1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Bitcode/BitCodes.h" 29 #include "llvm/Bitcode/BitstreamWriter.h" 30 #include "llvm/Bitcode/LLVMBitCodes.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/Object/IRSymtab.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Endian.h" 65 #include "llvm/Support/Error.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/SHA1.h" 69 #include "llvm/Support/TargetRegistry.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <map> 77 #include <memory> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 static cl::opt<unsigned> 85 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 86 cl::desc("Number of metadatas above which we emit an index " 87 "to enable lazy-loading")); 88 89 namespace { 90 91 /// These are manifest constants used by the bitcode writer. They do not need to 92 /// be kept in sync with the reader, but need to be consistent within this file. 93 enum { 94 // VALUE_SYMTAB_BLOCK abbrev id's. 95 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 96 VST_ENTRY_7_ABBREV, 97 VST_ENTRY_6_ABBREV, 98 VST_BBENTRY_6_ABBREV, 99 100 // CONSTANTS_BLOCK abbrev id's. 101 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 102 CONSTANTS_INTEGER_ABBREV, 103 CONSTANTS_CE_CAST_Abbrev, 104 CONSTANTS_NULL_Abbrev, 105 106 // FUNCTION_BLOCK abbrev id's. 107 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 108 FUNCTION_INST_BINOP_ABBREV, 109 FUNCTION_INST_BINOP_FLAGS_ABBREV, 110 FUNCTION_INST_CAST_ABBREV, 111 FUNCTION_INST_RET_VOID_ABBREV, 112 FUNCTION_INST_RET_VAL_ABBREV, 113 FUNCTION_INST_UNREACHABLE_ABBREV, 114 FUNCTION_INST_GEP_ABBREV, 115 }; 116 117 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 118 /// file type. 119 class BitcodeWriterBase { 120 protected: 121 /// The stream created and owned by the client. 122 BitstreamWriter &Stream; 123 124 StringTableBuilder &StrtabBuilder; 125 126 public: 127 /// Constructs a BitcodeWriterBase object that writes to the provided 128 /// \p Stream. 129 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 130 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 131 132 protected: 133 void writeBitcodeHeader(); 134 void writeModuleVersion(); 135 }; 136 137 void BitcodeWriterBase::writeModuleVersion() { 138 // VERSION: [version#] 139 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 140 } 141 142 /// Base class to manage the module bitcode writing, currently subclassed for 143 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 144 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 145 protected: 146 /// The Module to write to bitcode. 147 const Module &M; 148 149 /// Enumerates ids for all values in the module. 150 ValueEnumerator VE; 151 152 /// Optional per-module index to write for ThinLTO. 153 const ModuleSummaryIndex *Index; 154 155 /// Map that holds the correspondence between GUIDs in the summary index, 156 /// that came from indirect call profiles, and a value id generated by this 157 /// class to use in the VST and summary block records. 158 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 159 160 /// Tracks the last value id recorded in the GUIDToValueMap. 161 unsigned GlobalValueId; 162 163 /// Saves the offset of the VSTOffset record that must eventually be 164 /// backpatched with the offset of the actual VST. 165 uint64_t VSTOffsetPlaceholder = 0; 166 167 public: 168 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 169 /// writing to the provided \p Buffer. 170 ModuleBitcodeWriterBase(const Module *M, StringTableBuilder &StrtabBuilder, 171 BitstreamWriter &Stream, 172 bool ShouldPreserveUseListOrder, 173 const ModuleSummaryIndex *Index) 174 : BitcodeWriterBase(Stream, StrtabBuilder), M(*M), 175 VE(*M, ShouldPreserveUseListOrder), Index(Index) { 176 // Assign ValueIds to any callee values in the index that came from 177 // indirect call profiles and were recorded as a GUID not a Value* 178 // (which would have been assigned an ID by the ValueEnumerator). 179 // The starting ValueId is just after the number of values in the 180 // ValueEnumerator, so that they can be emitted in the VST. 181 GlobalValueId = VE.getValues().size(); 182 if (!Index) 183 return; 184 for (const auto &GUIDSummaryLists : *Index) 185 // Examine all summaries for this GUID. 186 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 187 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 188 // For each call in the function summary, see if the call 189 // is to a GUID (which means it is for an indirect call, 190 // otherwise we would have a Value for it). If so, synthesize 191 // a value id. 192 for (auto &CallEdge : FS->calls()) 193 if (!CallEdge.first.getValue()) 194 assignValueId(CallEdge.first.getGUID()); 195 } 196 197 protected: 198 void writePerModuleGlobalValueSummary(); 199 200 private: 201 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 202 GlobalValueSummary *Summary, 203 unsigned ValueID, 204 unsigned FSCallsAbbrev, 205 unsigned FSCallsProfileAbbrev, 206 const Function &F); 207 void writeModuleLevelReferences(const GlobalVariable &V, 208 SmallVector<uint64_t, 64> &NameVals, 209 unsigned FSModRefsAbbrev); 210 211 void assignValueId(GlobalValue::GUID ValGUID) { 212 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 213 } 214 215 unsigned getValueId(GlobalValue::GUID ValGUID) { 216 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 217 // Expect that any GUID value had a value Id assigned by an 218 // earlier call to assignValueId. 219 assert(VMI != GUIDToValueIdMap.end() && 220 "GUID does not have assigned value Id"); 221 return VMI->second; 222 } 223 224 // Helper to get the valueId for the type of value recorded in VI. 225 unsigned getValueId(ValueInfo VI) { 226 if (!VI.getValue()) 227 return getValueId(VI.getGUID()); 228 return VE.getValueID(VI.getValue()); 229 } 230 231 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 232 }; 233 234 /// Class to manage the bitcode writing for a module. 235 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 236 /// Pointer to the buffer allocated by caller for bitcode writing. 237 const SmallVectorImpl<char> &Buffer; 238 239 /// True if a module hash record should be written. 240 bool GenerateHash; 241 242 /// If non-null, when GenerateHash is true, the resulting hash is written 243 /// into ModHash. 244 ModuleHash *ModHash; 245 246 SHA1 Hasher; 247 248 /// The start bit of the identification block. 249 uint64_t BitcodeStartBit; 250 251 public: 252 /// Constructs a ModuleBitcodeWriter object for the given Module, 253 /// writing to the provided \p Buffer. 254 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 255 StringTableBuilder &StrtabBuilder, 256 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 257 const ModuleSummaryIndex *Index, bool GenerateHash, 258 ModuleHash *ModHash = nullptr) 259 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 260 ShouldPreserveUseListOrder, Index), 261 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 262 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 263 264 /// Emit the current module to the bitstream. 265 void write(); 266 267 private: 268 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 269 270 size_t addToStrtab(StringRef Str); 271 272 void writeAttributeGroupTable(); 273 void writeAttributeTable(); 274 void writeTypeTable(); 275 void writeComdats(); 276 void writeValueSymbolTableForwardDecl(); 277 void writeModuleInfo(); 278 void writeValueAsMetadata(const ValueAsMetadata *MD, 279 SmallVectorImpl<uint64_t> &Record); 280 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 281 unsigned Abbrev); 282 unsigned createDILocationAbbrev(); 283 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 284 unsigned &Abbrev); 285 unsigned createGenericDINodeAbbrev(); 286 void writeGenericDINode(const GenericDINode *N, 287 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 288 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 289 unsigned Abbrev); 290 void writeDIEnumerator(const DIEnumerator *N, 291 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 292 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 293 unsigned Abbrev); 294 void writeDIDerivedType(const DIDerivedType *N, 295 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 296 void writeDICompositeType(const DICompositeType *N, 297 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 298 void writeDISubroutineType(const DISubroutineType *N, 299 SmallVectorImpl<uint64_t> &Record, 300 unsigned Abbrev); 301 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDICompileUnit(const DICompileUnit *N, 304 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 305 void writeDISubprogram(const DISubprogram *N, 306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 307 void writeDILexicalBlock(const DILexicalBlock *N, 308 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 309 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 310 SmallVectorImpl<uint64_t> &Record, 311 unsigned Abbrev); 312 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 313 unsigned Abbrev); 314 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 315 unsigned Abbrev); 316 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 317 unsigned Abbrev); 318 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 321 SmallVectorImpl<uint64_t> &Record, 322 unsigned Abbrev); 323 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 324 SmallVectorImpl<uint64_t> &Record, 325 unsigned Abbrev); 326 void writeDIGlobalVariable(const DIGlobalVariable *N, 327 SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDILocalVariable(const DILocalVariable *N, 330 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 331 void writeDIExpression(const DIExpression *N, 332 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 333 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 334 SmallVectorImpl<uint64_t> &Record, 335 unsigned Abbrev); 336 void writeDIObjCProperty(const DIObjCProperty *N, 337 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 338 void writeDIImportedEntity(const DIImportedEntity *N, 339 SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 unsigned createNamedMetadataAbbrev(); 342 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 343 unsigned createMetadataStringsAbbrev(); 344 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 345 SmallVectorImpl<uint64_t> &Record); 346 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 347 SmallVectorImpl<uint64_t> &Record, 348 std::vector<unsigned> *MDAbbrevs = nullptr, 349 std::vector<uint64_t> *IndexPos = nullptr); 350 void writeModuleMetadata(); 351 void writeFunctionMetadata(const Function &F); 352 void writeFunctionMetadataAttachment(const Function &F); 353 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 354 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 355 const GlobalObject &GO); 356 void writeModuleMetadataKinds(); 357 void writeOperandBundleTags(); 358 void writeSyncScopeNames(); 359 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 360 void writeModuleConstants(); 361 bool pushValueAndType(const Value *V, unsigned InstID, 362 SmallVectorImpl<unsigned> &Vals); 363 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 364 void pushValue(const Value *V, unsigned InstID, 365 SmallVectorImpl<unsigned> &Vals); 366 void pushValueSigned(const Value *V, unsigned InstID, 367 SmallVectorImpl<uint64_t> &Vals); 368 void writeInstruction(const Instruction &I, unsigned InstID, 369 SmallVectorImpl<unsigned> &Vals); 370 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 371 void writeGlobalValueSymbolTable( 372 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 373 void writeUseList(UseListOrder &&Order); 374 void writeUseListBlock(const Function *F); 375 void 376 writeFunction(const Function &F, 377 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 378 void writeBlockInfo(); 379 void writeModuleHash(size_t BlockStartPos); 380 381 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 382 return unsigned(SSID); 383 } 384 }; 385 386 /// Class to manage the bitcode writing for a combined index. 387 class IndexBitcodeWriter : public BitcodeWriterBase { 388 /// The combined index to write to bitcode. 389 const ModuleSummaryIndex &Index; 390 391 /// When writing a subset of the index for distributed backends, client 392 /// provides a map of modules to the corresponding GUIDs/summaries to write. 393 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 394 395 /// Map that holds the correspondence between the GUID used in the combined 396 /// index and a value id generated by this class to use in references. 397 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 398 399 /// Tracks the last value id recorded in the GUIDToValueMap. 400 unsigned GlobalValueId = 0; 401 402 public: 403 /// Constructs a IndexBitcodeWriter object for the given combined index, 404 /// writing to the provided \p Buffer. When writing a subset of the index 405 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 406 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 407 const ModuleSummaryIndex &Index, 408 const std::map<std::string, GVSummaryMapTy> 409 *ModuleToSummariesForIndex = nullptr) 410 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 411 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 412 // Assign unique value ids to all summaries to be written, for use 413 // in writing out the call graph edges. Save the mapping from GUID 414 // to the new global value id to use when writing those edges, which 415 // are currently saved in the index in terms of GUID. 416 forEachSummary([&](GVInfo I) { 417 GUIDToValueIdMap[I.first] = ++GlobalValueId; 418 }); 419 } 420 421 /// The below iterator returns the GUID and associated summary. 422 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 423 424 /// Calls the callback for each value GUID and summary to be written to 425 /// bitcode. This hides the details of whether they are being pulled from the 426 /// entire index or just those in a provided ModuleToSummariesForIndex map. 427 template<typename Functor> 428 void forEachSummary(Functor Callback) { 429 if (ModuleToSummariesForIndex) { 430 for (auto &M : *ModuleToSummariesForIndex) 431 for (auto &Summary : M.second) 432 Callback(Summary); 433 } else { 434 for (auto &Summaries : Index) 435 for (auto &Summary : Summaries.second.SummaryList) 436 Callback({Summaries.first, Summary.get()}); 437 } 438 } 439 440 /// Calls the callback for each entry in the modulePaths StringMap that 441 /// should be written to the module path string table. This hides the details 442 /// of whether they are being pulled from the entire index or just those in a 443 /// provided ModuleToSummariesForIndex map. 444 template <typename Functor> void forEachModule(Functor Callback) { 445 if (ModuleToSummariesForIndex) { 446 for (const auto &M : *ModuleToSummariesForIndex) { 447 const auto &MPI = Index.modulePaths().find(M.first); 448 if (MPI == Index.modulePaths().end()) { 449 // This should only happen if the bitcode file was empty, in which 450 // case we shouldn't be importing (the ModuleToSummariesForIndex 451 // would only include the module we are writing and index for). 452 assert(ModuleToSummariesForIndex->size() == 1); 453 continue; 454 } 455 Callback(*MPI); 456 } 457 } else { 458 for (const auto &MPSE : Index.modulePaths()) 459 Callback(MPSE); 460 } 461 } 462 463 /// Main entry point for writing a combined index to bitcode. 464 void write(); 465 466 private: 467 void writeModStrings(); 468 void writeCombinedGlobalValueSummary(); 469 470 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 471 auto VMI = GUIDToValueIdMap.find(ValGUID); 472 if (VMI == GUIDToValueIdMap.end()) 473 return None; 474 return VMI->second; 475 } 476 477 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 478 }; 479 480 } // end anonymous namespace 481 482 static unsigned getEncodedCastOpcode(unsigned Opcode) { 483 switch (Opcode) { 484 default: llvm_unreachable("Unknown cast instruction!"); 485 case Instruction::Trunc : return bitc::CAST_TRUNC; 486 case Instruction::ZExt : return bitc::CAST_ZEXT; 487 case Instruction::SExt : return bitc::CAST_SEXT; 488 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 489 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 490 case Instruction::UIToFP : return bitc::CAST_UITOFP; 491 case Instruction::SIToFP : return bitc::CAST_SITOFP; 492 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 493 case Instruction::FPExt : return bitc::CAST_FPEXT; 494 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 495 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 496 case Instruction::BitCast : return bitc::CAST_BITCAST; 497 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 498 } 499 } 500 501 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 502 switch (Opcode) { 503 default: llvm_unreachable("Unknown binary instruction!"); 504 case Instruction::Add: 505 case Instruction::FAdd: return bitc::BINOP_ADD; 506 case Instruction::Sub: 507 case Instruction::FSub: return bitc::BINOP_SUB; 508 case Instruction::Mul: 509 case Instruction::FMul: return bitc::BINOP_MUL; 510 case Instruction::UDiv: return bitc::BINOP_UDIV; 511 case Instruction::FDiv: 512 case Instruction::SDiv: return bitc::BINOP_SDIV; 513 case Instruction::URem: return bitc::BINOP_UREM; 514 case Instruction::FRem: 515 case Instruction::SRem: return bitc::BINOP_SREM; 516 case Instruction::Shl: return bitc::BINOP_SHL; 517 case Instruction::LShr: return bitc::BINOP_LSHR; 518 case Instruction::AShr: return bitc::BINOP_ASHR; 519 case Instruction::And: return bitc::BINOP_AND; 520 case Instruction::Or: return bitc::BINOP_OR; 521 case Instruction::Xor: return bitc::BINOP_XOR; 522 } 523 } 524 525 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 526 switch (Op) { 527 default: llvm_unreachable("Unknown RMW operation!"); 528 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 529 case AtomicRMWInst::Add: return bitc::RMW_ADD; 530 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 531 case AtomicRMWInst::And: return bitc::RMW_AND; 532 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 533 case AtomicRMWInst::Or: return bitc::RMW_OR; 534 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 535 case AtomicRMWInst::Max: return bitc::RMW_MAX; 536 case AtomicRMWInst::Min: return bitc::RMW_MIN; 537 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 538 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 539 } 540 } 541 542 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 543 switch (Ordering) { 544 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 545 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 546 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 547 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 548 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 549 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 550 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 551 } 552 llvm_unreachable("Invalid ordering"); 553 } 554 555 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 556 StringRef Str, unsigned AbbrevToUse) { 557 SmallVector<unsigned, 64> Vals; 558 559 // Code: [strchar x N] 560 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 561 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 562 AbbrevToUse = 0; 563 Vals.push_back(Str[i]); 564 } 565 566 // Emit the finished record. 567 Stream.EmitRecord(Code, Vals, AbbrevToUse); 568 } 569 570 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 571 switch (Kind) { 572 case Attribute::Alignment: 573 return bitc::ATTR_KIND_ALIGNMENT; 574 case Attribute::AllocSize: 575 return bitc::ATTR_KIND_ALLOC_SIZE; 576 case Attribute::AlwaysInline: 577 return bitc::ATTR_KIND_ALWAYS_INLINE; 578 case Attribute::ArgMemOnly: 579 return bitc::ATTR_KIND_ARGMEMONLY; 580 case Attribute::Builtin: 581 return bitc::ATTR_KIND_BUILTIN; 582 case Attribute::ByVal: 583 return bitc::ATTR_KIND_BY_VAL; 584 case Attribute::Convergent: 585 return bitc::ATTR_KIND_CONVERGENT; 586 case Attribute::InAlloca: 587 return bitc::ATTR_KIND_IN_ALLOCA; 588 case Attribute::Cold: 589 return bitc::ATTR_KIND_COLD; 590 case Attribute::InaccessibleMemOnly: 591 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 592 case Attribute::InaccessibleMemOrArgMemOnly: 593 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 594 case Attribute::InlineHint: 595 return bitc::ATTR_KIND_INLINE_HINT; 596 case Attribute::InReg: 597 return bitc::ATTR_KIND_IN_REG; 598 case Attribute::JumpTable: 599 return bitc::ATTR_KIND_JUMP_TABLE; 600 case Attribute::MinSize: 601 return bitc::ATTR_KIND_MIN_SIZE; 602 case Attribute::Naked: 603 return bitc::ATTR_KIND_NAKED; 604 case Attribute::Nest: 605 return bitc::ATTR_KIND_NEST; 606 case Attribute::NoAlias: 607 return bitc::ATTR_KIND_NO_ALIAS; 608 case Attribute::NoBuiltin: 609 return bitc::ATTR_KIND_NO_BUILTIN; 610 case Attribute::NoCapture: 611 return bitc::ATTR_KIND_NO_CAPTURE; 612 case Attribute::NoDuplicate: 613 return bitc::ATTR_KIND_NO_DUPLICATE; 614 case Attribute::NoImplicitFloat: 615 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 616 case Attribute::NoInline: 617 return bitc::ATTR_KIND_NO_INLINE; 618 case Attribute::NoRecurse: 619 return bitc::ATTR_KIND_NO_RECURSE; 620 case Attribute::NonLazyBind: 621 return bitc::ATTR_KIND_NON_LAZY_BIND; 622 case Attribute::NonNull: 623 return bitc::ATTR_KIND_NON_NULL; 624 case Attribute::Dereferenceable: 625 return bitc::ATTR_KIND_DEREFERENCEABLE; 626 case Attribute::DereferenceableOrNull: 627 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 628 case Attribute::NoRedZone: 629 return bitc::ATTR_KIND_NO_RED_ZONE; 630 case Attribute::NoReturn: 631 return bitc::ATTR_KIND_NO_RETURN; 632 case Attribute::NoUnwind: 633 return bitc::ATTR_KIND_NO_UNWIND; 634 case Attribute::OptimizeForSize: 635 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 636 case Attribute::OptimizeNone: 637 return bitc::ATTR_KIND_OPTIMIZE_NONE; 638 case Attribute::ReadNone: 639 return bitc::ATTR_KIND_READ_NONE; 640 case Attribute::ReadOnly: 641 return bitc::ATTR_KIND_READ_ONLY; 642 case Attribute::Returned: 643 return bitc::ATTR_KIND_RETURNED; 644 case Attribute::ReturnsTwice: 645 return bitc::ATTR_KIND_RETURNS_TWICE; 646 case Attribute::SExt: 647 return bitc::ATTR_KIND_S_EXT; 648 case Attribute::Speculatable: 649 return bitc::ATTR_KIND_SPECULATABLE; 650 case Attribute::StackAlignment: 651 return bitc::ATTR_KIND_STACK_ALIGNMENT; 652 case Attribute::StackProtect: 653 return bitc::ATTR_KIND_STACK_PROTECT; 654 case Attribute::StackProtectReq: 655 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 656 case Attribute::StackProtectStrong: 657 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 658 case Attribute::SafeStack: 659 return bitc::ATTR_KIND_SAFESTACK; 660 case Attribute::StrictFP: 661 return bitc::ATTR_KIND_STRICT_FP; 662 case Attribute::StructRet: 663 return bitc::ATTR_KIND_STRUCT_RET; 664 case Attribute::SanitizeAddress: 665 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 666 case Attribute::SanitizeThread: 667 return bitc::ATTR_KIND_SANITIZE_THREAD; 668 case Attribute::SanitizeMemory: 669 return bitc::ATTR_KIND_SANITIZE_MEMORY; 670 case Attribute::SwiftError: 671 return bitc::ATTR_KIND_SWIFT_ERROR; 672 case Attribute::SwiftSelf: 673 return bitc::ATTR_KIND_SWIFT_SELF; 674 case Attribute::UWTable: 675 return bitc::ATTR_KIND_UW_TABLE; 676 case Attribute::WriteOnly: 677 return bitc::ATTR_KIND_WRITEONLY; 678 case Attribute::ZExt: 679 return bitc::ATTR_KIND_Z_EXT; 680 case Attribute::EndAttrKinds: 681 llvm_unreachable("Can not encode end-attribute kinds marker."); 682 case Attribute::None: 683 llvm_unreachable("Can not encode none-attribute."); 684 } 685 686 llvm_unreachable("Trying to encode unknown attribute"); 687 } 688 689 void ModuleBitcodeWriter::writeAttributeGroupTable() { 690 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 691 VE.getAttributeGroups(); 692 if (AttrGrps.empty()) return; 693 694 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 695 696 SmallVector<uint64_t, 64> Record; 697 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 698 unsigned AttrListIndex = Pair.first; 699 AttributeSet AS = Pair.second; 700 Record.push_back(VE.getAttributeGroupID(Pair)); 701 Record.push_back(AttrListIndex); 702 703 for (Attribute Attr : AS) { 704 if (Attr.isEnumAttribute()) { 705 Record.push_back(0); 706 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 707 } else if (Attr.isIntAttribute()) { 708 Record.push_back(1); 709 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 710 Record.push_back(Attr.getValueAsInt()); 711 } else { 712 StringRef Kind = Attr.getKindAsString(); 713 StringRef Val = Attr.getValueAsString(); 714 715 Record.push_back(Val.empty() ? 3 : 4); 716 Record.append(Kind.begin(), Kind.end()); 717 Record.push_back(0); 718 if (!Val.empty()) { 719 Record.append(Val.begin(), Val.end()); 720 Record.push_back(0); 721 } 722 } 723 } 724 725 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 726 Record.clear(); 727 } 728 729 Stream.ExitBlock(); 730 } 731 732 void ModuleBitcodeWriter::writeAttributeTable() { 733 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 734 if (Attrs.empty()) return; 735 736 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 737 738 SmallVector<uint64_t, 64> Record; 739 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 740 AttributeList AL = Attrs[i]; 741 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 742 AttributeSet AS = AL.getAttributes(i); 743 if (AS.hasAttributes()) 744 Record.push_back(VE.getAttributeGroupID({i, AS})); 745 } 746 747 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 748 Record.clear(); 749 } 750 751 Stream.ExitBlock(); 752 } 753 754 /// WriteTypeTable - Write out the type table for a module. 755 void ModuleBitcodeWriter::writeTypeTable() { 756 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 757 758 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 759 SmallVector<uint64_t, 64> TypeVals; 760 761 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 762 763 // Abbrev for TYPE_CODE_POINTER. 764 auto Abbv = std::make_shared<BitCodeAbbrev>(); 765 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 767 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 768 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 769 770 // Abbrev for TYPE_CODE_FUNCTION. 771 Abbv = std::make_shared<BitCodeAbbrev>(); 772 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 773 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 776 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 777 778 // Abbrev for TYPE_CODE_STRUCT_ANON. 779 Abbv = std::make_shared<BitCodeAbbrev>(); 780 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 784 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 785 786 // Abbrev for TYPE_CODE_STRUCT_NAME. 787 Abbv = std::make_shared<BitCodeAbbrev>(); 788 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 791 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 792 793 // Abbrev for TYPE_CODE_STRUCT_NAMED. 794 Abbv = std::make_shared<BitCodeAbbrev>(); 795 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 799 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 800 801 // Abbrev for TYPE_CODE_ARRAY. 802 Abbv = std::make_shared<BitCodeAbbrev>(); 803 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 804 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 806 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 807 808 // Emit an entry count so the reader can reserve space. 809 TypeVals.push_back(TypeList.size()); 810 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 811 TypeVals.clear(); 812 813 // Loop over all of the types, emitting each in turn. 814 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 815 Type *T = TypeList[i]; 816 int AbbrevToUse = 0; 817 unsigned Code = 0; 818 819 switch (T->getTypeID()) { 820 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 821 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 822 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 823 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 824 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 825 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 826 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 827 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 828 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 829 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 830 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 831 case Type::IntegerTyID: 832 // INTEGER: [width] 833 Code = bitc::TYPE_CODE_INTEGER; 834 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 835 break; 836 case Type::PointerTyID: { 837 PointerType *PTy = cast<PointerType>(T); 838 // POINTER: [pointee type, address space] 839 Code = bitc::TYPE_CODE_POINTER; 840 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 841 unsigned AddressSpace = PTy->getAddressSpace(); 842 TypeVals.push_back(AddressSpace); 843 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 844 break; 845 } 846 case Type::FunctionTyID: { 847 FunctionType *FT = cast<FunctionType>(T); 848 // FUNCTION: [isvararg, retty, paramty x N] 849 Code = bitc::TYPE_CODE_FUNCTION; 850 TypeVals.push_back(FT->isVarArg()); 851 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 852 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 853 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 854 AbbrevToUse = FunctionAbbrev; 855 break; 856 } 857 case Type::StructTyID: { 858 StructType *ST = cast<StructType>(T); 859 // STRUCT: [ispacked, eltty x N] 860 TypeVals.push_back(ST->isPacked()); 861 // Output all of the element types. 862 for (StructType::element_iterator I = ST->element_begin(), 863 E = ST->element_end(); I != E; ++I) 864 TypeVals.push_back(VE.getTypeID(*I)); 865 866 if (ST->isLiteral()) { 867 Code = bitc::TYPE_CODE_STRUCT_ANON; 868 AbbrevToUse = StructAnonAbbrev; 869 } else { 870 if (ST->isOpaque()) { 871 Code = bitc::TYPE_CODE_OPAQUE; 872 } else { 873 Code = bitc::TYPE_CODE_STRUCT_NAMED; 874 AbbrevToUse = StructNamedAbbrev; 875 } 876 877 // Emit the name if it is present. 878 if (!ST->getName().empty()) 879 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 880 StructNameAbbrev); 881 } 882 break; 883 } 884 case Type::ArrayTyID: { 885 ArrayType *AT = cast<ArrayType>(T); 886 // ARRAY: [numelts, eltty] 887 Code = bitc::TYPE_CODE_ARRAY; 888 TypeVals.push_back(AT->getNumElements()); 889 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 890 AbbrevToUse = ArrayAbbrev; 891 break; 892 } 893 case Type::VectorTyID: { 894 VectorType *VT = cast<VectorType>(T); 895 // VECTOR [numelts, eltty] 896 Code = bitc::TYPE_CODE_VECTOR; 897 TypeVals.push_back(VT->getNumElements()); 898 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 899 break; 900 } 901 } 902 903 // Emit the finished record. 904 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 905 TypeVals.clear(); 906 } 907 908 Stream.ExitBlock(); 909 } 910 911 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 912 switch (Linkage) { 913 case GlobalValue::ExternalLinkage: 914 return 0; 915 case GlobalValue::WeakAnyLinkage: 916 return 16; 917 case GlobalValue::AppendingLinkage: 918 return 2; 919 case GlobalValue::InternalLinkage: 920 return 3; 921 case GlobalValue::LinkOnceAnyLinkage: 922 return 18; 923 case GlobalValue::ExternalWeakLinkage: 924 return 7; 925 case GlobalValue::CommonLinkage: 926 return 8; 927 case GlobalValue::PrivateLinkage: 928 return 9; 929 case GlobalValue::WeakODRLinkage: 930 return 17; 931 case GlobalValue::LinkOnceODRLinkage: 932 return 19; 933 case GlobalValue::AvailableExternallyLinkage: 934 return 12; 935 } 936 llvm_unreachable("Invalid linkage"); 937 } 938 939 static unsigned getEncodedLinkage(const GlobalValue &GV) { 940 return getEncodedLinkage(GV.getLinkage()); 941 } 942 943 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 944 uint64_t RawFlags = 0; 945 RawFlags |= Flags.ReadNone; 946 RawFlags |= (Flags.ReadOnly << 1); 947 RawFlags |= (Flags.NoRecurse << 2); 948 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 949 return RawFlags; 950 } 951 952 // Decode the flags for GlobalValue in the summary 953 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 954 uint64_t RawFlags = 0; 955 956 RawFlags |= Flags.NotEligibleToImport; // bool 957 RawFlags |= (Flags.Live << 1); 958 // Linkage don't need to be remapped at that time for the summary. Any future 959 // change to the getEncodedLinkage() function will need to be taken into 960 // account here as well. 961 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 962 963 return RawFlags; 964 } 965 966 static unsigned getEncodedVisibility(const GlobalValue &GV) { 967 switch (GV.getVisibility()) { 968 case GlobalValue::DefaultVisibility: return 0; 969 case GlobalValue::HiddenVisibility: return 1; 970 case GlobalValue::ProtectedVisibility: return 2; 971 } 972 llvm_unreachable("Invalid visibility"); 973 } 974 975 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 976 switch (GV.getDLLStorageClass()) { 977 case GlobalValue::DefaultStorageClass: return 0; 978 case GlobalValue::DLLImportStorageClass: return 1; 979 case GlobalValue::DLLExportStorageClass: return 2; 980 } 981 llvm_unreachable("Invalid DLL storage class"); 982 } 983 984 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 985 switch (GV.getThreadLocalMode()) { 986 case GlobalVariable::NotThreadLocal: return 0; 987 case GlobalVariable::GeneralDynamicTLSModel: return 1; 988 case GlobalVariable::LocalDynamicTLSModel: return 2; 989 case GlobalVariable::InitialExecTLSModel: return 3; 990 case GlobalVariable::LocalExecTLSModel: return 4; 991 } 992 llvm_unreachable("Invalid TLS model"); 993 } 994 995 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 996 switch (C.getSelectionKind()) { 997 case Comdat::Any: 998 return bitc::COMDAT_SELECTION_KIND_ANY; 999 case Comdat::ExactMatch: 1000 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1001 case Comdat::Largest: 1002 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1003 case Comdat::NoDuplicates: 1004 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1005 case Comdat::SameSize: 1006 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1007 } 1008 llvm_unreachable("Invalid selection kind"); 1009 } 1010 1011 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1012 switch (GV.getUnnamedAddr()) { 1013 case GlobalValue::UnnamedAddr::None: return 0; 1014 case GlobalValue::UnnamedAddr::Local: return 2; 1015 case GlobalValue::UnnamedAddr::Global: return 1; 1016 } 1017 llvm_unreachable("Invalid unnamed_addr"); 1018 } 1019 1020 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1021 if (GenerateHash) 1022 Hasher.update(Str); 1023 return StrtabBuilder.add(Str); 1024 } 1025 1026 void ModuleBitcodeWriter::writeComdats() { 1027 SmallVector<unsigned, 64> Vals; 1028 for (const Comdat *C : VE.getComdats()) { 1029 // COMDAT: [strtab offset, strtab size, selection_kind] 1030 Vals.push_back(addToStrtab(C->getName())); 1031 Vals.push_back(C->getName().size()); 1032 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1033 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1034 Vals.clear(); 1035 } 1036 } 1037 1038 /// Write a record that will eventually hold the word offset of the 1039 /// module-level VST. For now the offset is 0, which will be backpatched 1040 /// after the real VST is written. Saves the bit offset to backpatch. 1041 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1042 // Write a placeholder value in for the offset of the real VST, 1043 // which is written after the function blocks so that it can include 1044 // the offset of each function. The placeholder offset will be 1045 // updated when the real VST is written. 1046 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1047 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1048 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1049 // hold the real VST offset. Must use fixed instead of VBR as we don't 1050 // know how many VBR chunks to reserve ahead of time. 1051 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1052 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1053 1054 // Emit the placeholder 1055 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1056 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1057 1058 // Compute and save the bit offset to the placeholder, which will be 1059 // patched when the real VST is written. We can simply subtract the 32-bit 1060 // fixed size from the current bit number to get the location to backpatch. 1061 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1062 } 1063 1064 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1065 1066 /// Determine the encoding to use for the given string name and length. 1067 static StringEncoding getStringEncoding(StringRef Str) { 1068 bool isChar6 = true; 1069 for (char C : Str) { 1070 if (isChar6) 1071 isChar6 = BitCodeAbbrevOp::isChar6(C); 1072 if ((unsigned char)C & 128) 1073 // don't bother scanning the rest. 1074 return SE_Fixed8; 1075 } 1076 if (isChar6) 1077 return SE_Char6; 1078 return SE_Fixed7; 1079 } 1080 1081 /// Emit top-level description of module, including target triple, inline asm, 1082 /// descriptors for global variables, and function prototype info. 1083 /// Returns the bit offset to backpatch with the location of the real VST. 1084 void ModuleBitcodeWriter::writeModuleInfo() { 1085 // Emit various pieces of data attached to a module. 1086 if (!M.getTargetTriple().empty()) 1087 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1088 0 /*TODO*/); 1089 const std::string &DL = M.getDataLayoutStr(); 1090 if (!DL.empty()) 1091 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1092 if (!M.getModuleInlineAsm().empty()) 1093 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1094 0 /*TODO*/); 1095 1096 // Emit information about sections and GC, computing how many there are. Also 1097 // compute the maximum alignment value. 1098 std::map<std::string, unsigned> SectionMap; 1099 std::map<std::string, unsigned> GCMap; 1100 unsigned MaxAlignment = 0; 1101 unsigned MaxGlobalType = 0; 1102 for (const GlobalValue &GV : M.globals()) { 1103 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1104 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1105 if (GV.hasSection()) { 1106 // Give section names unique ID's. 1107 unsigned &Entry = SectionMap[GV.getSection()]; 1108 if (!Entry) { 1109 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1110 0 /*TODO*/); 1111 Entry = SectionMap.size(); 1112 } 1113 } 1114 } 1115 for (const Function &F : M) { 1116 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1117 if (F.hasSection()) { 1118 // Give section names unique ID's. 1119 unsigned &Entry = SectionMap[F.getSection()]; 1120 if (!Entry) { 1121 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1122 0 /*TODO*/); 1123 Entry = SectionMap.size(); 1124 } 1125 } 1126 if (F.hasGC()) { 1127 // Same for GC names. 1128 unsigned &Entry = GCMap[F.getGC()]; 1129 if (!Entry) { 1130 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1131 0 /*TODO*/); 1132 Entry = GCMap.size(); 1133 } 1134 } 1135 } 1136 1137 // Emit abbrev for globals, now that we know # sections and max alignment. 1138 unsigned SimpleGVarAbbrev = 0; 1139 if (!M.global_empty()) { 1140 // Add an abbrev for common globals with no visibility or thread localness. 1141 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1142 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1146 Log2_32_Ceil(MaxGlobalType+1))); 1147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1148 //| explicitType << 1 1149 //| constant 1150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1152 if (MaxAlignment == 0) // Alignment. 1153 Abbv->Add(BitCodeAbbrevOp(0)); 1154 else { 1155 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1157 Log2_32_Ceil(MaxEncAlignment+1))); 1158 } 1159 if (SectionMap.empty()) // Section. 1160 Abbv->Add(BitCodeAbbrevOp(0)); 1161 else 1162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1163 Log2_32_Ceil(SectionMap.size()+1))); 1164 // Don't bother emitting vis + thread local. 1165 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1166 } 1167 1168 SmallVector<unsigned, 64> Vals; 1169 // Emit the module's source file name. 1170 { 1171 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1172 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1173 if (Bits == SE_Char6) 1174 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1175 else if (Bits == SE_Fixed7) 1176 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1177 1178 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1179 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1180 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1182 Abbv->Add(AbbrevOpToUse); 1183 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1184 1185 for (const auto P : M.getSourceFileName()) 1186 Vals.push_back((unsigned char)P); 1187 1188 // Emit the finished record. 1189 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1190 Vals.clear(); 1191 } 1192 1193 // Emit the global variable information. 1194 for (const GlobalVariable &GV : M.globals()) { 1195 unsigned AbbrevToUse = 0; 1196 1197 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1198 // linkage, alignment, section, visibility, threadlocal, 1199 // unnamed_addr, externally_initialized, dllstorageclass, 1200 // comdat, attributes] 1201 Vals.push_back(addToStrtab(GV.getName())); 1202 Vals.push_back(GV.getName().size()); 1203 Vals.push_back(VE.getTypeID(GV.getValueType())); 1204 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1205 Vals.push_back(GV.isDeclaration() ? 0 : 1206 (VE.getValueID(GV.getInitializer()) + 1)); 1207 Vals.push_back(getEncodedLinkage(GV)); 1208 Vals.push_back(Log2_32(GV.getAlignment())+1); 1209 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1210 if (GV.isThreadLocal() || 1211 GV.getVisibility() != GlobalValue::DefaultVisibility || 1212 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1213 GV.isExternallyInitialized() || 1214 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1215 GV.hasComdat() || 1216 GV.hasAttributes()) { 1217 Vals.push_back(getEncodedVisibility(GV)); 1218 Vals.push_back(getEncodedThreadLocalMode(GV)); 1219 Vals.push_back(getEncodedUnnamedAddr(GV)); 1220 Vals.push_back(GV.isExternallyInitialized()); 1221 Vals.push_back(getEncodedDLLStorageClass(GV)); 1222 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1223 1224 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1225 Vals.push_back(VE.getAttributeListID(AL)); 1226 } else { 1227 AbbrevToUse = SimpleGVarAbbrev; 1228 } 1229 1230 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1231 Vals.clear(); 1232 } 1233 1234 // Emit the function proto information. 1235 for (const Function &F : M) { 1236 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1237 // linkage, paramattrs, alignment, section, visibility, gc, 1238 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1239 // prefixdata, personalityfn] 1240 Vals.push_back(addToStrtab(F.getName())); 1241 Vals.push_back(F.getName().size()); 1242 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1243 Vals.push_back(F.getCallingConv()); 1244 Vals.push_back(F.isDeclaration()); 1245 Vals.push_back(getEncodedLinkage(F)); 1246 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1247 Vals.push_back(Log2_32(F.getAlignment())+1); 1248 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1249 Vals.push_back(getEncodedVisibility(F)); 1250 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1251 Vals.push_back(getEncodedUnnamedAddr(F)); 1252 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1253 : 0); 1254 Vals.push_back(getEncodedDLLStorageClass(F)); 1255 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1256 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1257 : 0); 1258 Vals.push_back( 1259 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1260 1261 unsigned AbbrevToUse = 0; 1262 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1263 Vals.clear(); 1264 } 1265 1266 // Emit the alias information. 1267 for (const GlobalAlias &A : M.aliases()) { 1268 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1269 // visibility, dllstorageclass, threadlocal, unnamed_addr] 1270 Vals.push_back(addToStrtab(A.getName())); 1271 Vals.push_back(A.getName().size()); 1272 Vals.push_back(VE.getTypeID(A.getValueType())); 1273 Vals.push_back(A.getType()->getAddressSpace()); 1274 Vals.push_back(VE.getValueID(A.getAliasee())); 1275 Vals.push_back(getEncodedLinkage(A)); 1276 Vals.push_back(getEncodedVisibility(A)); 1277 Vals.push_back(getEncodedDLLStorageClass(A)); 1278 Vals.push_back(getEncodedThreadLocalMode(A)); 1279 Vals.push_back(getEncodedUnnamedAddr(A)); 1280 unsigned AbbrevToUse = 0; 1281 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1282 Vals.clear(); 1283 } 1284 1285 // Emit the ifunc information. 1286 for (const GlobalIFunc &I : M.ifuncs()) { 1287 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1288 // val#, linkage, visibility] 1289 Vals.push_back(addToStrtab(I.getName())); 1290 Vals.push_back(I.getName().size()); 1291 Vals.push_back(VE.getTypeID(I.getValueType())); 1292 Vals.push_back(I.getType()->getAddressSpace()); 1293 Vals.push_back(VE.getValueID(I.getResolver())); 1294 Vals.push_back(getEncodedLinkage(I)); 1295 Vals.push_back(getEncodedVisibility(I)); 1296 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1297 Vals.clear(); 1298 } 1299 1300 writeValueSymbolTableForwardDecl(); 1301 } 1302 1303 static uint64_t getOptimizationFlags(const Value *V) { 1304 uint64_t Flags = 0; 1305 1306 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1307 if (OBO->hasNoSignedWrap()) 1308 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1309 if (OBO->hasNoUnsignedWrap()) 1310 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1311 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1312 if (PEO->isExact()) 1313 Flags |= 1 << bitc::PEO_EXACT; 1314 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1315 if (FPMO->hasUnsafeAlgebra()) 1316 Flags |= FastMathFlags::UnsafeAlgebra; 1317 if (FPMO->hasNoNaNs()) 1318 Flags |= FastMathFlags::NoNaNs; 1319 if (FPMO->hasNoInfs()) 1320 Flags |= FastMathFlags::NoInfs; 1321 if (FPMO->hasNoSignedZeros()) 1322 Flags |= FastMathFlags::NoSignedZeros; 1323 if (FPMO->hasAllowReciprocal()) 1324 Flags |= FastMathFlags::AllowReciprocal; 1325 if (FPMO->hasAllowContract()) 1326 Flags |= FastMathFlags::AllowContract; 1327 } 1328 1329 return Flags; 1330 } 1331 1332 void ModuleBitcodeWriter::writeValueAsMetadata( 1333 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1334 // Mimic an MDNode with a value as one operand. 1335 Value *V = MD->getValue(); 1336 Record.push_back(VE.getTypeID(V->getType())); 1337 Record.push_back(VE.getValueID(V)); 1338 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1339 Record.clear(); 1340 } 1341 1342 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1343 SmallVectorImpl<uint64_t> &Record, 1344 unsigned Abbrev) { 1345 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1346 Metadata *MD = N->getOperand(i); 1347 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1348 "Unexpected function-local metadata"); 1349 Record.push_back(VE.getMetadataOrNullID(MD)); 1350 } 1351 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1352 : bitc::METADATA_NODE, 1353 Record, Abbrev); 1354 Record.clear(); 1355 } 1356 1357 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1358 // Assume the column is usually under 128, and always output the inlined-at 1359 // location (it's never more expensive than building an array size 1). 1360 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1361 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1367 return Stream.EmitAbbrev(std::move(Abbv)); 1368 } 1369 1370 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1371 SmallVectorImpl<uint64_t> &Record, 1372 unsigned &Abbrev) { 1373 if (!Abbrev) 1374 Abbrev = createDILocationAbbrev(); 1375 1376 Record.push_back(N->isDistinct()); 1377 Record.push_back(N->getLine()); 1378 Record.push_back(N->getColumn()); 1379 Record.push_back(VE.getMetadataID(N->getScope())); 1380 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1381 1382 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1383 Record.clear(); 1384 } 1385 1386 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1387 // Assume the column is usually under 128, and always output the inlined-at 1388 // location (it's never more expensive than building an array size 1). 1389 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1390 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1397 return Stream.EmitAbbrev(std::move(Abbv)); 1398 } 1399 1400 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1401 SmallVectorImpl<uint64_t> &Record, 1402 unsigned &Abbrev) { 1403 if (!Abbrev) 1404 Abbrev = createGenericDINodeAbbrev(); 1405 1406 Record.push_back(N->isDistinct()); 1407 Record.push_back(N->getTag()); 1408 Record.push_back(0); // Per-tag version field; unused for now. 1409 1410 for (auto &I : N->operands()) 1411 Record.push_back(VE.getMetadataOrNullID(I)); 1412 1413 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1414 Record.clear(); 1415 } 1416 1417 static uint64_t rotateSign(int64_t I) { 1418 uint64_t U = I; 1419 return I < 0 ? ~(U << 1) : U << 1; 1420 } 1421 1422 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1423 SmallVectorImpl<uint64_t> &Record, 1424 unsigned Abbrev) { 1425 Record.push_back(N->isDistinct()); 1426 Record.push_back(N->getCount()); 1427 Record.push_back(rotateSign(N->getLowerBound())); 1428 1429 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1430 Record.clear(); 1431 } 1432 1433 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1434 SmallVectorImpl<uint64_t> &Record, 1435 unsigned Abbrev) { 1436 Record.push_back(N->isDistinct()); 1437 Record.push_back(rotateSign(N->getValue())); 1438 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1439 1440 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1441 Record.clear(); 1442 } 1443 1444 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1445 SmallVectorImpl<uint64_t> &Record, 1446 unsigned Abbrev) { 1447 Record.push_back(N->isDistinct()); 1448 Record.push_back(N->getTag()); 1449 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1450 Record.push_back(N->getSizeInBits()); 1451 Record.push_back(N->getAlignInBits()); 1452 Record.push_back(N->getEncoding()); 1453 1454 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1455 Record.clear(); 1456 } 1457 1458 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1459 SmallVectorImpl<uint64_t> &Record, 1460 unsigned Abbrev) { 1461 Record.push_back(N->isDistinct()); 1462 Record.push_back(N->getTag()); 1463 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1464 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1465 Record.push_back(N->getLine()); 1466 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1467 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1468 Record.push_back(N->getSizeInBits()); 1469 Record.push_back(N->getAlignInBits()); 1470 Record.push_back(N->getOffsetInBits()); 1471 Record.push_back(N->getFlags()); 1472 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1473 1474 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1475 // that there is no DWARF address space associated with DIDerivedType. 1476 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1477 Record.push_back(*DWARFAddressSpace + 1); 1478 else 1479 Record.push_back(0); 1480 1481 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1482 Record.clear(); 1483 } 1484 1485 void ModuleBitcodeWriter::writeDICompositeType( 1486 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1487 unsigned Abbrev) { 1488 const unsigned IsNotUsedInOldTypeRef = 0x2; 1489 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1490 Record.push_back(N->getTag()); 1491 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1492 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1493 Record.push_back(N->getLine()); 1494 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1495 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1496 Record.push_back(N->getSizeInBits()); 1497 Record.push_back(N->getAlignInBits()); 1498 Record.push_back(N->getOffsetInBits()); 1499 Record.push_back(N->getFlags()); 1500 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1501 Record.push_back(N->getRuntimeLang()); 1502 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1503 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1504 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1505 1506 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1507 Record.clear(); 1508 } 1509 1510 void ModuleBitcodeWriter::writeDISubroutineType( 1511 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1512 unsigned Abbrev) { 1513 const unsigned HasNoOldTypeRefs = 0x2; 1514 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1515 Record.push_back(N->getFlags()); 1516 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1517 Record.push_back(N->getCC()); 1518 1519 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1520 Record.clear(); 1521 } 1522 1523 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1524 SmallVectorImpl<uint64_t> &Record, 1525 unsigned Abbrev) { 1526 Record.push_back(N->isDistinct()); 1527 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1528 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1529 Record.push_back(N->getChecksumKind()); 1530 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum())); 1531 1532 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1533 Record.clear(); 1534 } 1535 1536 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1537 SmallVectorImpl<uint64_t> &Record, 1538 unsigned Abbrev) { 1539 assert(N->isDistinct() && "Expected distinct compile units"); 1540 Record.push_back(/* IsDistinct */ true); 1541 Record.push_back(N->getSourceLanguage()); 1542 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1543 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1544 Record.push_back(N->isOptimized()); 1545 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1546 Record.push_back(N->getRuntimeVersion()); 1547 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1548 Record.push_back(N->getEmissionKind()); 1549 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1550 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1551 Record.push_back(/* subprograms */ 0); 1552 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1553 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1554 Record.push_back(N->getDWOId()); 1555 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1556 Record.push_back(N->getSplitDebugInlining()); 1557 Record.push_back(N->getDebugInfoForProfiling()); 1558 Record.push_back(N->getGnuPubnames()); 1559 1560 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1561 Record.clear(); 1562 } 1563 1564 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1565 SmallVectorImpl<uint64_t> &Record, 1566 unsigned Abbrev) { 1567 uint64_t HasUnitFlag = 1 << 1; 1568 Record.push_back(N->isDistinct() | HasUnitFlag); 1569 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1570 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1571 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1572 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1573 Record.push_back(N->getLine()); 1574 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1575 Record.push_back(N->isLocalToUnit()); 1576 Record.push_back(N->isDefinition()); 1577 Record.push_back(N->getScopeLine()); 1578 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1579 Record.push_back(N->getVirtuality()); 1580 Record.push_back(N->getVirtualIndex()); 1581 Record.push_back(N->getFlags()); 1582 Record.push_back(N->isOptimized()); 1583 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1584 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1585 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1586 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1587 Record.push_back(N->getThisAdjustment()); 1588 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1589 1590 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1591 Record.clear(); 1592 } 1593 1594 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1595 SmallVectorImpl<uint64_t> &Record, 1596 unsigned Abbrev) { 1597 Record.push_back(N->isDistinct()); 1598 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1599 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1600 Record.push_back(N->getLine()); 1601 Record.push_back(N->getColumn()); 1602 1603 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1604 Record.clear(); 1605 } 1606 1607 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1608 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1609 unsigned Abbrev) { 1610 Record.push_back(N->isDistinct()); 1611 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1612 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1613 Record.push_back(N->getDiscriminator()); 1614 1615 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1616 Record.clear(); 1617 } 1618 1619 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1620 SmallVectorImpl<uint64_t> &Record, 1621 unsigned Abbrev) { 1622 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1623 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1624 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1625 1626 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1627 Record.clear(); 1628 } 1629 1630 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1631 SmallVectorImpl<uint64_t> &Record, 1632 unsigned Abbrev) { 1633 Record.push_back(N->isDistinct()); 1634 Record.push_back(N->getMacinfoType()); 1635 Record.push_back(N->getLine()); 1636 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1637 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1638 1639 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1640 Record.clear(); 1641 } 1642 1643 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1644 SmallVectorImpl<uint64_t> &Record, 1645 unsigned Abbrev) { 1646 Record.push_back(N->isDistinct()); 1647 Record.push_back(N->getMacinfoType()); 1648 Record.push_back(N->getLine()); 1649 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1650 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1651 1652 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1653 Record.clear(); 1654 } 1655 1656 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1657 SmallVectorImpl<uint64_t> &Record, 1658 unsigned Abbrev) { 1659 Record.push_back(N->isDistinct()); 1660 for (auto &I : N->operands()) 1661 Record.push_back(VE.getMetadataOrNullID(I)); 1662 1663 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1664 Record.clear(); 1665 } 1666 1667 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1668 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1669 unsigned Abbrev) { 1670 Record.push_back(N->isDistinct()); 1671 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1672 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1673 1674 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1675 Record.clear(); 1676 } 1677 1678 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1679 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1680 unsigned Abbrev) { 1681 Record.push_back(N->isDistinct()); 1682 Record.push_back(N->getTag()); 1683 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1684 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1685 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1686 1687 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1688 Record.clear(); 1689 } 1690 1691 void ModuleBitcodeWriter::writeDIGlobalVariable( 1692 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1693 unsigned Abbrev) { 1694 const uint64_t Version = 1 << 1; 1695 Record.push_back((uint64_t)N->isDistinct() | Version); 1696 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1697 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1698 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1699 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1700 Record.push_back(N->getLine()); 1701 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1702 Record.push_back(N->isLocalToUnit()); 1703 Record.push_back(N->isDefinition()); 1704 Record.push_back(/* expr */ 0); 1705 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1706 Record.push_back(N->getAlignInBits()); 1707 1708 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1709 Record.clear(); 1710 } 1711 1712 void ModuleBitcodeWriter::writeDILocalVariable( 1713 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1714 unsigned Abbrev) { 1715 // In order to support all possible bitcode formats in BitcodeReader we need 1716 // to distinguish the following cases: 1717 // 1) Record has no artificial tag (Record[1]), 1718 // has no obsolete inlinedAt field (Record[9]). 1719 // In this case Record size will be 8, HasAlignment flag is false. 1720 // 2) Record has artificial tag (Record[1]), 1721 // has no obsolete inlignedAt field (Record[9]). 1722 // In this case Record size will be 9, HasAlignment flag is false. 1723 // 3) Record has both artificial tag (Record[1]) and 1724 // obsolete inlignedAt field (Record[9]). 1725 // In this case Record size will be 10, HasAlignment flag is false. 1726 // 4) Record has neither artificial tag, nor inlignedAt field, but 1727 // HasAlignment flag is true and Record[8] contains alignment value. 1728 const uint64_t HasAlignmentFlag = 1 << 1; 1729 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1730 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1731 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1732 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1733 Record.push_back(N->getLine()); 1734 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1735 Record.push_back(N->getArg()); 1736 Record.push_back(N->getFlags()); 1737 Record.push_back(N->getAlignInBits()); 1738 1739 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1740 Record.clear(); 1741 } 1742 1743 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1744 SmallVectorImpl<uint64_t> &Record, 1745 unsigned Abbrev) { 1746 Record.reserve(N->getElements().size() + 1); 1747 const uint64_t Version = 3 << 1; 1748 Record.push_back((uint64_t)N->isDistinct() | Version); 1749 Record.append(N->elements_begin(), N->elements_end()); 1750 1751 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1752 Record.clear(); 1753 } 1754 1755 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1756 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1757 unsigned Abbrev) { 1758 Record.push_back(N->isDistinct()); 1759 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1760 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1761 1762 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1763 Record.clear(); 1764 } 1765 1766 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1767 SmallVectorImpl<uint64_t> &Record, 1768 unsigned Abbrev) { 1769 Record.push_back(N->isDistinct()); 1770 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1771 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1772 Record.push_back(N->getLine()); 1773 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1774 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1775 Record.push_back(N->getAttributes()); 1776 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1777 1778 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1779 Record.clear(); 1780 } 1781 1782 void ModuleBitcodeWriter::writeDIImportedEntity( 1783 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1784 unsigned Abbrev) { 1785 Record.push_back(N->isDistinct()); 1786 Record.push_back(N->getTag()); 1787 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1788 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1789 Record.push_back(N->getLine()); 1790 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1791 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1792 1793 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1794 Record.clear(); 1795 } 1796 1797 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1798 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1799 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1802 return Stream.EmitAbbrev(std::move(Abbv)); 1803 } 1804 1805 void ModuleBitcodeWriter::writeNamedMetadata( 1806 SmallVectorImpl<uint64_t> &Record) { 1807 if (M.named_metadata_empty()) 1808 return; 1809 1810 unsigned Abbrev = createNamedMetadataAbbrev(); 1811 for (const NamedMDNode &NMD : M.named_metadata()) { 1812 // Write name. 1813 StringRef Str = NMD.getName(); 1814 Record.append(Str.bytes_begin(), Str.bytes_end()); 1815 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1816 Record.clear(); 1817 1818 // Write named metadata operands. 1819 for (const MDNode *N : NMD.operands()) 1820 Record.push_back(VE.getMetadataID(N)); 1821 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1822 Record.clear(); 1823 } 1824 } 1825 1826 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1827 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1828 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1832 return Stream.EmitAbbrev(std::move(Abbv)); 1833 } 1834 1835 /// Write out a record for MDString. 1836 /// 1837 /// All the metadata strings in a metadata block are emitted in a single 1838 /// record. The sizes and strings themselves are shoved into a blob. 1839 void ModuleBitcodeWriter::writeMetadataStrings( 1840 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1841 if (Strings.empty()) 1842 return; 1843 1844 // Start the record with the number of strings. 1845 Record.push_back(bitc::METADATA_STRINGS); 1846 Record.push_back(Strings.size()); 1847 1848 // Emit the sizes of the strings in the blob. 1849 SmallString<256> Blob; 1850 { 1851 BitstreamWriter W(Blob); 1852 for (const Metadata *MD : Strings) 1853 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1854 W.FlushToWord(); 1855 } 1856 1857 // Add the offset to the strings to the record. 1858 Record.push_back(Blob.size()); 1859 1860 // Add the strings to the blob. 1861 for (const Metadata *MD : Strings) 1862 Blob.append(cast<MDString>(MD)->getString()); 1863 1864 // Emit the final record. 1865 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1866 Record.clear(); 1867 } 1868 1869 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1870 enum MetadataAbbrev : unsigned { 1871 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1872 #include "llvm/IR/Metadata.def" 1873 LastPlusOne 1874 }; 1875 1876 void ModuleBitcodeWriter::writeMetadataRecords( 1877 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1878 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1879 if (MDs.empty()) 1880 return; 1881 1882 // Initialize MDNode abbreviations. 1883 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1884 #include "llvm/IR/Metadata.def" 1885 1886 for (const Metadata *MD : MDs) { 1887 if (IndexPos) 1888 IndexPos->push_back(Stream.GetCurrentBitNo()); 1889 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1890 assert(N->isResolved() && "Expected forward references to be resolved"); 1891 1892 switch (N->getMetadataID()) { 1893 default: 1894 llvm_unreachable("Invalid MDNode subclass"); 1895 #define HANDLE_MDNODE_LEAF(CLASS) \ 1896 case Metadata::CLASS##Kind: \ 1897 if (MDAbbrevs) \ 1898 write##CLASS(cast<CLASS>(N), Record, \ 1899 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1900 else \ 1901 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1902 continue; 1903 #include "llvm/IR/Metadata.def" 1904 } 1905 } 1906 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1907 } 1908 } 1909 1910 void ModuleBitcodeWriter::writeModuleMetadata() { 1911 if (!VE.hasMDs() && M.named_metadata_empty()) 1912 return; 1913 1914 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1915 SmallVector<uint64_t, 64> Record; 1916 1917 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1918 // block and load any metadata. 1919 std::vector<unsigned> MDAbbrevs; 1920 1921 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1922 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1923 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1924 createGenericDINodeAbbrev(); 1925 1926 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1927 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1928 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1930 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1931 1932 Abbv = std::make_shared<BitCodeAbbrev>(); 1933 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1934 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1935 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1936 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1937 1938 // Emit MDStrings together upfront. 1939 writeMetadataStrings(VE.getMDStrings(), Record); 1940 1941 // We only emit an index for the metadata record if we have more than a given 1942 // (naive) threshold of metadatas, otherwise it is not worth it. 1943 if (VE.getNonMDStrings().size() > IndexThreshold) { 1944 // Write a placeholder value in for the offset of the metadata index, 1945 // which is written after the records, so that it can include 1946 // the offset of each entry. The placeholder offset will be 1947 // updated after all records are emitted. 1948 uint64_t Vals[] = {0, 0}; 1949 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1950 } 1951 1952 // Compute and save the bit offset to the current position, which will be 1953 // patched when we emit the index later. We can simply subtract the 64-bit 1954 // fixed size from the current bit number to get the location to backpatch. 1955 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1956 1957 // This index will contain the bitpos for each individual record. 1958 std::vector<uint64_t> IndexPos; 1959 IndexPos.reserve(VE.getNonMDStrings().size()); 1960 1961 // Write all the records 1962 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1963 1964 if (VE.getNonMDStrings().size() > IndexThreshold) { 1965 // Now that we have emitted all the records we will emit the index. But 1966 // first 1967 // backpatch the forward reference so that the reader can skip the records 1968 // efficiently. 1969 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 1970 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 1971 1972 // Delta encode the index. 1973 uint64_t PreviousValue = IndexOffsetRecordBitPos; 1974 for (auto &Elt : IndexPos) { 1975 auto EltDelta = Elt - PreviousValue; 1976 PreviousValue = Elt; 1977 Elt = EltDelta; 1978 } 1979 // Emit the index record. 1980 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 1981 IndexPos.clear(); 1982 } 1983 1984 // Write the named metadata now. 1985 writeNamedMetadata(Record); 1986 1987 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 1988 SmallVector<uint64_t, 4> Record; 1989 Record.push_back(VE.getValueID(&GO)); 1990 pushGlobalMetadataAttachment(Record, GO); 1991 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 1992 }; 1993 for (const Function &F : M) 1994 if (F.isDeclaration() && F.hasMetadata()) 1995 AddDeclAttachedMetadata(F); 1996 // FIXME: Only store metadata for declarations here, and move data for global 1997 // variable definitions to a separate block (PR28134). 1998 for (const GlobalVariable &GV : M.globals()) 1999 if (GV.hasMetadata()) 2000 AddDeclAttachedMetadata(GV); 2001 2002 Stream.ExitBlock(); 2003 } 2004 2005 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2006 if (!VE.hasMDs()) 2007 return; 2008 2009 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2010 SmallVector<uint64_t, 64> Record; 2011 writeMetadataStrings(VE.getMDStrings(), Record); 2012 writeMetadataRecords(VE.getNonMDStrings(), Record); 2013 Stream.ExitBlock(); 2014 } 2015 2016 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2017 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2018 // [n x [id, mdnode]] 2019 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2020 GO.getAllMetadata(MDs); 2021 for (const auto &I : MDs) { 2022 Record.push_back(I.first); 2023 Record.push_back(VE.getMetadataID(I.second)); 2024 } 2025 } 2026 2027 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2028 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2029 2030 SmallVector<uint64_t, 64> Record; 2031 2032 if (F.hasMetadata()) { 2033 pushGlobalMetadataAttachment(Record, F); 2034 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2035 Record.clear(); 2036 } 2037 2038 // Write metadata attachments 2039 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2040 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2041 for (const BasicBlock &BB : F) 2042 for (const Instruction &I : BB) { 2043 MDs.clear(); 2044 I.getAllMetadataOtherThanDebugLoc(MDs); 2045 2046 // If no metadata, ignore instruction. 2047 if (MDs.empty()) continue; 2048 2049 Record.push_back(VE.getInstructionID(&I)); 2050 2051 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2052 Record.push_back(MDs[i].first); 2053 Record.push_back(VE.getMetadataID(MDs[i].second)); 2054 } 2055 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2056 Record.clear(); 2057 } 2058 2059 Stream.ExitBlock(); 2060 } 2061 2062 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2063 SmallVector<uint64_t, 64> Record; 2064 2065 // Write metadata kinds 2066 // METADATA_KIND - [n x [id, name]] 2067 SmallVector<StringRef, 8> Names; 2068 M.getMDKindNames(Names); 2069 2070 if (Names.empty()) return; 2071 2072 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2073 2074 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2075 Record.push_back(MDKindID); 2076 StringRef KName = Names[MDKindID]; 2077 Record.append(KName.begin(), KName.end()); 2078 2079 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2080 Record.clear(); 2081 } 2082 2083 Stream.ExitBlock(); 2084 } 2085 2086 void ModuleBitcodeWriter::writeOperandBundleTags() { 2087 // Write metadata kinds 2088 // 2089 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2090 // 2091 // OPERAND_BUNDLE_TAG - [strchr x N] 2092 2093 SmallVector<StringRef, 8> Tags; 2094 M.getOperandBundleTags(Tags); 2095 2096 if (Tags.empty()) 2097 return; 2098 2099 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2100 2101 SmallVector<uint64_t, 64> Record; 2102 2103 for (auto Tag : Tags) { 2104 Record.append(Tag.begin(), Tag.end()); 2105 2106 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2107 Record.clear(); 2108 } 2109 2110 Stream.ExitBlock(); 2111 } 2112 2113 void ModuleBitcodeWriter::writeSyncScopeNames() { 2114 SmallVector<StringRef, 8> SSNs; 2115 M.getContext().getSyncScopeNames(SSNs); 2116 if (SSNs.empty()) 2117 return; 2118 2119 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2120 2121 SmallVector<uint64_t, 64> Record; 2122 for (auto SSN : SSNs) { 2123 Record.append(SSN.begin(), SSN.end()); 2124 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2125 Record.clear(); 2126 } 2127 2128 Stream.ExitBlock(); 2129 } 2130 2131 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2132 if ((int64_t)V >= 0) 2133 Vals.push_back(V << 1); 2134 else 2135 Vals.push_back((-V << 1) | 1); 2136 } 2137 2138 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2139 bool isGlobal) { 2140 if (FirstVal == LastVal) return; 2141 2142 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2143 2144 unsigned AggregateAbbrev = 0; 2145 unsigned String8Abbrev = 0; 2146 unsigned CString7Abbrev = 0; 2147 unsigned CString6Abbrev = 0; 2148 // If this is a constant pool for the module, emit module-specific abbrevs. 2149 if (isGlobal) { 2150 // Abbrev for CST_CODE_AGGREGATE. 2151 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2152 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2155 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2156 2157 // Abbrev for CST_CODE_STRING. 2158 Abbv = std::make_shared<BitCodeAbbrev>(); 2159 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2162 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2163 // Abbrev for CST_CODE_CSTRING. 2164 Abbv = std::make_shared<BitCodeAbbrev>(); 2165 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2168 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2169 // Abbrev for CST_CODE_CSTRING. 2170 Abbv = std::make_shared<BitCodeAbbrev>(); 2171 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2174 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2175 } 2176 2177 SmallVector<uint64_t, 64> Record; 2178 2179 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2180 Type *LastTy = nullptr; 2181 for (unsigned i = FirstVal; i != LastVal; ++i) { 2182 const Value *V = Vals[i].first; 2183 // If we need to switch types, do so now. 2184 if (V->getType() != LastTy) { 2185 LastTy = V->getType(); 2186 Record.push_back(VE.getTypeID(LastTy)); 2187 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2188 CONSTANTS_SETTYPE_ABBREV); 2189 Record.clear(); 2190 } 2191 2192 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2193 Record.push_back(unsigned(IA->hasSideEffects()) | 2194 unsigned(IA->isAlignStack()) << 1 | 2195 unsigned(IA->getDialect()&1) << 2); 2196 2197 // Add the asm string. 2198 const std::string &AsmStr = IA->getAsmString(); 2199 Record.push_back(AsmStr.size()); 2200 Record.append(AsmStr.begin(), AsmStr.end()); 2201 2202 // Add the constraint string. 2203 const std::string &ConstraintStr = IA->getConstraintString(); 2204 Record.push_back(ConstraintStr.size()); 2205 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2206 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2207 Record.clear(); 2208 continue; 2209 } 2210 const Constant *C = cast<Constant>(V); 2211 unsigned Code = -1U; 2212 unsigned AbbrevToUse = 0; 2213 if (C->isNullValue()) { 2214 Code = bitc::CST_CODE_NULL; 2215 } else if (isa<UndefValue>(C)) { 2216 Code = bitc::CST_CODE_UNDEF; 2217 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2218 if (IV->getBitWidth() <= 64) { 2219 uint64_t V = IV->getSExtValue(); 2220 emitSignedInt64(Record, V); 2221 Code = bitc::CST_CODE_INTEGER; 2222 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2223 } else { // Wide integers, > 64 bits in size. 2224 // We have an arbitrary precision integer value to write whose 2225 // bit width is > 64. However, in canonical unsigned integer 2226 // format it is likely that the high bits are going to be zero. 2227 // So, we only write the number of active words. 2228 unsigned NWords = IV->getValue().getActiveWords(); 2229 const uint64_t *RawWords = IV->getValue().getRawData(); 2230 for (unsigned i = 0; i != NWords; ++i) { 2231 emitSignedInt64(Record, RawWords[i]); 2232 } 2233 Code = bitc::CST_CODE_WIDE_INTEGER; 2234 } 2235 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2236 Code = bitc::CST_CODE_FLOAT; 2237 Type *Ty = CFP->getType(); 2238 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2239 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2240 } else if (Ty->isX86_FP80Ty()) { 2241 // api needed to prevent premature destruction 2242 // bits are not in the same order as a normal i80 APInt, compensate. 2243 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2244 const uint64_t *p = api.getRawData(); 2245 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2246 Record.push_back(p[0] & 0xffffLL); 2247 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2248 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2249 const uint64_t *p = api.getRawData(); 2250 Record.push_back(p[0]); 2251 Record.push_back(p[1]); 2252 } else { 2253 assert(0 && "Unknown FP type!"); 2254 } 2255 } else if (isa<ConstantDataSequential>(C) && 2256 cast<ConstantDataSequential>(C)->isString()) { 2257 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2258 // Emit constant strings specially. 2259 unsigned NumElts = Str->getNumElements(); 2260 // If this is a null-terminated string, use the denser CSTRING encoding. 2261 if (Str->isCString()) { 2262 Code = bitc::CST_CODE_CSTRING; 2263 --NumElts; // Don't encode the null, which isn't allowed by char6. 2264 } else { 2265 Code = bitc::CST_CODE_STRING; 2266 AbbrevToUse = String8Abbrev; 2267 } 2268 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2269 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2270 for (unsigned i = 0; i != NumElts; ++i) { 2271 unsigned char V = Str->getElementAsInteger(i); 2272 Record.push_back(V); 2273 isCStr7 &= (V & 128) == 0; 2274 if (isCStrChar6) 2275 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2276 } 2277 2278 if (isCStrChar6) 2279 AbbrevToUse = CString6Abbrev; 2280 else if (isCStr7) 2281 AbbrevToUse = CString7Abbrev; 2282 } else if (const ConstantDataSequential *CDS = 2283 dyn_cast<ConstantDataSequential>(C)) { 2284 Code = bitc::CST_CODE_DATA; 2285 Type *EltTy = CDS->getType()->getElementType(); 2286 if (isa<IntegerType>(EltTy)) { 2287 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2288 Record.push_back(CDS->getElementAsInteger(i)); 2289 } else { 2290 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2291 Record.push_back( 2292 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2293 } 2294 } else if (isa<ConstantAggregate>(C)) { 2295 Code = bitc::CST_CODE_AGGREGATE; 2296 for (const Value *Op : C->operands()) 2297 Record.push_back(VE.getValueID(Op)); 2298 AbbrevToUse = AggregateAbbrev; 2299 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2300 switch (CE->getOpcode()) { 2301 default: 2302 if (Instruction::isCast(CE->getOpcode())) { 2303 Code = bitc::CST_CODE_CE_CAST; 2304 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2305 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2306 Record.push_back(VE.getValueID(C->getOperand(0))); 2307 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2308 } else { 2309 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2310 Code = bitc::CST_CODE_CE_BINOP; 2311 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2312 Record.push_back(VE.getValueID(C->getOperand(0))); 2313 Record.push_back(VE.getValueID(C->getOperand(1))); 2314 uint64_t Flags = getOptimizationFlags(CE); 2315 if (Flags != 0) 2316 Record.push_back(Flags); 2317 } 2318 break; 2319 case Instruction::GetElementPtr: { 2320 Code = bitc::CST_CODE_CE_GEP; 2321 const auto *GO = cast<GEPOperator>(C); 2322 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2323 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2324 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2325 Record.push_back((*Idx << 1) | GO->isInBounds()); 2326 } else if (GO->isInBounds()) 2327 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2328 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2329 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2330 Record.push_back(VE.getValueID(C->getOperand(i))); 2331 } 2332 break; 2333 } 2334 case Instruction::Select: 2335 Code = bitc::CST_CODE_CE_SELECT; 2336 Record.push_back(VE.getValueID(C->getOperand(0))); 2337 Record.push_back(VE.getValueID(C->getOperand(1))); 2338 Record.push_back(VE.getValueID(C->getOperand(2))); 2339 break; 2340 case Instruction::ExtractElement: 2341 Code = bitc::CST_CODE_CE_EXTRACTELT; 2342 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2343 Record.push_back(VE.getValueID(C->getOperand(0))); 2344 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2345 Record.push_back(VE.getValueID(C->getOperand(1))); 2346 break; 2347 case Instruction::InsertElement: 2348 Code = bitc::CST_CODE_CE_INSERTELT; 2349 Record.push_back(VE.getValueID(C->getOperand(0))); 2350 Record.push_back(VE.getValueID(C->getOperand(1))); 2351 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2352 Record.push_back(VE.getValueID(C->getOperand(2))); 2353 break; 2354 case Instruction::ShuffleVector: 2355 // If the return type and argument types are the same, this is a 2356 // standard shufflevector instruction. If the types are different, 2357 // then the shuffle is widening or truncating the input vectors, and 2358 // the argument type must also be encoded. 2359 if (C->getType() == C->getOperand(0)->getType()) { 2360 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2361 } else { 2362 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2363 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2364 } 2365 Record.push_back(VE.getValueID(C->getOperand(0))); 2366 Record.push_back(VE.getValueID(C->getOperand(1))); 2367 Record.push_back(VE.getValueID(C->getOperand(2))); 2368 break; 2369 case Instruction::ICmp: 2370 case Instruction::FCmp: 2371 Code = bitc::CST_CODE_CE_CMP; 2372 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2373 Record.push_back(VE.getValueID(C->getOperand(0))); 2374 Record.push_back(VE.getValueID(C->getOperand(1))); 2375 Record.push_back(CE->getPredicate()); 2376 break; 2377 } 2378 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2379 Code = bitc::CST_CODE_BLOCKADDRESS; 2380 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2381 Record.push_back(VE.getValueID(BA->getFunction())); 2382 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2383 } else { 2384 #ifndef NDEBUG 2385 C->dump(); 2386 #endif 2387 llvm_unreachable("Unknown constant!"); 2388 } 2389 Stream.EmitRecord(Code, Record, AbbrevToUse); 2390 Record.clear(); 2391 } 2392 2393 Stream.ExitBlock(); 2394 } 2395 2396 void ModuleBitcodeWriter::writeModuleConstants() { 2397 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2398 2399 // Find the first constant to emit, which is the first non-globalvalue value. 2400 // We know globalvalues have been emitted by WriteModuleInfo. 2401 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2402 if (!isa<GlobalValue>(Vals[i].first)) { 2403 writeConstants(i, Vals.size(), true); 2404 return; 2405 } 2406 } 2407 } 2408 2409 /// pushValueAndType - The file has to encode both the value and type id for 2410 /// many values, because we need to know what type to create for forward 2411 /// references. However, most operands are not forward references, so this type 2412 /// field is not needed. 2413 /// 2414 /// This function adds V's value ID to Vals. If the value ID is higher than the 2415 /// instruction ID, then it is a forward reference, and it also includes the 2416 /// type ID. The value ID that is written is encoded relative to the InstID. 2417 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2418 SmallVectorImpl<unsigned> &Vals) { 2419 unsigned ValID = VE.getValueID(V); 2420 // Make encoding relative to the InstID. 2421 Vals.push_back(InstID - ValID); 2422 if (ValID >= InstID) { 2423 Vals.push_back(VE.getTypeID(V->getType())); 2424 return true; 2425 } 2426 return false; 2427 } 2428 2429 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2430 unsigned InstID) { 2431 SmallVector<unsigned, 64> Record; 2432 LLVMContext &C = CS.getInstruction()->getContext(); 2433 2434 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2435 const auto &Bundle = CS.getOperandBundleAt(i); 2436 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2437 2438 for (auto &Input : Bundle.Inputs) 2439 pushValueAndType(Input, InstID, Record); 2440 2441 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2442 Record.clear(); 2443 } 2444 } 2445 2446 /// pushValue - Like pushValueAndType, but where the type of the value is 2447 /// omitted (perhaps it was already encoded in an earlier operand). 2448 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2449 SmallVectorImpl<unsigned> &Vals) { 2450 unsigned ValID = VE.getValueID(V); 2451 Vals.push_back(InstID - ValID); 2452 } 2453 2454 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2455 SmallVectorImpl<uint64_t> &Vals) { 2456 unsigned ValID = VE.getValueID(V); 2457 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2458 emitSignedInt64(Vals, diff); 2459 } 2460 2461 /// WriteInstruction - Emit an instruction to the specified stream. 2462 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2463 unsigned InstID, 2464 SmallVectorImpl<unsigned> &Vals) { 2465 unsigned Code = 0; 2466 unsigned AbbrevToUse = 0; 2467 VE.setInstructionID(&I); 2468 switch (I.getOpcode()) { 2469 default: 2470 if (Instruction::isCast(I.getOpcode())) { 2471 Code = bitc::FUNC_CODE_INST_CAST; 2472 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2473 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2474 Vals.push_back(VE.getTypeID(I.getType())); 2475 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2476 } else { 2477 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2478 Code = bitc::FUNC_CODE_INST_BINOP; 2479 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2480 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2481 pushValue(I.getOperand(1), InstID, Vals); 2482 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2483 uint64_t Flags = getOptimizationFlags(&I); 2484 if (Flags != 0) { 2485 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2486 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2487 Vals.push_back(Flags); 2488 } 2489 } 2490 break; 2491 2492 case Instruction::GetElementPtr: { 2493 Code = bitc::FUNC_CODE_INST_GEP; 2494 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2495 auto &GEPInst = cast<GetElementPtrInst>(I); 2496 Vals.push_back(GEPInst.isInBounds()); 2497 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2498 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2499 pushValueAndType(I.getOperand(i), InstID, Vals); 2500 break; 2501 } 2502 case Instruction::ExtractValue: { 2503 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2504 pushValueAndType(I.getOperand(0), InstID, Vals); 2505 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2506 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2507 break; 2508 } 2509 case Instruction::InsertValue: { 2510 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2511 pushValueAndType(I.getOperand(0), InstID, Vals); 2512 pushValueAndType(I.getOperand(1), InstID, Vals); 2513 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2514 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2515 break; 2516 } 2517 case Instruction::Select: 2518 Code = bitc::FUNC_CODE_INST_VSELECT; 2519 pushValueAndType(I.getOperand(1), InstID, Vals); 2520 pushValue(I.getOperand(2), InstID, Vals); 2521 pushValueAndType(I.getOperand(0), InstID, Vals); 2522 break; 2523 case Instruction::ExtractElement: 2524 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2525 pushValueAndType(I.getOperand(0), InstID, Vals); 2526 pushValueAndType(I.getOperand(1), InstID, Vals); 2527 break; 2528 case Instruction::InsertElement: 2529 Code = bitc::FUNC_CODE_INST_INSERTELT; 2530 pushValueAndType(I.getOperand(0), InstID, Vals); 2531 pushValue(I.getOperand(1), InstID, Vals); 2532 pushValueAndType(I.getOperand(2), InstID, Vals); 2533 break; 2534 case Instruction::ShuffleVector: 2535 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2536 pushValueAndType(I.getOperand(0), InstID, Vals); 2537 pushValue(I.getOperand(1), InstID, Vals); 2538 pushValue(I.getOperand(2), InstID, Vals); 2539 break; 2540 case Instruction::ICmp: 2541 case Instruction::FCmp: { 2542 // compare returning Int1Ty or vector of Int1Ty 2543 Code = bitc::FUNC_CODE_INST_CMP2; 2544 pushValueAndType(I.getOperand(0), InstID, Vals); 2545 pushValue(I.getOperand(1), InstID, Vals); 2546 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2547 uint64_t Flags = getOptimizationFlags(&I); 2548 if (Flags != 0) 2549 Vals.push_back(Flags); 2550 break; 2551 } 2552 2553 case Instruction::Ret: 2554 { 2555 Code = bitc::FUNC_CODE_INST_RET; 2556 unsigned NumOperands = I.getNumOperands(); 2557 if (NumOperands == 0) 2558 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2559 else if (NumOperands == 1) { 2560 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2561 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2562 } else { 2563 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2564 pushValueAndType(I.getOperand(i), InstID, Vals); 2565 } 2566 } 2567 break; 2568 case Instruction::Br: 2569 { 2570 Code = bitc::FUNC_CODE_INST_BR; 2571 const BranchInst &II = cast<BranchInst>(I); 2572 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2573 if (II.isConditional()) { 2574 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2575 pushValue(II.getCondition(), InstID, Vals); 2576 } 2577 } 2578 break; 2579 case Instruction::Switch: 2580 { 2581 Code = bitc::FUNC_CODE_INST_SWITCH; 2582 const SwitchInst &SI = cast<SwitchInst>(I); 2583 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2584 pushValue(SI.getCondition(), InstID, Vals); 2585 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2586 for (auto Case : SI.cases()) { 2587 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2588 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2589 } 2590 } 2591 break; 2592 case Instruction::IndirectBr: 2593 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2594 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2595 // Encode the address operand as relative, but not the basic blocks. 2596 pushValue(I.getOperand(0), InstID, Vals); 2597 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2598 Vals.push_back(VE.getValueID(I.getOperand(i))); 2599 break; 2600 2601 case Instruction::Invoke: { 2602 const InvokeInst *II = cast<InvokeInst>(&I); 2603 const Value *Callee = II->getCalledValue(); 2604 FunctionType *FTy = II->getFunctionType(); 2605 2606 if (II->hasOperandBundles()) 2607 writeOperandBundles(II, InstID); 2608 2609 Code = bitc::FUNC_CODE_INST_INVOKE; 2610 2611 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2612 Vals.push_back(II->getCallingConv() | 1 << 13); 2613 Vals.push_back(VE.getValueID(II->getNormalDest())); 2614 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2615 Vals.push_back(VE.getTypeID(FTy)); 2616 pushValueAndType(Callee, InstID, Vals); 2617 2618 // Emit value #'s for the fixed parameters. 2619 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2620 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2621 2622 // Emit type/value pairs for varargs params. 2623 if (FTy->isVarArg()) { 2624 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2625 i != e; ++i) 2626 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2627 } 2628 break; 2629 } 2630 case Instruction::Resume: 2631 Code = bitc::FUNC_CODE_INST_RESUME; 2632 pushValueAndType(I.getOperand(0), InstID, Vals); 2633 break; 2634 case Instruction::CleanupRet: { 2635 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2636 const auto &CRI = cast<CleanupReturnInst>(I); 2637 pushValue(CRI.getCleanupPad(), InstID, Vals); 2638 if (CRI.hasUnwindDest()) 2639 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2640 break; 2641 } 2642 case Instruction::CatchRet: { 2643 Code = bitc::FUNC_CODE_INST_CATCHRET; 2644 const auto &CRI = cast<CatchReturnInst>(I); 2645 pushValue(CRI.getCatchPad(), InstID, Vals); 2646 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2647 break; 2648 } 2649 case Instruction::CleanupPad: 2650 case Instruction::CatchPad: { 2651 const auto &FuncletPad = cast<FuncletPadInst>(I); 2652 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2653 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2654 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2655 2656 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2657 Vals.push_back(NumArgOperands); 2658 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2659 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2660 break; 2661 } 2662 case Instruction::CatchSwitch: { 2663 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2664 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2665 2666 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2667 2668 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2669 Vals.push_back(NumHandlers); 2670 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2671 Vals.push_back(VE.getValueID(CatchPadBB)); 2672 2673 if (CatchSwitch.hasUnwindDest()) 2674 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2675 break; 2676 } 2677 case Instruction::Unreachable: 2678 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2679 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2680 break; 2681 2682 case Instruction::PHI: { 2683 const PHINode &PN = cast<PHINode>(I); 2684 Code = bitc::FUNC_CODE_INST_PHI; 2685 // With the newer instruction encoding, forward references could give 2686 // negative valued IDs. This is most common for PHIs, so we use 2687 // signed VBRs. 2688 SmallVector<uint64_t, 128> Vals64; 2689 Vals64.push_back(VE.getTypeID(PN.getType())); 2690 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2691 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2692 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2693 } 2694 // Emit a Vals64 vector and exit. 2695 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2696 Vals64.clear(); 2697 return; 2698 } 2699 2700 case Instruction::LandingPad: { 2701 const LandingPadInst &LP = cast<LandingPadInst>(I); 2702 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2703 Vals.push_back(VE.getTypeID(LP.getType())); 2704 Vals.push_back(LP.isCleanup()); 2705 Vals.push_back(LP.getNumClauses()); 2706 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2707 if (LP.isCatch(I)) 2708 Vals.push_back(LandingPadInst::Catch); 2709 else 2710 Vals.push_back(LandingPadInst::Filter); 2711 pushValueAndType(LP.getClause(I), InstID, Vals); 2712 } 2713 break; 2714 } 2715 2716 case Instruction::Alloca: { 2717 Code = bitc::FUNC_CODE_INST_ALLOCA; 2718 const AllocaInst &AI = cast<AllocaInst>(I); 2719 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2720 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2721 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2722 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2723 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2724 "not enough bits for maximum alignment"); 2725 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2726 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2727 AlignRecord |= 1 << 6; 2728 AlignRecord |= AI.isSwiftError() << 7; 2729 Vals.push_back(AlignRecord); 2730 break; 2731 } 2732 2733 case Instruction::Load: 2734 if (cast<LoadInst>(I).isAtomic()) { 2735 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2736 pushValueAndType(I.getOperand(0), InstID, Vals); 2737 } else { 2738 Code = bitc::FUNC_CODE_INST_LOAD; 2739 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2740 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2741 } 2742 Vals.push_back(VE.getTypeID(I.getType())); 2743 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2744 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2745 if (cast<LoadInst>(I).isAtomic()) { 2746 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2747 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2748 } 2749 break; 2750 case Instruction::Store: 2751 if (cast<StoreInst>(I).isAtomic()) 2752 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2753 else 2754 Code = bitc::FUNC_CODE_INST_STORE; 2755 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2756 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2757 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2758 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2759 if (cast<StoreInst>(I).isAtomic()) { 2760 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2761 Vals.push_back( 2762 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2763 } 2764 break; 2765 case Instruction::AtomicCmpXchg: 2766 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2767 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2768 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2769 pushValue(I.getOperand(2), InstID, Vals); // newval. 2770 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2771 Vals.push_back( 2772 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2773 Vals.push_back( 2774 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2775 Vals.push_back( 2776 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2777 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2778 break; 2779 case Instruction::AtomicRMW: 2780 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2781 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2782 pushValue(I.getOperand(1), InstID, Vals); // val. 2783 Vals.push_back( 2784 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2785 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2786 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2787 Vals.push_back( 2788 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2789 break; 2790 case Instruction::Fence: 2791 Code = bitc::FUNC_CODE_INST_FENCE; 2792 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2793 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2794 break; 2795 case Instruction::Call: { 2796 const CallInst &CI = cast<CallInst>(I); 2797 FunctionType *FTy = CI.getFunctionType(); 2798 2799 if (CI.hasOperandBundles()) 2800 writeOperandBundles(&CI, InstID); 2801 2802 Code = bitc::FUNC_CODE_INST_CALL; 2803 2804 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2805 2806 unsigned Flags = getOptimizationFlags(&I); 2807 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2808 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2809 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2810 1 << bitc::CALL_EXPLICIT_TYPE | 2811 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2812 unsigned(Flags != 0) << bitc::CALL_FMF); 2813 if (Flags != 0) 2814 Vals.push_back(Flags); 2815 2816 Vals.push_back(VE.getTypeID(FTy)); 2817 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2818 2819 // Emit value #'s for the fixed parameters. 2820 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2821 // Check for labels (can happen with asm labels). 2822 if (FTy->getParamType(i)->isLabelTy()) 2823 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2824 else 2825 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2826 } 2827 2828 // Emit type/value pairs for varargs params. 2829 if (FTy->isVarArg()) { 2830 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2831 i != e; ++i) 2832 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2833 } 2834 break; 2835 } 2836 case Instruction::VAArg: 2837 Code = bitc::FUNC_CODE_INST_VAARG; 2838 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2839 pushValue(I.getOperand(0), InstID, Vals); // valist. 2840 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2841 break; 2842 } 2843 2844 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2845 Vals.clear(); 2846 } 2847 2848 /// Write a GlobalValue VST to the module. The purpose of this data structure is 2849 /// to allow clients to efficiently find the function body. 2850 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 2851 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2852 // Get the offset of the VST we are writing, and backpatch it into 2853 // the VST forward declaration record. 2854 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2855 // The BitcodeStartBit was the stream offset of the identification block. 2856 VSTOffset -= bitcodeStartBit(); 2857 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2858 // Note that we add 1 here because the offset is relative to one word 2859 // before the start of the identification block, which was historically 2860 // always the start of the regular bitcode header. 2861 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2862 2863 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2864 2865 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2866 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2867 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2868 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2869 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2870 2871 for (const Function &F : M) { 2872 uint64_t Record[2]; 2873 2874 if (F.isDeclaration()) 2875 continue; 2876 2877 Record[0] = VE.getValueID(&F); 2878 2879 // Save the word offset of the function (from the start of the 2880 // actual bitcode written to the stream). 2881 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 2882 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2883 // Note that we add 1 here because the offset is relative to one word 2884 // before the start of the identification block, which was historically 2885 // always the start of the regular bitcode header. 2886 Record[1] = BitcodeIndex / 32 + 1; 2887 2888 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 2889 } 2890 2891 Stream.ExitBlock(); 2892 } 2893 2894 /// Emit names for arguments, instructions and basic blocks in a function. 2895 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 2896 const ValueSymbolTable &VST) { 2897 if (VST.empty()) 2898 return; 2899 2900 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2901 2902 // FIXME: Set up the abbrev, we know how many values there are! 2903 // FIXME: We know if the type names can use 7-bit ascii. 2904 SmallVector<uint64_t, 64> NameVals; 2905 2906 for (const ValueName &Name : VST) { 2907 // Figure out the encoding to use for the name. 2908 StringEncoding Bits = getStringEncoding(Name.getKey()); 2909 2910 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2911 NameVals.push_back(VE.getValueID(Name.getValue())); 2912 2913 // VST_CODE_ENTRY: [valueid, namechar x N] 2914 // VST_CODE_BBENTRY: [bbid, namechar x N] 2915 unsigned Code; 2916 if (isa<BasicBlock>(Name.getValue())) { 2917 Code = bitc::VST_CODE_BBENTRY; 2918 if (Bits == SE_Char6) 2919 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2920 } else { 2921 Code = bitc::VST_CODE_ENTRY; 2922 if (Bits == SE_Char6) 2923 AbbrevToUse = VST_ENTRY_6_ABBREV; 2924 else if (Bits == SE_Fixed7) 2925 AbbrevToUse = VST_ENTRY_7_ABBREV; 2926 } 2927 2928 for (const auto P : Name.getKey()) 2929 NameVals.push_back((unsigned char)P); 2930 2931 // Emit the finished record. 2932 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2933 NameVals.clear(); 2934 } 2935 2936 Stream.ExitBlock(); 2937 } 2938 2939 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 2940 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2941 unsigned Code; 2942 if (isa<BasicBlock>(Order.V)) 2943 Code = bitc::USELIST_CODE_BB; 2944 else 2945 Code = bitc::USELIST_CODE_DEFAULT; 2946 2947 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2948 Record.push_back(VE.getValueID(Order.V)); 2949 Stream.EmitRecord(Code, Record); 2950 } 2951 2952 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 2953 assert(VE.shouldPreserveUseListOrder() && 2954 "Expected to be preserving use-list order"); 2955 2956 auto hasMore = [&]() { 2957 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2958 }; 2959 if (!hasMore()) 2960 // Nothing to do. 2961 return; 2962 2963 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2964 while (hasMore()) { 2965 writeUseList(std::move(VE.UseListOrders.back())); 2966 VE.UseListOrders.pop_back(); 2967 } 2968 Stream.ExitBlock(); 2969 } 2970 2971 /// Emit a function body to the module stream. 2972 void ModuleBitcodeWriter::writeFunction( 2973 const Function &F, 2974 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2975 // Save the bitcode index of the start of this function block for recording 2976 // in the VST. 2977 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 2978 2979 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2980 VE.incorporateFunction(F); 2981 2982 SmallVector<unsigned, 64> Vals; 2983 2984 // Emit the number of basic blocks, so the reader can create them ahead of 2985 // time. 2986 Vals.push_back(VE.getBasicBlocks().size()); 2987 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2988 Vals.clear(); 2989 2990 // If there are function-local constants, emit them now. 2991 unsigned CstStart, CstEnd; 2992 VE.getFunctionConstantRange(CstStart, CstEnd); 2993 writeConstants(CstStart, CstEnd, false); 2994 2995 // If there is function-local metadata, emit it now. 2996 writeFunctionMetadata(F); 2997 2998 // Keep a running idea of what the instruction ID is. 2999 unsigned InstID = CstEnd; 3000 3001 bool NeedsMetadataAttachment = F.hasMetadata(); 3002 3003 DILocation *LastDL = nullptr; 3004 // Finally, emit all the instructions, in order. 3005 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3006 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3007 I != E; ++I) { 3008 writeInstruction(*I, InstID, Vals); 3009 3010 if (!I->getType()->isVoidTy()) 3011 ++InstID; 3012 3013 // If the instruction has metadata, write a metadata attachment later. 3014 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3015 3016 // If the instruction has a debug location, emit it. 3017 DILocation *DL = I->getDebugLoc(); 3018 if (!DL) 3019 continue; 3020 3021 if (DL == LastDL) { 3022 // Just repeat the same debug loc as last time. 3023 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3024 continue; 3025 } 3026 3027 Vals.push_back(DL->getLine()); 3028 Vals.push_back(DL->getColumn()); 3029 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3030 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3031 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3032 Vals.clear(); 3033 3034 LastDL = DL; 3035 } 3036 3037 // Emit names for all the instructions etc. 3038 if (auto *Symtab = F.getValueSymbolTable()) 3039 writeFunctionLevelValueSymbolTable(*Symtab); 3040 3041 if (NeedsMetadataAttachment) 3042 writeFunctionMetadataAttachment(F); 3043 if (VE.shouldPreserveUseListOrder()) 3044 writeUseListBlock(&F); 3045 VE.purgeFunction(); 3046 Stream.ExitBlock(); 3047 } 3048 3049 // Emit blockinfo, which defines the standard abbreviations etc. 3050 void ModuleBitcodeWriter::writeBlockInfo() { 3051 // We only want to emit block info records for blocks that have multiple 3052 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3053 // Other blocks can define their abbrevs inline. 3054 Stream.EnterBlockInfoBlock(); 3055 3056 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3057 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3059 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3062 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3063 VST_ENTRY_8_ABBREV) 3064 llvm_unreachable("Unexpected abbrev ordering!"); 3065 } 3066 3067 { // 7-bit fixed width VST_CODE_ENTRY strings. 3068 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3069 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3072 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3073 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3074 VST_ENTRY_7_ABBREV) 3075 llvm_unreachable("Unexpected abbrev ordering!"); 3076 } 3077 { // 6-bit char6 VST_CODE_ENTRY strings. 3078 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3079 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3080 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3081 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3082 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3083 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3084 VST_ENTRY_6_ABBREV) 3085 llvm_unreachable("Unexpected abbrev ordering!"); 3086 } 3087 { // 6-bit char6 VST_CODE_BBENTRY strings. 3088 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3089 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3093 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3094 VST_BBENTRY_6_ABBREV) 3095 llvm_unreachable("Unexpected abbrev ordering!"); 3096 } 3097 3098 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3099 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3100 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3102 VE.computeBitsRequiredForTypeIndicies())); 3103 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3104 CONSTANTS_SETTYPE_ABBREV) 3105 llvm_unreachable("Unexpected abbrev ordering!"); 3106 } 3107 3108 { // INTEGER abbrev for CONSTANTS_BLOCK. 3109 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3110 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3112 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3113 CONSTANTS_INTEGER_ABBREV) 3114 llvm_unreachable("Unexpected abbrev ordering!"); 3115 } 3116 3117 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3118 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3119 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3120 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3121 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3122 VE.computeBitsRequiredForTypeIndicies())); 3123 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3124 3125 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3126 CONSTANTS_CE_CAST_Abbrev) 3127 llvm_unreachable("Unexpected abbrev ordering!"); 3128 } 3129 { // NULL abbrev for CONSTANTS_BLOCK. 3130 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3131 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3132 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3133 CONSTANTS_NULL_Abbrev) 3134 llvm_unreachable("Unexpected abbrev ordering!"); 3135 } 3136 3137 // FIXME: This should only use space for first class types! 3138 3139 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3140 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3141 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3144 VE.computeBitsRequiredForTypeIndicies())); 3145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3147 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3148 FUNCTION_INST_LOAD_ABBREV) 3149 llvm_unreachable("Unexpected abbrev ordering!"); 3150 } 3151 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3152 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3153 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3157 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3158 FUNCTION_INST_BINOP_ABBREV) 3159 llvm_unreachable("Unexpected abbrev ordering!"); 3160 } 3161 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3162 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3163 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3168 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3169 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3170 llvm_unreachable("Unexpected abbrev ordering!"); 3171 } 3172 { // INST_CAST abbrev for FUNCTION_BLOCK. 3173 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3174 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3177 VE.computeBitsRequiredForTypeIndicies())); 3178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3179 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3180 FUNCTION_INST_CAST_ABBREV) 3181 llvm_unreachable("Unexpected abbrev ordering!"); 3182 } 3183 3184 { // INST_RET abbrev for FUNCTION_BLOCK. 3185 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3186 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3187 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3188 FUNCTION_INST_RET_VOID_ABBREV) 3189 llvm_unreachable("Unexpected abbrev ordering!"); 3190 } 3191 { // INST_RET abbrev for FUNCTION_BLOCK. 3192 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3193 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3195 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3196 FUNCTION_INST_RET_VAL_ABBREV) 3197 llvm_unreachable("Unexpected abbrev ordering!"); 3198 } 3199 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3200 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3201 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3202 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3203 FUNCTION_INST_UNREACHABLE_ABBREV) 3204 llvm_unreachable("Unexpected abbrev ordering!"); 3205 } 3206 { 3207 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3208 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3211 Log2_32_Ceil(VE.getTypes().size() + 1))); 3212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3214 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3215 FUNCTION_INST_GEP_ABBREV) 3216 llvm_unreachable("Unexpected abbrev ordering!"); 3217 } 3218 3219 Stream.ExitBlock(); 3220 } 3221 3222 /// Write the module path strings, currently only used when generating 3223 /// a combined index file. 3224 void IndexBitcodeWriter::writeModStrings() { 3225 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3226 3227 // TODO: See which abbrev sizes we actually need to emit 3228 3229 // 8-bit fixed-width MST_ENTRY strings. 3230 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3231 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3235 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3236 3237 // 7-bit fixed width MST_ENTRY strings. 3238 Abbv = std::make_shared<BitCodeAbbrev>(); 3239 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3240 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3241 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3242 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3243 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3244 3245 // 6-bit char6 MST_ENTRY strings. 3246 Abbv = std::make_shared<BitCodeAbbrev>(); 3247 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3249 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3251 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3252 3253 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3254 Abbv = std::make_shared<BitCodeAbbrev>(); 3255 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3256 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3257 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3258 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3259 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3260 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3261 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3262 3263 SmallVector<unsigned, 64> Vals; 3264 forEachModule( 3265 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3266 StringRef Key = MPSE.getKey(); 3267 const auto &Value = MPSE.getValue(); 3268 StringEncoding Bits = getStringEncoding(Key); 3269 unsigned AbbrevToUse = Abbrev8Bit; 3270 if (Bits == SE_Char6) 3271 AbbrevToUse = Abbrev6Bit; 3272 else if (Bits == SE_Fixed7) 3273 AbbrevToUse = Abbrev7Bit; 3274 3275 Vals.push_back(Value.first); 3276 Vals.append(Key.begin(), Key.end()); 3277 3278 // Emit the finished record. 3279 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3280 3281 // Emit an optional hash for the module now 3282 const auto &Hash = Value.second; 3283 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3284 Vals.assign(Hash.begin(), Hash.end()); 3285 // Emit the hash record. 3286 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3287 } 3288 3289 Vals.clear(); 3290 }); 3291 Stream.ExitBlock(); 3292 } 3293 3294 /// Write the function type metadata related records that need to appear before 3295 /// a function summary entry (whether per-module or combined). 3296 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3297 FunctionSummary *FS) { 3298 if (!FS->type_tests().empty()) 3299 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3300 3301 SmallVector<uint64_t, 64> Record; 3302 3303 auto WriteVFuncIdVec = [&](uint64_t Ty, 3304 ArrayRef<FunctionSummary::VFuncId> VFs) { 3305 if (VFs.empty()) 3306 return; 3307 Record.clear(); 3308 for (auto &VF : VFs) { 3309 Record.push_back(VF.GUID); 3310 Record.push_back(VF.Offset); 3311 } 3312 Stream.EmitRecord(Ty, Record); 3313 }; 3314 3315 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3316 FS->type_test_assume_vcalls()); 3317 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3318 FS->type_checked_load_vcalls()); 3319 3320 auto WriteConstVCallVec = [&](uint64_t Ty, 3321 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3322 for (auto &VC : VCs) { 3323 Record.clear(); 3324 Record.push_back(VC.VFunc.GUID); 3325 Record.push_back(VC.VFunc.Offset); 3326 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3327 Stream.EmitRecord(Ty, Record); 3328 } 3329 }; 3330 3331 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3332 FS->type_test_assume_const_vcalls()); 3333 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3334 FS->type_checked_load_const_vcalls()); 3335 } 3336 3337 // Helper to emit a single function summary record. 3338 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3339 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3340 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3341 const Function &F) { 3342 NameVals.push_back(ValueID); 3343 3344 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3345 writeFunctionTypeMetadataRecords(Stream, FS); 3346 3347 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3348 NameVals.push_back(FS->instCount()); 3349 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3350 NameVals.push_back(FS->refs().size()); 3351 3352 for (auto &RI : FS->refs()) 3353 NameVals.push_back(VE.getValueID(RI.getValue())); 3354 3355 bool HasProfileData = F.getEntryCount().hasValue(); 3356 for (auto &ECI : FS->calls()) { 3357 NameVals.push_back(getValueId(ECI.first)); 3358 if (HasProfileData) 3359 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3360 } 3361 3362 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3363 unsigned Code = 3364 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3365 3366 // Emit the finished record. 3367 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3368 NameVals.clear(); 3369 } 3370 3371 // Collect the global value references in the given variable's initializer, 3372 // and emit them in a summary record. 3373 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3374 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3375 unsigned FSModRefsAbbrev) { 3376 auto VI = Index->getValueInfo(GlobalValue::getGUID(V.getName())); 3377 if (!VI || VI.getSummaryList().empty()) { 3378 // Only declarations should not have a summary (a declaration might however 3379 // have a summary if the def was in module level asm). 3380 assert(V.isDeclaration()); 3381 return; 3382 } 3383 auto *Summary = VI.getSummaryList()[0].get(); 3384 NameVals.push_back(VE.getValueID(&V)); 3385 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3386 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3387 3388 unsigned SizeBeforeRefs = NameVals.size(); 3389 for (auto &RI : VS->refs()) 3390 NameVals.push_back(VE.getValueID(RI.getValue())); 3391 // Sort the refs for determinism output, the vector returned by FS->refs() has 3392 // been initialized from a DenseSet. 3393 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3394 3395 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3396 FSModRefsAbbrev); 3397 NameVals.clear(); 3398 } 3399 3400 // Current version for the summary. 3401 // This is bumped whenever we introduce changes in the way some record are 3402 // interpreted, like flags for instance. 3403 static const uint64_t INDEX_VERSION = 4; 3404 3405 /// Emit the per-module summary section alongside the rest of 3406 /// the module's bitcode. 3407 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3408 // By default we compile with ThinLTO if the module has a summary, but the 3409 // client can request full LTO with a module flag. 3410 bool IsThinLTO = true; 3411 if (auto *MD = 3412 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3413 IsThinLTO = MD->getZExtValue(); 3414 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3415 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3416 4); 3417 3418 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3419 3420 if (Index->begin() == Index->end()) { 3421 Stream.ExitBlock(); 3422 return; 3423 } 3424 3425 for (const auto &GVI : valueIds()) { 3426 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3427 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3428 } 3429 3430 // Abbrev for FS_PERMODULE. 3431 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3432 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3433 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3438 // numrefs x valueid, n x (valueid) 3439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3441 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3442 3443 // Abbrev for FS_PERMODULE_PROFILE. 3444 Abbv = std::make_shared<BitCodeAbbrev>(); 3445 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3451 // numrefs x valueid, n x (valueid, hotness) 3452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3454 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3455 3456 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3457 Abbv = std::make_shared<BitCodeAbbrev>(); 3458 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3463 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3464 3465 // Abbrev for FS_ALIAS. 3466 Abbv = std::make_shared<BitCodeAbbrev>(); 3467 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3471 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3472 3473 SmallVector<uint64_t, 64> NameVals; 3474 // Iterate over the list of functions instead of the Index to 3475 // ensure the ordering is stable. 3476 for (const Function &F : M) { 3477 // Summary emission does not support anonymous functions, they have to 3478 // renamed using the anonymous function renaming pass. 3479 if (!F.hasName()) 3480 report_fatal_error("Unexpected anonymous function when writing summary"); 3481 3482 ValueInfo VI = Index->getValueInfo(GlobalValue::getGUID(F.getName())); 3483 if (!VI || VI.getSummaryList().empty()) { 3484 // Only declarations should not have a summary (a declaration might 3485 // however have a summary if the def was in module level asm). 3486 assert(F.isDeclaration()); 3487 continue; 3488 } 3489 auto *Summary = VI.getSummaryList()[0].get(); 3490 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3491 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3492 } 3493 3494 // Capture references from GlobalVariable initializers, which are outside 3495 // of a function scope. 3496 for (const GlobalVariable &G : M.globals()) 3497 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3498 3499 for (const GlobalAlias &A : M.aliases()) { 3500 auto *Aliasee = A.getBaseObject(); 3501 if (!Aliasee->hasName()) 3502 // Nameless function don't have an entry in the summary, skip it. 3503 continue; 3504 auto AliasId = VE.getValueID(&A); 3505 auto AliaseeId = VE.getValueID(Aliasee); 3506 NameVals.push_back(AliasId); 3507 auto *Summary = Index->getGlobalValueSummary(A); 3508 AliasSummary *AS = cast<AliasSummary>(Summary); 3509 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3510 NameVals.push_back(AliaseeId); 3511 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3512 NameVals.clear(); 3513 } 3514 3515 Stream.ExitBlock(); 3516 } 3517 3518 /// Emit the combined summary section into the combined index file. 3519 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3520 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3521 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3522 3523 for (const auto &GVI : valueIds()) { 3524 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3525 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3526 } 3527 3528 // Abbrev for FS_COMBINED. 3529 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3530 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3533 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3534 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3535 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3537 // numrefs x valueid, n x (valueid) 3538 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3539 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3540 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3541 3542 // Abbrev for FS_COMBINED_PROFILE. 3543 Abbv = std::make_shared<BitCodeAbbrev>(); 3544 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3545 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3546 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3547 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3548 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3550 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3551 // numrefs x valueid, n x (valueid, hotness) 3552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3554 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3555 3556 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3557 Abbv = std::make_shared<BitCodeAbbrev>(); 3558 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3564 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3565 3566 // Abbrev for FS_COMBINED_ALIAS. 3567 Abbv = std::make_shared<BitCodeAbbrev>(); 3568 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3571 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3573 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3574 3575 // The aliases are emitted as a post-pass, and will point to the value 3576 // id of the aliasee. Save them in a vector for post-processing. 3577 SmallVector<AliasSummary *, 64> Aliases; 3578 3579 // Save the value id for each summary for alias emission. 3580 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3581 3582 SmallVector<uint64_t, 64> NameVals; 3583 3584 // For local linkage, we also emit the original name separately 3585 // immediately after the record. 3586 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3587 if (!GlobalValue::isLocalLinkage(S.linkage())) 3588 return; 3589 NameVals.push_back(S.getOriginalName()); 3590 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3591 NameVals.clear(); 3592 }; 3593 3594 forEachSummary([&](GVInfo I) { 3595 GlobalValueSummary *S = I.second; 3596 assert(S); 3597 3598 auto ValueId = getValueId(I.first); 3599 assert(ValueId); 3600 SummaryToValueIdMap[S] = *ValueId; 3601 3602 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3603 // Will process aliases as a post-pass because the reader wants all 3604 // global to be loaded first. 3605 Aliases.push_back(AS); 3606 return; 3607 } 3608 3609 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3610 NameVals.push_back(*ValueId); 3611 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3612 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3613 for (auto &RI : VS->refs()) { 3614 auto RefValueId = getValueId(RI.getGUID()); 3615 if (!RefValueId) 3616 continue; 3617 NameVals.push_back(*RefValueId); 3618 } 3619 3620 // Emit the finished record. 3621 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3622 FSModRefsAbbrev); 3623 NameVals.clear(); 3624 MaybeEmitOriginalName(*S); 3625 return; 3626 } 3627 3628 auto *FS = cast<FunctionSummary>(S); 3629 writeFunctionTypeMetadataRecords(Stream, FS); 3630 3631 NameVals.push_back(*ValueId); 3632 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3633 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3634 NameVals.push_back(FS->instCount()); 3635 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3636 // Fill in below 3637 NameVals.push_back(0); 3638 3639 unsigned Count = 0; 3640 for (auto &RI : FS->refs()) { 3641 auto RefValueId = getValueId(RI.getGUID()); 3642 if (!RefValueId) 3643 continue; 3644 NameVals.push_back(*RefValueId); 3645 Count++; 3646 } 3647 NameVals[5] = Count; 3648 3649 bool HasProfileData = false; 3650 for (auto &EI : FS->calls()) { 3651 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown; 3652 if (HasProfileData) 3653 break; 3654 } 3655 3656 for (auto &EI : FS->calls()) { 3657 // If this GUID doesn't have a value id, it doesn't have a function 3658 // summary and we don't need to record any calls to it. 3659 GlobalValue::GUID GUID = EI.first.getGUID(); 3660 auto CallValueId = getValueId(GUID); 3661 if (!CallValueId) { 3662 // For SamplePGO, the indirect call targets for local functions will 3663 // have its original name annotated in profile. We try to find the 3664 // corresponding PGOFuncName as the GUID. 3665 GUID = Index.getGUIDFromOriginalID(GUID); 3666 if (GUID == 0) 3667 continue; 3668 CallValueId = getValueId(GUID); 3669 if (!CallValueId) 3670 continue; 3671 // The mapping from OriginalId to GUID may return a GUID 3672 // that corresponds to a static variable. Filter it out here. 3673 // This can happen when 3674 // 1) There is a call to a library function which does not have 3675 // a CallValidId; 3676 // 2) There is a static variable with the OriginalGUID identical 3677 // to the GUID of the library function in 1); 3678 // When this happens, the logic for SamplePGO kicks in and 3679 // the static varible in 2) will be found, which needs to be 3680 // filtered out. 3681 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 3682 if (GVSum && 3683 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 3684 continue; 3685 } 3686 NameVals.push_back(*CallValueId); 3687 if (HasProfileData) 3688 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3689 } 3690 3691 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3692 unsigned Code = 3693 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3694 3695 // Emit the finished record. 3696 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3697 NameVals.clear(); 3698 MaybeEmitOriginalName(*S); 3699 }); 3700 3701 for (auto *AS : Aliases) { 3702 auto AliasValueId = SummaryToValueIdMap[AS]; 3703 assert(AliasValueId); 3704 NameVals.push_back(AliasValueId); 3705 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3706 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3707 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3708 assert(AliaseeValueId); 3709 NameVals.push_back(AliaseeValueId); 3710 3711 // Emit the finished record. 3712 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3713 NameVals.clear(); 3714 MaybeEmitOriginalName(*AS); 3715 } 3716 3717 if (!Index.cfiFunctionDefs().empty()) { 3718 for (auto &S : Index.cfiFunctionDefs()) { 3719 NameVals.push_back(StrtabBuilder.add(S)); 3720 NameVals.push_back(S.size()); 3721 } 3722 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 3723 NameVals.clear(); 3724 } 3725 3726 if (!Index.cfiFunctionDecls().empty()) { 3727 for (auto &S : Index.cfiFunctionDecls()) { 3728 NameVals.push_back(StrtabBuilder.add(S)); 3729 NameVals.push_back(S.size()); 3730 } 3731 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 3732 NameVals.clear(); 3733 } 3734 3735 Stream.ExitBlock(); 3736 } 3737 3738 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3739 /// current llvm version, and a record for the epoch number. 3740 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3741 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3742 3743 // Write the "user readable" string identifying the bitcode producer 3744 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3745 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3746 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3747 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3748 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3749 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3750 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3751 3752 // Write the epoch version 3753 Abbv = std::make_shared<BitCodeAbbrev>(); 3754 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3755 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3756 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3757 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3758 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3759 Stream.ExitBlock(); 3760 } 3761 3762 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3763 // Emit the module's hash. 3764 // MODULE_CODE_HASH: [5*i32] 3765 if (GenerateHash) { 3766 uint32_t Vals[5]; 3767 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3768 Buffer.size() - BlockStartPos)); 3769 StringRef Hash = Hasher.result(); 3770 for (int Pos = 0; Pos < 20; Pos += 4) { 3771 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3772 } 3773 3774 // Emit the finished record. 3775 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3776 3777 if (ModHash) 3778 // Save the written hash value. 3779 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash)); 3780 } 3781 } 3782 3783 void ModuleBitcodeWriter::write() { 3784 writeIdentificationBlock(Stream); 3785 3786 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3787 size_t BlockStartPos = Buffer.size(); 3788 3789 writeModuleVersion(); 3790 3791 // Emit blockinfo, which defines the standard abbreviations etc. 3792 writeBlockInfo(); 3793 3794 // Emit information about attribute groups. 3795 writeAttributeGroupTable(); 3796 3797 // Emit information about parameter attributes. 3798 writeAttributeTable(); 3799 3800 // Emit information describing all of the types in the module. 3801 writeTypeTable(); 3802 3803 writeComdats(); 3804 3805 // Emit top-level description of module, including target triple, inline asm, 3806 // descriptors for global variables, and function prototype info. 3807 writeModuleInfo(); 3808 3809 // Emit constants. 3810 writeModuleConstants(); 3811 3812 // Emit metadata kind names. 3813 writeModuleMetadataKinds(); 3814 3815 // Emit metadata. 3816 writeModuleMetadata(); 3817 3818 // Emit module-level use-lists. 3819 if (VE.shouldPreserveUseListOrder()) 3820 writeUseListBlock(nullptr); 3821 3822 writeOperandBundleTags(); 3823 writeSyncScopeNames(); 3824 3825 // Emit function bodies. 3826 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3827 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3828 if (!F->isDeclaration()) 3829 writeFunction(*F, FunctionToBitcodeIndex); 3830 3831 // Need to write after the above call to WriteFunction which populates 3832 // the summary information in the index. 3833 if (Index) 3834 writePerModuleGlobalValueSummary(); 3835 3836 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 3837 3838 writeModuleHash(BlockStartPos); 3839 3840 Stream.ExitBlock(); 3841 } 3842 3843 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3844 uint32_t &Position) { 3845 support::endian::write32le(&Buffer[Position], Value); 3846 Position += 4; 3847 } 3848 3849 /// If generating a bc file on darwin, we have to emit a 3850 /// header and trailer to make it compatible with the system archiver. To do 3851 /// this we emit the following header, and then emit a trailer that pads the 3852 /// file out to be a multiple of 16 bytes. 3853 /// 3854 /// struct bc_header { 3855 /// uint32_t Magic; // 0x0B17C0DE 3856 /// uint32_t Version; // Version, currently always 0. 3857 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3858 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3859 /// uint32_t CPUType; // CPU specifier. 3860 /// ... potentially more later ... 3861 /// }; 3862 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3863 const Triple &TT) { 3864 unsigned CPUType = ~0U; 3865 3866 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3867 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3868 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3869 // specific constants here because they are implicitly part of the Darwin ABI. 3870 enum { 3871 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3872 DARWIN_CPU_TYPE_X86 = 7, 3873 DARWIN_CPU_TYPE_ARM = 12, 3874 DARWIN_CPU_TYPE_POWERPC = 18 3875 }; 3876 3877 Triple::ArchType Arch = TT.getArch(); 3878 if (Arch == Triple::x86_64) 3879 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3880 else if (Arch == Triple::x86) 3881 CPUType = DARWIN_CPU_TYPE_X86; 3882 else if (Arch == Triple::ppc) 3883 CPUType = DARWIN_CPU_TYPE_POWERPC; 3884 else if (Arch == Triple::ppc64) 3885 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3886 else if (Arch == Triple::arm || Arch == Triple::thumb) 3887 CPUType = DARWIN_CPU_TYPE_ARM; 3888 3889 // Traditional Bitcode starts after header. 3890 assert(Buffer.size() >= BWH_HeaderSize && 3891 "Expected header size to be reserved"); 3892 unsigned BCOffset = BWH_HeaderSize; 3893 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3894 3895 // Write the magic and version. 3896 unsigned Position = 0; 3897 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3898 writeInt32ToBuffer(0, Buffer, Position); // Version. 3899 writeInt32ToBuffer(BCOffset, Buffer, Position); 3900 writeInt32ToBuffer(BCSize, Buffer, Position); 3901 writeInt32ToBuffer(CPUType, Buffer, Position); 3902 3903 // If the file is not a multiple of 16 bytes, insert dummy padding. 3904 while (Buffer.size() & 15) 3905 Buffer.push_back(0); 3906 } 3907 3908 /// Helper to write the header common to all bitcode files. 3909 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3910 // Emit the file header. 3911 Stream.Emit((unsigned)'B', 8); 3912 Stream.Emit((unsigned)'C', 8); 3913 Stream.Emit(0x0, 4); 3914 Stream.Emit(0xC, 4); 3915 Stream.Emit(0xE, 4); 3916 Stream.Emit(0xD, 4); 3917 } 3918 3919 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3920 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3921 writeBitcodeHeader(*Stream); 3922 } 3923 3924 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 3925 3926 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 3927 Stream->EnterSubblock(Block, 3); 3928 3929 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3930 Abbv->Add(BitCodeAbbrevOp(Record)); 3931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 3932 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 3933 3934 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 3935 3936 Stream->ExitBlock(); 3937 } 3938 3939 void BitcodeWriter::writeSymtab() { 3940 assert(!WroteStrtab && !WroteSymtab); 3941 3942 // If any module has module-level inline asm, we will require a registered asm 3943 // parser for the target so that we can create an accurate symbol table for 3944 // the module. 3945 for (Module *M : Mods) { 3946 if (M->getModuleInlineAsm().empty()) 3947 continue; 3948 3949 std::string Err; 3950 const Triple TT(M->getTargetTriple()); 3951 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 3952 if (!T || !T->hasMCAsmParser()) 3953 return; 3954 } 3955 3956 WroteSymtab = true; 3957 SmallVector<char, 0> Symtab; 3958 // The irsymtab::build function may be unable to create a symbol table if the 3959 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 3960 // table is not required for correctness, but we still want to be able to 3961 // write malformed modules to bitcode files, so swallow the error. 3962 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 3963 consumeError(std::move(E)); 3964 return; 3965 } 3966 3967 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 3968 {Symtab.data(), Symtab.size()}); 3969 } 3970 3971 void BitcodeWriter::writeStrtab() { 3972 assert(!WroteStrtab); 3973 3974 std::vector<char> Strtab; 3975 StrtabBuilder.finalizeInOrder(); 3976 Strtab.resize(StrtabBuilder.getSize()); 3977 StrtabBuilder.write((uint8_t *)Strtab.data()); 3978 3979 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 3980 {Strtab.data(), Strtab.size()}); 3981 3982 WroteStrtab = true; 3983 } 3984 3985 void BitcodeWriter::copyStrtab(StringRef Strtab) { 3986 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 3987 WroteStrtab = true; 3988 } 3989 3990 void BitcodeWriter::writeModule(const Module *M, 3991 bool ShouldPreserveUseListOrder, 3992 const ModuleSummaryIndex *Index, 3993 bool GenerateHash, ModuleHash *ModHash) { 3994 assert(!WroteStrtab); 3995 3996 // The Mods vector is used by irsymtab::build, which requires non-const 3997 // Modules in case it needs to materialize metadata. But the bitcode writer 3998 // requires that the module is materialized, so we can cast to non-const here, 3999 // after checking that it is in fact materialized. 4000 assert(M->isMaterialized()); 4001 Mods.push_back(const_cast<Module *>(M)); 4002 4003 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4004 ShouldPreserveUseListOrder, Index, 4005 GenerateHash, ModHash); 4006 ModuleWriter.write(); 4007 } 4008 4009 void BitcodeWriter::writeIndex( 4010 const ModuleSummaryIndex *Index, 4011 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4012 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4013 ModuleToSummariesForIndex); 4014 IndexWriter.write(); 4015 } 4016 4017 /// WriteBitcodeToFile - Write the specified module to the specified output 4018 /// stream. 4019 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 4020 bool ShouldPreserveUseListOrder, 4021 const ModuleSummaryIndex *Index, 4022 bool GenerateHash, ModuleHash *ModHash) { 4023 SmallVector<char, 0> Buffer; 4024 Buffer.reserve(256*1024); 4025 4026 // If this is darwin or another generic macho target, reserve space for the 4027 // header. 4028 Triple TT(M->getTargetTriple()); 4029 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4030 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4031 4032 BitcodeWriter Writer(Buffer); 4033 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4034 ModHash); 4035 Writer.writeSymtab(); 4036 Writer.writeStrtab(); 4037 4038 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4039 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4040 4041 // Write the generated bitstream to "Out". 4042 Out.write((char*)&Buffer.front(), Buffer.size()); 4043 } 4044 4045 void IndexBitcodeWriter::write() { 4046 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4047 4048 writeModuleVersion(); 4049 4050 // Write the module paths in the combined index. 4051 writeModStrings(); 4052 4053 // Write the summary combined index records. 4054 writeCombinedGlobalValueSummary(); 4055 4056 Stream.ExitBlock(); 4057 } 4058 4059 // Write the specified module summary index to the given raw output stream, 4060 // where it will be written in a new bitcode block. This is used when 4061 // writing the combined index file for ThinLTO. When writing a subset of the 4062 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4063 void llvm::WriteIndexToFile( 4064 const ModuleSummaryIndex &Index, raw_ostream &Out, 4065 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4066 SmallVector<char, 0> Buffer; 4067 Buffer.reserve(256 * 1024); 4068 4069 BitcodeWriter Writer(Buffer); 4070 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4071 Writer.writeStrtab(); 4072 4073 Out.write((char *)&Buffer.front(), Buffer.size()); 4074 } 4075 4076 namespace { 4077 4078 /// Class to manage the bitcode writing for a thin link bitcode file. 4079 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4080 /// ModHash is for use in ThinLTO incremental build, generated while writing 4081 /// the module bitcode file. 4082 const ModuleHash *ModHash; 4083 4084 public: 4085 ThinLinkBitcodeWriter(const Module *M, StringTableBuilder &StrtabBuilder, 4086 BitstreamWriter &Stream, 4087 const ModuleSummaryIndex &Index, 4088 const ModuleHash &ModHash) 4089 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4090 /*ShouldPreserveUseListOrder=*/false, &Index), 4091 ModHash(&ModHash) {} 4092 4093 void write(); 4094 4095 private: 4096 void writeSimplifiedModuleInfo(); 4097 }; 4098 4099 } // end anonymous namespace 4100 4101 // This function writes a simpilified module info for thin link bitcode file. 4102 // It only contains the source file name along with the name(the offset and 4103 // size in strtab) and linkage for global values. For the global value info 4104 // entry, in order to keep linkage at offset 5, there are three zeros used 4105 // as padding. 4106 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4107 SmallVector<unsigned, 64> Vals; 4108 // Emit the module's source file name. 4109 { 4110 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4111 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4112 if (Bits == SE_Char6) 4113 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4114 else if (Bits == SE_Fixed7) 4115 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4116 4117 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4118 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4119 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4120 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4121 Abbv->Add(AbbrevOpToUse); 4122 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4123 4124 for (const auto P : M.getSourceFileName()) 4125 Vals.push_back((unsigned char)P); 4126 4127 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4128 Vals.clear(); 4129 } 4130 4131 // Emit the global variable information. 4132 for (const GlobalVariable &GV : M.globals()) { 4133 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4134 Vals.push_back(StrtabBuilder.add(GV.getName())); 4135 Vals.push_back(GV.getName().size()); 4136 Vals.push_back(0); 4137 Vals.push_back(0); 4138 Vals.push_back(0); 4139 Vals.push_back(getEncodedLinkage(GV)); 4140 4141 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4142 Vals.clear(); 4143 } 4144 4145 // Emit the function proto information. 4146 for (const Function &F : M) { 4147 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4148 Vals.push_back(StrtabBuilder.add(F.getName())); 4149 Vals.push_back(F.getName().size()); 4150 Vals.push_back(0); 4151 Vals.push_back(0); 4152 Vals.push_back(0); 4153 Vals.push_back(getEncodedLinkage(F)); 4154 4155 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4156 Vals.clear(); 4157 } 4158 4159 // Emit the alias information. 4160 for (const GlobalAlias &A : M.aliases()) { 4161 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4162 Vals.push_back(StrtabBuilder.add(A.getName())); 4163 Vals.push_back(A.getName().size()); 4164 Vals.push_back(0); 4165 Vals.push_back(0); 4166 Vals.push_back(0); 4167 Vals.push_back(getEncodedLinkage(A)); 4168 4169 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4170 Vals.clear(); 4171 } 4172 4173 // Emit the ifunc information. 4174 for (const GlobalIFunc &I : M.ifuncs()) { 4175 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4176 Vals.push_back(StrtabBuilder.add(I.getName())); 4177 Vals.push_back(I.getName().size()); 4178 Vals.push_back(0); 4179 Vals.push_back(0); 4180 Vals.push_back(0); 4181 Vals.push_back(getEncodedLinkage(I)); 4182 4183 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4184 Vals.clear(); 4185 } 4186 } 4187 4188 void ThinLinkBitcodeWriter::write() { 4189 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4190 4191 writeModuleVersion(); 4192 4193 writeSimplifiedModuleInfo(); 4194 4195 writePerModuleGlobalValueSummary(); 4196 4197 // Write module hash. 4198 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4199 4200 Stream.ExitBlock(); 4201 } 4202 4203 void BitcodeWriter::writeThinLinkBitcode(const Module *M, 4204 const ModuleSummaryIndex &Index, 4205 const ModuleHash &ModHash) { 4206 assert(!WroteStrtab); 4207 4208 // The Mods vector is used by irsymtab::build, which requires non-const 4209 // Modules in case it needs to materialize metadata. But the bitcode writer 4210 // requires that the module is materialized, so we can cast to non-const here, 4211 // after checking that it is in fact materialized. 4212 assert(M->isMaterialized()); 4213 Mods.push_back(const_cast<Module *>(M)); 4214 4215 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4216 ModHash); 4217 ThinLinkWriter.write(); 4218 } 4219 4220 // Write the specified thin link bitcode file to the given raw output stream, 4221 // where it will be written in a new bitcode block. This is used when 4222 // writing the per-module index file for ThinLTO. 4223 void llvm::WriteThinLinkBitcodeToFile(const Module *M, raw_ostream &Out, 4224 const ModuleSummaryIndex &Index, 4225 const ModuleHash &ModHash) { 4226 SmallVector<char, 0> Buffer; 4227 Buffer.reserve(256 * 1024); 4228 4229 BitcodeWriter Writer(Buffer); 4230 Writer.writeThinLinkBitcode(M, Index, ModHash); 4231 Writer.writeSymtab(); 4232 Writer.writeStrtab(); 4233 4234 Out.write((char *)&Buffer.front(), Buffer.size()); 4235 } 4236