1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by Chris Lattner and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/ParameterAttributes.h" 24 #include "llvm/TypeSymbolTable.h" 25 #include "llvm/ValueSymbolTable.h" 26 #include "llvm/Support/MathExtras.h" 27 using namespace llvm; 28 29 /// These are manifest constants used by the bitcode writer. They do not need to 30 /// be kept in sync with the reader, but need to be consistent within this file. 31 enum { 32 CurVersion = 0, 33 34 // VALUE_SYMTAB_BLOCK abbrev id's. 35 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 36 VST_ENTRY_7_ABBREV, 37 VST_ENTRY_6_ABBREV, 38 VST_BBENTRY_6_ABBREV, 39 40 // CONSTANTS_BLOCK abbrev id's. 41 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 CONSTANTS_INTEGER_ABBREV, 43 CONSTANTS_CE_CAST_Abbrev, 44 CONSTANTS_NULL_Abbrev, 45 46 // FUNCTION_BLOCK abbrev id's. 47 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 FUNCTION_INST_BINOP_ABBREV, 49 FUNCTION_INST_CAST_ABBREV, 50 FUNCTION_INST_RET_VOID_ABBREV, 51 FUNCTION_INST_RET_VAL_ABBREV, 52 FUNCTION_INST_UNREACHABLE_ABBREV 53 }; 54 55 56 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 57 switch (Opcode) { 58 default: assert(0 && "Unknown cast instruction!"); 59 case Instruction::Trunc : return bitc::CAST_TRUNC; 60 case Instruction::ZExt : return bitc::CAST_ZEXT; 61 case Instruction::SExt : return bitc::CAST_SEXT; 62 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 63 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 64 case Instruction::UIToFP : return bitc::CAST_UITOFP; 65 case Instruction::SIToFP : return bitc::CAST_SITOFP; 66 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 67 case Instruction::FPExt : return bitc::CAST_FPEXT; 68 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 69 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 70 case Instruction::BitCast : return bitc::CAST_BITCAST; 71 } 72 } 73 74 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 75 switch (Opcode) { 76 default: assert(0 && "Unknown binary instruction!"); 77 case Instruction::Add: return bitc::BINOP_ADD; 78 case Instruction::Sub: return bitc::BINOP_SUB; 79 case Instruction::Mul: return bitc::BINOP_MUL; 80 case Instruction::UDiv: return bitc::BINOP_UDIV; 81 case Instruction::FDiv: 82 case Instruction::SDiv: return bitc::BINOP_SDIV; 83 case Instruction::URem: return bitc::BINOP_UREM; 84 case Instruction::FRem: 85 case Instruction::SRem: return bitc::BINOP_SREM; 86 case Instruction::Shl: return bitc::BINOP_SHL; 87 case Instruction::LShr: return bitc::BINOP_LSHR; 88 case Instruction::AShr: return bitc::BINOP_ASHR; 89 case Instruction::And: return bitc::BINOP_AND; 90 case Instruction::Or: return bitc::BINOP_OR; 91 case Instruction::Xor: return bitc::BINOP_XOR; 92 } 93 } 94 95 96 97 static void WriteStringRecord(unsigned Code, const std::string &Str, 98 unsigned AbbrevToUse, BitstreamWriter &Stream) { 99 SmallVector<unsigned, 64> Vals; 100 101 // Code: [strchar x N] 102 for (unsigned i = 0, e = Str.size(); i != e; ++i) 103 Vals.push_back(Str[i]); 104 105 // Emit the finished record. 106 Stream.EmitRecord(Code, Vals, AbbrevToUse); 107 } 108 109 // Emit information about parameter attributes. 110 static void WriteParamAttrTable(const ValueEnumerator &VE, 111 BitstreamWriter &Stream) { 112 const std::vector<const ParamAttrsList*> &Attrs = VE.getParamAttrs(); 113 if (Attrs.empty()) return; 114 115 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 116 117 SmallVector<uint64_t, 64> Record; 118 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 119 const ParamAttrsList *A = Attrs[i]; 120 for (unsigned op = 0, e = A->size(); op != e; ++op) { 121 Record.push_back(A->getParamIndex(op)); 122 Record.push_back(A->getParamAttrsAtIndex(op)); 123 } 124 125 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 126 Record.clear(); 127 } 128 129 Stream.ExitBlock(); 130 } 131 132 /// WriteTypeTable - Write out the type table for a module. 133 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 134 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 135 136 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 137 SmallVector<uint64_t, 64> TypeVals; 138 139 // Abbrev for TYPE_CODE_POINTER. 140 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 141 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 143 Log2_32_Ceil(VE.getTypes().size()+1))); 144 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 145 146 // Abbrev for TYPE_CODE_FUNCTION. 147 Abbv = new BitCodeAbbrev(); 148 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 151 Log2_32_Ceil(VE.getParamAttrs().size()+1))); 152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 154 Log2_32_Ceil(VE.getTypes().size()+1))); 155 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 156 157 // Abbrev for TYPE_CODE_STRUCT. 158 Abbv = new BitCodeAbbrev(); 159 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 163 Log2_32_Ceil(VE.getTypes().size()+1))); 164 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 165 166 // Abbrev for TYPE_CODE_ARRAY. 167 Abbv = new BitCodeAbbrev(); 168 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 171 Log2_32_Ceil(VE.getTypes().size()+1))); 172 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 173 174 // Emit an entry count so the reader can reserve space. 175 TypeVals.push_back(TypeList.size()); 176 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 177 TypeVals.clear(); 178 179 // Loop over all of the types, emitting each in turn. 180 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 181 const Type *T = TypeList[i].first; 182 int AbbrevToUse = 0; 183 unsigned Code = 0; 184 185 switch (T->getTypeID()) { 186 case Type::PackedStructTyID: // FIXME: Delete Type::PackedStructTyID. 187 default: assert(0 && "Unknown type!"); 188 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 189 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 190 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 191 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 192 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 193 case Type::IntegerTyID: 194 // INTEGER: [width] 195 Code = bitc::TYPE_CODE_INTEGER; 196 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 197 break; 198 case Type::PointerTyID: 199 // POINTER: [pointee type] 200 Code = bitc::TYPE_CODE_POINTER; 201 TypeVals.push_back(VE.getTypeID(cast<PointerType>(T)->getElementType())); 202 AbbrevToUse = PtrAbbrev; 203 break; 204 205 case Type::FunctionTyID: { 206 const FunctionType *FT = cast<FunctionType>(T); 207 // FUNCTION: [isvararg, attrid, retty, paramty x N] 208 Code = bitc::TYPE_CODE_FUNCTION; 209 TypeVals.push_back(FT->isVarArg()); 210 TypeVals.push_back(VE.getParamAttrID(FT->getParamAttrs())); 211 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 212 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 213 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 214 AbbrevToUse = FunctionAbbrev; 215 break; 216 } 217 case Type::StructTyID: { 218 const StructType *ST = cast<StructType>(T); 219 // STRUCT: [ispacked, eltty x N] 220 Code = bitc::TYPE_CODE_STRUCT; 221 TypeVals.push_back(ST->isPacked()); 222 // Output all of the element types. 223 for (StructType::element_iterator I = ST->element_begin(), 224 E = ST->element_end(); I != E; ++I) 225 TypeVals.push_back(VE.getTypeID(*I)); 226 AbbrevToUse = StructAbbrev; 227 break; 228 } 229 case Type::ArrayTyID: { 230 const ArrayType *AT = cast<ArrayType>(T); 231 // ARRAY: [numelts, eltty] 232 Code = bitc::TYPE_CODE_ARRAY; 233 TypeVals.push_back(AT->getNumElements()); 234 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 235 AbbrevToUse = ArrayAbbrev; 236 break; 237 } 238 case Type::VectorTyID: { 239 const VectorType *VT = cast<VectorType>(T); 240 // VECTOR [numelts, eltty] 241 Code = bitc::TYPE_CODE_VECTOR; 242 TypeVals.push_back(VT->getNumElements()); 243 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 244 break; 245 } 246 } 247 248 // Emit the finished record. 249 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 250 TypeVals.clear(); 251 } 252 253 Stream.ExitBlock(); 254 } 255 256 static unsigned getEncodedLinkage(const GlobalValue *GV) { 257 switch (GV->getLinkage()) { 258 default: assert(0 && "Invalid linkage!"); 259 case GlobalValue::ExternalLinkage: return 0; 260 case GlobalValue::WeakLinkage: return 1; 261 case GlobalValue::AppendingLinkage: return 2; 262 case GlobalValue::InternalLinkage: return 3; 263 case GlobalValue::LinkOnceLinkage: return 4; 264 case GlobalValue::DLLImportLinkage: return 5; 265 case GlobalValue::DLLExportLinkage: return 6; 266 case GlobalValue::ExternalWeakLinkage: return 7; 267 } 268 } 269 270 static unsigned getEncodedVisibility(const GlobalValue *GV) { 271 switch (GV->getVisibility()) { 272 default: assert(0 && "Invalid visibility!"); 273 case GlobalValue::DefaultVisibility: return 0; 274 case GlobalValue::HiddenVisibility: return 1; 275 case GlobalValue::ProtectedVisibility: return 2; 276 } 277 } 278 279 // Emit top-level description of module, including target triple, inline asm, 280 // descriptors for global variables, and function prototype info. 281 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 282 BitstreamWriter &Stream) { 283 // Emit the list of dependent libraries for the Module. 284 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 285 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 286 287 // Emit various pieces of data attached to a module. 288 if (!M->getTargetTriple().empty()) 289 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 290 0/*TODO*/, Stream); 291 if (!M->getDataLayout().empty()) 292 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 293 0/*TODO*/, Stream); 294 if (!M->getModuleInlineAsm().empty()) 295 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 296 0/*TODO*/, Stream); 297 298 // Emit information about sections, computing how many there are. Also 299 // compute the maximum alignment value. 300 std::map<std::string, unsigned> SectionMap; 301 unsigned MaxAlignment = 0; 302 unsigned MaxGlobalType = 0; 303 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 304 GV != E; ++GV) { 305 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 306 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 307 308 if (!GV->hasSection()) continue; 309 // Give section names unique ID's. 310 unsigned &Entry = SectionMap[GV->getSection()]; 311 if (Entry != 0) continue; 312 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 313 0/*TODO*/, Stream); 314 Entry = SectionMap.size(); 315 } 316 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 317 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 318 if (!F->hasSection()) continue; 319 // Give section names unique ID's. 320 unsigned &Entry = SectionMap[F->getSection()]; 321 if (Entry != 0) continue; 322 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 323 0/*TODO*/, Stream); 324 Entry = SectionMap.size(); 325 } 326 327 // Emit abbrev for globals, now that we know # sections and max alignment. 328 unsigned SimpleGVarAbbrev = 0; 329 if (!M->global_empty()) { 330 // Add an abbrev for common globals with no visibility or thread localness. 331 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 332 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 334 Log2_32_Ceil(MaxGlobalType+1))); 335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Linkage. 338 if (MaxAlignment == 0) // Alignment. 339 Abbv->Add(BitCodeAbbrevOp(0)); 340 else { 341 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 343 Log2_32_Ceil(MaxEncAlignment+1))); 344 } 345 if (SectionMap.empty()) // Section. 346 Abbv->Add(BitCodeAbbrevOp(0)); 347 else 348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 349 Log2_32_Ceil(SectionMap.size()+1))); 350 // Don't bother emitting vis + thread local. 351 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 352 } 353 354 // Emit the global variable information. 355 SmallVector<unsigned, 64> Vals; 356 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 357 GV != E; ++GV) { 358 unsigned AbbrevToUse = 0; 359 360 // GLOBALVAR: [type, isconst, initid, 361 // linkage, alignment, section, visibility, threadlocal] 362 Vals.push_back(VE.getTypeID(GV->getType())); 363 Vals.push_back(GV->isConstant()); 364 Vals.push_back(GV->isDeclaration() ? 0 : 365 (VE.getValueID(GV->getInitializer()) + 1)); 366 Vals.push_back(getEncodedLinkage(GV)); 367 Vals.push_back(Log2_32(GV->getAlignment())+1); 368 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 369 if (GV->isThreadLocal() || 370 GV->getVisibility() != GlobalValue::DefaultVisibility) { 371 Vals.push_back(getEncodedVisibility(GV)); 372 Vals.push_back(GV->isThreadLocal()); 373 } else { 374 AbbrevToUse = SimpleGVarAbbrev; 375 } 376 377 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 378 Vals.clear(); 379 } 380 381 // Emit the function proto information. 382 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 383 // FUNCTION: [type, callingconv, isproto, linkage, alignment, section, 384 // visibility] 385 Vals.push_back(VE.getTypeID(F->getType())); 386 Vals.push_back(F->getCallingConv()); 387 Vals.push_back(F->isDeclaration()); 388 Vals.push_back(getEncodedLinkage(F)); 389 Vals.push_back(Log2_32(F->getAlignment())+1); 390 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 391 Vals.push_back(getEncodedVisibility(F)); 392 393 unsigned AbbrevToUse = 0; 394 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 395 Vals.clear(); 396 } 397 398 399 // Emit the alias information. 400 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 401 AI != E; ++AI) { 402 Vals.push_back(VE.getTypeID(AI->getType())); 403 Vals.push_back(VE.getValueID(AI->getAliasee())); 404 Vals.push_back(getEncodedLinkage(AI)); 405 unsigned AbbrevToUse = 0; 406 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 407 Vals.clear(); 408 } 409 } 410 411 412 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 413 const ValueEnumerator &VE, 414 BitstreamWriter &Stream, bool isGlobal) { 415 if (FirstVal == LastVal) return; 416 417 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 418 419 unsigned AggregateAbbrev = 0; 420 unsigned String8Abbrev = 0; 421 unsigned CString7Abbrev = 0; 422 unsigned CString6Abbrev = 0; 423 // If this is a constant pool for the module, emit module-specific abbrevs. 424 if (isGlobal) { 425 // Abbrev for CST_CODE_AGGREGATE. 426 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 427 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 430 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 431 432 // Abbrev for CST_CODE_STRING. 433 Abbv = new BitCodeAbbrev(); 434 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 437 String8Abbrev = Stream.EmitAbbrev(Abbv); 438 // Abbrev for CST_CODE_CSTRING. 439 Abbv = new BitCodeAbbrev(); 440 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 443 CString7Abbrev = Stream.EmitAbbrev(Abbv); 444 // Abbrev for CST_CODE_CSTRING. 445 Abbv = new BitCodeAbbrev(); 446 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 449 CString6Abbrev = Stream.EmitAbbrev(Abbv); 450 } 451 452 SmallVector<uint64_t, 64> Record; 453 454 const ValueEnumerator::ValueList &Vals = VE.getValues(); 455 const Type *LastTy = 0; 456 for (unsigned i = FirstVal; i != LastVal; ++i) { 457 const Value *V = Vals[i].first; 458 // If we need to switch types, do so now. 459 if (V->getType() != LastTy) { 460 LastTy = V->getType(); 461 Record.push_back(VE.getTypeID(LastTy)); 462 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 463 CONSTANTS_SETTYPE_ABBREV); 464 Record.clear(); 465 } 466 467 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 468 Record.push_back(unsigned(IA->hasSideEffects())); 469 470 // Add the asm string. 471 const std::string &AsmStr = IA->getAsmString(); 472 Record.push_back(AsmStr.size()); 473 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 474 Record.push_back(AsmStr[i]); 475 476 // Add the constraint string. 477 const std::string &ConstraintStr = IA->getConstraintString(); 478 Record.push_back(ConstraintStr.size()); 479 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 480 Record.push_back(ConstraintStr[i]); 481 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 482 Record.clear(); 483 continue; 484 } 485 const Constant *C = cast<Constant>(V); 486 unsigned Code = -1U; 487 unsigned AbbrevToUse = 0; 488 if (C->isNullValue()) { 489 Code = bitc::CST_CODE_NULL; 490 } else if (isa<UndefValue>(C)) { 491 Code = bitc::CST_CODE_UNDEF; 492 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 493 if (IV->getBitWidth() <= 64) { 494 int64_t V = IV->getSExtValue(); 495 if (V >= 0) 496 Record.push_back(V << 1); 497 else 498 Record.push_back((-V << 1) | 1); 499 Code = bitc::CST_CODE_INTEGER; 500 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 501 } else { // Wide integers, > 64 bits in size. 502 // We have an arbitrary precision integer value to write whose 503 // bit width is > 64. However, in canonical unsigned integer 504 // format it is likely that the high bits are going to be zero. 505 // So, we only write the number of active words. 506 unsigned NWords = IV->getValue().getActiveWords(); 507 const uint64_t *RawWords = IV->getValue().getRawData(); 508 for (unsigned i = 0; i != NWords; ++i) { 509 int64_t V = RawWords[i]; 510 if (V >= 0) 511 Record.push_back(V << 1); 512 else 513 Record.push_back((-V << 1) | 1); 514 } 515 Code = bitc::CST_CODE_WIDE_INTEGER; 516 } 517 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 518 Code = bitc::CST_CODE_FLOAT; 519 if (CFP->getType() == Type::FloatTy) { 520 Record.push_back(FloatToBits((float)CFP->getValue())); 521 } else { 522 assert (CFP->getType() == Type::DoubleTy && "Unknown FP type!"); 523 Record.push_back(DoubleToBits((double)CFP->getValue())); 524 } 525 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 526 // Emit constant strings specially. 527 unsigned NumOps = C->getNumOperands(); 528 // If this is a null-terminated string, use the denser CSTRING encoding. 529 if (C->getOperand(NumOps-1)->isNullValue()) { 530 Code = bitc::CST_CODE_CSTRING; 531 --NumOps; // Don't encode the null, which isn't allowed by char6. 532 } else { 533 Code = bitc::CST_CODE_STRING; 534 AbbrevToUse = String8Abbrev; 535 } 536 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 537 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 538 for (unsigned i = 0; i != NumOps; ++i) { 539 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue(); 540 Record.push_back(V); 541 isCStr7 &= (V & 128) == 0; 542 if (isCStrChar6) 543 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 544 } 545 546 if (isCStrChar6) 547 AbbrevToUse = CString6Abbrev; 548 else if (isCStr7) 549 AbbrevToUse = CString7Abbrev; 550 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 551 isa<ConstantVector>(V)) { 552 Code = bitc::CST_CODE_AGGREGATE; 553 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 554 Record.push_back(VE.getValueID(C->getOperand(i))); 555 AbbrevToUse = AggregateAbbrev; 556 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 557 switch (CE->getOpcode()) { 558 default: 559 if (Instruction::isCast(CE->getOpcode())) { 560 Code = bitc::CST_CODE_CE_CAST; 561 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 562 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 563 Record.push_back(VE.getValueID(C->getOperand(0))); 564 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 565 } else { 566 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 567 Code = bitc::CST_CODE_CE_BINOP; 568 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 569 Record.push_back(VE.getValueID(C->getOperand(0))); 570 Record.push_back(VE.getValueID(C->getOperand(1))); 571 } 572 break; 573 case Instruction::GetElementPtr: 574 Code = bitc::CST_CODE_CE_GEP; 575 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 576 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 577 Record.push_back(VE.getValueID(C->getOperand(i))); 578 } 579 break; 580 case Instruction::Select: 581 Code = bitc::CST_CODE_CE_SELECT; 582 Record.push_back(VE.getValueID(C->getOperand(0))); 583 Record.push_back(VE.getValueID(C->getOperand(1))); 584 Record.push_back(VE.getValueID(C->getOperand(2))); 585 break; 586 case Instruction::ExtractElement: 587 Code = bitc::CST_CODE_CE_EXTRACTELT; 588 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 589 Record.push_back(VE.getValueID(C->getOperand(0))); 590 Record.push_back(VE.getValueID(C->getOperand(1))); 591 break; 592 case Instruction::InsertElement: 593 Code = bitc::CST_CODE_CE_INSERTELT; 594 Record.push_back(VE.getValueID(C->getOperand(0))); 595 Record.push_back(VE.getValueID(C->getOperand(1))); 596 Record.push_back(VE.getValueID(C->getOperand(2))); 597 break; 598 case Instruction::ShuffleVector: 599 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 600 Record.push_back(VE.getValueID(C->getOperand(0))); 601 Record.push_back(VE.getValueID(C->getOperand(1))); 602 Record.push_back(VE.getValueID(C->getOperand(2))); 603 break; 604 case Instruction::ICmp: 605 case Instruction::FCmp: 606 Code = bitc::CST_CODE_CE_CMP; 607 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 608 Record.push_back(VE.getValueID(C->getOperand(0))); 609 Record.push_back(VE.getValueID(C->getOperand(1))); 610 Record.push_back(CE->getPredicate()); 611 break; 612 } 613 } else { 614 assert(0 && "Unknown constant!"); 615 } 616 Stream.EmitRecord(Code, Record, AbbrevToUse); 617 Record.clear(); 618 } 619 620 Stream.ExitBlock(); 621 } 622 623 static void WriteModuleConstants(const ValueEnumerator &VE, 624 BitstreamWriter &Stream) { 625 const ValueEnumerator::ValueList &Vals = VE.getValues(); 626 627 // Find the first constant to emit, which is the first non-globalvalue value. 628 // We know globalvalues have been emitted by WriteModuleInfo. 629 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 630 if (!isa<GlobalValue>(Vals[i].first)) { 631 WriteConstants(i, Vals.size(), VE, Stream, true); 632 return; 633 } 634 } 635 } 636 637 /// PushValueAndType - The file has to encode both the value and type id for 638 /// many values, because we need to know what type to create for forward 639 /// references. However, most operands are not forward references, so this type 640 /// field is not needed. 641 /// 642 /// This function adds V's value ID to Vals. If the value ID is higher than the 643 /// instruction ID, then it is a forward reference, and it also includes the 644 /// type ID. 645 static bool PushValueAndType(Value *V, unsigned InstID, 646 SmallVector<unsigned, 64> &Vals, 647 ValueEnumerator &VE) { 648 unsigned ValID = VE.getValueID(V); 649 Vals.push_back(ValID); 650 if (ValID >= InstID) { 651 Vals.push_back(VE.getTypeID(V->getType())); 652 return true; 653 } 654 return false; 655 } 656 657 /// WriteInstruction - Emit an instruction to the specified stream. 658 static void WriteInstruction(const Instruction &I, unsigned InstID, 659 ValueEnumerator &VE, BitstreamWriter &Stream, 660 SmallVector<unsigned, 64> &Vals) { 661 unsigned Code = 0; 662 unsigned AbbrevToUse = 0; 663 switch (I.getOpcode()) { 664 default: 665 if (Instruction::isCast(I.getOpcode())) { 666 Code = bitc::FUNC_CODE_INST_CAST; 667 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 668 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 669 Vals.push_back(VE.getTypeID(I.getType())); 670 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 671 } else { 672 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 673 Code = bitc::FUNC_CODE_INST_BINOP; 674 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 675 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 676 Vals.push_back(VE.getValueID(I.getOperand(1))); 677 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 678 } 679 break; 680 681 case Instruction::GetElementPtr: 682 Code = bitc::FUNC_CODE_INST_GEP; 683 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 684 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 685 break; 686 case Instruction::Select: 687 Code = bitc::FUNC_CODE_INST_SELECT; 688 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 689 Vals.push_back(VE.getValueID(I.getOperand(2))); 690 Vals.push_back(VE.getValueID(I.getOperand(0))); 691 break; 692 case Instruction::ExtractElement: 693 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 694 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 695 Vals.push_back(VE.getValueID(I.getOperand(1))); 696 break; 697 case Instruction::InsertElement: 698 Code = bitc::FUNC_CODE_INST_INSERTELT; 699 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 700 Vals.push_back(VE.getValueID(I.getOperand(1))); 701 Vals.push_back(VE.getValueID(I.getOperand(2))); 702 break; 703 case Instruction::ShuffleVector: 704 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 705 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 706 Vals.push_back(VE.getValueID(I.getOperand(1))); 707 Vals.push_back(VE.getValueID(I.getOperand(2))); 708 break; 709 case Instruction::ICmp: 710 case Instruction::FCmp: 711 Code = bitc::FUNC_CODE_INST_CMP; 712 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 713 Vals.push_back(VE.getValueID(I.getOperand(1))); 714 Vals.push_back(cast<CmpInst>(I).getPredicate()); 715 break; 716 717 case Instruction::Ret: 718 Code = bitc::FUNC_CODE_INST_RET; 719 if (!I.getNumOperands()) 720 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 721 else if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 722 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 723 break; 724 case Instruction::Br: 725 Code = bitc::FUNC_CODE_INST_BR; 726 Vals.push_back(VE.getValueID(I.getOperand(0))); 727 if (cast<BranchInst>(I).isConditional()) { 728 Vals.push_back(VE.getValueID(I.getOperand(1))); 729 Vals.push_back(VE.getValueID(I.getOperand(2))); 730 } 731 break; 732 case Instruction::Switch: 733 Code = bitc::FUNC_CODE_INST_SWITCH; 734 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 735 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 736 Vals.push_back(VE.getValueID(I.getOperand(i))); 737 break; 738 case Instruction::Invoke: { 739 Code = bitc::FUNC_CODE_INST_INVOKE; 740 Vals.push_back(cast<InvokeInst>(I).getCallingConv()); 741 Vals.push_back(VE.getValueID(I.getOperand(1))); // normal dest 742 Vals.push_back(VE.getValueID(I.getOperand(2))); // unwind dest 743 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee 744 745 // Emit value #'s for the fixed parameters. 746 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 747 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 748 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 749 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 750 751 // Emit type/value pairs for varargs params. 752 if (FTy->isVarArg()) { 753 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); 754 i != e; ++i) 755 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 756 } 757 break; 758 } 759 case Instruction::Unwind: 760 Code = bitc::FUNC_CODE_INST_UNWIND; 761 break; 762 case Instruction::Unreachable: 763 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 764 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 765 break; 766 767 case Instruction::PHI: 768 Code = bitc::FUNC_CODE_INST_PHI; 769 Vals.push_back(VE.getTypeID(I.getType())); 770 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 771 Vals.push_back(VE.getValueID(I.getOperand(i))); 772 break; 773 774 case Instruction::Malloc: 775 Code = bitc::FUNC_CODE_INST_MALLOC; 776 Vals.push_back(VE.getTypeID(I.getType())); 777 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 778 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); 779 break; 780 781 case Instruction::Free: 782 Code = bitc::FUNC_CODE_INST_FREE; 783 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 784 break; 785 786 case Instruction::Alloca: 787 Code = bitc::FUNC_CODE_INST_ALLOCA; 788 Vals.push_back(VE.getTypeID(I.getType())); 789 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 790 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 791 break; 792 793 case Instruction::Load: 794 Code = bitc::FUNC_CODE_INST_LOAD; 795 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 796 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 797 798 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 799 Vals.push_back(cast<LoadInst>(I).isVolatile()); 800 break; 801 case Instruction::Store: 802 Code = bitc::FUNC_CODE_INST_STORE; 803 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // val. 804 Vals.push_back(VE.getValueID(I.getOperand(1))); // ptr. 805 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 806 Vals.push_back(cast<StoreInst>(I).isVolatile()); 807 break; 808 case Instruction::Call: { 809 Code = bitc::FUNC_CODE_INST_CALL; 810 Vals.push_back((cast<CallInst>(I).getCallingConv() << 1) | 811 unsigned(cast<CallInst>(I).isTailCall())); 812 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // Callee 813 814 // Emit value #'s for the fixed parameters. 815 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 816 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 817 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 818 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 819 820 // Emit type/value pairs for varargs params. 821 if (FTy->isVarArg()) { 822 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 823 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 824 i != e; ++i) 825 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs 826 } 827 break; 828 } 829 case Instruction::VAArg: 830 Code = bitc::FUNC_CODE_INST_VAARG; 831 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 832 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 833 Vals.push_back(VE.getTypeID(I.getType())); // restype. 834 break; 835 } 836 837 Stream.EmitRecord(Code, Vals, AbbrevToUse); 838 Vals.clear(); 839 } 840 841 // Emit names for globals/functions etc. 842 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 843 const ValueEnumerator &VE, 844 BitstreamWriter &Stream) { 845 if (VST.empty()) return; 846 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 847 848 // FIXME: Set up the abbrev, we know how many values there are! 849 // FIXME: We know if the type names can use 7-bit ascii. 850 SmallVector<unsigned, 64> NameVals; 851 852 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 853 SI != SE; ++SI) { 854 855 const ValueName &Name = *SI; 856 857 // Figure out the encoding to use for the name. 858 bool is7Bit = true; 859 bool isChar6 = true; 860 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 861 C != E; ++C) { 862 if (isChar6) 863 isChar6 = BitCodeAbbrevOp::isChar6(*C); 864 if ((unsigned char)*C & 128) { 865 is7Bit = false; 866 break; // don't bother scanning the rest. 867 } 868 } 869 870 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 871 872 // VST_ENTRY: [valueid, namechar x N] 873 // VST_BBENTRY: [bbid, namechar x N] 874 unsigned Code; 875 if (isa<BasicBlock>(SI->getValue())) { 876 Code = bitc::VST_CODE_BBENTRY; 877 if (isChar6) 878 AbbrevToUse = VST_BBENTRY_6_ABBREV; 879 } else { 880 Code = bitc::VST_CODE_ENTRY; 881 if (isChar6) 882 AbbrevToUse = VST_ENTRY_6_ABBREV; 883 else if (is7Bit) 884 AbbrevToUse = VST_ENTRY_7_ABBREV; 885 } 886 887 NameVals.push_back(VE.getValueID(SI->getValue())); 888 for (const char *P = Name.getKeyData(), 889 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 890 NameVals.push_back((unsigned char)*P); 891 892 // Emit the finished record. 893 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 894 NameVals.clear(); 895 } 896 Stream.ExitBlock(); 897 } 898 899 /// WriteFunction - Emit a function body to the module stream. 900 static void WriteFunction(const Function &F, ValueEnumerator &VE, 901 BitstreamWriter &Stream) { 902 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 903 VE.incorporateFunction(F); 904 905 SmallVector<unsigned, 64> Vals; 906 907 // Emit the number of basic blocks, so the reader can create them ahead of 908 // time. 909 Vals.push_back(VE.getBasicBlocks().size()); 910 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 911 Vals.clear(); 912 913 // If there are function-local constants, emit them now. 914 unsigned CstStart, CstEnd; 915 VE.getFunctionConstantRange(CstStart, CstEnd); 916 WriteConstants(CstStart, CstEnd, VE, Stream, false); 917 918 // Keep a running idea of what the instruction ID is. 919 unsigned InstID = CstEnd; 920 921 // Finally, emit all the instructions, in order. 922 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 923 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 924 I != E; ++I) { 925 WriteInstruction(*I, InstID, VE, Stream, Vals); 926 if (I->getType() != Type::VoidTy) 927 ++InstID; 928 } 929 930 // Emit names for all the instructions etc. 931 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 932 933 VE.purgeFunction(); 934 Stream.ExitBlock(); 935 } 936 937 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 938 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 939 const ValueEnumerator &VE, 940 BitstreamWriter &Stream) { 941 if (TST.empty()) return; 942 943 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 944 945 // 7-bit fixed width VST_CODE_ENTRY strings. 946 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 947 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 949 Log2_32_Ceil(VE.getTypes().size()+1))); 950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 952 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 953 954 SmallVector<unsigned, 64> NameVals; 955 956 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 957 TI != TE; ++TI) { 958 // TST_ENTRY: [typeid, namechar x N] 959 NameVals.push_back(VE.getTypeID(TI->second)); 960 961 const std::string &Str = TI->first; 962 bool is7Bit = true; 963 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 964 NameVals.push_back((unsigned char)Str[i]); 965 if (Str[i] & 128) 966 is7Bit = false; 967 } 968 969 // Emit the finished record. 970 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 971 NameVals.clear(); 972 } 973 974 Stream.ExitBlock(); 975 } 976 977 // Emit blockinfo, which defines the standard abbreviations etc. 978 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 979 // We only want to emit block info records for blocks that have multiple 980 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 981 // blocks can defined their abbrevs inline. 982 Stream.EnterBlockInfoBlock(2); 983 984 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 985 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 986 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 987 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 990 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 991 Abbv) != VST_ENTRY_8_ABBREV) 992 assert(0 && "Unexpected abbrev ordering!"); 993 } 994 995 { // 7-bit fixed width VST_ENTRY strings. 996 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 997 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 998 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1001 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1002 Abbv) != VST_ENTRY_7_ABBREV) 1003 assert(0 && "Unexpected abbrev ordering!"); 1004 } 1005 { // 6-bit char6 VST_ENTRY strings. 1006 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1007 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1008 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1009 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1010 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1011 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1012 Abbv) != VST_ENTRY_6_ABBREV) 1013 assert(0 && "Unexpected abbrev ordering!"); 1014 } 1015 { // 6-bit char6 VST_BBENTRY strings. 1016 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1017 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1018 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1019 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1020 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1021 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1022 Abbv) != VST_BBENTRY_6_ABBREV) 1023 assert(0 && "Unexpected abbrev ordering!"); 1024 } 1025 1026 1027 1028 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1029 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1030 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1031 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1032 Log2_32_Ceil(VE.getTypes().size()+1))); 1033 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1034 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1035 assert(0 && "Unexpected abbrev ordering!"); 1036 } 1037 1038 { // INTEGER abbrev for CONSTANTS_BLOCK. 1039 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1040 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1041 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1042 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1043 Abbv) != CONSTANTS_INTEGER_ABBREV) 1044 assert(0 && "Unexpected abbrev ordering!"); 1045 } 1046 1047 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1048 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1049 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1050 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1051 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1052 Log2_32_Ceil(VE.getTypes().size()+1))); 1053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1054 1055 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1056 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1057 assert(0 && "Unexpected abbrev ordering!"); 1058 } 1059 { // NULL abbrev for CONSTANTS_BLOCK. 1060 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1061 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1062 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1063 Abbv) != CONSTANTS_NULL_Abbrev) 1064 assert(0 && "Unexpected abbrev ordering!"); 1065 } 1066 1067 // FIXME: This should only use space for first class types! 1068 1069 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1070 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1071 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1072 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1075 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1076 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1077 assert(0 && "Unexpected abbrev ordering!"); 1078 } 1079 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1080 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1081 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1082 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1083 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1085 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1086 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1087 assert(0 && "Unexpected abbrev ordering!"); 1088 } 1089 { // INST_CAST abbrev for FUNCTION_BLOCK. 1090 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1091 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1094 Log2_32_Ceil(VE.getTypes().size()+1))); 1095 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1096 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1097 Abbv) != FUNCTION_INST_CAST_ABBREV) 1098 assert(0 && "Unexpected abbrev ordering!"); 1099 } 1100 1101 { // INST_RET abbrev for FUNCTION_BLOCK. 1102 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1103 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1104 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1105 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1106 assert(0 && "Unexpected abbrev ordering!"); 1107 } 1108 { // INST_RET abbrev for FUNCTION_BLOCK. 1109 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1110 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1112 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1113 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1114 assert(0 && "Unexpected abbrev ordering!"); 1115 } 1116 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1117 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1118 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1119 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1120 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1121 assert(0 && "Unexpected abbrev ordering!"); 1122 } 1123 1124 Stream.ExitBlock(); 1125 } 1126 1127 1128 /// WriteModule - Emit the specified module to the bitstream. 1129 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1130 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1131 1132 // Emit the version number if it is non-zero. 1133 if (CurVersion) { 1134 SmallVector<unsigned, 1> Vals; 1135 Vals.push_back(CurVersion); 1136 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1137 } 1138 1139 // Analyze the module, enumerating globals, functions, etc. 1140 ValueEnumerator VE(M); 1141 1142 // Emit blockinfo, which defines the standard abbreviations etc. 1143 WriteBlockInfo(VE, Stream); 1144 1145 // Emit information about parameter attributes. 1146 WriteParamAttrTable(VE, Stream); 1147 1148 // Emit information describing all of the types in the module. 1149 WriteTypeTable(VE, Stream); 1150 1151 // Emit top-level description of module, including target triple, inline asm, 1152 // descriptors for global variables, and function prototype info. 1153 WriteModuleInfo(M, VE, Stream); 1154 1155 // Emit constants. 1156 WriteModuleConstants(VE, Stream); 1157 1158 // If we have any aggregate values in the value table, purge them - these can 1159 // only be used to initialize global variables. Doing so makes the value 1160 // namespace smaller for code in functions. 1161 int NumNonAggregates = VE.PurgeAggregateValues(); 1162 if (NumNonAggregates != -1) { 1163 SmallVector<unsigned, 1> Vals; 1164 Vals.push_back(NumNonAggregates); 1165 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals); 1166 } 1167 1168 // Emit function bodies. 1169 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1170 if (!I->isDeclaration()) 1171 WriteFunction(*I, VE, Stream); 1172 1173 // Emit the type symbol table information. 1174 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1175 1176 // Emit names for globals/functions etc. 1177 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1178 1179 Stream.ExitBlock(); 1180 } 1181 1182 1183 /// WriteBitcodeToFile - Write the specified module to the specified output 1184 /// stream. 1185 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { 1186 std::vector<unsigned char> Buffer; 1187 BitstreamWriter Stream(Buffer); 1188 1189 Buffer.reserve(256*1024); 1190 1191 // Emit the file header. 1192 Stream.Emit((unsigned)'B', 8); 1193 Stream.Emit((unsigned)'C', 8); 1194 Stream.Emit(0x0, 4); 1195 Stream.Emit(0xC, 4); 1196 Stream.Emit(0xE, 4); 1197 Stream.Emit(0xD, 4); 1198 1199 // Emit the module. 1200 WriteModule(M, Stream); 1201 1202 // Write the generated bitstream to "Out". 1203 Out.write((char*)&Buffer.front(), Buffer.size()); 1204 } 1205