xref: /llvm-project/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp (revision b52e23669cbd8637819d9ff7777d43cbc3bf8f31)
1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/BitcodeWriter.h"
15 #include "ValueEnumerator.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/Bitcode/BitCodes.h"
29 #include "llvm/Bitcode/BitstreamWriter.h"
30 #include "llvm/Bitcode/LLVMBitCodes.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Comdat.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalIFunc.h"
43 #include "llvm/IR/GlobalObject.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSummaryIndex.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/UseListOrder.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/MC/StringTableBuilder.h"
60 #include "llvm/Object/IRSymtab.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Endian.h"
65 #include "llvm/Support/Error.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/SHA1.h"
69 #include "llvm/Support/TargetRegistry.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstddef>
74 #include <cstdint>
75 #include <iterator>
76 #include <map>
77 #include <memory>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 static cl::opt<unsigned>
85     IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
86                    cl::desc("Number of metadatas above which we emit an index "
87                             "to enable lazy-loading"));
88 
89 namespace {
90 
91 /// These are manifest constants used by the bitcode writer. They do not need to
92 /// be kept in sync with the reader, but need to be consistent within this file.
93 enum {
94   // VALUE_SYMTAB_BLOCK abbrev id's.
95   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
96   VST_ENTRY_7_ABBREV,
97   VST_ENTRY_6_ABBREV,
98   VST_BBENTRY_6_ABBREV,
99 
100   // CONSTANTS_BLOCK abbrev id's.
101   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
102   CONSTANTS_INTEGER_ABBREV,
103   CONSTANTS_CE_CAST_Abbrev,
104   CONSTANTS_NULL_Abbrev,
105 
106   // FUNCTION_BLOCK abbrev id's.
107   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
108   FUNCTION_INST_BINOP_ABBREV,
109   FUNCTION_INST_BINOP_FLAGS_ABBREV,
110   FUNCTION_INST_CAST_ABBREV,
111   FUNCTION_INST_RET_VOID_ABBREV,
112   FUNCTION_INST_RET_VAL_ABBREV,
113   FUNCTION_INST_UNREACHABLE_ABBREV,
114   FUNCTION_INST_GEP_ABBREV,
115 };
116 
117 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
118 /// file type.
119 class BitcodeWriterBase {
120 protected:
121   /// The stream created and owned by the client.
122   BitstreamWriter &Stream;
123 
124   StringTableBuilder &StrtabBuilder;
125 
126 public:
127   /// Constructs a BitcodeWriterBase object that writes to the provided
128   /// \p Stream.
129   BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
130       : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
131 
132 protected:
133   void writeBitcodeHeader();
134   void writeModuleVersion();
135 };
136 
137 void BitcodeWriterBase::writeModuleVersion() {
138   // VERSION: [version#]
139   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
140 }
141 
142 /// Base class to manage the module bitcode writing, currently subclassed for
143 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
144 class ModuleBitcodeWriterBase : public BitcodeWriterBase {
145 protected:
146   /// The Module to write to bitcode.
147   const Module &M;
148 
149   /// Enumerates ids for all values in the module.
150   ValueEnumerator VE;
151 
152   /// Optional per-module index to write for ThinLTO.
153   const ModuleSummaryIndex *Index;
154 
155   /// Map that holds the correspondence between GUIDs in the summary index,
156   /// that came from indirect call profiles, and a value id generated by this
157   /// class to use in the VST and summary block records.
158   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
159 
160   /// Tracks the last value id recorded in the GUIDToValueMap.
161   unsigned GlobalValueId;
162 
163   /// Saves the offset of the VSTOffset record that must eventually be
164   /// backpatched with the offset of the actual VST.
165   uint64_t VSTOffsetPlaceholder = 0;
166 
167 public:
168   /// Constructs a ModuleBitcodeWriterBase object for the given Module,
169   /// writing to the provided \p Buffer.
170   ModuleBitcodeWriterBase(const Module *M, StringTableBuilder &StrtabBuilder,
171                           BitstreamWriter &Stream,
172                           bool ShouldPreserveUseListOrder,
173                           const ModuleSummaryIndex *Index)
174       : BitcodeWriterBase(Stream, StrtabBuilder), M(*M),
175         VE(*M, ShouldPreserveUseListOrder), Index(Index) {
176     // Assign ValueIds to any callee values in the index that came from
177     // indirect call profiles and were recorded as a GUID not a Value*
178     // (which would have been assigned an ID by the ValueEnumerator).
179     // The starting ValueId is just after the number of values in the
180     // ValueEnumerator, so that they can be emitted in the VST.
181     GlobalValueId = VE.getValues().size();
182     if (!Index)
183       return;
184     for (const auto &GUIDSummaryLists : *Index)
185       // Examine all summaries for this GUID.
186       for (auto &Summary : GUIDSummaryLists.second.SummaryList)
187         if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
188           // For each call in the function summary, see if the call
189           // is to a GUID (which means it is for an indirect call,
190           // otherwise we would have a Value for it). If so, synthesize
191           // a value id.
192           for (auto &CallEdge : FS->calls())
193             if (!CallEdge.first.getValue())
194               assignValueId(CallEdge.first.getGUID());
195   }
196 
197 protected:
198   void writePerModuleGlobalValueSummary();
199 
200 private:
201   void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
202                                            GlobalValueSummary *Summary,
203                                            unsigned ValueID,
204                                            unsigned FSCallsAbbrev,
205                                            unsigned FSCallsProfileAbbrev,
206                                            const Function &F);
207   void writeModuleLevelReferences(const GlobalVariable &V,
208                                   SmallVector<uint64_t, 64> &NameVals,
209                                   unsigned FSModRefsAbbrev);
210 
211   void assignValueId(GlobalValue::GUID ValGUID) {
212     GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
213   }
214 
215   unsigned getValueId(GlobalValue::GUID ValGUID) {
216     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
217     // Expect that any GUID value had a value Id assigned by an
218     // earlier call to assignValueId.
219     assert(VMI != GUIDToValueIdMap.end() &&
220            "GUID does not have assigned value Id");
221     return VMI->second;
222   }
223 
224   // Helper to get the valueId for the type of value recorded in VI.
225   unsigned getValueId(ValueInfo VI) {
226     if (!VI.getValue())
227       return getValueId(VI.getGUID());
228     return VE.getValueID(VI.getValue());
229   }
230 
231   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
232 };
233 
234 /// Class to manage the bitcode writing for a module.
235 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
236   /// Pointer to the buffer allocated by caller for bitcode writing.
237   const SmallVectorImpl<char> &Buffer;
238 
239   /// True if a module hash record should be written.
240   bool GenerateHash;
241 
242   /// If non-null, when GenerateHash is true, the resulting hash is written
243   /// into ModHash.
244   ModuleHash *ModHash;
245 
246   SHA1 Hasher;
247 
248   /// The start bit of the identification block.
249   uint64_t BitcodeStartBit;
250 
251 public:
252   /// Constructs a ModuleBitcodeWriter object for the given Module,
253   /// writing to the provided \p Buffer.
254   ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer,
255                       StringTableBuilder &StrtabBuilder,
256                       BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
257                       const ModuleSummaryIndex *Index, bool GenerateHash,
258                       ModuleHash *ModHash = nullptr)
259       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
260                                 ShouldPreserveUseListOrder, Index),
261         Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
262         BitcodeStartBit(Stream.GetCurrentBitNo()) {}
263 
264   /// Emit the current module to the bitstream.
265   void write();
266 
267 private:
268   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
269 
270   size_t addToStrtab(StringRef Str);
271 
272   void writeAttributeGroupTable();
273   void writeAttributeTable();
274   void writeTypeTable();
275   void writeComdats();
276   void writeValueSymbolTableForwardDecl();
277   void writeModuleInfo();
278   void writeValueAsMetadata(const ValueAsMetadata *MD,
279                             SmallVectorImpl<uint64_t> &Record);
280   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
281                     unsigned Abbrev);
282   unsigned createDILocationAbbrev();
283   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
284                        unsigned &Abbrev);
285   unsigned createGenericDINodeAbbrev();
286   void writeGenericDINode(const GenericDINode *N,
287                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
288   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
289                        unsigned Abbrev);
290   void writeDIEnumerator(const DIEnumerator *N,
291                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
292   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
293                         unsigned Abbrev);
294   void writeDIDerivedType(const DIDerivedType *N,
295                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
296   void writeDICompositeType(const DICompositeType *N,
297                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
298   void writeDISubroutineType(const DISubroutineType *N,
299                              SmallVectorImpl<uint64_t> &Record,
300                              unsigned Abbrev);
301   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
302                    unsigned Abbrev);
303   void writeDICompileUnit(const DICompileUnit *N,
304                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
305   void writeDISubprogram(const DISubprogram *N,
306                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
307   void writeDILexicalBlock(const DILexicalBlock *N,
308                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
309   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
310                                SmallVectorImpl<uint64_t> &Record,
311                                unsigned Abbrev);
312   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
313                         unsigned Abbrev);
314   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
315                     unsigned Abbrev);
316   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
317                         unsigned Abbrev);
318   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
319                      unsigned Abbrev);
320   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
321                                     SmallVectorImpl<uint64_t> &Record,
322                                     unsigned Abbrev);
323   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
324                                      SmallVectorImpl<uint64_t> &Record,
325                                      unsigned Abbrev);
326   void writeDIGlobalVariable(const DIGlobalVariable *N,
327                              SmallVectorImpl<uint64_t> &Record,
328                              unsigned Abbrev);
329   void writeDILocalVariable(const DILocalVariable *N,
330                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
331   void writeDIExpression(const DIExpression *N,
332                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
333   void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
334                                        SmallVectorImpl<uint64_t> &Record,
335                                        unsigned Abbrev);
336   void writeDIObjCProperty(const DIObjCProperty *N,
337                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
338   void writeDIImportedEntity(const DIImportedEntity *N,
339                              SmallVectorImpl<uint64_t> &Record,
340                              unsigned Abbrev);
341   unsigned createNamedMetadataAbbrev();
342   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
343   unsigned createMetadataStringsAbbrev();
344   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
345                             SmallVectorImpl<uint64_t> &Record);
346   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
347                             SmallVectorImpl<uint64_t> &Record,
348                             std::vector<unsigned> *MDAbbrevs = nullptr,
349                             std::vector<uint64_t> *IndexPos = nullptr);
350   void writeModuleMetadata();
351   void writeFunctionMetadata(const Function &F);
352   void writeFunctionMetadataAttachment(const Function &F);
353   void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
354   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
355                                     const GlobalObject &GO);
356   void writeModuleMetadataKinds();
357   void writeOperandBundleTags();
358   void writeSyncScopeNames();
359   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
360   void writeModuleConstants();
361   bool pushValueAndType(const Value *V, unsigned InstID,
362                         SmallVectorImpl<unsigned> &Vals);
363   void writeOperandBundles(ImmutableCallSite CS, unsigned InstID);
364   void pushValue(const Value *V, unsigned InstID,
365                  SmallVectorImpl<unsigned> &Vals);
366   void pushValueSigned(const Value *V, unsigned InstID,
367                        SmallVectorImpl<uint64_t> &Vals);
368   void writeInstruction(const Instruction &I, unsigned InstID,
369                         SmallVectorImpl<unsigned> &Vals);
370   void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
371   void writeGlobalValueSymbolTable(
372       DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
373   void writeUseList(UseListOrder &&Order);
374   void writeUseListBlock(const Function *F);
375   void
376   writeFunction(const Function &F,
377                 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
378   void writeBlockInfo();
379   void writeModuleHash(size_t BlockStartPos);
380 
381   unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
382     return unsigned(SSID);
383   }
384 };
385 
386 /// Class to manage the bitcode writing for a combined index.
387 class IndexBitcodeWriter : public BitcodeWriterBase {
388   /// The combined index to write to bitcode.
389   const ModuleSummaryIndex &Index;
390 
391   /// When writing a subset of the index for distributed backends, client
392   /// provides a map of modules to the corresponding GUIDs/summaries to write.
393   const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
394 
395   /// Map that holds the correspondence between the GUID used in the combined
396   /// index and a value id generated by this class to use in references.
397   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
398 
399   /// Tracks the last value id recorded in the GUIDToValueMap.
400   unsigned GlobalValueId = 0;
401 
402 public:
403   /// Constructs a IndexBitcodeWriter object for the given combined index,
404   /// writing to the provided \p Buffer. When writing a subset of the index
405   /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
406   IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
407                      const ModuleSummaryIndex &Index,
408                      const std::map<std::string, GVSummaryMapTy>
409                          *ModuleToSummariesForIndex = nullptr)
410       : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
411         ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
412     // Assign unique value ids to all summaries to be written, for use
413     // in writing out the call graph edges. Save the mapping from GUID
414     // to the new global value id to use when writing those edges, which
415     // are currently saved in the index in terms of GUID.
416     forEachSummary([&](GVInfo I) {
417       GUIDToValueIdMap[I.first] = ++GlobalValueId;
418     });
419   }
420 
421   /// The below iterator returns the GUID and associated summary.
422   using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
423 
424   /// Calls the callback for each value GUID and summary to be written to
425   /// bitcode. This hides the details of whether they are being pulled from the
426   /// entire index or just those in a provided ModuleToSummariesForIndex map.
427   template<typename Functor>
428   void forEachSummary(Functor Callback) {
429     if (ModuleToSummariesForIndex) {
430       for (auto &M : *ModuleToSummariesForIndex)
431         for (auto &Summary : M.second)
432           Callback(Summary);
433     } else {
434       for (auto &Summaries : Index)
435         for (auto &Summary : Summaries.second.SummaryList)
436           Callback({Summaries.first, Summary.get()});
437     }
438   }
439 
440   /// Calls the callback for each entry in the modulePaths StringMap that
441   /// should be written to the module path string table. This hides the details
442   /// of whether they are being pulled from the entire index or just those in a
443   /// provided ModuleToSummariesForIndex map.
444   template <typename Functor> void forEachModule(Functor Callback) {
445     if (ModuleToSummariesForIndex) {
446       for (const auto &M : *ModuleToSummariesForIndex) {
447         const auto &MPI = Index.modulePaths().find(M.first);
448         if (MPI == Index.modulePaths().end()) {
449           // This should only happen if the bitcode file was empty, in which
450           // case we shouldn't be importing (the ModuleToSummariesForIndex
451           // would only include the module we are writing and index for).
452           assert(ModuleToSummariesForIndex->size() == 1);
453           continue;
454         }
455         Callback(*MPI);
456       }
457     } else {
458       for (const auto &MPSE : Index.modulePaths())
459         Callback(MPSE);
460     }
461   }
462 
463   /// Main entry point for writing a combined index to bitcode.
464   void write();
465 
466 private:
467   void writeModStrings();
468   void writeCombinedGlobalValueSummary();
469 
470   Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
471     auto VMI = GUIDToValueIdMap.find(ValGUID);
472     if (VMI == GUIDToValueIdMap.end())
473       return None;
474     return VMI->second;
475   }
476 
477   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
478 };
479 
480 } // end anonymous namespace
481 
482 static unsigned getEncodedCastOpcode(unsigned Opcode) {
483   switch (Opcode) {
484   default: llvm_unreachable("Unknown cast instruction!");
485   case Instruction::Trunc   : return bitc::CAST_TRUNC;
486   case Instruction::ZExt    : return bitc::CAST_ZEXT;
487   case Instruction::SExt    : return bitc::CAST_SEXT;
488   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
489   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
490   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
491   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
492   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
493   case Instruction::FPExt   : return bitc::CAST_FPEXT;
494   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
495   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
496   case Instruction::BitCast : return bitc::CAST_BITCAST;
497   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
498   }
499 }
500 
501 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
502   switch (Opcode) {
503   default: llvm_unreachable("Unknown binary instruction!");
504   case Instruction::Add:
505   case Instruction::FAdd: return bitc::BINOP_ADD;
506   case Instruction::Sub:
507   case Instruction::FSub: return bitc::BINOP_SUB;
508   case Instruction::Mul:
509   case Instruction::FMul: return bitc::BINOP_MUL;
510   case Instruction::UDiv: return bitc::BINOP_UDIV;
511   case Instruction::FDiv:
512   case Instruction::SDiv: return bitc::BINOP_SDIV;
513   case Instruction::URem: return bitc::BINOP_UREM;
514   case Instruction::FRem:
515   case Instruction::SRem: return bitc::BINOP_SREM;
516   case Instruction::Shl:  return bitc::BINOP_SHL;
517   case Instruction::LShr: return bitc::BINOP_LSHR;
518   case Instruction::AShr: return bitc::BINOP_ASHR;
519   case Instruction::And:  return bitc::BINOP_AND;
520   case Instruction::Or:   return bitc::BINOP_OR;
521   case Instruction::Xor:  return bitc::BINOP_XOR;
522   }
523 }
524 
525 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
526   switch (Op) {
527   default: llvm_unreachable("Unknown RMW operation!");
528   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
529   case AtomicRMWInst::Add: return bitc::RMW_ADD;
530   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
531   case AtomicRMWInst::And: return bitc::RMW_AND;
532   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
533   case AtomicRMWInst::Or: return bitc::RMW_OR;
534   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
535   case AtomicRMWInst::Max: return bitc::RMW_MAX;
536   case AtomicRMWInst::Min: return bitc::RMW_MIN;
537   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
538   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
539   }
540 }
541 
542 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
543   switch (Ordering) {
544   case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
545   case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
546   case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
547   case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
548   case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
549   case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
550   case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
551   }
552   llvm_unreachable("Invalid ordering");
553 }
554 
555 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
556                               StringRef Str, unsigned AbbrevToUse) {
557   SmallVector<unsigned, 64> Vals;
558 
559   // Code: [strchar x N]
560   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
561     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
562       AbbrevToUse = 0;
563     Vals.push_back(Str[i]);
564   }
565 
566   // Emit the finished record.
567   Stream.EmitRecord(Code, Vals, AbbrevToUse);
568 }
569 
570 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
571   switch (Kind) {
572   case Attribute::Alignment:
573     return bitc::ATTR_KIND_ALIGNMENT;
574   case Attribute::AllocSize:
575     return bitc::ATTR_KIND_ALLOC_SIZE;
576   case Attribute::AlwaysInline:
577     return bitc::ATTR_KIND_ALWAYS_INLINE;
578   case Attribute::ArgMemOnly:
579     return bitc::ATTR_KIND_ARGMEMONLY;
580   case Attribute::Builtin:
581     return bitc::ATTR_KIND_BUILTIN;
582   case Attribute::ByVal:
583     return bitc::ATTR_KIND_BY_VAL;
584   case Attribute::Convergent:
585     return bitc::ATTR_KIND_CONVERGENT;
586   case Attribute::InAlloca:
587     return bitc::ATTR_KIND_IN_ALLOCA;
588   case Attribute::Cold:
589     return bitc::ATTR_KIND_COLD;
590   case Attribute::InaccessibleMemOnly:
591     return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
592   case Attribute::InaccessibleMemOrArgMemOnly:
593     return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
594   case Attribute::InlineHint:
595     return bitc::ATTR_KIND_INLINE_HINT;
596   case Attribute::InReg:
597     return bitc::ATTR_KIND_IN_REG;
598   case Attribute::JumpTable:
599     return bitc::ATTR_KIND_JUMP_TABLE;
600   case Attribute::MinSize:
601     return bitc::ATTR_KIND_MIN_SIZE;
602   case Attribute::Naked:
603     return bitc::ATTR_KIND_NAKED;
604   case Attribute::Nest:
605     return bitc::ATTR_KIND_NEST;
606   case Attribute::NoAlias:
607     return bitc::ATTR_KIND_NO_ALIAS;
608   case Attribute::NoBuiltin:
609     return bitc::ATTR_KIND_NO_BUILTIN;
610   case Attribute::NoCapture:
611     return bitc::ATTR_KIND_NO_CAPTURE;
612   case Attribute::NoDuplicate:
613     return bitc::ATTR_KIND_NO_DUPLICATE;
614   case Attribute::NoImplicitFloat:
615     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
616   case Attribute::NoInline:
617     return bitc::ATTR_KIND_NO_INLINE;
618   case Attribute::NoRecurse:
619     return bitc::ATTR_KIND_NO_RECURSE;
620   case Attribute::NonLazyBind:
621     return bitc::ATTR_KIND_NON_LAZY_BIND;
622   case Attribute::NonNull:
623     return bitc::ATTR_KIND_NON_NULL;
624   case Attribute::Dereferenceable:
625     return bitc::ATTR_KIND_DEREFERENCEABLE;
626   case Attribute::DereferenceableOrNull:
627     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
628   case Attribute::NoRedZone:
629     return bitc::ATTR_KIND_NO_RED_ZONE;
630   case Attribute::NoReturn:
631     return bitc::ATTR_KIND_NO_RETURN;
632   case Attribute::NoUnwind:
633     return bitc::ATTR_KIND_NO_UNWIND;
634   case Attribute::OptimizeForSize:
635     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
636   case Attribute::OptimizeNone:
637     return bitc::ATTR_KIND_OPTIMIZE_NONE;
638   case Attribute::ReadNone:
639     return bitc::ATTR_KIND_READ_NONE;
640   case Attribute::ReadOnly:
641     return bitc::ATTR_KIND_READ_ONLY;
642   case Attribute::Returned:
643     return bitc::ATTR_KIND_RETURNED;
644   case Attribute::ReturnsTwice:
645     return bitc::ATTR_KIND_RETURNS_TWICE;
646   case Attribute::SExt:
647     return bitc::ATTR_KIND_S_EXT;
648   case Attribute::Speculatable:
649     return bitc::ATTR_KIND_SPECULATABLE;
650   case Attribute::StackAlignment:
651     return bitc::ATTR_KIND_STACK_ALIGNMENT;
652   case Attribute::StackProtect:
653     return bitc::ATTR_KIND_STACK_PROTECT;
654   case Attribute::StackProtectReq:
655     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
656   case Attribute::StackProtectStrong:
657     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
658   case Attribute::SafeStack:
659     return bitc::ATTR_KIND_SAFESTACK;
660   case Attribute::StrictFP:
661     return bitc::ATTR_KIND_STRICT_FP;
662   case Attribute::StructRet:
663     return bitc::ATTR_KIND_STRUCT_RET;
664   case Attribute::SanitizeAddress:
665     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
666   case Attribute::SanitizeThread:
667     return bitc::ATTR_KIND_SANITIZE_THREAD;
668   case Attribute::SanitizeMemory:
669     return bitc::ATTR_KIND_SANITIZE_MEMORY;
670   case Attribute::SwiftError:
671     return bitc::ATTR_KIND_SWIFT_ERROR;
672   case Attribute::SwiftSelf:
673     return bitc::ATTR_KIND_SWIFT_SELF;
674   case Attribute::UWTable:
675     return bitc::ATTR_KIND_UW_TABLE;
676   case Attribute::WriteOnly:
677     return bitc::ATTR_KIND_WRITEONLY;
678   case Attribute::ZExt:
679     return bitc::ATTR_KIND_Z_EXT;
680   case Attribute::EndAttrKinds:
681     llvm_unreachable("Can not encode end-attribute kinds marker.");
682   case Attribute::None:
683     llvm_unreachable("Can not encode none-attribute.");
684   }
685 
686   llvm_unreachable("Trying to encode unknown attribute");
687 }
688 
689 void ModuleBitcodeWriter::writeAttributeGroupTable() {
690   const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
691       VE.getAttributeGroups();
692   if (AttrGrps.empty()) return;
693 
694   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
695 
696   SmallVector<uint64_t, 64> Record;
697   for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
698     unsigned AttrListIndex = Pair.first;
699     AttributeSet AS = Pair.second;
700     Record.push_back(VE.getAttributeGroupID(Pair));
701     Record.push_back(AttrListIndex);
702 
703     for (Attribute Attr : AS) {
704       if (Attr.isEnumAttribute()) {
705         Record.push_back(0);
706         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
707       } else if (Attr.isIntAttribute()) {
708         Record.push_back(1);
709         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
710         Record.push_back(Attr.getValueAsInt());
711       } else {
712         StringRef Kind = Attr.getKindAsString();
713         StringRef Val = Attr.getValueAsString();
714 
715         Record.push_back(Val.empty() ? 3 : 4);
716         Record.append(Kind.begin(), Kind.end());
717         Record.push_back(0);
718         if (!Val.empty()) {
719           Record.append(Val.begin(), Val.end());
720           Record.push_back(0);
721         }
722       }
723     }
724 
725     Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
726     Record.clear();
727   }
728 
729   Stream.ExitBlock();
730 }
731 
732 void ModuleBitcodeWriter::writeAttributeTable() {
733   const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
734   if (Attrs.empty()) return;
735 
736   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
737 
738   SmallVector<uint64_t, 64> Record;
739   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
740     AttributeList AL = Attrs[i];
741     for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) {
742       AttributeSet AS = AL.getAttributes(i);
743       if (AS.hasAttributes())
744         Record.push_back(VE.getAttributeGroupID({i, AS}));
745     }
746 
747     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
748     Record.clear();
749   }
750 
751   Stream.ExitBlock();
752 }
753 
754 /// WriteTypeTable - Write out the type table for a module.
755 void ModuleBitcodeWriter::writeTypeTable() {
756   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
757 
758   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
759   SmallVector<uint64_t, 64> TypeVals;
760 
761   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
762 
763   // Abbrev for TYPE_CODE_POINTER.
764   auto Abbv = std::make_shared<BitCodeAbbrev>();
765   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
766   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
767   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
768   unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
769 
770   // Abbrev for TYPE_CODE_FUNCTION.
771   Abbv = std::make_shared<BitCodeAbbrev>();
772   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
773   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
774   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
775   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
776   unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
777 
778   // Abbrev for TYPE_CODE_STRUCT_ANON.
779   Abbv = std::make_shared<BitCodeAbbrev>();
780   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
781   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
782   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
783   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
784   unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
785 
786   // Abbrev for TYPE_CODE_STRUCT_NAME.
787   Abbv = std::make_shared<BitCodeAbbrev>();
788   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
789   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
790   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
791   unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
792 
793   // Abbrev for TYPE_CODE_STRUCT_NAMED.
794   Abbv = std::make_shared<BitCodeAbbrev>();
795   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
796   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
797   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
798   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
799   unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
800 
801   // Abbrev for TYPE_CODE_ARRAY.
802   Abbv = std::make_shared<BitCodeAbbrev>();
803   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
804   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
805   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
806   unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
807 
808   // Emit an entry count so the reader can reserve space.
809   TypeVals.push_back(TypeList.size());
810   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
811   TypeVals.clear();
812 
813   // Loop over all of the types, emitting each in turn.
814   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
815     Type *T = TypeList[i];
816     int AbbrevToUse = 0;
817     unsigned Code = 0;
818 
819     switch (T->getTypeID()) {
820     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
821     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
822     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
823     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
824     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
825     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
826     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
827     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
828     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
829     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
830     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
831     case Type::IntegerTyID:
832       // INTEGER: [width]
833       Code = bitc::TYPE_CODE_INTEGER;
834       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
835       break;
836     case Type::PointerTyID: {
837       PointerType *PTy = cast<PointerType>(T);
838       // POINTER: [pointee type, address space]
839       Code = bitc::TYPE_CODE_POINTER;
840       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
841       unsigned AddressSpace = PTy->getAddressSpace();
842       TypeVals.push_back(AddressSpace);
843       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
844       break;
845     }
846     case Type::FunctionTyID: {
847       FunctionType *FT = cast<FunctionType>(T);
848       // FUNCTION: [isvararg, retty, paramty x N]
849       Code = bitc::TYPE_CODE_FUNCTION;
850       TypeVals.push_back(FT->isVarArg());
851       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
852       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
853         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
854       AbbrevToUse = FunctionAbbrev;
855       break;
856     }
857     case Type::StructTyID: {
858       StructType *ST = cast<StructType>(T);
859       // STRUCT: [ispacked, eltty x N]
860       TypeVals.push_back(ST->isPacked());
861       // Output all of the element types.
862       for (StructType::element_iterator I = ST->element_begin(),
863            E = ST->element_end(); I != E; ++I)
864         TypeVals.push_back(VE.getTypeID(*I));
865 
866       if (ST->isLiteral()) {
867         Code = bitc::TYPE_CODE_STRUCT_ANON;
868         AbbrevToUse = StructAnonAbbrev;
869       } else {
870         if (ST->isOpaque()) {
871           Code = bitc::TYPE_CODE_OPAQUE;
872         } else {
873           Code = bitc::TYPE_CODE_STRUCT_NAMED;
874           AbbrevToUse = StructNamedAbbrev;
875         }
876 
877         // Emit the name if it is present.
878         if (!ST->getName().empty())
879           writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
880                             StructNameAbbrev);
881       }
882       break;
883     }
884     case Type::ArrayTyID: {
885       ArrayType *AT = cast<ArrayType>(T);
886       // ARRAY: [numelts, eltty]
887       Code = bitc::TYPE_CODE_ARRAY;
888       TypeVals.push_back(AT->getNumElements());
889       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
890       AbbrevToUse = ArrayAbbrev;
891       break;
892     }
893     case Type::VectorTyID: {
894       VectorType *VT = cast<VectorType>(T);
895       // VECTOR [numelts, eltty]
896       Code = bitc::TYPE_CODE_VECTOR;
897       TypeVals.push_back(VT->getNumElements());
898       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
899       break;
900     }
901     }
902 
903     // Emit the finished record.
904     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
905     TypeVals.clear();
906   }
907 
908   Stream.ExitBlock();
909 }
910 
911 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
912   switch (Linkage) {
913   case GlobalValue::ExternalLinkage:
914     return 0;
915   case GlobalValue::WeakAnyLinkage:
916     return 16;
917   case GlobalValue::AppendingLinkage:
918     return 2;
919   case GlobalValue::InternalLinkage:
920     return 3;
921   case GlobalValue::LinkOnceAnyLinkage:
922     return 18;
923   case GlobalValue::ExternalWeakLinkage:
924     return 7;
925   case GlobalValue::CommonLinkage:
926     return 8;
927   case GlobalValue::PrivateLinkage:
928     return 9;
929   case GlobalValue::WeakODRLinkage:
930     return 17;
931   case GlobalValue::LinkOnceODRLinkage:
932     return 19;
933   case GlobalValue::AvailableExternallyLinkage:
934     return 12;
935   }
936   llvm_unreachable("Invalid linkage");
937 }
938 
939 static unsigned getEncodedLinkage(const GlobalValue &GV) {
940   return getEncodedLinkage(GV.getLinkage());
941 }
942 
943 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
944   uint64_t RawFlags = 0;
945   RawFlags |= Flags.ReadNone;
946   RawFlags |= (Flags.ReadOnly << 1);
947   RawFlags |= (Flags.NoRecurse << 2);
948   RawFlags |= (Flags.ReturnDoesNotAlias << 3);
949   return RawFlags;
950 }
951 
952 // Decode the flags for GlobalValue in the summary
953 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
954   uint64_t RawFlags = 0;
955 
956   RawFlags |= Flags.NotEligibleToImport; // bool
957   RawFlags |= (Flags.Live << 1);
958   // Linkage don't need to be remapped at that time for the summary. Any future
959   // change to the getEncodedLinkage() function will need to be taken into
960   // account here as well.
961   RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
962 
963   return RawFlags;
964 }
965 
966 static unsigned getEncodedVisibility(const GlobalValue &GV) {
967   switch (GV.getVisibility()) {
968   case GlobalValue::DefaultVisibility:   return 0;
969   case GlobalValue::HiddenVisibility:    return 1;
970   case GlobalValue::ProtectedVisibility: return 2;
971   }
972   llvm_unreachable("Invalid visibility");
973 }
974 
975 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
976   switch (GV.getDLLStorageClass()) {
977   case GlobalValue::DefaultStorageClass:   return 0;
978   case GlobalValue::DLLImportStorageClass: return 1;
979   case GlobalValue::DLLExportStorageClass: return 2;
980   }
981   llvm_unreachable("Invalid DLL storage class");
982 }
983 
984 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
985   switch (GV.getThreadLocalMode()) {
986     case GlobalVariable::NotThreadLocal:         return 0;
987     case GlobalVariable::GeneralDynamicTLSModel: return 1;
988     case GlobalVariable::LocalDynamicTLSModel:   return 2;
989     case GlobalVariable::InitialExecTLSModel:    return 3;
990     case GlobalVariable::LocalExecTLSModel:      return 4;
991   }
992   llvm_unreachable("Invalid TLS model");
993 }
994 
995 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
996   switch (C.getSelectionKind()) {
997   case Comdat::Any:
998     return bitc::COMDAT_SELECTION_KIND_ANY;
999   case Comdat::ExactMatch:
1000     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1001   case Comdat::Largest:
1002     return bitc::COMDAT_SELECTION_KIND_LARGEST;
1003   case Comdat::NoDuplicates:
1004     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1005   case Comdat::SameSize:
1006     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1007   }
1008   llvm_unreachable("Invalid selection kind");
1009 }
1010 
1011 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1012   switch (GV.getUnnamedAddr()) {
1013   case GlobalValue::UnnamedAddr::None:   return 0;
1014   case GlobalValue::UnnamedAddr::Local:  return 2;
1015   case GlobalValue::UnnamedAddr::Global: return 1;
1016   }
1017   llvm_unreachable("Invalid unnamed_addr");
1018 }
1019 
1020 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1021   if (GenerateHash)
1022     Hasher.update(Str);
1023   return StrtabBuilder.add(Str);
1024 }
1025 
1026 void ModuleBitcodeWriter::writeComdats() {
1027   SmallVector<unsigned, 64> Vals;
1028   for (const Comdat *C : VE.getComdats()) {
1029     // COMDAT: [strtab offset, strtab size, selection_kind]
1030     Vals.push_back(addToStrtab(C->getName()));
1031     Vals.push_back(C->getName().size());
1032     Vals.push_back(getEncodedComdatSelectionKind(*C));
1033     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1034     Vals.clear();
1035   }
1036 }
1037 
1038 /// Write a record that will eventually hold the word offset of the
1039 /// module-level VST. For now the offset is 0, which will be backpatched
1040 /// after the real VST is written. Saves the bit offset to backpatch.
1041 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1042   // Write a placeholder value in for the offset of the real VST,
1043   // which is written after the function blocks so that it can include
1044   // the offset of each function. The placeholder offset will be
1045   // updated when the real VST is written.
1046   auto Abbv = std::make_shared<BitCodeAbbrev>();
1047   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1048   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1049   // hold the real VST offset. Must use fixed instead of VBR as we don't
1050   // know how many VBR chunks to reserve ahead of time.
1051   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1052   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1053 
1054   // Emit the placeholder
1055   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1056   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1057 
1058   // Compute and save the bit offset to the placeholder, which will be
1059   // patched when the real VST is written. We can simply subtract the 32-bit
1060   // fixed size from the current bit number to get the location to backpatch.
1061   VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1062 }
1063 
1064 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1065 
1066 /// Determine the encoding to use for the given string name and length.
1067 static StringEncoding getStringEncoding(StringRef Str) {
1068   bool isChar6 = true;
1069   for (char C : Str) {
1070     if (isChar6)
1071       isChar6 = BitCodeAbbrevOp::isChar6(C);
1072     if ((unsigned char)C & 128)
1073       // don't bother scanning the rest.
1074       return SE_Fixed8;
1075   }
1076   if (isChar6)
1077     return SE_Char6;
1078   return SE_Fixed7;
1079 }
1080 
1081 /// Emit top-level description of module, including target triple, inline asm,
1082 /// descriptors for global variables, and function prototype info.
1083 /// Returns the bit offset to backpatch with the location of the real VST.
1084 void ModuleBitcodeWriter::writeModuleInfo() {
1085   // Emit various pieces of data attached to a module.
1086   if (!M.getTargetTriple().empty())
1087     writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1088                       0 /*TODO*/);
1089   const std::string &DL = M.getDataLayoutStr();
1090   if (!DL.empty())
1091     writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1092   if (!M.getModuleInlineAsm().empty())
1093     writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1094                       0 /*TODO*/);
1095 
1096   // Emit information about sections and GC, computing how many there are. Also
1097   // compute the maximum alignment value.
1098   std::map<std::string, unsigned> SectionMap;
1099   std::map<std::string, unsigned> GCMap;
1100   unsigned MaxAlignment = 0;
1101   unsigned MaxGlobalType = 0;
1102   for (const GlobalValue &GV : M.globals()) {
1103     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
1104     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1105     if (GV.hasSection()) {
1106       // Give section names unique ID's.
1107       unsigned &Entry = SectionMap[GV.getSection()];
1108       if (!Entry) {
1109         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1110                           0 /*TODO*/);
1111         Entry = SectionMap.size();
1112       }
1113     }
1114   }
1115   for (const Function &F : M) {
1116     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
1117     if (F.hasSection()) {
1118       // Give section names unique ID's.
1119       unsigned &Entry = SectionMap[F.getSection()];
1120       if (!Entry) {
1121         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1122                           0 /*TODO*/);
1123         Entry = SectionMap.size();
1124       }
1125     }
1126     if (F.hasGC()) {
1127       // Same for GC names.
1128       unsigned &Entry = GCMap[F.getGC()];
1129       if (!Entry) {
1130         writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1131                           0 /*TODO*/);
1132         Entry = GCMap.size();
1133       }
1134     }
1135   }
1136 
1137   // Emit abbrev for globals, now that we know # sections and max alignment.
1138   unsigned SimpleGVarAbbrev = 0;
1139   if (!M.global_empty()) {
1140     // Add an abbrev for common globals with no visibility or thread localness.
1141     auto Abbv = std::make_shared<BitCodeAbbrev>();
1142     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1143     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1144     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1145     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1146                               Log2_32_Ceil(MaxGlobalType+1)));
1147     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1148                                                            //| explicitType << 1
1149                                                            //| constant
1150     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1151     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1152     if (MaxAlignment == 0)                                 // Alignment.
1153       Abbv->Add(BitCodeAbbrevOp(0));
1154     else {
1155       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
1156       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1157                                Log2_32_Ceil(MaxEncAlignment+1)));
1158     }
1159     if (SectionMap.empty())                                    // Section.
1160       Abbv->Add(BitCodeAbbrevOp(0));
1161     else
1162       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1163                                Log2_32_Ceil(SectionMap.size()+1)));
1164     // Don't bother emitting vis + thread local.
1165     SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1166   }
1167 
1168   SmallVector<unsigned, 64> Vals;
1169   // Emit the module's source file name.
1170   {
1171     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1172     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1173     if (Bits == SE_Char6)
1174       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1175     else if (Bits == SE_Fixed7)
1176       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1177 
1178     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1179     auto Abbv = std::make_shared<BitCodeAbbrev>();
1180     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1181     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1182     Abbv->Add(AbbrevOpToUse);
1183     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1184 
1185     for (const auto P : M.getSourceFileName())
1186       Vals.push_back((unsigned char)P);
1187 
1188     // Emit the finished record.
1189     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1190     Vals.clear();
1191   }
1192 
1193   // Emit the global variable information.
1194   for (const GlobalVariable &GV : M.globals()) {
1195     unsigned AbbrevToUse = 0;
1196 
1197     // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1198     //             linkage, alignment, section, visibility, threadlocal,
1199     //             unnamed_addr, externally_initialized, dllstorageclass,
1200     //             comdat, attributes]
1201     Vals.push_back(addToStrtab(GV.getName()));
1202     Vals.push_back(GV.getName().size());
1203     Vals.push_back(VE.getTypeID(GV.getValueType()));
1204     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1205     Vals.push_back(GV.isDeclaration() ? 0 :
1206                    (VE.getValueID(GV.getInitializer()) + 1));
1207     Vals.push_back(getEncodedLinkage(GV));
1208     Vals.push_back(Log2_32(GV.getAlignment())+1);
1209     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
1210     if (GV.isThreadLocal() ||
1211         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1212         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1213         GV.isExternallyInitialized() ||
1214         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1215         GV.hasComdat() ||
1216         GV.hasAttributes()) {
1217       Vals.push_back(getEncodedVisibility(GV));
1218       Vals.push_back(getEncodedThreadLocalMode(GV));
1219       Vals.push_back(getEncodedUnnamedAddr(GV));
1220       Vals.push_back(GV.isExternallyInitialized());
1221       Vals.push_back(getEncodedDLLStorageClass(GV));
1222       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1223 
1224       auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1225       Vals.push_back(VE.getAttributeListID(AL));
1226     } else {
1227       AbbrevToUse = SimpleGVarAbbrev;
1228     }
1229 
1230     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1231     Vals.clear();
1232   }
1233 
1234   // Emit the function proto information.
1235   for (const Function &F : M) {
1236     // FUNCTION:  [strtab offset, strtab size, type, callingconv, isproto,
1237     //             linkage, paramattrs, alignment, section, visibility, gc,
1238     //             unnamed_addr, prologuedata, dllstorageclass, comdat,
1239     //             prefixdata, personalityfn]
1240     Vals.push_back(addToStrtab(F.getName()));
1241     Vals.push_back(F.getName().size());
1242     Vals.push_back(VE.getTypeID(F.getFunctionType()));
1243     Vals.push_back(F.getCallingConv());
1244     Vals.push_back(F.isDeclaration());
1245     Vals.push_back(getEncodedLinkage(F));
1246     Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1247     Vals.push_back(Log2_32(F.getAlignment())+1);
1248     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
1249     Vals.push_back(getEncodedVisibility(F));
1250     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1251     Vals.push_back(getEncodedUnnamedAddr(F));
1252     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1253                                        : 0);
1254     Vals.push_back(getEncodedDLLStorageClass(F));
1255     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1256     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1257                                      : 0);
1258     Vals.push_back(
1259         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1260 
1261     unsigned AbbrevToUse = 0;
1262     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1263     Vals.clear();
1264   }
1265 
1266   // Emit the alias information.
1267   for (const GlobalAlias &A : M.aliases()) {
1268     // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1269     //         visibility, dllstorageclass, threadlocal, unnamed_addr]
1270     Vals.push_back(addToStrtab(A.getName()));
1271     Vals.push_back(A.getName().size());
1272     Vals.push_back(VE.getTypeID(A.getValueType()));
1273     Vals.push_back(A.getType()->getAddressSpace());
1274     Vals.push_back(VE.getValueID(A.getAliasee()));
1275     Vals.push_back(getEncodedLinkage(A));
1276     Vals.push_back(getEncodedVisibility(A));
1277     Vals.push_back(getEncodedDLLStorageClass(A));
1278     Vals.push_back(getEncodedThreadLocalMode(A));
1279     Vals.push_back(getEncodedUnnamedAddr(A));
1280     unsigned AbbrevToUse = 0;
1281     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1282     Vals.clear();
1283   }
1284 
1285   // Emit the ifunc information.
1286   for (const GlobalIFunc &I : M.ifuncs()) {
1287     // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1288     //         val#, linkage, visibility]
1289     Vals.push_back(addToStrtab(I.getName()));
1290     Vals.push_back(I.getName().size());
1291     Vals.push_back(VE.getTypeID(I.getValueType()));
1292     Vals.push_back(I.getType()->getAddressSpace());
1293     Vals.push_back(VE.getValueID(I.getResolver()));
1294     Vals.push_back(getEncodedLinkage(I));
1295     Vals.push_back(getEncodedVisibility(I));
1296     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1297     Vals.clear();
1298   }
1299 
1300   writeValueSymbolTableForwardDecl();
1301 }
1302 
1303 static uint64_t getOptimizationFlags(const Value *V) {
1304   uint64_t Flags = 0;
1305 
1306   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1307     if (OBO->hasNoSignedWrap())
1308       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1309     if (OBO->hasNoUnsignedWrap())
1310       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1311   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1312     if (PEO->isExact())
1313       Flags |= 1 << bitc::PEO_EXACT;
1314   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1315     if (FPMO->hasUnsafeAlgebra())
1316       Flags |= FastMathFlags::UnsafeAlgebra;
1317     if (FPMO->hasNoNaNs())
1318       Flags |= FastMathFlags::NoNaNs;
1319     if (FPMO->hasNoInfs())
1320       Flags |= FastMathFlags::NoInfs;
1321     if (FPMO->hasNoSignedZeros())
1322       Flags |= FastMathFlags::NoSignedZeros;
1323     if (FPMO->hasAllowReciprocal())
1324       Flags |= FastMathFlags::AllowReciprocal;
1325     if (FPMO->hasAllowContract())
1326       Flags |= FastMathFlags::AllowContract;
1327   }
1328 
1329   return Flags;
1330 }
1331 
1332 void ModuleBitcodeWriter::writeValueAsMetadata(
1333     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1334   // Mimic an MDNode with a value as one operand.
1335   Value *V = MD->getValue();
1336   Record.push_back(VE.getTypeID(V->getType()));
1337   Record.push_back(VE.getValueID(V));
1338   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1339   Record.clear();
1340 }
1341 
1342 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1343                                        SmallVectorImpl<uint64_t> &Record,
1344                                        unsigned Abbrev) {
1345   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1346     Metadata *MD = N->getOperand(i);
1347     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1348            "Unexpected function-local metadata");
1349     Record.push_back(VE.getMetadataOrNullID(MD));
1350   }
1351   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1352                                     : bitc::METADATA_NODE,
1353                     Record, Abbrev);
1354   Record.clear();
1355 }
1356 
1357 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1358   // Assume the column is usually under 128, and always output the inlined-at
1359   // location (it's never more expensive than building an array size 1).
1360   auto Abbv = std::make_shared<BitCodeAbbrev>();
1361   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1362   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1363   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1364   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1365   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1366   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1367   return Stream.EmitAbbrev(std::move(Abbv));
1368 }
1369 
1370 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1371                                           SmallVectorImpl<uint64_t> &Record,
1372                                           unsigned &Abbrev) {
1373   if (!Abbrev)
1374     Abbrev = createDILocationAbbrev();
1375 
1376   Record.push_back(N->isDistinct());
1377   Record.push_back(N->getLine());
1378   Record.push_back(N->getColumn());
1379   Record.push_back(VE.getMetadataID(N->getScope()));
1380   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1381 
1382   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1383   Record.clear();
1384 }
1385 
1386 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1387   // Assume the column is usually under 128, and always output the inlined-at
1388   // location (it's never more expensive than building an array size 1).
1389   auto Abbv = std::make_shared<BitCodeAbbrev>();
1390   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1391   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1392   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1393   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1394   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1395   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1396   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1397   return Stream.EmitAbbrev(std::move(Abbv));
1398 }
1399 
1400 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1401                                              SmallVectorImpl<uint64_t> &Record,
1402                                              unsigned &Abbrev) {
1403   if (!Abbrev)
1404     Abbrev = createGenericDINodeAbbrev();
1405 
1406   Record.push_back(N->isDistinct());
1407   Record.push_back(N->getTag());
1408   Record.push_back(0); // Per-tag version field; unused for now.
1409 
1410   for (auto &I : N->operands())
1411     Record.push_back(VE.getMetadataOrNullID(I));
1412 
1413   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1414   Record.clear();
1415 }
1416 
1417 static uint64_t rotateSign(int64_t I) {
1418   uint64_t U = I;
1419   return I < 0 ? ~(U << 1) : U << 1;
1420 }
1421 
1422 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1423                                           SmallVectorImpl<uint64_t> &Record,
1424                                           unsigned Abbrev) {
1425   Record.push_back(N->isDistinct());
1426   Record.push_back(N->getCount());
1427   Record.push_back(rotateSign(N->getLowerBound()));
1428 
1429   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1430   Record.clear();
1431 }
1432 
1433 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1434                                             SmallVectorImpl<uint64_t> &Record,
1435                                             unsigned Abbrev) {
1436   Record.push_back(N->isDistinct());
1437   Record.push_back(rotateSign(N->getValue()));
1438   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1439 
1440   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1441   Record.clear();
1442 }
1443 
1444 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1445                                            SmallVectorImpl<uint64_t> &Record,
1446                                            unsigned Abbrev) {
1447   Record.push_back(N->isDistinct());
1448   Record.push_back(N->getTag());
1449   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1450   Record.push_back(N->getSizeInBits());
1451   Record.push_back(N->getAlignInBits());
1452   Record.push_back(N->getEncoding());
1453 
1454   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1455   Record.clear();
1456 }
1457 
1458 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1459                                              SmallVectorImpl<uint64_t> &Record,
1460                                              unsigned Abbrev) {
1461   Record.push_back(N->isDistinct());
1462   Record.push_back(N->getTag());
1463   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1464   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1465   Record.push_back(N->getLine());
1466   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1467   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1468   Record.push_back(N->getSizeInBits());
1469   Record.push_back(N->getAlignInBits());
1470   Record.push_back(N->getOffsetInBits());
1471   Record.push_back(N->getFlags());
1472   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1473 
1474   // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1475   // that there is no DWARF address space associated with DIDerivedType.
1476   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1477     Record.push_back(*DWARFAddressSpace + 1);
1478   else
1479     Record.push_back(0);
1480 
1481   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1482   Record.clear();
1483 }
1484 
1485 void ModuleBitcodeWriter::writeDICompositeType(
1486     const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1487     unsigned Abbrev) {
1488   const unsigned IsNotUsedInOldTypeRef = 0x2;
1489   Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1490   Record.push_back(N->getTag());
1491   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1492   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1493   Record.push_back(N->getLine());
1494   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1495   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1496   Record.push_back(N->getSizeInBits());
1497   Record.push_back(N->getAlignInBits());
1498   Record.push_back(N->getOffsetInBits());
1499   Record.push_back(N->getFlags());
1500   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1501   Record.push_back(N->getRuntimeLang());
1502   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1503   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1504   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1505 
1506   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1507   Record.clear();
1508 }
1509 
1510 void ModuleBitcodeWriter::writeDISubroutineType(
1511     const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1512     unsigned Abbrev) {
1513   const unsigned HasNoOldTypeRefs = 0x2;
1514   Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1515   Record.push_back(N->getFlags());
1516   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1517   Record.push_back(N->getCC());
1518 
1519   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1520   Record.clear();
1521 }
1522 
1523 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1524                                       SmallVectorImpl<uint64_t> &Record,
1525                                       unsigned Abbrev) {
1526   Record.push_back(N->isDistinct());
1527   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1528   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1529   Record.push_back(N->getChecksumKind());
1530   Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()));
1531 
1532   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1533   Record.clear();
1534 }
1535 
1536 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1537                                              SmallVectorImpl<uint64_t> &Record,
1538                                              unsigned Abbrev) {
1539   assert(N->isDistinct() && "Expected distinct compile units");
1540   Record.push_back(/* IsDistinct */ true);
1541   Record.push_back(N->getSourceLanguage());
1542   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1543   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1544   Record.push_back(N->isOptimized());
1545   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1546   Record.push_back(N->getRuntimeVersion());
1547   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1548   Record.push_back(N->getEmissionKind());
1549   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1550   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1551   Record.push_back(/* subprograms */ 0);
1552   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1553   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1554   Record.push_back(N->getDWOId());
1555   Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1556   Record.push_back(N->getSplitDebugInlining());
1557   Record.push_back(N->getDebugInfoForProfiling());
1558   Record.push_back(N->getGnuPubnames());
1559 
1560   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1561   Record.clear();
1562 }
1563 
1564 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1565                                             SmallVectorImpl<uint64_t> &Record,
1566                                             unsigned Abbrev) {
1567   uint64_t HasUnitFlag = 1 << 1;
1568   Record.push_back(N->isDistinct() | HasUnitFlag);
1569   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1570   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1571   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1572   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1573   Record.push_back(N->getLine());
1574   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1575   Record.push_back(N->isLocalToUnit());
1576   Record.push_back(N->isDefinition());
1577   Record.push_back(N->getScopeLine());
1578   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1579   Record.push_back(N->getVirtuality());
1580   Record.push_back(N->getVirtualIndex());
1581   Record.push_back(N->getFlags());
1582   Record.push_back(N->isOptimized());
1583   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1584   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1585   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1586   Record.push_back(VE.getMetadataOrNullID(N->getVariables().get()));
1587   Record.push_back(N->getThisAdjustment());
1588   Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1589 
1590   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1591   Record.clear();
1592 }
1593 
1594 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1595                                               SmallVectorImpl<uint64_t> &Record,
1596                                               unsigned Abbrev) {
1597   Record.push_back(N->isDistinct());
1598   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1599   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1600   Record.push_back(N->getLine());
1601   Record.push_back(N->getColumn());
1602 
1603   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1604   Record.clear();
1605 }
1606 
1607 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1608     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1609     unsigned Abbrev) {
1610   Record.push_back(N->isDistinct());
1611   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1612   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1613   Record.push_back(N->getDiscriminator());
1614 
1615   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1616   Record.clear();
1617 }
1618 
1619 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1620                                            SmallVectorImpl<uint64_t> &Record,
1621                                            unsigned Abbrev) {
1622   Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1623   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1624   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1625 
1626   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1627   Record.clear();
1628 }
1629 
1630 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1631                                        SmallVectorImpl<uint64_t> &Record,
1632                                        unsigned Abbrev) {
1633   Record.push_back(N->isDistinct());
1634   Record.push_back(N->getMacinfoType());
1635   Record.push_back(N->getLine());
1636   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1637   Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1638 
1639   Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1640   Record.clear();
1641 }
1642 
1643 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1644                                            SmallVectorImpl<uint64_t> &Record,
1645                                            unsigned Abbrev) {
1646   Record.push_back(N->isDistinct());
1647   Record.push_back(N->getMacinfoType());
1648   Record.push_back(N->getLine());
1649   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1650   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1651 
1652   Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1653   Record.clear();
1654 }
1655 
1656 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1657                                         SmallVectorImpl<uint64_t> &Record,
1658                                         unsigned Abbrev) {
1659   Record.push_back(N->isDistinct());
1660   for (auto &I : N->operands())
1661     Record.push_back(VE.getMetadataOrNullID(I));
1662 
1663   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1664   Record.clear();
1665 }
1666 
1667 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1668     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1669     unsigned Abbrev) {
1670   Record.push_back(N->isDistinct());
1671   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1672   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1673 
1674   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1675   Record.clear();
1676 }
1677 
1678 void ModuleBitcodeWriter::writeDITemplateValueParameter(
1679     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1680     unsigned Abbrev) {
1681   Record.push_back(N->isDistinct());
1682   Record.push_back(N->getTag());
1683   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1684   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1685   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1686 
1687   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1688   Record.clear();
1689 }
1690 
1691 void ModuleBitcodeWriter::writeDIGlobalVariable(
1692     const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1693     unsigned Abbrev) {
1694   const uint64_t Version = 1 << 1;
1695   Record.push_back((uint64_t)N->isDistinct() | Version);
1696   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1697   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1698   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1699   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1700   Record.push_back(N->getLine());
1701   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1702   Record.push_back(N->isLocalToUnit());
1703   Record.push_back(N->isDefinition());
1704   Record.push_back(/* expr */ 0);
1705   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1706   Record.push_back(N->getAlignInBits());
1707 
1708   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1709   Record.clear();
1710 }
1711 
1712 void ModuleBitcodeWriter::writeDILocalVariable(
1713     const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1714     unsigned Abbrev) {
1715   // In order to support all possible bitcode formats in BitcodeReader we need
1716   // to distinguish the following cases:
1717   // 1) Record has no artificial tag (Record[1]),
1718   //   has no obsolete inlinedAt field (Record[9]).
1719   //   In this case Record size will be 8, HasAlignment flag is false.
1720   // 2) Record has artificial tag (Record[1]),
1721   //   has no obsolete inlignedAt field (Record[9]).
1722   //   In this case Record size will be 9, HasAlignment flag is false.
1723   // 3) Record has both artificial tag (Record[1]) and
1724   //   obsolete inlignedAt field (Record[9]).
1725   //   In this case Record size will be 10, HasAlignment flag is false.
1726   // 4) Record has neither artificial tag, nor inlignedAt field, but
1727   //   HasAlignment flag is true and Record[8] contains alignment value.
1728   const uint64_t HasAlignmentFlag = 1 << 1;
1729   Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
1730   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1731   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1732   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1733   Record.push_back(N->getLine());
1734   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1735   Record.push_back(N->getArg());
1736   Record.push_back(N->getFlags());
1737   Record.push_back(N->getAlignInBits());
1738 
1739   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1740   Record.clear();
1741 }
1742 
1743 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
1744                                             SmallVectorImpl<uint64_t> &Record,
1745                                             unsigned Abbrev) {
1746   Record.reserve(N->getElements().size() + 1);
1747   const uint64_t Version = 3 << 1;
1748   Record.push_back((uint64_t)N->isDistinct() | Version);
1749   Record.append(N->elements_begin(), N->elements_end());
1750 
1751   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1752   Record.clear();
1753 }
1754 
1755 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
1756     const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
1757     unsigned Abbrev) {
1758   Record.push_back(N->isDistinct());
1759   Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
1760   Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
1761 
1762   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
1763   Record.clear();
1764 }
1765 
1766 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1767                                               SmallVectorImpl<uint64_t> &Record,
1768                                               unsigned Abbrev) {
1769   Record.push_back(N->isDistinct());
1770   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1771   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1772   Record.push_back(N->getLine());
1773   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1774   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1775   Record.push_back(N->getAttributes());
1776   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1777 
1778   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1779   Record.clear();
1780 }
1781 
1782 void ModuleBitcodeWriter::writeDIImportedEntity(
1783     const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
1784     unsigned Abbrev) {
1785   Record.push_back(N->isDistinct());
1786   Record.push_back(N->getTag());
1787   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1788   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1789   Record.push_back(N->getLine());
1790   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1791   Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
1792 
1793   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1794   Record.clear();
1795 }
1796 
1797 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
1798   auto Abbv = std::make_shared<BitCodeAbbrev>();
1799   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1800   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1801   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1802   return Stream.EmitAbbrev(std::move(Abbv));
1803 }
1804 
1805 void ModuleBitcodeWriter::writeNamedMetadata(
1806     SmallVectorImpl<uint64_t> &Record) {
1807   if (M.named_metadata_empty())
1808     return;
1809 
1810   unsigned Abbrev = createNamedMetadataAbbrev();
1811   for (const NamedMDNode &NMD : M.named_metadata()) {
1812     // Write name.
1813     StringRef Str = NMD.getName();
1814     Record.append(Str.bytes_begin(), Str.bytes_end());
1815     Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
1816     Record.clear();
1817 
1818     // Write named metadata operands.
1819     for (const MDNode *N : NMD.operands())
1820       Record.push_back(VE.getMetadataID(N));
1821     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1822     Record.clear();
1823   }
1824 }
1825 
1826 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
1827   auto Abbv = std::make_shared<BitCodeAbbrev>();
1828   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
1829   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
1830   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
1831   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
1832   return Stream.EmitAbbrev(std::move(Abbv));
1833 }
1834 
1835 /// Write out a record for MDString.
1836 ///
1837 /// All the metadata strings in a metadata block are emitted in a single
1838 /// record.  The sizes and strings themselves are shoved into a blob.
1839 void ModuleBitcodeWriter::writeMetadataStrings(
1840     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1841   if (Strings.empty())
1842     return;
1843 
1844   // Start the record with the number of strings.
1845   Record.push_back(bitc::METADATA_STRINGS);
1846   Record.push_back(Strings.size());
1847 
1848   // Emit the sizes of the strings in the blob.
1849   SmallString<256> Blob;
1850   {
1851     BitstreamWriter W(Blob);
1852     for (const Metadata *MD : Strings)
1853       W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
1854     W.FlushToWord();
1855   }
1856 
1857   // Add the offset to the strings to the record.
1858   Record.push_back(Blob.size());
1859 
1860   // Add the strings to the blob.
1861   for (const Metadata *MD : Strings)
1862     Blob.append(cast<MDString>(MD)->getString());
1863 
1864   // Emit the final record.
1865   Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
1866   Record.clear();
1867 }
1868 
1869 // Generates an enum to use as an index in the Abbrev array of Metadata record.
1870 enum MetadataAbbrev : unsigned {
1871 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
1872 #include "llvm/IR/Metadata.def"
1873   LastPlusOne
1874 };
1875 
1876 void ModuleBitcodeWriter::writeMetadataRecords(
1877     ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
1878     std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
1879   if (MDs.empty())
1880     return;
1881 
1882   // Initialize MDNode abbreviations.
1883 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1884 #include "llvm/IR/Metadata.def"
1885 
1886   for (const Metadata *MD : MDs) {
1887     if (IndexPos)
1888       IndexPos->push_back(Stream.GetCurrentBitNo());
1889     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1890       assert(N->isResolved() && "Expected forward references to be resolved");
1891 
1892       switch (N->getMetadataID()) {
1893       default:
1894         llvm_unreachable("Invalid MDNode subclass");
1895 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1896   case Metadata::CLASS##Kind:                                                  \
1897     if (MDAbbrevs)                                                             \
1898       write##CLASS(cast<CLASS>(N), Record,                                     \
1899                    (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
1900     else                                                                       \
1901       write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
1902     continue;
1903 #include "llvm/IR/Metadata.def"
1904       }
1905     }
1906     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
1907   }
1908 }
1909 
1910 void ModuleBitcodeWriter::writeModuleMetadata() {
1911   if (!VE.hasMDs() && M.named_metadata_empty())
1912     return;
1913 
1914   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
1915   SmallVector<uint64_t, 64> Record;
1916 
1917   // Emit all abbrevs upfront, so that the reader can jump in the middle of the
1918   // block and load any metadata.
1919   std::vector<unsigned> MDAbbrevs;
1920 
1921   MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
1922   MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
1923   MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
1924       createGenericDINodeAbbrev();
1925 
1926   auto Abbv = std::make_shared<BitCodeAbbrev>();
1927   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
1928   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1929   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1930   unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1931 
1932   Abbv = std::make_shared<BitCodeAbbrev>();
1933   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
1934   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1935   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1936   unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1937 
1938   // Emit MDStrings together upfront.
1939   writeMetadataStrings(VE.getMDStrings(), Record);
1940 
1941   // We only emit an index for the metadata record if we have more than a given
1942   // (naive) threshold of metadatas, otherwise it is not worth it.
1943   if (VE.getNonMDStrings().size() > IndexThreshold) {
1944     // Write a placeholder value in for the offset of the metadata index,
1945     // which is written after the records, so that it can include
1946     // the offset of each entry. The placeholder offset will be
1947     // updated after all records are emitted.
1948     uint64_t Vals[] = {0, 0};
1949     Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
1950   }
1951 
1952   // Compute and save the bit offset to the current position, which will be
1953   // patched when we emit the index later. We can simply subtract the 64-bit
1954   // fixed size from the current bit number to get the location to backpatch.
1955   uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
1956 
1957   // This index will contain the bitpos for each individual record.
1958   std::vector<uint64_t> IndexPos;
1959   IndexPos.reserve(VE.getNonMDStrings().size());
1960 
1961   // Write all the records
1962   writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
1963 
1964   if (VE.getNonMDStrings().size() > IndexThreshold) {
1965     // Now that we have emitted all the records we will emit the index. But
1966     // first
1967     // backpatch the forward reference so that the reader can skip the records
1968     // efficiently.
1969     Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
1970                            Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
1971 
1972     // Delta encode the index.
1973     uint64_t PreviousValue = IndexOffsetRecordBitPos;
1974     for (auto &Elt : IndexPos) {
1975       auto EltDelta = Elt - PreviousValue;
1976       PreviousValue = Elt;
1977       Elt = EltDelta;
1978     }
1979     // Emit the index record.
1980     Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
1981     IndexPos.clear();
1982   }
1983 
1984   // Write the named metadata now.
1985   writeNamedMetadata(Record);
1986 
1987   auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
1988     SmallVector<uint64_t, 4> Record;
1989     Record.push_back(VE.getValueID(&GO));
1990     pushGlobalMetadataAttachment(Record, GO);
1991     Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
1992   };
1993   for (const Function &F : M)
1994     if (F.isDeclaration() && F.hasMetadata())
1995       AddDeclAttachedMetadata(F);
1996   // FIXME: Only store metadata for declarations here, and move data for global
1997   // variable definitions to a separate block (PR28134).
1998   for (const GlobalVariable &GV : M.globals())
1999     if (GV.hasMetadata())
2000       AddDeclAttachedMetadata(GV);
2001 
2002   Stream.ExitBlock();
2003 }
2004 
2005 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2006   if (!VE.hasMDs())
2007     return;
2008 
2009   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2010   SmallVector<uint64_t, 64> Record;
2011   writeMetadataStrings(VE.getMDStrings(), Record);
2012   writeMetadataRecords(VE.getNonMDStrings(), Record);
2013   Stream.ExitBlock();
2014 }
2015 
2016 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2017     SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2018   // [n x [id, mdnode]]
2019   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2020   GO.getAllMetadata(MDs);
2021   for (const auto &I : MDs) {
2022     Record.push_back(I.first);
2023     Record.push_back(VE.getMetadataID(I.second));
2024   }
2025 }
2026 
2027 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2028   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2029 
2030   SmallVector<uint64_t, 64> Record;
2031 
2032   if (F.hasMetadata()) {
2033     pushGlobalMetadataAttachment(Record, F);
2034     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2035     Record.clear();
2036   }
2037 
2038   // Write metadata attachments
2039   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2040   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2041   for (const BasicBlock &BB : F)
2042     for (const Instruction &I : BB) {
2043       MDs.clear();
2044       I.getAllMetadataOtherThanDebugLoc(MDs);
2045 
2046       // If no metadata, ignore instruction.
2047       if (MDs.empty()) continue;
2048 
2049       Record.push_back(VE.getInstructionID(&I));
2050 
2051       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2052         Record.push_back(MDs[i].first);
2053         Record.push_back(VE.getMetadataID(MDs[i].second));
2054       }
2055       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2056       Record.clear();
2057     }
2058 
2059   Stream.ExitBlock();
2060 }
2061 
2062 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2063   SmallVector<uint64_t, 64> Record;
2064 
2065   // Write metadata kinds
2066   // METADATA_KIND - [n x [id, name]]
2067   SmallVector<StringRef, 8> Names;
2068   M.getMDKindNames(Names);
2069 
2070   if (Names.empty()) return;
2071 
2072   Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2073 
2074   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2075     Record.push_back(MDKindID);
2076     StringRef KName = Names[MDKindID];
2077     Record.append(KName.begin(), KName.end());
2078 
2079     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2080     Record.clear();
2081   }
2082 
2083   Stream.ExitBlock();
2084 }
2085 
2086 void ModuleBitcodeWriter::writeOperandBundleTags() {
2087   // Write metadata kinds
2088   //
2089   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2090   //
2091   // OPERAND_BUNDLE_TAG - [strchr x N]
2092 
2093   SmallVector<StringRef, 8> Tags;
2094   M.getOperandBundleTags(Tags);
2095 
2096   if (Tags.empty())
2097     return;
2098 
2099   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2100 
2101   SmallVector<uint64_t, 64> Record;
2102 
2103   for (auto Tag : Tags) {
2104     Record.append(Tag.begin(), Tag.end());
2105 
2106     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2107     Record.clear();
2108   }
2109 
2110   Stream.ExitBlock();
2111 }
2112 
2113 void ModuleBitcodeWriter::writeSyncScopeNames() {
2114   SmallVector<StringRef, 8> SSNs;
2115   M.getContext().getSyncScopeNames(SSNs);
2116   if (SSNs.empty())
2117     return;
2118 
2119   Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2120 
2121   SmallVector<uint64_t, 64> Record;
2122   for (auto SSN : SSNs) {
2123     Record.append(SSN.begin(), SSN.end());
2124     Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2125     Record.clear();
2126   }
2127 
2128   Stream.ExitBlock();
2129 }
2130 
2131 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
2132   if ((int64_t)V >= 0)
2133     Vals.push_back(V << 1);
2134   else
2135     Vals.push_back((-V << 1) | 1);
2136 }
2137 
2138 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2139                                          bool isGlobal) {
2140   if (FirstVal == LastVal) return;
2141 
2142   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2143 
2144   unsigned AggregateAbbrev = 0;
2145   unsigned String8Abbrev = 0;
2146   unsigned CString7Abbrev = 0;
2147   unsigned CString6Abbrev = 0;
2148   // If this is a constant pool for the module, emit module-specific abbrevs.
2149   if (isGlobal) {
2150     // Abbrev for CST_CODE_AGGREGATE.
2151     auto Abbv = std::make_shared<BitCodeAbbrev>();
2152     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2153     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2154     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2155     AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2156 
2157     // Abbrev for CST_CODE_STRING.
2158     Abbv = std::make_shared<BitCodeAbbrev>();
2159     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2160     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2161     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2162     String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2163     // Abbrev for CST_CODE_CSTRING.
2164     Abbv = std::make_shared<BitCodeAbbrev>();
2165     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2166     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2167     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2168     CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2169     // Abbrev for CST_CODE_CSTRING.
2170     Abbv = std::make_shared<BitCodeAbbrev>();
2171     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2172     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2173     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2174     CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2175   }
2176 
2177   SmallVector<uint64_t, 64> Record;
2178 
2179   const ValueEnumerator::ValueList &Vals = VE.getValues();
2180   Type *LastTy = nullptr;
2181   for (unsigned i = FirstVal; i != LastVal; ++i) {
2182     const Value *V = Vals[i].first;
2183     // If we need to switch types, do so now.
2184     if (V->getType() != LastTy) {
2185       LastTy = V->getType();
2186       Record.push_back(VE.getTypeID(LastTy));
2187       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2188                         CONSTANTS_SETTYPE_ABBREV);
2189       Record.clear();
2190     }
2191 
2192     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2193       Record.push_back(unsigned(IA->hasSideEffects()) |
2194                        unsigned(IA->isAlignStack()) << 1 |
2195                        unsigned(IA->getDialect()&1) << 2);
2196 
2197       // Add the asm string.
2198       const std::string &AsmStr = IA->getAsmString();
2199       Record.push_back(AsmStr.size());
2200       Record.append(AsmStr.begin(), AsmStr.end());
2201 
2202       // Add the constraint string.
2203       const std::string &ConstraintStr = IA->getConstraintString();
2204       Record.push_back(ConstraintStr.size());
2205       Record.append(ConstraintStr.begin(), ConstraintStr.end());
2206       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2207       Record.clear();
2208       continue;
2209     }
2210     const Constant *C = cast<Constant>(V);
2211     unsigned Code = -1U;
2212     unsigned AbbrevToUse = 0;
2213     if (C->isNullValue()) {
2214       Code = bitc::CST_CODE_NULL;
2215     } else if (isa<UndefValue>(C)) {
2216       Code = bitc::CST_CODE_UNDEF;
2217     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2218       if (IV->getBitWidth() <= 64) {
2219         uint64_t V = IV->getSExtValue();
2220         emitSignedInt64(Record, V);
2221         Code = bitc::CST_CODE_INTEGER;
2222         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2223       } else {                             // Wide integers, > 64 bits in size.
2224         // We have an arbitrary precision integer value to write whose
2225         // bit width is > 64. However, in canonical unsigned integer
2226         // format it is likely that the high bits are going to be zero.
2227         // So, we only write the number of active words.
2228         unsigned NWords = IV->getValue().getActiveWords();
2229         const uint64_t *RawWords = IV->getValue().getRawData();
2230         for (unsigned i = 0; i != NWords; ++i) {
2231           emitSignedInt64(Record, RawWords[i]);
2232         }
2233         Code = bitc::CST_CODE_WIDE_INTEGER;
2234       }
2235     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2236       Code = bitc::CST_CODE_FLOAT;
2237       Type *Ty = CFP->getType();
2238       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2239         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2240       } else if (Ty->isX86_FP80Ty()) {
2241         // api needed to prevent premature destruction
2242         // bits are not in the same order as a normal i80 APInt, compensate.
2243         APInt api = CFP->getValueAPF().bitcastToAPInt();
2244         const uint64_t *p = api.getRawData();
2245         Record.push_back((p[1] << 48) | (p[0] >> 16));
2246         Record.push_back(p[0] & 0xffffLL);
2247       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2248         APInt api = CFP->getValueAPF().bitcastToAPInt();
2249         const uint64_t *p = api.getRawData();
2250         Record.push_back(p[0]);
2251         Record.push_back(p[1]);
2252       } else {
2253         assert(0 && "Unknown FP type!");
2254       }
2255     } else if (isa<ConstantDataSequential>(C) &&
2256                cast<ConstantDataSequential>(C)->isString()) {
2257       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2258       // Emit constant strings specially.
2259       unsigned NumElts = Str->getNumElements();
2260       // If this is a null-terminated string, use the denser CSTRING encoding.
2261       if (Str->isCString()) {
2262         Code = bitc::CST_CODE_CSTRING;
2263         --NumElts;  // Don't encode the null, which isn't allowed by char6.
2264       } else {
2265         Code = bitc::CST_CODE_STRING;
2266         AbbrevToUse = String8Abbrev;
2267       }
2268       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2269       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2270       for (unsigned i = 0; i != NumElts; ++i) {
2271         unsigned char V = Str->getElementAsInteger(i);
2272         Record.push_back(V);
2273         isCStr7 &= (V & 128) == 0;
2274         if (isCStrChar6)
2275           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2276       }
2277 
2278       if (isCStrChar6)
2279         AbbrevToUse = CString6Abbrev;
2280       else if (isCStr7)
2281         AbbrevToUse = CString7Abbrev;
2282     } else if (const ConstantDataSequential *CDS =
2283                   dyn_cast<ConstantDataSequential>(C)) {
2284       Code = bitc::CST_CODE_DATA;
2285       Type *EltTy = CDS->getType()->getElementType();
2286       if (isa<IntegerType>(EltTy)) {
2287         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2288           Record.push_back(CDS->getElementAsInteger(i));
2289       } else {
2290         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2291           Record.push_back(
2292               CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2293       }
2294     } else if (isa<ConstantAggregate>(C)) {
2295       Code = bitc::CST_CODE_AGGREGATE;
2296       for (const Value *Op : C->operands())
2297         Record.push_back(VE.getValueID(Op));
2298       AbbrevToUse = AggregateAbbrev;
2299     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2300       switch (CE->getOpcode()) {
2301       default:
2302         if (Instruction::isCast(CE->getOpcode())) {
2303           Code = bitc::CST_CODE_CE_CAST;
2304           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2305           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2306           Record.push_back(VE.getValueID(C->getOperand(0)));
2307           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2308         } else {
2309           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2310           Code = bitc::CST_CODE_CE_BINOP;
2311           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2312           Record.push_back(VE.getValueID(C->getOperand(0)));
2313           Record.push_back(VE.getValueID(C->getOperand(1)));
2314           uint64_t Flags = getOptimizationFlags(CE);
2315           if (Flags != 0)
2316             Record.push_back(Flags);
2317         }
2318         break;
2319       case Instruction::GetElementPtr: {
2320         Code = bitc::CST_CODE_CE_GEP;
2321         const auto *GO = cast<GEPOperator>(C);
2322         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2323         if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
2324           Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2325           Record.push_back((*Idx << 1) | GO->isInBounds());
2326         } else if (GO->isInBounds())
2327           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2328         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2329           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2330           Record.push_back(VE.getValueID(C->getOperand(i)));
2331         }
2332         break;
2333       }
2334       case Instruction::Select:
2335         Code = bitc::CST_CODE_CE_SELECT;
2336         Record.push_back(VE.getValueID(C->getOperand(0)));
2337         Record.push_back(VE.getValueID(C->getOperand(1)));
2338         Record.push_back(VE.getValueID(C->getOperand(2)));
2339         break;
2340       case Instruction::ExtractElement:
2341         Code = bitc::CST_CODE_CE_EXTRACTELT;
2342         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2343         Record.push_back(VE.getValueID(C->getOperand(0)));
2344         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2345         Record.push_back(VE.getValueID(C->getOperand(1)));
2346         break;
2347       case Instruction::InsertElement:
2348         Code = bitc::CST_CODE_CE_INSERTELT;
2349         Record.push_back(VE.getValueID(C->getOperand(0)));
2350         Record.push_back(VE.getValueID(C->getOperand(1)));
2351         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2352         Record.push_back(VE.getValueID(C->getOperand(2)));
2353         break;
2354       case Instruction::ShuffleVector:
2355         // If the return type and argument types are the same, this is a
2356         // standard shufflevector instruction.  If the types are different,
2357         // then the shuffle is widening or truncating the input vectors, and
2358         // the argument type must also be encoded.
2359         if (C->getType() == C->getOperand(0)->getType()) {
2360           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2361         } else {
2362           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2363           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2364         }
2365         Record.push_back(VE.getValueID(C->getOperand(0)));
2366         Record.push_back(VE.getValueID(C->getOperand(1)));
2367         Record.push_back(VE.getValueID(C->getOperand(2)));
2368         break;
2369       case Instruction::ICmp:
2370       case Instruction::FCmp:
2371         Code = bitc::CST_CODE_CE_CMP;
2372         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2373         Record.push_back(VE.getValueID(C->getOperand(0)));
2374         Record.push_back(VE.getValueID(C->getOperand(1)));
2375         Record.push_back(CE->getPredicate());
2376         break;
2377       }
2378     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2379       Code = bitc::CST_CODE_BLOCKADDRESS;
2380       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2381       Record.push_back(VE.getValueID(BA->getFunction()));
2382       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2383     } else {
2384 #ifndef NDEBUG
2385       C->dump();
2386 #endif
2387       llvm_unreachable("Unknown constant!");
2388     }
2389     Stream.EmitRecord(Code, Record, AbbrevToUse);
2390     Record.clear();
2391   }
2392 
2393   Stream.ExitBlock();
2394 }
2395 
2396 void ModuleBitcodeWriter::writeModuleConstants() {
2397   const ValueEnumerator::ValueList &Vals = VE.getValues();
2398 
2399   // Find the first constant to emit, which is the first non-globalvalue value.
2400   // We know globalvalues have been emitted by WriteModuleInfo.
2401   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2402     if (!isa<GlobalValue>(Vals[i].first)) {
2403       writeConstants(i, Vals.size(), true);
2404       return;
2405     }
2406   }
2407 }
2408 
2409 /// pushValueAndType - The file has to encode both the value and type id for
2410 /// many values, because we need to know what type to create for forward
2411 /// references.  However, most operands are not forward references, so this type
2412 /// field is not needed.
2413 ///
2414 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2415 /// instruction ID, then it is a forward reference, and it also includes the
2416 /// type ID.  The value ID that is written is encoded relative to the InstID.
2417 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2418                                            SmallVectorImpl<unsigned> &Vals) {
2419   unsigned ValID = VE.getValueID(V);
2420   // Make encoding relative to the InstID.
2421   Vals.push_back(InstID - ValID);
2422   if (ValID >= InstID) {
2423     Vals.push_back(VE.getTypeID(V->getType()));
2424     return true;
2425   }
2426   return false;
2427 }
2428 
2429 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS,
2430                                               unsigned InstID) {
2431   SmallVector<unsigned, 64> Record;
2432   LLVMContext &C = CS.getInstruction()->getContext();
2433 
2434   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2435     const auto &Bundle = CS.getOperandBundleAt(i);
2436     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2437 
2438     for (auto &Input : Bundle.Inputs)
2439       pushValueAndType(Input, InstID, Record);
2440 
2441     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2442     Record.clear();
2443   }
2444 }
2445 
2446 /// pushValue - Like pushValueAndType, but where the type of the value is
2447 /// omitted (perhaps it was already encoded in an earlier operand).
2448 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2449                                     SmallVectorImpl<unsigned> &Vals) {
2450   unsigned ValID = VE.getValueID(V);
2451   Vals.push_back(InstID - ValID);
2452 }
2453 
2454 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2455                                           SmallVectorImpl<uint64_t> &Vals) {
2456   unsigned ValID = VE.getValueID(V);
2457   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2458   emitSignedInt64(Vals, diff);
2459 }
2460 
2461 /// WriteInstruction - Emit an instruction to the specified stream.
2462 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2463                                            unsigned InstID,
2464                                            SmallVectorImpl<unsigned> &Vals) {
2465   unsigned Code = 0;
2466   unsigned AbbrevToUse = 0;
2467   VE.setInstructionID(&I);
2468   switch (I.getOpcode()) {
2469   default:
2470     if (Instruction::isCast(I.getOpcode())) {
2471       Code = bitc::FUNC_CODE_INST_CAST;
2472       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2473         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2474       Vals.push_back(VE.getTypeID(I.getType()));
2475       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2476     } else {
2477       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2478       Code = bitc::FUNC_CODE_INST_BINOP;
2479       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2480         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2481       pushValue(I.getOperand(1), InstID, Vals);
2482       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2483       uint64_t Flags = getOptimizationFlags(&I);
2484       if (Flags != 0) {
2485         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2486           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2487         Vals.push_back(Flags);
2488       }
2489     }
2490     break;
2491 
2492   case Instruction::GetElementPtr: {
2493     Code = bitc::FUNC_CODE_INST_GEP;
2494     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2495     auto &GEPInst = cast<GetElementPtrInst>(I);
2496     Vals.push_back(GEPInst.isInBounds());
2497     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2498     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2499       pushValueAndType(I.getOperand(i), InstID, Vals);
2500     break;
2501   }
2502   case Instruction::ExtractValue: {
2503     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2504     pushValueAndType(I.getOperand(0), InstID, Vals);
2505     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2506     Vals.append(EVI->idx_begin(), EVI->idx_end());
2507     break;
2508   }
2509   case Instruction::InsertValue: {
2510     Code = bitc::FUNC_CODE_INST_INSERTVAL;
2511     pushValueAndType(I.getOperand(0), InstID, Vals);
2512     pushValueAndType(I.getOperand(1), InstID, Vals);
2513     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2514     Vals.append(IVI->idx_begin(), IVI->idx_end());
2515     break;
2516   }
2517   case Instruction::Select:
2518     Code = bitc::FUNC_CODE_INST_VSELECT;
2519     pushValueAndType(I.getOperand(1), InstID, Vals);
2520     pushValue(I.getOperand(2), InstID, Vals);
2521     pushValueAndType(I.getOperand(0), InstID, Vals);
2522     break;
2523   case Instruction::ExtractElement:
2524     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2525     pushValueAndType(I.getOperand(0), InstID, Vals);
2526     pushValueAndType(I.getOperand(1), InstID, Vals);
2527     break;
2528   case Instruction::InsertElement:
2529     Code = bitc::FUNC_CODE_INST_INSERTELT;
2530     pushValueAndType(I.getOperand(0), InstID, Vals);
2531     pushValue(I.getOperand(1), InstID, Vals);
2532     pushValueAndType(I.getOperand(2), InstID, Vals);
2533     break;
2534   case Instruction::ShuffleVector:
2535     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2536     pushValueAndType(I.getOperand(0), InstID, Vals);
2537     pushValue(I.getOperand(1), InstID, Vals);
2538     pushValue(I.getOperand(2), InstID, Vals);
2539     break;
2540   case Instruction::ICmp:
2541   case Instruction::FCmp: {
2542     // compare returning Int1Ty or vector of Int1Ty
2543     Code = bitc::FUNC_CODE_INST_CMP2;
2544     pushValueAndType(I.getOperand(0), InstID, Vals);
2545     pushValue(I.getOperand(1), InstID, Vals);
2546     Vals.push_back(cast<CmpInst>(I).getPredicate());
2547     uint64_t Flags = getOptimizationFlags(&I);
2548     if (Flags != 0)
2549       Vals.push_back(Flags);
2550     break;
2551   }
2552 
2553   case Instruction::Ret:
2554     {
2555       Code = bitc::FUNC_CODE_INST_RET;
2556       unsigned NumOperands = I.getNumOperands();
2557       if (NumOperands == 0)
2558         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2559       else if (NumOperands == 1) {
2560         if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2561           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2562       } else {
2563         for (unsigned i = 0, e = NumOperands; i != e; ++i)
2564           pushValueAndType(I.getOperand(i), InstID, Vals);
2565       }
2566     }
2567     break;
2568   case Instruction::Br:
2569     {
2570       Code = bitc::FUNC_CODE_INST_BR;
2571       const BranchInst &II = cast<BranchInst>(I);
2572       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2573       if (II.isConditional()) {
2574         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2575         pushValue(II.getCondition(), InstID, Vals);
2576       }
2577     }
2578     break;
2579   case Instruction::Switch:
2580     {
2581       Code = bitc::FUNC_CODE_INST_SWITCH;
2582       const SwitchInst &SI = cast<SwitchInst>(I);
2583       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2584       pushValue(SI.getCondition(), InstID, Vals);
2585       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2586       for (auto Case : SI.cases()) {
2587         Vals.push_back(VE.getValueID(Case.getCaseValue()));
2588         Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2589       }
2590     }
2591     break;
2592   case Instruction::IndirectBr:
2593     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2594     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2595     // Encode the address operand as relative, but not the basic blocks.
2596     pushValue(I.getOperand(0), InstID, Vals);
2597     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2598       Vals.push_back(VE.getValueID(I.getOperand(i)));
2599     break;
2600 
2601   case Instruction::Invoke: {
2602     const InvokeInst *II = cast<InvokeInst>(&I);
2603     const Value *Callee = II->getCalledValue();
2604     FunctionType *FTy = II->getFunctionType();
2605 
2606     if (II->hasOperandBundles())
2607       writeOperandBundles(II, InstID);
2608 
2609     Code = bitc::FUNC_CODE_INST_INVOKE;
2610 
2611     Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2612     Vals.push_back(II->getCallingConv() | 1 << 13);
2613     Vals.push_back(VE.getValueID(II->getNormalDest()));
2614     Vals.push_back(VE.getValueID(II->getUnwindDest()));
2615     Vals.push_back(VE.getTypeID(FTy));
2616     pushValueAndType(Callee, InstID, Vals);
2617 
2618     // Emit value #'s for the fixed parameters.
2619     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2620       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2621 
2622     // Emit type/value pairs for varargs params.
2623     if (FTy->isVarArg()) {
2624       for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands();
2625            i != e; ++i)
2626         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2627     }
2628     break;
2629   }
2630   case Instruction::Resume:
2631     Code = bitc::FUNC_CODE_INST_RESUME;
2632     pushValueAndType(I.getOperand(0), InstID, Vals);
2633     break;
2634   case Instruction::CleanupRet: {
2635     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2636     const auto &CRI = cast<CleanupReturnInst>(I);
2637     pushValue(CRI.getCleanupPad(), InstID, Vals);
2638     if (CRI.hasUnwindDest())
2639       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2640     break;
2641   }
2642   case Instruction::CatchRet: {
2643     Code = bitc::FUNC_CODE_INST_CATCHRET;
2644     const auto &CRI = cast<CatchReturnInst>(I);
2645     pushValue(CRI.getCatchPad(), InstID, Vals);
2646     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2647     break;
2648   }
2649   case Instruction::CleanupPad:
2650   case Instruction::CatchPad: {
2651     const auto &FuncletPad = cast<FuncletPadInst>(I);
2652     Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2653                                          : bitc::FUNC_CODE_INST_CLEANUPPAD;
2654     pushValue(FuncletPad.getParentPad(), InstID, Vals);
2655 
2656     unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2657     Vals.push_back(NumArgOperands);
2658     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2659       pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2660     break;
2661   }
2662   case Instruction::CatchSwitch: {
2663     Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2664     const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2665 
2666     pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2667 
2668     unsigned NumHandlers = CatchSwitch.getNumHandlers();
2669     Vals.push_back(NumHandlers);
2670     for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2671       Vals.push_back(VE.getValueID(CatchPadBB));
2672 
2673     if (CatchSwitch.hasUnwindDest())
2674       Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2675     break;
2676   }
2677   case Instruction::Unreachable:
2678     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2679     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2680     break;
2681 
2682   case Instruction::PHI: {
2683     const PHINode &PN = cast<PHINode>(I);
2684     Code = bitc::FUNC_CODE_INST_PHI;
2685     // With the newer instruction encoding, forward references could give
2686     // negative valued IDs.  This is most common for PHIs, so we use
2687     // signed VBRs.
2688     SmallVector<uint64_t, 128> Vals64;
2689     Vals64.push_back(VE.getTypeID(PN.getType()));
2690     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2691       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2692       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2693     }
2694     // Emit a Vals64 vector and exit.
2695     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2696     Vals64.clear();
2697     return;
2698   }
2699 
2700   case Instruction::LandingPad: {
2701     const LandingPadInst &LP = cast<LandingPadInst>(I);
2702     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2703     Vals.push_back(VE.getTypeID(LP.getType()));
2704     Vals.push_back(LP.isCleanup());
2705     Vals.push_back(LP.getNumClauses());
2706     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2707       if (LP.isCatch(I))
2708         Vals.push_back(LandingPadInst::Catch);
2709       else
2710         Vals.push_back(LandingPadInst::Filter);
2711       pushValueAndType(LP.getClause(I), InstID, Vals);
2712     }
2713     break;
2714   }
2715 
2716   case Instruction::Alloca: {
2717     Code = bitc::FUNC_CODE_INST_ALLOCA;
2718     const AllocaInst &AI = cast<AllocaInst>(I);
2719     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2720     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2721     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2722     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
2723     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
2724            "not enough bits for maximum alignment");
2725     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2726     AlignRecord |= AI.isUsedWithInAlloca() << 5;
2727     AlignRecord |= 1 << 6;
2728     AlignRecord |= AI.isSwiftError() << 7;
2729     Vals.push_back(AlignRecord);
2730     break;
2731   }
2732 
2733   case Instruction::Load:
2734     if (cast<LoadInst>(I).isAtomic()) {
2735       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2736       pushValueAndType(I.getOperand(0), InstID, Vals);
2737     } else {
2738       Code = bitc::FUNC_CODE_INST_LOAD;
2739       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2740         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
2741     }
2742     Vals.push_back(VE.getTypeID(I.getType()));
2743     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
2744     Vals.push_back(cast<LoadInst>(I).isVolatile());
2745     if (cast<LoadInst>(I).isAtomic()) {
2746       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2747       Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
2748     }
2749     break;
2750   case Instruction::Store:
2751     if (cast<StoreInst>(I).isAtomic())
2752       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2753     else
2754       Code = bitc::FUNC_CODE_INST_STORE;
2755     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2756     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2757     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
2758     Vals.push_back(cast<StoreInst>(I).isVolatile());
2759     if (cast<StoreInst>(I).isAtomic()) {
2760       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2761       Vals.push_back(
2762           getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
2763     }
2764     break;
2765   case Instruction::AtomicCmpXchg:
2766     Code = bitc::FUNC_CODE_INST_CMPXCHG;
2767     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2768     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2769     pushValue(I.getOperand(2), InstID, Vals);        // newval.
2770     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2771     Vals.push_back(
2772         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2773     Vals.push_back(
2774         getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
2775     Vals.push_back(
2776         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2777     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2778     break;
2779   case Instruction::AtomicRMW:
2780     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2781     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2782     pushValue(I.getOperand(1), InstID, Vals);        // val.
2783     Vals.push_back(
2784         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2785     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2786     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2787     Vals.push_back(
2788         getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
2789     break;
2790   case Instruction::Fence:
2791     Code = bitc::FUNC_CODE_INST_FENCE;
2792     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2793     Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
2794     break;
2795   case Instruction::Call: {
2796     const CallInst &CI = cast<CallInst>(I);
2797     FunctionType *FTy = CI.getFunctionType();
2798 
2799     if (CI.hasOperandBundles())
2800       writeOperandBundles(&CI, InstID);
2801 
2802     Code = bitc::FUNC_CODE_INST_CALL;
2803 
2804     Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
2805 
2806     unsigned Flags = getOptimizationFlags(&I);
2807     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
2808                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
2809                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
2810                    1 << bitc::CALL_EXPLICIT_TYPE |
2811                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
2812                    unsigned(Flags != 0) << bitc::CALL_FMF);
2813     if (Flags != 0)
2814       Vals.push_back(Flags);
2815 
2816     Vals.push_back(VE.getTypeID(FTy));
2817     pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee
2818 
2819     // Emit value #'s for the fixed parameters.
2820     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2821       // Check for labels (can happen with asm labels).
2822       if (FTy->getParamType(i)->isLabelTy())
2823         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2824       else
2825         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2826     }
2827 
2828     // Emit type/value pairs for varargs params.
2829     if (FTy->isVarArg()) {
2830       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
2831            i != e; ++i)
2832         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2833     }
2834     break;
2835   }
2836   case Instruction::VAArg:
2837     Code = bitc::FUNC_CODE_INST_VAARG;
2838     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
2839     pushValue(I.getOperand(0), InstID, Vals);                   // valist.
2840     Vals.push_back(VE.getTypeID(I.getType())); // restype.
2841     break;
2842   }
2843 
2844   Stream.EmitRecord(Code, Vals, AbbrevToUse);
2845   Vals.clear();
2846 }
2847 
2848 /// Write a GlobalValue VST to the module. The purpose of this data structure is
2849 /// to allow clients to efficiently find the function body.
2850 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
2851   DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
2852   // Get the offset of the VST we are writing, and backpatch it into
2853   // the VST forward declaration record.
2854   uint64_t VSTOffset = Stream.GetCurrentBitNo();
2855   // The BitcodeStartBit was the stream offset of the identification block.
2856   VSTOffset -= bitcodeStartBit();
2857   assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
2858   // Note that we add 1 here because the offset is relative to one word
2859   // before the start of the identification block, which was historically
2860   // always the start of the regular bitcode header.
2861   Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
2862 
2863   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2864 
2865   auto Abbv = std::make_shared<BitCodeAbbrev>();
2866   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2867   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2868   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2869   unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2870 
2871   for (const Function &F : M) {
2872     uint64_t Record[2];
2873 
2874     if (F.isDeclaration())
2875       continue;
2876 
2877     Record[0] = VE.getValueID(&F);
2878 
2879     // Save the word offset of the function (from the start of the
2880     // actual bitcode written to the stream).
2881     uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
2882     assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
2883     // Note that we add 1 here because the offset is relative to one word
2884     // before the start of the identification block, which was historically
2885     // always the start of the regular bitcode header.
2886     Record[1] = BitcodeIndex / 32 + 1;
2887 
2888     Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
2889   }
2890 
2891   Stream.ExitBlock();
2892 }
2893 
2894 /// Emit names for arguments, instructions and basic blocks in a function.
2895 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
2896     const ValueSymbolTable &VST) {
2897   if (VST.empty())
2898     return;
2899 
2900   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2901 
2902   // FIXME: Set up the abbrev, we know how many values there are!
2903   // FIXME: We know if the type names can use 7-bit ascii.
2904   SmallVector<uint64_t, 64> NameVals;
2905 
2906   for (const ValueName &Name : VST) {
2907     // Figure out the encoding to use for the name.
2908     StringEncoding Bits = getStringEncoding(Name.getKey());
2909 
2910     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2911     NameVals.push_back(VE.getValueID(Name.getValue()));
2912 
2913     // VST_CODE_ENTRY:   [valueid, namechar x N]
2914     // VST_CODE_BBENTRY: [bbid, namechar x N]
2915     unsigned Code;
2916     if (isa<BasicBlock>(Name.getValue())) {
2917       Code = bitc::VST_CODE_BBENTRY;
2918       if (Bits == SE_Char6)
2919         AbbrevToUse = VST_BBENTRY_6_ABBREV;
2920     } else {
2921       Code = bitc::VST_CODE_ENTRY;
2922       if (Bits == SE_Char6)
2923         AbbrevToUse = VST_ENTRY_6_ABBREV;
2924       else if (Bits == SE_Fixed7)
2925         AbbrevToUse = VST_ENTRY_7_ABBREV;
2926     }
2927 
2928     for (const auto P : Name.getKey())
2929       NameVals.push_back((unsigned char)P);
2930 
2931     // Emit the finished record.
2932     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2933     NameVals.clear();
2934   }
2935 
2936   Stream.ExitBlock();
2937 }
2938 
2939 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
2940   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
2941   unsigned Code;
2942   if (isa<BasicBlock>(Order.V))
2943     Code = bitc::USELIST_CODE_BB;
2944   else
2945     Code = bitc::USELIST_CODE_DEFAULT;
2946 
2947   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
2948   Record.push_back(VE.getValueID(Order.V));
2949   Stream.EmitRecord(Code, Record);
2950 }
2951 
2952 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
2953   assert(VE.shouldPreserveUseListOrder() &&
2954          "Expected to be preserving use-list order");
2955 
2956   auto hasMore = [&]() {
2957     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
2958   };
2959   if (!hasMore())
2960     // Nothing to do.
2961     return;
2962 
2963   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
2964   while (hasMore()) {
2965     writeUseList(std::move(VE.UseListOrders.back()));
2966     VE.UseListOrders.pop_back();
2967   }
2968   Stream.ExitBlock();
2969 }
2970 
2971 /// Emit a function body to the module stream.
2972 void ModuleBitcodeWriter::writeFunction(
2973     const Function &F,
2974     DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
2975   // Save the bitcode index of the start of this function block for recording
2976   // in the VST.
2977   FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
2978 
2979   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
2980   VE.incorporateFunction(F);
2981 
2982   SmallVector<unsigned, 64> Vals;
2983 
2984   // Emit the number of basic blocks, so the reader can create them ahead of
2985   // time.
2986   Vals.push_back(VE.getBasicBlocks().size());
2987   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
2988   Vals.clear();
2989 
2990   // If there are function-local constants, emit them now.
2991   unsigned CstStart, CstEnd;
2992   VE.getFunctionConstantRange(CstStart, CstEnd);
2993   writeConstants(CstStart, CstEnd, false);
2994 
2995   // If there is function-local metadata, emit it now.
2996   writeFunctionMetadata(F);
2997 
2998   // Keep a running idea of what the instruction ID is.
2999   unsigned InstID = CstEnd;
3000 
3001   bool NeedsMetadataAttachment = F.hasMetadata();
3002 
3003   DILocation *LastDL = nullptr;
3004   // Finally, emit all the instructions, in order.
3005   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
3006     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
3007          I != E; ++I) {
3008       writeInstruction(*I, InstID, Vals);
3009 
3010       if (!I->getType()->isVoidTy())
3011         ++InstID;
3012 
3013       // If the instruction has metadata, write a metadata attachment later.
3014       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
3015 
3016       // If the instruction has a debug location, emit it.
3017       DILocation *DL = I->getDebugLoc();
3018       if (!DL)
3019         continue;
3020 
3021       if (DL == LastDL) {
3022         // Just repeat the same debug loc as last time.
3023         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3024         continue;
3025       }
3026 
3027       Vals.push_back(DL->getLine());
3028       Vals.push_back(DL->getColumn());
3029       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3030       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3031       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3032       Vals.clear();
3033 
3034       LastDL = DL;
3035     }
3036 
3037   // Emit names for all the instructions etc.
3038   if (auto *Symtab = F.getValueSymbolTable())
3039     writeFunctionLevelValueSymbolTable(*Symtab);
3040 
3041   if (NeedsMetadataAttachment)
3042     writeFunctionMetadataAttachment(F);
3043   if (VE.shouldPreserveUseListOrder())
3044     writeUseListBlock(&F);
3045   VE.purgeFunction();
3046   Stream.ExitBlock();
3047 }
3048 
3049 // Emit blockinfo, which defines the standard abbreviations etc.
3050 void ModuleBitcodeWriter::writeBlockInfo() {
3051   // We only want to emit block info records for blocks that have multiple
3052   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3053   // Other blocks can define their abbrevs inline.
3054   Stream.EnterBlockInfoBlock();
3055 
3056   { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3057     auto Abbv = std::make_shared<BitCodeAbbrev>();
3058     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3059     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3060     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3061     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3062     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3063         VST_ENTRY_8_ABBREV)
3064       llvm_unreachable("Unexpected abbrev ordering!");
3065   }
3066 
3067   { // 7-bit fixed width VST_CODE_ENTRY strings.
3068     auto Abbv = std::make_shared<BitCodeAbbrev>();
3069     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3070     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3071     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3072     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3073     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3074         VST_ENTRY_7_ABBREV)
3075       llvm_unreachable("Unexpected abbrev ordering!");
3076   }
3077   { // 6-bit char6 VST_CODE_ENTRY strings.
3078     auto Abbv = std::make_shared<BitCodeAbbrev>();
3079     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3080     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3081     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3082     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3083     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3084         VST_ENTRY_6_ABBREV)
3085       llvm_unreachable("Unexpected abbrev ordering!");
3086   }
3087   { // 6-bit char6 VST_CODE_BBENTRY strings.
3088     auto Abbv = std::make_shared<BitCodeAbbrev>();
3089     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3090     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3091     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3092     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3093     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3094         VST_BBENTRY_6_ABBREV)
3095       llvm_unreachable("Unexpected abbrev ordering!");
3096   }
3097 
3098   { // SETTYPE abbrev for CONSTANTS_BLOCK.
3099     auto Abbv = std::make_shared<BitCodeAbbrev>();
3100     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3101     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3102                               VE.computeBitsRequiredForTypeIndicies()));
3103     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3104         CONSTANTS_SETTYPE_ABBREV)
3105       llvm_unreachable("Unexpected abbrev ordering!");
3106   }
3107 
3108   { // INTEGER abbrev for CONSTANTS_BLOCK.
3109     auto Abbv = std::make_shared<BitCodeAbbrev>();
3110     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3111     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3112     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3113         CONSTANTS_INTEGER_ABBREV)
3114       llvm_unreachable("Unexpected abbrev ordering!");
3115   }
3116 
3117   { // CE_CAST abbrev for CONSTANTS_BLOCK.
3118     auto Abbv = std::make_shared<BitCodeAbbrev>();
3119     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3120     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
3121     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
3122                               VE.computeBitsRequiredForTypeIndicies()));
3123     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
3124 
3125     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3126         CONSTANTS_CE_CAST_Abbrev)
3127       llvm_unreachable("Unexpected abbrev ordering!");
3128   }
3129   { // NULL abbrev for CONSTANTS_BLOCK.
3130     auto Abbv = std::make_shared<BitCodeAbbrev>();
3131     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3132     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3133         CONSTANTS_NULL_Abbrev)
3134       llvm_unreachable("Unexpected abbrev ordering!");
3135   }
3136 
3137   // FIXME: This should only use space for first class types!
3138 
3139   { // INST_LOAD abbrev for FUNCTION_BLOCK.
3140     auto Abbv = std::make_shared<BitCodeAbbrev>();
3141     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3142     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3143     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3144                               VE.computeBitsRequiredForTypeIndicies()));
3145     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3146     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3147     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3148         FUNCTION_INST_LOAD_ABBREV)
3149       llvm_unreachable("Unexpected abbrev ordering!");
3150   }
3151   { // INST_BINOP abbrev for FUNCTION_BLOCK.
3152     auto Abbv = std::make_shared<BitCodeAbbrev>();
3153     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3154     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3155     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3156     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3157     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3158         FUNCTION_INST_BINOP_ABBREV)
3159       llvm_unreachable("Unexpected abbrev ordering!");
3160   }
3161   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3162     auto Abbv = std::make_shared<BitCodeAbbrev>();
3163     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3164     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3165     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3166     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3167     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
3168     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3169         FUNCTION_INST_BINOP_FLAGS_ABBREV)
3170       llvm_unreachable("Unexpected abbrev ordering!");
3171   }
3172   { // INST_CAST abbrev for FUNCTION_BLOCK.
3173     auto Abbv = std::make_shared<BitCodeAbbrev>();
3174     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3175     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
3176     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
3177                               VE.computeBitsRequiredForTypeIndicies()));
3178     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
3179     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3180         FUNCTION_INST_CAST_ABBREV)
3181       llvm_unreachable("Unexpected abbrev ordering!");
3182   }
3183 
3184   { // INST_RET abbrev for FUNCTION_BLOCK.
3185     auto Abbv = std::make_shared<BitCodeAbbrev>();
3186     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3187     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3188         FUNCTION_INST_RET_VOID_ABBREV)
3189       llvm_unreachable("Unexpected abbrev ordering!");
3190   }
3191   { // INST_RET abbrev for FUNCTION_BLOCK.
3192     auto Abbv = std::make_shared<BitCodeAbbrev>();
3193     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3194     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3195     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3196         FUNCTION_INST_RET_VAL_ABBREV)
3197       llvm_unreachable("Unexpected abbrev ordering!");
3198   }
3199   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3200     auto Abbv = std::make_shared<BitCodeAbbrev>();
3201     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3202     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3203         FUNCTION_INST_UNREACHABLE_ABBREV)
3204       llvm_unreachable("Unexpected abbrev ordering!");
3205   }
3206   {
3207     auto Abbv = std::make_shared<BitCodeAbbrev>();
3208     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3209     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3210     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3211                               Log2_32_Ceil(VE.getTypes().size() + 1)));
3212     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3213     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3214     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3215         FUNCTION_INST_GEP_ABBREV)
3216       llvm_unreachable("Unexpected abbrev ordering!");
3217   }
3218 
3219   Stream.ExitBlock();
3220 }
3221 
3222 /// Write the module path strings, currently only used when generating
3223 /// a combined index file.
3224 void IndexBitcodeWriter::writeModStrings() {
3225   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3226 
3227   // TODO: See which abbrev sizes we actually need to emit
3228 
3229   // 8-bit fixed-width MST_ENTRY strings.
3230   auto Abbv = std::make_shared<BitCodeAbbrev>();
3231   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3232   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3233   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3234   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3235   unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3236 
3237   // 7-bit fixed width MST_ENTRY strings.
3238   Abbv = std::make_shared<BitCodeAbbrev>();
3239   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3240   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3241   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3242   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3243   unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3244 
3245   // 6-bit char6 MST_ENTRY strings.
3246   Abbv = std::make_shared<BitCodeAbbrev>();
3247   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3248   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3249   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3250   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3251   unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3252 
3253   // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3254   Abbv = std::make_shared<BitCodeAbbrev>();
3255   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3256   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3257   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3258   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3259   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3260   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3261   unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3262 
3263   SmallVector<unsigned, 64> Vals;
3264   forEachModule(
3265       [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) {
3266         StringRef Key = MPSE.getKey();
3267         const auto &Value = MPSE.getValue();
3268         StringEncoding Bits = getStringEncoding(Key);
3269         unsigned AbbrevToUse = Abbrev8Bit;
3270         if (Bits == SE_Char6)
3271           AbbrevToUse = Abbrev6Bit;
3272         else if (Bits == SE_Fixed7)
3273           AbbrevToUse = Abbrev7Bit;
3274 
3275         Vals.push_back(Value.first);
3276         Vals.append(Key.begin(), Key.end());
3277 
3278         // Emit the finished record.
3279         Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3280 
3281         // Emit an optional hash for the module now
3282         const auto &Hash = Value.second;
3283         if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3284           Vals.assign(Hash.begin(), Hash.end());
3285           // Emit the hash record.
3286           Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3287         }
3288 
3289         Vals.clear();
3290       });
3291   Stream.ExitBlock();
3292 }
3293 
3294 /// Write the function type metadata related records that need to appear before
3295 /// a function summary entry (whether per-module or combined).
3296 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
3297                                              FunctionSummary *FS) {
3298   if (!FS->type_tests().empty())
3299     Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3300 
3301   SmallVector<uint64_t, 64> Record;
3302 
3303   auto WriteVFuncIdVec = [&](uint64_t Ty,
3304                              ArrayRef<FunctionSummary::VFuncId> VFs) {
3305     if (VFs.empty())
3306       return;
3307     Record.clear();
3308     for (auto &VF : VFs) {
3309       Record.push_back(VF.GUID);
3310       Record.push_back(VF.Offset);
3311     }
3312     Stream.EmitRecord(Ty, Record);
3313   };
3314 
3315   WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3316                   FS->type_test_assume_vcalls());
3317   WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3318                   FS->type_checked_load_vcalls());
3319 
3320   auto WriteConstVCallVec = [&](uint64_t Ty,
3321                                 ArrayRef<FunctionSummary::ConstVCall> VCs) {
3322     for (auto &VC : VCs) {
3323       Record.clear();
3324       Record.push_back(VC.VFunc.GUID);
3325       Record.push_back(VC.VFunc.Offset);
3326       Record.insert(Record.end(), VC.Args.begin(), VC.Args.end());
3327       Stream.EmitRecord(Ty, Record);
3328     }
3329   };
3330 
3331   WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3332                      FS->type_test_assume_const_vcalls());
3333   WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3334                      FS->type_checked_load_const_vcalls());
3335 }
3336 
3337 // Helper to emit a single function summary record.
3338 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
3339     SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3340     unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3341     const Function &F) {
3342   NameVals.push_back(ValueID);
3343 
3344   FunctionSummary *FS = cast<FunctionSummary>(Summary);
3345   writeFunctionTypeMetadataRecords(Stream, FS);
3346 
3347   NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3348   NameVals.push_back(FS->instCount());
3349   NameVals.push_back(getEncodedFFlags(FS->fflags()));
3350   NameVals.push_back(FS->refs().size());
3351 
3352   for (auto &RI : FS->refs())
3353     NameVals.push_back(VE.getValueID(RI.getValue()));
3354 
3355   bool HasProfileData = F.getEntryCount().hasValue();
3356   for (auto &ECI : FS->calls()) {
3357     NameVals.push_back(getValueId(ECI.first));
3358     if (HasProfileData)
3359       NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
3360   }
3361 
3362   unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3363   unsigned Code =
3364       (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE);
3365 
3366   // Emit the finished record.
3367   Stream.EmitRecord(Code, NameVals, FSAbbrev);
3368   NameVals.clear();
3369 }
3370 
3371 // Collect the global value references in the given variable's initializer,
3372 // and emit them in a summary record.
3373 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
3374     const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3375     unsigned FSModRefsAbbrev) {
3376   auto VI = Index->getValueInfo(GlobalValue::getGUID(V.getName()));
3377   if (!VI || VI.getSummaryList().empty()) {
3378     // Only declarations should not have a summary (a declaration might however
3379     // have a summary if the def was in module level asm).
3380     assert(V.isDeclaration());
3381     return;
3382   }
3383   auto *Summary = VI.getSummaryList()[0].get();
3384   NameVals.push_back(VE.getValueID(&V));
3385   GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3386   NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3387 
3388   unsigned SizeBeforeRefs = NameVals.size();
3389   for (auto &RI : VS->refs())
3390     NameVals.push_back(VE.getValueID(RI.getValue()));
3391   // Sort the refs for determinism output, the vector returned by FS->refs() has
3392   // been initialized from a DenseSet.
3393   std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3394 
3395   Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
3396                     FSModRefsAbbrev);
3397   NameVals.clear();
3398 }
3399 
3400 // Current version for the summary.
3401 // This is bumped whenever we introduce changes in the way some record are
3402 // interpreted, like flags for instance.
3403 static const uint64_t INDEX_VERSION = 4;
3404 
3405 /// Emit the per-module summary section alongside the rest of
3406 /// the module's bitcode.
3407 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
3408   // By default we compile with ThinLTO if the module has a summary, but the
3409   // client can request full LTO with a module flag.
3410   bool IsThinLTO = true;
3411   if (auto *MD =
3412           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
3413     IsThinLTO = MD->getZExtValue();
3414   Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
3415                                  : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
3416                        4);
3417 
3418   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3419 
3420   if (Index->begin() == Index->end()) {
3421     Stream.ExitBlock();
3422     return;
3423   }
3424 
3425   for (const auto &GVI : valueIds()) {
3426     Stream.EmitRecord(bitc::FS_VALUE_GUID,
3427                       ArrayRef<uint64_t>{GVI.second, GVI.first});
3428   }
3429 
3430   // Abbrev for FS_PERMODULE.
3431   auto Abbv = std::make_shared<BitCodeAbbrev>();
3432   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3433   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3434   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3435   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3436   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3437   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3438   // numrefs x valueid, n x (valueid)
3439   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3440   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3441   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3442 
3443   // Abbrev for FS_PERMODULE_PROFILE.
3444   Abbv = std::make_shared<BitCodeAbbrev>();
3445   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
3446   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3447   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3448   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3449   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3450   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3451   // numrefs x valueid, n x (valueid, hotness)
3452   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3453   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3454   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3455 
3456   // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3457   Abbv = std::make_shared<BitCodeAbbrev>();
3458   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
3459   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3460   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3461   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
3462   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3463   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3464 
3465   // Abbrev for FS_ALIAS.
3466   Abbv = std::make_shared<BitCodeAbbrev>();
3467   Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3468   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3469   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3470   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3471   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3472 
3473   SmallVector<uint64_t, 64> NameVals;
3474   // Iterate over the list of functions instead of the Index to
3475   // ensure the ordering is stable.
3476   for (const Function &F : M) {
3477     // Summary emission does not support anonymous functions, they have to
3478     // renamed using the anonymous function renaming pass.
3479     if (!F.hasName())
3480       report_fatal_error("Unexpected anonymous function when writing summary");
3481 
3482     ValueInfo VI = Index->getValueInfo(GlobalValue::getGUID(F.getName()));
3483     if (!VI || VI.getSummaryList().empty()) {
3484       // Only declarations should not have a summary (a declaration might
3485       // however have a summary if the def was in module level asm).
3486       assert(F.isDeclaration());
3487       continue;
3488     }
3489     auto *Summary = VI.getSummaryList()[0].get();
3490     writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
3491                                         FSCallsAbbrev, FSCallsProfileAbbrev, F);
3492   }
3493 
3494   // Capture references from GlobalVariable initializers, which are outside
3495   // of a function scope.
3496   for (const GlobalVariable &G : M.globals())
3497     writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev);
3498 
3499   for (const GlobalAlias &A : M.aliases()) {
3500     auto *Aliasee = A.getBaseObject();
3501     if (!Aliasee->hasName())
3502       // Nameless function don't have an entry in the summary, skip it.
3503       continue;
3504     auto AliasId = VE.getValueID(&A);
3505     auto AliaseeId = VE.getValueID(Aliasee);
3506     NameVals.push_back(AliasId);
3507     auto *Summary = Index->getGlobalValueSummary(A);
3508     AliasSummary *AS = cast<AliasSummary>(Summary);
3509     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3510     NameVals.push_back(AliaseeId);
3511     Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
3512     NameVals.clear();
3513   }
3514 
3515   Stream.ExitBlock();
3516 }
3517 
3518 /// Emit the combined summary section into the combined index file.
3519 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
3520   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
3521   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3522 
3523   for (const auto &GVI : valueIds()) {
3524     Stream.EmitRecord(bitc::FS_VALUE_GUID,
3525                       ArrayRef<uint64_t>{GVI.second, GVI.first});
3526   }
3527 
3528   // Abbrev for FS_COMBINED.
3529   auto Abbv = std::make_shared<BitCodeAbbrev>();
3530   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
3531   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3532   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3533   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3534   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3535   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3536   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3537   // numrefs x valueid, n x (valueid)
3538   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3539   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3540   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3541 
3542   // Abbrev for FS_COMBINED_PROFILE.
3543   Abbv = std::make_shared<BitCodeAbbrev>();
3544   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
3545   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3546   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3547   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3548   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3549   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3550   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3551   // numrefs x valueid, n x (valueid, hotness)
3552   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3553   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3554   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3555 
3556   // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
3557   Abbv = std::make_shared<BitCodeAbbrev>();
3558   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
3559   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3560   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3561   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3562   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
3563   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3564   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3565 
3566   // Abbrev for FS_COMBINED_ALIAS.
3567   Abbv = std::make_shared<BitCodeAbbrev>();
3568   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
3569   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3570   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3571   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3572   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3573   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3574 
3575   // The aliases are emitted as a post-pass, and will point to the value
3576   // id of the aliasee. Save them in a vector for post-processing.
3577   SmallVector<AliasSummary *, 64> Aliases;
3578 
3579   // Save the value id for each summary for alias emission.
3580   DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
3581 
3582   SmallVector<uint64_t, 64> NameVals;
3583 
3584   // For local linkage, we also emit the original name separately
3585   // immediately after the record.
3586   auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
3587     if (!GlobalValue::isLocalLinkage(S.linkage()))
3588       return;
3589     NameVals.push_back(S.getOriginalName());
3590     Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
3591     NameVals.clear();
3592   };
3593 
3594   forEachSummary([&](GVInfo I) {
3595     GlobalValueSummary *S = I.second;
3596     assert(S);
3597 
3598     auto ValueId = getValueId(I.first);
3599     assert(ValueId);
3600     SummaryToValueIdMap[S] = *ValueId;
3601 
3602     if (auto *AS = dyn_cast<AliasSummary>(S)) {
3603       // Will process aliases as a post-pass because the reader wants all
3604       // global to be loaded first.
3605       Aliases.push_back(AS);
3606       return;
3607     }
3608 
3609     if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
3610       NameVals.push_back(*ValueId);
3611       NameVals.push_back(Index.getModuleId(VS->modulePath()));
3612       NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3613       for (auto &RI : VS->refs()) {
3614         auto RefValueId = getValueId(RI.getGUID());
3615         if (!RefValueId)
3616           continue;
3617         NameVals.push_back(*RefValueId);
3618       }
3619 
3620       // Emit the finished record.
3621       Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
3622                         FSModRefsAbbrev);
3623       NameVals.clear();
3624       MaybeEmitOriginalName(*S);
3625       return;
3626     }
3627 
3628     auto *FS = cast<FunctionSummary>(S);
3629     writeFunctionTypeMetadataRecords(Stream, FS);
3630 
3631     NameVals.push_back(*ValueId);
3632     NameVals.push_back(Index.getModuleId(FS->modulePath()));
3633     NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3634     NameVals.push_back(FS->instCount());
3635     NameVals.push_back(getEncodedFFlags(FS->fflags()));
3636     // Fill in below
3637     NameVals.push_back(0);
3638 
3639     unsigned Count = 0;
3640     for (auto &RI : FS->refs()) {
3641       auto RefValueId = getValueId(RI.getGUID());
3642       if (!RefValueId)
3643         continue;
3644       NameVals.push_back(*RefValueId);
3645       Count++;
3646     }
3647     NameVals[5] = Count;
3648 
3649     bool HasProfileData = false;
3650     for (auto &EI : FS->calls()) {
3651       HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown;
3652       if (HasProfileData)
3653         break;
3654     }
3655 
3656     for (auto &EI : FS->calls()) {
3657       // If this GUID doesn't have a value id, it doesn't have a function
3658       // summary and we don't need to record any calls to it.
3659       GlobalValue::GUID GUID = EI.first.getGUID();
3660       auto CallValueId = getValueId(GUID);
3661       if (!CallValueId) {
3662         // For SamplePGO, the indirect call targets for local functions will
3663         // have its original name annotated in profile. We try to find the
3664         // corresponding PGOFuncName as the GUID.
3665         GUID = Index.getGUIDFromOriginalID(GUID);
3666         if (GUID == 0)
3667           continue;
3668         CallValueId = getValueId(GUID);
3669         if (!CallValueId)
3670           continue;
3671         // The mapping from OriginalId to GUID may return a GUID
3672         // that corresponds to a static variable. Filter it out here.
3673         // This can happen when
3674         // 1) There is a call to a library function which does not have
3675         // a CallValidId;
3676         // 2) There is a static variable with the  OriginalGUID identical
3677         // to the GUID of the library function in 1);
3678         // When this happens, the logic for SamplePGO kicks in and
3679         // the static varible in 2) will be found, which needs to be
3680         // filtered out.
3681         auto *GVSum = Index.getGlobalValueSummary(GUID, false);
3682         if (GVSum &&
3683             GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind)
3684           continue;
3685       }
3686       NameVals.push_back(*CallValueId);
3687       if (HasProfileData)
3688         NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
3689     }
3690 
3691     unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3692     unsigned Code =
3693         (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
3694 
3695     // Emit the finished record.
3696     Stream.EmitRecord(Code, NameVals, FSAbbrev);
3697     NameVals.clear();
3698     MaybeEmitOriginalName(*S);
3699   });
3700 
3701   for (auto *AS : Aliases) {
3702     auto AliasValueId = SummaryToValueIdMap[AS];
3703     assert(AliasValueId);
3704     NameVals.push_back(AliasValueId);
3705     NameVals.push_back(Index.getModuleId(AS->modulePath()));
3706     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3707     auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
3708     assert(AliaseeValueId);
3709     NameVals.push_back(AliaseeValueId);
3710 
3711     // Emit the finished record.
3712     Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
3713     NameVals.clear();
3714     MaybeEmitOriginalName(*AS);
3715   }
3716 
3717   if (!Index.cfiFunctionDefs().empty()) {
3718     for (auto &S : Index.cfiFunctionDefs()) {
3719       NameVals.push_back(StrtabBuilder.add(S));
3720       NameVals.push_back(S.size());
3721     }
3722     Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
3723     NameVals.clear();
3724   }
3725 
3726   if (!Index.cfiFunctionDecls().empty()) {
3727     for (auto &S : Index.cfiFunctionDecls()) {
3728       NameVals.push_back(StrtabBuilder.add(S));
3729       NameVals.push_back(S.size());
3730     }
3731     Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
3732     NameVals.clear();
3733   }
3734 
3735   Stream.ExitBlock();
3736 }
3737 
3738 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
3739 /// current llvm version, and a record for the epoch number.
3740 static void writeIdentificationBlock(BitstreamWriter &Stream) {
3741   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
3742 
3743   // Write the "user readable" string identifying the bitcode producer
3744   auto Abbv = std::make_shared<BitCodeAbbrev>();
3745   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
3746   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3747   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3748   auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3749   writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
3750                     "LLVM" LLVM_VERSION_STRING, StringAbbrev);
3751 
3752   // Write the epoch version
3753   Abbv = std::make_shared<BitCodeAbbrev>();
3754   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
3755   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3756   auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3757   SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
3758   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
3759   Stream.ExitBlock();
3760 }
3761 
3762 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
3763   // Emit the module's hash.
3764   // MODULE_CODE_HASH: [5*i32]
3765   if (GenerateHash) {
3766     uint32_t Vals[5];
3767     Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
3768                                     Buffer.size() - BlockStartPos));
3769     StringRef Hash = Hasher.result();
3770     for (int Pos = 0; Pos < 20; Pos += 4) {
3771       Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
3772     }
3773 
3774     // Emit the finished record.
3775     Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
3776 
3777     if (ModHash)
3778       // Save the written hash value.
3779       std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash));
3780   }
3781 }
3782 
3783 void ModuleBitcodeWriter::write() {
3784   writeIdentificationBlock(Stream);
3785 
3786   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
3787   size_t BlockStartPos = Buffer.size();
3788 
3789   writeModuleVersion();
3790 
3791   // Emit blockinfo, which defines the standard abbreviations etc.
3792   writeBlockInfo();
3793 
3794   // Emit information about attribute groups.
3795   writeAttributeGroupTable();
3796 
3797   // Emit information about parameter attributes.
3798   writeAttributeTable();
3799 
3800   // Emit information describing all of the types in the module.
3801   writeTypeTable();
3802 
3803   writeComdats();
3804 
3805   // Emit top-level description of module, including target triple, inline asm,
3806   // descriptors for global variables, and function prototype info.
3807   writeModuleInfo();
3808 
3809   // Emit constants.
3810   writeModuleConstants();
3811 
3812   // Emit metadata kind names.
3813   writeModuleMetadataKinds();
3814 
3815   // Emit metadata.
3816   writeModuleMetadata();
3817 
3818   // Emit module-level use-lists.
3819   if (VE.shouldPreserveUseListOrder())
3820     writeUseListBlock(nullptr);
3821 
3822   writeOperandBundleTags();
3823   writeSyncScopeNames();
3824 
3825   // Emit function bodies.
3826   DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
3827   for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
3828     if (!F->isDeclaration())
3829       writeFunction(*F, FunctionToBitcodeIndex);
3830 
3831   // Need to write after the above call to WriteFunction which populates
3832   // the summary information in the index.
3833   if (Index)
3834     writePerModuleGlobalValueSummary();
3835 
3836   writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
3837 
3838   writeModuleHash(BlockStartPos);
3839 
3840   Stream.ExitBlock();
3841 }
3842 
3843 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
3844                                uint32_t &Position) {
3845   support::endian::write32le(&Buffer[Position], Value);
3846   Position += 4;
3847 }
3848 
3849 /// If generating a bc file on darwin, we have to emit a
3850 /// header and trailer to make it compatible with the system archiver.  To do
3851 /// this we emit the following header, and then emit a trailer that pads the
3852 /// file out to be a multiple of 16 bytes.
3853 ///
3854 /// struct bc_header {
3855 ///   uint32_t Magic;         // 0x0B17C0DE
3856 ///   uint32_t Version;       // Version, currently always 0.
3857 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
3858 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
3859 ///   uint32_t CPUType;       // CPU specifier.
3860 ///   ... potentially more later ...
3861 /// };
3862 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
3863                                          const Triple &TT) {
3864   unsigned CPUType = ~0U;
3865 
3866   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
3867   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
3868   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
3869   // specific constants here because they are implicitly part of the Darwin ABI.
3870   enum {
3871     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
3872     DARWIN_CPU_TYPE_X86        = 7,
3873     DARWIN_CPU_TYPE_ARM        = 12,
3874     DARWIN_CPU_TYPE_POWERPC    = 18
3875   };
3876 
3877   Triple::ArchType Arch = TT.getArch();
3878   if (Arch == Triple::x86_64)
3879     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
3880   else if (Arch == Triple::x86)
3881     CPUType = DARWIN_CPU_TYPE_X86;
3882   else if (Arch == Triple::ppc)
3883     CPUType = DARWIN_CPU_TYPE_POWERPC;
3884   else if (Arch == Triple::ppc64)
3885     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
3886   else if (Arch == Triple::arm || Arch == Triple::thumb)
3887     CPUType = DARWIN_CPU_TYPE_ARM;
3888 
3889   // Traditional Bitcode starts after header.
3890   assert(Buffer.size() >= BWH_HeaderSize &&
3891          "Expected header size to be reserved");
3892   unsigned BCOffset = BWH_HeaderSize;
3893   unsigned BCSize = Buffer.size() - BWH_HeaderSize;
3894 
3895   // Write the magic and version.
3896   unsigned Position = 0;
3897   writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
3898   writeInt32ToBuffer(0, Buffer, Position); // Version.
3899   writeInt32ToBuffer(BCOffset, Buffer, Position);
3900   writeInt32ToBuffer(BCSize, Buffer, Position);
3901   writeInt32ToBuffer(CPUType, Buffer, Position);
3902 
3903   // If the file is not a multiple of 16 bytes, insert dummy padding.
3904   while (Buffer.size() & 15)
3905     Buffer.push_back(0);
3906 }
3907 
3908 /// Helper to write the header common to all bitcode files.
3909 static void writeBitcodeHeader(BitstreamWriter &Stream) {
3910   // Emit the file header.
3911   Stream.Emit((unsigned)'B', 8);
3912   Stream.Emit((unsigned)'C', 8);
3913   Stream.Emit(0x0, 4);
3914   Stream.Emit(0xC, 4);
3915   Stream.Emit(0xE, 4);
3916   Stream.Emit(0xD, 4);
3917 }
3918 
3919 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
3920     : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) {
3921   writeBitcodeHeader(*Stream);
3922 }
3923 
3924 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
3925 
3926 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
3927   Stream->EnterSubblock(Block, 3);
3928 
3929   auto Abbv = std::make_shared<BitCodeAbbrev>();
3930   Abbv->Add(BitCodeAbbrevOp(Record));
3931   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
3932   auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
3933 
3934   Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
3935 
3936   Stream->ExitBlock();
3937 }
3938 
3939 void BitcodeWriter::writeSymtab() {
3940   assert(!WroteStrtab && !WroteSymtab);
3941 
3942   // If any module has module-level inline asm, we will require a registered asm
3943   // parser for the target so that we can create an accurate symbol table for
3944   // the module.
3945   for (Module *M : Mods) {
3946     if (M->getModuleInlineAsm().empty())
3947       continue;
3948 
3949     std::string Err;
3950     const Triple TT(M->getTargetTriple());
3951     const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
3952     if (!T || !T->hasMCAsmParser())
3953       return;
3954   }
3955 
3956   WroteSymtab = true;
3957   SmallVector<char, 0> Symtab;
3958   // The irsymtab::build function may be unable to create a symbol table if the
3959   // module is malformed (e.g. it contains an invalid alias). Writing a symbol
3960   // table is not required for correctness, but we still want to be able to
3961   // write malformed modules to bitcode files, so swallow the error.
3962   if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
3963     consumeError(std::move(E));
3964     return;
3965   }
3966 
3967   writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
3968             {Symtab.data(), Symtab.size()});
3969 }
3970 
3971 void BitcodeWriter::writeStrtab() {
3972   assert(!WroteStrtab);
3973 
3974   std::vector<char> Strtab;
3975   StrtabBuilder.finalizeInOrder();
3976   Strtab.resize(StrtabBuilder.getSize());
3977   StrtabBuilder.write((uint8_t *)Strtab.data());
3978 
3979   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
3980             {Strtab.data(), Strtab.size()});
3981 
3982   WroteStrtab = true;
3983 }
3984 
3985 void BitcodeWriter::copyStrtab(StringRef Strtab) {
3986   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
3987   WroteStrtab = true;
3988 }
3989 
3990 void BitcodeWriter::writeModule(const Module *M,
3991                                 bool ShouldPreserveUseListOrder,
3992                                 const ModuleSummaryIndex *Index,
3993                                 bool GenerateHash, ModuleHash *ModHash) {
3994   assert(!WroteStrtab);
3995 
3996   // The Mods vector is used by irsymtab::build, which requires non-const
3997   // Modules in case it needs to materialize metadata. But the bitcode writer
3998   // requires that the module is materialized, so we can cast to non-const here,
3999   // after checking that it is in fact materialized.
4000   assert(M->isMaterialized());
4001   Mods.push_back(const_cast<Module *>(M));
4002 
4003   ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
4004                                    ShouldPreserveUseListOrder, Index,
4005                                    GenerateHash, ModHash);
4006   ModuleWriter.write();
4007 }
4008 
4009 void BitcodeWriter::writeIndex(
4010     const ModuleSummaryIndex *Index,
4011     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4012   IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
4013                                  ModuleToSummariesForIndex);
4014   IndexWriter.write();
4015 }
4016 
4017 /// WriteBitcodeToFile - Write the specified module to the specified output
4018 /// stream.
4019 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out,
4020                               bool ShouldPreserveUseListOrder,
4021                               const ModuleSummaryIndex *Index,
4022                               bool GenerateHash, ModuleHash *ModHash) {
4023   SmallVector<char, 0> Buffer;
4024   Buffer.reserve(256*1024);
4025 
4026   // If this is darwin or another generic macho target, reserve space for the
4027   // header.
4028   Triple TT(M->getTargetTriple());
4029   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4030     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
4031 
4032   BitcodeWriter Writer(Buffer);
4033   Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
4034                      ModHash);
4035   Writer.writeSymtab();
4036   Writer.writeStrtab();
4037 
4038   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4039     emitDarwinBCHeaderAndTrailer(Buffer, TT);
4040 
4041   // Write the generated bitstream to "Out".
4042   Out.write((char*)&Buffer.front(), Buffer.size());
4043 }
4044 
4045 void IndexBitcodeWriter::write() {
4046   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4047 
4048   writeModuleVersion();
4049 
4050   // Write the module paths in the combined index.
4051   writeModStrings();
4052 
4053   // Write the summary combined index records.
4054   writeCombinedGlobalValueSummary();
4055 
4056   Stream.ExitBlock();
4057 }
4058 
4059 // Write the specified module summary index to the given raw output stream,
4060 // where it will be written in a new bitcode block. This is used when
4061 // writing the combined index file for ThinLTO. When writing a subset of the
4062 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
4063 void llvm::WriteIndexToFile(
4064     const ModuleSummaryIndex &Index, raw_ostream &Out,
4065     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4066   SmallVector<char, 0> Buffer;
4067   Buffer.reserve(256 * 1024);
4068 
4069   BitcodeWriter Writer(Buffer);
4070   Writer.writeIndex(&Index, ModuleToSummariesForIndex);
4071   Writer.writeStrtab();
4072 
4073   Out.write((char *)&Buffer.front(), Buffer.size());
4074 }
4075 
4076 namespace {
4077 
4078 /// Class to manage the bitcode writing for a thin link bitcode file.
4079 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
4080   /// ModHash is for use in ThinLTO incremental build, generated while writing
4081   /// the module bitcode file.
4082   const ModuleHash *ModHash;
4083 
4084 public:
4085   ThinLinkBitcodeWriter(const Module *M, StringTableBuilder &StrtabBuilder,
4086                         BitstreamWriter &Stream,
4087                         const ModuleSummaryIndex &Index,
4088                         const ModuleHash &ModHash)
4089       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
4090                                 /*ShouldPreserveUseListOrder=*/false, &Index),
4091         ModHash(&ModHash) {}
4092 
4093   void write();
4094 
4095 private:
4096   void writeSimplifiedModuleInfo();
4097 };
4098 
4099 } // end anonymous namespace
4100 
4101 // This function writes a simpilified module info for thin link bitcode file.
4102 // It only contains the source file name along with the name(the offset and
4103 // size in strtab) and linkage for global values. For the global value info
4104 // entry, in order to keep linkage at offset 5, there are three zeros used
4105 // as padding.
4106 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
4107   SmallVector<unsigned, 64> Vals;
4108   // Emit the module's source file name.
4109   {
4110     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
4111     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
4112     if (Bits == SE_Char6)
4113       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
4114     else if (Bits == SE_Fixed7)
4115       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
4116 
4117     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4118     auto Abbv = std::make_shared<BitCodeAbbrev>();
4119     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
4120     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4121     Abbv->Add(AbbrevOpToUse);
4122     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4123 
4124     for (const auto P : M.getSourceFileName())
4125       Vals.push_back((unsigned char)P);
4126 
4127     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
4128     Vals.clear();
4129   }
4130 
4131   // Emit the global variable information.
4132   for (const GlobalVariable &GV : M.globals()) {
4133     // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
4134     Vals.push_back(StrtabBuilder.add(GV.getName()));
4135     Vals.push_back(GV.getName().size());
4136     Vals.push_back(0);
4137     Vals.push_back(0);
4138     Vals.push_back(0);
4139     Vals.push_back(getEncodedLinkage(GV));
4140 
4141     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
4142     Vals.clear();
4143   }
4144 
4145   // Emit the function proto information.
4146   for (const Function &F : M) {
4147     // FUNCTION:  [strtab offset, strtab size, 0, 0, 0, linkage]
4148     Vals.push_back(StrtabBuilder.add(F.getName()));
4149     Vals.push_back(F.getName().size());
4150     Vals.push_back(0);
4151     Vals.push_back(0);
4152     Vals.push_back(0);
4153     Vals.push_back(getEncodedLinkage(F));
4154 
4155     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
4156     Vals.clear();
4157   }
4158 
4159   // Emit the alias information.
4160   for (const GlobalAlias &A : M.aliases()) {
4161     // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
4162     Vals.push_back(StrtabBuilder.add(A.getName()));
4163     Vals.push_back(A.getName().size());
4164     Vals.push_back(0);
4165     Vals.push_back(0);
4166     Vals.push_back(0);
4167     Vals.push_back(getEncodedLinkage(A));
4168 
4169     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
4170     Vals.clear();
4171   }
4172 
4173   // Emit the ifunc information.
4174   for (const GlobalIFunc &I : M.ifuncs()) {
4175     // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
4176     Vals.push_back(StrtabBuilder.add(I.getName()));
4177     Vals.push_back(I.getName().size());
4178     Vals.push_back(0);
4179     Vals.push_back(0);
4180     Vals.push_back(0);
4181     Vals.push_back(getEncodedLinkage(I));
4182 
4183     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
4184     Vals.clear();
4185   }
4186 }
4187 
4188 void ThinLinkBitcodeWriter::write() {
4189   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4190 
4191   writeModuleVersion();
4192 
4193   writeSimplifiedModuleInfo();
4194 
4195   writePerModuleGlobalValueSummary();
4196 
4197   // Write module hash.
4198   Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
4199 
4200   Stream.ExitBlock();
4201 }
4202 
4203 void BitcodeWriter::writeThinLinkBitcode(const Module *M,
4204                                          const ModuleSummaryIndex &Index,
4205                                          const ModuleHash &ModHash) {
4206   assert(!WroteStrtab);
4207 
4208   // The Mods vector is used by irsymtab::build, which requires non-const
4209   // Modules in case it needs to materialize metadata. But the bitcode writer
4210   // requires that the module is materialized, so we can cast to non-const here,
4211   // after checking that it is in fact materialized.
4212   assert(M->isMaterialized());
4213   Mods.push_back(const_cast<Module *>(M));
4214 
4215   ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
4216                                        ModHash);
4217   ThinLinkWriter.write();
4218 }
4219 
4220 // Write the specified thin link bitcode file to the given raw output stream,
4221 // where it will be written in a new bitcode block. This is used when
4222 // writing the per-module index file for ThinLTO.
4223 void llvm::WriteThinLinkBitcodeToFile(const Module *M, raw_ostream &Out,
4224                                       const ModuleSummaryIndex &Index,
4225                                       const ModuleHash &ModHash) {
4226   SmallVector<char, 0> Buffer;
4227   Buffer.reserve(256 * 1024);
4228 
4229   BitcodeWriter Writer(Buffer);
4230   Writer.writeThinLinkBitcode(M, Index, ModHash);
4231   Writer.writeSymtab();
4232   Writer.writeStrtab();
4233 
4234   Out.write((char *)&Buffer.front(), Buffer.size());
4235 }
4236