1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/StringExtras.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/Bitcode/ReaderWriter.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/UseListOrder.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Support/Program.h" 34 #include "llvm/Support/SHA1.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <cctype> 37 #include <map> 38 using namespace llvm; 39 40 namespace { 41 /// These are manifest constants used by the bitcode writer. They do not need to 42 /// be kept in sync with the reader, but need to be consistent within this file. 43 enum { 44 // VALUE_SYMTAB_BLOCK abbrev id's. 45 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 46 VST_ENTRY_7_ABBREV, 47 VST_ENTRY_6_ABBREV, 48 VST_BBENTRY_6_ABBREV, 49 50 // CONSTANTS_BLOCK abbrev id's. 51 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 CONSTANTS_INTEGER_ABBREV, 53 CONSTANTS_CE_CAST_Abbrev, 54 CONSTANTS_NULL_Abbrev, 55 56 // FUNCTION_BLOCK abbrev id's. 57 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 58 FUNCTION_INST_BINOP_ABBREV, 59 FUNCTION_INST_BINOP_FLAGS_ABBREV, 60 FUNCTION_INST_CAST_ABBREV, 61 FUNCTION_INST_RET_VOID_ABBREV, 62 FUNCTION_INST_RET_VAL_ABBREV, 63 FUNCTION_INST_UNREACHABLE_ABBREV, 64 FUNCTION_INST_GEP_ABBREV, 65 }; 66 67 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 68 /// file type. Owns the BitstreamWriter, and includes the main entry point for 69 /// writing. 70 class BitcodeWriter { 71 protected: 72 /// Pointer to the buffer allocated by caller for bitcode writing. 73 const SmallVectorImpl<char> &Buffer; 74 75 /// The stream created and owned by the BitodeWriter. 76 BitstreamWriter Stream; 77 78 /// Saves the offset of the VSTOffset record that must eventually be 79 /// backpatched with the offset of the actual VST. 80 uint64_t VSTOffsetPlaceholder = 0; 81 82 public: 83 /// Constructs a BitcodeWriter object, and initializes a BitstreamRecord, 84 /// writing to the provided \p Buffer. 85 BitcodeWriter(SmallVectorImpl<char> &Buffer) 86 : Buffer(Buffer), Stream(Buffer) {} 87 88 virtual ~BitcodeWriter() = default; 89 90 /// Main entry point to write the bitcode file, which writes the bitcode 91 /// header and will then invoke the virtual writeBlocks() method. 92 void write(); 93 94 private: 95 /// Derived classes must implement this to write the corresponding blocks for 96 /// that bitcode file type. 97 virtual void writeBlocks() = 0; 98 99 protected: 100 bool hasVSTOffsetPlaceholder() { return VSTOffsetPlaceholder != 0; } 101 void writeValueSymbolTableForwardDecl(); 102 void writeBitcodeHeader(); 103 }; 104 105 /// Class to manage the bitcode writing for a module. 106 class ModuleBitcodeWriter : public BitcodeWriter { 107 /// The Module to write to bitcode. 108 const Module &M; 109 110 /// Enumerates ids for all values in the module. 111 ValueEnumerator VE; 112 113 /// Optional per-module index to write for ThinLTO. 114 const ModuleSummaryIndex *Index; 115 116 /// True if a module hash record should be written. 117 bool GenerateHash; 118 119 /// The start bit of the module block, for use in generating a module hash 120 uint64_t BitcodeStartBit = 0; 121 122 public: 123 /// Constructs a ModuleBitcodeWriter object for the given Module, 124 /// writing to the provided \p Buffer. 125 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 126 bool ShouldPreserveUseListOrder, 127 const ModuleSummaryIndex *Index, bool GenerateHash) 128 : BitcodeWriter(Buffer), M(*M), VE(*M, ShouldPreserveUseListOrder), 129 Index(Index), GenerateHash(GenerateHash) { 130 // Save the start bit of the actual bitcode, in case there is space 131 // saved at the start for the darwin header above. The reader stream 132 // will start at the bitcode, and we need the offset of the VST 133 // to line up. 134 BitcodeStartBit = Stream.GetCurrentBitNo(); 135 } 136 137 private: 138 /// Main entry point for writing a module to bitcode, invoked by 139 /// BitcodeWriter::write() after it writes the header. 140 void writeBlocks() override; 141 142 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 143 /// current llvm version, and a record for the epoch number. 144 void writeIdentificationBlock(); 145 146 /// Emit the current module to the bitstream. 147 void writeModule(); 148 149 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 150 151 void writeStringRecord(unsigned Code, StringRef Str, unsigned AbbrevToUse); 152 void writeAttributeGroupTable(); 153 void writeAttributeTable(); 154 void writeTypeTable(); 155 void writeComdats(); 156 void writeModuleInfo(); 157 void writeValueAsMetadata(const ValueAsMetadata *MD, 158 SmallVectorImpl<uint64_t> &Record); 159 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 160 unsigned Abbrev); 161 unsigned createDILocationAbbrev(); 162 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 163 unsigned &Abbrev); 164 unsigned createGenericDINodeAbbrev(); 165 void writeGenericDINode(const GenericDINode *N, 166 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 167 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 168 unsigned Abbrev); 169 void writeDIEnumerator(const DIEnumerator *N, 170 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 171 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 172 unsigned Abbrev); 173 void writeDIDerivedType(const DIDerivedType *N, 174 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 175 void writeDICompositeType(const DICompositeType *N, 176 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 177 void writeDISubroutineType(const DISubroutineType *N, 178 SmallVectorImpl<uint64_t> &Record, 179 unsigned Abbrev); 180 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 181 unsigned Abbrev); 182 void writeDICompileUnit(const DICompileUnit *N, 183 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 184 void writeDISubprogram(const DISubprogram *N, 185 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 186 void writeDILexicalBlock(const DILexicalBlock *N, 187 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 188 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 189 SmallVectorImpl<uint64_t> &Record, 190 unsigned Abbrev); 191 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 192 unsigned Abbrev); 193 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 194 unsigned Abbrev); 195 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 196 unsigned Abbrev); 197 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 198 unsigned Abbrev); 199 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 200 SmallVectorImpl<uint64_t> &Record, 201 unsigned Abbrev); 202 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 203 SmallVectorImpl<uint64_t> &Record, 204 unsigned Abbrev); 205 void writeDIGlobalVariable(const DIGlobalVariable *N, 206 SmallVectorImpl<uint64_t> &Record, 207 unsigned Abbrev); 208 void writeDILocalVariable(const DILocalVariable *N, 209 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 210 void writeDIExpression(const DIExpression *N, 211 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 212 void writeDIObjCProperty(const DIObjCProperty *N, 213 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 214 void writeDIImportedEntity(const DIImportedEntity *N, 215 SmallVectorImpl<uint64_t> &Record, 216 unsigned Abbrev); 217 unsigned createNamedMetadataAbbrev(); 218 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 219 unsigned createMetadataStringsAbbrev(); 220 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 221 SmallVectorImpl<uint64_t> &Record); 222 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 223 SmallVectorImpl<uint64_t> &Record); 224 void writeModuleMetadata(); 225 void writeFunctionMetadata(const Function &F); 226 void writeFunctionMetadataAttachment(const Function &F); 227 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 228 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 229 const GlobalObject &GO); 230 void writeModuleMetadataKinds(); 231 void writeOperandBundleTags(); 232 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 233 void writeModuleConstants(); 234 bool pushValueAndType(const Value *V, unsigned InstID, 235 SmallVectorImpl<unsigned> &Vals); 236 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 237 void pushValue(const Value *V, unsigned InstID, 238 SmallVectorImpl<unsigned> &Vals); 239 void pushValueSigned(const Value *V, unsigned InstID, 240 SmallVectorImpl<uint64_t> &Vals); 241 void writeInstruction(const Instruction &I, unsigned InstID, 242 SmallVectorImpl<unsigned> &Vals); 243 void writeValueSymbolTable( 244 const ValueSymbolTable &VST, bool IsModuleLevel = false, 245 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex = nullptr); 246 void writeUseList(UseListOrder &&Order); 247 void writeUseListBlock(const Function *F); 248 void 249 writeFunction(const Function &F, 250 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 251 void writeBlockInfo(); 252 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 253 GlobalValueSummary *Summary, 254 unsigned ValueID, 255 unsigned FSCallsAbbrev, 256 unsigned FSCallsProfileAbbrev, 257 const Function &F); 258 void writeModuleLevelReferences(const GlobalVariable &V, 259 SmallVector<uint64_t, 64> &NameVals, 260 unsigned FSModRefsAbbrev); 261 void writePerModuleGlobalValueSummary(); 262 void writeModuleHash(size_t BlockStartPos); 263 }; 264 265 /// Class to manage the bitcode writing for a combined index. 266 class IndexBitcodeWriter : public BitcodeWriter { 267 /// The combined index to write to bitcode. 268 const ModuleSummaryIndex &Index; 269 270 /// When writing a subset of the index for distributed backends, client 271 /// provides a map of modules to the corresponding GUIDs/summaries to write. 272 std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 273 274 /// Map that holds the correspondence between the GUID used in the combined 275 /// index and a value id generated by this class to use in references. 276 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 277 278 /// Tracks the last value id recorded in the GUIDToValueMap. 279 unsigned GlobalValueId = 0; 280 281 public: 282 /// Constructs a IndexBitcodeWriter object for the given combined index, 283 /// writing to the provided \p Buffer. When writing a subset of the index 284 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 285 IndexBitcodeWriter(SmallVectorImpl<char> &Buffer, 286 const ModuleSummaryIndex &Index, 287 std::map<std::string, GVSummaryMapTy> 288 *ModuleToSummariesForIndex = nullptr) 289 : BitcodeWriter(Buffer), Index(Index), 290 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 291 // Assign unique value ids to all summaries to be written, for use 292 // in writing out the call graph edges. Save the mapping from GUID 293 // to the new global value id to use when writing those edges, which 294 // are currently saved in the index in terms of GUID. 295 for (const auto &I : *this) 296 GUIDToValueIdMap[I.first] = ++GlobalValueId; 297 } 298 299 /// The below iterator returns the GUID and associated summary. 300 typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo; 301 302 /// Iterator over the value GUID and summaries to be written to bitcode, 303 /// hides the details of whether they are being pulled from the entire 304 /// index or just those in a provided ModuleToSummariesForIndex map. 305 class iterator 306 : public llvm::iterator_facade_base<iterator, std::forward_iterator_tag, 307 GVInfo> { 308 /// Enables access to parent class. 309 const IndexBitcodeWriter &Writer; 310 311 // Iterators used when writing only those summaries in a provided 312 // ModuleToSummariesForIndex map: 313 314 /// Points to the last element in outer ModuleToSummariesForIndex map. 315 std::map<std::string, GVSummaryMapTy>::iterator ModuleSummariesBack; 316 /// Iterator on outer ModuleToSummariesForIndex map. 317 std::map<std::string, GVSummaryMapTy>::iterator ModuleSummariesIter; 318 /// Iterator on an inner global variable summary map. 319 GVSummaryMapTy::iterator ModuleGVSummariesIter; 320 321 // Iterators used when writing all summaries in the index: 322 323 /// Points to the last element in the Index outer GlobalValueMap. 324 const_gvsummary_iterator IndexSummariesBack; 325 /// Iterator on outer GlobalValueMap. 326 const_gvsummary_iterator IndexSummariesIter; 327 /// Iterator on an inner GlobalValueSummaryList. 328 GlobalValueSummaryList::const_iterator IndexGVSummariesIter; 329 330 public: 331 /// Construct iterator from parent \p Writer and indicate if we are 332 /// constructing the end iterator. 333 iterator(const IndexBitcodeWriter &Writer, bool IsAtEnd) : Writer(Writer) { 334 // Set up the appropriate set of iterators given whether we are writing 335 // the full index or just a subset. 336 // Can't setup the Back or inner iterators if the corresponding map 337 // is empty. This will be handled specially in operator== as well. 338 if (Writer.ModuleToSummariesForIndex && 339 !Writer.ModuleToSummariesForIndex->empty()) { 340 for (ModuleSummariesBack = Writer.ModuleToSummariesForIndex->begin(); 341 std::next(ModuleSummariesBack) != 342 Writer.ModuleToSummariesForIndex->end(); 343 ModuleSummariesBack++) 344 ; 345 ModuleSummariesIter = !IsAtEnd 346 ? Writer.ModuleToSummariesForIndex->begin() 347 : ModuleSummariesBack; 348 ModuleGVSummariesIter = !IsAtEnd ? ModuleSummariesIter->second.begin() 349 : ModuleSummariesBack->second.end(); 350 } else if (!Writer.ModuleToSummariesForIndex && 351 Writer.Index.begin() != Writer.Index.end()) { 352 for (IndexSummariesBack = Writer.Index.begin(); 353 std::next(IndexSummariesBack) != Writer.Index.end(); 354 IndexSummariesBack++) 355 ; 356 IndexSummariesIter = 357 !IsAtEnd ? Writer.Index.begin() : IndexSummariesBack; 358 IndexGVSummariesIter = !IsAtEnd ? IndexSummariesIter->second.begin() 359 : IndexSummariesBack->second.end(); 360 } 361 } 362 363 /// Increment the appropriate set of iterators. 364 iterator &operator++() { 365 // First the inner iterator is incremented, then if it is at the end 366 // and there are more outer iterations to go, the inner is reset to 367 // the start of the next inner list. 368 if (Writer.ModuleToSummariesForIndex) { 369 ++ModuleGVSummariesIter; 370 if (ModuleGVSummariesIter == ModuleSummariesIter->second.end() && 371 ModuleSummariesIter != ModuleSummariesBack) { 372 ++ModuleSummariesIter; 373 ModuleGVSummariesIter = ModuleSummariesIter->second.begin(); 374 } 375 } else { 376 ++IndexGVSummariesIter; 377 if (IndexGVSummariesIter == IndexSummariesIter->second.end() && 378 IndexSummariesIter != IndexSummariesBack) { 379 ++IndexSummariesIter; 380 IndexGVSummariesIter = IndexSummariesIter->second.begin(); 381 } 382 } 383 return *this; 384 } 385 386 /// Access the <GUID,GlobalValueSummary*> pair corresponding to the current 387 /// outer and inner iterator positions. 388 GVInfo operator*() { 389 if (Writer.ModuleToSummariesForIndex) 390 return std::make_pair(ModuleGVSummariesIter->first, 391 ModuleGVSummariesIter->second); 392 return std::make_pair(IndexSummariesIter->first, 393 IndexGVSummariesIter->get()); 394 } 395 396 /// Checks if the iterators are equal, with special handling for empty 397 /// indexes. 398 bool operator==(const iterator &RHS) const { 399 if (Writer.ModuleToSummariesForIndex) { 400 // First ensure that both are writing the same subset. 401 if (Writer.ModuleToSummariesForIndex != 402 RHS.Writer.ModuleToSummariesForIndex) 403 return false; 404 // Already determined above that maps are the same, so if one is 405 // empty, they both are. 406 if (Writer.ModuleToSummariesForIndex->empty()) 407 return true; 408 // Ensure the ModuleGVSummariesIter are iterating over the same 409 // container before checking them below. 410 if (ModuleSummariesIter != RHS.ModuleSummariesIter) 411 return false; 412 return ModuleGVSummariesIter == RHS.ModuleGVSummariesIter; 413 } 414 // First ensure RHS also writing the full index, and that both are 415 // writing the same full index. 416 if (RHS.Writer.ModuleToSummariesForIndex || 417 &Writer.Index != &RHS.Writer.Index) 418 return false; 419 // Already determined above that maps are the same, so if one is 420 // empty, they both are. 421 if (Writer.Index.begin() == Writer.Index.end()) 422 return true; 423 // Ensure the IndexGVSummariesIter are iterating over the same 424 // container before checking them below. 425 if (IndexSummariesIter != RHS.IndexSummariesIter) 426 return false; 427 return IndexGVSummariesIter == RHS.IndexGVSummariesIter; 428 } 429 }; 430 431 /// Obtain the start iterator over the summaries to be written. 432 iterator begin() { return iterator(*this, /*IsAtEnd=*/false); } 433 /// Obtain the end iterator over the summaries to be written. 434 iterator end() { return iterator(*this, /*IsAtEnd=*/true); } 435 436 private: 437 /// Main entry point for writing a combined index to bitcode, invoked by 438 /// BitcodeWriter::write() after it writes the header. 439 void writeBlocks() override; 440 441 void writeIndex(); 442 void writeModStrings(); 443 void writeCombinedValueSymbolTable(); 444 void writeCombinedGlobalValueSummary(); 445 446 /// Indicates whether the provided \p ModulePath should be written into 447 /// the module string table, e.g. if full index written or if it is in 448 /// the provided subset. 449 bool doIncludeModule(StringRef ModulePath) { 450 return !ModuleToSummariesForIndex || 451 ModuleToSummariesForIndex->count(ModulePath); 452 } 453 454 bool hasValueId(GlobalValue::GUID ValGUID) { 455 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 456 return VMI != GUIDToValueIdMap.end(); 457 } 458 unsigned getValueId(GlobalValue::GUID ValGUID) { 459 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 460 // If this GUID doesn't have an entry, assign one. 461 if (VMI == GUIDToValueIdMap.end()) { 462 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 463 return GlobalValueId; 464 } else { 465 return VMI->second; 466 } 467 } 468 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 469 }; 470 } // end anonymous namespace 471 472 static unsigned getEncodedCastOpcode(unsigned Opcode) { 473 switch (Opcode) { 474 default: llvm_unreachable("Unknown cast instruction!"); 475 case Instruction::Trunc : return bitc::CAST_TRUNC; 476 case Instruction::ZExt : return bitc::CAST_ZEXT; 477 case Instruction::SExt : return bitc::CAST_SEXT; 478 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 479 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 480 case Instruction::UIToFP : return bitc::CAST_UITOFP; 481 case Instruction::SIToFP : return bitc::CAST_SITOFP; 482 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 483 case Instruction::FPExt : return bitc::CAST_FPEXT; 484 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 485 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 486 case Instruction::BitCast : return bitc::CAST_BITCAST; 487 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 488 } 489 } 490 491 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 492 switch (Opcode) { 493 default: llvm_unreachable("Unknown binary instruction!"); 494 case Instruction::Add: 495 case Instruction::FAdd: return bitc::BINOP_ADD; 496 case Instruction::Sub: 497 case Instruction::FSub: return bitc::BINOP_SUB; 498 case Instruction::Mul: 499 case Instruction::FMul: return bitc::BINOP_MUL; 500 case Instruction::UDiv: return bitc::BINOP_UDIV; 501 case Instruction::FDiv: 502 case Instruction::SDiv: return bitc::BINOP_SDIV; 503 case Instruction::URem: return bitc::BINOP_UREM; 504 case Instruction::FRem: 505 case Instruction::SRem: return bitc::BINOP_SREM; 506 case Instruction::Shl: return bitc::BINOP_SHL; 507 case Instruction::LShr: return bitc::BINOP_LSHR; 508 case Instruction::AShr: return bitc::BINOP_ASHR; 509 case Instruction::And: return bitc::BINOP_AND; 510 case Instruction::Or: return bitc::BINOP_OR; 511 case Instruction::Xor: return bitc::BINOP_XOR; 512 } 513 } 514 515 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 516 switch (Op) { 517 default: llvm_unreachable("Unknown RMW operation!"); 518 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 519 case AtomicRMWInst::Add: return bitc::RMW_ADD; 520 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 521 case AtomicRMWInst::And: return bitc::RMW_AND; 522 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 523 case AtomicRMWInst::Or: return bitc::RMW_OR; 524 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 525 case AtomicRMWInst::Max: return bitc::RMW_MAX; 526 case AtomicRMWInst::Min: return bitc::RMW_MIN; 527 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 528 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 529 } 530 } 531 532 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 533 switch (Ordering) { 534 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 535 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 536 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 537 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 538 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 539 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 540 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 541 } 542 llvm_unreachable("Invalid ordering"); 543 } 544 545 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) { 546 switch (SynchScope) { 547 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 548 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 549 } 550 llvm_unreachable("Invalid synch scope"); 551 } 552 553 void ModuleBitcodeWriter::writeStringRecord(unsigned Code, StringRef Str, 554 unsigned AbbrevToUse) { 555 SmallVector<unsigned, 64> Vals; 556 557 // Code: [strchar x N] 558 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 559 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 560 AbbrevToUse = 0; 561 Vals.push_back(Str[i]); 562 } 563 564 // Emit the finished record. 565 Stream.EmitRecord(Code, Vals, AbbrevToUse); 566 } 567 568 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 569 switch (Kind) { 570 case Attribute::Alignment: 571 return bitc::ATTR_KIND_ALIGNMENT; 572 case Attribute::AllocSize: 573 return bitc::ATTR_KIND_ALLOC_SIZE; 574 case Attribute::AlwaysInline: 575 return bitc::ATTR_KIND_ALWAYS_INLINE; 576 case Attribute::ArgMemOnly: 577 return bitc::ATTR_KIND_ARGMEMONLY; 578 case Attribute::Builtin: 579 return bitc::ATTR_KIND_BUILTIN; 580 case Attribute::ByVal: 581 return bitc::ATTR_KIND_BY_VAL; 582 case Attribute::Convergent: 583 return bitc::ATTR_KIND_CONVERGENT; 584 case Attribute::InAlloca: 585 return bitc::ATTR_KIND_IN_ALLOCA; 586 case Attribute::Cold: 587 return bitc::ATTR_KIND_COLD; 588 case Attribute::InaccessibleMemOnly: 589 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 590 case Attribute::InaccessibleMemOrArgMemOnly: 591 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 592 case Attribute::InlineHint: 593 return bitc::ATTR_KIND_INLINE_HINT; 594 case Attribute::InReg: 595 return bitc::ATTR_KIND_IN_REG; 596 case Attribute::JumpTable: 597 return bitc::ATTR_KIND_JUMP_TABLE; 598 case Attribute::MinSize: 599 return bitc::ATTR_KIND_MIN_SIZE; 600 case Attribute::Naked: 601 return bitc::ATTR_KIND_NAKED; 602 case Attribute::Nest: 603 return bitc::ATTR_KIND_NEST; 604 case Attribute::NoAlias: 605 return bitc::ATTR_KIND_NO_ALIAS; 606 case Attribute::NoBuiltin: 607 return bitc::ATTR_KIND_NO_BUILTIN; 608 case Attribute::NoCapture: 609 return bitc::ATTR_KIND_NO_CAPTURE; 610 case Attribute::NoDuplicate: 611 return bitc::ATTR_KIND_NO_DUPLICATE; 612 case Attribute::NoImplicitFloat: 613 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 614 case Attribute::NoInline: 615 return bitc::ATTR_KIND_NO_INLINE; 616 case Attribute::NoRecurse: 617 return bitc::ATTR_KIND_NO_RECURSE; 618 case Attribute::NonLazyBind: 619 return bitc::ATTR_KIND_NON_LAZY_BIND; 620 case Attribute::NonNull: 621 return bitc::ATTR_KIND_NON_NULL; 622 case Attribute::Dereferenceable: 623 return bitc::ATTR_KIND_DEREFERENCEABLE; 624 case Attribute::DereferenceableOrNull: 625 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 626 case Attribute::NoRedZone: 627 return bitc::ATTR_KIND_NO_RED_ZONE; 628 case Attribute::NoReturn: 629 return bitc::ATTR_KIND_NO_RETURN; 630 case Attribute::NoUnwind: 631 return bitc::ATTR_KIND_NO_UNWIND; 632 case Attribute::OptimizeForSize: 633 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 634 case Attribute::OptimizeNone: 635 return bitc::ATTR_KIND_OPTIMIZE_NONE; 636 case Attribute::ReadNone: 637 return bitc::ATTR_KIND_READ_NONE; 638 case Attribute::ReadOnly: 639 return bitc::ATTR_KIND_READ_ONLY; 640 case Attribute::Returned: 641 return bitc::ATTR_KIND_RETURNED; 642 case Attribute::ReturnsTwice: 643 return bitc::ATTR_KIND_RETURNS_TWICE; 644 case Attribute::SExt: 645 return bitc::ATTR_KIND_S_EXT; 646 case Attribute::StackAlignment: 647 return bitc::ATTR_KIND_STACK_ALIGNMENT; 648 case Attribute::StackProtect: 649 return bitc::ATTR_KIND_STACK_PROTECT; 650 case Attribute::StackProtectReq: 651 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 652 case Attribute::StackProtectStrong: 653 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 654 case Attribute::SafeStack: 655 return bitc::ATTR_KIND_SAFESTACK; 656 case Attribute::StructRet: 657 return bitc::ATTR_KIND_STRUCT_RET; 658 case Attribute::SanitizeAddress: 659 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 660 case Attribute::SanitizeThread: 661 return bitc::ATTR_KIND_SANITIZE_THREAD; 662 case Attribute::SanitizeMemory: 663 return bitc::ATTR_KIND_SANITIZE_MEMORY; 664 case Attribute::SwiftError: 665 return bitc::ATTR_KIND_SWIFT_ERROR; 666 case Attribute::SwiftSelf: 667 return bitc::ATTR_KIND_SWIFT_SELF; 668 case Attribute::UWTable: 669 return bitc::ATTR_KIND_UW_TABLE; 670 case Attribute::ZExt: 671 return bitc::ATTR_KIND_Z_EXT; 672 case Attribute::EndAttrKinds: 673 llvm_unreachable("Can not encode end-attribute kinds marker."); 674 case Attribute::None: 675 llvm_unreachable("Can not encode none-attribute."); 676 } 677 678 llvm_unreachable("Trying to encode unknown attribute"); 679 } 680 681 void ModuleBitcodeWriter::writeAttributeGroupTable() { 682 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 683 if (AttrGrps.empty()) return; 684 685 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 686 687 SmallVector<uint64_t, 64> Record; 688 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 689 AttributeSet AS = AttrGrps[i]; 690 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 691 AttributeSet A = AS.getSlotAttributes(i); 692 693 Record.push_back(VE.getAttributeGroupID(A)); 694 Record.push_back(AS.getSlotIndex(i)); 695 696 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 697 I != E; ++I) { 698 Attribute Attr = *I; 699 if (Attr.isEnumAttribute()) { 700 Record.push_back(0); 701 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 702 } else if (Attr.isIntAttribute()) { 703 Record.push_back(1); 704 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 705 Record.push_back(Attr.getValueAsInt()); 706 } else { 707 StringRef Kind = Attr.getKindAsString(); 708 StringRef Val = Attr.getValueAsString(); 709 710 Record.push_back(Val.empty() ? 3 : 4); 711 Record.append(Kind.begin(), Kind.end()); 712 Record.push_back(0); 713 if (!Val.empty()) { 714 Record.append(Val.begin(), Val.end()); 715 Record.push_back(0); 716 } 717 } 718 } 719 720 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 721 Record.clear(); 722 } 723 } 724 725 Stream.ExitBlock(); 726 } 727 728 void ModuleBitcodeWriter::writeAttributeTable() { 729 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 730 if (Attrs.empty()) return; 731 732 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 733 734 SmallVector<uint64_t, 64> Record; 735 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 736 const AttributeSet &A = Attrs[i]; 737 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 738 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 739 740 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 741 Record.clear(); 742 } 743 744 Stream.ExitBlock(); 745 } 746 747 /// WriteTypeTable - Write out the type table for a module. 748 void ModuleBitcodeWriter::writeTypeTable() { 749 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 750 751 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 752 SmallVector<uint64_t, 64> TypeVals; 753 754 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 755 756 // Abbrev for TYPE_CODE_POINTER. 757 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 758 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 760 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 761 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 762 763 // Abbrev for TYPE_CODE_FUNCTION. 764 Abbv = new BitCodeAbbrev(); 765 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 769 770 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 771 772 // Abbrev for TYPE_CODE_STRUCT_ANON. 773 Abbv = new BitCodeAbbrev(); 774 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 778 779 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 780 781 // Abbrev for TYPE_CODE_STRUCT_NAME. 782 Abbv = new BitCodeAbbrev(); 783 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 786 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 787 788 // Abbrev for TYPE_CODE_STRUCT_NAMED. 789 Abbv = new BitCodeAbbrev(); 790 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 794 795 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 796 797 // Abbrev for TYPE_CODE_ARRAY. 798 Abbv = new BitCodeAbbrev(); 799 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 802 803 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 804 805 // Emit an entry count so the reader can reserve space. 806 TypeVals.push_back(TypeList.size()); 807 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 808 TypeVals.clear(); 809 810 // Loop over all of the types, emitting each in turn. 811 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 812 Type *T = TypeList[i]; 813 int AbbrevToUse = 0; 814 unsigned Code = 0; 815 816 switch (T->getTypeID()) { 817 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 818 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 819 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 820 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 821 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 822 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 823 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 824 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 825 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 826 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 827 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 828 case Type::IntegerTyID: 829 // INTEGER: [width] 830 Code = bitc::TYPE_CODE_INTEGER; 831 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 832 break; 833 case Type::PointerTyID: { 834 PointerType *PTy = cast<PointerType>(T); 835 // POINTER: [pointee type, address space] 836 Code = bitc::TYPE_CODE_POINTER; 837 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 838 unsigned AddressSpace = PTy->getAddressSpace(); 839 TypeVals.push_back(AddressSpace); 840 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 841 break; 842 } 843 case Type::FunctionTyID: { 844 FunctionType *FT = cast<FunctionType>(T); 845 // FUNCTION: [isvararg, retty, paramty x N] 846 Code = bitc::TYPE_CODE_FUNCTION; 847 TypeVals.push_back(FT->isVarArg()); 848 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 849 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 850 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 851 AbbrevToUse = FunctionAbbrev; 852 break; 853 } 854 case Type::StructTyID: { 855 StructType *ST = cast<StructType>(T); 856 // STRUCT: [ispacked, eltty x N] 857 TypeVals.push_back(ST->isPacked()); 858 // Output all of the element types. 859 for (StructType::element_iterator I = ST->element_begin(), 860 E = ST->element_end(); I != E; ++I) 861 TypeVals.push_back(VE.getTypeID(*I)); 862 863 if (ST->isLiteral()) { 864 Code = bitc::TYPE_CODE_STRUCT_ANON; 865 AbbrevToUse = StructAnonAbbrev; 866 } else { 867 if (ST->isOpaque()) { 868 Code = bitc::TYPE_CODE_OPAQUE; 869 } else { 870 Code = bitc::TYPE_CODE_STRUCT_NAMED; 871 AbbrevToUse = StructNamedAbbrev; 872 } 873 874 // Emit the name if it is present. 875 if (!ST->getName().empty()) 876 writeStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 877 StructNameAbbrev); 878 } 879 break; 880 } 881 case Type::ArrayTyID: { 882 ArrayType *AT = cast<ArrayType>(T); 883 // ARRAY: [numelts, eltty] 884 Code = bitc::TYPE_CODE_ARRAY; 885 TypeVals.push_back(AT->getNumElements()); 886 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 887 AbbrevToUse = ArrayAbbrev; 888 break; 889 } 890 case Type::VectorTyID: { 891 VectorType *VT = cast<VectorType>(T); 892 // VECTOR [numelts, eltty] 893 Code = bitc::TYPE_CODE_VECTOR; 894 TypeVals.push_back(VT->getNumElements()); 895 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 896 break; 897 } 898 } 899 900 // Emit the finished record. 901 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 902 TypeVals.clear(); 903 } 904 905 Stream.ExitBlock(); 906 } 907 908 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 909 switch (Linkage) { 910 case GlobalValue::ExternalLinkage: 911 return 0; 912 case GlobalValue::WeakAnyLinkage: 913 return 16; 914 case GlobalValue::AppendingLinkage: 915 return 2; 916 case GlobalValue::InternalLinkage: 917 return 3; 918 case GlobalValue::LinkOnceAnyLinkage: 919 return 18; 920 case GlobalValue::ExternalWeakLinkage: 921 return 7; 922 case GlobalValue::CommonLinkage: 923 return 8; 924 case GlobalValue::PrivateLinkage: 925 return 9; 926 case GlobalValue::WeakODRLinkage: 927 return 17; 928 case GlobalValue::LinkOnceODRLinkage: 929 return 19; 930 case GlobalValue::AvailableExternallyLinkage: 931 return 12; 932 } 933 llvm_unreachable("Invalid linkage"); 934 } 935 936 static unsigned getEncodedLinkage(const GlobalValue &GV) { 937 return getEncodedLinkage(GV.getLinkage()); 938 } 939 940 // Decode the flags for GlobalValue in the summary 941 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 942 uint64_t RawFlags = 0; 943 944 RawFlags |= Flags.HasSection; // bool 945 946 // Linkage don't need to be remapped at that time for the summary. Any future 947 // change to the getEncodedLinkage() function will need to be taken into 948 // account here as well. 949 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 950 951 return RawFlags; 952 } 953 954 static unsigned getEncodedVisibility(const GlobalValue &GV) { 955 switch (GV.getVisibility()) { 956 case GlobalValue::DefaultVisibility: return 0; 957 case GlobalValue::HiddenVisibility: return 1; 958 case GlobalValue::ProtectedVisibility: return 2; 959 } 960 llvm_unreachable("Invalid visibility"); 961 } 962 963 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 964 switch (GV.getDLLStorageClass()) { 965 case GlobalValue::DefaultStorageClass: return 0; 966 case GlobalValue::DLLImportStorageClass: return 1; 967 case GlobalValue::DLLExportStorageClass: return 2; 968 } 969 llvm_unreachable("Invalid DLL storage class"); 970 } 971 972 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 973 switch (GV.getThreadLocalMode()) { 974 case GlobalVariable::NotThreadLocal: return 0; 975 case GlobalVariable::GeneralDynamicTLSModel: return 1; 976 case GlobalVariable::LocalDynamicTLSModel: return 2; 977 case GlobalVariable::InitialExecTLSModel: return 3; 978 case GlobalVariable::LocalExecTLSModel: return 4; 979 } 980 llvm_unreachable("Invalid TLS model"); 981 } 982 983 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 984 switch (C.getSelectionKind()) { 985 case Comdat::Any: 986 return bitc::COMDAT_SELECTION_KIND_ANY; 987 case Comdat::ExactMatch: 988 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 989 case Comdat::Largest: 990 return bitc::COMDAT_SELECTION_KIND_LARGEST; 991 case Comdat::NoDuplicates: 992 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 993 case Comdat::SameSize: 994 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 995 } 996 llvm_unreachable("Invalid selection kind"); 997 } 998 999 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1000 switch (GV.getUnnamedAddr()) { 1001 case GlobalValue::UnnamedAddr::None: return 0; 1002 case GlobalValue::UnnamedAddr::Local: return 2; 1003 case GlobalValue::UnnamedAddr::Global: return 1; 1004 } 1005 llvm_unreachable("Invalid unnamed_addr"); 1006 } 1007 1008 void ModuleBitcodeWriter::writeComdats() { 1009 SmallVector<unsigned, 64> Vals; 1010 for (const Comdat *C : VE.getComdats()) { 1011 // COMDAT: [selection_kind, name] 1012 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1013 size_t Size = C->getName().size(); 1014 assert(isUInt<32>(Size)); 1015 Vals.push_back(Size); 1016 for (char Chr : C->getName()) 1017 Vals.push_back((unsigned char)Chr); 1018 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1019 Vals.clear(); 1020 } 1021 } 1022 1023 /// Write a record that will eventually hold the word offset of the 1024 /// module-level VST. For now the offset is 0, which will be backpatched 1025 /// after the real VST is written. Saves the bit offset to backpatch. 1026 void BitcodeWriter::writeValueSymbolTableForwardDecl() { 1027 // Write a placeholder value in for the offset of the real VST, 1028 // which is written after the function blocks so that it can include 1029 // the offset of each function. The placeholder offset will be 1030 // updated when the real VST is written. 1031 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1032 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1033 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1034 // hold the real VST offset. Must use fixed instead of VBR as we don't 1035 // know how many VBR chunks to reserve ahead of time. 1036 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1037 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv); 1038 1039 // Emit the placeholder 1040 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1041 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1042 1043 // Compute and save the bit offset to the placeholder, which will be 1044 // patched when the real VST is written. We can simply subtract the 32-bit 1045 // fixed size from the current bit number to get the location to backpatch. 1046 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1047 } 1048 1049 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1050 1051 /// Determine the encoding to use for the given string name and length. 1052 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 1053 bool isChar6 = true; 1054 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 1055 if (isChar6) 1056 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1057 if ((unsigned char)*C & 128) 1058 // don't bother scanning the rest. 1059 return SE_Fixed8; 1060 } 1061 if (isChar6) 1062 return SE_Char6; 1063 else 1064 return SE_Fixed7; 1065 } 1066 1067 /// Emit top-level description of module, including target triple, inline asm, 1068 /// descriptors for global variables, and function prototype info. 1069 /// Returns the bit offset to backpatch with the location of the real VST. 1070 void ModuleBitcodeWriter::writeModuleInfo() { 1071 // Emit various pieces of data attached to a module. 1072 if (!M.getTargetTriple().empty()) 1073 writeStringRecord(bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1074 0 /*TODO*/); 1075 const std::string &DL = M.getDataLayoutStr(); 1076 if (!DL.empty()) 1077 writeStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1078 if (!M.getModuleInlineAsm().empty()) 1079 writeStringRecord(bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1080 0 /*TODO*/); 1081 1082 // Emit information about sections and GC, computing how many there are. Also 1083 // compute the maximum alignment value. 1084 std::map<std::string, unsigned> SectionMap; 1085 std::map<std::string, unsigned> GCMap; 1086 unsigned MaxAlignment = 0; 1087 unsigned MaxGlobalType = 0; 1088 for (const GlobalValue &GV : M.globals()) { 1089 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1090 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1091 if (GV.hasSection()) { 1092 // Give section names unique ID's. 1093 unsigned &Entry = SectionMap[GV.getSection()]; 1094 if (!Entry) { 1095 writeStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1096 0 /*TODO*/); 1097 Entry = SectionMap.size(); 1098 } 1099 } 1100 } 1101 for (const Function &F : M) { 1102 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1103 if (F.hasSection()) { 1104 // Give section names unique ID's. 1105 unsigned &Entry = SectionMap[F.getSection()]; 1106 if (!Entry) { 1107 writeStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1108 0 /*TODO*/); 1109 Entry = SectionMap.size(); 1110 } 1111 } 1112 if (F.hasGC()) { 1113 // Same for GC names. 1114 unsigned &Entry = GCMap[F.getGC()]; 1115 if (!Entry) { 1116 writeStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 0 /*TODO*/); 1117 Entry = GCMap.size(); 1118 } 1119 } 1120 } 1121 1122 // Emit abbrev for globals, now that we know # sections and max alignment. 1123 unsigned SimpleGVarAbbrev = 0; 1124 if (!M.global_empty()) { 1125 // Add an abbrev for common globals with no visibility or thread localness. 1126 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1127 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1129 Log2_32_Ceil(MaxGlobalType+1))); 1130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1131 //| explicitType << 1 1132 //| constant 1133 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1134 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1135 if (MaxAlignment == 0) // Alignment. 1136 Abbv->Add(BitCodeAbbrevOp(0)); 1137 else { 1138 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1140 Log2_32_Ceil(MaxEncAlignment+1))); 1141 } 1142 if (SectionMap.empty()) // Section. 1143 Abbv->Add(BitCodeAbbrevOp(0)); 1144 else 1145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1146 Log2_32_Ceil(SectionMap.size()+1))); 1147 // Don't bother emitting vis + thread local. 1148 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 1149 } 1150 1151 // Emit the global variable information. 1152 SmallVector<unsigned, 64> Vals; 1153 for (const GlobalVariable &GV : M.globals()) { 1154 unsigned AbbrevToUse = 0; 1155 1156 // GLOBALVAR: [type, isconst, initid, 1157 // linkage, alignment, section, visibility, threadlocal, 1158 // unnamed_addr, externally_initialized, dllstorageclass, 1159 // comdat] 1160 Vals.push_back(VE.getTypeID(GV.getValueType())); 1161 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1162 Vals.push_back(GV.isDeclaration() ? 0 : 1163 (VE.getValueID(GV.getInitializer()) + 1)); 1164 Vals.push_back(getEncodedLinkage(GV)); 1165 Vals.push_back(Log2_32(GV.getAlignment())+1); 1166 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1167 if (GV.isThreadLocal() || 1168 GV.getVisibility() != GlobalValue::DefaultVisibility || 1169 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1170 GV.isExternallyInitialized() || 1171 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1172 GV.hasComdat()) { 1173 Vals.push_back(getEncodedVisibility(GV)); 1174 Vals.push_back(getEncodedThreadLocalMode(GV)); 1175 Vals.push_back(getEncodedUnnamedAddr(GV)); 1176 Vals.push_back(GV.isExternallyInitialized()); 1177 Vals.push_back(getEncodedDLLStorageClass(GV)); 1178 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1179 } else { 1180 AbbrevToUse = SimpleGVarAbbrev; 1181 } 1182 1183 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1184 Vals.clear(); 1185 } 1186 1187 // Emit the function proto information. 1188 for (const Function &F : M) { 1189 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 1190 // section, visibility, gc, unnamed_addr, prologuedata, 1191 // dllstorageclass, comdat, prefixdata, personalityfn] 1192 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1193 Vals.push_back(F.getCallingConv()); 1194 Vals.push_back(F.isDeclaration()); 1195 Vals.push_back(getEncodedLinkage(F)); 1196 Vals.push_back(VE.getAttributeID(F.getAttributes())); 1197 Vals.push_back(Log2_32(F.getAlignment())+1); 1198 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1199 Vals.push_back(getEncodedVisibility(F)); 1200 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1201 Vals.push_back(getEncodedUnnamedAddr(F)); 1202 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1203 : 0); 1204 Vals.push_back(getEncodedDLLStorageClass(F)); 1205 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1206 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1207 : 0); 1208 Vals.push_back( 1209 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1210 1211 unsigned AbbrevToUse = 0; 1212 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1213 Vals.clear(); 1214 } 1215 1216 // Emit the alias information. 1217 for (const GlobalAlias &A : M.aliases()) { 1218 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass, 1219 // threadlocal, unnamed_addr] 1220 Vals.push_back(VE.getTypeID(A.getValueType())); 1221 Vals.push_back(A.getType()->getAddressSpace()); 1222 Vals.push_back(VE.getValueID(A.getAliasee())); 1223 Vals.push_back(getEncodedLinkage(A)); 1224 Vals.push_back(getEncodedVisibility(A)); 1225 Vals.push_back(getEncodedDLLStorageClass(A)); 1226 Vals.push_back(getEncodedThreadLocalMode(A)); 1227 Vals.push_back(getEncodedUnnamedAddr(A)); 1228 unsigned AbbrevToUse = 0; 1229 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1230 Vals.clear(); 1231 } 1232 1233 // Emit the ifunc information. 1234 for (const GlobalIFunc &I : M.ifuncs()) { 1235 // IFUNC: [ifunc type, address space, resolver val#, linkage, visibility] 1236 Vals.push_back(VE.getTypeID(I.getValueType())); 1237 Vals.push_back(I.getType()->getAddressSpace()); 1238 Vals.push_back(VE.getValueID(I.getResolver())); 1239 Vals.push_back(getEncodedLinkage(I)); 1240 Vals.push_back(getEncodedVisibility(I)); 1241 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1242 Vals.clear(); 1243 } 1244 1245 // Emit the module's source file name. 1246 { 1247 StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(), 1248 M.getSourceFileName().size()); 1249 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1250 if (Bits == SE_Char6) 1251 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1252 else if (Bits == SE_Fixed7) 1253 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1254 1255 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1256 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1257 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1258 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1259 Abbv->Add(AbbrevOpToUse); 1260 unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv); 1261 1262 for (const auto P : M.getSourceFileName()) 1263 Vals.push_back((unsigned char)P); 1264 1265 // Emit the finished record. 1266 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1267 Vals.clear(); 1268 } 1269 1270 // If we have a VST, write the VSTOFFSET record placeholder. 1271 if (M.getValueSymbolTable().empty()) 1272 return; 1273 writeValueSymbolTableForwardDecl(); 1274 } 1275 1276 static uint64_t getOptimizationFlags(const Value *V) { 1277 uint64_t Flags = 0; 1278 1279 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1280 if (OBO->hasNoSignedWrap()) 1281 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1282 if (OBO->hasNoUnsignedWrap()) 1283 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1284 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1285 if (PEO->isExact()) 1286 Flags |= 1 << bitc::PEO_EXACT; 1287 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1288 if (FPMO->hasUnsafeAlgebra()) 1289 Flags |= FastMathFlags::UnsafeAlgebra; 1290 if (FPMO->hasNoNaNs()) 1291 Flags |= FastMathFlags::NoNaNs; 1292 if (FPMO->hasNoInfs()) 1293 Flags |= FastMathFlags::NoInfs; 1294 if (FPMO->hasNoSignedZeros()) 1295 Flags |= FastMathFlags::NoSignedZeros; 1296 if (FPMO->hasAllowReciprocal()) 1297 Flags |= FastMathFlags::AllowReciprocal; 1298 } 1299 1300 return Flags; 1301 } 1302 1303 void ModuleBitcodeWriter::writeValueAsMetadata( 1304 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1305 // Mimic an MDNode with a value as one operand. 1306 Value *V = MD->getValue(); 1307 Record.push_back(VE.getTypeID(V->getType())); 1308 Record.push_back(VE.getValueID(V)); 1309 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1310 Record.clear(); 1311 } 1312 1313 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1314 SmallVectorImpl<uint64_t> &Record, 1315 unsigned Abbrev) { 1316 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1317 Metadata *MD = N->getOperand(i); 1318 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1319 "Unexpected function-local metadata"); 1320 Record.push_back(VE.getMetadataOrNullID(MD)); 1321 } 1322 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1323 : bitc::METADATA_NODE, 1324 Record, Abbrev); 1325 Record.clear(); 1326 } 1327 1328 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1329 // Assume the column is usually under 128, and always output the inlined-at 1330 // location (it's never more expensive than building an array size 1). 1331 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1332 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1338 return Stream.EmitAbbrev(Abbv); 1339 } 1340 1341 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1342 SmallVectorImpl<uint64_t> &Record, 1343 unsigned &Abbrev) { 1344 if (!Abbrev) 1345 Abbrev = createDILocationAbbrev(); 1346 1347 Record.push_back(N->isDistinct()); 1348 Record.push_back(N->getLine()); 1349 Record.push_back(N->getColumn()); 1350 Record.push_back(VE.getMetadataID(N->getScope())); 1351 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1352 1353 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1354 Record.clear(); 1355 } 1356 1357 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1358 // Assume the column is usually under 128, and always output the inlined-at 1359 // location (it's never more expensive than building an array size 1). 1360 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1361 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1368 return Stream.EmitAbbrev(Abbv); 1369 } 1370 1371 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1372 SmallVectorImpl<uint64_t> &Record, 1373 unsigned &Abbrev) { 1374 if (!Abbrev) 1375 Abbrev = createGenericDINodeAbbrev(); 1376 1377 Record.push_back(N->isDistinct()); 1378 Record.push_back(N->getTag()); 1379 Record.push_back(0); // Per-tag version field; unused for now. 1380 1381 for (auto &I : N->operands()) 1382 Record.push_back(VE.getMetadataOrNullID(I)); 1383 1384 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1385 Record.clear(); 1386 } 1387 1388 static uint64_t rotateSign(int64_t I) { 1389 uint64_t U = I; 1390 return I < 0 ? ~(U << 1) : U << 1; 1391 } 1392 1393 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1394 SmallVectorImpl<uint64_t> &Record, 1395 unsigned Abbrev) { 1396 Record.push_back(N->isDistinct()); 1397 Record.push_back(N->getCount()); 1398 Record.push_back(rotateSign(N->getLowerBound())); 1399 1400 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1401 Record.clear(); 1402 } 1403 1404 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1405 SmallVectorImpl<uint64_t> &Record, 1406 unsigned Abbrev) { 1407 Record.push_back(N->isDistinct()); 1408 Record.push_back(rotateSign(N->getValue())); 1409 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1410 1411 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1412 Record.clear(); 1413 } 1414 1415 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1416 SmallVectorImpl<uint64_t> &Record, 1417 unsigned Abbrev) { 1418 Record.push_back(N->isDistinct()); 1419 Record.push_back(N->getTag()); 1420 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1421 Record.push_back(N->getSizeInBits()); 1422 Record.push_back(N->getAlignInBits()); 1423 Record.push_back(N->getEncoding()); 1424 1425 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1426 Record.clear(); 1427 } 1428 1429 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1430 SmallVectorImpl<uint64_t> &Record, 1431 unsigned Abbrev) { 1432 Record.push_back(N->isDistinct()); 1433 Record.push_back(N->getTag()); 1434 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1435 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1436 Record.push_back(N->getLine()); 1437 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1438 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1439 Record.push_back(N->getSizeInBits()); 1440 Record.push_back(N->getAlignInBits()); 1441 Record.push_back(N->getOffsetInBits()); 1442 Record.push_back(N->getFlags()); 1443 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1444 1445 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1446 Record.clear(); 1447 } 1448 1449 void ModuleBitcodeWriter::writeDICompositeType( 1450 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1451 unsigned Abbrev) { 1452 const unsigned IsNotUsedInOldTypeRef = 0x2; 1453 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1454 Record.push_back(N->getTag()); 1455 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1456 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1457 Record.push_back(N->getLine()); 1458 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1459 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1460 Record.push_back(N->getSizeInBits()); 1461 Record.push_back(N->getAlignInBits()); 1462 Record.push_back(N->getOffsetInBits()); 1463 Record.push_back(N->getFlags()); 1464 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1465 Record.push_back(N->getRuntimeLang()); 1466 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1467 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1468 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1469 1470 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1471 Record.clear(); 1472 } 1473 1474 void ModuleBitcodeWriter::writeDISubroutineType( 1475 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1476 unsigned Abbrev) { 1477 const unsigned HasNoOldTypeRefs = 0x2; 1478 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1479 Record.push_back(N->getFlags()); 1480 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1481 Record.push_back(N->getCC()); 1482 1483 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1484 Record.clear(); 1485 } 1486 1487 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1488 SmallVectorImpl<uint64_t> &Record, 1489 unsigned Abbrev) { 1490 Record.push_back(N->isDistinct()); 1491 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1492 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1493 1494 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1495 Record.clear(); 1496 } 1497 1498 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1499 SmallVectorImpl<uint64_t> &Record, 1500 unsigned Abbrev) { 1501 assert(N->isDistinct() && "Expected distinct compile units"); 1502 Record.push_back(/* IsDistinct */ true); 1503 Record.push_back(N->getSourceLanguage()); 1504 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1505 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1506 Record.push_back(N->isOptimized()); 1507 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1508 Record.push_back(N->getRuntimeVersion()); 1509 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1510 Record.push_back(N->getEmissionKind()); 1511 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1512 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1513 Record.push_back(/* subprograms */ 0); 1514 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1515 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1516 Record.push_back(N->getDWOId()); 1517 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1518 1519 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1520 Record.clear(); 1521 } 1522 1523 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1524 SmallVectorImpl<uint64_t> &Record, 1525 unsigned Abbrev) { 1526 uint64_t HasUnitFlag = 1 << 1; 1527 Record.push_back(N->isDistinct() | HasUnitFlag); 1528 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1529 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1530 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1531 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1532 Record.push_back(N->getLine()); 1533 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1534 Record.push_back(N->isLocalToUnit()); 1535 Record.push_back(N->isDefinition()); 1536 Record.push_back(N->getScopeLine()); 1537 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1538 Record.push_back(N->getVirtuality()); 1539 Record.push_back(N->getVirtualIndex()); 1540 Record.push_back(N->getFlags()); 1541 Record.push_back(N->isOptimized()); 1542 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1543 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1544 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1545 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1546 Record.push_back(N->getThisAdjustment()); 1547 1548 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1549 Record.clear(); 1550 } 1551 1552 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1553 SmallVectorImpl<uint64_t> &Record, 1554 unsigned Abbrev) { 1555 Record.push_back(N->isDistinct()); 1556 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1557 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1558 Record.push_back(N->getLine()); 1559 Record.push_back(N->getColumn()); 1560 1561 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1562 Record.clear(); 1563 } 1564 1565 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1566 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1567 unsigned Abbrev) { 1568 Record.push_back(N->isDistinct()); 1569 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1570 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1571 Record.push_back(N->getDiscriminator()); 1572 1573 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1574 Record.clear(); 1575 } 1576 1577 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1578 SmallVectorImpl<uint64_t> &Record, 1579 unsigned Abbrev) { 1580 Record.push_back(N->isDistinct()); 1581 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1582 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1583 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1584 Record.push_back(N->getLine()); 1585 1586 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1587 Record.clear(); 1588 } 1589 1590 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1591 SmallVectorImpl<uint64_t> &Record, 1592 unsigned Abbrev) { 1593 Record.push_back(N->isDistinct()); 1594 Record.push_back(N->getMacinfoType()); 1595 Record.push_back(N->getLine()); 1596 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1597 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1598 1599 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1600 Record.clear(); 1601 } 1602 1603 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1604 SmallVectorImpl<uint64_t> &Record, 1605 unsigned Abbrev) { 1606 Record.push_back(N->isDistinct()); 1607 Record.push_back(N->getMacinfoType()); 1608 Record.push_back(N->getLine()); 1609 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1610 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1611 1612 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1613 Record.clear(); 1614 } 1615 1616 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1617 SmallVectorImpl<uint64_t> &Record, 1618 unsigned Abbrev) { 1619 Record.push_back(N->isDistinct()); 1620 for (auto &I : N->operands()) 1621 Record.push_back(VE.getMetadataOrNullID(I)); 1622 1623 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1624 Record.clear(); 1625 } 1626 1627 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1628 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1629 unsigned Abbrev) { 1630 Record.push_back(N->isDistinct()); 1631 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1632 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1633 1634 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1635 Record.clear(); 1636 } 1637 1638 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1639 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1640 unsigned Abbrev) { 1641 Record.push_back(N->isDistinct()); 1642 Record.push_back(N->getTag()); 1643 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1644 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1645 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1646 1647 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1648 Record.clear(); 1649 } 1650 1651 void ModuleBitcodeWriter::writeDIGlobalVariable( 1652 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1653 unsigned Abbrev) { 1654 Record.push_back(N->isDistinct()); 1655 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1656 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1657 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1658 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1659 Record.push_back(N->getLine()); 1660 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1661 Record.push_back(N->isLocalToUnit()); 1662 Record.push_back(N->isDefinition()); 1663 Record.push_back(VE.getMetadataOrNullID(N->getRawVariable())); 1664 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1665 1666 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1667 Record.clear(); 1668 } 1669 1670 void ModuleBitcodeWriter::writeDILocalVariable( 1671 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1672 unsigned Abbrev) { 1673 Record.push_back(N->isDistinct()); 1674 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1675 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1676 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1677 Record.push_back(N->getLine()); 1678 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1679 Record.push_back(N->getArg()); 1680 Record.push_back(N->getFlags()); 1681 1682 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1683 Record.clear(); 1684 } 1685 1686 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1687 SmallVectorImpl<uint64_t> &Record, 1688 unsigned Abbrev) { 1689 Record.reserve(N->getElements().size() + 1); 1690 1691 Record.push_back(N->isDistinct()); 1692 Record.append(N->elements_begin(), N->elements_end()); 1693 1694 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1695 Record.clear(); 1696 } 1697 1698 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1699 SmallVectorImpl<uint64_t> &Record, 1700 unsigned Abbrev) { 1701 Record.push_back(N->isDistinct()); 1702 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1703 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1704 Record.push_back(N->getLine()); 1705 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1706 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1707 Record.push_back(N->getAttributes()); 1708 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1709 1710 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1711 Record.clear(); 1712 } 1713 1714 void ModuleBitcodeWriter::writeDIImportedEntity( 1715 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1716 unsigned Abbrev) { 1717 Record.push_back(N->isDistinct()); 1718 Record.push_back(N->getTag()); 1719 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1720 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1721 Record.push_back(N->getLine()); 1722 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1723 1724 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1725 Record.clear(); 1726 } 1727 1728 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1729 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1730 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1732 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1733 return Stream.EmitAbbrev(Abbv); 1734 } 1735 1736 void ModuleBitcodeWriter::writeNamedMetadata( 1737 SmallVectorImpl<uint64_t> &Record) { 1738 if (M.named_metadata_empty()) 1739 return; 1740 1741 unsigned Abbrev = createNamedMetadataAbbrev(); 1742 for (const NamedMDNode &NMD : M.named_metadata()) { 1743 // Write name. 1744 StringRef Str = NMD.getName(); 1745 Record.append(Str.bytes_begin(), Str.bytes_end()); 1746 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1747 Record.clear(); 1748 1749 // Write named metadata operands. 1750 for (const MDNode *N : NMD.operands()) 1751 Record.push_back(VE.getMetadataID(N)); 1752 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1753 Record.clear(); 1754 } 1755 } 1756 1757 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1758 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1759 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1761 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1762 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1763 return Stream.EmitAbbrev(Abbv); 1764 } 1765 1766 /// Write out a record for MDString. 1767 /// 1768 /// All the metadata strings in a metadata block are emitted in a single 1769 /// record. The sizes and strings themselves are shoved into a blob. 1770 void ModuleBitcodeWriter::writeMetadataStrings( 1771 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1772 if (Strings.empty()) 1773 return; 1774 1775 // Start the record with the number of strings. 1776 Record.push_back(bitc::METADATA_STRINGS); 1777 Record.push_back(Strings.size()); 1778 1779 // Emit the sizes of the strings in the blob. 1780 SmallString<256> Blob; 1781 { 1782 BitstreamWriter W(Blob); 1783 for (const Metadata *MD : Strings) 1784 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1785 W.FlushToWord(); 1786 } 1787 1788 // Add the offset to the strings to the record. 1789 Record.push_back(Blob.size()); 1790 1791 // Add the strings to the blob. 1792 for (const Metadata *MD : Strings) 1793 Blob.append(cast<MDString>(MD)->getString()); 1794 1795 // Emit the final record. 1796 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1797 Record.clear(); 1798 } 1799 1800 void ModuleBitcodeWriter::writeMetadataRecords( 1801 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record) { 1802 if (MDs.empty()) 1803 return; 1804 1805 // Initialize MDNode abbreviations. 1806 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1807 #include "llvm/IR/Metadata.def" 1808 1809 for (const Metadata *MD : MDs) { 1810 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1811 assert(N->isResolved() && "Expected forward references to be resolved"); 1812 1813 switch (N->getMetadataID()) { 1814 default: 1815 llvm_unreachable("Invalid MDNode subclass"); 1816 #define HANDLE_MDNODE_LEAF(CLASS) \ 1817 case Metadata::CLASS##Kind: \ 1818 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1819 continue; 1820 #include "llvm/IR/Metadata.def" 1821 } 1822 } 1823 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1824 } 1825 } 1826 1827 void ModuleBitcodeWriter::writeModuleMetadata() { 1828 if (!VE.hasMDs() && M.named_metadata_empty()) 1829 return; 1830 1831 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1832 SmallVector<uint64_t, 64> Record; 1833 writeMetadataStrings(VE.getMDStrings(), Record); 1834 writeMetadataRecords(VE.getNonMDStrings(), Record); 1835 writeNamedMetadata(Record); 1836 1837 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 1838 SmallVector<uint64_t, 4> Record; 1839 Record.push_back(VE.getValueID(&GO)); 1840 pushGlobalMetadataAttachment(Record, GO); 1841 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 1842 }; 1843 for (const Function &F : M) 1844 if (F.isDeclaration() && F.hasMetadata()) 1845 AddDeclAttachedMetadata(F); 1846 // FIXME: Only store metadata for declarations here, and move data for global 1847 // variable definitions to a separate block (PR28134). 1848 for (const GlobalVariable &GV : M.globals()) 1849 if (GV.hasMetadata()) 1850 AddDeclAttachedMetadata(GV); 1851 1852 Stream.ExitBlock(); 1853 } 1854 1855 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 1856 if (!VE.hasMDs()) 1857 return; 1858 1859 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1860 SmallVector<uint64_t, 64> Record; 1861 writeMetadataStrings(VE.getMDStrings(), Record); 1862 writeMetadataRecords(VE.getNonMDStrings(), Record); 1863 Stream.ExitBlock(); 1864 } 1865 1866 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 1867 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 1868 // [n x [id, mdnode]] 1869 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1870 GO.getAllMetadata(MDs); 1871 for (const auto &I : MDs) { 1872 Record.push_back(I.first); 1873 Record.push_back(VE.getMetadataID(I.second)); 1874 } 1875 } 1876 1877 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 1878 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1879 1880 SmallVector<uint64_t, 64> Record; 1881 1882 if (F.hasMetadata()) { 1883 pushGlobalMetadataAttachment(Record, F); 1884 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1885 Record.clear(); 1886 } 1887 1888 // Write metadata attachments 1889 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1890 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1891 for (const BasicBlock &BB : F) 1892 for (const Instruction &I : BB) { 1893 MDs.clear(); 1894 I.getAllMetadataOtherThanDebugLoc(MDs); 1895 1896 // If no metadata, ignore instruction. 1897 if (MDs.empty()) continue; 1898 1899 Record.push_back(VE.getInstructionID(&I)); 1900 1901 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1902 Record.push_back(MDs[i].first); 1903 Record.push_back(VE.getMetadataID(MDs[i].second)); 1904 } 1905 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1906 Record.clear(); 1907 } 1908 1909 Stream.ExitBlock(); 1910 } 1911 1912 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 1913 SmallVector<uint64_t, 64> Record; 1914 1915 // Write metadata kinds 1916 // METADATA_KIND - [n x [id, name]] 1917 SmallVector<StringRef, 8> Names; 1918 M.getMDKindNames(Names); 1919 1920 if (Names.empty()) return; 1921 1922 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 1923 1924 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1925 Record.push_back(MDKindID); 1926 StringRef KName = Names[MDKindID]; 1927 Record.append(KName.begin(), KName.end()); 1928 1929 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1930 Record.clear(); 1931 } 1932 1933 Stream.ExitBlock(); 1934 } 1935 1936 void ModuleBitcodeWriter::writeOperandBundleTags() { 1937 // Write metadata kinds 1938 // 1939 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 1940 // 1941 // OPERAND_BUNDLE_TAG - [strchr x N] 1942 1943 SmallVector<StringRef, 8> Tags; 1944 M.getOperandBundleTags(Tags); 1945 1946 if (Tags.empty()) 1947 return; 1948 1949 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 1950 1951 SmallVector<uint64_t, 64> Record; 1952 1953 for (auto Tag : Tags) { 1954 Record.append(Tag.begin(), Tag.end()); 1955 1956 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 1957 Record.clear(); 1958 } 1959 1960 Stream.ExitBlock(); 1961 } 1962 1963 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1964 if ((int64_t)V >= 0) 1965 Vals.push_back(V << 1); 1966 else 1967 Vals.push_back((-V << 1) | 1); 1968 } 1969 1970 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 1971 bool isGlobal) { 1972 if (FirstVal == LastVal) return; 1973 1974 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1975 1976 unsigned AggregateAbbrev = 0; 1977 unsigned String8Abbrev = 0; 1978 unsigned CString7Abbrev = 0; 1979 unsigned CString6Abbrev = 0; 1980 // If this is a constant pool for the module, emit module-specific abbrevs. 1981 if (isGlobal) { 1982 // Abbrev for CST_CODE_AGGREGATE. 1983 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1984 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1985 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1986 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1987 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1988 1989 // Abbrev for CST_CODE_STRING. 1990 Abbv = new BitCodeAbbrev(); 1991 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1992 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1993 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1994 String8Abbrev = Stream.EmitAbbrev(Abbv); 1995 // Abbrev for CST_CODE_CSTRING. 1996 Abbv = new BitCodeAbbrev(); 1997 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1998 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2000 CString7Abbrev = Stream.EmitAbbrev(Abbv); 2001 // Abbrev for CST_CODE_CSTRING. 2002 Abbv = new BitCodeAbbrev(); 2003 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2006 CString6Abbrev = Stream.EmitAbbrev(Abbv); 2007 } 2008 2009 SmallVector<uint64_t, 64> Record; 2010 2011 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2012 Type *LastTy = nullptr; 2013 for (unsigned i = FirstVal; i != LastVal; ++i) { 2014 const Value *V = Vals[i].first; 2015 // If we need to switch types, do so now. 2016 if (V->getType() != LastTy) { 2017 LastTy = V->getType(); 2018 Record.push_back(VE.getTypeID(LastTy)); 2019 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2020 CONSTANTS_SETTYPE_ABBREV); 2021 Record.clear(); 2022 } 2023 2024 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2025 Record.push_back(unsigned(IA->hasSideEffects()) | 2026 unsigned(IA->isAlignStack()) << 1 | 2027 unsigned(IA->getDialect()&1) << 2); 2028 2029 // Add the asm string. 2030 const std::string &AsmStr = IA->getAsmString(); 2031 Record.push_back(AsmStr.size()); 2032 Record.append(AsmStr.begin(), AsmStr.end()); 2033 2034 // Add the constraint string. 2035 const std::string &ConstraintStr = IA->getConstraintString(); 2036 Record.push_back(ConstraintStr.size()); 2037 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2038 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2039 Record.clear(); 2040 continue; 2041 } 2042 const Constant *C = cast<Constant>(V); 2043 unsigned Code = -1U; 2044 unsigned AbbrevToUse = 0; 2045 if (C->isNullValue()) { 2046 Code = bitc::CST_CODE_NULL; 2047 } else if (isa<UndefValue>(C)) { 2048 Code = bitc::CST_CODE_UNDEF; 2049 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2050 if (IV->getBitWidth() <= 64) { 2051 uint64_t V = IV->getSExtValue(); 2052 emitSignedInt64(Record, V); 2053 Code = bitc::CST_CODE_INTEGER; 2054 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2055 } else { // Wide integers, > 64 bits in size. 2056 // We have an arbitrary precision integer value to write whose 2057 // bit width is > 64. However, in canonical unsigned integer 2058 // format it is likely that the high bits are going to be zero. 2059 // So, we only write the number of active words. 2060 unsigned NWords = IV->getValue().getActiveWords(); 2061 const uint64_t *RawWords = IV->getValue().getRawData(); 2062 for (unsigned i = 0; i != NWords; ++i) { 2063 emitSignedInt64(Record, RawWords[i]); 2064 } 2065 Code = bitc::CST_CODE_WIDE_INTEGER; 2066 } 2067 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2068 Code = bitc::CST_CODE_FLOAT; 2069 Type *Ty = CFP->getType(); 2070 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2071 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2072 } else if (Ty->isX86_FP80Ty()) { 2073 // api needed to prevent premature destruction 2074 // bits are not in the same order as a normal i80 APInt, compensate. 2075 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2076 const uint64_t *p = api.getRawData(); 2077 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2078 Record.push_back(p[0] & 0xffffLL); 2079 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2080 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2081 const uint64_t *p = api.getRawData(); 2082 Record.push_back(p[0]); 2083 Record.push_back(p[1]); 2084 } else { 2085 assert (0 && "Unknown FP type!"); 2086 } 2087 } else if (isa<ConstantDataSequential>(C) && 2088 cast<ConstantDataSequential>(C)->isString()) { 2089 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2090 // Emit constant strings specially. 2091 unsigned NumElts = Str->getNumElements(); 2092 // If this is a null-terminated string, use the denser CSTRING encoding. 2093 if (Str->isCString()) { 2094 Code = bitc::CST_CODE_CSTRING; 2095 --NumElts; // Don't encode the null, which isn't allowed by char6. 2096 } else { 2097 Code = bitc::CST_CODE_STRING; 2098 AbbrevToUse = String8Abbrev; 2099 } 2100 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2101 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2102 for (unsigned i = 0; i != NumElts; ++i) { 2103 unsigned char V = Str->getElementAsInteger(i); 2104 Record.push_back(V); 2105 isCStr7 &= (V & 128) == 0; 2106 if (isCStrChar6) 2107 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2108 } 2109 2110 if (isCStrChar6) 2111 AbbrevToUse = CString6Abbrev; 2112 else if (isCStr7) 2113 AbbrevToUse = CString7Abbrev; 2114 } else if (const ConstantDataSequential *CDS = 2115 dyn_cast<ConstantDataSequential>(C)) { 2116 Code = bitc::CST_CODE_DATA; 2117 Type *EltTy = CDS->getType()->getElementType(); 2118 if (isa<IntegerType>(EltTy)) { 2119 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2120 Record.push_back(CDS->getElementAsInteger(i)); 2121 } else { 2122 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2123 Record.push_back( 2124 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2125 } 2126 } else if (isa<ConstantAggregate>(C)) { 2127 Code = bitc::CST_CODE_AGGREGATE; 2128 for (const Value *Op : C->operands()) 2129 Record.push_back(VE.getValueID(Op)); 2130 AbbrevToUse = AggregateAbbrev; 2131 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2132 switch (CE->getOpcode()) { 2133 default: 2134 if (Instruction::isCast(CE->getOpcode())) { 2135 Code = bitc::CST_CODE_CE_CAST; 2136 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2137 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2138 Record.push_back(VE.getValueID(C->getOperand(0))); 2139 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2140 } else { 2141 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2142 Code = bitc::CST_CODE_CE_BINOP; 2143 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2144 Record.push_back(VE.getValueID(C->getOperand(0))); 2145 Record.push_back(VE.getValueID(C->getOperand(1))); 2146 uint64_t Flags = getOptimizationFlags(CE); 2147 if (Flags != 0) 2148 Record.push_back(Flags); 2149 } 2150 break; 2151 case Instruction::GetElementPtr: { 2152 Code = bitc::CST_CODE_CE_GEP; 2153 const auto *GO = cast<GEPOperator>(C); 2154 if (GO->isInBounds()) 2155 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2156 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2157 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2158 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2159 Record.push_back(VE.getValueID(C->getOperand(i))); 2160 } 2161 break; 2162 } 2163 case Instruction::Select: 2164 Code = bitc::CST_CODE_CE_SELECT; 2165 Record.push_back(VE.getValueID(C->getOperand(0))); 2166 Record.push_back(VE.getValueID(C->getOperand(1))); 2167 Record.push_back(VE.getValueID(C->getOperand(2))); 2168 break; 2169 case Instruction::ExtractElement: 2170 Code = bitc::CST_CODE_CE_EXTRACTELT; 2171 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2172 Record.push_back(VE.getValueID(C->getOperand(0))); 2173 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2174 Record.push_back(VE.getValueID(C->getOperand(1))); 2175 break; 2176 case Instruction::InsertElement: 2177 Code = bitc::CST_CODE_CE_INSERTELT; 2178 Record.push_back(VE.getValueID(C->getOperand(0))); 2179 Record.push_back(VE.getValueID(C->getOperand(1))); 2180 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2181 Record.push_back(VE.getValueID(C->getOperand(2))); 2182 break; 2183 case Instruction::ShuffleVector: 2184 // If the return type and argument types are the same, this is a 2185 // standard shufflevector instruction. If the types are different, 2186 // then the shuffle is widening or truncating the input vectors, and 2187 // the argument type must also be encoded. 2188 if (C->getType() == C->getOperand(0)->getType()) { 2189 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2190 } else { 2191 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2192 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2193 } 2194 Record.push_back(VE.getValueID(C->getOperand(0))); 2195 Record.push_back(VE.getValueID(C->getOperand(1))); 2196 Record.push_back(VE.getValueID(C->getOperand(2))); 2197 break; 2198 case Instruction::ICmp: 2199 case Instruction::FCmp: 2200 Code = bitc::CST_CODE_CE_CMP; 2201 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2202 Record.push_back(VE.getValueID(C->getOperand(0))); 2203 Record.push_back(VE.getValueID(C->getOperand(1))); 2204 Record.push_back(CE->getPredicate()); 2205 break; 2206 } 2207 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2208 Code = bitc::CST_CODE_BLOCKADDRESS; 2209 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2210 Record.push_back(VE.getValueID(BA->getFunction())); 2211 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2212 } else { 2213 #ifndef NDEBUG 2214 C->dump(); 2215 #endif 2216 llvm_unreachable("Unknown constant!"); 2217 } 2218 Stream.EmitRecord(Code, Record, AbbrevToUse); 2219 Record.clear(); 2220 } 2221 2222 Stream.ExitBlock(); 2223 } 2224 2225 void ModuleBitcodeWriter::writeModuleConstants() { 2226 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2227 2228 // Find the first constant to emit, which is the first non-globalvalue value. 2229 // We know globalvalues have been emitted by WriteModuleInfo. 2230 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2231 if (!isa<GlobalValue>(Vals[i].first)) { 2232 writeConstants(i, Vals.size(), true); 2233 return; 2234 } 2235 } 2236 } 2237 2238 /// pushValueAndType - The file has to encode both the value and type id for 2239 /// many values, because we need to know what type to create for forward 2240 /// references. However, most operands are not forward references, so this type 2241 /// field is not needed. 2242 /// 2243 /// This function adds V's value ID to Vals. If the value ID is higher than the 2244 /// instruction ID, then it is a forward reference, and it also includes the 2245 /// type ID. The value ID that is written is encoded relative to the InstID. 2246 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2247 SmallVectorImpl<unsigned> &Vals) { 2248 unsigned ValID = VE.getValueID(V); 2249 // Make encoding relative to the InstID. 2250 Vals.push_back(InstID - ValID); 2251 if (ValID >= InstID) { 2252 Vals.push_back(VE.getTypeID(V->getType())); 2253 return true; 2254 } 2255 return false; 2256 } 2257 2258 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2259 unsigned InstID) { 2260 SmallVector<unsigned, 64> Record; 2261 LLVMContext &C = CS.getInstruction()->getContext(); 2262 2263 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2264 const auto &Bundle = CS.getOperandBundleAt(i); 2265 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2266 2267 for (auto &Input : Bundle.Inputs) 2268 pushValueAndType(Input, InstID, Record); 2269 2270 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2271 Record.clear(); 2272 } 2273 } 2274 2275 /// pushValue - Like pushValueAndType, but where the type of the value is 2276 /// omitted (perhaps it was already encoded in an earlier operand). 2277 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2278 SmallVectorImpl<unsigned> &Vals) { 2279 unsigned ValID = VE.getValueID(V); 2280 Vals.push_back(InstID - ValID); 2281 } 2282 2283 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2284 SmallVectorImpl<uint64_t> &Vals) { 2285 unsigned ValID = VE.getValueID(V); 2286 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2287 emitSignedInt64(Vals, diff); 2288 } 2289 2290 /// WriteInstruction - Emit an instruction to the specified stream. 2291 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2292 unsigned InstID, 2293 SmallVectorImpl<unsigned> &Vals) { 2294 unsigned Code = 0; 2295 unsigned AbbrevToUse = 0; 2296 VE.setInstructionID(&I); 2297 switch (I.getOpcode()) { 2298 default: 2299 if (Instruction::isCast(I.getOpcode())) { 2300 Code = bitc::FUNC_CODE_INST_CAST; 2301 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2302 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2303 Vals.push_back(VE.getTypeID(I.getType())); 2304 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2305 } else { 2306 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2307 Code = bitc::FUNC_CODE_INST_BINOP; 2308 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2309 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2310 pushValue(I.getOperand(1), InstID, Vals); 2311 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2312 uint64_t Flags = getOptimizationFlags(&I); 2313 if (Flags != 0) { 2314 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2315 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2316 Vals.push_back(Flags); 2317 } 2318 } 2319 break; 2320 2321 case Instruction::GetElementPtr: { 2322 Code = bitc::FUNC_CODE_INST_GEP; 2323 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2324 auto &GEPInst = cast<GetElementPtrInst>(I); 2325 Vals.push_back(GEPInst.isInBounds()); 2326 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2327 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2328 pushValueAndType(I.getOperand(i), InstID, Vals); 2329 break; 2330 } 2331 case Instruction::ExtractValue: { 2332 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2333 pushValueAndType(I.getOperand(0), InstID, Vals); 2334 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2335 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2336 break; 2337 } 2338 case Instruction::InsertValue: { 2339 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2340 pushValueAndType(I.getOperand(0), InstID, Vals); 2341 pushValueAndType(I.getOperand(1), InstID, Vals); 2342 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2343 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2344 break; 2345 } 2346 case Instruction::Select: 2347 Code = bitc::FUNC_CODE_INST_VSELECT; 2348 pushValueAndType(I.getOperand(1), InstID, Vals); 2349 pushValue(I.getOperand(2), InstID, Vals); 2350 pushValueAndType(I.getOperand(0), InstID, Vals); 2351 break; 2352 case Instruction::ExtractElement: 2353 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2354 pushValueAndType(I.getOperand(0), InstID, Vals); 2355 pushValueAndType(I.getOperand(1), InstID, Vals); 2356 break; 2357 case Instruction::InsertElement: 2358 Code = bitc::FUNC_CODE_INST_INSERTELT; 2359 pushValueAndType(I.getOperand(0), InstID, Vals); 2360 pushValue(I.getOperand(1), InstID, Vals); 2361 pushValueAndType(I.getOperand(2), InstID, Vals); 2362 break; 2363 case Instruction::ShuffleVector: 2364 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2365 pushValueAndType(I.getOperand(0), InstID, Vals); 2366 pushValue(I.getOperand(1), InstID, Vals); 2367 pushValue(I.getOperand(2), InstID, Vals); 2368 break; 2369 case Instruction::ICmp: 2370 case Instruction::FCmp: { 2371 // compare returning Int1Ty or vector of Int1Ty 2372 Code = bitc::FUNC_CODE_INST_CMP2; 2373 pushValueAndType(I.getOperand(0), InstID, Vals); 2374 pushValue(I.getOperand(1), InstID, Vals); 2375 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2376 uint64_t Flags = getOptimizationFlags(&I); 2377 if (Flags != 0) 2378 Vals.push_back(Flags); 2379 break; 2380 } 2381 2382 case Instruction::Ret: 2383 { 2384 Code = bitc::FUNC_CODE_INST_RET; 2385 unsigned NumOperands = I.getNumOperands(); 2386 if (NumOperands == 0) 2387 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2388 else if (NumOperands == 1) { 2389 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2390 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2391 } else { 2392 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2393 pushValueAndType(I.getOperand(i), InstID, Vals); 2394 } 2395 } 2396 break; 2397 case Instruction::Br: 2398 { 2399 Code = bitc::FUNC_CODE_INST_BR; 2400 const BranchInst &II = cast<BranchInst>(I); 2401 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2402 if (II.isConditional()) { 2403 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2404 pushValue(II.getCondition(), InstID, Vals); 2405 } 2406 } 2407 break; 2408 case Instruction::Switch: 2409 { 2410 Code = bitc::FUNC_CODE_INST_SWITCH; 2411 const SwitchInst &SI = cast<SwitchInst>(I); 2412 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2413 pushValue(SI.getCondition(), InstID, Vals); 2414 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2415 for (SwitchInst::ConstCaseIt Case : SI.cases()) { 2416 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2417 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2418 } 2419 } 2420 break; 2421 case Instruction::IndirectBr: 2422 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2423 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2424 // Encode the address operand as relative, but not the basic blocks. 2425 pushValue(I.getOperand(0), InstID, Vals); 2426 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2427 Vals.push_back(VE.getValueID(I.getOperand(i))); 2428 break; 2429 2430 case Instruction::Invoke: { 2431 const InvokeInst *II = cast<InvokeInst>(&I); 2432 const Value *Callee = II->getCalledValue(); 2433 FunctionType *FTy = II->getFunctionType(); 2434 2435 if (II->hasOperandBundles()) 2436 writeOperandBundles(II, InstID); 2437 2438 Code = bitc::FUNC_CODE_INST_INVOKE; 2439 2440 Vals.push_back(VE.getAttributeID(II->getAttributes())); 2441 Vals.push_back(II->getCallingConv() | 1 << 13); 2442 Vals.push_back(VE.getValueID(II->getNormalDest())); 2443 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2444 Vals.push_back(VE.getTypeID(FTy)); 2445 pushValueAndType(Callee, InstID, Vals); 2446 2447 // Emit value #'s for the fixed parameters. 2448 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2449 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2450 2451 // Emit type/value pairs for varargs params. 2452 if (FTy->isVarArg()) { 2453 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 2454 i != e; ++i) 2455 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2456 } 2457 break; 2458 } 2459 case Instruction::Resume: 2460 Code = bitc::FUNC_CODE_INST_RESUME; 2461 pushValueAndType(I.getOperand(0), InstID, Vals); 2462 break; 2463 case Instruction::CleanupRet: { 2464 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2465 const auto &CRI = cast<CleanupReturnInst>(I); 2466 pushValue(CRI.getCleanupPad(), InstID, Vals); 2467 if (CRI.hasUnwindDest()) 2468 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2469 break; 2470 } 2471 case Instruction::CatchRet: { 2472 Code = bitc::FUNC_CODE_INST_CATCHRET; 2473 const auto &CRI = cast<CatchReturnInst>(I); 2474 pushValue(CRI.getCatchPad(), InstID, Vals); 2475 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2476 break; 2477 } 2478 case Instruction::CleanupPad: 2479 case Instruction::CatchPad: { 2480 const auto &FuncletPad = cast<FuncletPadInst>(I); 2481 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2482 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2483 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2484 2485 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2486 Vals.push_back(NumArgOperands); 2487 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2488 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2489 break; 2490 } 2491 case Instruction::CatchSwitch: { 2492 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2493 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2494 2495 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2496 2497 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2498 Vals.push_back(NumHandlers); 2499 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2500 Vals.push_back(VE.getValueID(CatchPadBB)); 2501 2502 if (CatchSwitch.hasUnwindDest()) 2503 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2504 break; 2505 } 2506 case Instruction::Unreachable: 2507 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2508 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2509 break; 2510 2511 case Instruction::PHI: { 2512 const PHINode &PN = cast<PHINode>(I); 2513 Code = bitc::FUNC_CODE_INST_PHI; 2514 // With the newer instruction encoding, forward references could give 2515 // negative valued IDs. This is most common for PHIs, so we use 2516 // signed VBRs. 2517 SmallVector<uint64_t, 128> Vals64; 2518 Vals64.push_back(VE.getTypeID(PN.getType())); 2519 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2520 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2521 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2522 } 2523 // Emit a Vals64 vector and exit. 2524 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2525 Vals64.clear(); 2526 return; 2527 } 2528 2529 case Instruction::LandingPad: { 2530 const LandingPadInst &LP = cast<LandingPadInst>(I); 2531 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2532 Vals.push_back(VE.getTypeID(LP.getType())); 2533 Vals.push_back(LP.isCleanup()); 2534 Vals.push_back(LP.getNumClauses()); 2535 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2536 if (LP.isCatch(I)) 2537 Vals.push_back(LandingPadInst::Catch); 2538 else 2539 Vals.push_back(LandingPadInst::Filter); 2540 pushValueAndType(LP.getClause(I), InstID, Vals); 2541 } 2542 break; 2543 } 2544 2545 case Instruction::Alloca: { 2546 Code = bitc::FUNC_CODE_INST_ALLOCA; 2547 const AllocaInst &AI = cast<AllocaInst>(I); 2548 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2549 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2550 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2551 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2552 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2553 "not enough bits for maximum alignment"); 2554 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2555 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2556 AlignRecord |= 1 << 6; 2557 AlignRecord |= AI.isSwiftError() << 7; 2558 Vals.push_back(AlignRecord); 2559 break; 2560 } 2561 2562 case Instruction::Load: 2563 if (cast<LoadInst>(I).isAtomic()) { 2564 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2565 pushValueAndType(I.getOperand(0), InstID, Vals); 2566 } else { 2567 Code = bitc::FUNC_CODE_INST_LOAD; 2568 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2569 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2570 } 2571 Vals.push_back(VE.getTypeID(I.getType())); 2572 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2573 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2574 if (cast<LoadInst>(I).isAtomic()) { 2575 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2576 Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2577 } 2578 break; 2579 case Instruction::Store: 2580 if (cast<StoreInst>(I).isAtomic()) 2581 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2582 else 2583 Code = bitc::FUNC_CODE_INST_STORE; 2584 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2585 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2586 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2587 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2588 if (cast<StoreInst>(I).isAtomic()) { 2589 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2590 Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2591 } 2592 break; 2593 case Instruction::AtomicCmpXchg: 2594 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2595 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2596 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2597 pushValue(I.getOperand(2), InstID, Vals); // newval. 2598 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2599 Vals.push_back( 2600 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2601 Vals.push_back( 2602 getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope())); 2603 Vals.push_back( 2604 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2605 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2606 break; 2607 case Instruction::AtomicRMW: 2608 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2609 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2610 pushValue(I.getOperand(1), InstID, Vals); // val. 2611 Vals.push_back( 2612 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2613 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2614 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2615 Vals.push_back( 2616 getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope())); 2617 break; 2618 case Instruction::Fence: 2619 Code = bitc::FUNC_CODE_INST_FENCE; 2620 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2621 Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2622 break; 2623 case Instruction::Call: { 2624 const CallInst &CI = cast<CallInst>(I); 2625 FunctionType *FTy = CI.getFunctionType(); 2626 2627 if (CI.hasOperandBundles()) 2628 writeOperandBundles(&CI, InstID); 2629 2630 Code = bitc::FUNC_CODE_INST_CALL; 2631 2632 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 2633 2634 unsigned Flags = getOptimizationFlags(&I); 2635 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2636 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2637 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2638 1 << bitc::CALL_EXPLICIT_TYPE | 2639 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2640 unsigned(Flags != 0) << bitc::CALL_FMF); 2641 if (Flags != 0) 2642 Vals.push_back(Flags); 2643 2644 Vals.push_back(VE.getTypeID(FTy)); 2645 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2646 2647 // Emit value #'s for the fixed parameters. 2648 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2649 // Check for labels (can happen with asm labels). 2650 if (FTy->getParamType(i)->isLabelTy()) 2651 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2652 else 2653 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2654 } 2655 2656 // Emit type/value pairs for varargs params. 2657 if (FTy->isVarArg()) { 2658 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2659 i != e; ++i) 2660 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2661 } 2662 break; 2663 } 2664 case Instruction::VAArg: 2665 Code = bitc::FUNC_CODE_INST_VAARG; 2666 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2667 pushValue(I.getOperand(0), InstID, Vals); // valist. 2668 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2669 break; 2670 } 2671 2672 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2673 Vals.clear(); 2674 } 2675 2676 /// Emit names for globals/functions etc. \p IsModuleLevel is true when 2677 /// we are writing the module-level VST, where we are including a function 2678 /// bitcode index and need to backpatch the VST forward declaration record. 2679 void ModuleBitcodeWriter::writeValueSymbolTable( 2680 const ValueSymbolTable &VST, bool IsModuleLevel, 2681 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex) { 2682 if (VST.empty()) { 2683 // writeValueSymbolTableForwardDecl should have returned early as 2684 // well. Ensure this handling remains in sync by asserting that 2685 // the placeholder offset is not set. 2686 assert(!IsModuleLevel || !hasVSTOffsetPlaceholder()); 2687 return; 2688 } 2689 2690 if (IsModuleLevel && hasVSTOffsetPlaceholder()) { 2691 // Get the offset of the VST we are writing, and backpatch it into 2692 // the VST forward declaration record. 2693 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2694 // The BitcodeStartBit was the stream offset of the actual bitcode 2695 // (e.g. excluding any initial darwin header). 2696 VSTOffset -= bitcodeStartBit(); 2697 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2698 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2699 } 2700 2701 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2702 2703 // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY 2704 // records, which are not used in the per-function VSTs. 2705 unsigned FnEntry8BitAbbrev; 2706 unsigned FnEntry7BitAbbrev; 2707 unsigned FnEntry6BitAbbrev; 2708 if (IsModuleLevel && hasVSTOffsetPlaceholder()) { 2709 // 8-bit fixed-width VST_CODE_FNENTRY function strings. 2710 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2711 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2715 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2716 FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv); 2717 2718 // 7-bit fixed width VST_CODE_FNENTRY function strings. 2719 Abbv = new BitCodeAbbrev(); 2720 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2721 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2722 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2723 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2724 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2725 FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv); 2726 2727 // 6-bit char6 VST_CODE_FNENTRY function strings. 2728 Abbv = new BitCodeAbbrev(); 2729 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2732 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2734 FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv); 2735 } 2736 2737 // FIXME: Set up the abbrev, we know how many values there are! 2738 // FIXME: We know if the type names can use 7-bit ascii. 2739 SmallVector<unsigned, 64> NameVals; 2740 2741 for (const ValueName &Name : VST) { 2742 // Figure out the encoding to use for the name. 2743 StringEncoding Bits = 2744 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2745 2746 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2747 NameVals.push_back(VE.getValueID(Name.getValue())); 2748 2749 Function *F = dyn_cast<Function>(Name.getValue()); 2750 if (!F) { 2751 // If value is an alias, need to get the aliased base object to 2752 // see if it is a function. 2753 auto *GA = dyn_cast<GlobalAlias>(Name.getValue()); 2754 if (GA && GA->getBaseObject()) 2755 F = dyn_cast<Function>(GA->getBaseObject()); 2756 } 2757 2758 // VST_CODE_ENTRY: [valueid, namechar x N] 2759 // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N] 2760 // VST_CODE_BBENTRY: [bbid, namechar x N] 2761 unsigned Code; 2762 if (isa<BasicBlock>(Name.getValue())) { 2763 Code = bitc::VST_CODE_BBENTRY; 2764 if (Bits == SE_Char6) 2765 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2766 } else if (F && !F->isDeclaration()) { 2767 // Must be the module-level VST, where we pass in the Index and 2768 // have a VSTOffsetPlaceholder. The function-level VST should not 2769 // contain any Function symbols. 2770 assert(FunctionToBitcodeIndex); 2771 assert(hasVSTOffsetPlaceholder()); 2772 2773 // Save the word offset of the function (from the start of the 2774 // actual bitcode written to the stream). 2775 uint64_t BitcodeIndex = (*FunctionToBitcodeIndex)[F] - bitcodeStartBit(); 2776 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2777 NameVals.push_back(BitcodeIndex / 32); 2778 2779 Code = bitc::VST_CODE_FNENTRY; 2780 AbbrevToUse = FnEntry8BitAbbrev; 2781 if (Bits == SE_Char6) 2782 AbbrevToUse = FnEntry6BitAbbrev; 2783 else if (Bits == SE_Fixed7) 2784 AbbrevToUse = FnEntry7BitAbbrev; 2785 } else { 2786 Code = bitc::VST_CODE_ENTRY; 2787 if (Bits == SE_Char6) 2788 AbbrevToUse = VST_ENTRY_6_ABBREV; 2789 else if (Bits == SE_Fixed7) 2790 AbbrevToUse = VST_ENTRY_7_ABBREV; 2791 } 2792 2793 for (const auto P : Name.getKey()) 2794 NameVals.push_back((unsigned char)P); 2795 2796 // Emit the finished record. 2797 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2798 NameVals.clear(); 2799 } 2800 Stream.ExitBlock(); 2801 } 2802 2803 /// Emit function names and summary offsets for the combined index 2804 /// used by ThinLTO. 2805 void IndexBitcodeWriter::writeCombinedValueSymbolTable() { 2806 assert(hasVSTOffsetPlaceholder() && "Expected non-zero VSTOffsetPlaceholder"); 2807 // Get the offset of the VST we are writing, and backpatch it into 2808 // the VST forward declaration record. 2809 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2810 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2811 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2812 2813 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2814 2815 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2816 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 2817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2818 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 2819 unsigned EntryAbbrev = Stream.EmitAbbrev(Abbv); 2820 2821 SmallVector<uint64_t, 64> NameVals; 2822 for (const auto &GVI : valueIds()) { 2823 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 2824 NameVals.push_back(GVI.second); 2825 NameVals.push_back(GVI.first); 2826 2827 // Emit the finished record. 2828 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev); 2829 NameVals.clear(); 2830 } 2831 Stream.ExitBlock(); 2832 } 2833 2834 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 2835 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2836 unsigned Code; 2837 if (isa<BasicBlock>(Order.V)) 2838 Code = bitc::USELIST_CODE_BB; 2839 else 2840 Code = bitc::USELIST_CODE_DEFAULT; 2841 2842 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2843 Record.push_back(VE.getValueID(Order.V)); 2844 Stream.EmitRecord(Code, Record); 2845 } 2846 2847 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 2848 assert(VE.shouldPreserveUseListOrder() && 2849 "Expected to be preserving use-list order"); 2850 2851 auto hasMore = [&]() { 2852 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2853 }; 2854 if (!hasMore()) 2855 // Nothing to do. 2856 return; 2857 2858 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2859 while (hasMore()) { 2860 writeUseList(std::move(VE.UseListOrders.back())); 2861 VE.UseListOrders.pop_back(); 2862 } 2863 Stream.ExitBlock(); 2864 } 2865 2866 /// Emit a function body to the module stream. 2867 void ModuleBitcodeWriter::writeFunction( 2868 const Function &F, 2869 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2870 // Save the bitcode index of the start of this function block for recording 2871 // in the VST. 2872 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 2873 2874 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2875 VE.incorporateFunction(F); 2876 2877 SmallVector<unsigned, 64> Vals; 2878 2879 // Emit the number of basic blocks, so the reader can create them ahead of 2880 // time. 2881 Vals.push_back(VE.getBasicBlocks().size()); 2882 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2883 Vals.clear(); 2884 2885 // If there are function-local constants, emit them now. 2886 unsigned CstStart, CstEnd; 2887 VE.getFunctionConstantRange(CstStart, CstEnd); 2888 writeConstants(CstStart, CstEnd, false); 2889 2890 // If there is function-local metadata, emit it now. 2891 writeFunctionMetadata(F); 2892 2893 // Keep a running idea of what the instruction ID is. 2894 unsigned InstID = CstEnd; 2895 2896 bool NeedsMetadataAttachment = F.hasMetadata(); 2897 2898 DILocation *LastDL = nullptr; 2899 // Finally, emit all the instructions, in order. 2900 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2901 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2902 I != E; ++I) { 2903 writeInstruction(*I, InstID, Vals); 2904 2905 if (!I->getType()->isVoidTy()) 2906 ++InstID; 2907 2908 // If the instruction has metadata, write a metadata attachment later. 2909 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2910 2911 // If the instruction has a debug location, emit it. 2912 DILocation *DL = I->getDebugLoc(); 2913 if (!DL) 2914 continue; 2915 2916 if (DL == LastDL) { 2917 // Just repeat the same debug loc as last time. 2918 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2919 continue; 2920 } 2921 2922 Vals.push_back(DL->getLine()); 2923 Vals.push_back(DL->getColumn()); 2924 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2925 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2926 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2927 Vals.clear(); 2928 2929 LastDL = DL; 2930 } 2931 2932 // Emit names for all the instructions etc. 2933 writeValueSymbolTable(F.getValueSymbolTable()); 2934 2935 if (NeedsMetadataAttachment) 2936 writeFunctionMetadataAttachment(F); 2937 if (VE.shouldPreserveUseListOrder()) 2938 writeUseListBlock(&F); 2939 VE.purgeFunction(); 2940 Stream.ExitBlock(); 2941 } 2942 2943 // Emit blockinfo, which defines the standard abbreviations etc. 2944 void ModuleBitcodeWriter::writeBlockInfo() { 2945 // We only want to emit block info records for blocks that have multiple 2946 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2947 // Other blocks can define their abbrevs inline. 2948 Stream.EnterBlockInfoBlock(2); 2949 2950 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 2951 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2956 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2957 VST_ENTRY_8_ABBREV) 2958 llvm_unreachable("Unexpected abbrev ordering!"); 2959 } 2960 2961 { // 7-bit fixed width VST_CODE_ENTRY strings. 2962 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2963 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2967 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2968 VST_ENTRY_7_ABBREV) 2969 llvm_unreachable("Unexpected abbrev ordering!"); 2970 } 2971 { // 6-bit char6 VST_CODE_ENTRY strings. 2972 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2973 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2976 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2977 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2978 VST_ENTRY_6_ABBREV) 2979 llvm_unreachable("Unexpected abbrev ordering!"); 2980 } 2981 { // 6-bit char6 VST_CODE_BBENTRY strings. 2982 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2983 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2984 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2985 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2986 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2987 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2988 VST_BBENTRY_6_ABBREV) 2989 llvm_unreachable("Unexpected abbrev ordering!"); 2990 } 2991 2992 2993 2994 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2995 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2996 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2997 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2998 VE.computeBitsRequiredForTypeIndicies())); 2999 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3000 CONSTANTS_SETTYPE_ABBREV) 3001 llvm_unreachable("Unexpected abbrev ordering!"); 3002 } 3003 3004 { // INTEGER abbrev for CONSTANTS_BLOCK. 3005 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3006 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3007 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3008 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3009 CONSTANTS_INTEGER_ABBREV) 3010 llvm_unreachable("Unexpected abbrev ordering!"); 3011 } 3012 3013 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3014 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3015 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3016 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3017 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3018 VE.computeBitsRequiredForTypeIndicies())); 3019 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3020 3021 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3022 CONSTANTS_CE_CAST_Abbrev) 3023 llvm_unreachable("Unexpected abbrev ordering!"); 3024 } 3025 { // NULL abbrev for CONSTANTS_BLOCK. 3026 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3027 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3028 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3029 CONSTANTS_NULL_Abbrev) 3030 llvm_unreachable("Unexpected abbrev ordering!"); 3031 } 3032 3033 // FIXME: This should only use space for first class types! 3034 3035 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3036 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3037 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3038 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3039 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3040 VE.computeBitsRequiredForTypeIndicies())); 3041 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3042 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3043 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3044 FUNCTION_INST_LOAD_ABBREV) 3045 llvm_unreachable("Unexpected abbrev ordering!"); 3046 } 3047 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3048 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3049 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3050 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3051 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3053 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3054 FUNCTION_INST_BINOP_ABBREV) 3055 llvm_unreachable("Unexpected abbrev ordering!"); 3056 } 3057 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3058 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3059 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3064 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3065 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3066 llvm_unreachable("Unexpected abbrev ordering!"); 3067 } 3068 { // INST_CAST abbrev for FUNCTION_BLOCK. 3069 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3070 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3072 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3073 VE.computeBitsRequiredForTypeIndicies())); 3074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3075 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3076 FUNCTION_INST_CAST_ABBREV) 3077 llvm_unreachable("Unexpected abbrev ordering!"); 3078 } 3079 3080 { // INST_RET abbrev for FUNCTION_BLOCK. 3081 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3082 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3083 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3084 FUNCTION_INST_RET_VOID_ABBREV) 3085 llvm_unreachable("Unexpected abbrev ordering!"); 3086 } 3087 { // INST_RET abbrev for FUNCTION_BLOCK. 3088 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3089 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3091 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3092 FUNCTION_INST_RET_VAL_ABBREV) 3093 llvm_unreachable("Unexpected abbrev ordering!"); 3094 } 3095 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3096 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3097 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3098 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3099 FUNCTION_INST_UNREACHABLE_ABBREV) 3100 llvm_unreachable("Unexpected abbrev ordering!"); 3101 } 3102 { 3103 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3104 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3105 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3106 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3107 Log2_32_Ceil(VE.getTypes().size() + 1))); 3108 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3109 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3110 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3111 FUNCTION_INST_GEP_ABBREV) 3112 llvm_unreachable("Unexpected abbrev ordering!"); 3113 } 3114 3115 Stream.ExitBlock(); 3116 } 3117 3118 /// Write the module path strings, currently only used when generating 3119 /// a combined index file. 3120 void IndexBitcodeWriter::writeModStrings() { 3121 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3122 3123 // TODO: See which abbrev sizes we actually need to emit 3124 3125 // 8-bit fixed-width MST_ENTRY strings. 3126 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3127 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3131 unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv); 3132 3133 // 7-bit fixed width MST_ENTRY strings. 3134 Abbv = new BitCodeAbbrev(); 3135 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3139 unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv); 3140 3141 // 6-bit char6 MST_ENTRY strings. 3142 Abbv = new BitCodeAbbrev(); 3143 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3147 unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv); 3148 3149 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3150 Abbv = new BitCodeAbbrev(); 3151 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3157 unsigned AbbrevHash = Stream.EmitAbbrev(Abbv); 3158 3159 SmallVector<unsigned, 64> Vals; 3160 for (const auto &MPSE : Index.modulePaths()) { 3161 if (!doIncludeModule(MPSE.getKey())) 3162 continue; 3163 StringEncoding Bits = 3164 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 3165 unsigned AbbrevToUse = Abbrev8Bit; 3166 if (Bits == SE_Char6) 3167 AbbrevToUse = Abbrev6Bit; 3168 else if (Bits == SE_Fixed7) 3169 AbbrevToUse = Abbrev7Bit; 3170 3171 Vals.push_back(MPSE.getValue().first); 3172 3173 for (const auto P : MPSE.getKey()) 3174 Vals.push_back((unsigned char)P); 3175 3176 // Emit the finished record. 3177 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3178 3179 Vals.clear(); 3180 // Emit an optional hash for the module now 3181 auto &Hash = MPSE.getValue().second; 3182 bool AllZero = true; // Detect if the hash is empty, and do not generate it 3183 for (auto Val : Hash) { 3184 if (Val) 3185 AllZero = false; 3186 Vals.push_back(Val); 3187 } 3188 if (!AllZero) { 3189 // Emit the hash record. 3190 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3191 } 3192 3193 Vals.clear(); 3194 } 3195 Stream.ExitBlock(); 3196 } 3197 3198 // Helper to emit a single function summary record. 3199 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord( 3200 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3201 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3202 const Function &F) { 3203 NameVals.push_back(ValueID); 3204 3205 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3206 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3207 NameVals.push_back(FS->instCount()); 3208 NameVals.push_back(FS->refs().size()); 3209 3210 unsigned SizeBeforeRefs = NameVals.size(); 3211 for (auto &RI : FS->refs()) 3212 NameVals.push_back(VE.getValueID(RI.getValue())); 3213 // Sort the refs for determinism output, the vector returned by FS->refs() has 3214 // been initialized from a DenseSet. 3215 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3216 3217 std::vector<FunctionSummary::EdgeTy> Calls = FS->calls(); 3218 std::sort(Calls.begin(), Calls.end(), 3219 [this](const FunctionSummary::EdgeTy &L, 3220 const FunctionSummary::EdgeTy &R) { 3221 return VE.getValueID(L.first.getValue()) < 3222 VE.getValueID(R.first.getValue()); 3223 }); 3224 bool HasProfileData = F.getEntryCount().hasValue(); 3225 for (auto &ECI : Calls) { 3226 NameVals.push_back(VE.getValueID(ECI.first.getValue())); 3227 assert(ECI.second.CallsiteCount > 0 && "Expected at least one callsite"); 3228 NameVals.push_back(ECI.second.CallsiteCount); 3229 if (HasProfileData) 3230 NameVals.push_back(ECI.second.ProfileCount); 3231 } 3232 3233 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3234 unsigned Code = 3235 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3236 3237 // Emit the finished record. 3238 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3239 NameVals.clear(); 3240 } 3241 3242 // Collect the global value references in the given variable's initializer, 3243 // and emit them in a summary record. 3244 void ModuleBitcodeWriter::writeModuleLevelReferences( 3245 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3246 unsigned FSModRefsAbbrev) { 3247 // Only interested in recording variable defs in the summary. 3248 if (V.isDeclaration()) 3249 return; 3250 NameVals.push_back(VE.getValueID(&V)); 3251 NameVals.push_back(getEncodedGVSummaryFlags(V)); 3252 auto *Summary = Index->getGlobalValueSummary(V); 3253 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3254 3255 unsigned SizeBeforeRefs = NameVals.size(); 3256 for (auto &RI : VS->refs()) 3257 NameVals.push_back(VE.getValueID(RI.getValue())); 3258 // Sort the refs for determinism output, the vector returned by FS->refs() has 3259 // been initialized from a DenseSet. 3260 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3261 3262 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3263 FSModRefsAbbrev); 3264 NameVals.clear(); 3265 } 3266 3267 // Current version for the summary. 3268 // This is bumped whenever we introduce changes in the way some record are 3269 // interpreted, like flags for instance. 3270 static const uint64_t INDEX_VERSION = 1; 3271 3272 /// Emit the per-module summary section alongside the rest of 3273 /// the module's bitcode. 3274 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() { 3275 if (Index->begin() == Index->end()) 3276 return; 3277 3278 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 3279 3280 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3281 3282 // Abbrev for FS_PERMODULE. 3283 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3284 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3289 // numrefs x valueid, n x (valueid, callsitecount) 3290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3291 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3292 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 3293 3294 // Abbrev for FS_PERMODULE_PROFILE. 3295 Abbv = new BitCodeAbbrev(); 3296 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3301 // numrefs x valueid, n x (valueid, callsitecount, profilecount) 3302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3303 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3304 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 3305 3306 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3307 Abbv = new BitCodeAbbrev(); 3308 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3310 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3313 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 3314 3315 // Abbrev for FS_ALIAS. 3316 Abbv = new BitCodeAbbrev(); 3317 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3321 unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv); 3322 3323 SmallVector<uint64_t, 64> NameVals; 3324 // Iterate over the list of functions instead of the Index to 3325 // ensure the ordering is stable. 3326 for (const Function &F : M) { 3327 if (F.isDeclaration()) 3328 continue; 3329 // Summary emission does not support anonymous functions, they have to 3330 // renamed using the anonymous function renaming pass. 3331 if (!F.hasName()) 3332 report_fatal_error("Unexpected anonymous function when writing summary"); 3333 3334 auto *Summary = Index->getGlobalValueSummary(F); 3335 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3336 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3337 } 3338 3339 // Capture references from GlobalVariable initializers, which are outside 3340 // of a function scope. 3341 for (const GlobalVariable &G : M.globals()) 3342 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3343 3344 for (const GlobalAlias &A : M.aliases()) { 3345 auto *Aliasee = A.getBaseObject(); 3346 if (!Aliasee->hasName()) 3347 // Nameless function don't have an entry in the summary, skip it. 3348 continue; 3349 auto AliasId = VE.getValueID(&A); 3350 auto AliaseeId = VE.getValueID(Aliasee); 3351 NameVals.push_back(AliasId); 3352 NameVals.push_back(getEncodedGVSummaryFlags(A)); 3353 NameVals.push_back(AliaseeId); 3354 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3355 NameVals.clear(); 3356 } 3357 3358 Stream.ExitBlock(); 3359 } 3360 3361 /// Emit the combined summary section into the combined index file. 3362 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3363 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3364 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3365 3366 // Abbrev for FS_COMBINED. 3367 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3368 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3374 // numrefs x valueid, n x (valueid, callsitecount) 3375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3377 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 3378 3379 // Abbrev for FS_COMBINED_PROFILE. 3380 Abbv = new BitCodeAbbrev(); 3381 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3387 // numrefs x valueid, n x (valueid, callsitecount, profilecount) 3388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3390 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 3391 3392 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3393 Abbv = new BitCodeAbbrev(); 3394 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3398 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3399 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3400 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 3401 3402 // Abbrev for FS_COMBINED_ALIAS. 3403 Abbv = new BitCodeAbbrev(); 3404 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3407 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3408 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3409 unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv); 3410 3411 // The aliases are emitted as a post-pass, and will point to the value 3412 // id of the aliasee. Save them in a vector for post-processing. 3413 SmallVector<AliasSummary *, 64> Aliases; 3414 3415 // Save the value id for each summary for alias emission. 3416 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3417 3418 SmallVector<uint64_t, 64> NameVals; 3419 3420 // For local linkage, we also emit the original name separately 3421 // immediately after the record. 3422 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3423 if (!GlobalValue::isLocalLinkage(S.linkage())) 3424 return; 3425 NameVals.push_back(S.getOriginalName()); 3426 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3427 NameVals.clear(); 3428 }; 3429 3430 for (const auto &I : *this) { 3431 GlobalValueSummary *S = I.second; 3432 assert(S); 3433 3434 assert(hasValueId(I.first)); 3435 unsigned ValueId = getValueId(I.first); 3436 SummaryToValueIdMap[S] = ValueId; 3437 3438 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3439 // Will process aliases as a post-pass because the reader wants all 3440 // global to be loaded first. 3441 Aliases.push_back(AS); 3442 continue; 3443 } 3444 3445 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3446 NameVals.push_back(ValueId); 3447 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3448 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3449 for (auto &RI : VS->refs()) { 3450 NameVals.push_back(getValueId(RI.getGUID())); 3451 } 3452 3453 // Emit the finished record. 3454 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3455 FSModRefsAbbrev); 3456 NameVals.clear(); 3457 MaybeEmitOriginalName(*S); 3458 continue; 3459 } 3460 3461 auto *FS = cast<FunctionSummary>(S); 3462 NameVals.push_back(ValueId); 3463 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3464 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3465 NameVals.push_back(FS->instCount()); 3466 NameVals.push_back(FS->refs().size()); 3467 3468 for (auto &RI : FS->refs()) { 3469 NameVals.push_back(getValueId(RI.getGUID())); 3470 } 3471 3472 bool HasProfileData = false; 3473 for (auto &EI : FS->calls()) { 3474 HasProfileData |= EI.second.ProfileCount != 0; 3475 if (HasProfileData) 3476 break; 3477 } 3478 3479 for (auto &EI : FS->calls()) { 3480 // If this GUID doesn't have a value id, it doesn't have a function 3481 // summary and we don't need to record any calls to it. 3482 if (!hasValueId(EI.first.getGUID())) 3483 continue; 3484 NameVals.push_back(getValueId(EI.first.getGUID())); 3485 assert(EI.second.CallsiteCount > 0 && "Expected at least one callsite"); 3486 NameVals.push_back(EI.second.CallsiteCount); 3487 if (HasProfileData) 3488 NameVals.push_back(EI.second.ProfileCount); 3489 } 3490 3491 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3492 unsigned Code = 3493 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3494 3495 // Emit the finished record. 3496 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3497 NameVals.clear(); 3498 MaybeEmitOriginalName(*S); 3499 } 3500 3501 for (auto *AS : Aliases) { 3502 auto AliasValueId = SummaryToValueIdMap[AS]; 3503 assert(AliasValueId); 3504 NameVals.push_back(AliasValueId); 3505 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3506 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3507 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3508 assert(AliaseeValueId); 3509 NameVals.push_back(AliaseeValueId); 3510 3511 // Emit the finished record. 3512 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3513 NameVals.clear(); 3514 MaybeEmitOriginalName(*AS); 3515 } 3516 3517 Stream.ExitBlock(); 3518 } 3519 3520 void ModuleBitcodeWriter::writeIdentificationBlock() { 3521 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3522 3523 // Write the "user readable" string identifying the bitcode producer 3524 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3525 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3528 auto StringAbbrev = Stream.EmitAbbrev(Abbv); 3529 writeStringRecord(bitc::IDENTIFICATION_CODE_STRING, 3530 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3531 3532 // Write the epoch version 3533 Abbv = new BitCodeAbbrev(); 3534 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3535 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3536 auto EpochAbbrev = Stream.EmitAbbrev(Abbv); 3537 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3538 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3539 Stream.ExitBlock(); 3540 } 3541 3542 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3543 // Emit the module's hash. 3544 // MODULE_CODE_HASH: [5*i32] 3545 SHA1 Hasher; 3546 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3547 Buffer.size() - BlockStartPos)); 3548 auto Hash = Hasher.result(); 3549 SmallVector<uint64_t, 20> Vals; 3550 auto LShift = [&](unsigned char Val, unsigned Amount) 3551 -> uint64_t { return ((uint64_t)Val) << Amount; }; 3552 for (int Pos = 0; Pos < 20; Pos += 4) { 3553 uint32_t SubHash = LShift(Hash[Pos + 0], 24); 3554 SubHash |= LShift(Hash[Pos + 1], 16) | LShift(Hash[Pos + 2], 8) | 3555 (unsigned)(unsigned char)Hash[Pos + 3]; 3556 Vals.push_back(SubHash); 3557 } 3558 3559 // Emit the finished record. 3560 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3561 } 3562 3563 void BitcodeWriter::write() { 3564 // Emit the file header first. 3565 writeBitcodeHeader(); 3566 3567 writeBlocks(); 3568 } 3569 3570 void ModuleBitcodeWriter::writeBlocks() { 3571 writeIdentificationBlock(); 3572 writeModule(); 3573 } 3574 3575 void IndexBitcodeWriter::writeBlocks() { 3576 // Index contains only a single outer (module) block. 3577 writeIndex(); 3578 } 3579 3580 void ModuleBitcodeWriter::writeModule() { 3581 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3582 size_t BlockStartPos = Buffer.size(); 3583 3584 SmallVector<unsigned, 1> Vals; 3585 unsigned CurVersion = 1; 3586 Vals.push_back(CurVersion); 3587 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3588 3589 // Emit blockinfo, which defines the standard abbreviations etc. 3590 writeBlockInfo(); 3591 3592 // Emit information about attribute groups. 3593 writeAttributeGroupTable(); 3594 3595 // Emit information about parameter attributes. 3596 writeAttributeTable(); 3597 3598 // Emit information describing all of the types in the module. 3599 writeTypeTable(); 3600 3601 writeComdats(); 3602 3603 // Emit top-level description of module, including target triple, inline asm, 3604 // descriptors for global variables, and function prototype info. 3605 writeModuleInfo(); 3606 3607 // Emit constants. 3608 writeModuleConstants(); 3609 3610 // Emit metadata kind names. 3611 writeModuleMetadataKinds(); 3612 3613 // Emit metadata. 3614 writeModuleMetadata(); 3615 3616 // Emit module-level use-lists. 3617 if (VE.shouldPreserveUseListOrder()) 3618 writeUseListBlock(nullptr); 3619 3620 writeOperandBundleTags(); 3621 3622 // Emit function bodies. 3623 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3624 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3625 if (!F->isDeclaration()) 3626 writeFunction(*F, FunctionToBitcodeIndex); 3627 3628 // Need to write after the above call to WriteFunction which populates 3629 // the summary information in the index. 3630 if (Index) 3631 writePerModuleGlobalValueSummary(); 3632 3633 writeValueSymbolTable(M.getValueSymbolTable(), 3634 /* IsModuleLevel */ true, &FunctionToBitcodeIndex); 3635 3636 if (GenerateHash) { 3637 writeModuleHash(BlockStartPos); 3638 } 3639 3640 Stream.ExitBlock(); 3641 } 3642 3643 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3644 uint32_t &Position) { 3645 support::endian::write32le(&Buffer[Position], Value); 3646 Position += 4; 3647 } 3648 3649 /// If generating a bc file on darwin, we have to emit a 3650 /// header and trailer to make it compatible with the system archiver. To do 3651 /// this we emit the following header, and then emit a trailer that pads the 3652 /// file out to be a multiple of 16 bytes. 3653 /// 3654 /// struct bc_header { 3655 /// uint32_t Magic; // 0x0B17C0DE 3656 /// uint32_t Version; // Version, currently always 0. 3657 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3658 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3659 /// uint32_t CPUType; // CPU specifier. 3660 /// ... potentially more later ... 3661 /// }; 3662 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3663 const Triple &TT) { 3664 unsigned CPUType = ~0U; 3665 3666 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3667 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3668 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3669 // specific constants here because they are implicitly part of the Darwin ABI. 3670 enum { 3671 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3672 DARWIN_CPU_TYPE_X86 = 7, 3673 DARWIN_CPU_TYPE_ARM = 12, 3674 DARWIN_CPU_TYPE_POWERPC = 18 3675 }; 3676 3677 Triple::ArchType Arch = TT.getArch(); 3678 if (Arch == Triple::x86_64) 3679 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3680 else if (Arch == Triple::x86) 3681 CPUType = DARWIN_CPU_TYPE_X86; 3682 else if (Arch == Triple::ppc) 3683 CPUType = DARWIN_CPU_TYPE_POWERPC; 3684 else if (Arch == Triple::ppc64) 3685 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3686 else if (Arch == Triple::arm || Arch == Triple::thumb) 3687 CPUType = DARWIN_CPU_TYPE_ARM; 3688 3689 // Traditional Bitcode starts after header. 3690 assert(Buffer.size() >= BWH_HeaderSize && 3691 "Expected header size to be reserved"); 3692 unsigned BCOffset = BWH_HeaderSize; 3693 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3694 3695 // Write the magic and version. 3696 unsigned Position = 0; 3697 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3698 writeInt32ToBuffer(0, Buffer, Position); // Version. 3699 writeInt32ToBuffer(BCOffset, Buffer, Position); 3700 writeInt32ToBuffer(BCSize, Buffer, Position); 3701 writeInt32ToBuffer(CPUType, Buffer, Position); 3702 3703 // If the file is not a multiple of 16 bytes, insert dummy padding. 3704 while (Buffer.size() & 15) 3705 Buffer.push_back(0); 3706 } 3707 3708 /// Helper to write the header common to all bitcode files. 3709 void BitcodeWriter::writeBitcodeHeader() { 3710 // Emit the file header. 3711 Stream.Emit((unsigned)'B', 8); 3712 Stream.Emit((unsigned)'C', 8); 3713 Stream.Emit(0x0, 4); 3714 Stream.Emit(0xC, 4); 3715 Stream.Emit(0xE, 4); 3716 Stream.Emit(0xD, 4); 3717 } 3718 3719 /// WriteBitcodeToFile - Write the specified module to the specified output 3720 /// stream. 3721 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3722 bool ShouldPreserveUseListOrder, 3723 const ModuleSummaryIndex *Index, 3724 bool GenerateHash) { 3725 SmallVector<char, 0> Buffer; 3726 Buffer.reserve(256*1024); 3727 3728 // If this is darwin or another generic macho target, reserve space for the 3729 // header. 3730 Triple TT(M->getTargetTriple()); 3731 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3732 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3733 3734 // Emit the module into the buffer. 3735 ModuleBitcodeWriter ModuleWriter(M, Buffer, ShouldPreserveUseListOrder, Index, 3736 GenerateHash); 3737 ModuleWriter.write(); 3738 3739 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3740 emitDarwinBCHeaderAndTrailer(Buffer, TT); 3741 3742 // Write the generated bitstream to "Out". 3743 Out.write((char*)&Buffer.front(), Buffer.size()); 3744 } 3745 3746 void IndexBitcodeWriter::writeIndex() { 3747 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3748 3749 SmallVector<unsigned, 1> Vals; 3750 unsigned CurVersion = 1; 3751 Vals.push_back(CurVersion); 3752 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3753 3754 // If we have a VST, write the VSTOFFSET record placeholder. 3755 writeValueSymbolTableForwardDecl(); 3756 3757 // Write the module paths in the combined index. 3758 writeModStrings(); 3759 3760 // Write the summary combined index records. 3761 writeCombinedGlobalValueSummary(); 3762 3763 // Need a special VST writer for the combined index (we don't have a 3764 // real VST and real values when this is invoked). 3765 writeCombinedValueSymbolTable(); 3766 3767 Stream.ExitBlock(); 3768 } 3769 3770 // Write the specified module summary index to the given raw output stream, 3771 // where it will be written in a new bitcode block. This is used when 3772 // writing the combined index file for ThinLTO. When writing a subset of the 3773 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 3774 void llvm::WriteIndexToFile( 3775 const ModuleSummaryIndex &Index, raw_ostream &Out, 3776 std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 3777 SmallVector<char, 0> Buffer; 3778 Buffer.reserve(256 * 1024); 3779 3780 IndexBitcodeWriter IndexWriter(Buffer, Index, ModuleToSummariesForIndex); 3781 IndexWriter.write(); 3782 3783 Out.write((char *)&Buffer.front(), Buffer.size()); 3784 } 3785