4886 // The Mods vector is used by irsymtab::build, which requires non-const 4887 // Modules in case it needs to materialize metadata. But the bitcode writer 4888 // requires that the module is materialized, so we can cast to non-const here, 4889 // after checking that it is in fact materialized. 4890 assert(M.isMaterialized()); 4891 Mods.push_back(const_cast<Module *>(&M)); 4892 4893 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4894 ShouldPreserveUseListOrder, Index, 4895 GenerateHash, ModHash); 4896 ModuleWriter.write(); 4897 } 4898 4899 void BitcodeWriter::writeIndex( 4900 const ModuleSummaryIndex *Index, 4901 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4902 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4903 ModuleToSummariesForIndex); 4904 IndexWriter.write(); 4905 } 4906 4907 /// Write the specified module to the specified output stream. 4908 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4909 bool ShouldPreserveUseListOrder, 4910 const ModuleSummaryIndex *Index, 4911 bool GenerateHash, ModuleHash *ModHash) { 4912 SmallVector<char, 0> Buffer; 4913 Buffer.reserve(256*1024); 4914 4915 // If this is darwin or another generic macho target, reserve space for the 4916 // header. 4917 Triple TT(M.getTargetTriple()); 4918 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4919 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4920 4921 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4922 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4923 ModHash); 4924 Writer.writeSymtab(); 4925 Writer.writeStrtab(); 4926 4927 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4928 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4929 4930 // Write the generated bitstream to "Out". 4931 if (!Buffer.empty()) 4932 Out.write((char *)&Buffer.front(), Buffer.size()); 4933 } 4934 4935 void IndexBitcodeWriter::write() { 4936 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4937 4938 writeModuleVersion(); 4939 4940 // Write the module paths in the combined index. 4941 writeModStrings(); 4942 4943 // Write the summary combined index records. 4944 writeCombinedGlobalValueSummary(); 4945 4946 Stream.ExitBlock(); 4947 } 4948 4949 // Write the specified module summary index to the given raw output stream, 4950 // where it will be written in a new bitcode block. This is used when 4951 // writing the combined index file for ThinLTO. When writing a subset of the 4952 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4953 void llvm::writeIndexToFile( 4954 const ModuleSummaryIndex &Index, raw_ostream &Out, 4955 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4956 SmallVector<char, 0> Buffer; 4957 Buffer.reserve(256 * 1024); 4958 4959 BitcodeWriter Writer(Buffer); 4960 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4961 Writer.writeStrtab(); 4962 4963 Out.write((char *)&Buffer.front(), Buffer.size()); 4964 } 4965 4966 namespace { 4967 4968 /// Class to manage the bitcode writing for a thin link bitcode file. 4969 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4970 /// ModHash is for use in ThinLTO incremental build, generated while writing 4971 /// the module bitcode file. 4972 const ModuleHash *ModHash; 4973 4974 public: 4975 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4976 BitstreamWriter &Stream, 4977 const ModuleSummaryIndex &Index, 4978 const ModuleHash &ModHash) 4979 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4980 /*ShouldPreserveUseListOrder=*/false, &Index), 4981 ModHash(&ModHash) {} 4982 4983 void write(); 4984 4985 private: 4986 void writeSimplifiedModuleInfo(); 4987 }; 4988 4989 } // end anonymous namespace 4990 4991 // This function writes a simpilified module info for thin link bitcode file. 4992 // It only contains the source file name along with the name(the offset and 4993 // size in strtab) and linkage for global values. For the global value info 4994 // entry, in order to keep linkage at offset 5, there are three zeros used 4995 // as padding. 4996 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4997 SmallVector<unsigned, 64> Vals; 4998 // Emit the module's source file name. 4999 { 5000 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 5001 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 5002 if (Bits == SE_Char6) 5003 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 5004 else if (Bits == SE_Fixed7) 5005 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 5006 5007 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5008 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5009 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 5010 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 5011 Abbv->Add(AbbrevOpToUse); 5012 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5013 5014 for (const auto P : M.getSourceFileName()) 5015 Vals.push_back((unsigned char)P); 5016 5017 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 5018 Vals.clear(); 5019 } 5020 5021 // Emit the global variable information. 5022 for (const GlobalVariable &GV : M.globals()) { 5023 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 5024 Vals.push_back(StrtabBuilder.add(GV.getName())); 5025 Vals.push_back(GV.getName().size()); 5026 Vals.push_back(0); 5027 Vals.push_back(0); 5028 Vals.push_back(0); 5029 Vals.push_back(getEncodedLinkage(GV)); 5030 5031 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 5032 Vals.clear(); 5033 } 5034 5035 // Emit the function proto information. 5036 for (const Function &F : M) { 5037 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 5038 Vals.push_back(StrtabBuilder.add(F.getName())); 5039 Vals.push_back(F.getName().size()); 5040 Vals.push_back(0); 5041 Vals.push_back(0); 5042 Vals.push_back(0); 5043 Vals.push_back(getEncodedLinkage(F)); 5044 5045 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 5046 Vals.clear(); 5047 } 5048 5049 // Emit the alias information. 5050 for (const GlobalAlias &A : M.aliases()) { 5051 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 5052 Vals.push_back(StrtabBuilder.add(A.getName())); 5053 Vals.push_back(A.getName().size()); 5054 Vals.push_back(0); 5055 Vals.push_back(0); 5056 Vals.push_back(0); 5057 Vals.push_back(getEncodedLinkage(A)); 5058 5059 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 5060 Vals.clear(); 5061 } 5062 5063 // Emit the ifunc information. 5064 for (const GlobalIFunc &I : M.ifuncs()) { 5065 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 5066 Vals.push_back(StrtabBuilder.add(I.getName())); 5067 Vals.push_back(I.getName().size()); 5068 Vals.push_back(0); 5069 Vals.push_back(0); 5070 Vals.push_back(0); 5071 Vals.push_back(getEncodedLinkage(I)); 5072 5073 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 5074 Vals.clear(); 5075 } 5076 } 5077 5078 void ThinLinkBitcodeWriter::write() { 5079 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5080 5081 writeModuleVersion(); 5082 5083 writeSimplifiedModuleInfo(); 5084 5085 writePerModuleGlobalValueSummary(); 5086 5087 // Write module hash. 5088 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 5089 5090 Stream.ExitBlock(); 5091 } 5092 5093 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 5094 const ModuleSummaryIndex &Index, 5095 const ModuleHash &ModHash) { 5096 assert(!WroteStrtab); 5097 5098 // The Mods vector is used by irsymtab::build, which requires non-const 5099 // Modules in case it needs to materialize metadata. But the bitcode writer 5100 // requires that the module is materialized, so we can cast to non-const here, 5101 // after checking that it is in fact materialized. 5102 assert(M.isMaterialized()); 5103 Mods.push_back(const_cast<Module *>(&M)); 5104 5105 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 5106 ModHash); 5107 ThinLinkWriter.write(); 5108 } 5109 5110 // Write the specified thin link bitcode file to the given raw output stream, 5111 // where it will be written in a new bitcode block. This is used when 5112 // writing the per-module index file for ThinLTO. 5113 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 5114 const ModuleSummaryIndex &Index, 5115 const ModuleHash &ModHash) { 5116 SmallVector<char, 0> Buffer; 5117 Buffer.reserve(256 * 1024); 5118 5119 BitcodeWriter Writer(Buffer); 5120 Writer.writeThinLinkBitcode(M, Index, ModHash); 5121 Writer.writeSymtab(); 5122 Writer.writeStrtab(); 5123 5124 Out.write((char *)&Buffer.front(), Buffer.size()); 5125 } 5126 5127 static const char *getSectionNameForBitcode(const Triple &T) { 5128 switch (T.getObjectFormat()) { 5129 case Triple::MachO: 5130 return "__LLVM,__bitcode"; 5131 case Triple::COFF: 5132 case Triple::ELF: 5133 case Triple::Wasm: 5134 case Triple::UnknownObjectFormat: 5135 return ".llvmbc"; 5136 case Triple::GOFF: 5137 llvm_unreachable("GOFF is not yet implemented"); 5138 break; 5139 case Triple::SPIRV: 5140 llvm_unreachable("SPIRV is not yet implemented"); 5141 break; 5142 case Triple::XCOFF: 5143 llvm_unreachable("XCOFF is not yet implemented"); 5144 break; 5145 case Triple::DXContainer: 5146 llvm_unreachable("DXContainer is not yet implemented"); 5147 break; 5148 } 5149 llvm_unreachable("Unimplemented ObjectFormatType"); 5150 } 5151 5152 static const char *getSectionNameForCommandline(const Triple &T) { 5153 switch (T.getObjectFormat()) { 5154 case Triple::MachO: 5155 return "__LLVM,__cmdline"; 5156 case Triple::COFF: 5157 case Triple::ELF: 5158 case Triple::Wasm: 5159 case Triple::UnknownObjectFormat: 5160 return ".llvmcmd"; 5161 case Triple::GOFF: 5162 llvm_unreachable("GOFF is not yet implemented"); 5163 break; 5164 case Triple::SPIRV: 5165 llvm_unreachable("SPIRV is not yet implemented"); 5166 break; 5167 case Triple::XCOFF: 5168 llvm_unreachable("XCOFF is not yet implemented"); 5169 break; 5170 case Triple::DXContainer: 5171 llvm_unreachable("DXC is not yet implemented"); 5172 break; 5173 } 5174 llvm_unreachable("Unimplemented ObjectFormatType"); 5175 } 5176 5177 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 5178 bool EmbedBitcode, bool EmbedCmdline, 5179 const std::vector<uint8_t> &CmdArgs) { 5180 // Save llvm.compiler.used and remove it. 5181 SmallVector<Constant *, 2> UsedArray; 5182 SmallVector<GlobalValue *, 4> UsedGlobals; 5183 Type *UsedElementType = PointerType::getUnqual(M.getContext()); 5184 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 5185 for (auto *GV : UsedGlobals) { 5186 if (GV->getName() != "llvm.embedded.module" && 5187 GV->getName() != "llvm.cmdline") 5188 UsedArray.push_back( 5189 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5190 } 5191 if (Used) 5192 Used->eraseFromParent(); 5193 5194 // Embed the bitcode for the llvm module. 5195 std::string Data; 5196 ArrayRef<uint8_t> ModuleData; 5197 Triple T(M.getTargetTriple()); 5198 5199 if (EmbedBitcode) { 5200 if (Buf.getBufferSize() == 0 || 5201 !isBitcode((const unsigned char *)Buf.getBufferStart(), 5202 (const unsigned char *)Buf.getBufferEnd())) { 5203 // If the input is LLVM Assembly, bitcode is produced by serializing 5204 // the module. Use-lists order need to be preserved in this case. 5205 llvm::raw_string_ostream OS(Data); 5206 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 5207 ModuleData = 5208 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 5209 } else 5210 // If the input is LLVM bitcode, write the input byte stream directly. 5211 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5212 Buf.getBufferSize()); 5213 } 5214 llvm::Constant *ModuleConstant = 5215 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5216 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5217 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5218 ModuleConstant); 5219 GV->setSection(getSectionNameForBitcode(T)); 5220 // Set alignment to 1 to prevent padding between two contributions from input 5221 // sections after linking. 5222 GV->setAlignment(Align(1)); 5223 UsedArray.push_back( 5224 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5225 if (llvm::GlobalVariable *Old = 5226 M.getGlobalVariable("llvm.embedded.module", true)) { 5227 assert(Old->hasZeroLiveUses() && 5228 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5229 GV->takeName(Old); 5230 Old->eraseFromParent(); 5231 } else { 5232 GV->setName("llvm.embedded.module"); 5233 } 5234 5235 // Skip if only bitcode needs to be embedded. 5236 if (EmbedCmdline) { 5237 // Embed command-line options. 5238 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5239 CmdArgs.size()); 5240 llvm::Constant *CmdConstant = 5241 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5242 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5243 llvm::GlobalValue::PrivateLinkage, 5244 CmdConstant); 5245 GV->setSection(getSectionNameForCommandline(T)); 5246 GV->setAlignment(Align(1)); 5247 UsedArray.push_back( 5248 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5249 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5250 assert(Old->hasZeroLiveUses() && 5251 "llvm.cmdline can only be used once in llvm.compiler.used"); 5252 GV->takeName(Old); 5253 Old->eraseFromParent(); 5254 } else { 5255 GV->setName("llvm.cmdline"); 5256 } 5257 } 5258 5259 if (UsedArray.empty()) 5260 return; 5261 5262 // Recreate llvm.compiler.used. 5263 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5264 auto *NewUsed = new GlobalVariable( 5265 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5266 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5267 NewUsed->setSection("llvm.metadata"); 5268 } 5269