1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/Operator.h" 24 #include "llvm/ValueSymbolTable.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/Support/Program.h" 31 #include <cctype> 32 #include <map> 33 using namespace llvm; 34 35 static cl::opt<bool> 36 EnablePreserveUseListOrdering("enable-bc-uselist-preserve", 37 cl::desc("Turn on experimental support for " 38 "use-list order preservation."), 39 cl::init(false), cl::Hidden); 40 41 /// These are manifest constants used by the bitcode writer. They do not need to 42 /// be kept in sync with the reader, but need to be consistent within this file. 43 enum { 44 CurVersion = 0, 45 46 // VALUE_SYMTAB_BLOCK abbrev id's. 47 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 VST_ENTRY_7_ABBREV, 49 VST_ENTRY_6_ABBREV, 50 VST_BBENTRY_6_ABBREV, 51 52 // CONSTANTS_BLOCK abbrev id's. 53 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 CONSTANTS_INTEGER_ABBREV, 55 CONSTANTS_CE_CAST_Abbrev, 56 CONSTANTS_NULL_Abbrev, 57 58 // FUNCTION_BLOCK abbrev id's. 59 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 60 FUNCTION_INST_BINOP_ABBREV, 61 FUNCTION_INST_BINOP_FLAGS_ABBREV, 62 FUNCTION_INST_CAST_ABBREV, 63 FUNCTION_INST_RET_VOID_ABBREV, 64 FUNCTION_INST_RET_VAL_ABBREV, 65 FUNCTION_INST_UNREACHABLE_ABBREV, 66 67 // SwitchInst Magic 68 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 69 }; 70 71 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 72 switch (Opcode) { 73 default: llvm_unreachable("Unknown cast instruction!"); 74 case Instruction::Trunc : return bitc::CAST_TRUNC; 75 case Instruction::ZExt : return bitc::CAST_ZEXT; 76 case Instruction::SExt : return bitc::CAST_SEXT; 77 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 78 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 79 case Instruction::UIToFP : return bitc::CAST_UITOFP; 80 case Instruction::SIToFP : return bitc::CAST_SITOFP; 81 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 82 case Instruction::FPExt : return bitc::CAST_FPEXT; 83 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 84 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 85 case Instruction::BitCast : return bitc::CAST_BITCAST; 86 } 87 } 88 89 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 90 switch (Opcode) { 91 default: llvm_unreachable("Unknown binary instruction!"); 92 case Instruction::Add: 93 case Instruction::FAdd: return bitc::BINOP_ADD; 94 case Instruction::Sub: 95 case Instruction::FSub: return bitc::BINOP_SUB; 96 case Instruction::Mul: 97 case Instruction::FMul: return bitc::BINOP_MUL; 98 case Instruction::UDiv: return bitc::BINOP_UDIV; 99 case Instruction::FDiv: 100 case Instruction::SDiv: return bitc::BINOP_SDIV; 101 case Instruction::URem: return bitc::BINOP_UREM; 102 case Instruction::FRem: 103 case Instruction::SRem: return bitc::BINOP_SREM; 104 case Instruction::Shl: return bitc::BINOP_SHL; 105 case Instruction::LShr: return bitc::BINOP_LSHR; 106 case Instruction::AShr: return bitc::BINOP_ASHR; 107 case Instruction::And: return bitc::BINOP_AND; 108 case Instruction::Or: return bitc::BINOP_OR; 109 case Instruction::Xor: return bitc::BINOP_XOR; 110 } 111 } 112 113 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 114 switch (Op) { 115 default: llvm_unreachable("Unknown RMW operation!"); 116 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 117 case AtomicRMWInst::Add: return bitc::RMW_ADD; 118 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 119 case AtomicRMWInst::And: return bitc::RMW_AND; 120 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 121 case AtomicRMWInst::Or: return bitc::RMW_OR; 122 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 123 case AtomicRMWInst::Max: return bitc::RMW_MAX; 124 case AtomicRMWInst::Min: return bitc::RMW_MIN; 125 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 126 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 127 } 128 } 129 130 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 131 switch (Ordering) { 132 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 133 case Unordered: return bitc::ORDERING_UNORDERED; 134 case Monotonic: return bitc::ORDERING_MONOTONIC; 135 case Acquire: return bitc::ORDERING_ACQUIRE; 136 case Release: return bitc::ORDERING_RELEASE; 137 case AcquireRelease: return bitc::ORDERING_ACQREL; 138 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 139 } 140 llvm_unreachable("Invalid ordering"); 141 } 142 143 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 144 switch (SynchScope) { 145 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 146 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 147 } 148 llvm_unreachable("Invalid synch scope"); 149 } 150 151 static void WriteStringRecord(unsigned Code, StringRef Str, 152 unsigned AbbrevToUse, BitstreamWriter &Stream) { 153 SmallVector<unsigned, 64> Vals; 154 155 // Code: [strchar x N] 156 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 157 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 158 AbbrevToUse = 0; 159 Vals.push_back(Str[i]); 160 } 161 162 // Emit the finished record. 163 Stream.EmitRecord(Code, Vals, AbbrevToUse); 164 } 165 166 // Emit information about parameter attributes. 167 static void WriteAttributeTable(const ValueEnumerator &VE, 168 BitstreamWriter &Stream) { 169 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 170 if (Attrs.empty()) return; 171 172 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 173 174 SmallVector<uint64_t, 64> Record; 175 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 176 const AttrListPtr &A = Attrs[i]; 177 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 178 const AttributeWithIndex &PAWI = A.getSlot(i); 179 Record.push_back(PAWI.Index); 180 181 // FIXME: remove in LLVM 3.0 182 // Store the alignment in the bitcode as a 16-bit raw value instead of a 183 // 5-bit log2 encoded value. Shift the bits above the alignment up by 184 // 11 bits. 185 uint64_t FauxAttr = PAWI.Attrs.Raw() & 0xffff; 186 if (PAWI.Attrs & Attribute::Alignment) 187 FauxAttr |= (1ull<<16)<< 188 (((PAWI.Attrs & Attribute::Alignment).Raw()-1) >> 16); 189 FauxAttr |= (PAWI.Attrs.Raw() & (0x3FFull << 21)) << 11; 190 191 Record.push_back(FauxAttr); 192 } 193 194 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 195 Record.clear(); 196 } 197 198 Stream.ExitBlock(); 199 } 200 201 /// WriteTypeTable - Write out the type table for a module. 202 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 203 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 204 205 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 206 SmallVector<uint64_t, 64> TypeVals; 207 208 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 209 210 // Abbrev for TYPE_CODE_POINTER. 211 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 212 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 214 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 215 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 216 217 // Abbrev for TYPE_CODE_FUNCTION. 218 Abbv = new BitCodeAbbrev(); 219 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 222 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 223 224 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 225 226 // Abbrev for TYPE_CODE_STRUCT_ANON. 227 Abbv = new BitCodeAbbrev(); 228 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 230 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 232 233 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 234 235 // Abbrev for TYPE_CODE_STRUCT_NAME. 236 Abbv = new BitCodeAbbrev(); 237 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 238 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 239 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 240 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 241 242 // Abbrev for TYPE_CODE_STRUCT_NAMED. 243 Abbv = new BitCodeAbbrev(); 244 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 246 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 248 249 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 250 251 // Abbrev for TYPE_CODE_ARRAY. 252 Abbv = new BitCodeAbbrev(); 253 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 254 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 255 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 256 257 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 258 259 // Emit an entry count so the reader can reserve space. 260 TypeVals.push_back(TypeList.size()); 261 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 262 TypeVals.clear(); 263 264 // Loop over all of the types, emitting each in turn. 265 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 266 Type *T = TypeList[i]; 267 int AbbrevToUse = 0; 268 unsigned Code = 0; 269 270 switch (T->getTypeID()) { 271 default: llvm_unreachable("Unknown type!"); 272 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 273 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 274 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 275 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 276 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 277 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 278 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 279 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 280 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 281 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 282 case Type::IntegerTyID: 283 // INTEGER: [width] 284 Code = bitc::TYPE_CODE_INTEGER; 285 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 286 break; 287 case Type::PointerTyID: { 288 PointerType *PTy = cast<PointerType>(T); 289 // POINTER: [pointee type, address space] 290 Code = bitc::TYPE_CODE_POINTER; 291 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 292 unsigned AddressSpace = PTy->getAddressSpace(); 293 TypeVals.push_back(AddressSpace); 294 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 295 break; 296 } 297 case Type::FunctionTyID: { 298 FunctionType *FT = cast<FunctionType>(T); 299 // FUNCTION: [isvararg, retty, paramty x N] 300 Code = bitc::TYPE_CODE_FUNCTION; 301 TypeVals.push_back(FT->isVarArg()); 302 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 303 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 304 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 305 AbbrevToUse = FunctionAbbrev; 306 break; 307 } 308 case Type::StructTyID: { 309 StructType *ST = cast<StructType>(T); 310 // STRUCT: [ispacked, eltty x N] 311 TypeVals.push_back(ST->isPacked()); 312 // Output all of the element types. 313 for (StructType::element_iterator I = ST->element_begin(), 314 E = ST->element_end(); I != E; ++I) 315 TypeVals.push_back(VE.getTypeID(*I)); 316 317 if (ST->isLiteral()) { 318 Code = bitc::TYPE_CODE_STRUCT_ANON; 319 AbbrevToUse = StructAnonAbbrev; 320 } else { 321 if (ST->isOpaque()) { 322 Code = bitc::TYPE_CODE_OPAQUE; 323 } else { 324 Code = bitc::TYPE_CODE_STRUCT_NAMED; 325 AbbrevToUse = StructNamedAbbrev; 326 } 327 328 // Emit the name if it is present. 329 if (!ST->getName().empty()) 330 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 331 StructNameAbbrev, Stream); 332 } 333 break; 334 } 335 case Type::ArrayTyID: { 336 ArrayType *AT = cast<ArrayType>(T); 337 // ARRAY: [numelts, eltty] 338 Code = bitc::TYPE_CODE_ARRAY; 339 TypeVals.push_back(AT->getNumElements()); 340 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 341 AbbrevToUse = ArrayAbbrev; 342 break; 343 } 344 case Type::VectorTyID: { 345 VectorType *VT = cast<VectorType>(T); 346 // VECTOR [numelts, eltty] 347 Code = bitc::TYPE_CODE_VECTOR; 348 TypeVals.push_back(VT->getNumElements()); 349 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 350 break; 351 } 352 } 353 354 // Emit the finished record. 355 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 356 TypeVals.clear(); 357 } 358 359 Stream.ExitBlock(); 360 } 361 362 static unsigned getEncodedLinkage(const GlobalValue *GV) { 363 switch (GV->getLinkage()) { 364 case GlobalValue::ExternalLinkage: return 0; 365 case GlobalValue::WeakAnyLinkage: return 1; 366 case GlobalValue::AppendingLinkage: return 2; 367 case GlobalValue::InternalLinkage: return 3; 368 case GlobalValue::LinkOnceAnyLinkage: return 4; 369 case GlobalValue::DLLImportLinkage: return 5; 370 case GlobalValue::DLLExportLinkage: return 6; 371 case GlobalValue::ExternalWeakLinkage: return 7; 372 case GlobalValue::CommonLinkage: return 8; 373 case GlobalValue::PrivateLinkage: return 9; 374 case GlobalValue::WeakODRLinkage: return 10; 375 case GlobalValue::LinkOnceODRLinkage: return 11; 376 case GlobalValue::AvailableExternallyLinkage: return 12; 377 case GlobalValue::LinkerPrivateLinkage: return 13; 378 case GlobalValue::LinkerPrivateWeakLinkage: return 14; 379 case GlobalValue::LinkerPrivateWeakDefAutoLinkage: return 15; 380 } 381 llvm_unreachable("Invalid linkage"); 382 } 383 384 static unsigned getEncodedVisibility(const GlobalValue *GV) { 385 switch (GV->getVisibility()) { 386 case GlobalValue::DefaultVisibility: return 0; 387 case GlobalValue::HiddenVisibility: return 1; 388 case GlobalValue::ProtectedVisibility: return 2; 389 } 390 llvm_unreachable("Invalid visibility"); 391 } 392 393 // Emit top-level description of module, including target triple, inline asm, 394 // descriptors for global variables, and function prototype info. 395 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 396 BitstreamWriter &Stream) { 397 // Emit the list of dependent libraries for the Module. 398 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 399 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 400 401 // Emit various pieces of data attached to a module. 402 if (!M->getTargetTriple().empty()) 403 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 404 0/*TODO*/, Stream); 405 if (!M->getDataLayout().empty()) 406 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 407 0/*TODO*/, Stream); 408 if (!M->getModuleInlineAsm().empty()) 409 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 410 0/*TODO*/, Stream); 411 412 // Emit information about sections and GC, computing how many there are. Also 413 // compute the maximum alignment value. 414 std::map<std::string, unsigned> SectionMap; 415 std::map<std::string, unsigned> GCMap; 416 unsigned MaxAlignment = 0; 417 unsigned MaxGlobalType = 0; 418 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 419 GV != E; ++GV) { 420 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 421 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 422 if (GV->hasSection()) { 423 // Give section names unique ID's. 424 unsigned &Entry = SectionMap[GV->getSection()]; 425 if (!Entry) { 426 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 427 0/*TODO*/, Stream); 428 Entry = SectionMap.size(); 429 } 430 } 431 } 432 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 433 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 434 if (F->hasSection()) { 435 // Give section names unique ID's. 436 unsigned &Entry = SectionMap[F->getSection()]; 437 if (!Entry) { 438 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 439 0/*TODO*/, Stream); 440 Entry = SectionMap.size(); 441 } 442 } 443 if (F->hasGC()) { 444 // Same for GC names. 445 unsigned &Entry = GCMap[F->getGC()]; 446 if (!Entry) { 447 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 448 0/*TODO*/, Stream); 449 Entry = GCMap.size(); 450 } 451 } 452 } 453 454 // Emit abbrev for globals, now that we know # sections and max alignment. 455 unsigned SimpleGVarAbbrev = 0; 456 if (!M->global_empty()) { 457 // Add an abbrev for common globals with no visibility or thread localness. 458 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 459 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 461 Log2_32_Ceil(MaxGlobalType+1))); 462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 465 if (MaxAlignment == 0) // Alignment. 466 Abbv->Add(BitCodeAbbrevOp(0)); 467 else { 468 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 470 Log2_32_Ceil(MaxEncAlignment+1))); 471 } 472 if (SectionMap.empty()) // Section. 473 Abbv->Add(BitCodeAbbrevOp(0)); 474 else 475 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 476 Log2_32_Ceil(SectionMap.size()+1))); 477 // Don't bother emitting vis + thread local. 478 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 479 } 480 481 // Emit the global variable information. 482 SmallVector<unsigned, 64> Vals; 483 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 484 GV != E; ++GV) { 485 unsigned AbbrevToUse = 0; 486 487 // GLOBALVAR: [type, isconst, initid, 488 // linkage, alignment, section, visibility, threadlocal, 489 // unnamed_addr] 490 Vals.push_back(VE.getTypeID(GV->getType())); 491 Vals.push_back(GV->isConstant()); 492 Vals.push_back(GV->isDeclaration() ? 0 : 493 (VE.getValueID(GV->getInitializer()) + 1)); 494 Vals.push_back(getEncodedLinkage(GV)); 495 Vals.push_back(Log2_32(GV->getAlignment())+1); 496 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 497 if (GV->isThreadLocal() || 498 GV->getVisibility() != GlobalValue::DefaultVisibility || 499 GV->hasUnnamedAddr()) { 500 Vals.push_back(getEncodedVisibility(GV)); 501 Vals.push_back(GV->isThreadLocal()); 502 Vals.push_back(GV->hasUnnamedAddr()); 503 } else { 504 AbbrevToUse = SimpleGVarAbbrev; 505 } 506 507 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 508 Vals.clear(); 509 } 510 511 // Emit the function proto information. 512 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 513 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 514 // section, visibility, gc, unnamed_addr] 515 Vals.push_back(VE.getTypeID(F->getType())); 516 Vals.push_back(F->getCallingConv()); 517 Vals.push_back(F->isDeclaration()); 518 Vals.push_back(getEncodedLinkage(F)); 519 Vals.push_back(VE.getAttributeID(F->getAttributes())); 520 Vals.push_back(Log2_32(F->getAlignment())+1); 521 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 522 Vals.push_back(getEncodedVisibility(F)); 523 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 524 Vals.push_back(F->hasUnnamedAddr()); 525 526 unsigned AbbrevToUse = 0; 527 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 528 Vals.clear(); 529 } 530 531 // Emit the alias information. 532 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 533 AI != E; ++AI) { 534 // ALIAS: [alias type, aliasee val#, linkage, visibility] 535 Vals.push_back(VE.getTypeID(AI->getType())); 536 Vals.push_back(VE.getValueID(AI->getAliasee())); 537 Vals.push_back(getEncodedLinkage(AI)); 538 Vals.push_back(getEncodedVisibility(AI)); 539 unsigned AbbrevToUse = 0; 540 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 541 Vals.clear(); 542 } 543 } 544 545 static uint64_t GetOptimizationFlags(const Value *V) { 546 uint64_t Flags = 0; 547 548 if (const OverflowingBinaryOperator *OBO = 549 dyn_cast<OverflowingBinaryOperator>(V)) { 550 if (OBO->hasNoSignedWrap()) 551 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 552 if (OBO->hasNoUnsignedWrap()) 553 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 554 } else if (const PossiblyExactOperator *PEO = 555 dyn_cast<PossiblyExactOperator>(V)) { 556 if (PEO->isExact()) 557 Flags |= 1 << bitc::PEO_EXACT; 558 } 559 560 return Flags; 561 } 562 563 static void WriteMDNode(const MDNode *N, 564 const ValueEnumerator &VE, 565 BitstreamWriter &Stream, 566 SmallVector<uint64_t, 64> &Record) { 567 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 568 if (N->getOperand(i)) { 569 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 570 Record.push_back(VE.getValueID(N->getOperand(i))); 571 } else { 572 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 573 Record.push_back(0); 574 } 575 } 576 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE : 577 bitc::METADATA_NODE; 578 Stream.EmitRecord(MDCode, Record, 0); 579 Record.clear(); 580 } 581 582 static void WriteModuleMetadata(const Module *M, 583 const ValueEnumerator &VE, 584 BitstreamWriter &Stream) { 585 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 586 bool StartedMetadataBlock = false; 587 unsigned MDSAbbrev = 0; 588 SmallVector<uint64_t, 64> Record; 589 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 590 591 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 592 if (!N->isFunctionLocal() || !N->getFunction()) { 593 if (!StartedMetadataBlock) { 594 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 595 StartedMetadataBlock = true; 596 } 597 WriteMDNode(N, VE, Stream, Record); 598 } 599 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 600 if (!StartedMetadataBlock) { 601 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 602 603 // Abbrev for METADATA_STRING. 604 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 605 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 608 MDSAbbrev = Stream.EmitAbbrev(Abbv); 609 StartedMetadataBlock = true; 610 } 611 612 // Code: [strchar x N] 613 Record.append(MDS->begin(), MDS->end()); 614 615 // Emit the finished record. 616 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 617 Record.clear(); 618 } 619 } 620 621 // Write named metadata. 622 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 623 E = M->named_metadata_end(); I != E; ++I) { 624 const NamedMDNode *NMD = I; 625 if (!StartedMetadataBlock) { 626 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 627 StartedMetadataBlock = true; 628 } 629 630 // Write name. 631 StringRef Str = NMD->getName(); 632 for (unsigned i = 0, e = Str.size(); i != e; ++i) 633 Record.push_back(Str[i]); 634 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 635 Record.clear(); 636 637 // Write named metadata operands. 638 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 639 Record.push_back(VE.getValueID(NMD->getOperand(i))); 640 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 641 Record.clear(); 642 } 643 644 if (StartedMetadataBlock) 645 Stream.ExitBlock(); 646 } 647 648 static void WriteFunctionLocalMetadata(const Function &F, 649 const ValueEnumerator &VE, 650 BitstreamWriter &Stream) { 651 bool StartedMetadataBlock = false; 652 SmallVector<uint64_t, 64> Record; 653 const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues(); 654 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 655 if (const MDNode *N = Vals[i]) 656 if (N->isFunctionLocal() && N->getFunction() == &F) { 657 if (!StartedMetadataBlock) { 658 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 659 StartedMetadataBlock = true; 660 } 661 WriteMDNode(N, VE, Stream, Record); 662 } 663 664 if (StartedMetadataBlock) 665 Stream.ExitBlock(); 666 } 667 668 static void WriteMetadataAttachment(const Function &F, 669 const ValueEnumerator &VE, 670 BitstreamWriter &Stream) { 671 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 672 673 SmallVector<uint64_t, 64> Record; 674 675 // Write metadata attachments 676 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 677 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 678 679 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 680 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 681 I != E; ++I) { 682 MDs.clear(); 683 I->getAllMetadataOtherThanDebugLoc(MDs); 684 685 // If no metadata, ignore instruction. 686 if (MDs.empty()) continue; 687 688 Record.push_back(VE.getInstructionID(I)); 689 690 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 691 Record.push_back(MDs[i].first); 692 Record.push_back(VE.getValueID(MDs[i].second)); 693 } 694 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 695 Record.clear(); 696 } 697 698 Stream.ExitBlock(); 699 } 700 701 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 702 SmallVector<uint64_t, 64> Record; 703 704 // Write metadata kinds 705 // METADATA_KIND - [n x [id, name]] 706 SmallVector<StringRef, 4> Names; 707 M->getMDKindNames(Names); 708 709 if (Names.empty()) return; 710 711 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 712 713 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 714 Record.push_back(MDKindID); 715 StringRef KName = Names[MDKindID]; 716 Record.append(KName.begin(), KName.end()); 717 718 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 719 Record.clear(); 720 } 721 722 Stream.ExitBlock(); 723 } 724 725 template <typename intty> 726 static void EmitAPInt(SmallVectorImpl<intty> &Vals, 727 unsigned &Code, unsigned &AbbrevToUse, const APInt &Val, 728 bool EmitSizeForWideNumbers = false 729 ) { 730 if (Val.getBitWidth() <= 64) { 731 uint64_t V = Val.getSExtValue(); 732 if ((int64_t)V >= 0) 733 Vals.push_back(V << 1); 734 else 735 Vals.push_back((-V << 1) | 1); 736 Code = bitc::CST_CODE_INTEGER; 737 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 738 } else { 739 // Wide integers, > 64 bits in size. 740 // We have an arbitrary precision integer value to write whose 741 // bit width is > 64. However, in canonical unsigned integer 742 // format it is likely that the high bits are going to be zero. 743 // So, we only write the number of active words. 744 unsigned NWords = Val.getActiveWords(); 745 746 if (EmitSizeForWideNumbers) 747 Vals.push_back(NWords); 748 749 const uint64_t *RawWords = Val.getRawData(); 750 for (unsigned i = 0; i != NWords; ++i) { 751 int64_t V = RawWords[i]; 752 if (V >= 0) 753 Vals.push_back(V << 1); 754 else 755 Vals.push_back((-V << 1) | 1); 756 } 757 Code = bitc::CST_CODE_WIDE_INTEGER; 758 } 759 } 760 761 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 762 const ValueEnumerator &VE, 763 BitstreamWriter &Stream, bool isGlobal) { 764 if (FirstVal == LastVal) return; 765 766 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 767 768 unsigned AggregateAbbrev = 0; 769 unsigned String8Abbrev = 0; 770 unsigned CString7Abbrev = 0; 771 unsigned CString6Abbrev = 0; 772 // If this is a constant pool for the module, emit module-specific abbrevs. 773 if (isGlobal) { 774 // Abbrev for CST_CODE_AGGREGATE. 775 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 776 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 779 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 780 781 // Abbrev for CST_CODE_STRING. 782 Abbv = new BitCodeAbbrev(); 783 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 786 String8Abbrev = Stream.EmitAbbrev(Abbv); 787 // Abbrev for CST_CODE_CSTRING. 788 Abbv = new BitCodeAbbrev(); 789 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 792 CString7Abbrev = Stream.EmitAbbrev(Abbv); 793 // Abbrev for CST_CODE_CSTRING. 794 Abbv = new BitCodeAbbrev(); 795 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 798 CString6Abbrev = Stream.EmitAbbrev(Abbv); 799 } 800 801 SmallVector<uint64_t, 64> Record; 802 803 const ValueEnumerator::ValueList &Vals = VE.getValues(); 804 Type *LastTy = 0; 805 for (unsigned i = FirstVal; i != LastVal; ++i) { 806 const Value *V = Vals[i].first; 807 // If we need to switch types, do so now. 808 if (V->getType() != LastTy) { 809 LastTy = V->getType(); 810 Record.push_back(VE.getTypeID(LastTy)); 811 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 812 CONSTANTS_SETTYPE_ABBREV); 813 Record.clear(); 814 } 815 816 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 817 Record.push_back(unsigned(IA->hasSideEffects()) | 818 unsigned(IA->isAlignStack()) << 1); 819 820 // Add the asm string. 821 const std::string &AsmStr = IA->getAsmString(); 822 Record.push_back(AsmStr.size()); 823 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 824 Record.push_back(AsmStr[i]); 825 826 // Add the constraint string. 827 const std::string &ConstraintStr = IA->getConstraintString(); 828 Record.push_back(ConstraintStr.size()); 829 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 830 Record.push_back(ConstraintStr[i]); 831 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 832 Record.clear(); 833 continue; 834 } 835 const Constant *C = cast<Constant>(V); 836 unsigned Code = -1U; 837 unsigned AbbrevToUse = 0; 838 if (C->isNullValue()) { 839 Code = bitc::CST_CODE_NULL; 840 } else if (isa<UndefValue>(C)) { 841 Code = bitc::CST_CODE_UNDEF; 842 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 843 EmitAPInt(Record, Code, AbbrevToUse, IV->getValue()); 844 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 845 Code = bitc::CST_CODE_FLOAT; 846 Type *Ty = CFP->getType(); 847 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 848 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 849 } else if (Ty->isX86_FP80Ty()) { 850 // api needed to prevent premature destruction 851 // bits are not in the same order as a normal i80 APInt, compensate. 852 APInt api = CFP->getValueAPF().bitcastToAPInt(); 853 const uint64_t *p = api.getRawData(); 854 Record.push_back((p[1] << 48) | (p[0] >> 16)); 855 Record.push_back(p[0] & 0xffffLL); 856 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 857 APInt api = CFP->getValueAPF().bitcastToAPInt(); 858 const uint64_t *p = api.getRawData(); 859 Record.push_back(p[0]); 860 Record.push_back(p[1]); 861 } else { 862 assert (0 && "Unknown FP type!"); 863 } 864 } else if (isa<ConstantDataSequential>(C) && 865 cast<ConstantDataSequential>(C)->isString()) { 866 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 867 // Emit constant strings specially. 868 unsigned NumElts = Str->getNumElements(); 869 // If this is a null-terminated string, use the denser CSTRING encoding. 870 if (Str->isCString()) { 871 Code = bitc::CST_CODE_CSTRING; 872 --NumElts; // Don't encode the null, which isn't allowed by char6. 873 } else { 874 Code = bitc::CST_CODE_STRING; 875 AbbrevToUse = String8Abbrev; 876 } 877 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 878 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 879 for (unsigned i = 0; i != NumElts; ++i) { 880 unsigned char V = Str->getElementAsInteger(i); 881 Record.push_back(V); 882 isCStr7 &= (V & 128) == 0; 883 if (isCStrChar6) 884 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 885 } 886 887 if (isCStrChar6) 888 AbbrevToUse = CString6Abbrev; 889 else if (isCStr7) 890 AbbrevToUse = CString7Abbrev; 891 } else if (const ConstantDataSequential *CDS = 892 dyn_cast<ConstantDataSequential>(C)) { 893 Code = bitc::CST_CODE_DATA; 894 Type *EltTy = CDS->getType()->getElementType(); 895 if (isa<IntegerType>(EltTy)) { 896 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 897 Record.push_back(CDS->getElementAsInteger(i)); 898 } else if (EltTy->isFloatTy()) { 899 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 900 union { float F; uint32_t I; }; 901 F = CDS->getElementAsFloat(i); 902 Record.push_back(I); 903 } 904 } else { 905 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 906 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 907 union { double F; uint64_t I; }; 908 F = CDS->getElementAsDouble(i); 909 Record.push_back(I); 910 } 911 } 912 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 913 isa<ConstantVector>(C)) { 914 Code = bitc::CST_CODE_AGGREGATE; 915 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 916 Record.push_back(VE.getValueID(C->getOperand(i))); 917 AbbrevToUse = AggregateAbbrev; 918 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 919 switch (CE->getOpcode()) { 920 default: 921 if (Instruction::isCast(CE->getOpcode())) { 922 Code = bitc::CST_CODE_CE_CAST; 923 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 924 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 925 Record.push_back(VE.getValueID(C->getOperand(0))); 926 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 927 } else { 928 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 929 Code = bitc::CST_CODE_CE_BINOP; 930 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 931 Record.push_back(VE.getValueID(C->getOperand(0))); 932 Record.push_back(VE.getValueID(C->getOperand(1))); 933 uint64_t Flags = GetOptimizationFlags(CE); 934 if (Flags != 0) 935 Record.push_back(Flags); 936 } 937 break; 938 case Instruction::GetElementPtr: 939 Code = bitc::CST_CODE_CE_GEP; 940 if (cast<GEPOperator>(C)->isInBounds()) 941 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 942 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 943 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 944 Record.push_back(VE.getValueID(C->getOperand(i))); 945 } 946 break; 947 case Instruction::Select: 948 Code = bitc::CST_CODE_CE_SELECT; 949 Record.push_back(VE.getValueID(C->getOperand(0))); 950 Record.push_back(VE.getValueID(C->getOperand(1))); 951 Record.push_back(VE.getValueID(C->getOperand(2))); 952 break; 953 case Instruction::ExtractElement: 954 Code = bitc::CST_CODE_CE_EXTRACTELT; 955 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 956 Record.push_back(VE.getValueID(C->getOperand(0))); 957 Record.push_back(VE.getValueID(C->getOperand(1))); 958 break; 959 case Instruction::InsertElement: 960 Code = bitc::CST_CODE_CE_INSERTELT; 961 Record.push_back(VE.getValueID(C->getOperand(0))); 962 Record.push_back(VE.getValueID(C->getOperand(1))); 963 Record.push_back(VE.getValueID(C->getOperand(2))); 964 break; 965 case Instruction::ShuffleVector: 966 // If the return type and argument types are the same, this is a 967 // standard shufflevector instruction. If the types are different, 968 // then the shuffle is widening or truncating the input vectors, and 969 // the argument type must also be encoded. 970 if (C->getType() == C->getOperand(0)->getType()) { 971 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 972 } else { 973 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 974 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 975 } 976 Record.push_back(VE.getValueID(C->getOperand(0))); 977 Record.push_back(VE.getValueID(C->getOperand(1))); 978 Record.push_back(VE.getValueID(C->getOperand(2))); 979 break; 980 case Instruction::ICmp: 981 case Instruction::FCmp: 982 Code = bitc::CST_CODE_CE_CMP; 983 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 984 Record.push_back(VE.getValueID(C->getOperand(0))); 985 Record.push_back(VE.getValueID(C->getOperand(1))); 986 Record.push_back(CE->getPredicate()); 987 break; 988 } 989 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 990 Code = bitc::CST_CODE_BLOCKADDRESS; 991 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 992 Record.push_back(VE.getValueID(BA->getFunction())); 993 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 994 } else { 995 #ifndef NDEBUG 996 C->dump(); 997 #endif 998 llvm_unreachable("Unknown constant!"); 999 } 1000 Stream.EmitRecord(Code, Record, AbbrevToUse); 1001 Record.clear(); 1002 } 1003 1004 Stream.ExitBlock(); 1005 } 1006 1007 static void WriteModuleConstants(const ValueEnumerator &VE, 1008 BitstreamWriter &Stream) { 1009 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1010 1011 // Find the first constant to emit, which is the first non-globalvalue value. 1012 // We know globalvalues have been emitted by WriteModuleInfo. 1013 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1014 if (!isa<GlobalValue>(Vals[i].first)) { 1015 WriteConstants(i, Vals.size(), VE, Stream, true); 1016 return; 1017 } 1018 } 1019 } 1020 1021 /// PushValueAndType - The file has to encode both the value and type id for 1022 /// many values, because we need to know what type to create for forward 1023 /// references. However, most operands are not forward references, so this type 1024 /// field is not needed. 1025 /// 1026 /// This function adds V's value ID to Vals. If the value ID is higher than the 1027 /// instruction ID, then it is a forward reference, and it also includes the 1028 /// type ID. 1029 static bool PushValueAndType(const Value *V, unsigned InstID, 1030 SmallVector<unsigned, 64> &Vals, 1031 ValueEnumerator &VE) { 1032 unsigned ValID = VE.getValueID(V); 1033 Vals.push_back(ValID); 1034 if (ValID >= InstID) { 1035 Vals.push_back(VE.getTypeID(V->getType())); 1036 return true; 1037 } 1038 return false; 1039 } 1040 1041 /// WriteInstruction - Emit an instruction to the specified stream. 1042 static void WriteInstruction(const Instruction &I, unsigned InstID, 1043 ValueEnumerator &VE, BitstreamWriter &Stream, 1044 SmallVector<unsigned, 64> &Vals) { 1045 unsigned Code = 0; 1046 unsigned AbbrevToUse = 0; 1047 VE.setInstructionID(&I); 1048 switch (I.getOpcode()) { 1049 default: 1050 if (Instruction::isCast(I.getOpcode())) { 1051 Code = bitc::FUNC_CODE_INST_CAST; 1052 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1053 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1054 Vals.push_back(VE.getTypeID(I.getType())); 1055 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1056 } else { 1057 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1058 Code = bitc::FUNC_CODE_INST_BINOP; 1059 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1060 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1061 Vals.push_back(VE.getValueID(I.getOperand(1))); 1062 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1063 uint64_t Flags = GetOptimizationFlags(&I); 1064 if (Flags != 0) { 1065 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1066 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1067 Vals.push_back(Flags); 1068 } 1069 } 1070 break; 1071 1072 case Instruction::GetElementPtr: 1073 Code = bitc::FUNC_CODE_INST_GEP; 1074 if (cast<GEPOperator>(&I)->isInBounds()) 1075 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1076 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1077 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1078 break; 1079 case Instruction::ExtractValue: { 1080 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1081 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1082 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1083 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1084 Vals.push_back(*i); 1085 break; 1086 } 1087 case Instruction::InsertValue: { 1088 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1089 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1090 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1091 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1092 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1093 Vals.push_back(*i); 1094 break; 1095 } 1096 case Instruction::Select: 1097 Code = bitc::FUNC_CODE_INST_VSELECT; 1098 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1099 Vals.push_back(VE.getValueID(I.getOperand(2))); 1100 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1101 break; 1102 case Instruction::ExtractElement: 1103 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1104 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1105 Vals.push_back(VE.getValueID(I.getOperand(1))); 1106 break; 1107 case Instruction::InsertElement: 1108 Code = bitc::FUNC_CODE_INST_INSERTELT; 1109 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1110 Vals.push_back(VE.getValueID(I.getOperand(1))); 1111 Vals.push_back(VE.getValueID(I.getOperand(2))); 1112 break; 1113 case Instruction::ShuffleVector: 1114 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1115 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1116 Vals.push_back(VE.getValueID(I.getOperand(1))); 1117 Vals.push_back(VE.getValueID(I.getOperand(2))); 1118 break; 1119 case Instruction::ICmp: 1120 case Instruction::FCmp: 1121 // compare returning Int1Ty or vector of Int1Ty 1122 Code = bitc::FUNC_CODE_INST_CMP2; 1123 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1124 Vals.push_back(VE.getValueID(I.getOperand(1))); 1125 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1126 break; 1127 1128 case Instruction::Ret: 1129 { 1130 Code = bitc::FUNC_CODE_INST_RET; 1131 unsigned NumOperands = I.getNumOperands(); 1132 if (NumOperands == 0) 1133 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1134 else if (NumOperands == 1) { 1135 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1136 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1137 } else { 1138 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1139 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1140 } 1141 } 1142 break; 1143 case Instruction::Br: 1144 { 1145 Code = bitc::FUNC_CODE_INST_BR; 1146 BranchInst &II = cast<BranchInst>(I); 1147 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1148 if (II.isConditional()) { 1149 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1150 Vals.push_back(VE.getValueID(II.getCondition())); 1151 } 1152 } 1153 break; 1154 case Instruction::Switch: 1155 { 1156 Code = bitc::FUNC_CODE_INST_SWITCH; 1157 SwitchInst &SI = cast<SwitchInst>(I); 1158 1159 uint32_t SwitchRecordHeader = SI.Hash() | (SWITCH_INST_MAGIC << 16); 1160 Vals.push_back(SwitchRecordHeader); 1161 1162 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1163 Vals.push_back(VE.getValueID(SI.getCondition())); 1164 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1165 Vals.push_back(SI.getNumCases()); 1166 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); 1167 i != e; ++i) { 1168 ConstantRangesSet CRS = i.getCaseValueEx(); 1169 Vals.push_back(CRS.getNumItems()); 1170 for (unsigned ri = 0, rn = CRS.getNumItems(); ri != rn; ++ri) { 1171 ConstantRangesSet::Range r = CRS.getItem(ri); 1172 1173 Vals.push_back(CRS.isSingleNumber(ri)); 1174 1175 const APInt &Low = r.Low->getValue(); 1176 const APInt &High = r.High->getValue(); 1177 unsigned Code, Abbrev; // will unused. 1178 1179 EmitAPInt(Vals, Code, Abbrev, Low, true); 1180 if (r.Low != r.High) 1181 EmitAPInt(Vals, Code, Abbrev, High, true); 1182 } 1183 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1184 } 1185 } 1186 break; 1187 case Instruction::IndirectBr: 1188 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1189 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1190 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1191 Vals.push_back(VE.getValueID(I.getOperand(i))); 1192 break; 1193 1194 case Instruction::Invoke: { 1195 const InvokeInst *II = cast<InvokeInst>(&I); 1196 const Value *Callee(II->getCalledValue()); 1197 PointerType *PTy = cast<PointerType>(Callee->getType()); 1198 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1199 Code = bitc::FUNC_CODE_INST_INVOKE; 1200 1201 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1202 Vals.push_back(II->getCallingConv()); 1203 Vals.push_back(VE.getValueID(II->getNormalDest())); 1204 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1205 PushValueAndType(Callee, InstID, Vals, VE); 1206 1207 // Emit value #'s for the fixed parameters. 1208 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1209 Vals.push_back(VE.getValueID(I.getOperand(i))); // fixed param. 1210 1211 // Emit type/value pairs for varargs params. 1212 if (FTy->isVarArg()) { 1213 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1214 i != e; ++i) 1215 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1216 } 1217 break; 1218 } 1219 case Instruction::Resume: 1220 Code = bitc::FUNC_CODE_INST_RESUME; 1221 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1222 break; 1223 case Instruction::Unreachable: 1224 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1225 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1226 break; 1227 1228 case Instruction::PHI: { 1229 const PHINode &PN = cast<PHINode>(I); 1230 Code = bitc::FUNC_CODE_INST_PHI; 1231 Vals.push_back(VE.getTypeID(PN.getType())); 1232 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1233 Vals.push_back(VE.getValueID(PN.getIncomingValue(i))); 1234 Vals.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1235 } 1236 break; 1237 } 1238 1239 case Instruction::LandingPad: { 1240 const LandingPadInst &LP = cast<LandingPadInst>(I); 1241 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1242 Vals.push_back(VE.getTypeID(LP.getType())); 1243 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1244 Vals.push_back(LP.isCleanup()); 1245 Vals.push_back(LP.getNumClauses()); 1246 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1247 if (LP.isCatch(I)) 1248 Vals.push_back(LandingPadInst::Catch); 1249 else 1250 Vals.push_back(LandingPadInst::Filter); 1251 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1252 } 1253 break; 1254 } 1255 1256 case Instruction::Alloca: 1257 Code = bitc::FUNC_CODE_INST_ALLOCA; 1258 Vals.push_back(VE.getTypeID(I.getType())); 1259 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1260 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1261 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1262 break; 1263 1264 case Instruction::Load: 1265 if (cast<LoadInst>(I).isAtomic()) { 1266 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1267 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1268 } else { 1269 Code = bitc::FUNC_CODE_INST_LOAD; 1270 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1271 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1272 } 1273 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1274 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1275 if (cast<LoadInst>(I).isAtomic()) { 1276 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1277 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1278 } 1279 break; 1280 case Instruction::Store: 1281 if (cast<StoreInst>(I).isAtomic()) 1282 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1283 else 1284 Code = bitc::FUNC_CODE_INST_STORE; 1285 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1286 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 1287 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1288 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1289 if (cast<StoreInst>(I).isAtomic()) { 1290 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1291 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1292 } 1293 break; 1294 case Instruction::AtomicCmpXchg: 1295 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1296 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1297 Vals.push_back(VE.getValueID(I.getOperand(1))); // cmp. 1298 Vals.push_back(VE.getValueID(I.getOperand(2))); // newval. 1299 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1300 Vals.push_back(GetEncodedOrdering( 1301 cast<AtomicCmpXchgInst>(I).getOrdering())); 1302 Vals.push_back(GetEncodedSynchScope( 1303 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1304 break; 1305 case Instruction::AtomicRMW: 1306 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1307 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1308 Vals.push_back(VE.getValueID(I.getOperand(1))); // val. 1309 Vals.push_back(GetEncodedRMWOperation( 1310 cast<AtomicRMWInst>(I).getOperation())); 1311 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1312 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1313 Vals.push_back(GetEncodedSynchScope( 1314 cast<AtomicRMWInst>(I).getSynchScope())); 1315 break; 1316 case Instruction::Fence: 1317 Code = bitc::FUNC_CODE_INST_FENCE; 1318 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1319 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1320 break; 1321 case Instruction::Call: { 1322 const CallInst &CI = cast<CallInst>(I); 1323 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1324 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1325 1326 Code = bitc::FUNC_CODE_INST_CALL; 1327 1328 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1329 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall())); 1330 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1331 1332 // Emit value #'s for the fixed parameters. 1333 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1334 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); // fixed param. 1335 1336 // Emit type/value pairs for varargs params. 1337 if (FTy->isVarArg()) { 1338 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1339 i != e; ++i) 1340 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1341 } 1342 break; 1343 } 1344 case Instruction::VAArg: 1345 Code = bitc::FUNC_CODE_INST_VAARG; 1346 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1347 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 1348 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1349 break; 1350 } 1351 1352 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1353 Vals.clear(); 1354 } 1355 1356 // Emit names for globals/functions etc. 1357 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1358 const ValueEnumerator &VE, 1359 BitstreamWriter &Stream) { 1360 if (VST.empty()) return; 1361 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1362 1363 // FIXME: Set up the abbrev, we know how many values there are! 1364 // FIXME: We know if the type names can use 7-bit ascii. 1365 SmallVector<unsigned, 64> NameVals; 1366 1367 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1368 SI != SE; ++SI) { 1369 1370 const ValueName &Name = *SI; 1371 1372 // Figure out the encoding to use for the name. 1373 bool is7Bit = true; 1374 bool isChar6 = true; 1375 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1376 C != E; ++C) { 1377 if (isChar6) 1378 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1379 if ((unsigned char)*C & 128) { 1380 is7Bit = false; 1381 break; // don't bother scanning the rest. 1382 } 1383 } 1384 1385 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1386 1387 // VST_ENTRY: [valueid, namechar x N] 1388 // VST_BBENTRY: [bbid, namechar x N] 1389 unsigned Code; 1390 if (isa<BasicBlock>(SI->getValue())) { 1391 Code = bitc::VST_CODE_BBENTRY; 1392 if (isChar6) 1393 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1394 } else { 1395 Code = bitc::VST_CODE_ENTRY; 1396 if (isChar6) 1397 AbbrevToUse = VST_ENTRY_6_ABBREV; 1398 else if (is7Bit) 1399 AbbrevToUse = VST_ENTRY_7_ABBREV; 1400 } 1401 1402 NameVals.push_back(VE.getValueID(SI->getValue())); 1403 for (const char *P = Name.getKeyData(), 1404 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1405 NameVals.push_back((unsigned char)*P); 1406 1407 // Emit the finished record. 1408 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1409 NameVals.clear(); 1410 } 1411 Stream.ExitBlock(); 1412 } 1413 1414 /// WriteFunction - Emit a function body to the module stream. 1415 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1416 BitstreamWriter &Stream) { 1417 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1418 VE.incorporateFunction(F); 1419 1420 SmallVector<unsigned, 64> Vals; 1421 1422 // Emit the number of basic blocks, so the reader can create them ahead of 1423 // time. 1424 Vals.push_back(VE.getBasicBlocks().size()); 1425 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1426 Vals.clear(); 1427 1428 // If there are function-local constants, emit them now. 1429 unsigned CstStart, CstEnd; 1430 VE.getFunctionConstantRange(CstStart, CstEnd); 1431 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1432 1433 // If there is function-local metadata, emit it now. 1434 WriteFunctionLocalMetadata(F, VE, Stream); 1435 1436 // Keep a running idea of what the instruction ID is. 1437 unsigned InstID = CstEnd; 1438 1439 bool NeedsMetadataAttachment = false; 1440 1441 DebugLoc LastDL; 1442 1443 // Finally, emit all the instructions, in order. 1444 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1445 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1446 I != E; ++I) { 1447 WriteInstruction(*I, InstID, VE, Stream, Vals); 1448 1449 if (!I->getType()->isVoidTy()) 1450 ++InstID; 1451 1452 // If the instruction has metadata, write a metadata attachment later. 1453 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1454 1455 // If the instruction has a debug location, emit it. 1456 DebugLoc DL = I->getDebugLoc(); 1457 if (DL.isUnknown()) { 1458 // nothing todo. 1459 } else if (DL == LastDL) { 1460 // Just repeat the same debug loc as last time. 1461 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1462 } else { 1463 MDNode *Scope, *IA; 1464 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1465 1466 Vals.push_back(DL.getLine()); 1467 Vals.push_back(DL.getCol()); 1468 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); 1469 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); 1470 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1471 Vals.clear(); 1472 1473 LastDL = DL; 1474 } 1475 } 1476 1477 // Emit names for all the instructions etc. 1478 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1479 1480 if (NeedsMetadataAttachment) 1481 WriteMetadataAttachment(F, VE, Stream); 1482 VE.purgeFunction(); 1483 Stream.ExitBlock(); 1484 } 1485 1486 // Emit blockinfo, which defines the standard abbreviations etc. 1487 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1488 // We only want to emit block info records for blocks that have multiple 1489 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1490 // blocks can defined their abbrevs inline. 1491 Stream.EnterBlockInfoBlock(2); 1492 1493 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1494 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1497 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1498 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1499 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1500 Abbv) != VST_ENTRY_8_ABBREV) 1501 llvm_unreachable("Unexpected abbrev ordering!"); 1502 } 1503 1504 { // 7-bit fixed width VST_ENTRY strings. 1505 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1506 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1507 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1508 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1509 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1510 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1511 Abbv) != VST_ENTRY_7_ABBREV) 1512 llvm_unreachable("Unexpected abbrev ordering!"); 1513 } 1514 { // 6-bit char6 VST_ENTRY strings. 1515 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1516 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1517 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1518 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1519 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1520 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1521 Abbv) != VST_ENTRY_6_ABBREV) 1522 llvm_unreachable("Unexpected abbrev ordering!"); 1523 } 1524 { // 6-bit char6 VST_BBENTRY strings. 1525 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1526 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1530 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1531 Abbv) != VST_BBENTRY_6_ABBREV) 1532 llvm_unreachable("Unexpected abbrev ordering!"); 1533 } 1534 1535 1536 1537 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1538 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1539 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1540 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1541 Log2_32_Ceil(VE.getTypes().size()+1))); 1542 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1543 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1544 llvm_unreachable("Unexpected abbrev ordering!"); 1545 } 1546 1547 { // INTEGER abbrev for CONSTANTS_BLOCK. 1548 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1549 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1550 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1551 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1552 Abbv) != CONSTANTS_INTEGER_ABBREV) 1553 llvm_unreachable("Unexpected abbrev ordering!"); 1554 } 1555 1556 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1557 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1558 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1561 Log2_32_Ceil(VE.getTypes().size()+1))); 1562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1563 1564 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1565 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1566 llvm_unreachable("Unexpected abbrev ordering!"); 1567 } 1568 { // NULL abbrev for CONSTANTS_BLOCK. 1569 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1570 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1571 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1572 Abbv) != CONSTANTS_NULL_Abbrev) 1573 llvm_unreachable("Unexpected abbrev ordering!"); 1574 } 1575 1576 // FIXME: This should only use space for first class types! 1577 1578 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1579 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1580 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1584 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1585 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1586 llvm_unreachable("Unexpected abbrev ordering!"); 1587 } 1588 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1589 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1590 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1594 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1595 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1596 llvm_unreachable("Unexpected abbrev ordering!"); 1597 } 1598 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1599 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1600 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1603 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1604 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1605 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1606 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1607 llvm_unreachable("Unexpected abbrev ordering!"); 1608 } 1609 { // INST_CAST abbrev for FUNCTION_BLOCK. 1610 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1611 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1612 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1614 Log2_32_Ceil(VE.getTypes().size()+1))); 1615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1616 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1617 Abbv) != FUNCTION_INST_CAST_ABBREV) 1618 llvm_unreachable("Unexpected abbrev ordering!"); 1619 } 1620 1621 { // INST_RET abbrev for FUNCTION_BLOCK. 1622 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1623 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1624 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1625 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1626 llvm_unreachable("Unexpected abbrev ordering!"); 1627 } 1628 { // INST_RET abbrev for FUNCTION_BLOCK. 1629 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1630 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1632 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1633 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1634 llvm_unreachable("Unexpected abbrev ordering!"); 1635 } 1636 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1637 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1638 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1639 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1640 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1641 llvm_unreachable("Unexpected abbrev ordering!"); 1642 } 1643 1644 Stream.ExitBlock(); 1645 } 1646 1647 // Sort the Users based on the order in which the reader parses the bitcode 1648 // file. 1649 static bool bitcodereader_order(const User *lhs, const User *rhs) { 1650 // TODO: Implement. 1651 return true; 1652 } 1653 1654 static void WriteUseList(const Value *V, const ValueEnumerator &VE, 1655 BitstreamWriter &Stream) { 1656 1657 // One or zero uses can't get out of order. 1658 if (V->use_empty() || V->hasNUses(1)) 1659 return; 1660 1661 // Make a copy of the in-memory use-list for sorting. 1662 unsigned UseListSize = std::distance(V->use_begin(), V->use_end()); 1663 SmallVector<const User*, 8> UseList; 1664 UseList.reserve(UseListSize); 1665 for (Value::const_use_iterator I = V->use_begin(), E = V->use_end(); 1666 I != E; ++I) { 1667 const User *U = *I; 1668 UseList.push_back(U); 1669 } 1670 1671 // Sort the copy based on the order read by the BitcodeReader. 1672 std::sort(UseList.begin(), UseList.end(), bitcodereader_order); 1673 1674 // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the 1675 // sorted list (i.e., the expected BitcodeReader in-memory use-list). 1676 1677 // TODO: Emit the USELIST_CODE_ENTRYs. 1678 } 1679 1680 static void WriteFunctionUseList(const Function *F, ValueEnumerator &VE, 1681 BitstreamWriter &Stream) { 1682 VE.incorporateFunction(*F); 1683 1684 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); 1685 AI != AE; ++AI) 1686 WriteUseList(AI, VE, Stream); 1687 for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE; 1688 ++BB) { 1689 WriteUseList(BB, VE, Stream); 1690 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE; 1691 ++II) { 1692 WriteUseList(II, VE, Stream); 1693 for (User::const_op_iterator OI = II->op_begin(), E = II->op_end(); 1694 OI != E; ++OI) { 1695 if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || 1696 isa<InlineAsm>(*OI)) 1697 WriteUseList(*OI, VE, Stream); 1698 } 1699 } 1700 } 1701 VE.purgeFunction(); 1702 } 1703 1704 // Emit use-lists. 1705 static void WriteModuleUseLists(const Module *M, ValueEnumerator &VE, 1706 BitstreamWriter &Stream) { 1707 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1708 1709 // XXX: this modifies the module, but in a way that should never change the 1710 // behavior of any pass or codegen in LLVM. The problem is that GVs may 1711 // contain entries in the use_list that do not exist in the Module and are 1712 // not stored in the .bc file. 1713 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); 1714 I != E; ++I) 1715 I->removeDeadConstantUsers(); 1716 1717 // Write the global variables. 1718 for (Module::const_global_iterator GI = M->global_begin(), 1719 GE = M->global_end(); GI != GE; ++GI) { 1720 WriteUseList(GI, VE, Stream); 1721 1722 // Write the global variable initializers. 1723 if (GI->hasInitializer()) 1724 WriteUseList(GI->getInitializer(), VE, Stream); 1725 } 1726 1727 // Write the functions. 1728 for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 1729 WriteUseList(FI, VE, Stream); 1730 if (!FI->isDeclaration()) 1731 WriteFunctionUseList(FI, VE, Stream); 1732 } 1733 1734 // Write the aliases. 1735 for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end(); 1736 AI != AE; ++AI) { 1737 WriteUseList(AI, VE, Stream); 1738 WriteUseList(AI->getAliasee(), VE, Stream); 1739 } 1740 1741 Stream.ExitBlock(); 1742 } 1743 1744 /// WriteModule - Emit the specified module to the bitstream. 1745 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1746 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1747 1748 // Emit the version number if it is non-zero. 1749 if (CurVersion) { 1750 SmallVector<unsigned, 1> Vals; 1751 Vals.push_back(CurVersion); 1752 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1753 } 1754 1755 // Analyze the module, enumerating globals, functions, etc. 1756 ValueEnumerator VE(M); 1757 1758 // Emit blockinfo, which defines the standard abbreviations etc. 1759 WriteBlockInfo(VE, Stream); 1760 1761 // Emit information about parameter attributes. 1762 WriteAttributeTable(VE, Stream); 1763 1764 // Emit information describing all of the types in the module. 1765 WriteTypeTable(VE, Stream); 1766 1767 // Emit top-level description of module, including target triple, inline asm, 1768 // descriptors for global variables, and function prototype info. 1769 WriteModuleInfo(M, VE, Stream); 1770 1771 // Emit constants. 1772 WriteModuleConstants(VE, Stream); 1773 1774 // Emit metadata. 1775 WriteModuleMetadata(M, VE, Stream); 1776 1777 // Emit metadata. 1778 WriteModuleMetadataStore(M, Stream); 1779 1780 // Emit names for globals/functions etc. 1781 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1782 1783 // Emit use-lists. 1784 if (EnablePreserveUseListOrdering) 1785 WriteModuleUseLists(M, VE, Stream); 1786 1787 // Emit function bodies. 1788 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1789 if (!F->isDeclaration()) 1790 WriteFunction(*F, VE, Stream); 1791 1792 Stream.ExitBlock(); 1793 } 1794 1795 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1796 /// header and trailer to make it compatible with the system archiver. To do 1797 /// this we emit the following header, and then emit a trailer that pads the 1798 /// file out to be a multiple of 16 bytes. 1799 /// 1800 /// struct bc_header { 1801 /// uint32_t Magic; // 0x0B17C0DE 1802 /// uint32_t Version; // Version, currently always 0. 1803 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1804 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1805 /// uint32_t CPUType; // CPU specifier. 1806 /// ... potentially more later ... 1807 /// }; 1808 enum { 1809 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1810 DarwinBCHeaderSize = 5*4 1811 }; 1812 1813 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 1814 uint32_t &Position) { 1815 Buffer[Position + 0] = (unsigned char) (Value >> 0); 1816 Buffer[Position + 1] = (unsigned char) (Value >> 8); 1817 Buffer[Position + 2] = (unsigned char) (Value >> 16); 1818 Buffer[Position + 3] = (unsigned char) (Value >> 24); 1819 Position += 4; 1820 } 1821 1822 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 1823 const Triple &TT) { 1824 unsigned CPUType = ~0U; 1825 1826 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1827 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1828 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1829 // specific constants here because they are implicitly part of the Darwin ABI. 1830 enum { 1831 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1832 DARWIN_CPU_TYPE_X86 = 7, 1833 DARWIN_CPU_TYPE_ARM = 12, 1834 DARWIN_CPU_TYPE_POWERPC = 18 1835 }; 1836 1837 Triple::ArchType Arch = TT.getArch(); 1838 if (Arch == Triple::x86_64) 1839 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1840 else if (Arch == Triple::x86) 1841 CPUType = DARWIN_CPU_TYPE_X86; 1842 else if (Arch == Triple::ppc) 1843 CPUType = DARWIN_CPU_TYPE_POWERPC; 1844 else if (Arch == Triple::ppc64) 1845 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1846 else if (Arch == Triple::arm || Arch == Triple::thumb) 1847 CPUType = DARWIN_CPU_TYPE_ARM; 1848 1849 // Traditional Bitcode starts after header. 1850 assert(Buffer.size() >= DarwinBCHeaderSize && 1851 "Expected header size to be reserved"); 1852 unsigned BCOffset = DarwinBCHeaderSize; 1853 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 1854 1855 // Write the magic and version. 1856 unsigned Position = 0; 1857 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 1858 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 1859 WriteInt32ToBuffer(BCOffset , Buffer, Position); 1860 WriteInt32ToBuffer(BCSize , Buffer, Position); 1861 WriteInt32ToBuffer(CPUType , Buffer, Position); 1862 1863 // If the file is not a multiple of 16 bytes, insert dummy padding. 1864 while (Buffer.size() & 15) 1865 Buffer.push_back(0); 1866 } 1867 1868 /// WriteBitcodeToFile - Write the specified module to the specified output 1869 /// stream. 1870 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1871 SmallVector<char, 1024> Buffer; 1872 Buffer.reserve(256*1024); 1873 1874 // If this is darwin or another generic macho target, reserve space for the 1875 // header. 1876 Triple TT(M->getTargetTriple()); 1877 if (TT.isOSDarwin()) 1878 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 1879 1880 // Emit the module into the buffer. 1881 { 1882 BitstreamWriter Stream(Buffer); 1883 1884 // Emit the file header. 1885 Stream.Emit((unsigned)'B', 8); 1886 Stream.Emit((unsigned)'C', 8); 1887 Stream.Emit(0x0, 4); 1888 Stream.Emit(0xC, 4); 1889 Stream.Emit(0xE, 4); 1890 Stream.Emit(0xD, 4); 1891 1892 // Emit the module. 1893 WriteModule(M, Stream); 1894 } 1895 1896 if (TT.isOSDarwin()) 1897 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 1898 1899 // Write the generated bitstream to "Out". 1900 Out.write((char*)&Buffer.front(), Buffer.size()); 1901 } 1902