xref: /llvm-project/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp (revision b62e9dc46b353f8832516f60c9ea13c82d1ea183)
1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Bitcode writer implementation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Bitcode/BitcodeWriter.h"
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/Bitcode/BitCodes.h"
28 #include "llvm/Bitcode/BitstreamWriter.h"
29 #include "llvm/Bitcode/LLVMBitCodes.h"
30 #include "llvm/Config/llvm-config.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Comdat.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalIFunc.h"
43 #include "llvm/IR/GlobalObject.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSummaryIndex.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/UseListOrder.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/MC/StringTableBuilder.h"
60 #include "llvm/Object/IRSymtab.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Endian.h"
65 #include "llvm/Support/Error.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/SHA1.h"
69 #include "llvm/Support/TargetRegistry.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstddef>
74 #include <cstdint>
75 #include <iterator>
76 #include <map>
77 #include <memory>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 static cl::opt<unsigned>
85     IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
86                    cl::desc("Number of metadatas above which we emit an index "
87                             "to enable lazy-loading"));
88 
89 cl::opt<bool> WriteRelBFToSummary(
90     "write-relbf-to-summary", cl::Hidden, cl::init(false),
91     cl::desc("Write relative block frequency to function summary "));
92 
93 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
94 
95 namespace {
96 
97 /// These are manifest constants used by the bitcode writer. They do not need to
98 /// be kept in sync with the reader, but need to be consistent within this file.
99 enum {
100   // VALUE_SYMTAB_BLOCK abbrev id's.
101   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
102   VST_ENTRY_7_ABBREV,
103   VST_ENTRY_6_ABBREV,
104   VST_BBENTRY_6_ABBREV,
105 
106   // CONSTANTS_BLOCK abbrev id's.
107   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
108   CONSTANTS_INTEGER_ABBREV,
109   CONSTANTS_CE_CAST_Abbrev,
110   CONSTANTS_NULL_Abbrev,
111 
112   // FUNCTION_BLOCK abbrev id's.
113   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
114   FUNCTION_INST_UNOP_ABBREV,
115   FUNCTION_INST_UNOP_FLAGS_ABBREV,
116   FUNCTION_INST_BINOP_ABBREV,
117   FUNCTION_INST_BINOP_FLAGS_ABBREV,
118   FUNCTION_INST_CAST_ABBREV,
119   FUNCTION_INST_RET_VOID_ABBREV,
120   FUNCTION_INST_RET_VAL_ABBREV,
121   FUNCTION_INST_UNREACHABLE_ABBREV,
122   FUNCTION_INST_GEP_ABBREV,
123 };
124 
125 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
126 /// file type.
127 class BitcodeWriterBase {
128 protected:
129   /// The stream created and owned by the client.
130   BitstreamWriter &Stream;
131 
132   StringTableBuilder &StrtabBuilder;
133 
134 public:
135   /// Constructs a BitcodeWriterBase object that writes to the provided
136   /// \p Stream.
137   BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
138       : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
139 
140 protected:
141   void writeBitcodeHeader();
142   void writeModuleVersion();
143 };
144 
145 void BitcodeWriterBase::writeModuleVersion() {
146   // VERSION: [version#]
147   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
148 }
149 
150 /// Base class to manage the module bitcode writing, currently subclassed for
151 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
152 class ModuleBitcodeWriterBase : public BitcodeWriterBase {
153 protected:
154   /// The Module to write to bitcode.
155   const Module &M;
156 
157   /// Enumerates ids for all values in the module.
158   ValueEnumerator VE;
159 
160   /// Optional per-module index to write for ThinLTO.
161   const ModuleSummaryIndex *Index;
162 
163   /// Map that holds the correspondence between GUIDs in the summary index,
164   /// that came from indirect call profiles, and a value id generated by this
165   /// class to use in the VST and summary block records.
166   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
167 
168   /// Tracks the last value id recorded in the GUIDToValueMap.
169   unsigned GlobalValueId;
170 
171   /// Saves the offset of the VSTOffset record that must eventually be
172   /// backpatched with the offset of the actual VST.
173   uint64_t VSTOffsetPlaceholder = 0;
174 
175 public:
176   /// Constructs a ModuleBitcodeWriterBase object for the given Module,
177   /// writing to the provided \p Buffer.
178   ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
179                           BitstreamWriter &Stream,
180                           bool ShouldPreserveUseListOrder,
181                           const ModuleSummaryIndex *Index)
182       : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
183         VE(M, ShouldPreserveUseListOrder), Index(Index) {
184     // Assign ValueIds to any callee values in the index that came from
185     // indirect call profiles and were recorded as a GUID not a Value*
186     // (which would have been assigned an ID by the ValueEnumerator).
187     // The starting ValueId is just after the number of values in the
188     // ValueEnumerator, so that they can be emitted in the VST.
189     GlobalValueId = VE.getValues().size();
190     if (!Index)
191       return;
192     for (const auto &GUIDSummaryLists : *Index)
193       // Examine all summaries for this GUID.
194       for (auto &Summary : GUIDSummaryLists.second.SummaryList)
195         if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
196           // For each call in the function summary, see if the call
197           // is to a GUID (which means it is for an indirect call,
198           // otherwise we would have a Value for it). If so, synthesize
199           // a value id.
200           for (auto &CallEdge : FS->calls())
201             if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
202               assignValueId(CallEdge.first.getGUID());
203   }
204 
205 protected:
206   void writePerModuleGlobalValueSummary();
207 
208 private:
209   void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
210                                            GlobalValueSummary *Summary,
211                                            unsigned ValueID,
212                                            unsigned FSCallsAbbrev,
213                                            unsigned FSCallsProfileAbbrev,
214                                            const Function &F);
215   void writeModuleLevelReferences(const GlobalVariable &V,
216                                   SmallVector<uint64_t, 64> &NameVals,
217                                   unsigned FSModRefsAbbrev);
218 
219   void assignValueId(GlobalValue::GUID ValGUID) {
220     GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
221   }
222 
223   unsigned getValueId(GlobalValue::GUID ValGUID) {
224     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
225     // Expect that any GUID value had a value Id assigned by an
226     // earlier call to assignValueId.
227     assert(VMI != GUIDToValueIdMap.end() &&
228            "GUID does not have assigned value Id");
229     return VMI->second;
230   }
231 
232   // Helper to get the valueId for the type of value recorded in VI.
233   unsigned getValueId(ValueInfo VI) {
234     if (!VI.haveGVs() || !VI.getValue())
235       return getValueId(VI.getGUID());
236     return VE.getValueID(VI.getValue());
237   }
238 
239   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
240 };
241 
242 /// Class to manage the bitcode writing for a module.
243 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
244   /// Pointer to the buffer allocated by caller for bitcode writing.
245   const SmallVectorImpl<char> &Buffer;
246 
247   /// True if a module hash record should be written.
248   bool GenerateHash;
249 
250   /// If non-null, when GenerateHash is true, the resulting hash is written
251   /// into ModHash.
252   ModuleHash *ModHash;
253 
254   SHA1 Hasher;
255 
256   /// The start bit of the identification block.
257   uint64_t BitcodeStartBit;
258 
259 public:
260   /// Constructs a ModuleBitcodeWriter object for the given Module,
261   /// writing to the provided \p Buffer.
262   ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
263                       StringTableBuilder &StrtabBuilder,
264                       BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
265                       const ModuleSummaryIndex *Index, bool GenerateHash,
266                       ModuleHash *ModHash = nullptr)
267       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
268                                 ShouldPreserveUseListOrder, Index),
269         Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
270         BitcodeStartBit(Stream.GetCurrentBitNo()) {}
271 
272   /// Emit the current module to the bitstream.
273   void write();
274 
275 private:
276   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
277 
278   size_t addToStrtab(StringRef Str);
279 
280   void writeAttributeGroupTable();
281   void writeAttributeTable();
282   void writeTypeTable();
283   void writeComdats();
284   void writeValueSymbolTableForwardDecl();
285   void writeModuleInfo();
286   void writeValueAsMetadata(const ValueAsMetadata *MD,
287                             SmallVectorImpl<uint64_t> &Record);
288   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
289                     unsigned Abbrev);
290   unsigned createDILocationAbbrev();
291   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
292                        unsigned &Abbrev);
293   unsigned createGenericDINodeAbbrev();
294   void writeGenericDINode(const GenericDINode *N,
295                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
296   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
297                        unsigned Abbrev);
298   void writeDIEnumerator(const DIEnumerator *N,
299                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
300   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
301                         unsigned Abbrev);
302   void writeDIDerivedType(const DIDerivedType *N,
303                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
304   void writeDICompositeType(const DICompositeType *N,
305                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
306   void writeDISubroutineType(const DISubroutineType *N,
307                              SmallVectorImpl<uint64_t> &Record,
308                              unsigned Abbrev);
309   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
310                    unsigned Abbrev);
311   void writeDICompileUnit(const DICompileUnit *N,
312                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
313   void writeDISubprogram(const DISubprogram *N,
314                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
315   void writeDILexicalBlock(const DILexicalBlock *N,
316                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
317   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
318                                SmallVectorImpl<uint64_t> &Record,
319                                unsigned Abbrev);
320   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
321                         unsigned Abbrev);
322   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
323                     unsigned Abbrev);
324   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
325                         unsigned Abbrev);
326   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
327                      unsigned Abbrev);
328   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
329                                     SmallVectorImpl<uint64_t> &Record,
330                                     unsigned Abbrev);
331   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
332                                      SmallVectorImpl<uint64_t> &Record,
333                                      unsigned Abbrev);
334   void writeDIGlobalVariable(const DIGlobalVariable *N,
335                              SmallVectorImpl<uint64_t> &Record,
336                              unsigned Abbrev);
337   void writeDILocalVariable(const DILocalVariable *N,
338                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
339   void writeDILabel(const DILabel *N,
340                     SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
341   void writeDIExpression(const DIExpression *N,
342                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
343   void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
344                                        SmallVectorImpl<uint64_t> &Record,
345                                        unsigned Abbrev);
346   void writeDIObjCProperty(const DIObjCProperty *N,
347                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
348   void writeDIImportedEntity(const DIImportedEntity *N,
349                              SmallVectorImpl<uint64_t> &Record,
350                              unsigned Abbrev);
351   unsigned createNamedMetadataAbbrev();
352   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
353   unsigned createMetadataStringsAbbrev();
354   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
355                             SmallVectorImpl<uint64_t> &Record);
356   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
357                             SmallVectorImpl<uint64_t> &Record,
358                             std::vector<unsigned> *MDAbbrevs = nullptr,
359                             std::vector<uint64_t> *IndexPos = nullptr);
360   void writeModuleMetadata();
361   void writeFunctionMetadata(const Function &F);
362   void writeFunctionMetadataAttachment(const Function &F);
363   void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
364   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
365                                     const GlobalObject &GO);
366   void writeModuleMetadataKinds();
367   void writeOperandBundleTags();
368   void writeSyncScopeNames();
369   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
370   void writeModuleConstants();
371   bool pushValueAndType(const Value *V, unsigned InstID,
372                         SmallVectorImpl<unsigned> &Vals);
373   void writeOperandBundles(ImmutableCallSite CS, unsigned InstID);
374   void pushValue(const Value *V, unsigned InstID,
375                  SmallVectorImpl<unsigned> &Vals);
376   void pushValueSigned(const Value *V, unsigned InstID,
377                        SmallVectorImpl<uint64_t> &Vals);
378   void writeInstruction(const Instruction &I, unsigned InstID,
379                         SmallVectorImpl<unsigned> &Vals);
380   void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
381   void writeGlobalValueSymbolTable(
382       DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
383   void writeUseList(UseListOrder &&Order);
384   void writeUseListBlock(const Function *F);
385   void
386   writeFunction(const Function &F,
387                 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
388   void writeBlockInfo();
389   void writeModuleHash(size_t BlockStartPos);
390 
391   unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
392     return unsigned(SSID);
393   }
394 };
395 
396 /// Class to manage the bitcode writing for a combined index.
397 class IndexBitcodeWriter : public BitcodeWriterBase {
398   /// The combined index to write to bitcode.
399   const ModuleSummaryIndex &Index;
400 
401   /// When writing a subset of the index for distributed backends, client
402   /// provides a map of modules to the corresponding GUIDs/summaries to write.
403   const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
404 
405   /// Map that holds the correspondence between the GUID used in the combined
406   /// index and a value id generated by this class to use in references.
407   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
408 
409   /// Tracks the last value id recorded in the GUIDToValueMap.
410   unsigned GlobalValueId = 0;
411 
412 public:
413   /// Constructs a IndexBitcodeWriter object for the given combined index,
414   /// writing to the provided \p Buffer. When writing a subset of the index
415   /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
416   IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
417                      const ModuleSummaryIndex &Index,
418                      const std::map<std::string, GVSummaryMapTy>
419                          *ModuleToSummariesForIndex = nullptr)
420       : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
421         ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
422     // Assign unique value ids to all summaries to be written, for use
423     // in writing out the call graph edges. Save the mapping from GUID
424     // to the new global value id to use when writing those edges, which
425     // are currently saved in the index in terms of GUID.
426     forEachSummary([&](GVInfo I, bool) {
427       GUIDToValueIdMap[I.first] = ++GlobalValueId;
428     });
429   }
430 
431   /// The below iterator returns the GUID and associated summary.
432   using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
433 
434   /// Calls the callback for each value GUID and summary to be written to
435   /// bitcode. This hides the details of whether they are being pulled from the
436   /// entire index or just those in a provided ModuleToSummariesForIndex map.
437   template<typename Functor>
438   void forEachSummary(Functor Callback) {
439     if (ModuleToSummariesForIndex) {
440       for (auto &M : *ModuleToSummariesForIndex)
441         for (auto &Summary : M.second) {
442           Callback(Summary, false);
443           // Ensure aliasee is handled, e.g. for assigning a valueId,
444           // even if we are not importing the aliasee directly (the
445           // imported alias will contain a copy of aliasee).
446           if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
447             Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
448         }
449     } else {
450       for (auto &Summaries : Index)
451         for (auto &Summary : Summaries.second.SummaryList)
452           Callback({Summaries.first, Summary.get()}, false);
453     }
454   }
455 
456   /// Calls the callback for each entry in the modulePaths StringMap that
457   /// should be written to the module path string table. This hides the details
458   /// of whether they are being pulled from the entire index or just those in a
459   /// provided ModuleToSummariesForIndex map.
460   template <typename Functor> void forEachModule(Functor Callback) {
461     if (ModuleToSummariesForIndex) {
462       for (const auto &M : *ModuleToSummariesForIndex) {
463         const auto &MPI = Index.modulePaths().find(M.first);
464         if (MPI == Index.modulePaths().end()) {
465           // This should only happen if the bitcode file was empty, in which
466           // case we shouldn't be importing (the ModuleToSummariesForIndex
467           // would only include the module we are writing and index for).
468           assert(ModuleToSummariesForIndex->size() == 1);
469           continue;
470         }
471         Callback(*MPI);
472       }
473     } else {
474       for (const auto &MPSE : Index.modulePaths())
475         Callback(MPSE);
476     }
477   }
478 
479   /// Main entry point for writing a combined index to bitcode.
480   void write();
481 
482 private:
483   void writeModStrings();
484   void writeCombinedGlobalValueSummary();
485 
486   Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
487     auto VMI = GUIDToValueIdMap.find(ValGUID);
488     if (VMI == GUIDToValueIdMap.end())
489       return None;
490     return VMI->second;
491   }
492 
493   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
494 };
495 
496 } // end anonymous namespace
497 
498 static unsigned getEncodedCastOpcode(unsigned Opcode) {
499   switch (Opcode) {
500   default: llvm_unreachable("Unknown cast instruction!");
501   case Instruction::Trunc   : return bitc::CAST_TRUNC;
502   case Instruction::ZExt    : return bitc::CAST_ZEXT;
503   case Instruction::SExt    : return bitc::CAST_SEXT;
504   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
505   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
506   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
507   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
508   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
509   case Instruction::FPExt   : return bitc::CAST_FPEXT;
510   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
511   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
512   case Instruction::BitCast : return bitc::CAST_BITCAST;
513   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
514   }
515 }
516 
517 static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
518   switch (Opcode) {
519   default: llvm_unreachable("Unknown binary instruction!");
520   case Instruction::FNeg: return bitc::UNOP_NEG;
521   }
522 }
523 
524 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
525   switch (Opcode) {
526   default: llvm_unreachable("Unknown binary instruction!");
527   case Instruction::Add:
528   case Instruction::FAdd: return bitc::BINOP_ADD;
529   case Instruction::Sub:
530   case Instruction::FSub: return bitc::BINOP_SUB;
531   case Instruction::Mul:
532   case Instruction::FMul: return bitc::BINOP_MUL;
533   case Instruction::UDiv: return bitc::BINOP_UDIV;
534   case Instruction::FDiv:
535   case Instruction::SDiv: return bitc::BINOP_SDIV;
536   case Instruction::URem: return bitc::BINOP_UREM;
537   case Instruction::FRem:
538   case Instruction::SRem: return bitc::BINOP_SREM;
539   case Instruction::Shl:  return bitc::BINOP_SHL;
540   case Instruction::LShr: return bitc::BINOP_LSHR;
541   case Instruction::AShr: return bitc::BINOP_ASHR;
542   case Instruction::And:  return bitc::BINOP_AND;
543   case Instruction::Or:   return bitc::BINOP_OR;
544   case Instruction::Xor:  return bitc::BINOP_XOR;
545   }
546 }
547 
548 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
549   switch (Op) {
550   default: llvm_unreachable("Unknown RMW operation!");
551   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
552   case AtomicRMWInst::Add: return bitc::RMW_ADD;
553   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
554   case AtomicRMWInst::And: return bitc::RMW_AND;
555   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
556   case AtomicRMWInst::Or: return bitc::RMW_OR;
557   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
558   case AtomicRMWInst::Max: return bitc::RMW_MAX;
559   case AtomicRMWInst::Min: return bitc::RMW_MIN;
560   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
561   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
562   case AtomicRMWInst::FAdd: return bitc::RMW_FADD;
563   case AtomicRMWInst::FSub: return bitc::RMW_FSUB;
564   }
565 }
566 
567 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
568   switch (Ordering) {
569   case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
570   case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
571   case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
572   case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
573   case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
574   case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
575   case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
576   }
577   llvm_unreachable("Invalid ordering");
578 }
579 
580 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
581                               StringRef Str, unsigned AbbrevToUse) {
582   SmallVector<unsigned, 64> Vals;
583 
584   // Code: [strchar x N]
585   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
586     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
587       AbbrevToUse = 0;
588     Vals.push_back(Str[i]);
589   }
590 
591   // Emit the finished record.
592   Stream.EmitRecord(Code, Vals, AbbrevToUse);
593 }
594 
595 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
596   switch (Kind) {
597   case Attribute::Alignment:
598     return bitc::ATTR_KIND_ALIGNMENT;
599   case Attribute::AllocSize:
600     return bitc::ATTR_KIND_ALLOC_SIZE;
601   case Attribute::AlwaysInline:
602     return bitc::ATTR_KIND_ALWAYS_INLINE;
603   case Attribute::ArgMemOnly:
604     return bitc::ATTR_KIND_ARGMEMONLY;
605   case Attribute::Builtin:
606     return bitc::ATTR_KIND_BUILTIN;
607   case Attribute::ByVal:
608     return bitc::ATTR_KIND_BY_VAL;
609   case Attribute::Convergent:
610     return bitc::ATTR_KIND_CONVERGENT;
611   case Attribute::InAlloca:
612     return bitc::ATTR_KIND_IN_ALLOCA;
613   case Attribute::Cold:
614     return bitc::ATTR_KIND_COLD;
615   case Attribute::InaccessibleMemOnly:
616     return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
617   case Attribute::InaccessibleMemOrArgMemOnly:
618     return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
619   case Attribute::InlineHint:
620     return bitc::ATTR_KIND_INLINE_HINT;
621   case Attribute::InReg:
622     return bitc::ATTR_KIND_IN_REG;
623   case Attribute::JumpTable:
624     return bitc::ATTR_KIND_JUMP_TABLE;
625   case Attribute::MinSize:
626     return bitc::ATTR_KIND_MIN_SIZE;
627   case Attribute::Naked:
628     return bitc::ATTR_KIND_NAKED;
629   case Attribute::Nest:
630     return bitc::ATTR_KIND_NEST;
631   case Attribute::NoAlias:
632     return bitc::ATTR_KIND_NO_ALIAS;
633   case Attribute::NoBuiltin:
634     return bitc::ATTR_KIND_NO_BUILTIN;
635   case Attribute::NoCapture:
636     return bitc::ATTR_KIND_NO_CAPTURE;
637   case Attribute::NoDuplicate:
638     return bitc::ATTR_KIND_NO_DUPLICATE;
639   case Attribute::NoImplicitFloat:
640     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
641   case Attribute::NoInline:
642     return bitc::ATTR_KIND_NO_INLINE;
643   case Attribute::NoRecurse:
644     return bitc::ATTR_KIND_NO_RECURSE;
645   case Attribute::NonLazyBind:
646     return bitc::ATTR_KIND_NON_LAZY_BIND;
647   case Attribute::NonNull:
648     return bitc::ATTR_KIND_NON_NULL;
649   case Attribute::Dereferenceable:
650     return bitc::ATTR_KIND_DEREFERENCEABLE;
651   case Attribute::DereferenceableOrNull:
652     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
653   case Attribute::NoRedZone:
654     return bitc::ATTR_KIND_NO_RED_ZONE;
655   case Attribute::NoReturn:
656     return bitc::ATTR_KIND_NO_RETURN;
657   case Attribute::NoCfCheck:
658     return bitc::ATTR_KIND_NOCF_CHECK;
659   case Attribute::NoUnwind:
660     return bitc::ATTR_KIND_NO_UNWIND;
661   case Attribute::OptForFuzzing:
662     return bitc::ATTR_KIND_OPT_FOR_FUZZING;
663   case Attribute::OptimizeForSize:
664     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
665   case Attribute::OptimizeNone:
666     return bitc::ATTR_KIND_OPTIMIZE_NONE;
667   case Attribute::ReadNone:
668     return bitc::ATTR_KIND_READ_NONE;
669   case Attribute::ReadOnly:
670     return bitc::ATTR_KIND_READ_ONLY;
671   case Attribute::Returned:
672     return bitc::ATTR_KIND_RETURNED;
673   case Attribute::ReturnsTwice:
674     return bitc::ATTR_KIND_RETURNS_TWICE;
675   case Attribute::SExt:
676     return bitc::ATTR_KIND_S_EXT;
677   case Attribute::Speculatable:
678     return bitc::ATTR_KIND_SPECULATABLE;
679   case Attribute::StackAlignment:
680     return bitc::ATTR_KIND_STACK_ALIGNMENT;
681   case Attribute::StackProtect:
682     return bitc::ATTR_KIND_STACK_PROTECT;
683   case Attribute::StackProtectReq:
684     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
685   case Attribute::StackProtectStrong:
686     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
687   case Attribute::SafeStack:
688     return bitc::ATTR_KIND_SAFESTACK;
689   case Attribute::ShadowCallStack:
690     return bitc::ATTR_KIND_SHADOWCALLSTACK;
691   case Attribute::StrictFP:
692     return bitc::ATTR_KIND_STRICT_FP;
693   case Attribute::StructRet:
694     return bitc::ATTR_KIND_STRUCT_RET;
695   case Attribute::SanitizeAddress:
696     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
697   case Attribute::SanitizeHWAddress:
698     return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
699   case Attribute::SanitizeThread:
700     return bitc::ATTR_KIND_SANITIZE_THREAD;
701   case Attribute::SanitizeMemory:
702     return bitc::ATTR_KIND_SANITIZE_MEMORY;
703   case Attribute::SpeculativeLoadHardening:
704     return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
705   case Attribute::SwiftError:
706     return bitc::ATTR_KIND_SWIFT_ERROR;
707   case Attribute::SwiftSelf:
708     return bitc::ATTR_KIND_SWIFT_SELF;
709   case Attribute::UWTable:
710     return bitc::ATTR_KIND_UW_TABLE;
711   case Attribute::WriteOnly:
712     return bitc::ATTR_KIND_WRITEONLY;
713   case Attribute::ZExt:
714     return bitc::ATTR_KIND_Z_EXT;
715   case Attribute::EndAttrKinds:
716     llvm_unreachable("Can not encode end-attribute kinds marker.");
717   case Attribute::None:
718     llvm_unreachable("Can not encode none-attribute.");
719   }
720 
721   llvm_unreachable("Trying to encode unknown attribute");
722 }
723 
724 void ModuleBitcodeWriter::writeAttributeGroupTable() {
725   const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
726       VE.getAttributeGroups();
727   if (AttrGrps.empty()) return;
728 
729   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
730 
731   SmallVector<uint64_t, 64> Record;
732   for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
733     unsigned AttrListIndex = Pair.first;
734     AttributeSet AS = Pair.second;
735     Record.push_back(VE.getAttributeGroupID(Pair));
736     Record.push_back(AttrListIndex);
737 
738     for (Attribute Attr : AS) {
739       if (Attr.isEnumAttribute()) {
740         Record.push_back(0);
741         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
742       } else if (Attr.isIntAttribute()) {
743         Record.push_back(1);
744         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
745         Record.push_back(Attr.getValueAsInt());
746       } else {
747         StringRef Kind = Attr.getKindAsString();
748         StringRef Val = Attr.getValueAsString();
749 
750         Record.push_back(Val.empty() ? 3 : 4);
751         Record.append(Kind.begin(), Kind.end());
752         Record.push_back(0);
753         if (!Val.empty()) {
754           Record.append(Val.begin(), Val.end());
755           Record.push_back(0);
756         }
757       }
758     }
759 
760     Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
761     Record.clear();
762   }
763 
764   Stream.ExitBlock();
765 }
766 
767 void ModuleBitcodeWriter::writeAttributeTable() {
768   const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
769   if (Attrs.empty()) return;
770 
771   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
772 
773   SmallVector<uint64_t, 64> Record;
774   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
775     AttributeList AL = Attrs[i];
776     for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) {
777       AttributeSet AS = AL.getAttributes(i);
778       if (AS.hasAttributes())
779         Record.push_back(VE.getAttributeGroupID({i, AS}));
780     }
781 
782     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
783     Record.clear();
784   }
785 
786   Stream.ExitBlock();
787 }
788 
789 /// WriteTypeTable - Write out the type table for a module.
790 void ModuleBitcodeWriter::writeTypeTable() {
791   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
792 
793   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
794   SmallVector<uint64_t, 64> TypeVals;
795 
796   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
797 
798   // Abbrev for TYPE_CODE_POINTER.
799   auto Abbv = std::make_shared<BitCodeAbbrev>();
800   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
801   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
802   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
803   unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
804 
805   // Abbrev for TYPE_CODE_FUNCTION.
806   Abbv = std::make_shared<BitCodeAbbrev>();
807   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
808   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
809   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
810   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
811   unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
812 
813   // Abbrev for TYPE_CODE_STRUCT_ANON.
814   Abbv = std::make_shared<BitCodeAbbrev>();
815   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
816   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
817   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
818   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
819   unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
820 
821   // Abbrev for TYPE_CODE_STRUCT_NAME.
822   Abbv = std::make_shared<BitCodeAbbrev>();
823   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
824   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
825   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
826   unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
827 
828   // Abbrev for TYPE_CODE_STRUCT_NAMED.
829   Abbv = std::make_shared<BitCodeAbbrev>();
830   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
831   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
832   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
833   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
834   unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
835 
836   // Abbrev for TYPE_CODE_ARRAY.
837   Abbv = std::make_shared<BitCodeAbbrev>();
838   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
839   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
840   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
841   unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
842 
843   // Emit an entry count so the reader can reserve space.
844   TypeVals.push_back(TypeList.size());
845   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
846   TypeVals.clear();
847 
848   // Loop over all of the types, emitting each in turn.
849   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
850     Type *T = TypeList[i];
851     int AbbrevToUse = 0;
852     unsigned Code = 0;
853 
854     switch (T->getTypeID()) {
855     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
856     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
857     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
858     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
859     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
860     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
861     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
862     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
863     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
864     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
865     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
866     case Type::IntegerTyID:
867       // INTEGER: [width]
868       Code = bitc::TYPE_CODE_INTEGER;
869       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
870       break;
871     case Type::PointerTyID: {
872       PointerType *PTy = cast<PointerType>(T);
873       // POINTER: [pointee type, address space]
874       Code = bitc::TYPE_CODE_POINTER;
875       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
876       unsigned AddressSpace = PTy->getAddressSpace();
877       TypeVals.push_back(AddressSpace);
878       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
879       break;
880     }
881     case Type::FunctionTyID: {
882       FunctionType *FT = cast<FunctionType>(T);
883       // FUNCTION: [isvararg, retty, paramty x N]
884       Code = bitc::TYPE_CODE_FUNCTION;
885       TypeVals.push_back(FT->isVarArg());
886       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
887       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
888         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
889       AbbrevToUse = FunctionAbbrev;
890       break;
891     }
892     case Type::StructTyID: {
893       StructType *ST = cast<StructType>(T);
894       // STRUCT: [ispacked, eltty x N]
895       TypeVals.push_back(ST->isPacked());
896       // Output all of the element types.
897       for (StructType::element_iterator I = ST->element_begin(),
898            E = ST->element_end(); I != E; ++I)
899         TypeVals.push_back(VE.getTypeID(*I));
900 
901       if (ST->isLiteral()) {
902         Code = bitc::TYPE_CODE_STRUCT_ANON;
903         AbbrevToUse = StructAnonAbbrev;
904       } else {
905         if (ST->isOpaque()) {
906           Code = bitc::TYPE_CODE_OPAQUE;
907         } else {
908           Code = bitc::TYPE_CODE_STRUCT_NAMED;
909           AbbrevToUse = StructNamedAbbrev;
910         }
911 
912         // Emit the name if it is present.
913         if (!ST->getName().empty())
914           writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
915                             StructNameAbbrev);
916       }
917       break;
918     }
919     case Type::ArrayTyID: {
920       ArrayType *AT = cast<ArrayType>(T);
921       // ARRAY: [numelts, eltty]
922       Code = bitc::TYPE_CODE_ARRAY;
923       TypeVals.push_back(AT->getNumElements());
924       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
925       AbbrevToUse = ArrayAbbrev;
926       break;
927     }
928     case Type::VectorTyID: {
929       VectorType *VT = cast<VectorType>(T);
930       // VECTOR [numelts, eltty]
931       Code = bitc::TYPE_CODE_VECTOR;
932       TypeVals.push_back(VT->getNumElements());
933       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
934       break;
935     }
936     }
937 
938     // Emit the finished record.
939     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
940     TypeVals.clear();
941   }
942 
943   Stream.ExitBlock();
944 }
945 
946 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
947   switch (Linkage) {
948   case GlobalValue::ExternalLinkage:
949     return 0;
950   case GlobalValue::WeakAnyLinkage:
951     return 16;
952   case GlobalValue::AppendingLinkage:
953     return 2;
954   case GlobalValue::InternalLinkage:
955     return 3;
956   case GlobalValue::LinkOnceAnyLinkage:
957     return 18;
958   case GlobalValue::ExternalWeakLinkage:
959     return 7;
960   case GlobalValue::CommonLinkage:
961     return 8;
962   case GlobalValue::PrivateLinkage:
963     return 9;
964   case GlobalValue::WeakODRLinkage:
965     return 17;
966   case GlobalValue::LinkOnceODRLinkage:
967     return 19;
968   case GlobalValue::AvailableExternallyLinkage:
969     return 12;
970   }
971   llvm_unreachable("Invalid linkage");
972 }
973 
974 static unsigned getEncodedLinkage(const GlobalValue &GV) {
975   return getEncodedLinkage(GV.getLinkage());
976 }
977 
978 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
979   uint64_t RawFlags = 0;
980   RawFlags |= Flags.ReadNone;
981   RawFlags |= (Flags.ReadOnly << 1);
982   RawFlags |= (Flags.NoRecurse << 2);
983   RawFlags |= (Flags.ReturnDoesNotAlias << 3);
984   RawFlags |= (Flags.NoInline << 4);
985   return RawFlags;
986 }
987 
988 // Decode the flags for GlobalValue in the summary
989 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
990   uint64_t RawFlags = 0;
991 
992   RawFlags |= Flags.NotEligibleToImport; // bool
993   RawFlags |= (Flags.Live << 1);
994   RawFlags |= (Flags.DSOLocal << 2);
995 
996   // Linkage don't need to be remapped at that time for the summary. Any future
997   // change to the getEncodedLinkage() function will need to be taken into
998   // account here as well.
999   RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
1000 
1001   return RawFlags;
1002 }
1003 
1004 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
1005   uint64_t RawFlags = Flags.ReadOnly;
1006   return RawFlags;
1007 }
1008 
1009 static unsigned getEncodedVisibility(const GlobalValue &GV) {
1010   switch (GV.getVisibility()) {
1011   case GlobalValue::DefaultVisibility:   return 0;
1012   case GlobalValue::HiddenVisibility:    return 1;
1013   case GlobalValue::ProtectedVisibility: return 2;
1014   }
1015   llvm_unreachable("Invalid visibility");
1016 }
1017 
1018 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1019   switch (GV.getDLLStorageClass()) {
1020   case GlobalValue::DefaultStorageClass:   return 0;
1021   case GlobalValue::DLLImportStorageClass: return 1;
1022   case GlobalValue::DLLExportStorageClass: return 2;
1023   }
1024   llvm_unreachable("Invalid DLL storage class");
1025 }
1026 
1027 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1028   switch (GV.getThreadLocalMode()) {
1029     case GlobalVariable::NotThreadLocal:         return 0;
1030     case GlobalVariable::GeneralDynamicTLSModel: return 1;
1031     case GlobalVariable::LocalDynamicTLSModel:   return 2;
1032     case GlobalVariable::InitialExecTLSModel:    return 3;
1033     case GlobalVariable::LocalExecTLSModel:      return 4;
1034   }
1035   llvm_unreachable("Invalid TLS model");
1036 }
1037 
1038 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1039   switch (C.getSelectionKind()) {
1040   case Comdat::Any:
1041     return bitc::COMDAT_SELECTION_KIND_ANY;
1042   case Comdat::ExactMatch:
1043     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1044   case Comdat::Largest:
1045     return bitc::COMDAT_SELECTION_KIND_LARGEST;
1046   case Comdat::NoDuplicates:
1047     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1048   case Comdat::SameSize:
1049     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1050   }
1051   llvm_unreachable("Invalid selection kind");
1052 }
1053 
1054 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1055   switch (GV.getUnnamedAddr()) {
1056   case GlobalValue::UnnamedAddr::None:   return 0;
1057   case GlobalValue::UnnamedAddr::Local:  return 2;
1058   case GlobalValue::UnnamedAddr::Global: return 1;
1059   }
1060   llvm_unreachable("Invalid unnamed_addr");
1061 }
1062 
1063 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1064   if (GenerateHash)
1065     Hasher.update(Str);
1066   return StrtabBuilder.add(Str);
1067 }
1068 
1069 void ModuleBitcodeWriter::writeComdats() {
1070   SmallVector<unsigned, 64> Vals;
1071   for (const Comdat *C : VE.getComdats()) {
1072     // COMDAT: [strtab offset, strtab size, selection_kind]
1073     Vals.push_back(addToStrtab(C->getName()));
1074     Vals.push_back(C->getName().size());
1075     Vals.push_back(getEncodedComdatSelectionKind(*C));
1076     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1077     Vals.clear();
1078   }
1079 }
1080 
1081 /// Write a record that will eventually hold the word offset of the
1082 /// module-level VST. For now the offset is 0, which will be backpatched
1083 /// after the real VST is written. Saves the bit offset to backpatch.
1084 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1085   // Write a placeholder value in for the offset of the real VST,
1086   // which is written after the function blocks so that it can include
1087   // the offset of each function. The placeholder offset will be
1088   // updated when the real VST is written.
1089   auto Abbv = std::make_shared<BitCodeAbbrev>();
1090   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1091   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1092   // hold the real VST offset. Must use fixed instead of VBR as we don't
1093   // know how many VBR chunks to reserve ahead of time.
1094   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1095   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1096 
1097   // Emit the placeholder
1098   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1099   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1100 
1101   // Compute and save the bit offset to the placeholder, which will be
1102   // patched when the real VST is written. We can simply subtract the 32-bit
1103   // fixed size from the current bit number to get the location to backpatch.
1104   VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1105 }
1106 
1107 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1108 
1109 /// Determine the encoding to use for the given string name and length.
1110 static StringEncoding getStringEncoding(StringRef Str) {
1111   bool isChar6 = true;
1112   for (char C : Str) {
1113     if (isChar6)
1114       isChar6 = BitCodeAbbrevOp::isChar6(C);
1115     if ((unsigned char)C & 128)
1116       // don't bother scanning the rest.
1117       return SE_Fixed8;
1118   }
1119   if (isChar6)
1120     return SE_Char6;
1121   return SE_Fixed7;
1122 }
1123 
1124 /// Emit top-level description of module, including target triple, inline asm,
1125 /// descriptors for global variables, and function prototype info.
1126 /// Returns the bit offset to backpatch with the location of the real VST.
1127 void ModuleBitcodeWriter::writeModuleInfo() {
1128   // Emit various pieces of data attached to a module.
1129   if (!M.getTargetTriple().empty())
1130     writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1131                       0 /*TODO*/);
1132   const std::string &DL = M.getDataLayoutStr();
1133   if (!DL.empty())
1134     writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1135   if (!M.getModuleInlineAsm().empty())
1136     writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1137                       0 /*TODO*/);
1138 
1139   // Emit information about sections and GC, computing how many there are. Also
1140   // compute the maximum alignment value.
1141   std::map<std::string, unsigned> SectionMap;
1142   std::map<std::string, unsigned> GCMap;
1143   unsigned MaxAlignment = 0;
1144   unsigned MaxGlobalType = 0;
1145   for (const GlobalValue &GV : M.globals()) {
1146     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
1147     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1148     if (GV.hasSection()) {
1149       // Give section names unique ID's.
1150       unsigned &Entry = SectionMap[GV.getSection()];
1151       if (!Entry) {
1152         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1153                           0 /*TODO*/);
1154         Entry = SectionMap.size();
1155       }
1156     }
1157   }
1158   for (const Function &F : M) {
1159     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
1160     if (F.hasSection()) {
1161       // Give section names unique ID's.
1162       unsigned &Entry = SectionMap[F.getSection()];
1163       if (!Entry) {
1164         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1165                           0 /*TODO*/);
1166         Entry = SectionMap.size();
1167       }
1168     }
1169     if (F.hasGC()) {
1170       // Same for GC names.
1171       unsigned &Entry = GCMap[F.getGC()];
1172       if (!Entry) {
1173         writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1174                           0 /*TODO*/);
1175         Entry = GCMap.size();
1176       }
1177     }
1178   }
1179 
1180   // Emit abbrev for globals, now that we know # sections and max alignment.
1181   unsigned SimpleGVarAbbrev = 0;
1182   if (!M.global_empty()) {
1183     // Add an abbrev for common globals with no visibility or thread localness.
1184     auto Abbv = std::make_shared<BitCodeAbbrev>();
1185     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1186     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1187     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1188     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1189                               Log2_32_Ceil(MaxGlobalType+1)));
1190     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1191                                                            //| explicitType << 1
1192                                                            //| constant
1193     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1194     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1195     if (MaxAlignment == 0)                                 // Alignment.
1196       Abbv->Add(BitCodeAbbrevOp(0));
1197     else {
1198       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
1199       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1200                                Log2_32_Ceil(MaxEncAlignment+1)));
1201     }
1202     if (SectionMap.empty())                                    // Section.
1203       Abbv->Add(BitCodeAbbrevOp(0));
1204     else
1205       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1206                                Log2_32_Ceil(SectionMap.size()+1)));
1207     // Don't bother emitting vis + thread local.
1208     SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1209   }
1210 
1211   SmallVector<unsigned, 64> Vals;
1212   // Emit the module's source file name.
1213   {
1214     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1215     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1216     if (Bits == SE_Char6)
1217       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1218     else if (Bits == SE_Fixed7)
1219       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1220 
1221     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1222     auto Abbv = std::make_shared<BitCodeAbbrev>();
1223     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1224     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1225     Abbv->Add(AbbrevOpToUse);
1226     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1227 
1228     for (const auto P : M.getSourceFileName())
1229       Vals.push_back((unsigned char)P);
1230 
1231     // Emit the finished record.
1232     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1233     Vals.clear();
1234   }
1235 
1236   // Emit the global variable information.
1237   for (const GlobalVariable &GV : M.globals()) {
1238     unsigned AbbrevToUse = 0;
1239 
1240     // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1241     //             linkage, alignment, section, visibility, threadlocal,
1242     //             unnamed_addr, externally_initialized, dllstorageclass,
1243     //             comdat, attributes, DSO_Local]
1244     Vals.push_back(addToStrtab(GV.getName()));
1245     Vals.push_back(GV.getName().size());
1246     Vals.push_back(VE.getTypeID(GV.getValueType()));
1247     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1248     Vals.push_back(GV.isDeclaration() ? 0 :
1249                    (VE.getValueID(GV.getInitializer()) + 1));
1250     Vals.push_back(getEncodedLinkage(GV));
1251     Vals.push_back(Log2_32(GV.getAlignment())+1);
1252     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
1253     if (GV.isThreadLocal() ||
1254         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1255         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1256         GV.isExternallyInitialized() ||
1257         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1258         GV.hasComdat() ||
1259         GV.hasAttributes() ||
1260         GV.isDSOLocal()) {
1261       Vals.push_back(getEncodedVisibility(GV));
1262       Vals.push_back(getEncodedThreadLocalMode(GV));
1263       Vals.push_back(getEncodedUnnamedAddr(GV));
1264       Vals.push_back(GV.isExternallyInitialized());
1265       Vals.push_back(getEncodedDLLStorageClass(GV));
1266       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1267 
1268       auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1269       Vals.push_back(VE.getAttributeListID(AL));
1270 
1271       Vals.push_back(GV.isDSOLocal());
1272     } else {
1273       AbbrevToUse = SimpleGVarAbbrev;
1274     }
1275 
1276     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1277     Vals.clear();
1278   }
1279 
1280   // Emit the function proto information.
1281   for (const Function &F : M) {
1282     // FUNCTION:  [strtab offset, strtab size, type, callingconv, isproto,
1283     //             linkage, paramattrs, alignment, section, visibility, gc,
1284     //             unnamed_addr, prologuedata, dllstorageclass, comdat,
1285     //             prefixdata, personalityfn, DSO_Local, addrspace]
1286     Vals.push_back(addToStrtab(F.getName()));
1287     Vals.push_back(F.getName().size());
1288     Vals.push_back(VE.getTypeID(F.getFunctionType()));
1289     Vals.push_back(F.getCallingConv());
1290     Vals.push_back(F.isDeclaration());
1291     Vals.push_back(getEncodedLinkage(F));
1292     Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1293     Vals.push_back(Log2_32(F.getAlignment())+1);
1294     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
1295     Vals.push_back(getEncodedVisibility(F));
1296     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1297     Vals.push_back(getEncodedUnnamedAddr(F));
1298     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1299                                        : 0);
1300     Vals.push_back(getEncodedDLLStorageClass(F));
1301     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1302     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1303                                      : 0);
1304     Vals.push_back(
1305         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1306 
1307     Vals.push_back(F.isDSOLocal());
1308     Vals.push_back(F.getAddressSpace());
1309 
1310     unsigned AbbrevToUse = 0;
1311     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1312     Vals.clear();
1313   }
1314 
1315   // Emit the alias information.
1316   for (const GlobalAlias &A : M.aliases()) {
1317     // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1318     //         visibility, dllstorageclass, threadlocal, unnamed_addr,
1319     //         DSO_Local]
1320     Vals.push_back(addToStrtab(A.getName()));
1321     Vals.push_back(A.getName().size());
1322     Vals.push_back(VE.getTypeID(A.getValueType()));
1323     Vals.push_back(A.getType()->getAddressSpace());
1324     Vals.push_back(VE.getValueID(A.getAliasee()));
1325     Vals.push_back(getEncodedLinkage(A));
1326     Vals.push_back(getEncodedVisibility(A));
1327     Vals.push_back(getEncodedDLLStorageClass(A));
1328     Vals.push_back(getEncodedThreadLocalMode(A));
1329     Vals.push_back(getEncodedUnnamedAddr(A));
1330     Vals.push_back(A.isDSOLocal());
1331 
1332     unsigned AbbrevToUse = 0;
1333     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1334     Vals.clear();
1335   }
1336 
1337   // Emit the ifunc information.
1338   for (const GlobalIFunc &I : M.ifuncs()) {
1339     // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1340     //         val#, linkage, visibility, DSO_Local]
1341     Vals.push_back(addToStrtab(I.getName()));
1342     Vals.push_back(I.getName().size());
1343     Vals.push_back(VE.getTypeID(I.getValueType()));
1344     Vals.push_back(I.getType()->getAddressSpace());
1345     Vals.push_back(VE.getValueID(I.getResolver()));
1346     Vals.push_back(getEncodedLinkage(I));
1347     Vals.push_back(getEncodedVisibility(I));
1348     Vals.push_back(I.isDSOLocal());
1349     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1350     Vals.clear();
1351   }
1352 
1353   writeValueSymbolTableForwardDecl();
1354 }
1355 
1356 static uint64_t getOptimizationFlags(const Value *V) {
1357   uint64_t Flags = 0;
1358 
1359   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1360     if (OBO->hasNoSignedWrap())
1361       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1362     if (OBO->hasNoUnsignedWrap())
1363       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1364   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1365     if (PEO->isExact())
1366       Flags |= 1 << bitc::PEO_EXACT;
1367   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1368     if (FPMO->hasAllowReassoc())
1369       Flags |= bitc::AllowReassoc;
1370     if (FPMO->hasNoNaNs())
1371       Flags |= bitc::NoNaNs;
1372     if (FPMO->hasNoInfs())
1373       Flags |= bitc::NoInfs;
1374     if (FPMO->hasNoSignedZeros())
1375       Flags |= bitc::NoSignedZeros;
1376     if (FPMO->hasAllowReciprocal())
1377       Flags |= bitc::AllowReciprocal;
1378     if (FPMO->hasAllowContract())
1379       Flags |= bitc::AllowContract;
1380     if (FPMO->hasApproxFunc())
1381       Flags |= bitc::ApproxFunc;
1382   }
1383 
1384   return Flags;
1385 }
1386 
1387 void ModuleBitcodeWriter::writeValueAsMetadata(
1388     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1389   // Mimic an MDNode with a value as one operand.
1390   Value *V = MD->getValue();
1391   Record.push_back(VE.getTypeID(V->getType()));
1392   Record.push_back(VE.getValueID(V));
1393   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1394   Record.clear();
1395 }
1396 
1397 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1398                                        SmallVectorImpl<uint64_t> &Record,
1399                                        unsigned Abbrev) {
1400   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1401     Metadata *MD = N->getOperand(i);
1402     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1403            "Unexpected function-local metadata");
1404     Record.push_back(VE.getMetadataOrNullID(MD));
1405   }
1406   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1407                                     : bitc::METADATA_NODE,
1408                     Record, Abbrev);
1409   Record.clear();
1410 }
1411 
1412 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1413   // Assume the column is usually under 128, and always output the inlined-at
1414   // location (it's never more expensive than building an array size 1).
1415   auto Abbv = std::make_shared<BitCodeAbbrev>();
1416   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1417   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1418   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1419   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1420   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1421   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1422   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1423   return Stream.EmitAbbrev(std::move(Abbv));
1424 }
1425 
1426 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1427                                           SmallVectorImpl<uint64_t> &Record,
1428                                           unsigned &Abbrev) {
1429   if (!Abbrev)
1430     Abbrev = createDILocationAbbrev();
1431 
1432   Record.push_back(N->isDistinct());
1433   Record.push_back(N->getLine());
1434   Record.push_back(N->getColumn());
1435   Record.push_back(VE.getMetadataID(N->getScope()));
1436   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1437   Record.push_back(N->isImplicitCode());
1438 
1439   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1440   Record.clear();
1441 }
1442 
1443 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1444   // Assume the column is usually under 128, and always output the inlined-at
1445   // location (it's never more expensive than building an array size 1).
1446   auto Abbv = std::make_shared<BitCodeAbbrev>();
1447   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1448   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1449   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1450   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1451   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1452   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1453   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1454   return Stream.EmitAbbrev(std::move(Abbv));
1455 }
1456 
1457 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1458                                              SmallVectorImpl<uint64_t> &Record,
1459                                              unsigned &Abbrev) {
1460   if (!Abbrev)
1461     Abbrev = createGenericDINodeAbbrev();
1462 
1463   Record.push_back(N->isDistinct());
1464   Record.push_back(N->getTag());
1465   Record.push_back(0); // Per-tag version field; unused for now.
1466 
1467   for (auto &I : N->operands())
1468     Record.push_back(VE.getMetadataOrNullID(I));
1469 
1470   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1471   Record.clear();
1472 }
1473 
1474 static uint64_t rotateSign(int64_t I) {
1475   uint64_t U = I;
1476   return I < 0 ? ~(U << 1) : U << 1;
1477 }
1478 
1479 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1480                                           SmallVectorImpl<uint64_t> &Record,
1481                                           unsigned Abbrev) {
1482   const uint64_t Version = 1 << 1;
1483   Record.push_back((uint64_t)N->isDistinct() | Version);
1484   Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1485   Record.push_back(rotateSign(N->getLowerBound()));
1486 
1487   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1488   Record.clear();
1489 }
1490 
1491 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1492                                             SmallVectorImpl<uint64_t> &Record,
1493                                             unsigned Abbrev) {
1494   Record.push_back((N->isUnsigned() << 1) | N->isDistinct());
1495   Record.push_back(rotateSign(N->getValue()));
1496   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1497 
1498   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1499   Record.clear();
1500 }
1501 
1502 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1503                                            SmallVectorImpl<uint64_t> &Record,
1504                                            unsigned Abbrev) {
1505   Record.push_back(N->isDistinct());
1506   Record.push_back(N->getTag());
1507   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1508   Record.push_back(N->getSizeInBits());
1509   Record.push_back(N->getAlignInBits());
1510   Record.push_back(N->getEncoding());
1511   Record.push_back(N->getFlags());
1512 
1513   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1514   Record.clear();
1515 }
1516 
1517 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1518                                              SmallVectorImpl<uint64_t> &Record,
1519                                              unsigned Abbrev) {
1520   Record.push_back(N->isDistinct());
1521   Record.push_back(N->getTag());
1522   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1523   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1524   Record.push_back(N->getLine());
1525   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1526   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1527   Record.push_back(N->getSizeInBits());
1528   Record.push_back(N->getAlignInBits());
1529   Record.push_back(N->getOffsetInBits());
1530   Record.push_back(N->getFlags());
1531   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1532 
1533   // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1534   // that there is no DWARF address space associated with DIDerivedType.
1535   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1536     Record.push_back(*DWARFAddressSpace + 1);
1537   else
1538     Record.push_back(0);
1539 
1540   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1541   Record.clear();
1542 }
1543 
1544 void ModuleBitcodeWriter::writeDICompositeType(
1545     const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1546     unsigned Abbrev) {
1547   const unsigned IsNotUsedInOldTypeRef = 0x2;
1548   Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1549   Record.push_back(N->getTag());
1550   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1551   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1552   Record.push_back(N->getLine());
1553   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1554   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1555   Record.push_back(N->getSizeInBits());
1556   Record.push_back(N->getAlignInBits());
1557   Record.push_back(N->getOffsetInBits());
1558   Record.push_back(N->getFlags());
1559   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1560   Record.push_back(N->getRuntimeLang());
1561   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1562   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1563   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1564   Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1565 
1566   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1567   Record.clear();
1568 }
1569 
1570 void ModuleBitcodeWriter::writeDISubroutineType(
1571     const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1572     unsigned Abbrev) {
1573   const unsigned HasNoOldTypeRefs = 0x2;
1574   Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1575   Record.push_back(N->getFlags());
1576   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1577   Record.push_back(N->getCC());
1578 
1579   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1580   Record.clear();
1581 }
1582 
1583 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1584                                       SmallVectorImpl<uint64_t> &Record,
1585                                       unsigned Abbrev) {
1586   Record.push_back(N->isDistinct());
1587   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1588   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1589   if (N->getRawChecksum()) {
1590     Record.push_back(N->getRawChecksum()->Kind);
1591     Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1592   } else {
1593     // Maintain backwards compatibility with the old internal representation of
1594     // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1595     Record.push_back(0);
1596     Record.push_back(VE.getMetadataOrNullID(nullptr));
1597   }
1598   auto Source = N->getRawSource();
1599   if (Source)
1600     Record.push_back(VE.getMetadataOrNullID(*Source));
1601 
1602   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1603   Record.clear();
1604 }
1605 
1606 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1607                                              SmallVectorImpl<uint64_t> &Record,
1608                                              unsigned Abbrev) {
1609   assert(N->isDistinct() && "Expected distinct compile units");
1610   Record.push_back(/* IsDistinct */ true);
1611   Record.push_back(N->getSourceLanguage());
1612   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1613   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1614   Record.push_back(N->isOptimized());
1615   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1616   Record.push_back(N->getRuntimeVersion());
1617   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1618   Record.push_back(N->getEmissionKind());
1619   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1620   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1621   Record.push_back(/* subprograms */ 0);
1622   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1623   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1624   Record.push_back(N->getDWOId());
1625   Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1626   Record.push_back(N->getSplitDebugInlining());
1627   Record.push_back(N->getDebugInfoForProfiling());
1628   Record.push_back((unsigned)N->getNameTableKind());
1629 
1630   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1631   Record.clear();
1632 }
1633 
1634 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1635                                             SmallVectorImpl<uint64_t> &Record,
1636                                             unsigned Abbrev) {
1637   const uint64_t HasUnitFlag = 1 << 1;
1638   const uint64_t HasSPFlagsFlag = 1 << 2;
1639   Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
1640   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1641   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1642   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1643   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1644   Record.push_back(N->getLine());
1645   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1646   Record.push_back(N->getScopeLine());
1647   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1648   Record.push_back(N->getSPFlags());
1649   Record.push_back(N->getVirtualIndex());
1650   Record.push_back(N->getFlags());
1651   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1652   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1653   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1654   Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1655   Record.push_back(N->getThisAdjustment());
1656   Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1657 
1658   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1659   Record.clear();
1660 }
1661 
1662 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1663                                               SmallVectorImpl<uint64_t> &Record,
1664                                               unsigned Abbrev) {
1665   Record.push_back(N->isDistinct());
1666   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1667   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1668   Record.push_back(N->getLine());
1669   Record.push_back(N->getColumn());
1670 
1671   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1672   Record.clear();
1673 }
1674 
1675 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1676     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1677     unsigned Abbrev) {
1678   Record.push_back(N->isDistinct());
1679   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1680   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1681   Record.push_back(N->getDiscriminator());
1682 
1683   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1684   Record.clear();
1685 }
1686 
1687 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1688                                            SmallVectorImpl<uint64_t> &Record,
1689                                            unsigned Abbrev) {
1690   Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1691   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1692   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1693 
1694   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1695   Record.clear();
1696 }
1697 
1698 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1699                                        SmallVectorImpl<uint64_t> &Record,
1700                                        unsigned Abbrev) {
1701   Record.push_back(N->isDistinct());
1702   Record.push_back(N->getMacinfoType());
1703   Record.push_back(N->getLine());
1704   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1705   Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1706 
1707   Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1708   Record.clear();
1709 }
1710 
1711 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1712                                            SmallVectorImpl<uint64_t> &Record,
1713                                            unsigned Abbrev) {
1714   Record.push_back(N->isDistinct());
1715   Record.push_back(N->getMacinfoType());
1716   Record.push_back(N->getLine());
1717   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1718   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1719 
1720   Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1721   Record.clear();
1722 }
1723 
1724 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1725                                         SmallVectorImpl<uint64_t> &Record,
1726                                         unsigned Abbrev) {
1727   Record.push_back(N->isDistinct());
1728   for (auto &I : N->operands())
1729     Record.push_back(VE.getMetadataOrNullID(I));
1730 
1731   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1732   Record.clear();
1733 }
1734 
1735 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1736     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1737     unsigned Abbrev) {
1738   Record.push_back(N->isDistinct());
1739   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1740   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1741 
1742   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1743   Record.clear();
1744 }
1745 
1746 void ModuleBitcodeWriter::writeDITemplateValueParameter(
1747     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1748     unsigned Abbrev) {
1749   Record.push_back(N->isDistinct());
1750   Record.push_back(N->getTag());
1751   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1752   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1753   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1754 
1755   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1756   Record.clear();
1757 }
1758 
1759 void ModuleBitcodeWriter::writeDIGlobalVariable(
1760     const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1761     unsigned Abbrev) {
1762   const uint64_t Version = 2 << 1;
1763   Record.push_back((uint64_t)N->isDistinct() | Version);
1764   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1765   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1766   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1767   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1768   Record.push_back(N->getLine());
1769   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1770   Record.push_back(N->isLocalToUnit());
1771   Record.push_back(N->isDefinition());
1772   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1773   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
1774   Record.push_back(N->getAlignInBits());
1775 
1776   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1777   Record.clear();
1778 }
1779 
1780 void ModuleBitcodeWriter::writeDILocalVariable(
1781     const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1782     unsigned Abbrev) {
1783   // In order to support all possible bitcode formats in BitcodeReader we need
1784   // to distinguish the following cases:
1785   // 1) Record has no artificial tag (Record[1]),
1786   //   has no obsolete inlinedAt field (Record[9]).
1787   //   In this case Record size will be 8, HasAlignment flag is false.
1788   // 2) Record has artificial tag (Record[1]),
1789   //   has no obsolete inlignedAt field (Record[9]).
1790   //   In this case Record size will be 9, HasAlignment flag is false.
1791   // 3) Record has both artificial tag (Record[1]) and
1792   //   obsolete inlignedAt field (Record[9]).
1793   //   In this case Record size will be 10, HasAlignment flag is false.
1794   // 4) Record has neither artificial tag, nor inlignedAt field, but
1795   //   HasAlignment flag is true and Record[8] contains alignment value.
1796   const uint64_t HasAlignmentFlag = 1 << 1;
1797   Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
1798   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1799   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1800   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1801   Record.push_back(N->getLine());
1802   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1803   Record.push_back(N->getArg());
1804   Record.push_back(N->getFlags());
1805   Record.push_back(N->getAlignInBits());
1806 
1807   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1808   Record.clear();
1809 }
1810 
1811 void ModuleBitcodeWriter::writeDILabel(
1812     const DILabel *N, SmallVectorImpl<uint64_t> &Record,
1813     unsigned Abbrev) {
1814   Record.push_back((uint64_t)N->isDistinct());
1815   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1816   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1817   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1818   Record.push_back(N->getLine());
1819 
1820   Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
1821   Record.clear();
1822 }
1823 
1824 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
1825                                             SmallVectorImpl<uint64_t> &Record,
1826                                             unsigned Abbrev) {
1827   Record.reserve(N->getElements().size() + 1);
1828   const uint64_t Version = 3 << 1;
1829   Record.push_back((uint64_t)N->isDistinct() | Version);
1830   Record.append(N->elements_begin(), N->elements_end());
1831 
1832   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1833   Record.clear();
1834 }
1835 
1836 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
1837     const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
1838     unsigned Abbrev) {
1839   Record.push_back(N->isDistinct());
1840   Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
1841   Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
1842 
1843   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
1844   Record.clear();
1845 }
1846 
1847 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1848                                               SmallVectorImpl<uint64_t> &Record,
1849                                               unsigned Abbrev) {
1850   Record.push_back(N->isDistinct());
1851   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1852   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1853   Record.push_back(N->getLine());
1854   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1855   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1856   Record.push_back(N->getAttributes());
1857   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1858 
1859   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1860   Record.clear();
1861 }
1862 
1863 void ModuleBitcodeWriter::writeDIImportedEntity(
1864     const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
1865     unsigned Abbrev) {
1866   Record.push_back(N->isDistinct());
1867   Record.push_back(N->getTag());
1868   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1869   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1870   Record.push_back(N->getLine());
1871   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1872   Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
1873 
1874   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1875   Record.clear();
1876 }
1877 
1878 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
1879   auto Abbv = std::make_shared<BitCodeAbbrev>();
1880   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1881   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1882   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1883   return Stream.EmitAbbrev(std::move(Abbv));
1884 }
1885 
1886 void ModuleBitcodeWriter::writeNamedMetadata(
1887     SmallVectorImpl<uint64_t> &Record) {
1888   if (M.named_metadata_empty())
1889     return;
1890 
1891   unsigned Abbrev = createNamedMetadataAbbrev();
1892   for (const NamedMDNode &NMD : M.named_metadata()) {
1893     // Write name.
1894     StringRef Str = NMD.getName();
1895     Record.append(Str.bytes_begin(), Str.bytes_end());
1896     Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
1897     Record.clear();
1898 
1899     // Write named metadata operands.
1900     for (const MDNode *N : NMD.operands())
1901       Record.push_back(VE.getMetadataID(N));
1902     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1903     Record.clear();
1904   }
1905 }
1906 
1907 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
1908   auto Abbv = std::make_shared<BitCodeAbbrev>();
1909   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
1910   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
1911   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
1912   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
1913   return Stream.EmitAbbrev(std::move(Abbv));
1914 }
1915 
1916 /// Write out a record for MDString.
1917 ///
1918 /// All the metadata strings in a metadata block are emitted in a single
1919 /// record.  The sizes and strings themselves are shoved into a blob.
1920 void ModuleBitcodeWriter::writeMetadataStrings(
1921     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1922   if (Strings.empty())
1923     return;
1924 
1925   // Start the record with the number of strings.
1926   Record.push_back(bitc::METADATA_STRINGS);
1927   Record.push_back(Strings.size());
1928 
1929   // Emit the sizes of the strings in the blob.
1930   SmallString<256> Blob;
1931   {
1932     BitstreamWriter W(Blob);
1933     for (const Metadata *MD : Strings)
1934       W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
1935     W.FlushToWord();
1936   }
1937 
1938   // Add the offset to the strings to the record.
1939   Record.push_back(Blob.size());
1940 
1941   // Add the strings to the blob.
1942   for (const Metadata *MD : Strings)
1943     Blob.append(cast<MDString>(MD)->getString());
1944 
1945   // Emit the final record.
1946   Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
1947   Record.clear();
1948 }
1949 
1950 // Generates an enum to use as an index in the Abbrev array of Metadata record.
1951 enum MetadataAbbrev : unsigned {
1952 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
1953 #include "llvm/IR/Metadata.def"
1954   LastPlusOne
1955 };
1956 
1957 void ModuleBitcodeWriter::writeMetadataRecords(
1958     ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
1959     std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
1960   if (MDs.empty())
1961     return;
1962 
1963   // Initialize MDNode abbreviations.
1964 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1965 #include "llvm/IR/Metadata.def"
1966 
1967   for (const Metadata *MD : MDs) {
1968     if (IndexPos)
1969       IndexPos->push_back(Stream.GetCurrentBitNo());
1970     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1971       assert(N->isResolved() && "Expected forward references to be resolved");
1972 
1973       switch (N->getMetadataID()) {
1974       default:
1975         llvm_unreachable("Invalid MDNode subclass");
1976 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1977   case Metadata::CLASS##Kind:                                                  \
1978     if (MDAbbrevs)                                                             \
1979       write##CLASS(cast<CLASS>(N), Record,                                     \
1980                    (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
1981     else                                                                       \
1982       write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
1983     continue;
1984 #include "llvm/IR/Metadata.def"
1985       }
1986     }
1987     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
1988   }
1989 }
1990 
1991 void ModuleBitcodeWriter::writeModuleMetadata() {
1992   if (!VE.hasMDs() && M.named_metadata_empty())
1993     return;
1994 
1995   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
1996   SmallVector<uint64_t, 64> Record;
1997 
1998   // Emit all abbrevs upfront, so that the reader can jump in the middle of the
1999   // block and load any metadata.
2000   std::vector<unsigned> MDAbbrevs;
2001 
2002   MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
2003   MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
2004   MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
2005       createGenericDINodeAbbrev();
2006 
2007   auto Abbv = std::make_shared<BitCodeAbbrev>();
2008   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
2009   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2010   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2011   unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2012 
2013   Abbv = std::make_shared<BitCodeAbbrev>();
2014   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
2015   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2016   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2017   unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2018 
2019   // Emit MDStrings together upfront.
2020   writeMetadataStrings(VE.getMDStrings(), Record);
2021 
2022   // We only emit an index for the metadata record if we have more than a given
2023   // (naive) threshold of metadatas, otherwise it is not worth it.
2024   if (VE.getNonMDStrings().size() > IndexThreshold) {
2025     // Write a placeholder value in for the offset of the metadata index,
2026     // which is written after the records, so that it can include
2027     // the offset of each entry. The placeholder offset will be
2028     // updated after all records are emitted.
2029     uint64_t Vals[] = {0, 0};
2030     Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2031   }
2032 
2033   // Compute and save the bit offset to the current position, which will be
2034   // patched when we emit the index later. We can simply subtract the 64-bit
2035   // fixed size from the current bit number to get the location to backpatch.
2036   uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2037 
2038   // This index will contain the bitpos for each individual record.
2039   std::vector<uint64_t> IndexPos;
2040   IndexPos.reserve(VE.getNonMDStrings().size());
2041 
2042   // Write all the records
2043   writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2044 
2045   if (VE.getNonMDStrings().size() > IndexThreshold) {
2046     // Now that we have emitted all the records we will emit the index. But
2047     // first
2048     // backpatch the forward reference so that the reader can skip the records
2049     // efficiently.
2050     Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2051                            Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2052 
2053     // Delta encode the index.
2054     uint64_t PreviousValue = IndexOffsetRecordBitPos;
2055     for (auto &Elt : IndexPos) {
2056       auto EltDelta = Elt - PreviousValue;
2057       PreviousValue = Elt;
2058       Elt = EltDelta;
2059     }
2060     // Emit the index record.
2061     Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2062     IndexPos.clear();
2063   }
2064 
2065   // Write the named metadata now.
2066   writeNamedMetadata(Record);
2067 
2068   auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2069     SmallVector<uint64_t, 4> Record;
2070     Record.push_back(VE.getValueID(&GO));
2071     pushGlobalMetadataAttachment(Record, GO);
2072     Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2073   };
2074   for (const Function &F : M)
2075     if (F.isDeclaration() && F.hasMetadata())
2076       AddDeclAttachedMetadata(F);
2077   // FIXME: Only store metadata for declarations here, and move data for global
2078   // variable definitions to a separate block (PR28134).
2079   for (const GlobalVariable &GV : M.globals())
2080     if (GV.hasMetadata())
2081       AddDeclAttachedMetadata(GV);
2082 
2083   Stream.ExitBlock();
2084 }
2085 
2086 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2087   if (!VE.hasMDs())
2088     return;
2089 
2090   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2091   SmallVector<uint64_t, 64> Record;
2092   writeMetadataStrings(VE.getMDStrings(), Record);
2093   writeMetadataRecords(VE.getNonMDStrings(), Record);
2094   Stream.ExitBlock();
2095 }
2096 
2097 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2098     SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2099   // [n x [id, mdnode]]
2100   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2101   GO.getAllMetadata(MDs);
2102   for (const auto &I : MDs) {
2103     Record.push_back(I.first);
2104     Record.push_back(VE.getMetadataID(I.second));
2105   }
2106 }
2107 
2108 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2109   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2110 
2111   SmallVector<uint64_t, 64> Record;
2112 
2113   if (F.hasMetadata()) {
2114     pushGlobalMetadataAttachment(Record, F);
2115     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2116     Record.clear();
2117   }
2118 
2119   // Write metadata attachments
2120   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2121   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2122   for (const BasicBlock &BB : F)
2123     for (const Instruction &I : BB) {
2124       MDs.clear();
2125       I.getAllMetadataOtherThanDebugLoc(MDs);
2126 
2127       // If no metadata, ignore instruction.
2128       if (MDs.empty()) continue;
2129 
2130       Record.push_back(VE.getInstructionID(&I));
2131 
2132       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2133         Record.push_back(MDs[i].first);
2134         Record.push_back(VE.getMetadataID(MDs[i].second));
2135       }
2136       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2137       Record.clear();
2138     }
2139 
2140   Stream.ExitBlock();
2141 }
2142 
2143 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2144   SmallVector<uint64_t, 64> Record;
2145 
2146   // Write metadata kinds
2147   // METADATA_KIND - [n x [id, name]]
2148   SmallVector<StringRef, 8> Names;
2149   M.getMDKindNames(Names);
2150 
2151   if (Names.empty()) return;
2152 
2153   Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2154 
2155   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2156     Record.push_back(MDKindID);
2157     StringRef KName = Names[MDKindID];
2158     Record.append(KName.begin(), KName.end());
2159 
2160     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2161     Record.clear();
2162   }
2163 
2164   Stream.ExitBlock();
2165 }
2166 
2167 void ModuleBitcodeWriter::writeOperandBundleTags() {
2168   // Write metadata kinds
2169   //
2170   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2171   //
2172   // OPERAND_BUNDLE_TAG - [strchr x N]
2173 
2174   SmallVector<StringRef, 8> Tags;
2175   M.getOperandBundleTags(Tags);
2176 
2177   if (Tags.empty())
2178     return;
2179 
2180   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2181 
2182   SmallVector<uint64_t, 64> Record;
2183 
2184   for (auto Tag : Tags) {
2185     Record.append(Tag.begin(), Tag.end());
2186 
2187     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2188     Record.clear();
2189   }
2190 
2191   Stream.ExitBlock();
2192 }
2193 
2194 void ModuleBitcodeWriter::writeSyncScopeNames() {
2195   SmallVector<StringRef, 8> SSNs;
2196   M.getContext().getSyncScopeNames(SSNs);
2197   if (SSNs.empty())
2198     return;
2199 
2200   Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2201 
2202   SmallVector<uint64_t, 64> Record;
2203   for (auto SSN : SSNs) {
2204     Record.append(SSN.begin(), SSN.end());
2205     Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2206     Record.clear();
2207   }
2208 
2209   Stream.ExitBlock();
2210 }
2211 
2212 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
2213   if ((int64_t)V >= 0)
2214     Vals.push_back(V << 1);
2215   else
2216     Vals.push_back((-V << 1) | 1);
2217 }
2218 
2219 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2220                                          bool isGlobal) {
2221   if (FirstVal == LastVal) return;
2222 
2223   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2224 
2225   unsigned AggregateAbbrev = 0;
2226   unsigned String8Abbrev = 0;
2227   unsigned CString7Abbrev = 0;
2228   unsigned CString6Abbrev = 0;
2229   // If this is a constant pool for the module, emit module-specific abbrevs.
2230   if (isGlobal) {
2231     // Abbrev for CST_CODE_AGGREGATE.
2232     auto Abbv = std::make_shared<BitCodeAbbrev>();
2233     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2234     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2235     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2236     AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2237 
2238     // Abbrev for CST_CODE_STRING.
2239     Abbv = std::make_shared<BitCodeAbbrev>();
2240     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2241     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2242     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2243     String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2244     // Abbrev for CST_CODE_CSTRING.
2245     Abbv = std::make_shared<BitCodeAbbrev>();
2246     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2247     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2248     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2249     CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2250     // Abbrev for CST_CODE_CSTRING.
2251     Abbv = std::make_shared<BitCodeAbbrev>();
2252     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2253     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2254     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2255     CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2256   }
2257 
2258   SmallVector<uint64_t, 64> Record;
2259 
2260   const ValueEnumerator::ValueList &Vals = VE.getValues();
2261   Type *LastTy = nullptr;
2262   for (unsigned i = FirstVal; i != LastVal; ++i) {
2263     const Value *V = Vals[i].first;
2264     // If we need to switch types, do so now.
2265     if (V->getType() != LastTy) {
2266       LastTy = V->getType();
2267       Record.push_back(VE.getTypeID(LastTy));
2268       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2269                         CONSTANTS_SETTYPE_ABBREV);
2270       Record.clear();
2271     }
2272 
2273     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2274       Record.push_back(unsigned(IA->hasSideEffects()) |
2275                        unsigned(IA->isAlignStack()) << 1 |
2276                        unsigned(IA->getDialect()&1) << 2);
2277 
2278       // Add the asm string.
2279       const std::string &AsmStr = IA->getAsmString();
2280       Record.push_back(AsmStr.size());
2281       Record.append(AsmStr.begin(), AsmStr.end());
2282 
2283       // Add the constraint string.
2284       const std::string &ConstraintStr = IA->getConstraintString();
2285       Record.push_back(ConstraintStr.size());
2286       Record.append(ConstraintStr.begin(), ConstraintStr.end());
2287       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2288       Record.clear();
2289       continue;
2290     }
2291     const Constant *C = cast<Constant>(V);
2292     unsigned Code = -1U;
2293     unsigned AbbrevToUse = 0;
2294     if (C->isNullValue()) {
2295       Code = bitc::CST_CODE_NULL;
2296     } else if (isa<UndefValue>(C)) {
2297       Code = bitc::CST_CODE_UNDEF;
2298     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2299       if (IV->getBitWidth() <= 64) {
2300         uint64_t V = IV->getSExtValue();
2301         emitSignedInt64(Record, V);
2302         Code = bitc::CST_CODE_INTEGER;
2303         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2304       } else {                             // Wide integers, > 64 bits in size.
2305         // We have an arbitrary precision integer value to write whose
2306         // bit width is > 64. However, in canonical unsigned integer
2307         // format it is likely that the high bits are going to be zero.
2308         // So, we only write the number of active words.
2309         unsigned NWords = IV->getValue().getActiveWords();
2310         const uint64_t *RawWords = IV->getValue().getRawData();
2311         for (unsigned i = 0; i != NWords; ++i) {
2312           emitSignedInt64(Record, RawWords[i]);
2313         }
2314         Code = bitc::CST_CODE_WIDE_INTEGER;
2315       }
2316     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2317       Code = bitc::CST_CODE_FLOAT;
2318       Type *Ty = CFP->getType();
2319       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2320         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2321       } else if (Ty->isX86_FP80Ty()) {
2322         // api needed to prevent premature destruction
2323         // bits are not in the same order as a normal i80 APInt, compensate.
2324         APInt api = CFP->getValueAPF().bitcastToAPInt();
2325         const uint64_t *p = api.getRawData();
2326         Record.push_back((p[1] << 48) | (p[0] >> 16));
2327         Record.push_back(p[0] & 0xffffLL);
2328       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2329         APInt api = CFP->getValueAPF().bitcastToAPInt();
2330         const uint64_t *p = api.getRawData();
2331         Record.push_back(p[0]);
2332         Record.push_back(p[1]);
2333       } else {
2334         assert(0 && "Unknown FP type!");
2335       }
2336     } else if (isa<ConstantDataSequential>(C) &&
2337                cast<ConstantDataSequential>(C)->isString()) {
2338       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2339       // Emit constant strings specially.
2340       unsigned NumElts = Str->getNumElements();
2341       // If this is a null-terminated string, use the denser CSTRING encoding.
2342       if (Str->isCString()) {
2343         Code = bitc::CST_CODE_CSTRING;
2344         --NumElts;  // Don't encode the null, which isn't allowed by char6.
2345       } else {
2346         Code = bitc::CST_CODE_STRING;
2347         AbbrevToUse = String8Abbrev;
2348       }
2349       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2350       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2351       for (unsigned i = 0; i != NumElts; ++i) {
2352         unsigned char V = Str->getElementAsInteger(i);
2353         Record.push_back(V);
2354         isCStr7 &= (V & 128) == 0;
2355         if (isCStrChar6)
2356           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2357       }
2358 
2359       if (isCStrChar6)
2360         AbbrevToUse = CString6Abbrev;
2361       else if (isCStr7)
2362         AbbrevToUse = CString7Abbrev;
2363     } else if (const ConstantDataSequential *CDS =
2364                   dyn_cast<ConstantDataSequential>(C)) {
2365       Code = bitc::CST_CODE_DATA;
2366       Type *EltTy = CDS->getType()->getElementType();
2367       if (isa<IntegerType>(EltTy)) {
2368         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2369           Record.push_back(CDS->getElementAsInteger(i));
2370       } else {
2371         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2372           Record.push_back(
2373               CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2374       }
2375     } else if (isa<ConstantAggregate>(C)) {
2376       Code = bitc::CST_CODE_AGGREGATE;
2377       for (const Value *Op : C->operands())
2378         Record.push_back(VE.getValueID(Op));
2379       AbbrevToUse = AggregateAbbrev;
2380     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2381       switch (CE->getOpcode()) {
2382       default:
2383         if (Instruction::isCast(CE->getOpcode())) {
2384           Code = bitc::CST_CODE_CE_CAST;
2385           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2386           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2387           Record.push_back(VE.getValueID(C->getOperand(0)));
2388           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2389         } else {
2390           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2391           Code = bitc::CST_CODE_CE_BINOP;
2392           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2393           Record.push_back(VE.getValueID(C->getOperand(0)));
2394           Record.push_back(VE.getValueID(C->getOperand(1)));
2395           uint64_t Flags = getOptimizationFlags(CE);
2396           if (Flags != 0)
2397             Record.push_back(Flags);
2398         }
2399         break;
2400       case Instruction::FNeg: {
2401         assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
2402         Code = bitc::CST_CODE_CE_UNOP;
2403         Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
2404         Record.push_back(VE.getValueID(C->getOperand(0)));
2405         uint64_t Flags = getOptimizationFlags(CE);
2406         if (Flags != 0)
2407           Record.push_back(Flags);
2408         break;
2409       }
2410       case Instruction::GetElementPtr: {
2411         Code = bitc::CST_CODE_CE_GEP;
2412         const auto *GO = cast<GEPOperator>(C);
2413         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2414         if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
2415           Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2416           Record.push_back((*Idx << 1) | GO->isInBounds());
2417         } else if (GO->isInBounds())
2418           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2419         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2420           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2421           Record.push_back(VE.getValueID(C->getOperand(i)));
2422         }
2423         break;
2424       }
2425       case Instruction::Select:
2426         Code = bitc::CST_CODE_CE_SELECT;
2427         Record.push_back(VE.getValueID(C->getOperand(0)));
2428         Record.push_back(VE.getValueID(C->getOperand(1)));
2429         Record.push_back(VE.getValueID(C->getOperand(2)));
2430         break;
2431       case Instruction::ExtractElement:
2432         Code = bitc::CST_CODE_CE_EXTRACTELT;
2433         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2434         Record.push_back(VE.getValueID(C->getOperand(0)));
2435         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2436         Record.push_back(VE.getValueID(C->getOperand(1)));
2437         break;
2438       case Instruction::InsertElement:
2439         Code = bitc::CST_CODE_CE_INSERTELT;
2440         Record.push_back(VE.getValueID(C->getOperand(0)));
2441         Record.push_back(VE.getValueID(C->getOperand(1)));
2442         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2443         Record.push_back(VE.getValueID(C->getOperand(2)));
2444         break;
2445       case Instruction::ShuffleVector:
2446         // If the return type and argument types are the same, this is a
2447         // standard shufflevector instruction.  If the types are different,
2448         // then the shuffle is widening or truncating the input vectors, and
2449         // the argument type must also be encoded.
2450         if (C->getType() == C->getOperand(0)->getType()) {
2451           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2452         } else {
2453           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2454           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2455         }
2456         Record.push_back(VE.getValueID(C->getOperand(0)));
2457         Record.push_back(VE.getValueID(C->getOperand(1)));
2458         Record.push_back(VE.getValueID(C->getOperand(2)));
2459         break;
2460       case Instruction::ICmp:
2461       case Instruction::FCmp:
2462         Code = bitc::CST_CODE_CE_CMP;
2463         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2464         Record.push_back(VE.getValueID(C->getOperand(0)));
2465         Record.push_back(VE.getValueID(C->getOperand(1)));
2466         Record.push_back(CE->getPredicate());
2467         break;
2468       }
2469     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2470       Code = bitc::CST_CODE_BLOCKADDRESS;
2471       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2472       Record.push_back(VE.getValueID(BA->getFunction()));
2473       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2474     } else {
2475 #ifndef NDEBUG
2476       C->dump();
2477 #endif
2478       llvm_unreachable("Unknown constant!");
2479     }
2480     Stream.EmitRecord(Code, Record, AbbrevToUse);
2481     Record.clear();
2482   }
2483 
2484   Stream.ExitBlock();
2485 }
2486 
2487 void ModuleBitcodeWriter::writeModuleConstants() {
2488   const ValueEnumerator::ValueList &Vals = VE.getValues();
2489 
2490   // Find the first constant to emit, which is the first non-globalvalue value.
2491   // We know globalvalues have been emitted by WriteModuleInfo.
2492   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2493     if (!isa<GlobalValue>(Vals[i].first)) {
2494       writeConstants(i, Vals.size(), true);
2495       return;
2496     }
2497   }
2498 }
2499 
2500 /// pushValueAndType - The file has to encode both the value and type id for
2501 /// many values, because we need to know what type to create for forward
2502 /// references.  However, most operands are not forward references, so this type
2503 /// field is not needed.
2504 ///
2505 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2506 /// instruction ID, then it is a forward reference, and it also includes the
2507 /// type ID.  The value ID that is written is encoded relative to the InstID.
2508 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2509                                            SmallVectorImpl<unsigned> &Vals) {
2510   unsigned ValID = VE.getValueID(V);
2511   // Make encoding relative to the InstID.
2512   Vals.push_back(InstID - ValID);
2513   if (ValID >= InstID) {
2514     Vals.push_back(VE.getTypeID(V->getType()));
2515     return true;
2516   }
2517   return false;
2518 }
2519 
2520 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS,
2521                                               unsigned InstID) {
2522   SmallVector<unsigned, 64> Record;
2523   LLVMContext &C = CS.getInstruction()->getContext();
2524 
2525   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2526     const auto &Bundle = CS.getOperandBundleAt(i);
2527     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2528 
2529     for (auto &Input : Bundle.Inputs)
2530       pushValueAndType(Input, InstID, Record);
2531 
2532     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2533     Record.clear();
2534   }
2535 }
2536 
2537 /// pushValue - Like pushValueAndType, but where the type of the value is
2538 /// omitted (perhaps it was already encoded in an earlier operand).
2539 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2540                                     SmallVectorImpl<unsigned> &Vals) {
2541   unsigned ValID = VE.getValueID(V);
2542   Vals.push_back(InstID - ValID);
2543 }
2544 
2545 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2546                                           SmallVectorImpl<uint64_t> &Vals) {
2547   unsigned ValID = VE.getValueID(V);
2548   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2549   emitSignedInt64(Vals, diff);
2550 }
2551 
2552 /// WriteInstruction - Emit an instruction to the specified stream.
2553 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2554                                            unsigned InstID,
2555                                            SmallVectorImpl<unsigned> &Vals) {
2556   unsigned Code = 0;
2557   unsigned AbbrevToUse = 0;
2558   VE.setInstructionID(&I);
2559   switch (I.getOpcode()) {
2560   default:
2561     if (Instruction::isCast(I.getOpcode())) {
2562       Code = bitc::FUNC_CODE_INST_CAST;
2563       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2564         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2565       Vals.push_back(VE.getTypeID(I.getType()));
2566       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2567     } else {
2568       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2569       Code = bitc::FUNC_CODE_INST_BINOP;
2570       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2571         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2572       pushValue(I.getOperand(1), InstID, Vals);
2573       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2574       uint64_t Flags = getOptimizationFlags(&I);
2575       if (Flags != 0) {
2576         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2577           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2578         Vals.push_back(Flags);
2579       }
2580     }
2581     break;
2582   case Instruction::FNeg: {
2583     Code = bitc::FUNC_CODE_INST_UNOP;
2584     if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2585       AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
2586     Vals.push_back(getEncodedUnaryOpcode(I.getOpcode()));
2587     uint64_t Flags = getOptimizationFlags(&I);
2588     if (Flags != 0) {
2589       if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
2590         AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
2591       Vals.push_back(Flags);
2592     }
2593     break;
2594   }
2595   case Instruction::GetElementPtr: {
2596     Code = bitc::FUNC_CODE_INST_GEP;
2597     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2598     auto &GEPInst = cast<GetElementPtrInst>(I);
2599     Vals.push_back(GEPInst.isInBounds());
2600     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2601     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2602       pushValueAndType(I.getOperand(i), InstID, Vals);
2603     break;
2604   }
2605   case Instruction::ExtractValue: {
2606     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2607     pushValueAndType(I.getOperand(0), InstID, Vals);
2608     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2609     Vals.append(EVI->idx_begin(), EVI->idx_end());
2610     break;
2611   }
2612   case Instruction::InsertValue: {
2613     Code = bitc::FUNC_CODE_INST_INSERTVAL;
2614     pushValueAndType(I.getOperand(0), InstID, Vals);
2615     pushValueAndType(I.getOperand(1), InstID, Vals);
2616     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2617     Vals.append(IVI->idx_begin(), IVI->idx_end());
2618     break;
2619   }
2620   case Instruction::Select:
2621     Code = bitc::FUNC_CODE_INST_VSELECT;
2622     pushValueAndType(I.getOperand(1), InstID, Vals);
2623     pushValue(I.getOperand(2), InstID, Vals);
2624     pushValueAndType(I.getOperand(0), InstID, Vals);
2625     break;
2626   case Instruction::ExtractElement:
2627     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2628     pushValueAndType(I.getOperand(0), InstID, Vals);
2629     pushValueAndType(I.getOperand(1), InstID, Vals);
2630     break;
2631   case Instruction::InsertElement:
2632     Code = bitc::FUNC_CODE_INST_INSERTELT;
2633     pushValueAndType(I.getOperand(0), InstID, Vals);
2634     pushValue(I.getOperand(1), InstID, Vals);
2635     pushValueAndType(I.getOperand(2), InstID, Vals);
2636     break;
2637   case Instruction::ShuffleVector:
2638     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2639     pushValueAndType(I.getOperand(0), InstID, Vals);
2640     pushValue(I.getOperand(1), InstID, Vals);
2641     pushValue(I.getOperand(2), InstID, Vals);
2642     break;
2643   case Instruction::ICmp:
2644   case Instruction::FCmp: {
2645     // compare returning Int1Ty or vector of Int1Ty
2646     Code = bitc::FUNC_CODE_INST_CMP2;
2647     pushValueAndType(I.getOperand(0), InstID, Vals);
2648     pushValue(I.getOperand(1), InstID, Vals);
2649     Vals.push_back(cast<CmpInst>(I).getPredicate());
2650     uint64_t Flags = getOptimizationFlags(&I);
2651     if (Flags != 0)
2652       Vals.push_back(Flags);
2653     break;
2654   }
2655 
2656   case Instruction::Ret:
2657     {
2658       Code = bitc::FUNC_CODE_INST_RET;
2659       unsigned NumOperands = I.getNumOperands();
2660       if (NumOperands == 0)
2661         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2662       else if (NumOperands == 1) {
2663         if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2664           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2665       } else {
2666         for (unsigned i = 0, e = NumOperands; i != e; ++i)
2667           pushValueAndType(I.getOperand(i), InstID, Vals);
2668       }
2669     }
2670     break;
2671   case Instruction::Br:
2672     {
2673       Code = bitc::FUNC_CODE_INST_BR;
2674       const BranchInst &II = cast<BranchInst>(I);
2675       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2676       if (II.isConditional()) {
2677         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2678         pushValue(II.getCondition(), InstID, Vals);
2679       }
2680     }
2681     break;
2682   case Instruction::Switch:
2683     {
2684       Code = bitc::FUNC_CODE_INST_SWITCH;
2685       const SwitchInst &SI = cast<SwitchInst>(I);
2686       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2687       pushValue(SI.getCondition(), InstID, Vals);
2688       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2689       for (auto Case : SI.cases()) {
2690         Vals.push_back(VE.getValueID(Case.getCaseValue()));
2691         Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2692       }
2693     }
2694     break;
2695   case Instruction::IndirectBr:
2696     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2697     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2698     // Encode the address operand as relative, but not the basic blocks.
2699     pushValue(I.getOperand(0), InstID, Vals);
2700     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2701       Vals.push_back(VE.getValueID(I.getOperand(i)));
2702     break;
2703 
2704   case Instruction::Invoke: {
2705     const InvokeInst *II = cast<InvokeInst>(&I);
2706     const Value *Callee = II->getCalledValue();
2707     FunctionType *FTy = II->getFunctionType();
2708 
2709     if (II->hasOperandBundles())
2710       writeOperandBundles(II, InstID);
2711 
2712     Code = bitc::FUNC_CODE_INST_INVOKE;
2713 
2714     Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2715     Vals.push_back(II->getCallingConv() | 1 << 13);
2716     Vals.push_back(VE.getValueID(II->getNormalDest()));
2717     Vals.push_back(VE.getValueID(II->getUnwindDest()));
2718     Vals.push_back(VE.getTypeID(FTy));
2719     pushValueAndType(Callee, InstID, Vals);
2720 
2721     // Emit value #'s for the fixed parameters.
2722     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2723       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2724 
2725     // Emit type/value pairs for varargs params.
2726     if (FTy->isVarArg()) {
2727       for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands();
2728            i != e; ++i)
2729         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2730     }
2731     break;
2732   }
2733   case Instruction::Resume:
2734     Code = bitc::FUNC_CODE_INST_RESUME;
2735     pushValueAndType(I.getOperand(0), InstID, Vals);
2736     break;
2737   case Instruction::CleanupRet: {
2738     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2739     const auto &CRI = cast<CleanupReturnInst>(I);
2740     pushValue(CRI.getCleanupPad(), InstID, Vals);
2741     if (CRI.hasUnwindDest())
2742       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2743     break;
2744   }
2745   case Instruction::CatchRet: {
2746     Code = bitc::FUNC_CODE_INST_CATCHRET;
2747     const auto &CRI = cast<CatchReturnInst>(I);
2748     pushValue(CRI.getCatchPad(), InstID, Vals);
2749     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2750     break;
2751   }
2752   case Instruction::CleanupPad:
2753   case Instruction::CatchPad: {
2754     const auto &FuncletPad = cast<FuncletPadInst>(I);
2755     Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2756                                          : bitc::FUNC_CODE_INST_CLEANUPPAD;
2757     pushValue(FuncletPad.getParentPad(), InstID, Vals);
2758 
2759     unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2760     Vals.push_back(NumArgOperands);
2761     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2762       pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2763     break;
2764   }
2765   case Instruction::CatchSwitch: {
2766     Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2767     const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2768 
2769     pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2770 
2771     unsigned NumHandlers = CatchSwitch.getNumHandlers();
2772     Vals.push_back(NumHandlers);
2773     for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2774       Vals.push_back(VE.getValueID(CatchPadBB));
2775 
2776     if (CatchSwitch.hasUnwindDest())
2777       Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2778     break;
2779   }
2780   case Instruction::Unreachable:
2781     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2782     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2783     break;
2784 
2785   case Instruction::PHI: {
2786     const PHINode &PN = cast<PHINode>(I);
2787     Code = bitc::FUNC_CODE_INST_PHI;
2788     // With the newer instruction encoding, forward references could give
2789     // negative valued IDs.  This is most common for PHIs, so we use
2790     // signed VBRs.
2791     SmallVector<uint64_t, 128> Vals64;
2792     Vals64.push_back(VE.getTypeID(PN.getType()));
2793     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2794       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2795       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2796     }
2797     // Emit a Vals64 vector and exit.
2798     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2799     Vals64.clear();
2800     return;
2801   }
2802 
2803   case Instruction::LandingPad: {
2804     const LandingPadInst &LP = cast<LandingPadInst>(I);
2805     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2806     Vals.push_back(VE.getTypeID(LP.getType()));
2807     Vals.push_back(LP.isCleanup());
2808     Vals.push_back(LP.getNumClauses());
2809     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2810       if (LP.isCatch(I))
2811         Vals.push_back(LandingPadInst::Catch);
2812       else
2813         Vals.push_back(LandingPadInst::Filter);
2814       pushValueAndType(LP.getClause(I), InstID, Vals);
2815     }
2816     break;
2817   }
2818 
2819   case Instruction::Alloca: {
2820     Code = bitc::FUNC_CODE_INST_ALLOCA;
2821     const AllocaInst &AI = cast<AllocaInst>(I);
2822     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2823     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2824     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2825     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
2826     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
2827            "not enough bits for maximum alignment");
2828     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2829     AlignRecord |= AI.isUsedWithInAlloca() << 5;
2830     AlignRecord |= 1 << 6;
2831     AlignRecord |= AI.isSwiftError() << 7;
2832     Vals.push_back(AlignRecord);
2833     break;
2834   }
2835 
2836   case Instruction::Load:
2837     if (cast<LoadInst>(I).isAtomic()) {
2838       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2839       pushValueAndType(I.getOperand(0), InstID, Vals);
2840     } else {
2841       Code = bitc::FUNC_CODE_INST_LOAD;
2842       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2843         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
2844     }
2845     Vals.push_back(VE.getTypeID(I.getType()));
2846     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
2847     Vals.push_back(cast<LoadInst>(I).isVolatile());
2848     if (cast<LoadInst>(I).isAtomic()) {
2849       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2850       Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
2851     }
2852     break;
2853   case Instruction::Store:
2854     if (cast<StoreInst>(I).isAtomic())
2855       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2856     else
2857       Code = bitc::FUNC_CODE_INST_STORE;
2858     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2859     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2860     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
2861     Vals.push_back(cast<StoreInst>(I).isVolatile());
2862     if (cast<StoreInst>(I).isAtomic()) {
2863       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2864       Vals.push_back(
2865           getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
2866     }
2867     break;
2868   case Instruction::AtomicCmpXchg:
2869     Code = bitc::FUNC_CODE_INST_CMPXCHG;
2870     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2871     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2872     pushValue(I.getOperand(2), InstID, Vals);        // newval.
2873     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2874     Vals.push_back(
2875         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2876     Vals.push_back(
2877         getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
2878     Vals.push_back(
2879         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2880     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2881     break;
2882   case Instruction::AtomicRMW:
2883     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2884     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2885     pushValue(I.getOperand(1), InstID, Vals);        // val.
2886     Vals.push_back(
2887         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2888     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2889     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2890     Vals.push_back(
2891         getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
2892     break;
2893   case Instruction::Fence:
2894     Code = bitc::FUNC_CODE_INST_FENCE;
2895     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2896     Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
2897     break;
2898   case Instruction::Call: {
2899     const CallInst &CI = cast<CallInst>(I);
2900     FunctionType *FTy = CI.getFunctionType();
2901 
2902     if (CI.hasOperandBundles())
2903       writeOperandBundles(&CI, InstID);
2904 
2905     Code = bitc::FUNC_CODE_INST_CALL;
2906 
2907     Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
2908 
2909     unsigned Flags = getOptimizationFlags(&I);
2910     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
2911                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
2912                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
2913                    1 << bitc::CALL_EXPLICIT_TYPE |
2914                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
2915                    unsigned(Flags != 0) << bitc::CALL_FMF);
2916     if (Flags != 0)
2917       Vals.push_back(Flags);
2918 
2919     Vals.push_back(VE.getTypeID(FTy));
2920     pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee
2921 
2922     // Emit value #'s for the fixed parameters.
2923     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2924       // Check for labels (can happen with asm labels).
2925       if (FTy->getParamType(i)->isLabelTy())
2926         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2927       else
2928         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2929     }
2930 
2931     // Emit type/value pairs for varargs params.
2932     if (FTy->isVarArg()) {
2933       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
2934            i != e; ++i)
2935         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2936     }
2937     break;
2938   }
2939   case Instruction::VAArg:
2940     Code = bitc::FUNC_CODE_INST_VAARG;
2941     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
2942     pushValue(I.getOperand(0), InstID, Vals);                   // valist.
2943     Vals.push_back(VE.getTypeID(I.getType())); // restype.
2944     break;
2945   }
2946 
2947   Stream.EmitRecord(Code, Vals, AbbrevToUse);
2948   Vals.clear();
2949 }
2950 
2951 /// Write a GlobalValue VST to the module. The purpose of this data structure is
2952 /// to allow clients to efficiently find the function body.
2953 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
2954   DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
2955   // Get the offset of the VST we are writing, and backpatch it into
2956   // the VST forward declaration record.
2957   uint64_t VSTOffset = Stream.GetCurrentBitNo();
2958   // The BitcodeStartBit was the stream offset of the identification block.
2959   VSTOffset -= bitcodeStartBit();
2960   assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
2961   // Note that we add 1 here because the offset is relative to one word
2962   // before the start of the identification block, which was historically
2963   // always the start of the regular bitcode header.
2964   Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
2965 
2966   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2967 
2968   auto Abbv = std::make_shared<BitCodeAbbrev>();
2969   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2970   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2971   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2972   unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2973 
2974   for (const Function &F : M) {
2975     uint64_t Record[2];
2976 
2977     if (F.isDeclaration())
2978       continue;
2979 
2980     Record[0] = VE.getValueID(&F);
2981 
2982     // Save the word offset of the function (from the start of the
2983     // actual bitcode written to the stream).
2984     uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
2985     assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
2986     // Note that we add 1 here because the offset is relative to one word
2987     // before the start of the identification block, which was historically
2988     // always the start of the regular bitcode header.
2989     Record[1] = BitcodeIndex / 32 + 1;
2990 
2991     Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
2992   }
2993 
2994   Stream.ExitBlock();
2995 }
2996 
2997 /// Emit names for arguments, instructions and basic blocks in a function.
2998 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
2999     const ValueSymbolTable &VST) {
3000   if (VST.empty())
3001     return;
3002 
3003   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3004 
3005   // FIXME: Set up the abbrev, we know how many values there are!
3006   // FIXME: We know if the type names can use 7-bit ascii.
3007   SmallVector<uint64_t, 64> NameVals;
3008 
3009   for (const ValueName &Name : VST) {
3010     // Figure out the encoding to use for the name.
3011     StringEncoding Bits = getStringEncoding(Name.getKey());
3012 
3013     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
3014     NameVals.push_back(VE.getValueID(Name.getValue()));
3015 
3016     // VST_CODE_ENTRY:   [valueid, namechar x N]
3017     // VST_CODE_BBENTRY: [bbid, namechar x N]
3018     unsigned Code;
3019     if (isa<BasicBlock>(Name.getValue())) {
3020       Code = bitc::VST_CODE_BBENTRY;
3021       if (Bits == SE_Char6)
3022         AbbrevToUse = VST_BBENTRY_6_ABBREV;
3023     } else {
3024       Code = bitc::VST_CODE_ENTRY;
3025       if (Bits == SE_Char6)
3026         AbbrevToUse = VST_ENTRY_6_ABBREV;
3027       else if (Bits == SE_Fixed7)
3028         AbbrevToUse = VST_ENTRY_7_ABBREV;
3029     }
3030 
3031     for (const auto P : Name.getKey())
3032       NameVals.push_back((unsigned char)P);
3033 
3034     // Emit the finished record.
3035     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
3036     NameVals.clear();
3037   }
3038 
3039   Stream.ExitBlock();
3040 }
3041 
3042 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3043   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3044   unsigned Code;
3045   if (isa<BasicBlock>(Order.V))
3046     Code = bitc::USELIST_CODE_BB;
3047   else
3048     Code = bitc::USELIST_CODE_DEFAULT;
3049 
3050   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3051   Record.push_back(VE.getValueID(Order.V));
3052   Stream.EmitRecord(Code, Record);
3053 }
3054 
3055 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3056   assert(VE.shouldPreserveUseListOrder() &&
3057          "Expected to be preserving use-list order");
3058 
3059   auto hasMore = [&]() {
3060     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3061   };
3062   if (!hasMore())
3063     // Nothing to do.
3064     return;
3065 
3066   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3067   while (hasMore()) {
3068     writeUseList(std::move(VE.UseListOrders.back()));
3069     VE.UseListOrders.pop_back();
3070   }
3071   Stream.ExitBlock();
3072 }
3073 
3074 /// Emit a function body to the module stream.
3075 void ModuleBitcodeWriter::writeFunction(
3076     const Function &F,
3077     DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3078   // Save the bitcode index of the start of this function block for recording
3079   // in the VST.
3080   FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3081 
3082   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3083   VE.incorporateFunction(F);
3084 
3085   SmallVector<unsigned, 64> Vals;
3086 
3087   // Emit the number of basic blocks, so the reader can create them ahead of
3088   // time.
3089   Vals.push_back(VE.getBasicBlocks().size());
3090   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3091   Vals.clear();
3092 
3093   // If there are function-local constants, emit them now.
3094   unsigned CstStart, CstEnd;
3095   VE.getFunctionConstantRange(CstStart, CstEnd);
3096   writeConstants(CstStart, CstEnd, false);
3097 
3098   // If there is function-local metadata, emit it now.
3099   writeFunctionMetadata(F);
3100 
3101   // Keep a running idea of what the instruction ID is.
3102   unsigned InstID = CstEnd;
3103 
3104   bool NeedsMetadataAttachment = F.hasMetadata();
3105 
3106   DILocation *LastDL = nullptr;
3107   // Finally, emit all the instructions, in order.
3108   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
3109     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
3110          I != E; ++I) {
3111       writeInstruction(*I, InstID, Vals);
3112 
3113       if (!I->getType()->isVoidTy())
3114         ++InstID;
3115 
3116       // If the instruction has metadata, write a metadata attachment later.
3117       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
3118 
3119       // If the instruction has a debug location, emit it.
3120       DILocation *DL = I->getDebugLoc();
3121       if (!DL)
3122         continue;
3123 
3124       if (DL == LastDL) {
3125         // Just repeat the same debug loc as last time.
3126         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3127         continue;
3128       }
3129 
3130       Vals.push_back(DL->getLine());
3131       Vals.push_back(DL->getColumn());
3132       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3133       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3134       Vals.push_back(DL->isImplicitCode());
3135       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3136       Vals.clear();
3137 
3138       LastDL = DL;
3139     }
3140 
3141   // Emit names for all the instructions etc.
3142   if (auto *Symtab = F.getValueSymbolTable())
3143     writeFunctionLevelValueSymbolTable(*Symtab);
3144 
3145   if (NeedsMetadataAttachment)
3146     writeFunctionMetadataAttachment(F);
3147   if (VE.shouldPreserveUseListOrder())
3148     writeUseListBlock(&F);
3149   VE.purgeFunction();
3150   Stream.ExitBlock();
3151 }
3152 
3153 // Emit blockinfo, which defines the standard abbreviations etc.
3154 void ModuleBitcodeWriter::writeBlockInfo() {
3155   // We only want to emit block info records for blocks that have multiple
3156   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3157   // Other blocks can define their abbrevs inline.
3158   Stream.EnterBlockInfoBlock();
3159 
3160   { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3161     auto Abbv = std::make_shared<BitCodeAbbrev>();
3162     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3163     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3164     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3165     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3166     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3167         VST_ENTRY_8_ABBREV)
3168       llvm_unreachable("Unexpected abbrev ordering!");
3169   }
3170 
3171   { // 7-bit fixed width VST_CODE_ENTRY strings.
3172     auto Abbv = std::make_shared<BitCodeAbbrev>();
3173     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3174     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3175     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3176     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3177     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3178         VST_ENTRY_7_ABBREV)
3179       llvm_unreachable("Unexpected abbrev ordering!");
3180   }
3181   { // 6-bit char6 VST_CODE_ENTRY strings.
3182     auto Abbv = std::make_shared<BitCodeAbbrev>();
3183     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3184     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3185     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3186     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3187     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3188         VST_ENTRY_6_ABBREV)
3189       llvm_unreachable("Unexpected abbrev ordering!");
3190   }
3191   { // 6-bit char6 VST_CODE_BBENTRY strings.
3192     auto Abbv = std::make_shared<BitCodeAbbrev>();
3193     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3194     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3195     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3196     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3197     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3198         VST_BBENTRY_6_ABBREV)
3199       llvm_unreachable("Unexpected abbrev ordering!");
3200   }
3201 
3202   { // SETTYPE abbrev for CONSTANTS_BLOCK.
3203     auto Abbv = std::make_shared<BitCodeAbbrev>();
3204     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3205     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3206                               VE.computeBitsRequiredForTypeIndicies()));
3207     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3208         CONSTANTS_SETTYPE_ABBREV)
3209       llvm_unreachable("Unexpected abbrev ordering!");
3210   }
3211 
3212   { // INTEGER abbrev for CONSTANTS_BLOCK.
3213     auto Abbv = std::make_shared<BitCodeAbbrev>();
3214     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3215     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3216     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3217         CONSTANTS_INTEGER_ABBREV)
3218       llvm_unreachable("Unexpected abbrev ordering!");
3219   }
3220 
3221   { // CE_CAST abbrev for CONSTANTS_BLOCK.
3222     auto Abbv = std::make_shared<BitCodeAbbrev>();
3223     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3224     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
3225     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
3226                               VE.computeBitsRequiredForTypeIndicies()));
3227     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
3228 
3229     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3230         CONSTANTS_CE_CAST_Abbrev)
3231       llvm_unreachable("Unexpected abbrev ordering!");
3232   }
3233   { // NULL abbrev for CONSTANTS_BLOCK.
3234     auto Abbv = std::make_shared<BitCodeAbbrev>();
3235     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3236     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3237         CONSTANTS_NULL_Abbrev)
3238       llvm_unreachable("Unexpected abbrev ordering!");
3239   }
3240 
3241   // FIXME: This should only use space for first class types!
3242 
3243   { // INST_LOAD abbrev for FUNCTION_BLOCK.
3244     auto Abbv = std::make_shared<BitCodeAbbrev>();
3245     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3246     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3247     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3248                               VE.computeBitsRequiredForTypeIndicies()));
3249     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3250     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3251     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3252         FUNCTION_INST_LOAD_ABBREV)
3253       llvm_unreachable("Unexpected abbrev ordering!");
3254   }
3255   { // INST_UNOP abbrev for FUNCTION_BLOCK.
3256     auto Abbv = std::make_shared<BitCodeAbbrev>();
3257     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3258     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3259     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3260     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3261         FUNCTION_INST_UNOP_ABBREV)
3262       llvm_unreachable("Unexpected abbrev ordering!");
3263   }
3264   { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3265     auto Abbv = std::make_shared<BitCodeAbbrev>();
3266     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3267     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3268     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3269     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3270     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3271         FUNCTION_INST_UNOP_FLAGS_ABBREV)
3272       llvm_unreachable("Unexpected abbrev ordering!");
3273   }
3274   { // INST_BINOP abbrev for FUNCTION_BLOCK.
3275     auto Abbv = std::make_shared<BitCodeAbbrev>();
3276     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3277     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3278     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3279     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3280     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3281         FUNCTION_INST_BINOP_ABBREV)
3282       llvm_unreachable("Unexpected abbrev ordering!");
3283   }
3284   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3285     auto Abbv = std::make_shared<BitCodeAbbrev>();
3286     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3287     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3288     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3289     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3290     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3291     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3292         FUNCTION_INST_BINOP_FLAGS_ABBREV)
3293       llvm_unreachable("Unexpected abbrev ordering!");
3294   }
3295   { // INST_CAST abbrev for FUNCTION_BLOCK.
3296     auto Abbv = std::make_shared<BitCodeAbbrev>();
3297     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3298     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
3299     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
3300                               VE.computeBitsRequiredForTypeIndicies()));
3301     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
3302     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3303         FUNCTION_INST_CAST_ABBREV)
3304       llvm_unreachable("Unexpected abbrev ordering!");
3305   }
3306 
3307   { // INST_RET abbrev for FUNCTION_BLOCK.
3308     auto Abbv = std::make_shared<BitCodeAbbrev>();
3309     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3310     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3311         FUNCTION_INST_RET_VOID_ABBREV)
3312       llvm_unreachable("Unexpected abbrev ordering!");
3313   }
3314   { // INST_RET abbrev for FUNCTION_BLOCK.
3315     auto Abbv = std::make_shared<BitCodeAbbrev>();
3316     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3317     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3318     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3319         FUNCTION_INST_RET_VAL_ABBREV)
3320       llvm_unreachable("Unexpected abbrev ordering!");
3321   }
3322   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3323     auto Abbv = std::make_shared<BitCodeAbbrev>();
3324     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3325     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3326         FUNCTION_INST_UNREACHABLE_ABBREV)
3327       llvm_unreachable("Unexpected abbrev ordering!");
3328   }
3329   {
3330     auto Abbv = std::make_shared<BitCodeAbbrev>();
3331     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3332     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3333     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3334                               Log2_32_Ceil(VE.getTypes().size() + 1)));
3335     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3336     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3337     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3338         FUNCTION_INST_GEP_ABBREV)
3339       llvm_unreachable("Unexpected abbrev ordering!");
3340   }
3341 
3342   Stream.ExitBlock();
3343 }
3344 
3345 /// Write the module path strings, currently only used when generating
3346 /// a combined index file.
3347 void IndexBitcodeWriter::writeModStrings() {
3348   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3349 
3350   // TODO: See which abbrev sizes we actually need to emit
3351 
3352   // 8-bit fixed-width MST_ENTRY strings.
3353   auto Abbv = std::make_shared<BitCodeAbbrev>();
3354   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3355   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3356   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3357   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3358   unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3359 
3360   // 7-bit fixed width MST_ENTRY strings.
3361   Abbv = std::make_shared<BitCodeAbbrev>();
3362   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3363   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3364   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3365   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3366   unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3367 
3368   // 6-bit char6 MST_ENTRY strings.
3369   Abbv = std::make_shared<BitCodeAbbrev>();
3370   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3371   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3372   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3373   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3374   unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3375 
3376   // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3377   Abbv = std::make_shared<BitCodeAbbrev>();
3378   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3379   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3380   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3381   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3382   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3383   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3384   unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3385 
3386   SmallVector<unsigned, 64> Vals;
3387   forEachModule(
3388       [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) {
3389         StringRef Key = MPSE.getKey();
3390         const auto &Value = MPSE.getValue();
3391         StringEncoding Bits = getStringEncoding(Key);
3392         unsigned AbbrevToUse = Abbrev8Bit;
3393         if (Bits == SE_Char6)
3394           AbbrevToUse = Abbrev6Bit;
3395         else if (Bits == SE_Fixed7)
3396           AbbrevToUse = Abbrev7Bit;
3397 
3398         Vals.push_back(Value.first);
3399         Vals.append(Key.begin(), Key.end());
3400 
3401         // Emit the finished record.
3402         Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3403 
3404         // Emit an optional hash for the module now
3405         const auto &Hash = Value.second;
3406         if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3407           Vals.assign(Hash.begin(), Hash.end());
3408           // Emit the hash record.
3409           Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3410         }
3411 
3412         Vals.clear();
3413       });
3414   Stream.ExitBlock();
3415 }
3416 
3417 /// Write the function type metadata related records that need to appear before
3418 /// a function summary entry (whether per-module or combined).
3419 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
3420                                              FunctionSummary *FS) {
3421   if (!FS->type_tests().empty())
3422     Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3423 
3424   SmallVector<uint64_t, 64> Record;
3425 
3426   auto WriteVFuncIdVec = [&](uint64_t Ty,
3427                              ArrayRef<FunctionSummary::VFuncId> VFs) {
3428     if (VFs.empty())
3429       return;
3430     Record.clear();
3431     for (auto &VF : VFs) {
3432       Record.push_back(VF.GUID);
3433       Record.push_back(VF.Offset);
3434     }
3435     Stream.EmitRecord(Ty, Record);
3436   };
3437 
3438   WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3439                   FS->type_test_assume_vcalls());
3440   WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3441                   FS->type_checked_load_vcalls());
3442 
3443   auto WriteConstVCallVec = [&](uint64_t Ty,
3444                                 ArrayRef<FunctionSummary::ConstVCall> VCs) {
3445     for (auto &VC : VCs) {
3446       Record.clear();
3447       Record.push_back(VC.VFunc.GUID);
3448       Record.push_back(VC.VFunc.Offset);
3449       Record.insert(Record.end(), VC.Args.begin(), VC.Args.end());
3450       Stream.EmitRecord(Ty, Record);
3451     }
3452   };
3453 
3454   WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3455                      FS->type_test_assume_const_vcalls());
3456   WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3457                      FS->type_checked_load_const_vcalls());
3458 }
3459 
3460 /// Collect type IDs from type tests used by function.
3461 static void
3462 getReferencedTypeIds(FunctionSummary *FS,
3463                      std::set<GlobalValue::GUID> &ReferencedTypeIds) {
3464   if (!FS->type_tests().empty())
3465     for (auto &TT : FS->type_tests())
3466       ReferencedTypeIds.insert(TT);
3467 
3468   auto GetReferencedTypesFromVFuncIdVec =
3469       [&](ArrayRef<FunctionSummary::VFuncId> VFs) {
3470         for (auto &VF : VFs)
3471           ReferencedTypeIds.insert(VF.GUID);
3472       };
3473 
3474   GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
3475   GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
3476 
3477   auto GetReferencedTypesFromConstVCallVec =
3478       [&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
3479         for (auto &VC : VCs)
3480           ReferencedTypeIds.insert(VC.VFunc.GUID);
3481       };
3482 
3483   GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
3484   GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
3485 }
3486 
3487 static void writeWholeProgramDevirtResolutionByArg(
3488     SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
3489     const WholeProgramDevirtResolution::ByArg &ByArg) {
3490   NameVals.push_back(args.size());
3491   NameVals.insert(NameVals.end(), args.begin(), args.end());
3492 
3493   NameVals.push_back(ByArg.TheKind);
3494   NameVals.push_back(ByArg.Info);
3495   NameVals.push_back(ByArg.Byte);
3496   NameVals.push_back(ByArg.Bit);
3497 }
3498 
3499 static void writeWholeProgramDevirtResolution(
3500     SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3501     uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
3502   NameVals.push_back(Id);
3503 
3504   NameVals.push_back(Wpd.TheKind);
3505   NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
3506   NameVals.push_back(Wpd.SingleImplName.size());
3507 
3508   NameVals.push_back(Wpd.ResByArg.size());
3509   for (auto &A : Wpd.ResByArg)
3510     writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
3511 }
3512 
3513 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
3514                                      StringTableBuilder &StrtabBuilder,
3515                                      const std::string &Id,
3516                                      const TypeIdSummary &Summary) {
3517   NameVals.push_back(StrtabBuilder.add(Id));
3518   NameVals.push_back(Id.size());
3519 
3520   NameVals.push_back(Summary.TTRes.TheKind);
3521   NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
3522   NameVals.push_back(Summary.TTRes.AlignLog2);
3523   NameVals.push_back(Summary.TTRes.SizeM1);
3524   NameVals.push_back(Summary.TTRes.BitMask);
3525   NameVals.push_back(Summary.TTRes.InlineBits);
3526 
3527   for (auto &W : Summary.WPDRes)
3528     writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
3529                                       W.second);
3530 }
3531 
3532 // Helper to emit a single function summary record.
3533 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
3534     SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3535     unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3536     const Function &F) {
3537   NameVals.push_back(ValueID);
3538 
3539   FunctionSummary *FS = cast<FunctionSummary>(Summary);
3540   writeFunctionTypeMetadataRecords(Stream, FS);
3541 
3542   NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3543   NameVals.push_back(FS->instCount());
3544   NameVals.push_back(getEncodedFFlags(FS->fflags()));
3545   NameVals.push_back(FS->refs().size());
3546   NameVals.push_back(FS->immutableRefCount());
3547 
3548   for (auto &RI : FS->refs())
3549     NameVals.push_back(VE.getValueID(RI.getValue()));
3550 
3551   bool HasProfileData =
3552       F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None;
3553   for (auto &ECI : FS->calls()) {
3554     NameVals.push_back(getValueId(ECI.first));
3555     if (HasProfileData)
3556       NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
3557     else if (WriteRelBFToSummary)
3558       NameVals.push_back(ECI.second.RelBlockFreq);
3559   }
3560 
3561   unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3562   unsigned Code =
3563       (HasProfileData ? bitc::FS_PERMODULE_PROFILE
3564                       : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF
3565                                              : bitc::FS_PERMODULE));
3566 
3567   // Emit the finished record.
3568   Stream.EmitRecord(Code, NameVals, FSAbbrev);
3569   NameVals.clear();
3570 }
3571 
3572 // Collect the global value references in the given variable's initializer,
3573 // and emit them in a summary record.
3574 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
3575     const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3576     unsigned FSModRefsAbbrev) {
3577   auto VI = Index->getValueInfo(V.getGUID());
3578   if (!VI || VI.getSummaryList().empty()) {
3579     // Only declarations should not have a summary (a declaration might however
3580     // have a summary if the def was in module level asm).
3581     assert(V.isDeclaration());
3582     return;
3583   }
3584   auto *Summary = VI.getSummaryList()[0].get();
3585   NameVals.push_back(VE.getValueID(&V));
3586   GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3587   NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3588   NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
3589 
3590   unsigned SizeBeforeRefs = NameVals.size();
3591   for (auto &RI : VS->refs())
3592     NameVals.push_back(VE.getValueID(RI.getValue()));
3593   // Sort the refs for determinism output, the vector returned by FS->refs() has
3594   // been initialized from a DenseSet.
3595   llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3596 
3597   Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
3598                     FSModRefsAbbrev);
3599   NameVals.clear();
3600 }
3601 
3602 // Current version for the summary.
3603 // This is bumped whenever we introduce changes in the way some record are
3604 // interpreted, like flags for instance.
3605 static const uint64_t INDEX_VERSION = 6;
3606 
3607 /// Emit the per-module summary section alongside the rest of
3608 /// the module's bitcode.
3609 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
3610   // By default we compile with ThinLTO if the module has a summary, but the
3611   // client can request full LTO with a module flag.
3612   bool IsThinLTO = true;
3613   if (auto *MD =
3614           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
3615     IsThinLTO = MD->getZExtValue();
3616   Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
3617                                  : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
3618                        4);
3619 
3620   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3621 
3622   // Write the index flags.
3623   uint64_t Flags = 0;
3624   // Bits 1-3 are set only in the combined index, skip them.
3625   if (Index->enableSplitLTOUnit())
3626     Flags |= 0x8;
3627   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
3628 
3629   if (Index->begin() == Index->end()) {
3630     Stream.ExitBlock();
3631     return;
3632   }
3633 
3634   for (const auto &GVI : valueIds()) {
3635     Stream.EmitRecord(bitc::FS_VALUE_GUID,
3636                       ArrayRef<uint64_t>{GVI.second, GVI.first});
3637   }
3638 
3639   // Abbrev for FS_PERMODULE_PROFILE.
3640   auto Abbv = std::make_shared<BitCodeAbbrev>();
3641   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
3642   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3643   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3644   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3645   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3646   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3647   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // immutablerefcnt
3648   // numrefs x valueid, n x (valueid, hotness)
3649   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3650   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3651   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3652 
3653   // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF.
3654   Abbv = std::make_shared<BitCodeAbbrev>();
3655   if (WriteRelBFToSummary)
3656     Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
3657   else
3658     Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3659   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3660   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3661   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3662   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3663   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3664   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // immutablerefcnt
3665   // numrefs x valueid, n x (valueid [, rel_block_freq])
3666   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3667   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3668   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3669 
3670   // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3671   Abbv = std::make_shared<BitCodeAbbrev>();
3672   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
3673   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3674   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3675   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
3676   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3677   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3678 
3679   // Abbrev for FS_ALIAS.
3680   Abbv = std::make_shared<BitCodeAbbrev>();
3681   Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3682   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3683   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3684   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3685   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3686 
3687   SmallVector<uint64_t, 64> NameVals;
3688   // Iterate over the list of functions instead of the Index to
3689   // ensure the ordering is stable.
3690   for (const Function &F : M) {
3691     // Summary emission does not support anonymous functions, they have to
3692     // renamed using the anonymous function renaming pass.
3693     if (!F.hasName())
3694       report_fatal_error("Unexpected anonymous function when writing summary");
3695 
3696     ValueInfo VI = Index->getValueInfo(F.getGUID());
3697     if (!VI || VI.getSummaryList().empty()) {
3698       // Only declarations should not have a summary (a declaration might
3699       // however have a summary if the def was in module level asm).
3700       assert(F.isDeclaration());
3701       continue;
3702     }
3703     auto *Summary = VI.getSummaryList()[0].get();
3704     writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
3705                                         FSCallsAbbrev, FSCallsProfileAbbrev, F);
3706   }
3707 
3708   // Capture references from GlobalVariable initializers, which are outside
3709   // of a function scope.
3710   for (const GlobalVariable &G : M.globals())
3711     writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev);
3712 
3713   for (const GlobalAlias &A : M.aliases()) {
3714     auto *Aliasee = A.getBaseObject();
3715     if (!Aliasee->hasName())
3716       // Nameless function don't have an entry in the summary, skip it.
3717       continue;
3718     auto AliasId = VE.getValueID(&A);
3719     auto AliaseeId = VE.getValueID(Aliasee);
3720     NameVals.push_back(AliasId);
3721     auto *Summary = Index->getGlobalValueSummary(A);
3722     AliasSummary *AS = cast<AliasSummary>(Summary);
3723     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3724     NameVals.push_back(AliaseeId);
3725     Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
3726     NameVals.clear();
3727   }
3728 
3729   Stream.ExitBlock();
3730 }
3731 
3732 /// Emit the combined summary section into the combined index file.
3733 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
3734   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
3735   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3736 
3737   // Write the index flags.
3738   uint64_t Flags = 0;
3739   if (Index.withGlobalValueDeadStripping())
3740     Flags |= 0x1;
3741   if (Index.skipModuleByDistributedBackend())
3742     Flags |= 0x2;
3743   if (Index.hasSyntheticEntryCounts())
3744     Flags |= 0x4;
3745   if (Index.enableSplitLTOUnit())
3746     Flags |= 0x8;
3747   if (Index.partiallySplitLTOUnits())
3748     Flags |= 0x10;
3749   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
3750 
3751   for (const auto &GVI : valueIds()) {
3752     Stream.EmitRecord(bitc::FS_VALUE_GUID,
3753                       ArrayRef<uint64_t>{GVI.second, GVI.first});
3754   }
3755 
3756   // Abbrev for FS_COMBINED.
3757   auto Abbv = std::make_shared<BitCodeAbbrev>();
3758   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
3759   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3760   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3761   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3762   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3763   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3764   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount
3765   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3766   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // immutablerefcnt
3767   // numrefs x valueid, n x (valueid)
3768   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3769   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3770   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3771 
3772   // Abbrev for FS_COMBINED_PROFILE.
3773   Abbv = std::make_shared<BitCodeAbbrev>();
3774   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
3775   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3776   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3777   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3778   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3779   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3780   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3781   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // immutablerefcnt
3782   // numrefs x valueid, n x (valueid, hotness)
3783   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3784   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3785   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3786 
3787   // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
3788   Abbv = std::make_shared<BitCodeAbbrev>();
3789   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
3790   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3791   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3792   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3793   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
3794   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3795   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3796 
3797   // Abbrev for FS_COMBINED_ALIAS.
3798   Abbv = std::make_shared<BitCodeAbbrev>();
3799   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
3800   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3801   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3802   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3803   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3804   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3805 
3806   // The aliases are emitted as a post-pass, and will point to the value
3807   // id of the aliasee. Save them in a vector for post-processing.
3808   SmallVector<AliasSummary *, 64> Aliases;
3809 
3810   // Save the value id for each summary for alias emission.
3811   DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
3812 
3813   SmallVector<uint64_t, 64> NameVals;
3814 
3815   // Set that will be populated during call to writeFunctionTypeMetadataRecords
3816   // with the type ids referenced by this index file.
3817   std::set<GlobalValue::GUID> ReferencedTypeIds;
3818 
3819   // For local linkage, we also emit the original name separately
3820   // immediately after the record.
3821   auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
3822     if (!GlobalValue::isLocalLinkage(S.linkage()))
3823       return;
3824     NameVals.push_back(S.getOriginalName());
3825     Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
3826     NameVals.clear();
3827   };
3828 
3829   forEachSummary([&](GVInfo I, bool IsAliasee) {
3830     GlobalValueSummary *S = I.second;
3831     assert(S);
3832 
3833     auto ValueId = getValueId(I.first);
3834     assert(ValueId);
3835     SummaryToValueIdMap[S] = *ValueId;
3836 
3837     // If this is invoked for an aliasee, we want to record the above
3838     // mapping, but then not emit a summary entry (if the aliasee is
3839     // to be imported, we will invoke this separately with IsAliasee=false).
3840     if (IsAliasee)
3841       return;
3842 
3843     if (auto *AS = dyn_cast<AliasSummary>(S)) {
3844       // Will process aliases as a post-pass because the reader wants all
3845       // global to be loaded first.
3846       Aliases.push_back(AS);
3847       return;
3848     }
3849 
3850     if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
3851       NameVals.push_back(*ValueId);
3852       NameVals.push_back(Index.getModuleId(VS->modulePath()));
3853       NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3854       NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
3855       for (auto &RI : VS->refs()) {
3856         auto RefValueId = getValueId(RI.getGUID());
3857         if (!RefValueId)
3858           continue;
3859         NameVals.push_back(*RefValueId);
3860       }
3861 
3862       // Emit the finished record.
3863       Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
3864                         FSModRefsAbbrev);
3865       NameVals.clear();
3866       MaybeEmitOriginalName(*S);
3867       return;
3868     }
3869 
3870     auto *FS = cast<FunctionSummary>(S);
3871     writeFunctionTypeMetadataRecords(Stream, FS);
3872     getReferencedTypeIds(FS, ReferencedTypeIds);
3873 
3874     NameVals.push_back(*ValueId);
3875     NameVals.push_back(Index.getModuleId(FS->modulePath()));
3876     NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3877     NameVals.push_back(FS->instCount());
3878     NameVals.push_back(getEncodedFFlags(FS->fflags()));
3879     NameVals.push_back(FS->entryCount());
3880 
3881     // Fill in below
3882     NameVals.push_back(0); // numrefs
3883     NameVals.push_back(0); // immutablerefcnt
3884 
3885     unsigned Count = 0, ImmutableRefCnt = 0;
3886     for (auto &RI : FS->refs()) {
3887       auto RefValueId = getValueId(RI.getGUID());
3888       if (!RefValueId)
3889         continue;
3890       NameVals.push_back(*RefValueId);
3891       if (RI.isReadOnly())
3892         ImmutableRefCnt++;
3893       Count++;
3894     }
3895     NameVals[6] = Count;
3896     NameVals[7] = ImmutableRefCnt;
3897 
3898     bool HasProfileData = false;
3899     for (auto &EI : FS->calls()) {
3900       HasProfileData |=
3901           EI.second.getHotness() != CalleeInfo::HotnessType::Unknown;
3902       if (HasProfileData)
3903         break;
3904     }
3905 
3906     for (auto &EI : FS->calls()) {
3907       // If this GUID doesn't have a value id, it doesn't have a function
3908       // summary and we don't need to record any calls to it.
3909       GlobalValue::GUID GUID = EI.first.getGUID();
3910       auto CallValueId = getValueId(GUID);
3911       if (!CallValueId) {
3912         // For SamplePGO, the indirect call targets for local functions will
3913         // have its original name annotated in profile. We try to find the
3914         // corresponding PGOFuncName as the GUID.
3915         GUID = Index.getGUIDFromOriginalID(GUID);
3916         if (GUID == 0)
3917           continue;
3918         CallValueId = getValueId(GUID);
3919         if (!CallValueId)
3920           continue;
3921         // The mapping from OriginalId to GUID may return a GUID
3922         // that corresponds to a static variable. Filter it out here.
3923         // This can happen when
3924         // 1) There is a call to a library function which does not have
3925         // a CallValidId;
3926         // 2) There is a static variable with the  OriginalGUID identical
3927         // to the GUID of the library function in 1);
3928         // When this happens, the logic for SamplePGO kicks in and
3929         // the static variable in 2) will be found, which needs to be
3930         // filtered out.
3931         auto *GVSum = Index.getGlobalValueSummary(GUID, false);
3932         if (GVSum &&
3933             GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind)
3934           continue;
3935       }
3936       NameVals.push_back(*CallValueId);
3937       if (HasProfileData)
3938         NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
3939     }
3940 
3941     unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3942     unsigned Code =
3943         (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
3944 
3945     // Emit the finished record.
3946     Stream.EmitRecord(Code, NameVals, FSAbbrev);
3947     NameVals.clear();
3948     MaybeEmitOriginalName(*S);
3949   });
3950 
3951   for (auto *AS : Aliases) {
3952     auto AliasValueId = SummaryToValueIdMap[AS];
3953     assert(AliasValueId);
3954     NameVals.push_back(AliasValueId);
3955     NameVals.push_back(Index.getModuleId(AS->modulePath()));
3956     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3957     auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
3958     assert(AliaseeValueId);
3959     NameVals.push_back(AliaseeValueId);
3960 
3961     // Emit the finished record.
3962     Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
3963     NameVals.clear();
3964     MaybeEmitOriginalName(*AS);
3965 
3966     if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
3967       getReferencedTypeIds(FS, ReferencedTypeIds);
3968   }
3969 
3970   if (!Index.cfiFunctionDefs().empty()) {
3971     for (auto &S : Index.cfiFunctionDefs()) {
3972       NameVals.push_back(StrtabBuilder.add(S));
3973       NameVals.push_back(S.size());
3974     }
3975     Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
3976     NameVals.clear();
3977   }
3978 
3979   if (!Index.cfiFunctionDecls().empty()) {
3980     for (auto &S : Index.cfiFunctionDecls()) {
3981       NameVals.push_back(StrtabBuilder.add(S));
3982       NameVals.push_back(S.size());
3983     }
3984     Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
3985     NameVals.clear();
3986   }
3987 
3988   // Walk the GUIDs that were referenced, and write the
3989   // corresponding type id records.
3990   for (auto &T : ReferencedTypeIds) {
3991     auto TidIter = Index.typeIds().equal_range(T);
3992     for (auto It = TidIter.first; It != TidIter.second; ++It) {
3993       writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first,
3994                                It->second.second);
3995       Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
3996       NameVals.clear();
3997     }
3998   }
3999 
4000   Stream.ExitBlock();
4001 }
4002 
4003 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
4004 /// current llvm version, and a record for the epoch number.
4005 static void writeIdentificationBlock(BitstreamWriter &Stream) {
4006   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
4007 
4008   // Write the "user readable" string identifying the bitcode producer
4009   auto Abbv = std::make_shared<BitCodeAbbrev>();
4010   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
4011   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4012   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
4013   auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4014   writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
4015                     "LLVM" LLVM_VERSION_STRING, StringAbbrev);
4016 
4017   // Write the epoch version
4018   Abbv = std::make_shared<BitCodeAbbrev>();
4019   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
4020   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4021   auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4022   SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
4023   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
4024   Stream.ExitBlock();
4025 }
4026 
4027 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
4028   // Emit the module's hash.
4029   // MODULE_CODE_HASH: [5*i32]
4030   if (GenerateHash) {
4031     uint32_t Vals[5];
4032     Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
4033                                     Buffer.size() - BlockStartPos));
4034     StringRef Hash = Hasher.result();
4035     for (int Pos = 0; Pos < 20; Pos += 4) {
4036       Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
4037     }
4038 
4039     // Emit the finished record.
4040     Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
4041 
4042     if (ModHash)
4043       // Save the written hash value.
4044       llvm::copy(Vals, std::begin(*ModHash));
4045   }
4046 }
4047 
4048 void ModuleBitcodeWriter::write() {
4049   writeIdentificationBlock(Stream);
4050 
4051   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4052   size_t BlockStartPos = Buffer.size();
4053 
4054   writeModuleVersion();
4055 
4056   // Emit blockinfo, which defines the standard abbreviations etc.
4057   writeBlockInfo();
4058 
4059   // Emit information about attribute groups.
4060   writeAttributeGroupTable();
4061 
4062   // Emit information about parameter attributes.
4063   writeAttributeTable();
4064 
4065   // Emit information describing all of the types in the module.
4066   writeTypeTable();
4067 
4068   writeComdats();
4069 
4070   // Emit top-level description of module, including target triple, inline asm,
4071   // descriptors for global variables, and function prototype info.
4072   writeModuleInfo();
4073 
4074   // Emit constants.
4075   writeModuleConstants();
4076 
4077   // Emit metadata kind names.
4078   writeModuleMetadataKinds();
4079 
4080   // Emit metadata.
4081   writeModuleMetadata();
4082 
4083   // Emit module-level use-lists.
4084   if (VE.shouldPreserveUseListOrder())
4085     writeUseListBlock(nullptr);
4086 
4087   writeOperandBundleTags();
4088   writeSyncScopeNames();
4089 
4090   // Emit function bodies.
4091   DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
4092   for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
4093     if (!F->isDeclaration())
4094       writeFunction(*F, FunctionToBitcodeIndex);
4095 
4096   // Need to write after the above call to WriteFunction which populates
4097   // the summary information in the index.
4098   if (Index)
4099     writePerModuleGlobalValueSummary();
4100 
4101   writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
4102 
4103   writeModuleHash(BlockStartPos);
4104 
4105   Stream.ExitBlock();
4106 }
4107 
4108 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
4109                                uint32_t &Position) {
4110   support::endian::write32le(&Buffer[Position], Value);
4111   Position += 4;
4112 }
4113 
4114 /// If generating a bc file on darwin, we have to emit a
4115 /// header and trailer to make it compatible with the system archiver.  To do
4116 /// this we emit the following header, and then emit a trailer that pads the
4117 /// file out to be a multiple of 16 bytes.
4118 ///
4119 /// struct bc_header {
4120 ///   uint32_t Magic;         // 0x0B17C0DE
4121 ///   uint32_t Version;       // Version, currently always 0.
4122 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4123 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
4124 ///   uint32_t CPUType;       // CPU specifier.
4125 ///   ... potentially more later ...
4126 /// };
4127 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
4128                                          const Triple &TT) {
4129   unsigned CPUType = ~0U;
4130 
4131   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4132   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4133   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
4134   // specific constants here because they are implicitly part of the Darwin ABI.
4135   enum {
4136     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
4137     DARWIN_CPU_TYPE_X86        = 7,
4138     DARWIN_CPU_TYPE_ARM        = 12,
4139     DARWIN_CPU_TYPE_POWERPC    = 18
4140   };
4141 
4142   Triple::ArchType Arch = TT.getArch();
4143   if (Arch == Triple::x86_64)
4144     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4145   else if (Arch == Triple::x86)
4146     CPUType = DARWIN_CPU_TYPE_X86;
4147   else if (Arch == Triple::ppc)
4148     CPUType = DARWIN_CPU_TYPE_POWERPC;
4149   else if (Arch == Triple::ppc64)
4150     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4151   else if (Arch == Triple::arm || Arch == Triple::thumb)
4152     CPUType = DARWIN_CPU_TYPE_ARM;
4153 
4154   // Traditional Bitcode starts after header.
4155   assert(Buffer.size() >= BWH_HeaderSize &&
4156          "Expected header size to be reserved");
4157   unsigned BCOffset = BWH_HeaderSize;
4158   unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4159 
4160   // Write the magic and version.
4161   unsigned Position = 0;
4162   writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4163   writeInt32ToBuffer(0, Buffer, Position); // Version.
4164   writeInt32ToBuffer(BCOffset, Buffer, Position);
4165   writeInt32ToBuffer(BCSize, Buffer, Position);
4166   writeInt32ToBuffer(CPUType, Buffer, Position);
4167 
4168   // If the file is not a multiple of 16 bytes, insert dummy padding.
4169   while (Buffer.size() & 15)
4170     Buffer.push_back(0);
4171 }
4172 
4173 /// Helper to write the header common to all bitcode files.
4174 static void writeBitcodeHeader(BitstreamWriter &Stream) {
4175   // Emit the file header.
4176   Stream.Emit((unsigned)'B', 8);
4177   Stream.Emit((unsigned)'C', 8);
4178   Stream.Emit(0x0, 4);
4179   Stream.Emit(0xC, 4);
4180   Stream.Emit(0xE, 4);
4181   Stream.Emit(0xD, 4);
4182 }
4183 
4184 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
4185     : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) {
4186   writeBitcodeHeader(*Stream);
4187 }
4188 
4189 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
4190 
4191 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
4192   Stream->EnterSubblock(Block, 3);
4193 
4194   auto Abbv = std::make_shared<BitCodeAbbrev>();
4195   Abbv->Add(BitCodeAbbrevOp(Record));
4196   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4197   auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
4198 
4199   Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
4200 
4201   Stream->ExitBlock();
4202 }
4203 
4204 void BitcodeWriter::writeSymtab() {
4205   assert(!WroteStrtab && !WroteSymtab);
4206 
4207   // If any module has module-level inline asm, we will require a registered asm
4208   // parser for the target so that we can create an accurate symbol table for
4209   // the module.
4210   for (Module *M : Mods) {
4211     if (M->getModuleInlineAsm().empty())
4212       continue;
4213 
4214     std::string Err;
4215     const Triple TT(M->getTargetTriple());
4216     const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
4217     if (!T || !T->hasMCAsmParser())
4218       return;
4219   }
4220 
4221   WroteSymtab = true;
4222   SmallVector<char, 0> Symtab;
4223   // The irsymtab::build function may be unable to create a symbol table if the
4224   // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4225   // table is not required for correctness, but we still want to be able to
4226   // write malformed modules to bitcode files, so swallow the error.
4227   if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
4228     consumeError(std::move(E));
4229     return;
4230   }
4231 
4232   writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
4233             {Symtab.data(), Symtab.size()});
4234 }
4235 
4236 void BitcodeWriter::writeStrtab() {
4237   assert(!WroteStrtab);
4238 
4239   std::vector<char> Strtab;
4240   StrtabBuilder.finalizeInOrder();
4241   Strtab.resize(StrtabBuilder.getSize());
4242   StrtabBuilder.write((uint8_t *)Strtab.data());
4243 
4244   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
4245             {Strtab.data(), Strtab.size()});
4246 
4247   WroteStrtab = true;
4248 }
4249 
4250 void BitcodeWriter::copyStrtab(StringRef Strtab) {
4251   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
4252   WroteStrtab = true;
4253 }
4254 
4255 void BitcodeWriter::writeModule(const Module &M,
4256                                 bool ShouldPreserveUseListOrder,
4257                                 const ModuleSummaryIndex *Index,
4258                                 bool GenerateHash, ModuleHash *ModHash) {
4259   assert(!WroteStrtab);
4260 
4261   // The Mods vector is used by irsymtab::build, which requires non-const
4262   // Modules in case it needs to materialize metadata. But the bitcode writer
4263   // requires that the module is materialized, so we can cast to non-const here,
4264   // after checking that it is in fact materialized.
4265   assert(M.isMaterialized());
4266   Mods.push_back(const_cast<Module *>(&M));
4267 
4268   ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
4269                                    ShouldPreserveUseListOrder, Index,
4270                                    GenerateHash, ModHash);
4271   ModuleWriter.write();
4272 }
4273 
4274 void BitcodeWriter::writeIndex(
4275     const ModuleSummaryIndex *Index,
4276     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4277   IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
4278                                  ModuleToSummariesForIndex);
4279   IndexWriter.write();
4280 }
4281 
4282 /// Write the specified module to the specified output stream.
4283 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
4284                               bool ShouldPreserveUseListOrder,
4285                               const ModuleSummaryIndex *Index,
4286                               bool GenerateHash, ModuleHash *ModHash) {
4287   SmallVector<char, 0> Buffer;
4288   Buffer.reserve(256*1024);
4289 
4290   // If this is darwin or another generic macho target, reserve space for the
4291   // header.
4292   Triple TT(M.getTargetTriple());
4293   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4294     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
4295 
4296   BitcodeWriter Writer(Buffer);
4297   Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
4298                      ModHash);
4299   Writer.writeSymtab();
4300   Writer.writeStrtab();
4301 
4302   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4303     emitDarwinBCHeaderAndTrailer(Buffer, TT);
4304 
4305   // Write the generated bitstream to "Out".
4306   Out.write((char*)&Buffer.front(), Buffer.size());
4307 }
4308 
4309 void IndexBitcodeWriter::write() {
4310   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4311 
4312   writeModuleVersion();
4313 
4314   // Write the module paths in the combined index.
4315   writeModStrings();
4316 
4317   // Write the summary combined index records.
4318   writeCombinedGlobalValueSummary();
4319 
4320   Stream.ExitBlock();
4321 }
4322 
4323 // Write the specified module summary index to the given raw output stream,
4324 // where it will be written in a new bitcode block. This is used when
4325 // writing the combined index file for ThinLTO. When writing a subset of the
4326 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
4327 void llvm::WriteIndexToFile(
4328     const ModuleSummaryIndex &Index, raw_ostream &Out,
4329     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4330   SmallVector<char, 0> Buffer;
4331   Buffer.reserve(256 * 1024);
4332 
4333   BitcodeWriter Writer(Buffer);
4334   Writer.writeIndex(&Index, ModuleToSummariesForIndex);
4335   Writer.writeStrtab();
4336 
4337   Out.write((char *)&Buffer.front(), Buffer.size());
4338 }
4339 
4340 namespace {
4341 
4342 /// Class to manage the bitcode writing for a thin link bitcode file.
4343 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
4344   /// ModHash is for use in ThinLTO incremental build, generated while writing
4345   /// the module bitcode file.
4346   const ModuleHash *ModHash;
4347 
4348 public:
4349   ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
4350                         BitstreamWriter &Stream,
4351                         const ModuleSummaryIndex &Index,
4352                         const ModuleHash &ModHash)
4353       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
4354                                 /*ShouldPreserveUseListOrder=*/false, &Index),
4355         ModHash(&ModHash) {}
4356 
4357   void write();
4358 
4359 private:
4360   void writeSimplifiedModuleInfo();
4361 };
4362 
4363 } // end anonymous namespace
4364 
4365 // This function writes a simpilified module info for thin link bitcode file.
4366 // It only contains the source file name along with the name(the offset and
4367 // size in strtab) and linkage for global values. For the global value info
4368 // entry, in order to keep linkage at offset 5, there are three zeros used
4369 // as padding.
4370 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
4371   SmallVector<unsigned, 64> Vals;
4372   // Emit the module's source file name.
4373   {
4374     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
4375     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
4376     if (Bits == SE_Char6)
4377       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
4378     else if (Bits == SE_Fixed7)
4379       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
4380 
4381     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4382     auto Abbv = std::make_shared<BitCodeAbbrev>();
4383     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
4384     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4385     Abbv->Add(AbbrevOpToUse);
4386     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4387 
4388     for (const auto P : M.getSourceFileName())
4389       Vals.push_back((unsigned char)P);
4390 
4391     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
4392     Vals.clear();
4393   }
4394 
4395   // Emit the global variable information.
4396   for (const GlobalVariable &GV : M.globals()) {
4397     // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
4398     Vals.push_back(StrtabBuilder.add(GV.getName()));
4399     Vals.push_back(GV.getName().size());
4400     Vals.push_back(0);
4401     Vals.push_back(0);
4402     Vals.push_back(0);
4403     Vals.push_back(getEncodedLinkage(GV));
4404 
4405     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
4406     Vals.clear();
4407   }
4408 
4409   // Emit the function proto information.
4410   for (const Function &F : M) {
4411     // FUNCTION:  [strtab offset, strtab size, 0, 0, 0, linkage]
4412     Vals.push_back(StrtabBuilder.add(F.getName()));
4413     Vals.push_back(F.getName().size());
4414     Vals.push_back(0);
4415     Vals.push_back(0);
4416     Vals.push_back(0);
4417     Vals.push_back(getEncodedLinkage(F));
4418 
4419     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
4420     Vals.clear();
4421   }
4422 
4423   // Emit the alias information.
4424   for (const GlobalAlias &A : M.aliases()) {
4425     // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
4426     Vals.push_back(StrtabBuilder.add(A.getName()));
4427     Vals.push_back(A.getName().size());
4428     Vals.push_back(0);
4429     Vals.push_back(0);
4430     Vals.push_back(0);
4431     Vals.push_back(getEncodedLinkage(A));
4432 
4433     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
4434     Vals.clear();
4435   }
4436 
4437   // Emit the ifunc information.
4438   for (const GlobalIFunc &I : M.ifuncs()) {
4439     // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
4440     Vals.push_back(StrtabBuilder.add(I.getName()));
4441     Vals.push_back(I.getName().size());
4442     Vals.push_back(0);
4443     Vals.push_back(0);
4444     Vals.push_back(0);
4445     Vals.push_back(getEncodedLinkage(I));
4446 
4447     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
4448     Vals.clear();
4449   }
4450 }
4451 
4452 void ThinLinkBitcodeWriter::write() {
4453   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4454 
4455   writeModuleVersion();
4456 
4457   writeSimplifiedModuleInfo();
4458 
4459   writePerModuleGlobalValueSummary();
4460 
4461   // Write module hash.
4462   Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
4463 
4464   Stream.ExitBlock();
4465 }
4466 
4467 void BitcodeWriter::writeThinLinkBitcode(const Module &M,
4468                                          const ModuleSummaryIndex &Index,
4469                                          const ModuleHash &ModHash) {
4470   assert(!WroteStrtab);
4471 
4472   // The Mods vector is used by irsymtab::build, which requires non-const
4473   // Modules in case it needs to materialize metadata. But the bitcode writer
4474   // requires that the module is materialized, so we can cast to non-const here,
4475   // after checking that it is in fact materialized.
4476   assert(M.isMaterialized());
4477   Mods.push_back(const_cast<Module *>(&M));
4478 
4479   ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
4480                                        ModHash);
4481   ThinLinkWriter.write();
4482 }
4483 
4484 // Write the specified thin link bitcode file to the given raw output stream,
4485 // where it will be written in a new bitcode block. This is used when
4486 // writing the per-module index file for ThinLTO.
4487 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
4488                                       const ModuleSummaryIndex &Index,
4489                                       const ModuleHash &ModHash) {
4490   SmallVector<char, 0> Buffer;
4491   Buffer.reserve(256 * 1024);
4492 
4493   BitcodeWriter Writer(Buffer);
4494   Writer.writeThinLinkBitcode(M, Index, ModHash);
4495   Writer.writeSymtab();
4496   Writer.writeStrtab();
4497 
4498   Out.write((char *)&Buffer.front(), Buffer.size());
4499 }
4500