1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/InlineAsm.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/UseListOrder.h" 27 #include "llvm/IR/ValueSymbolTable.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/Program.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <cctype> 34 #include <map> 35 using namespace llvm; 36 37 /// These are manifest constants used by the bitcode writer. They do not need to 38 /// be kept in sync with the reader, but need to be consistent within this file. 39 enum { 40 // VALUE_SYMTAB_BLOCK abbrev id's. 41 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 VST_ENTRY_7_ABBREV, 43 VST_ENTRY_6_ABBREV, 44 VST_BBENTRY_6_ABBREV, 45 46 // CONSTANTS_BLOCK abbrev id's. 47 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 CONSTANTS_INTEGER_ABBREV, 49 CONSTANTS_CE_CAST_Abbrev, 50 CONSTANTS_NULL_Abbrev, 51 52 // FUNCTION_BLOCK abbrev id's. 53 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 FUNCTION_INST_BINOP_ABBREV, 55 FUNCTION_INST_BINOP_FLAGS_ABBREV, 56 FUNCTION_INST_CAST_ABBREV, 57 FUNCTION_INST_RET_VOID_ABBREV, 58 FUNCTION_INST_RET_VAL_ABBREV, 59 FUNCTION_INST_UNREACHABLE_ABBREV, 60 FUNCTION_INST_GEP_ABBREV, 61 }; 62 63 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 64 switch (Opcode) { 65 default: llvm_unreachable("Unknown cast instruction!"); 66 case Instruction::Trunc : return bitc::CAST_TRUNC; 67 case Instruction::ZExt : return bitc::CAST_ZEXT; 68 case Instruction::SExt : return bitc::CAST_SEXT; 69 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 70 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 71 case Instruction::UIToFP : return bitc::CAST_UITOFP; 72 case Instruction::SIToFP : return bitc::CAST_SITOFP; 73 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 74 case Instruction::FPExt : return bitc::CAST_FPEXT; 75 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 76 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 77 case Instruction::BitCast : return bitc::CAST_BITCAST; 78 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 79 } 80 } 81 82 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 83 switch (Opcode) { 84 default: llvm_unreachable("Unknown binary instruction!"); 85 case Instruction::Add: 86 case Instruction::FAdd: return bitc::BINOP_ADD; 87 case Instruction::Sub: 88 case Instruction::FSub: return bitc::BINOP_SUB; 89 case Instruction::Mul: 90 case Instruction::FMul: return bitc::BINOP_MUL; 91 case Instruction::UDiv: return bitc::BINOP_UDIV; 92 case Instruction::FDiv: 93 case Instruction::SDiv: return bitc::BINOP_SDIV; 94 case Instruction::URem: return bitc::BINOP_UREM; 95 case Instruction::FRem: 96 case Instruction::SRem: return bitc::BINOP_SREM; 97 case Instruction::Shl: return bitc::BINOP_SHL; 98 case Instruction::LShr: return bitc::BINOP_LSHR; 99 case Instruction::AShr: return bitc::BINOP_ASHR; 100 case Instruction::And: return bitc::BINOP_AND; 101 case Instruction::Or: return bitc::BINOP_OR; 102 case Instruction::Xor: return bitc::BINOP_XOR; 103 } 104 } 105 106 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 107 switch (Op) { 108 default: llvm_unreachable("Unknown RMW operation!"); 109 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 110 case AtomicRMWInst::Add: return bitc::RMW_ADD; 111 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 112 case AtomicRMWInst::And: return bitc::RMW_AND; 113 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 114 case AtomicRMWInst::Or: return bitc::RMW_OR; 115 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 116 case AtomicRMWInst::Max: return bitc::RMW_MAX; 117 case AtomicRMWInst::Min: return bitc::RMW_MIN; 118 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 119 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 120 } 121 } 122 123 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 124 switch (Ordering) { 125 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 126 case Unordered: return bitc::ORDERING_UNORDERED; 127 case Monotonic: return bitc::ORDERING_MONOTONIC; 128 case Acquire: return bitc::ORDERING_ACQUIRE; 129 case Release: return bitc::ORDERING_RELEASE; 130 case AcquireRelease: return bitc::ORDERING_ACQREL; 131 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 132 } 133 llvm_unreachable("Invalid ordering"); 134 } 135 136 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 137 switch (SynchScope) { 138 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 139 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 140 } 141 llvm_unreachable("Invalid synch scope"); 142 } 143 144 static void WriteStringRecord(unsigned Code, StringRef Str, 145 unsigned AbbrevToUse, BitstreamWriter &Stream) { 146 SmallVector<unsigned, 64> Vals; 147 148 // Code: [strchar x N] 149 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 150 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 151 AbbrevToUse = 0; 152 Vals.push_back(Str[i]); 153 } 154 155 // Emit the finished record. 156 Stream.EmitRecord(Code, Vals, AbbrevToUse); 157 } 158 159 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 160 switch (Kind) { 161 case Attribute::Alignment: 162 return bitc::ATTR_KIND_ALIGNMENT; 163 case Attribute::AlwaysInline: 164 return bitc::ATTR_KIND_ALWAYS_INLINE; 165 case Attribute::ArgMemOnly: 166 return bitc::ATTR_KIND_ARGMEMONLY; 167 case Attribute::Builtin: 168 return bitc::ATTR_KIND_BUILTIN; 169 case Attribute::ByVal: 170 return bitc::ATTR_KIND_BY_VAL; 171 case Attribute::Convergent: 172 return bitc::ATTR_KIND_CONVERGENT; 173 case Attribute::InAlloca: 174 return bitc::ATTR_KIND_IN_ALLOCA; 175 case Attribute::Cold: 176 return bitc::ATTR_KIND_COLD; 177 case Attribute::InlineHint: 178 return bitc::ATTR_KIND_INLINE_HINT; 179 case Attribute::InReg: 180 return bitc::ATTR_KIND_IN_REG; 181 case Attribute::JumpTable: 182 return bitc::ATTR_KIND_JUMP_TABLE; 183 case Attribute::MinSize: 184 return bitc::ATTR_KIND_MIN_SIZE; 185 case Attribute::Naked: 186 return bitc::ATTR_KIND_NAKED; 187 case Attribute::Nest: 188 return bitc::ATTR_KIND_NEST; 189 case Attribute::NoAlias: 190 return bitc::ATTR_KIND_NO_ALIAS; 191 case Attribute::NoBuiltin: 192 return bitc::ATTR_KIND_NO_BUILTIN; 193 case Attribute::NoCapture: 194 return bitc::ATTR_KIND_NO_CAPTURE; 195 case Attribute::NoDuplicate: 196 return bitc::ATTR_KIND_NO_DUPLICATE; 197 case Attribute::NoImplicitFloat: 198 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 199 case Attribute::NoInline: 200 return bitc::ATTR_KIND_NO_INLINE; 201 case Attribute::NonLazyBind: 202 return bitc::ATTR_KIND_NON_LAZY_BIND; 203 case Attribute::NonNull: 204 return bitc::ATTR_KIND_NON_NULL; 205 case Attribute::Dereferenceable: 206 return bitc::ATTR_KIND_DEREFERENCEABLE; 207 case Attribute::DereferenceableOrNull: 208 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 209 case Attribute::NoRedZone: 210 return bitc::ATTR_KIND_NO_RED_ZONE; 211 case Attribute::NoReturn: 212 return bitc::ATTR_KIND_NO_RETURN; 213 case Attribute::NoUnwind: 214 return bitc::ATTR_KIND_NO_UNWIND; 215 case Attribute::OptimizeForSize: 216 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 217 case Attribute::OptimizeNone: 218 return bitc::ATTR_KIND_OPTIMIZE_NONE; 219 case Attribute::ReadNone: 220 return bitc::ATTR_KIND_READ_NONE; 221 case Attribute::ReadOnly: 222 return bitc::ATTR_KIND_READ_ONLY; 223 case Attribute::Returned: 224 return bitc::ATTR_KIND_RETURNED; 225 case Attribute::ReturnsTwice: 226 return bitc::ATTR_KIND_RETURNS_TWICE; 227 case Attribute::SExt: 228 return bitc::ATTR_KIND_S_EXT; 229 case Attribute::StackAlignment: 230 return bitc::ATTR_KIND_STACK_ALIGNMENT; 231 case Attribute::StackProtect: 232 return bitc::ATTR_KIND_STACK_PROTECT; 233 case Attribute::StackProtectReq: 234 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 235 case Attribute::StackProtectStrong: 236 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 237 case Attribute::SafeStack: 238 return bitc::ATTR_KIND_SAFESTACK; 239 case Attribute::StructRet: 240 return bitc::ATTR_KIND_STRUCT_RET; 241 case Attribute::SanitizeAddress: 242 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 243 case Attribute::SanitizeThread: 244 return bitc::ATTR_KIND_SANITIZE_THREAD; 245 case Attribute::SanitizeMemory: 246 return bitc::ATTR_KIND_SANITIZE_MEMORY; 247 case Attribute::UWTable: 248 return bitc::ATTR_KIND_UW_TABLE; 249 case Attribute::ZExt: 250 return bitc::ATTR_KIND_Z_EXT; 251 case Attribute::EndAttrKinds: 252 llvm_unreachable("Can not encode end-attribute kinds marker."); 253 case Attribute::None: 254 llvm_unreachable("Can not encode none-attribute."); 255 } 256 257 llvm_unreachable("Trying to encode unknown attribute"); 258 } 259 260 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 261 BitstreamWriter &Stream) { 262 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 263 if (AttrGrps.empty()) return; 264 265 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 266 267 SmallVector<uint64_t, 64> Record; 268 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 269 AttributeSet AS = AttrGrps[i]; 270 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 271 AttributeSet A = AS.getSlotAttributes(i); 272 273 Record.push_back(VE.getAttributeGroupID(A)); 274 Record.push_back(AS.getSlotIndex(i)); 275 276 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 277 I != E; ++I) { 278 Attribute Attr = *I; 279 if (Attr.isEnumAttribute()) { 280 Record.push_back(0); 281 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 282 } else if (Attr.isIntAttribute()) { 283 Record.push_back(1); 284 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 285 Record.push_back(Attr.getValueAsInt()); 286 } else { 287 StringRef Kind = Attr.getKindAsString(); 288 StringRef Val = Attr.getValueAsString(); 289 290 Record.push_back(Val.empty() ? 3 : 4); 291 Record.append(Kind.begin(), Kind.end()); 292 Record.push_back(0); 293 if (!Val.empty()) { 294 Record.append(Val.begin(), Val.end()); 295 Record.push_back(0); 296 } 297 } 298 } 299 300 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 301 Record.clear(); 302 } 303 } 304 305 Stream.ExitBlock(); 306 } 307 308 static void WriteAttributeTable(const ValueEnumerator &VE, 309 BitstreamWriter &Stream) { 310 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 311 if (Attrs.empty()) return; 312 313 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 314 315 SmallVector<uint64_t, 64> Record; 316 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 317 const AttributeSet &A = Attrs[i]; 318 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 319 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 320 321 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 322 Record.clear(); 323 } 324 325 Stream.ExitBlock(); 326 } 327 328 /// WriteTypeTable - Write out the type table for a module. 329 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 330 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 331 332 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 333 SmallVector<uint64_t, 64> TypeVals; 334 335 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 336 337 // Abbrev for TYPE_CODE_POINTER. 338 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 339 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 341 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 342 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 343 344 // Abbrev for TYPE_CODE_FUNCTION. 345 Abbv = new BitCodeAbbrev(); 346 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 350 351 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 352 353 // Abbrev for TYPE_CODE_STRUCT_ANON. 354 Abbv = new BitCodeAbbrev(); 355 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 359 360 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 361 362 // Abbrev for TYPE_CODE_STRUCT_NAME. 363 Abbv = new BitCodeAbbrev(); 364 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 367 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 368 369 // Abbrev for TYPE_CODE_STRUCT_NAMED. 370 Abbv = new BitCodeAbbrev(); 371 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 375 376 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 377 378 // Abbrev for TYPE_CODE_ARRAY. 379 Abbv = new BitCodeAbbrev(); 380 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 383 384 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 385 386 // Emit an entry count so the reader can reserve space. 387 TypeVals.push_back(TypeList.size()); 388 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 389 TypeVals.clear(); 390 391 // Loop over all of the types, emitting each in turn. 392 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 393 Type *T = TypeList[i]; 394 int AbbrevToUse = 0; 395 unsigned Code = 0; 396 397 switch (T->getTypeID()) { 398 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 399 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 400 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 401 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 402 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 403 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 404 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 405 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 406 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 407 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 408 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 409 case Type::IntegerTyID: 410 // INTEGER: [width] 411 Code = bitc::TYPE_CODE_INTEGER; 412 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 413 break; 414 case Type::PointerTyID: { 415 PointerType *PTy = cast<PointerType>(T); 416 // POINTER: [pointee type, address space] 417 Code = bitc::TYPE_CODE_POINTER; 418 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 419 unsigned AddressSpace = PTy->getAddressSpace(); 420 TypeVals.push_back(AddressSpace); 421 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 422 break; 423 } 424 case Type::FunctionTyID: { 425 FunctionType *FT = cast<FunctionType>(T); 426 // FUNCTION: [isvararg, retty, paramty x N] 427 Code = bitc::TYPE_CODE_FUNCTION; 428 TypeVals.push_back(FT->isVarArg()); 429 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 430 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 431 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 432 AbbrevToUse = FunctionAbbrev; 433 break; 434 } 435 case Type::StructTyID: { 436 StructType *ST = cast<StructType>(T); 437 // STRUCT: [ispacked, eltty x N] 438 TypeVals.push_back(ST->isPacked()); 439 // Output all of the element types. 440 for (StructType::element_iterator I = ST->element_begin(), 441 E = ST->element_end(); I != E; ++I) 442 TypeVals.push_back(VE.getTypeID(*I)); 443 444 if (ST->isLiteral()) { 445 Code = bitc::TYPE_CODE_STRUCT_ANON; 446 AbbrevToUse = StructAnonAbbrev; 447 } else { 448 if (ST->isOpaque()) { 449 Code = bitc::TYPE_CODE_OPAQUE; 450 } else { 451 Code = bitc::TYPE_CODE_STRUCT_NAMED; 452 AbbrevToUse = StructNamedAbbrev; 453 } 454 455 // Emit the name if it is present. 456 if (!ST->getName().empty()) 457 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 458 StructNameAbbrev, Stream); 459 } 460 break; 461 } 462 case Type::ArrayTyID: { 463 ArrayType *AT = cast<ArrayType>(T); 464 // ARRAY: [numelts, eltty] 465 Code = bitc::TYPE_CODE_ARRAY; 466 TypeVals.push_back(AT->getNumElements()); 467 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 468 AbbrevToUse = ArrayAbbrev; 469 break; 470 } 471 case Type::VectorTyID: { 472 VectorType *VT = cast<VectorType>(T); 473 // VECTOR [numelts, eltty] 474 Code = bitc::TYPE_CODE_VECTOR; 475 TypeVals.push_back(VT->getNumElements()); 476 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 477 break; 478 } 479 } 480 481 // Emit the finished record. 482 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 483 TypeVals.clear(); 484 } 485 486 Stream.ExitBlock(); 487 } 488 489 static unsigned getEncodedLinkage(const GlobalValue &GV) { 490 switch (GV.getLinkage()) { 491 case GlobalValue::ExternalLinkage: 492 return 0; 493 case GlobalValue::WeakAnyLinkage: 494 return 16; 495 case GlobalValue::AppendingLinkage: 496 return 2; 497 case GlobalValue::InternalLinkage: 498 return 3; 499 case GlobalValue::LinkOnceAnyLinkage: 500 return 18; 501 case GlobalValue::ExternalWeakLinkage: 502 return 7; 503 case GlobalValue::CommonLinkage: 504 return 8; 505 case GlobalValue::PrivateLinkage: 506 return 9; 507 case GlobalValue::WeakODRLinkage: 508 return 17; 509 case GlobalValue::LinkOnceODRLinkage: 510 return 19; 511 case GlobalValue::AvailableExternallyLinkage: 512 return 12; 513 } 514 llvm_unreachable("Invalid linkage"); 515 } 516 517 static unsigned getEncodedVisibility(const GlobalValue &GV) { 518 switch (GV.getVisibility()) { 519 case GlobalValue::DefaultVisibility: return 0; 520 case GlobalValue::HiddenVisibility: return 1; 521 case GlobalValue::ProtectedVisibility: return 2; 522 } 523 llvm_unreachable("Invalid visibility"); 524 } 525 526 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 527 switch (GV.getDLLStorageClass()) { 528 case GlobalValue::DefaultStorageClass: return 0; 529 case GlobalValue::DLLImportStorageClass: return 1; 530 case GlobalValue::DLLExportStorageClass: return 2; 531 } 532 llvm_unreachable("Invalid DLL storage class"); 533 } 534 535 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 536 switch (GV.getThreadLocalMode()) { 537 case GlobalVariable::NotThreadLocal: return 0; 538 case GlobalVariable::GeneralDynamicTLSModel: return 1; 539 case GlobalVariable::LocalDynamicTLSModel: return 2; 540 case GlobalVariable::InitialExecTLSModel: return 3; 541 case GlobalVariable::LocalExecTLSModel: return 4; 542 } 543 llvm_unreachable("Invalid TLS model"); 544 } 545 546 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 547 switch (C.getSelectionKind()) { 548 case Comdat::Any: 549 return bitc::COMDAT_SELECTION_KIND_ANY; 550 case Comdat::ExactMatch: 551 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 552 case Comdat::Largest: 553 return bitc::COMDAT_SELECTION_KIND_LARGEST; 554 case Comdat::NoDuplicates: 555 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 556 case Comdat::SameSize: 557 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 558 } 559 llvm_unreachable("Invalid selection kind"); 560 } 561 562 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 563 SmallVector<uint16_t, 64> Vals; 564 for (const Comdat *C : VE.getComdats()) { 565 // COMDAT: [selection_kind, name] 566 Vals.push_back(getEncodedComdatSelectionKind(*C)); 567 size_t Size = C->getName().size(); 568 assert(isUInt<16>(Size)); 569 Vals.push_back(Size); 570 for (char Chr : C->getName()) 571 Vals.push_back((unsigned char)Chr); 572 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 573 Vals.clear(); 574 } 575 } 576 577 /// Write a record that will eventually hold the word offset of the 578 /// module-level VST. For now the offset is 0, which will be backpatched 579 /// after the real VST is written. Returns the bit offset to backpatch. 580 static uint64_t WriteValueSymbolTableForwardDecl(const ValueSymbolTable &VST, 581 BitstreamWriter &Stream) { 582 if (VST.empty()) return 0; 583 584 // Write a placeholder value in for the offset of the real VST, 585 // which is written after the function blocks so that it can include 586 // the offset of each function. The placeholder offset will be 587 // updated when the real VST is written. 588 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 589 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 590 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 591 // hold the real VST offset. Must use fixed instead of VBR as we don't 592 // know how many VBR chunks to reserve ahead of time. 593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 594 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv); 595 596 // Emit the placeholder 597 ArrayRef<unsigned> Vals = {llvm::bitc::MODULE_CODE_VSTOFFSET, 0}; 598 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 599 600 // Compute and return the bit offset to the placeholder, which will be 601 // patched when the real VST is written. We can simply subtract the 32-bit 602 // fixed size from the current bit number to get the location to backpatch. 603 return Stream.GetCurrentBitNo() - 32; 604 } 605 606 /// Emit top-level description of module, including target triple, inline asm, 607 /// descriptors for global variables, and function prototype info. 608 /// Returns the bit offset to backpatch with the location of the real VST. 609 static uint64_t WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 610 BitstreamWriter &Stream) { 611 // Emit various pieces of data attached to a module. 612 if (!M->getTargetTriple().empty()) 613 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 614 0/*TODO*/, Stream); 615 const std::string &DL = M->getDataLayoutStr(); 616 if (!DL.empty()) 617 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 618 if (!M->getModuleInlineAsm().empty()) 619 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 620 0/*TODO*/, Stream); 621 622 // Emit information about sections and GC, computing how many there are. Also 623 // compute the maximum alignment value. 624 std::map<std::string, unsigned> SectionMap; 625 std::map<std::string, unsigned> GCMap; 626 unsigned MaxAlignment = 0; 627 unsigned MaxGlobalType = 0; 628 for (const GlobalValue &GV : M->globals()) { 629 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 630 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 631 if (GV.hasSection()) { 632 // Give section names unique ID's. 633 unsigned &Entry = SectionMap[GV.getSection()]; 634 if (!Entry) { 635 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 636 0/*TODO*/, Stream); 637 Entry = SectionMap.size(); 638 } 639 } 640 } 641 for (const Function &F : *M) { 642 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 643 if (F.hasSection()) { 644 // Give section names unique ID's. 645 unsigned &Entry = SectionMap[F.getSection()]; 646 if (!Entry) { 647 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 648 0/*TODO*/, Stream); 649 Entry = SectionMap.size(); 650 } 651 } 652 if (F.hasGC()) { 653 // Same for GC names. 654 unsigned &Entry = GCMap[F.getGC()]; 655 if (!Entry) { 656 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 657 0/*TODO*/, Stream); 658 Entry = GCMap.size(); 659 } 660 } 661 } 662 663 // Emit abbrev for globals, now that we know # sections and max alignment. 664 unsigned SimpleGVarAbbrev = 0; 665 if (!M->global_empty()) { 666 // Add an abbrev for common globals with no visibility or thread localness. 667 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 668 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 669 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 670 Log2_32_Ceil(MaxGlobalType+1))); 671 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 672 //| explicitType << 1 673 //| constant 674 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 675 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 676 if (MaxAlignment == 0) // Alignment. 677 Abbv->Add(BitCodeAbbrevOp(0)); 678 else { 679 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 680 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 681 Log2_32_Ceil(MaxEncAlignment+1))); 682 } 683 if (SectionMap.empty()) // Section. 684 Abbv->Add(BitCodeAbbrevOp(0)); 685 else 686 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 687 Log2_32_Ceil(SectionMap.size()+1))); 688 // Don't bother emitting vis + thread local. 689 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 690 } 691 692 // Emit the global variable information. 693 SmallVector<unsigned, 64> Vals; 694 for (const GlobalVariable &GV : M->globals()) { 695 unsigned AbbrevToUse = 0; 696 697 // GLOBALVAR: [type, isconst, initid, 698 // linkage, alignment, section, visibility, threadlocal, 699 // unnamed_addr, externally_initialized, dllstorageclass, 700 // comdat] 701 Vals.push_back(VE.getTypeID(GV.getValueType())); 702 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 703 Vals.push_back(GV.isDeclaration() ? 0 : 704 (VE.getValueID(GV.getInitializer()) + 1)); 705 Vals.push_back(getEncodedLinkage(GV)); 706 Vals.push_back(Log2_32(GV.getAlignment())+1); 707 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 708 if (GV.isThreadLocal() || 709 GV.getVisibility() != GlobalValue::DefaultVisibility || 710 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 711 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 712 GV.hasComdat()) { 713 Vals.push_back(getEncodedVisibility(GV)); 714 Vals.push_back(getEncodedThreadLocalMode(GV)); 715 Vals.push_back(GV.hasUnnamedAddr()); 716 Vals.push_back(GV.isExternallyInitialized()); 717 Vals.push_back(getEncodedDLLStorageClass(GV)); 718 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 719 } else { 720 AbbrevToUse = SimpleGVarAbbrev; 721 } 722 723 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 724 Vals.clear(); 725 } 726 727 // Emit the function proto information. 728 for (const Function &F : *M) { 729 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 730 // section, visibility, gc, unnamed_addr, prologuedata, 731 // dllstorageclass, comdat, prefixdata, personalityfn] 732 Vals.push_back(VE.getTypeID(F.getFunctionType())); 733 Vals.push_back(F.getCallingConv()); 734 Vals.push_back(F.isDeclaration()); 735 Vals.push_back(getEncodedLinkage(F)); 736 Vals.push_back(VE.getAttributeID(F.getAttributes())); 737 Vals.push_back(Log2_32(F.getAlignment())+1); 738 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 739 Vals.push_back(getEncodedVisibility(F)); 740 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 741 Vals.push_back(F.hasUnnamedAddr()); 742 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 743 : 0); 744 Vals.push_back(getEncodedDLLStorageClass(F)); 745 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 746 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 747 : 0); 748 Vals.push_back( 749 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 750 751 unsigned AbbrevToUse = 0; 752 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 753 Vals.clear(); 754 } 755 756 // Emit the alias information. 757 for (const GlobalAlias &A : M->aliases()) { 758 // ALIAS: [alias type, aliasee val#, linkage, visibility] 759 Vals.push_back(VE.getTypeID(A.getType())); 760 Vals.push_back(VE.getValueID(A.getAliasee())); 761 Vals.push_back(getEncodedLinkage(A)); 762 Vals.push_back(getEncodedVisibility(A)); 763 Vals.push_back(getEncodedDLLStorageClass(A)); 764 Vals.push_back(getEncodedThreadLocalMode(A)); 765 Vals.push_back(A.hasUnnamedAddr()); 766 unsigned AbbrevToUse = 0; 767 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 768 Vals.clear(); 769 } 770 771 uint64_t VSTOffsetPlaceholder = 772 WriteValueSymbolTableForwardDecl(M->getValueSymbolTable(), Stream); 773 return VSTOffsetPlaceholder; 774 } 775 776 static uint64_t GetOptimizationFlags(const Value *V) { 777 uint64_t Flags = 0; 778 779 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 780 if (OBO->hasNoSignedWrap()) 781 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 782 if (OBO->hasNoUnsignedWrap()) 783 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 784 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 785 if (PEO->isExact()) 786 Flags |= 1 << bitc::PEO_EXACT; 787 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 788 if (FPMO->hasUnsafeAlgebra()) 789 Flags |= FastMathFlags::UnsafeAlgebra; 790 if (FPMO->hasNoNaNs()) 791 Flags |= FastMathFlags::NoNaNs; 792 if (FPMO->hasNoInfs()) 793 Flags |= FastMathFlags::NoInfs; 794 if (FPMO->hasNoSignedZeros()) 795 Flags |= FastMathFlags::NoSignedZeros; 796 if (FPMO->hasAllowReciprocal()) 797 Flags |= FastMathFlags::AllowReciprocal; 798 } 799 800 return Flags; 801 } 802 803 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 804 const ValueEnumerator &VE, 805 BitstreamWriter &Stream, 806 SmallVectorImpl<uint64_t> &Record) { 807 // Mimic an MDNode with a value as one operand. 808 Value *V = MD->getValue(); 809 Record.push_back(VE.getTypeID(V->getType())); 810 Record.push_back(VE.getValueID(V)); 811 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 812 Record.clear(); 813 } 814 815 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE, 816 BitstreamWriter &Stream, 817 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 818 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 819 Metadata *MD = N->getOperand(i); 820 assert(!(MD && isa<LocalAsMetadata>(MD)) && 821 "Unexpected function-local metadata"); 822 Record.push_back(VE.getMetadataOrNullID(MD)); 823 } 824 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 825 : bitc::METADATA_NODE, 826 Record, Abbrev); 827 Record.clear(); 828 } 829 830 static void WriteDILocation(const DILocation *N, const ValueEnumerator &VE, 831 BitstreamWriter &Stream, 832 SmallVectorImpl<uint64_t> &Record, 833 unsigned Abbrev) { 834 Record.push_back(N->isDistinct()); 835 Record.push_back(N->getLine()); 836 Record.push_back(N->getColumn()); 837 Record.push_back(VE.getMetadataID(N->getScope())); 838 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 839 840 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 841 Record.clear(); 842 } 843 844 static void WriteGenericDINode(const GenericDINode *N, 845 const ValueEnumerator &VE, 846 BitstreamWriter &Stream, 847 SmallVectorImpl<uint64_t> &Record, 848 unsigned Abbrev) { 849 Record.push_back(N->isDistinct()); 850 Record.push_back(N->getTag()); 851 Record.push_back(0); // Per-tag version field; unused for now. 852 853 for (auto &I : N->operands()) 854 Record.push_back(VE.getMetadataOrNullID(I)); 855 856 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 857 Record.clear(); 858 } 859 860 static uint64_t rotateSign(int64_t I) { 861 uint64_t U = I; 862 return I < 0 ? ~(U << 1) : U << 1; 863 } 864 865 static void WriteDISubrange(const DISubrange *N, const ValueEnumerator &, 866 BitstreamWriter &Stream, 867 SmallVectorImpl<uint64_t> &Record, 868 unsigned Abbrev) { 869 Record.push_back(N->isDistinct()); 870 Record.push_back(N->getCount()); 871 Record.push_back(rotateSign(N->getLowerBound())); 872 873 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 874 Record.clear(); 875 } 876 877 static void WriteDIEnumerator(const DIEnumerator *N, const ValueEnumerator &VE, 878 BitstreamWriter &Stream, 879 SmallVectorImpl<uint64_t> &Record, 880 unsigned Abbrev) { 881 Record.push_back(N->isDistinct()); 882 Record.push_back(rotateSign(N->getValue())); 883 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 884 885 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 886 Record.clear(); 887 } 888 889 static void WriteDIBasicType(const DIBasicType *N, const ValueEnumerator &VE, 890 BitstreamWriter &Stream, 891 SmallVectorImpl<uint64_t> &Record, 892 unsigned Abbrev) { 893 Record.push_back(N->isDistinct()); 894 Record.push_back(N->getTag()); 895 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 896 Record.push_back(N->getSizeInBits()); 897 Record.push_back(N->getAlignInBits()); 898 Record.push_back(N->getEncoding()); 899 900 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 901 Record.clear(); 902 } 903 904 static void WriteDIDerivedType(const DIDerivedType *N, 905 const ValueEnumerator &VE, 906 BitstreamWriter &Stream, 907 SmallVectorImpl<uint64_t> &Record, 908 unsigned Abbrev) { 909 Record.push_back(N->isDistinct()); 910 Record.push_back(N->getTag()); 911 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 912 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 913 Record.push_back(N->getLine()); 914 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 915 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 916 Record.push_back(N->getSizeInBits()); 917 Record.push_back(N->getAlignInBits()); 918 Record.push_back(N->getOffsetInBits()); 919 Record.push_back(N->getFlags()); 920 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 921 922 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 923 Record.clear(); 924 } 925 926 static void WriteDICompositeType(const DICompositeType *N, 927 const ValueEnumerator &VE, 928 BitstreamWriter &Stream, 929 SmallVectorImpl<uint64_t> &Record, 930 unsigned Abbrev) { 931 Record.push_back(N->isDistinct()); 932 Record.push_back(N->getTag()); 933 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 934 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 935 Record.push_back(N->getLine()); 936 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 937 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 938 Record.push_back(N->getSizeInBits()); 939 Record.push_back(N->getAlignInBits()); 940 Record.push_back(N->getOffsetInBits()); 941 Record.push_back(N->getFlags()); 942 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 943 Record.push_back(N->getRuntimeLang()); 944 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 945 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 946 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 947 948 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 949 Record.clear(); 950 } 951 952 static void WriteDISubroutineType(const DISubroutineType *N, 953 const ValueEnumerator &VE, 954 BitstreamWriter &Stream, 955 SmallVectorImpl<uint64_t> &Record, 956 unsigned Abbrev) { 957 Record.push_back(N->isDistinct()); 958 Record.push_back(N->getFlags()); 959 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 960 961 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 962 Record.clear(); 963 } 964 965 static void WriteDIFile(const DIFile *N, const ValueEnumerator &VE, 966 BitstreamWriter &Stream, 967 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 968 Record.push_back(N->isDistinct()); 969 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 970 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 971 972 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 973 Record.clear(); 974 } 975 976 static void WriteDICompileUnit(const DICompileUnit *N, 977 const ValueEnumerator &VE, 978 BitstreamWriter &Stream, 979 SmallVectorImpl<uint64_t> &Record, 980 unsigned Abbrev) { 981 assert(N->isDistinct() && "Expected distinct compile units"); 982 Record.push_back(/* IsDistinct */ true); 983 Record.push_back(N->getSourceLanguage()); 984 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 985 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 986 Record.push_back(N->isOptimized()); 987 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 988 Record.push_back(N->getRuntimeVersion()); 989 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 990 Record.push_back(N->getEmissionKind()); 991 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 992 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 993 Record.push_back(VE.getMetadataOrNullID(N->getSubprograms().get())); 994 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 995 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 996 Record.push_back(N->getDWOId()); 997 998 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 999 Record.clear(); 1000 } 1001 1002 static void WriteDISubprogram(const DISubprogram *N, const ValueEnumerator &VE, 1003 BitstreamWriter &Stream, 1004 SmallVectorImpl<uint64_t> &Record, 1005 unsigned Abbrev) { 1006 Record.push_back(N->isDistinct()); 1007 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1008 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1009 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1010 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1011 Record.push_back(N->getLine()); 1012 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1013 Record.push_back(N->isLocalToUnit()); 1014 Record.push_back(N->isDefinition()); 1015 Record.push_back(N->getScopeLine()); 1016 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1017 Record.push_back(N->getVirtuality()); 1018 Record.push_back(N->getVirtualIndex()); 1019 Record.push_back(N->getFlags()); 1020 Record.push_back(N->isOptimized()); 1021 Record.push_back(VE.getMetadataOrNullID(N->getRawFunction())); 1022 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1023 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1024 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1025 1026 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1027 Record.clear(); 1028 } 1029 1030 static void WriteDILexicalBlock(const DILexicalBlock *N, 1031 const ValueEnumerator &VE, 1032 BitstreamWriter &Stream, 1033 SmallVectorImpl<uint64_t> &Record, 1034 unsigned Abbrev) { 1035 Record.push_back(N->isDistinct()); 1036 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1037 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1038 Record.push_back(N->getLine()); 1039 Record.push_back(N->getColumn()); 1040 1041 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1042 Record.clear(); 1043 } 1044 1045 static void WriteDILexicalBlockFile(const DILexicalBlockFile *N, 1046 const ValueEnumerator &VE, 1047 BitstreamWriter &Stream, 1048 SmallVectorImpl<uint64_t> &Record, 1049 unsigned Abbrev) { 1050 Record.push_back(N->isDistinct()); 1051 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1052 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1053 Record.push_back(N->getDiscriminator()); 1054 1055 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1056 Record.clear(); 1057 } 1058 1059 static void WriteDINamespace(const DINamespace *N, const ValueEnumerator &VE, 1060 BitstreamWriter &Stream, 1061 SmallVectorImpl<uint64_t> &Record, 1062 unsigned Abbrev) { 1063 Record.push_back(N->isDistinct()); 1064 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1065 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1066 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1067 Record.push_back(N->getLine()); 1068 1069 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1070 Record.clear(); 1071 } 1072 1073 static void WriteDIModule(const DIModule *N, const ValueEnumerator &VE, 1074 BitstreamWriter &Stream, 1075 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1076 Record.push_back(N->isDistinct()); 1077 for (auto &I : N->operands()) 1078 Record.push_back(VE.getMetadataOrNullID(I)); 1079 1080 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1081 Record.clear(); 1082 } 1083 1084 static void WriteDITemplateTypeParameter(const DITemplateTypeParameter *N, 1085 const ValueEnumerator &VE, 1086 BitstreamWriter &Stream, 1087 SmallVectorImpl<uint64_t> &Record, 1088 unsigned Abbrev) { 1089 Record.push_back(N->isDistinct()); 1090 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1091 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1092 1093 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1094 Record.clear(); 1095 } 1096 1097 static void WriteDITemplateValueParameter(const DITemplateValueParameter *N, 1098 const ValueEnumerator &VE, 1099 BitstreamWriter &Stream, 1100 SmallVectorImpl<uint64_t> &Record, 1101 unsigned Abbrev) { 1102 Record.push_back(N->isDistinct()); 1103 Record.push_back(N->getTag()); 1104 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1105 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1106 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1107 1108 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1109 Record.clear(); 1110 } 1111 1112 static void WriteDIGlobalVariable(const DIGlobalVariable *N, 1113 const ValueEnumerator &VE, 1114 BitstreamWriter &Stream, 1115 SmallVectorImpl<uint64_t> &Record, 1116 unsigned Abbrev) { 1117 Record.push_back(N->isDistinct()); 1118 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1119 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1120 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1121 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1122 Record.push_back(N->getLine()); 1123 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1124 Record.push_back(N->isLocalToUnit()); 1125 Record.push_back(N->isDefinition()); 1126 Record.push_back(VE.getMetadataOrNullID(N->getRawVariable())); 1127 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1128 1129 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1130 Record.clear(); 1131 } 1132 1133 static void WriteDILocalVariable(const DILocalVariable *N, 1134 const ValueEnumerator &VE, 1135 BitstreamWriter &Stream, 1136 SmallVectorImpl<uint64_t> &Record, 1137 unsigned Abbrev) { 1138 Record.push_back(N->isDistinct()); 1139 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1140 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1141 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1142 Record.push_back(N->getLine()); 1143 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1144 Record.push_back(N->getArg()); 1145 Record.push_back(N->getFlags()); 1146 1147 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1148 Record.clear(); 1149 } 1150 1151 static void WriteDIExpression(const DIExpression *N, const ValueEnumerator &, 1152 BitstreamWriter &Stream, 1153 SmallVectorImpl<uint64_t> &Record, 1154 unsigned Abbrev) { 1155 Record.reserve(N->getElements().size() + 1); 1156 1157 Record.push_back(N->isDistinct()); 1158 Record.append(N->elements_begin(), N->elements_end()); 1159 1160 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1161 Record.clear(); 1162 } 1163 1164 static void WriteDIObjCProperty(const DIObjCProperty *N, 1165 const ValueEnumerator &VE, 1166 BitstreamWriter &Stream, 1167 SmallVectorImpl<uint64_t> &Record, 1168 unsigned Abbrev) { 1169 Record.push_back(N->isDistinct()); 1170 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1171 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1172 Record.push_back(N->getLine()); 1173 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1174 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1175 Record.push_back(N->getAttributes()); 1176 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1177 1178 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1179 Record.clear(); 1180 } 1181 1182 static void WriteDIImportedEntity(const DIImportedEntity *N, 1183 const ValueEnumerator &VE, 1184 BitstreamWriter &Stream, 1185 SmallVectorImpl<uint64_t> &Record, 1186 unsigned Abbrev) { 1187 Record.push_back(N->isDistinct()); 1188 Record.push_back(N->getTag()); 1189 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1190 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1191 Record.push_back(N->getLine()); 1192 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1193 1194 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1195 Record.clear(); 1196 } 1197 1198 static void WriteModuleMetadata(const Module *M, 1199 const ValueEnumerator &VE, 1200 BitstreamWriter &Stream) { 1201 const auto &MDs = VE.getMDs(); 1202 if (MDs.empty() && M->named_metadata_empty()) 1203 return; 1204 1205 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1206 1207 unsigned MDSAbbrev = 0; 1208 if (VE.hasMDString()) { 1209 // Abbrev for METADATA_STRING. 1210 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1211 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 1212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1214 MDSAbbrev = Stream.EmitAbbrev(Abbv); 1215 } 1216 1217 // Initialize MDNode abbreviations. 1218 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1219 #include "llvm/IR/Metadata.def" 1220 1221 if (VE.hasDILocation()) { 1222 // Abbrev for METADATA_LOCATION. 1223 // 1224 // Assume the column is usually under 128, and always output the inlined-at 1225 // location (it's never more expensive than building an array size 1). 1226 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1227 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1228 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1230 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1233 DILocationAbbrev = Stream.EmitAbbrev(Abbv); 1234 } 1235 1236 if (VE.hasGenericDINode()) { 1237 // Abbrev for METADATA_GENERIC_DEBUG. 1238 // 1239 // Assume the column is usually under 128, and always output the inlined-at 1240 // location (it's never more expensive than building an array size 1). 1241 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1242 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1243 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1246 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1249 GenericDINodeAbbrev = Stream.EmitAbbrev(Abbv); 1250 } 1251 1252 unsigned NameAbbrev = 0; 1253 if (!M->named_metadata_empty()) { 1254 // Abbrev for METADATA_NAME. 1255 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1256 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1257 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1258 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1259 NameAbbrev = Stream.EmitAbbrev(Abbv); 1260 } 1261 1262 SmallVector<uint64_t, 64> Record; 1263 for (const Metadata *MD : MDs) { 1264 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1265 assert(N->isResolved() && "Expected forward references to be resolved"); 1266 1267 switch (N->getMetadataID()) { 1268 default: 1269 llvm_unreachable("Invalid MDNode subclass"); 1270 #define HANDLE_MDNODE_LEAF(CLASS) \ 1271 case Metadata::CLASS##Kind: \ 1272 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 1273 continue; 1274 #include "llvm/IR/Metadata.def" 1275 } 1276 } 1277 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 1278 WriteValueAsMetadata(MDC, VE, Stream, Record); 1279 continue; 1280 } 1281 const MDString *MDS = cast<MDString>(MD); 1282 // Code: [strchar x N] 1283 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1284 1285 // Emit the finished record. 1286 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 1287 Record.clear(); 1288 } 1289 1290 // Write named metadata. 1291 for (const NamedMDNode &NMD : M->named_metadata()) { 1292 // Write name. 1293 StringRef Str = NMD.getName(); 1294 Record.append(Str.bytes_begin(), Str.bytes_end()); 1295 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 1296 Record.clear(); 1297 1298 // Write named metadata operands. 1299 for (const MDNode *N : NMD.operands()) 1300 Record.push_back(VE.getMetadataID(N)); 1301 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1302 Record.clear(); 1303 } 1304 1305 Stream.ExitBlock(); 1306 } 1307 1308 static void WriteFunctionLocalMetadata(const Function &F, 1309 const ValueEnumerator &VE, 1310 BitstreamWriter &Stream) { 1311 bool StartedMetadataBlock = false; 1312 SmallVector<uint64_t, 64> Record; 1313 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 1314 VE.getFunctionLocalMDs(); 1315 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1316 assert(MDs[i] && "Expected valid function-local metadata"); 1317 if (!StartedMetadataBlock) { 1318 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1319 StartedMetadataBlock = true; 1320 } 1321 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 1322 } 1323 1324 if (StartedMetadataBlock) 1325 Stream.ExitBlock(); 1326 } 1327 1328 static void WriteMetadataAttachment(const Function &F, 1329 const ValueEnumerator &VE, 1330 BitstreamWriter &Stream) { 1331 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1332 1333 SmallVector<uint64_t, 64> Record; 1334 1335 // Write metadata attachments 1336 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1337 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1338 F.getAllMetadata(MDs); 1339 if (!MDs.empty()) { 1340 for (const auto &I : MDs) { 1341 Record.push_back(I.first); 1342 Record.push_back(VE.getMetadataID(I.second)); 1343 } 1344 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1345 Record.clear(); 1346 } 1347 1348 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1349 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1350 I != E; ++I) { 1351 MDs.clear(); 1352 I->getAllMetadataOtherThanDebugLoc(MDs); 1353 1354 // If no metadata, ignore instruction. 1355 if (MDs.empty()) continue; 1356 1357 Record.push_back(VE.getInstructionID(I)); 1358 1359 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1360 Record.push_back(MDs[i].first); 1361 Record.push_back(VE.getMetadataID(MDs[i].second)); 1362 } 1363 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1364 Record.clear(); 1365 } 1366 1367 Stream.ExitBlock(); 1368 } 1369 1370 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 1371 SmallVector<uint64_t, 64> Record; 1372 1373 // Write metadata kinds 1374 // METADATA_KIND - [n x [id, name]] 1375 SmallVector<StringRef, 8> Names; 1376 M->getMDKindNames(Names); 1377 1378 if (Names.empty()) return; 1379 1380 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1381 1382 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1383 Record.push_back(MDKindID); 1384 StringRef KName = Names[MDKindID]; 1385 Record.append(KName.begin(), KName.end()); 1386 1387 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1388 Record.clear(); 1389 } 1390 1391 Stream.ExitBlock(); 1392 } 1393 1394 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1395 if ((int64_t)V >= 0) 1396 Vals.push_back(V << 1); 1397 else 1398 Vals.push_back((-V << 1) | 1); 1399 } 1400 1401 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1402 const ValueEnumerator &VE, 1403 BitstreamWriter &Stream, bool isGlobal) { 1404 if (FirstVal == LastVal) return; 1405 1406 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1407 1408 unsigned AggregateAbbrev = 0; 1409 unsigned String8Abbrev = 0; 1410 unsigned CString7Abbrev = 0; 1411 unsigned CString6Abbrev = 0; 1412 // If this is a constant pool for the module, emit module-specific abbrevs. 1413 if (isGlobal) { 1414 // Abbrev for CST_CODE_AGGREGATE. 1415 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1416 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1419 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1420 1421 // Abbrev for CST_CODE_STRING. 1422 Abbv = new BitCodeAbbrev(); 1423 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1424 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1425 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1426 String8Abbrev = Stream.EmitAbbrev(Abbv); 1427 // Abbrev for CST_CODE_CSTRING. 1428 Abbv = new BitCodeAbbrev(); 1429 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1432 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1433 // Abbrev for CST_CODE_CSTRING. 1434 Abbv = new BitCodeAbbrev(); 1435 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1438 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1439 } 1440 1441 SmallVector<uint64_t, 64> Record; 1442 1443 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1444 Type *LastTy = nullptr; 1445 for (unsigned i = FirstVal; i != LastVal; ++i) { 1446 const Value *V = Vals[i].first; 1447 // If we need to switch types, do so now. 1448 if (V->getType() != LastTy) { 1449 LastTy = V->getType(); 1450 Record.push_back(VE.getTypeID(LastTy)); 1451 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1452 CONSTANTS_SETTYPE_ABBREV); 1453 Record.clear(); 1454 } 1455 1456 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1457 Record.push_back(unsigned(IA->hasSideEffects()) | 1458 unsigned(IA->isAlignStack()) << 1 | 1459 unsigned(IA->getDialect()&1) << 2); 1460 1461 // Add the asm string. 1462 const std::string &AsmStr = IA->getAsmString(); 1463 Record.push_back(AsmStr.size()); 1464 Record.append(AsmStr.begin(), AsmStr.end()); 1465 1466 // Add the constraint string. 1467 const std::string &ConstraintStr = IA->getConstraintString(); 1468 Record.push_back(ConstraintStr.size()); 1469 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1470 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1471 Record.clear(); 1472 continue; 1473 } 1474 const Constant *C = cast<Constant>(V); 1475 unsigned Code = -1U; 1476 unsigned AbbrevToUse = 0; 1477 if (C->isNullValue()) { 1478 Code = bitc::CST_CODE_NULL; 1479 } else if (isa<UndefValue>(C)) { 1480 Code = bitc::CST_CODE_UNDEF; 1481 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1482 if (IV->getBitWidth() <= 64) { 1483 uint64_t V = IV->getSExtValue(); 1484 emitSignedInt64(Record, V); 1485 Code = bitc::CST_CODE_INTEGER; 1486 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1487 } else { // Wide integers, > 64 bits in size. 1488 // We have an arbitrary precision integer value to write whose 1489 // bit width is > 64. However, in canonical unsigned integer 1490 // format it is likely that the high bits are going to be zero. 1491 // So, we only write the number of active words. 1492 unsigned NWords = IV->getValue().getActiveWords(); 1493 const uint64_t *RawWords = IV->getValue().getRawData(); 1494 for (unsigned i = 0; i != NWords; ++i) { 1495 emitSignedInt64(Record, RawWords[i]); 1496 } 1497 Code = bitc::CST_CODE_WIDE_INTEGER; 1498 } 1499 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1500 Code = bitc::CST_CODE_FLOAT; 1501 Type *Ty = CFP->getType(); 1502 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1503 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1504 } else if (Ty->isX86_FP80Ty()) { 1505 // api needed to prevent premature destruction 1506 // bits are not in the same order as a normal i80 APInt, compensate. 1507 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1508 const uint64_t *p = api.getRawData(); 1509 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1510 Record.push_back(p[0] & 0xffffLL); 1511 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1512 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1513 const uint64_t *p = api.getRawData(); 1514 Record.push_back(p[0]); 1515 Record.push_back(p[1]); 1516 } else { 1517 assert (0 && "Unknown FP type!"); 1518 } 1519 } else if (isa<ConstantDataSequential>(C) && 1520 cast<ConstantDataSequential>(C)->isString()) { 1521 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1522 // Emit constant strings specially. 1523 unsigned NumElts = Str->getNumElements(); 1524 // If this is a null-terminated string, use the denser CSTRING encoding. 1525 if (Str->isCString()) { 1526 Code = bitc::CST_CODE_CSTRING; 1527 --NumElts; // Don't encode the null, which isn't allowed by char6. 1528 } else { 1529 Code = bitc::CST_CODE_STRING; 1530 AbbrevToUse = String8Abbrev; 1531 } 1532 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1533 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1534 for (unsigned i = 0; i != NumElts; ++i) { 1535 unsigned char V = Str->getElementAsInteger(i); 1536 Record.push_back(V); 1537 isCStr7 &= (V & 128) == 0; 1538 if (isCStrChar6) 1539 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1540 } 1541 1542 if (isCStrChar6) 1543 AbbrevToUse = CString6Abbrev; 1544 else if (isCStr7) 1545 AbbrevToUse = CString7Abbrev; 1546 } else if (const ConstantDataSequential *CDS = 1547 dyn_cast<ConstantDataSequential>(C)) { 1548 Code = bitc::CST_CODE_DATA; 1549 Type *EltTy = CDS->getType()->getElementType(); 1550 if (isa<IntegerType>(EltTy)) { 1551 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1552 Record.push_back(CDS->getElementAsInteger(i)); 1553 } else if (EltTy->isFloatTy()) { 1554 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1555 union { float F; uint32_t I; }; 1556 F = CDS->getElementAsFloat(i); 1557 Record.push_back(I); 1558 } 1559 } else { 1560 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1561 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1562 union { double F; uint64_t I; }; 1563 F = CDS->getElementAsDouble(i); 1564 Record.push_back(I); 1565 } 1566 } 1567 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1568 isa<ConstantVector>(C)) { 1569 Code = bitc::CST_CODE_AGGREGATE; 1570 for (const Value *Op : C->operands()) 1571 Record.push_back(VE.getValueID(Op)); 1572 AbbrevToUse = AggregateAbbrev; 1573 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1574 switch (CE->getOpcode()) { 1575 default: 1576 if (Instruction::isCast(CE->getOpcode())) { 1577 Code = bitc::CST_CODE_CE_CAST; 1578 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1579 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1580 Record.push_back(VE.getValueID(C->getOperand(0))); 1581 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1582 } else { 1583 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1584 Code = bitc::CST_CODE_CE_BINOP; 1585 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1586 Record.push_back(VE.getValueID(C->getOperand(0))); 1587 Record.push_back(VE.getValueID(C->getOperand(1))); 1588 uint64_t Flags = GetOptimizationFlags(CE); 1589 if (Flags != 0) 1590 Record.push_back(Flags); 1591 } 1592 break; 1593 case Instruction::GetElementPtr: { 1594 Code = bitc::CST_CODE_CE_GEP; 1595 const auto *GO = cast<GEPOperator>(C); 1596 if (GO->isInBounds()) 1597 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1598 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 1599 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1600 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1601 Record.push_back(VE.getValueID(C->getOperand(i))); 1602 } 1603 break; 1604 } 1605 case Instruction::Select: 1606 Code = bitc::CST_CODE_CE_SELECT; 1607 Record.push_back(VE.getValueID(C->getOperand(0))); 1608 Record.push_back(VE.getValueID(C->getOperand(1))); 1609 Record.push_back(VE.getValueID(C->getOperand(2))); 1610 break; 1611 case Instruction::ExtractElement: 1612 Code = bitc::CST_CODE_CE_EXTRACTELT; 1613 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1614 Record.push_back(VE.getValueID(C->getOperand(0))); 1615 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1616 Record.push_back(VE.getValueID(C->getOperand(1))); 1617 break; 1618 case Instruction::InsertElement: 1619 Code = bitc::CST_CODE_CE_INSERTELT; 1620 Record.push_back(VE.getValueID(C->getOperand(0))); 1621 Record.push_back(VE.getValueID(C->getOperand(1))); 1622 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1623 Record.push_back(VE.getValueID(C->getOperand(2))); 1624 break; 1625 case Instruction::ShuffleVector: 1626 // If the return type and argument types are the same, this is a 1627 // standard shufflevector instruction. If the types are different, 1628 // then the shuffle is widening or truncating the input vectors, and 1629 // the argument type must also be encoded. 1630 if (C->getType() == C->getOperand(0)->getType()) { 1631 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1632 } else { 1633 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1634 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1635 } 1636 Record.push_back(VE.getValueID(C->getOperand(0))); 1637 Record.push_back(VE.getValueID(C->getOperand(1))); 1638 Record.push_back(VE.getValueID(C->getOperand(2))); 1639 break; 1640 case Instruction::ICmp: 1641 case Instruction::FCmp: 1642 Code = bitc::CST_CODE_CE_CMP; 1643 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1644 Record.push_back(VE.getValueID(C->getOperand(0))); 1645 Record.push_back(VE.getValueID(C->getOperand(1))); 1646 Record.push_back(CE->getPredicate()); 1647 break; 1648 } 1649 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1650 Code = bitc::CST_CODE_BLOCKADDRESS; 1651 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1652 Record.push_back(VE.getValueID(BA->getFunction())); 1653 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1654 } else { 1655 #ifndef NDEBUG 1656 C->dump(); 1657 #endif 1658 llvm_unreachable("Unknown constant!"); 1659 } 1660 Stream.EmitRecord(Code, Record, AbbrevToUse); 1661 Record.clear(); 1662 } 1663 1664 Stream.ExitBlock(); 1665 } 1666 1667 static void WriteModuleConstants(const ValueEnumerator &VE, 1668 BitstreamWriter &Stream) { 1669 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1670 1671 // Find the first constant to emit, which is the first non-globalvalue value. 1672 // We know globalvalues have been emitted by WriteModuleInfo. 1673 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1674 if (!isa<GlobalValue>(Vals[i].first)) { 1675 WriteConstants(i, Vals.size(), VE, Stream, true); 1676 return; 1677 } 1678 } 1679 } 1680 1681 /// PushValueAndType - The file has to encode both the value and type id for 1682 /// many values, because we need to know what type to create for forward 1683 /// references. However, most operands are not forward references, so this type 1684 /// field is not needed. 1685 /// 1686 /// This function adds V's value ID to Vals. If the value ID is higher than the 1687 /// instruction ID, then it is a forward reference, and it also includes the 1688 /// type ID. The value ID that is written is encoded relative to the InstID. 1689 static bool PushValueAndType(const Value *V, unsigned InstID, 1690 SmallVectorImpl<unsigned> &Vals, 1691 ValueEnumerator &VE) { 1692 unsigned ValID = VE.getValueID(V); 1693 // Make encoding relative to the InstID. 1694 Vals.push_back(InstID - ValID); 1695 if (ValID >= InstID) { 1696 Vals.push_back(VE.getTypeID(V->getType())); 1697 return true; 1698 } 1699 return false; 1700 } 1701 1702 /// pushValue - Like PushValueAndType, but where the type of the value is 1703 /// omitted (perhaps it was already encoded in an earlier operand). 1704 static void pushValue(const Value *V, unsigned InstID, 1705 SmallVectorImpl<unsigned> &Vals, 1706 ValueEnumerator &VE) { 1707 unsigned ValID = VE.getValueID(V); 1708 Vals.push_back(InstID - ValID); 1709 } 1710 1711 static void pushValueSigned(const Value *V, unsigned InstID, 1712 SmallVectorImpl<uint64_t> &Vals, 1713 ValueEnumerator &VE) { 1714 unsigned ValID = VE.getValueID(V); 1715 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1716 emitSignedInt64(Vals, diff); 1717 } 1718 1719 /// WriteInstruction - Emit an instruction to the specified stream. 1720 static void WriteInstruction(const Instruction &I, unsigned InstID, 1721 ValueEnumerator &VE, BitstreamWriter &Stream, 1722 SmallVectorImpl<unsigned> &Vals) { 1723 unsigned Code = 0; 1724 unsigned AbbrevToUse = 0; 1725 VE.setInstructionID(&I); 1726 switch (I.getOpcode()) { 1727 default: 1728 if (Instruction::isCast(I.getOpcode())) { 1729 Code = bitc::FUNC_CODE_INST_CAST; 1730 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1731 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1732 Vals.push_back(VE.getTypeID(I.getType())); 1733 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1734 } else { 1735 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1736 Code = bitc::FUNC_CODE_INST_BINOP; 1737 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1738 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1739 pushValue(I.getOperand(1), InstID, Vals, VE); 1740 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1741 uint64_t Flags = GetOptimizationFlags(&I); 1742 if (Flags != 0) { 1743 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1744 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1745 Vals.push_back(Flags); 1746 } 1747 } 1748 break; 1749 1750 case Instruction::GetElementPtr: { 1751 Code = bitc::FUNC_CODE_INST_GEP; 1752 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 1753 auto &GEPInst = cast<GetElementPtrInst>(I); 1754 Vals.push_back(GEPInst.isInBounds()); 1755 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 1756 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1757 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1758 break; 1759 } 1760 case Instruction::ExtractValue: { 1761 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1762 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1763 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1764 Vals.append(EVI->idx_begin(), EVI->idx_end()); 1765 break; 1766 } 1767 case Instruction::InsertValue: { 1768 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1769 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1770 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1771 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1772 Vals.append(IVI->idx_begin(), IVI->idx_end()); 1773 break; 1774 } 1775 case Instruction::Select: 1776 Code = bitc::FUNC_CODE_INST_VSELECT; 1777 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1778 pushValue(I.getOperand(2), InstID, Vals, VE); 1779 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1780 break; 1781 case Instruction::ExtractElement: 1782 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1783 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1784 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1785 break; 1786 case Instruction::InsertElement: 1787 Code = bitc::FUNC_CODE_INST_INSERTELT; 1788 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1789 pushValue(I.getOperand(1), InstID, Vals, VE); 1790 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1791 break; 1792 case Instruction::ShuffleVector: 1793 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1794 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1795 pushValue(I.getOperand(1), InstID, Vals, VE); 1796 pushValue(I.getOperand(2), InstID, Vals, VE); 1797 break; 1798 case Instruction::ICmp: 1799 case Instruction::FCmp: { 1800 // compare returning Int1Ty or vector of Int1Ty 1801 Code = bitc::FUNC_CODE_INST_CMP2; 1802 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1803 pushValue(I.getOperand(1), InstID, Vals, VE); 1804 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1805 uint64_t Flags = GetOptimizationFlags(&I); 1806 if (Flags != 0) 1807 Vals.push_back(Flags); 1808 break; 1809 } 1810 1811 case Instruction::Ret: 1812 { 1813 Code = bitc::FUNC_CODE_INST_RET; 1814 unsigned NumOperands = I.getNumOperands(); 1815 if (NumOperands == 0) 1816 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1817 else if (NumOperands == 1) { 1818 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1819 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1820 } else { 1821 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1822 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1823 } 1824 } 1825 break; 1826 case Instruction::Br: 1827 { 1828 Code = bitc::FUNC_CODE_INST_BR; 1829 const BranchInst &II = cast<BranchInst>(I); 1830 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1831 if (II.isConditional()) { 1832 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1833 pushValue(II.getCondition(), InstID, Vals, VE); 1834 } 1835 } 1836 break; 1837 case Instruction::Switch: 1838 { 1839 Code = bitc::FUNC_CODE_INST_SWITCH; 1840 const SwitchInst &SI = cast<SwitchInst>(I); 1841 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1842 pushValue(SI.getCondition(), InstID, Vals, VE); 1843 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1844 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1845 i != e; ++i) { 1846 Vals.push_back(VE.getValueID(i.getCaseValue())); 1847 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1848 } 1849 } 1850 break; 1851 case Instruction::IndirectBr: 1852 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1853 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1854 // Encode the address operand as relative, but not the basic blocks. 1855 pushValue(I.getOperand(0), InstID, Vals, VE); 1856 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1857 Vals.push_back(VE.getValueID(I.getOperand(i))); 1858 break; 1859 1860 case Instruction::Invoke: { 1861 const InvokeInst *II = cast<InvokeInst>(&I); 1862 const Value *Callee = II->getCalledValue(); 1863 FunctionType *FTy = II->getFunctionType(); 1864 Code = bitc::FUNC_CODE_INST_INVOKE; 1865 1866 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1867 Vals.push_back(II->getCallingConv() | 1 << 13); 1868 Vals.push_back(VE.getValueID(II->getNormalDest())); 1869 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1870 Vals.push_back(VE.getTypeID(FTy)); 1871 PushValueAndType(Callee, InstID, Vals, VE); 1872 1873 // Emit value #'s for the fixed parameters. 1874 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1875 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1876 1877 // Emit type/value pairs for varargs params. 1878 if (FTy->isVarArg()) { 1879 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1880 i != e; ++i) 1881 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1882 } 1883 break; 1884 } 1885 case Instruction::Resume: 1886 Code = bitc::FUNC_CODE_INST_RESUME; 1887 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1888 break; 1889 case Instruction::CleanupRet: { 1890 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 1891 const auto &CRI = cast<CleanupReturnInst>(I); 1892 pushValue(CRI.getCleanupPad(), InstID, Vals, VE); 1893 if (CRI.hasUnwindDest()) 1894 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 1895 break; 1896 } 1897 case Instruction::CatchRet: { 1898 Code = bitc::FUNC_CODE_INST_CATCHRET; 1899 const auto &CRI = cast<CatchReturnInst>(I); 1900 pushValue(CRI.getCatchPad(), InstID, Vals, VE); 1901 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 1902 break; 1903 } 1904 case Instruction::CatchPad: { 1905 Code = bitc::FUNC_CODE_INST_CATCHPAD; 1906 const auto &CPI = cast<CatchPadInst>(I); 1907 Vals.push_back(VE.getValueID(CPI.getNormalDest())); 1908 Vals.push_back(VE.getValueID(CPI.getUnwindDest())); 1909 unsigned NumArgOperands = CPI.getNumArgOperands(); 1910 Vals.push_back(NumArgOperands); 1911 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 1912 PushValueAndType(CPI.getArgOperand(Op), InstID, Vals, VE); 1913 break; 1914 } 1915 case Instruction::TerminatePad: { 1916 Code = bitc::FUNC_CODE_INST_TERMINATEPAD; 1917 const auto &TPI = cast<TerminatePadInst>(I); 1918 Vals.push_back(TPI.hasUnwindDest()); 1919 if (TPI.hasUnwindDest()) 1920 Vals.push_back(VE.getValueID(TPI.getUnwindDest())); 1921 unsigned NumArgOperands = TPI.getNumArgOperands(); 1922 Vals.push_back(NumArgOperands); 1923 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 1924 PushValueAndType(TPI.getArgOperand(Op), InstID, Vals, VE); 1925 break; 1926 } 1927 case Instruction::CleanupPad: { 1928 Code = bitc::FUNC_CODE_INST_CLEANUPPAD; 1929 const auto &CPI = cast<CleanupPadInst>(I); 1930 unsigned NumOperands = CPI.getNumOperands(); 1931 Vals.push_back(NumOperands); 1932 for (unsigned Op = 0; Op != NumOperands; ++Op) 1933 PushValueAndType(CPI.getOperand(Op), InstID, Vals, VE); 1934 break; 1935 } 1936 case Instruction::CatchEndPad: { 1937 Code = bitc::FUNC_CODE_INST_CATCHENDPAD; 1938 const auto &CEPI = cast<CatchEndPadInst>(I); 1939 if (CEPI.hasUnwindDest()) 1940 Vals.push_back(VE.getValueID(CEPI.getUnwindDest())); 1941 break; 1942 } 1943 case Instruction::CleanupEndPad: { 1944 Code = bitc::FUNC_CODE_INST_CLEANUPENDPAD; 1945 const auto &CEPI = cast<CleanupEndPadInst>(I); 1946 pushValue(CEPI.getCleanupPad(), InstID, Vals, VE); 1947 if (CEPI.hasUnwindDest()) 1948 Vals.push_back(VE.getValueID(CEPI.getUnwindDest())); 1949 break; 1950 } 1951 case Instruction::Unreachable: 1952 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1953 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1954 break; 1955 1956 case Instruction::PHI: { 1957 const PHINode &PN = cast<PHINode>(I); 1958 Code = bitc::FUNC_CODE_INST_PHI; 1959 // With the newer instruction encoding, forward references could give 1960 // negative valued IDs. This is most common for PHIs, so we use 1961 // signed VBRs. 1962 SmallVector<uint64_t, 128> Vals64; 1963 Vals64.push_back(VE.getTypeID(PN.getType())); 1964 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1965 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1966 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1967 } 1968 // Emit a Vals64 vector and exit. 1969 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1970 Vals64.clear(); 1971 return; 1972 } 1973 1974 case Instruction::LandingPad: { 1975 const LandingPadInst &LP = cast<LandingPadInst>(I); 1976 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1977 Vals.push_back(VE.getTypeID(LP.getType())); 1978 Vals.push_back(LP.isCleanup()); 1979 Vals.push_back(LP.getNumClauses()); 1980 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1981 if (LP.isCatch(I)) 1982 Vals.push_back(LandingPadInst::Catch); 1983 else 1984 Vals.push_back(LandingPadInst::Filter); 1985 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1986 } 1987 break; 1988 } 1989 1990 case Instruction::Alloca: { 1991 Code = bitc::FUNC_CODE_INST_ALLOCA; 1992 const AllocaInst &AI = cast<AllocaInst>(I); 1993 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 1994 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1995 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1996 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 1997 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 1998 "not enough bits for maximum alignment"); 1999 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2000 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2001 AlignRecord |= 1 << 6; 2002 // Reserve bit 7 for SwiftError flag. 2003 // AlignRecord |= AI.isSwiftError() << 7; 2004 Vals.push_back(AlignRecord); 2005 break; 2006 } 2007 2008 case Instruction::Load: 2009 if (cast<LoadInst>(I).isAtomic()) { 2010 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2011 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 2012 } else { 2013 Code = bitc::FUNC_CODE_INST_LOAD; 2014 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 2015 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2016 } 2017 Vals.push_back(VE.getTypeID(I.getType())); 2018 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2019 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2020 if (cast<LoadInst>(I).isAtomic()) { 2021 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2022 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2023 } 2024 break; 2025 case Instruction::Store: 2026 if (cast<StoreInst>(I).isAtomic()) 2027 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2028 else 2029 Code = bitc::FUNC_CODE_INST_STORE; 2030 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 2031 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // valty + val 2032 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2033 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2034 if (cast<StoreInst>(I).isAtomic()) { 2035 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2036 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2037 } 2038 break; 2039 case Instruction::AtomicCmpXchg: 2040 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2041 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 2042 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // cmp. 2043 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 2044 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2045 Vals.push_back(GetEncodedOrdering( 2046 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2047 Vals.push_back(GetEncodedSynchScope( 2048 cast<AtomicCmpXchgInst>(I).getSynchScope())); 2049 Vals.push_back(GetEncodedOrdering( 2050 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2051 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2052 break; 2053 case Instruction::AtomicRMW: 2054 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2055 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 2056 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 2057 Vals.push_back(GetEncodedRMWOperation( 2058 cast<AtomicRMWInst>(I).getOperation())); 2059 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2060 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2061 Vals.push_back(GetEncodedSynchScope( 2062 cast<AtomicRMWInst>(I).getSynchScope())); 2063 break; 2064 case Instruction::Fence: 2065 Code = bitc::FUNC_CODE_INST_FENCE; 2066 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2067 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2068 break; 2069 case Instruction::Call: { 2070 const CallInst &CI = cast<CallInst>(I); 2071 FunctionType *FTy = CI.getFunctionType(); 2072 2073 Code = bitc::FUNC_CODE_INST_CALL; 2074 2075 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 2076 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 2077 unsigned(CI.isMustTailCall()) << 14 | 1 << 15); 2078 Vals.push_back(VE.getTypeID(FTy)); 2079 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 2080 2081 // Emit value #'s for the fixed parameters. 2082 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2083 // Check for labels (can happen with asm labels). 2084 if (FTy->getParamType(i)->isLabelTy()) 2085 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2086 else 2087 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 2088 } 2089 2090 // Emit type/value pairs for varargs params. 2091 if (FTy->isVarArg()) { 2092 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2093 i != e; ++i) 2094 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 2095 } 2096 break; 2097 } 2098 case Instruction::VAArg: 2099 Code = bitc::FUNC_CODE_INST_VAARG; 2100 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2101 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 2102 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2103 break; 2104 } 2105 2106 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2107 Vals.clear(); 2108 } 2109 2110 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 2111 2112 /// Determine the encoding to use for the given string name and length. 2113 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 2114 bool isChar6 = true; 2115 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 2116 if (isChar6) 2117 isChar6 = BitCodeAbbrevOp::isChar6(*C); 2118 if ((unsigned char)*C & 128) 2119 // don't bother scanning the rest. 2120 return SE_Fixed8; 2121 } 2122 if (isChar6) 2123 return SE_Char6; 2124 else 2125 return SE_Fixed7; 2126 } 2127 2128 /// Emit names for globals/functions etc. The VSTOffsetPlaceholder, 2129 /// BitcodeStartBit and FunctionIndex are only passed for the module-level 2130 /// VST, where we are including a function bitcode index and need to 2131 /// backpatch the VST forward declaration record. 2132 static void WriteValueSymbolTable( 2133 const ValueSymbolTable &VST, const ValueEnumerator &VE, 2134 BitstreamWriter &Stream, uint64_t VSTOffsetPlaceholder = 0, 2135 uint64_t BitcodeStartBit = 0, 2136 DenseMap<const Function *, uint64_t> *FunctionIndex = nullptr) { 2137 if (VST.empty()) { 2138 // WriteValueSymbolTableForwardDecl should have returned early as 2139 // well. Ensure this handling remains in sync by asserting that 2140 // the placeholder offset is not set. 2141 assert(VSTOffsetPlaceholder == 0); 2142 return; 2143 } 2144 2145 if (VSTOffsetPlaceholder > 0) { 2146 // Get the offset of the VST we are writing, and backpatch it into 2147 // the VST forward declaration record. 2148 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2149 // The BitcodeStartBit was the stream offset of the actual bitcode 2150 // (e.g. excluding any initial darwin header). 2151 VSTOffset -= BitcodeStartBit; 2152 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2153 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2154 } 2155 2156 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2157 2158 // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY 2159 // records, which are not used in the per-function VSTs. 2160 unsigned FnEntry8BitAbbrev; 2161 unsigned FnEntry7BitAbbrev; 2162 unsigned FnEntry6BitAbbrev; 2163 if (VSTOffsetPlaceholder > 0) { 2164 // 8-bit fixed-width VST_FNENTRY function strings. 2165 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2166 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2171 FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv); 2172 2173 // 7-bit fixed width VST_FNENTRY function strings. 2174 Abbv = new BitCodeAbbrev(); 2175 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2180 FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv); 2181 2182 // 6-bit char6 VST_FNENTRY function strings. 2183 Abbv = new BitCodeAbbrev(); 2184 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2185 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2189 FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv); 2190 } 2191 2192 // FIXME: Set up the abbrev, we know how many values there are! 2193 // FIXME: We know if the type names can use 7-bit ascii. 2194 SmallVector<unsigned, 64> NameVals; 2195 2196 for (const ValueName &Name : VST) { 2197 // Figure out the encoding to use for the name. 2198 StringEncoding Bits = 2199 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2200 2201 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2202 NameVals.push_back(VE.getValueID(Name.getValue())); 2203 2204 Function *F = dyn_cast<Function>(Name.getValue()); 2205 if (!F) { 2206 // If value is an alias, need to get the aliased base object to 2207 // see if it is a function. 2208 auto *GA = dyn_cast<GlobalAlias>(Name.getValue()); 2209 if (GA && GA->getBaseObject()) 2210 F = dyn_cast<Function>(GA->getBaseObject()); 2211 } 2212 2213 // VST_ENTRY: [valueid, namechar x N] 2214 // VST_FNENTRY: [valueid, funcoffset, namechar x N] 2215 // VST_BBENTRY: [bbid, namechar x N] 2216 unsigned Code; 2217 if (isa<BasicBlock>(Name.getValue())) { 2218 Code = bitc::VST_CODE_BBENTRY; 2219 if (Bits == SE_Char6) 2220 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2221 } else if (F && !F->isDeclaration()) { 2222 // Must be the module-level VST, where we pass in the Index and 2223 // have a VSTOffsetPlaceholder. The function-level VST should not 2224 // contain any Function symbols. 2225 assert(FunctionIndex); 2226 assert(VSTOffsetPlaceholder > 0); 2227 2228 // Save the word offset of the function (from the start of the 2229 // actual bitcode written to the stream). 2230 assert(FunctionIndex->count(F) == 1); 2231 uint64_t BitcodeIndex = (*FunctionIndex)[F] - BitcodeStartBit; 2232 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2233 NameVals.push_back(BitcodeIndex / 32); 2234 2235 Code = bitc::VST_CODE_FNENTRY; 2236 AbbrevToUse = FnEntry8BitAbbrev; 2237 if (Bits == SE_Char6) 2238 AbbrevToUse = FnEntry6BitAbbrev; 2239 else if (Bits == SE_Fixed7) 2240 AbbrevToUse = FnEntry7BitAbbrev; 2241 } else { 2242 Code = bitc::VST_CODE_ENTRY; 2243 if (Bits == SE_Char6) 2244 AbbrevToUse = VST_ENTRY_6_ABBREV; 2245 else if (Bits == SE_Fixed7) 2246 AbbrevToUse = VST_ENTRY_7_ABBREV; 2247 } 2248 2249 for (const char *P = Name.getKeyData(), 2250 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 2251 NameVals.push_back((unsigned char)*P); 2252 2253 // Emit the finished record. 2254 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2255 NameVals.clear(); 2256 } 2257 Stream.ExitBlock(); 2258 } 2259 2260 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 2261 BitstreamWriter &Stream) { 2262 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2263 unsigned Code; 2264 if (isa<BasicBlock>(Order.V)) 2265 Code = bitc::USELIST_CODE_BB; 2266 else 2267 Code = bitc::USELIST_CODE_DEFAULT; 2268 2269 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2270 Record.push_back(VE.getValueID(Order.V)); 2271 Stream.EmitRecord(Code, Record); 2272 } 2273 2274 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 2275 BitstreamWriter &Stream) { 2276 assert(VE.shouldPreserveUseListOrder() && 2277 "Expected to be preserving use-list order"); 2278 2279 auto hasMore = [&]() { 2280 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2281 }; 2282 if (!hasMore()) 2283 // Nothing to do. 2284 return; 2285 2286 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2287 while (hasMore()) { 2288 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 2289 VE.UseListOrders.pop_back(); 2290 } 2291 Stream.ExitBlock(); 2292 } 2293 2294 /// WriteFunction - Emit a function body to the module stream. 2295 static void WriteFunction(const Function &F, ValueEnumerator &VE, 2296 BitstreamWriter &Stream, 2297 DenseMap<const Function *, uint64_t> &FunctionIndex) { 2298 // Save the bitcode index of the start of this function block for recording 2299 // in the VST. 2300 uint64_t BitcodeIndex = Stream.GetCurrentBitNo(); 2301 FunctionIndex[&F] = BitcodeIndex; 2302 2303 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2304 VE.incorporateFunction(F); 2305 2306 SmallVector<unsigned, 64> Vals; 2307 2308 // Emit the number of basic blocks, so the reader can create them ahead of 2309 // time. 2310 Vals.push_back(VE.getBasicBlocks().size()); 2311 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2312 Vals.clear(); 2313 2314 // If there are function-local constants, emit them now. 2315 unsigned CstStart, CstEnd; 2316 VE.getFunctionConstantRange(CstStart, CstEnd); 2317 WriteConstants(CstStart, CstEnd, VE, Stream, false); 2318 2319 // If there is function-local metadata, emit it now. 2320 WriteFunctionLocalMetadata(F, VE, Stream); 2321 2322 // Keep a running idea of what the instruction ID is. 2323 unsigned InstID = CstEnd; 2324 2325 bool NeedsMetadataAttachment = F.hasMetadata(); 2326 2327 DILocation *LastDL = nullptr; 2328 2329 // Finally, emit all the instructions, in order. 2330 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2331 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2332 I != E; ++I) { 2333 WriteInstruction(*I, InstID, VE, Stream, Vals); 2334 2335 if (!I->getType()->isVoidTy()) 2336 ++InstID; 2337 2338 // If the instruction has metadata, write a metadata attachment later. 2339 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2340 2341 // If the instruction has a debug location, emit it. 2342 DILocation *DL = I->getDebugLoc(); 2343 if (!DL) 2344 continue; 2345 2346 if (DL == LastDL) { 2347 // Just repeat the same debug loc as last time. 2348 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2349 continue; 2350 } 2351 2352 Vals.push_back(DL->getLine()); 2353 Vals.push_back(DL->getColumn()); 2354 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2355 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2356 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2357 Vals.clear(); 2358 2359 LastDL = DL; 2360 } 2361 2362 // Emit names for all the instructions etc. 2363 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 2364 2365 if (NeedsMetadataAttachment) 2366 WriteMetadataAttachment(F, VE, Stream); 2367 if (VE.shouldPreserveUseListOrder()) 2368 WriteUseListBlock(&F, VE, Stream); 2369 VE.purgeFunction(); 2370 Stream.ExitBlock(); 2371 } 2372 2373 // Emit blockinfo, which defines the standard abbreviations etc. 2374 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 2375 // We only want to emit block info records for blocks that have multiple 2376 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2377 // Other blocks can define their abbrevs inline. 2378 Stream.EnterBlockInfoBlock(2); 2379 2380 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 2381 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2386 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2387 Abbv) != VST_ENTRY_8_ABBREV) 2388 llvm_unreachable("Unexpected abbrev ordering!"); 2389 } 2390 2391 { // 7-bit fixed width VST_ENTRY strings. 2392 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2393 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2397 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2398 Abbv) != VST_ENTRY_7_ABBREV) 2399 llvm_unreachable("Unexpected abbrev ordering!"); 2400 } 2401 { // 6-bit char6 VST_ENTRY strings. 2402 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2403 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2407 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2408 Abbv) != VST_ENTRY_6_ABBREV) 2409 llvm_unreachable("Unexpected abbrev ordering!"); 2410 } 2411 { // 6-bit char6 VST_BBENTRY strings. 2412 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2413 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2417 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2418 Abbv) != VST_BBENTRY_6_ABBREV) 2419 llvm_unreachable("Unexpected abbrev ordering!"); 2420 } 2421 2422 2423 2424 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2425 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2426 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2428 VE.computeBitsRequiredForTypeIndicies())); 2429 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2430 Abbv) != CONSTANTS_SETTYPE_ABBREV) 2431 llvm_unreachable("Unexpected abbrev ordering!"); 2432 } 2433 2434 { // INTEGER abbrev for CONSTANTS_BLOCK. 2435 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2436 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2438 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2439 Abbv) != CONSTANTS_INTEGER_ABBREV) 2440 llvm_unreachable("Unexpected abbrev ordering!"); 2441 } 2442 2443 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2444 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2445 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2448 VE.computeBitsRequiredForTypeIndicies())); 2449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2450 2451 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2452 Abbv) != CONSTANTS_CE_CAST_Abbrev) 2453 llvm_unreachable("Unexpected abbrev ordering!"); 2454 } 2455 { // NULL abbrev for CONSTANTS_BLOCK. 2456 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2457 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2458 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2459 Abbv) != CONSTANTS_NULL_Abbrev) 2460 llvm_unreachable("Unexpected abbrev ordering!"); 2461 } 2462 2463 // FIXME: This should only use space for first class types! 2464 2465 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2466 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2467 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2470 VE.computeBitsRequiredForTypeIndicies())); 2471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2473 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2474 Abbv) != FUNCTION_INST_LOAD_ABBREV) 2475 llvm_unreachable("Unexpected abbrev ordering!"); 2476 } 2477 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2478 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2479 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2483 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2484 Abbv) != FUNCTION_INST_BINOP_ABBREV) 2485 llvm_unreachable("Unexpected abbrev ordering!"); 2486 } 2487 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2488 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2489 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2490 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2491 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2494 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2495 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 2496 llvm_unreachable("Unexpected abbrev ordering!"); 2497 } 2498 { // INST_CAST abbrev for FUNCTION_BLOCK. 2499 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2500 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2503 VE.computeBitsRequiredForTypeIndicies())); 2504 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2505 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2506 Abbv) != FUNCTION_INST_CAST_ABBREV) 2507 llvm_unreachable("Unexpected abbrev ordering!"); 2508 } 2509 2510 { // INST_RET abbrev for FUNCTION_BLOCK. 2511 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2512 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2513 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2514 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 2515 llvm_unreachable("Unexpected abbrev ordering!"); 2516 } 2517 { // INST_RET abbrev for FUNCTION_BLOCK. 2518 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2519 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2521 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2522 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 2523 llvm_unreachable("Unexpected abbrev ordering!"); 2524 } 2525 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2526 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2527 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2528 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2529 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 2530 llvm_unreachable("Unexpected abbrev ordering!"); 2531 } 2532 { 2533 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2534 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2535 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2537 Log2_32_Ceil(VE.getTypes().size() + 1))); 2538 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2539 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2540 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 2541 FUNCTION_INST_GEP_ABBREV) 2542 llvm_unreachable("Unexpected abbrev ordering!"); 2543 } 2544 2545 Stream.ExitBlock(); 2546 } 2547 2548 /// WriteModule - Emit the specified module to the bitstream. 2549 static void WriteModule(const Module *M, BitstreamWriter &Stream, 2550 bool ShouldPreserveUseListOrder, 2551 uint64_t BitcodeStartBit) { 2552 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 2553 2554 SmallVector<unsigned, 1> Vals; 2555 unsigned CurVersion = 1; 2556 Vals.push_back(CurVersion); 2557 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 2558 2559 // Analyze the module, enumerating globals, functions, etc. 2560 ValueEnumerator VE(*M, ShouldPreserveUseListOrder); 2561 2562 // Emit blockinfo, which defines the standard abbreviations etc. 2563 WriteBlockInfo(VE, Stream); 2564 2565 // Emit information about attribute groups. 2566 WriteAttributeGroupTable(VE, Stream); 2567 2568 // Emit information about parameter attributes. 2569 WriteAttributeTable(VE, Stream); 2570 2571 // Emit information describing all of the types in the module. 2572 WriteTypeTable(VE, Stream); 2573 2574 writeComdats(VE, Stream); 2575 2576 // Emit top-level description of module, including target triple, inline asm, 2577 // descriptors for global variables, and function prototype info. 2578 uint64_t VSTOffsetPlaceholder = WriteModuleInfo(M, VE, Stream); 2579 2580 // Emit constants. 2581 WriteModuleConstants(VE, Stream); 2582 2583 // Emit metadata. 2584 WriteModuleMetadata(M, VE, Stream); 2585 2586 // Emit metadata. 2587 WriteModuleMetadataStore(M, Stream); 2588 2589 // Emit module-level use-lists. 2590 if (VE.shouldPreserveUseListOrder()) 2591 WriteUseListBlock(nullptr, VE, Stream); 2592 2593 // Emit function bodies. 2594 DenseMap<const Function *, uint64_t> FunctionIndex; 2595 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 2596 if (!F->isDeclaration()) 2597 WriteFunction(*F, VE, Stream, FunctionIndex); 2598 2599 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream, 2600 VSTOffsetPlaceholder, BitcodeStartBit, &FunctionIndex); 2601 2602 Stream.ExitBlock(); 2603 } 2604 2605 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 2606 /// header and trailer to make it compatible with the system archiver. To do 2607 /// this we emit the following header, and then emit a trailer that pads the 2608 /// file out to be a multiple of 16 bytes. 2609 /// 2610 /// struct bc_header { 2611 /// uint32_t Magic; // 0x0B17C0DE 2612 /// uint32_t Version; // Version, currently always 0. 2613 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 2614 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 2615 /// uint32_t CPUType; // CPU specifier. 2616 /// ... potentially more later ... 2617 /// }; 2618 enum { 2619 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 2620 DarwinBCHeaderSize = 5*4 2621 }; 2622 2623 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 2624 uint32_t &Position) { 2625 support::endian::write32le(&Buffer[Position], Value); 2626 Position += 4; 2627 } 2628 2629 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 2630 const Triple &TT) { 2631 unsigned CPUType = ~0U; 2632 2633 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 2634 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 2635 // number from /usr/include/mach/machine.h. It is ok to reproduce the 2636 // specific constants here because they are implicitly part of the Darwin ABI. 2637 enum { 2638 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 2639 DARWIN_CPU_TYPE_X86 = 7, 2640 DARWIN_CPU_TYPE_ARM = 12, 2641 DARWIN_CPU_TYPE_POWERPC = 18 2642 }; 2643 2644 Triple::ArchType Arch = TT.getArch(); 2645 if (Arch == Triple::x86_64) 2646 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 2647 else if (Arch == Triple::x86) 2648 CPUType = DARWIN_CPU_TYPE_X86; 2649 else if (Arch == Triple::ppc) 2650 CPUType = DARWIN_CPU_TYPE_POWERPC; 2651 else if (Arch == Triple::ppc64) 2652 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 2653 else if (Arch == Triple::arm || Arch == Triple::thumb) 2654 CPUType = DARWIN_CPU_TYPE_ARM; 2655 2656 // Traditional Bitcode starts after header. 2657 assert(Buffer.size() >= DarwinBCHeaderSize && 2658 "Expected header size to be reserved"); 2659 unsigned BCOffset = DarwinBCHeaderSize; 2660 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2661 2662 // Write the magic and version. 2663 unsigned Position = 0; 2664 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2665 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2666 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2667 WriteInt32ToBuffer(BCSize , Buffer, Position); 2668 WriteInt32ToBuffer(CPUType , Buffer, Position); 2669 2670 // If the file is not a multiple of 16 bytes, insert dummy padding. 2671 while (Buffer.size() & 15) 2672 Buffer.push_back(0); 2673 } 2674 2675 /// WriteBitcodeToFile - Write the specified module to the specified output 2676 /// stream. 2677 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 2678 bool ShouldPreserveUseListOrder) { 2679 SmallVector<char, 0> Buffer; 2680 Buffer.reserve(256*1024); 2681 2682 // If this is darwin or another generic macho target, reserve space for the 2683 // header. 2684 Triple TT(M->getTargetTriple()); 2685 if (TT.isOSDarwin()) 2686 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2687 2688 // Emit the module into the buffer. 2689 { 2690 BitstreamWriter Stream(Buffer); 2691 // Save the start bit of the actual bitcode, in case there is space 2692 // saved at the start for the darwin header above. The reader stream 2693 // will start at the bitcode, and we need the offset of the VST 2694 // to line up. 2695 uint64_t BitcodeStartBit = Stream.GetCurrentBitNo(); 2696 2697 // Emit the file header. 2698 Stream.Emit((unsigned)'B', 8); 2699 Stream.Emit((unsigned)'C', 8); 2700 Stream.Emit(0x0, 4); 2701 Stream.Emit(0xC, 4); 2702 Stream.Emit(0xE, 4); 2703 Stream.Emit(0xD, 4); 2704 2705 // Emit the module. 2706 WriteModule(M, Stream, ShouldPreserveUseListOrder, BitcodeStartBit); 2707 } 2708 2709 if (TT.isOSDarwin()) 2710 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2711 2712 // Write the generated bitstream to "Out". 2713 Out.write((char*)&Buffer.front(), Buffer.size()); 2714 } 2715