1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Bitcode/BitcodeCommon.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/ConstantRangeList.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/MC/TargetRegistry.h" 62 #include "llvm/Object/IRSymtab.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/SHA1.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/TargetParser/Triple.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <iterator> 78 #include <map> 79 #include <memory> 80 #include <optional> 81 #include <string> 82 #include <utility> 83 #include <vector> 84 85 using namespace llvm; 86 87 static cl::opt<unsigned> 88 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 89 cl::desc("Number of metadatas above which we emit an index " 90 "to enable lazy-loading")); 91 static cl::opt<uint32_t> FlushThreshold( 92 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 93 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 94 95 static cl::opt<bool> WriteRelBFToSummary( 96 "write-relbf-to-summary", cl::Hidden, cl::init(false), 97 cl::desc("Write relative block frequency to function summary ")); 98 99 namespace llvm { 100 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 101 } 102 103 extern bool WriteNewDbgInfoFormatToBitcode; 104 extern llvm::cl::opt<bool> UseNewDbgInfoFormat; 105 106 namespace { 107 108 /// These are manifest constants used by the bitcode writer. They do not need to 109 /// be kept in sync with the reader, but need to be consistent within this file. 110 enum { 111 // VALUE_SYMTAB_BLOCK abbrev id's. 112 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 113 VST_ENTRY_7_ABBREV, 114 VST_ENTRY_6_ABBREV, 115 VST_BBENTRY_6_ABBREV, 116 117 // CONSTANTS_BLOCK abbrev id's. 118 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 119 CONSTANTS_INTEGER_ABBREV, 120 CONSTANTS_CE_CAST_Abbrev, 121 CONSTANTS_NULL_Abbrev, 122 123 // FUNCTION_BLOCK abbrev id's. 124 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 125 FUNCTION_INST_UNOP_ABBREV, 126 FUNCTION_INST_UNOP_FLAGS_ABBREV, 127 FUNCTION_INST_BINOP_ABBREV, 128 FUNCTION_INST_BINOP_FLAGS_ABBREV, 129 FUNCTION_INST_CAST_ABBREV, 130 FUNCTION_INST_CAST_FLAGS_ABBREV, 131 FUNCTION_INST_RET_VOID_ABBREV, 132 FUNCTION_INST_RET_VAL_ABBREV, 133 FUNCTION_INST_UNREACHABLE_ABBREV, 134 FUNCTION_INST_GEP_ABBREV, 135 FUNCTION_DEBUG_RECORD_VALUE_ABBREV, 136 }; 137 138 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 139 /// file type. 140 class BitcodeWriterBase { 141 protected: 142 /// The stream created and owned by the client. 143 BitstreamWriter &Stream; 144 145 StringTableBuilder &StrtabBuilder; 146 147 public: 148 /// Constructs a BitcodeWriterBase object that writes to the provided 149 /// \p Stream. 150 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 151 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 152 153 protected: 154 void writeModuleVersion(); 155 }; 156 157 void BitcodeWriterBase::writeModuleVersion() { 158 // VERSION: [version#] 159 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 160 } 161 162 /// Base class to manage the module bitcode writing, currently subclassed for 163 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 164 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 165 protected: 166 /// The Module to write to bitcode. 167 const Module &M; 168 169 /// Enumerates ids for all values in the module. 170 ValueEnumerator VE; 171 172 /// Optional per-module index to write for ThinLTO. 173 const ModuleSummaryIndex *Index; 174 175 /// Map that holds the correspondence between GUIDs in the summary index, 176 /// that came from indirect call profiles, and a value id generated by this 177 /// class to use in the VST and summary block records. 178 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 179 180 /// Tracks the last value id recorded in the GUIDToValueMap. 181 unsigned GlobalValueId; 182 183 /// Saves the offset of the VSTOffset record that must eventually be 184 /// backpatched with the offset of the actual VST. 185 uint64_t VSTOffsetPlaceholder = 0; 186 187 public: 188 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 189 /// writing to the provided \p Buffer. 190 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 191 BitstreamWriter &Stream, 192 bool ShouldPreserveUseListOrder, 193 const ModuleSummaryIndex *Index) 194 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 195 VE(M, ShouldPreserveUseListOrder), Index(Index) { 196 // Assign ValueIds to any callee values in the index that came from 197 // indirect call profiles and were recorded as a GUID not a Value* 198 // (which would have been assigned an ID by the ValueEnumerator). 199 // The starting ValueId is just after the number of values in the 200 // ValueEnumerator, so that they can be emitted in the VST. 201 GlobalValueId = VE.getValues().size(); 202 if (!Index) 203 return; 204 for (const auto &GUIDSummaryLists : *Index) 205 // Examine all summaries for this GUID. 206 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 207 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) { 208 // For each call in the function summary, see if the call 209 // is to a GUID (which means it is for an indirect call, 210 // otherwise we would have a Value for it). If so, synthesize 211 // a value id. 212 for (auto &CallEdge : FS->calls()) 213 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 214 assignValueId(CallEdge.first.getGUID()); 215 216 // For each referenced variables in the function summary, see if the 217 // variable is represented by a GUID (as opposed to a symbol to 218 // declarations or definitions in the module). If so, synthesize a 219 // value id. 220 for (auto &RefEdge : FS->refs()) 221 if (!RefEdge.haveGVs() || !RefEdge.getValue()) 222 assignValueId(RefEdge.getGUID()); 223 } 224 } 225 226 protected: 227 void writePerModuleGlobalValueSummary(); 228 229 private: 230 void writePerModuleFunctionSummaryRecord( 231 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 232 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 233 unsigned CallsiteAbbrev, unsigned AllocAbbrev, unsigned ContextIdAbbvId, 234 const Function &F); 235 void writeModuleLevelReferences(const GlobalVariable &V, 236 SmallVector<uint64_t, 64> &NameVals, 237 unsigned FSModRefsAbbrev, 238 unsigned FSModVTableRefsAbbrev); 239 240 void assignValueId(GlobalValue::GUID ValGUID) { 241 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 242 } 243 244 unsigned getValueId(GlobalValue::GUID ValGUID) { 245 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 246 // Expect that any GUID value had a value Id assigned by an 247 // earlier call to assignValueId. 248 assert(VMI != GUIDToValueIdMap.end() && 249 "GUID does not have assigned value Id"); 250 return VMI->second; 251 } 252 253 // Helper to get the valueId for the type of value recorded in VI. 254 unsigned getValueId(ValueInfo VI) { 255 if (!VI.haveGVs() || !VI.getValue()) 256 return getValueId(VI.getGUID()); 257 return VE.getValueID(VI.getValue()); 258 } 259 260 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 261 }; 262 263 /// Class to manage the bitcode writing for a module. 264 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 265 /// True if a module hash record should be written. 266 bool GenerateHash; 267 268 /// If non-null, when GenerateHash is true, the resulting hash is written 269 /// into ModHash. 270 ModuleHash *ModHash; 271 272 SHA1 Hasher; 273 274 /// The start bit of the identification block. 275 uint64_t BitcodeStartBit; 276 277 public: 278 /// Constructs a ModuleBitcodeWriter object for the given Module, 279 /// writing to the provided \p Buffer. 280 ModuleBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 281 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 282 const ModuleSummaryIndex *Index, bool GenerateHash, 283 ModuleHash *ModHash = nullptr) 284 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 285 ShouldPreserveUseListOrder, Index), 286 GenerateHash(GenerateHash), ModHash(ModHash), 287 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 288 289 /// Emit the current module to the bitstream. 290 void write(); 291 292 private: 293 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 294 295 size_t addToStrtab(StringRef Str); 296 297 void writeAttributeGroupTable(); 298 void writeAttributeTable(); 299 void writeTypeTable(); 300 void writeComdats(); 301 void writeValueSymbolTableForwardDecl(); 302 void writeModuleInfo(); 303 void writeValueAsMetadata(const ValueAsMetadata *MD, 304 SmallVectorImpl<uint64_t> &Record); 305 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 306 unsigned Abbrev); 307 unsigned createDILocationAbbrev(); 308 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 309 unsigned &Abbrev); 310 unsigned createGenericDINodeAbbrev(); 311 void writeGenericDINode(const GenericDINode *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 313 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 314 unsigned Abbrev); 315 void writeDIGenericSubrange(const DIGenericSubrange *N, 316 SmallVectorImpl<uint64_t> &Record, 317 unsigned Abbrev); 318 void writeDIEnumerator(const DIEnumerator *N, 319 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 320 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 321 unsigned Abbrev); 322 void writeDIStringType(const DIStringType *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDIDerivedType(const DIDerivedType *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDICompositeType(const DICompositeType *N, 327 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 328 void writeDISubroutineType(const DISubroutineType *N, 329 SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 332 unsigned Abbrev); 333 void writeDICompileUnit(const DICompileUnit *N, 334 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 335 void writeDISubprogram(const DISubprogram *N, 336 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 337 void writeDILexicalBlock(const DILexicalBlock *N, 338 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 339 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 340 SmallVectorImpl<uint64_t> &Record, 341 unsigned Abbrev); 342 void writeDICommonBlock(const DICommonBlock *N, 343 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 344 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 345 unsigned Abbrev); 346 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 347 unsigned Abbrev); 348 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record); 351 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 352 unsigned Abbrev); 353 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 354 unsigned Abbrev); 355 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 356 SmallVectorImpl<uint64_t> &Record, 357 unsigned Abbrev); 358 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 359 SmallVectorImpl<uint64_t> &Record, 360 unsigned Abbrev); 361 void writeDIGlobalVariable(const DIGlobalVariable *N, 362 SmallVectorImpl<uint64_t> &Record, 363 unsigned Abbrev); 364 void writeDILocalVariable(const DILocalVariable *N, 365 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 366 void writeDILabel(const DILabel *N, 367 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 368 void writeDIExpression(const DIExpression *N, 369 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 370 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 371 SmallVectorImpl<uint64_t> &Record, 372 unsigned Abbrev); 373 void writeDIObjCProperty(const DIObjCProperty *N, 374 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 375 void writeDIImportedEntity(const DIImportedEntity *N, 376 SmallVectorImpl<uint64_t> &Record, 377 unsigned Abbrev); 378 unsigned createNamedMetadataAbbrev(); 379 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 380 unsigned createMetadataStringsAbbrev(); 381 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 382 SmallVectorImpl<uint64_t> &Record); 383 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 384 SmallVectorImpl<uint64_t> &Record, 385 std::vector<unsigned> *MDAbbrevs = nullptr, 386 std::vector<uint64_t> *IndexPos = nullptr); 387 void writeModuleMetadata(); 388 void writeFunctionMetadata(const Function &F); 389 void writeFunctionMetadataAttachment(const Function &F); 390 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 391 const GlobalObject &GO); 392 void writeModuleMetadataKinds(); 393 void writeOperandBundleTags(); 394 void writeSyncScopeNames(); 395 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 396 void writeModuleConstants(); 397 bool pushValueAndType(const Value *V, unsigned InstID, 398 SmallVectorImpl<unsigned> &Vals); 399 bool pushValueOrMetadata(const Value *V, unsigned InstID, 400 SmallVectorImpl<unsigned> &Vals); 401 void writeOperandBundles(const CallBase &CB, unsigned InstID); 402 void pushValue(const Value *V, unsigned InstID, 403 SmallVectorImpl<unsigned> &Vals); 404 void pushValueSigned(const Value *V, unsigned InstID, 405 SmallVectorImpl<uint64_t> &Vals); 406 void writeInstruction(const Instruction &I, unsigned InstID, 407 SmallVectorImpl<unsigned> &Vals); 408 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 409 void writeGlobalValueSymbolTable( 410 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 411 void writeUseList(UseListOrder &&Order); 412 void writeUseListBlock(const Function *F); 413 void 414 writeFunction(const Function &F, 415 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 416 void writeBlockInfo(); 417 void writeModuleHash(StringRef View); 418 419 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 420 return unsigned(SSID); 421 } 422 423 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 424 }; 425 426 /// Class to manage the bitcode writing for a combined index. 427 class IndexBitcodeWriter : public BitcodeWriterBase { 428 /// The combined index to write to bitcode. 429 const ModuleSummaryIndex &Index; 430 431 /// When writing combined summaries, provides the set of global value 432 /// summaries for which the value (function, function alias, etc) should be 433 /// imported as a declaration. 434 const GVSummaryPtrSet *DecSummaries = nullptr; 435 436 /// When writing a subset of the index for distributed backends, client 437 /// provides a map of modules to the corresponding GUIDs/summaries to write. 438 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex; 439 440 /// Map that holds the correspondence between the GUID used in the combined 441 /// index and a value id generated by this class to use in references. 442 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 443 444 // The stack ids used by this index, which will be a subset of those in 445 // the full index in the case of distributed indexes. 446 std::vector<uint64_t> StackIds; 447 448 // Keep a map of the stack id indices used by records being written for this 449 // index to the index of the corresponding stack id in the above StackIds 450 // vector. Ensures we write each referenced stack id once. 451 DenseMap<unsigned, unsigned> StackIdIndicesToIndex; 452 453 /// Tracks the last value id recorded in the GUIDToValueMap. 454 unsigned GlobalValueId = 0; 455 456 /// Tracks the assignment of module paths in the module path string table to 457 /// an id assigned for use in summary references to the module path. 458 DenseMap<StringRef, uint64_t> ModuleIdMap; 459 460 public: 461 /// Constructs a IndexBitcodeWriter object for the given combined index, 462 /// writing to the provided \p Buffer. When writing a subset of the index 463 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 464 /// If provided, \p DecSummaries specifies the set of summaries for which 465 /// the corresponding functions or aliased functions should be imported as a 466 /// declaration (but not definition) for each module. 467 IndexBitcodeWriter( 468 BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 469 const ModuleSummaryIndex &Index, 470 const GVSummaryPtrSet *DecSummaries = nullptr, 471 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex = nullptr) 472 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 473 DecSummaries(DecSummaries), 474 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 475 476 // See if the StackIdIndex was already added to the StackId map and 477 // vector. If not, record it. 478 auto RecordStackIdReference = [&](unsigned StackIdIndex) { 479 // If the StackIdIndex is not yet in the map, the below insert ensures 480 // that it will point to the new StackIds vector entry we push to just 481 // below. 482 auto Inserted = 483 StackIdIndicesToIndex.insert({StackIdIndex, StackIds.size()}); 484 if (Inserted.second) 485 StackIds.push_back(Index.getStackIdAtIndex(StackIdIndex)); 486 }; 487 488 // Assign unique value ids to all summaries to be written, for use 489 // in writing out the call graph edges. Save the mapping from GUID 490 // to the new global value id to use when writing those edges, which 491 // are currently saved in the index in terms of GUID. 492 forEachSummary([&](GVInfo I, bool IsAliasee) { 493 GUIDToValueIdMap[I.first] = ++GlobalValueId; 494 if (IsAliasee) 495 return; 496 auto *FS = dyn_cast<FunctionSummary>(I.second); 497 if (!FS) 498 return; 499 // Record all stack id indices actually used in the summary entries being 500 // written, so that we can compact them in the case of distributed ThinLTO 501 // indexes. 502 for (auto &CI : FS->callsites()) { 503 // If the stack id list is empty, this callsite info was synthesized for 504 // a missing tail call frame. Ensure that the callee's GUID gets a value 505 // id. Normally we only generate these for defined summaries, which in 506 // the case of distributed ThinLTO is only the functions already defined 507 // in the module or that we want to import. We don't bother to include 508 // all the callee symbols as they aren't normally needed in the backend. 509 // However, for the synthesized callsite infos we do need the callee 510 // GUID in the backend so that we can correlate the identified callee 511 // with this callsite info (which for non-tail calls is done by the 512 // ordering of the callsite infos and verified via stack ids). 513 if (CI.StackIdIndices.empty()) { 514 GUIDToValueIdMap[CI.Callee.getGUID()] = ++GlobalValueId; 515 continue; 516 } 517 for (auto Idx : CI.StackIdIndices) 518 RecordStackIdReference(Idx); 519 } 520 for (auto &AI : FS->allocs()) 521 for (auto &MIB : AI.MIBs) 522 for (auto Idx : MIB.StackIdIndices) 523 RecordStackIdReference(Idx); 524 }); 525 } 526 527 /// The below iterator returns the GUID and associated summary. 528 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 529 530 /// Calls the callback for each value GUID and summary to be written to 531 /// bitcode. This hides the details of whether they are being pulled from the 532 /// entire index or just those in a provided ModuleToSummariesForIndex map. 533 template<typename Functor> 534 void forEachSummary(Functor Callback) { 535 if (ModuleToSummariesForIndex) { 536 for (auto &M : *ModuleToSummariesForIndex) 537 for (auto &Summary : M.second) { 538 Callback(Summary, false); 539 // Ensure aliasee is handled, e.g. for assigning a valueId, 540 // even if we are not importing the aliasee directly (the 541 // imported alias will contain a copy of aliasee). 542 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 543 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 544 } 545 } else { 546 for (auto &Summaries : Index) 547 for (auto &Summary : Summaries.second.SummaryList) 548 Callback({Summaries.first, Summary.get()}, false); 549 } 550 } 551 552 /// Calls the callback for each entry in the modulePaths StringMap that 553 /// should be written to the module path string table. This hides the details 554 /// of whether they are being pulled from the entire index or just those in a 555 /// provided ModuleToSummariesForIndex map. 556 template <typename Functor> void forEachModule(Functor Callback) { 557 if (ModuleToSummariesForIndex) { 558 for (const auto &M : *ModuleToSummariesForIndex) { 559 const auto &MPI = Index.modulePaths().find(M.first); 560 if (MPI == Index.modulePaths().end()) { 561 // This should only happen if the bitcode file was empty, in which 562 // case we shouldn't be importing (the ModuleToSummariesForIndex 563 // would only include the module we are writing and index for). 564 assert(ModuleToSummariesForIndex->size() == 1); 565 continue; 566 } 567 Callback(*MPI); 568 } 569 } else { 570 // Since StringMap iteration order isn't guaranteed, order by path string 571 // first. 572 // FIXME: Make this a vector of StringMapEntry instead to avoid the later 573 // map lookup. 574 std::vector<StringRef> ModulePaths; 575 for (auto &[ModPath, _] : Index.modulePaths()) 576 ModulePaths.push_back(ModPath); 577 llvm::sort(ModulePaths.begin(), ModulePaths.end()); 578 for (auto &ModPath : ModulePaths) 579 Callback(*Index.modulePaths().find(ModPath)); 580 } 581 } 582 583 /// Main entry point for writing a combined index to bitcode. 584 void write(); 585 586 private: 587 void writeModStrings(); 588 void writeCombinedGlobalValueSummary(); 589 590 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 591 auto VMI = GUIDToValueIdMap.find(ValGUID); 592 if (VMI == GUIDToValueIdMap.end()) 593 return std::nullopt; 594 return VMI->second; 595 } 596 597 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 598 }; 599 600 } // end anonymous namespace 601 602 static unsigned getEncodedCastOpcode(unsigned Opcode) { 603 switch (Opcode) { 604 default: llvm_unreachable("Unknown cast instruction!"); 605 case Instruction::Trunc : return bitc::CAST_TRUNC; 606 case Instruction::ZExt : return bitc::CAST_ZEXT; 607 case Instruction::SExt : return bitc::CAST_SEXT; 608 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 609 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 610 case Instruction::UIToFP : return bitc::CAST_UITOFP; 611 case Instruction::SIToFP : return bitc::CAST_SITOFP; 612 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 613 case Instruction::FPExt : return bitc::CAST_FPEXT; 614 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 615 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 616 case Instruction::BitCast : return bitc::CAST_BITCAST; 617 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 618 } 619 } 620 621 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 622 switch (Opcode) { 623 default: llvm_unreachable("Unknown binary instruction!"); 624 case Instruction::FNeg: return bitc::UNOP_FNEG; 625 } 626 } 627 628 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 629 switch (Opcode) { 630 default: llvm_unreachable("Unknown binary instruction!"); 631 case Instruction::Add: 632 case Instruction::FAdd: return bitc::BINOP_ADD; 633 case Instruction::Sub: 634 case Instruction::FSub: return bitc::BINOP_SUB; 635 case Instruction::Mul: 636 case Instruction::FMul: return bitc::BINOP_MUL; 637 case Instruction::UDiv: return bitc::BINOP_UDIV; 638 case Instruction::FDiv: 639 case Instruction::SDiv: return bitc::BINOP_SDIV; 640 case Instruction::URem: return bitc::BINOP_UREM; 641 case Instruction::FRem: 642 case Instruction::SRem: return bitc::BINOP_SREM; 643 case Instruction::Shl: return bitc::BINOP_SHL; 644 case Instruction::LShr: return bitc::BINOP_LSHR; 645 case Instruction::AShr: return bitc::BINOP_ASHR; 646 case Instruction::And: return bitc::BINOP_AND; 647 case Instruction::Or: return bitc::BINOP_OR; 648 case Instruction::Xor: return bitc::BINOP_XOR; 649 } 650 } 651 652 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 653 switch (Op) { 654 default: llvm_unreachable("Unknown RMW operation!"); 655 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 656 case AtomicRMWInst::Add: return bitc::RMW_ADD; 657 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 658 case AtomicRMWInst::And: return bitc::RMW_AND; 659 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 660 case AtomicRMWInst::Or: return bitc::RMW_OR; 661 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 662 case AtomicRMWInst::Max: return bitc::RMW_MAX; 663 case AtomicRMWInst::Min: return bitc::RMW_MIN; 664 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 665 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 666 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 667 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 668 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 669 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 670 case AtomicRMWInst::UIncWrap: 671 return bitc::RMW_UINC_WRAP; 672 case AtomicRMWInst::UDecWrap: 673 return bitc::RMW_UDEC_WRAP; 674 case AtomicRMWInst::USubCond: 675 return bitc::RMW_USUB_COND; 676 case AtomicRMWInst::USubSat: 677 return bitc::RMW_USUB_SAT; 678 } 679 } 680 681 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 682 switch (Ordering) { 683 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 684 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 685 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 686 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 687 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 688 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 689 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 690 } 691 llvm_unreachable("Invalid ordering"); 692 } 693 694 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 695 StringRef Str, unsigned AbbrevToUse) { 696 SmallVector<unsigned, 64> Vals; 697 698 // Code: [strchar x N] 699 for (char C : Str) { 700 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 701 AbbrevToUse = 0; 702 Vals.push_back(C); 703 } 704 705 // Emit the finished record. 706 Stream.EmitRecord(Code, Vals, AbbrevToUse); 707 } 708 709 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 710 switch (Kind) { 711 case Attribute::Alignment: 712 return bitc::ATTR_KIND_ALIGNMENT; 713 case Attribute::AllocAlign: 714 return bitc::ATTR_KIND_ALLOC_ALIGN; 715 case Attribute::AllocSize: 716 return bitc::ATTR_KIND_ALLOC_SIZE; 717 case Attribute::AlwaysInline: 718 return bitc::ATTR_KIND_ALWAYS_INLINE; 719 case Attribute::Builtin: 720 return bitc::ATTR_KIND_BUILTIN; 721 case Attribute::ByVal: 722 return bitc::ATTR_KIND_BY_VAL; 723 case Attribute::Convergent: 724 return bitc::ATTR_KIND_CONVERGENT; 725 case Attribute::InAlloca: 726 return bitc::ATTR_KIND_IN_ALLOCA; 727 case Attribute::Cold: 728 return bitc::ATTR_KIND_COLD; 729 case Attribute::DisableSanitizerInstrumentation: 730 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 731 case Attribute::FnRetThunkExtern: 732 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 733 case Attribute::Hot: 734 return bitc::ATTR_KIND_HOT; 735 case Attribute::ElementType: 736 return bitc::ATTR_KIND_ELEMENTTYPE; 737 case Attribute::HybridPatchable: 738 return bitc::ATTR_KIND_HYBRID_PATCHABLE; 739 case Attribute::InlineHint: 740 return bitc::ATTR_KIND_INLINE_HINT; 741 case Attribute::InReg: 742 return bitc::ATTR_KIND_IN_REG; 743 case Attribute::JumpTable: 744 return bitc::ATTR_KIND_JUMP_TABLE; 745 case Attribute::MinSize: 746 return bitc::ATTR_KIND_MIN_SIZE; 747 case Attribute::AllocatedPointer: 748 return bitc::ATTR_KIND_ALLOCATED_POINTER; 749 case Attribute::AllocKind: 750 return bitc::ATTR_KIND_ALLOC_KIND; 751 case Attribute::Memory: 752 return bitc::ATTR_KIND_MEMORY; 753 case Attribute::NoFPClass: 754 return bitc::ATTR_KIND_NOFPCLASS; 755 case Attribute::Naked: 756 return bitc::ATTR_KIND_NAKED; 757 case Attribute::Nest: 758 return bitc::ATTR_KIND_NEST; 759 case Attribute::NoAlias: 760 return bitc::ATTR_KIND_NO_ALIAS; 761 case Attribute::NoBuiltin: 762 return bitc::ATTR_KIND_NO_BUILTIN; 763 case Attribute::NoCallback: 764 return bitc::ATTR_KIND_NO_CALLBACK; 765 case Attribute::NoCapture: 766 return bitc::ATTR_KIND_NO_CAPTURE; 767 case Attribute::NoDivergenceSource: 768 return bitc::ATTR_KIND_NO_DIVERGENCE_SOURCE; 769 case Attribute::NoDuplicate: 770 return bitc::ATTR_KIND_NO_DUPLICATE; 771 case Attribute::NoFree: 772 return bitc::ATTR_KIND_NOFREE; 773 case Attribute::NoImplicitFloat: 774 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 775 case Attribute::NoInline: 776 return bitc::ATTR_KIND_NO_INLINE; 777 case Attribute::NoRecurse: 778 return bitc::ATTR_KIND_NO_RECURSE; 779 case Attribute::NoMerge: 780 return bitc::ATTR_KIND_NO_MERGE; 781 case Attribute::NonLazyBind: 782 return bitc::ATTR_KIND_NON_LAZY_BIND; 783 case Attribute::NonNull: 784 return bitc::ATTR_KIND_NON_NULL; 785 case Attribute::Dereferenceable: 786 return bitc::ATTR_KIND_DEREFERENCEABLE; 787 case Attribute::DereferenceableOrNull: 788 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 789 case Attribute::NoRedZone: 790 return bitc::ATTR_KIND_NO_RED_ZONE; 791 case Attribute::NoReturn: 792 return bitc::ATTR_KIND_NO_RETURN; 793 case Attribute::NoSync: 794 return bitc::ATTR_KIND_NOSYNC; 795 case Attribute::NoCfCheck: 796 return bitc::ATTR_KIND_NOCF_CHECK; 797 case Attribute::NoProfile: 798 return bitc::ATTR_KIND_NO_PROFILE; 799 case Attribute::SkipProfile: 800 return bitc::ATTR_KIND_SKIP_PROFILE; 801 case Attribute::NoUnwind: 802 return bitc::ATTR_KIND_NO_UNWIND; 803 case Attribute::NoSanitizeBounds: 804 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 805 case Attribute::NoSanitizeCoverage: 806 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 807 case Attribute::NullPointerIsValid: 808 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 809 case Attribute::OptimizeForDebugging: 810 return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING; 811 case Attribute::OptForFuzzing: 812 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 813 case Attribute::OptimizeForSize: 814 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 815 case Attribute::OptimizeNone: 816 return bitc::ATTR_KIND_OPTIMIZE_NONE; 817 case Attribute::ReadNone: 818 return bitc::ATTR_KIND_READ_NONE; 819 case Attribute::ReadOnly: 820 return bitc::ATTR_KIND_READ_ONLY; 821 case Attribute::Returned: 822 return bitc::ATTR_KIND_RETURNED; 823 case Attribute::ReturnsTwice: 824 return bitc::ATTR_KIND_RETURNS_TWICE; 825 case Attribute::SExt: 826 return bitc::ATTR_KIND_S_EXT; 827 case Attribute::Speculatable: 828 return bitc::ATTR_KIND_SPECULATABLE; 829 case Attribute::StackAlignment: 830 return bitc::ATTR_KIND_STACK_ALIGNMENT; 831 case Attribute::StackProtect: 832 return bitc::ATTR_KIND_STACK_PROTECT; 833 case Attribute::StackProtectReq: 834 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 835 case Attribute::StackProtectStrong: 836 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 837 case Attribute::SafeStack: 838 return bitc::ATTR_KIND_SAFESTACK; 839 case Attribute::ShadowCallStack: 840 return bitc::ATTR_KIND_SHADOWCALLSTACK; 841 case Attribute::StrictFP: 842 return bitc::ATTR_KIND_STRICT_FP; 843 case Attribute::StructRet: 844 return bitc::ATTR_KIND_STRUCT_RET; 845 case Attribute::SanitizeAddress: 846 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 847 case Attribute::SanitizeHWAddress: 848 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 849 case Attribute::SanitizeThread: 850 return bitc::ATTR_KIND_SANITIZE_THREAD; 851 case Attribute::SanitizeMemory: 852 return bitc::ATTR_KIND_SANITIZE_MEMORY; 853 case Attribute::SanitizeNumericalStability: 854 return bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY; 855 case Attribute::SanitizeRealtime: 856 return bitc::ATTR_KIND_SANITIZE_REALTIME; 857 case Attribute::SanitizeRealtimeBlocking: 858 return bitc::ATTR_KIND_SANITIZE_REALTIME_BLOCKING; 859 case Attribute::SpeculativeLoadHardening: 860 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 861 case Attribute::SwiftError: 862 return bitc::ATTR_KIND_SWIFT_ERROR; 863 case Attribute::SwiftSelf: 864 return bitc::ATTR_KIND_SWIFT_SELF; 865 case Attribute::SwiftAsync: 866 return bitc::ATTR_KIND_SWIFT_ASYNC; 867 case Attribute::UWTable: 868 return bitc::ATTR_KIND_UW_TABLE; 869 case Attribute::VScaleRange: 870 return bitc::ATTR_KIND_VSCALE_RANGE; 871 case Attribute::WillReturn: 872 return bitc::ATTR_KIND_WILLRETURN; 873 case Attribute::WriteOnly: 874 return bitc::ATTR_KIND_WRITEONLY; 875 case Attribute::ZExt: 876 return bitc::ATTR_KIND_Z_EXT; 877 case Attribute::ImmArg: 878 return bitc::ATTR_KIND_IMMARG; 879 case Attribute::SanitizeMemTag: 880 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 881 case Attribute::Preallocated: 882 return bitc::ATTR_KIND_PREALLOCATED; 883 case Attribute::NoUndef: 884 return bitc::ATTR_KIND_NOUNDEF; 885 case Attribute::ByRef: 886 return bitc::ATTR_KIND_BYREF; 887 case Attribute::MustProgress: 888 return bitc::ATTR_KIND_MUSTPROGRESS; 889 case Attribute::PresplitCoroutine: 890 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 891 case Attribute::Writable: 892 return bitc::ATTR_KIND_WRITABLE; 893 case Attribute::CoroDestroyOnlyWhenComplete: 894 return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE; 895 case Attribute::CoroElideSafe: 896 return bitc::ATTR_KIND_CORO_ELIDE_SAFE; 897 case Attribute::DeadOnUnwind: 898 return bitc::ATTR_KIND_DEAD_ON_UNWIND; 899 case Attribute::Range: 900 return bitc::ATTR_KIND_RANGE; 901 case Attribute::Initializes: 902 return bitc::ATTR_KIND_INITIALIZES; 903 case Attribute::NoExt: 904 return bitc::ATTR_KIND_NO_EXT; 905 case Attribute::EndAttrKinds: 906 llvm_unreachable("Can not encode end-attribute kinds marker."); 907 case Attribute::None: 908 llvm_unreachable("Can not encode none-attribute."); 909 case Attribute::EmptyKey: 910 case Attribute::TombstoneKey: 911 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 912 } 913 914 llvm_unreachable("Trying to encode unknown attribute"); 915 } 916 917 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 918 if ((int64_t)V >= 0) 919 Vals.push_back(V << 1); 920 else 921 Vals.push_back((-V << 1) | 1); 922 } 923 924 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 925 // We have an arbitrary precision integer value to write whose 926 // bit width is > 64. However, in canonical unsigned integer 927 // format it is likely that the high bits are going to be zero. 928 // So, we only write the number of active words. 929 unsigned NumWords = A.getActiveWords(); 930 const uint64_t *RawData = A.getRawData(); 931 for (unsigned i = 0; i < NumWords; i++) 932 emitSignedInt64(Vals, RawData[i]); 933 } 934 935 static void emitConstantRange(SmallVectorImpl<uint64_t> &Record, 936 const ConstantRange &CR, bool EmitBitWidth) { 937 unsigned BitWidth = CR.getBitWidth(); 938 if (EmitBitWidth) 939 Record.push_back(BitWidth); 940 if (BitWidth > 64) { 941 Record.push_back(CR.getLower().getActiveWords() | 942 (uint64_t(CR.getUpper().getActiveWords()) << 32)); 943 emitWideAPInt(Record, CR.getLower()); 944 emitWideAPInt(Record, CR.getUpper()); 945 } else { 946 emitSignedInt64(Record, CR.getLower().getSExtValue()); 947 emitSignedInt64(Record, CR.getUpper().getSExtValue()); 948 } 949 } 950 951 void ModuleBitcodeWriter::writeAttributeGroupTable() { 952 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 953 VE.getAttributeGroups(); 954 if (AttrGrps.empty()) return; 955 956 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 957 958 SmallVector<uint64_t, 64> Record; 959 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 960 unsigned AttrListIndex = Pair.first; 961 AttributeSet AS = Pair.second; 962 Record.push_back(VE.getAttributeGroupID(Pair)); 963 Record.push_back(AttrListIndex); 964 965 for (Attribute Attr : AS) { 966 if (Attr.isEnumAttribute()) { 967 Record.push_back(0); 968 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 969 } else if (Attr.isIntAttribute()) { 970 Record.push_back(1); 971 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 972 Record.push_back(Attr.getValueAsInt()); 973 } else if (Attr.isStringAttribute()) { 974 StringRef Kind = Attr.getKindAsString(); 975 StringRef Val = Attr.getValueAsString(); 976 977 Record.push_back(Val.empty() ? 3 : 4); 978 Record.append(Kind.begin(), Kind.end()); 979 Record.push_back(0); 980 if (!Val.empty()) { 981 Record.append(Val.begin(), Val.end()); 982 Record.push_back(0); 983 } 984 } else if (Attr.isTypeAttribute()) { 985 Type *Ty = Attr.getValueAsType(); 986 Record.push_back(Ty ? 6 : 5); 987 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 988 if (Ty) 989 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 990 } else if (Attr.isConstantRangeAttribute()) { 991 Record.push_back(7); 992 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 993 emitConstantRange(Record, Attr.getValueAsConstantRange(), 994 /*EmitBitWidth=*/true); 995 } else { 996 assert(Attr.isConstantRangeListAttribute()); 997 Record.push_back(8); 998 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 999 ArrayRef<ConstantRange> Val = Attr.getValueAsConstantRangeList(); 1000 Record.push_back(Val.size()); 1001 Record.push_back(Val[0].getBitWidth()); 1002 for (auto &CR : Val) 1003 emitConstantRange(Record, CR, /*EmitBitWidth=*/false); 1004 } 1005 } 1006 1007 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 1008 Record.clear(); 1009 } 1010 1011 Stream.ExitBlock(); 1012 } 1013 1014 void ModuleBitcodeWriter::writeAttributeTable() { 1015 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 1016 if (Attrs.empty()) return; 1017 1018 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 1019 1020 SmallVector<uint64_t, 64> Record; 1021 for (const AttributeList &AL : Attrs) { 1022 for (unsigned i : AL.indexes()) { 1023 AttributeSet AS = AL.getAttributes(i); 1024 if (AS.hasAttributes()) 1025 Record.push_back(VE.getAttributeGroupID({i, AS})); 1026 } 1027 1028 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 1029 Record.clear(); 1030 } 1031 1032 Stream.ExitBlock(); 1033 } 1034 1035 /// WriteTypeTable - Write out the type table for a module. 1036 void ModuleBitcodeWriter::writeTypeTable() { 1037 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 1038 1039 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 1040 SmallVector<uint64_t, 64> TypeVals; 1041 1042 uint64_t NumBits = VE.computeBitsRequiredForTypeIndices(); 1043 1044 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 1045 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1046 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 1047 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 1048 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1049 1050 // Abbrev for TYPE_CODE_FUNCTION. 1051 Abbv = std::make_shared<BitCodeAbbrev>(); 1052 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 1053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 1054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1056 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1057 1058 // Abbrev for TYPE_CODE_STRUCT_ANON. 1059 Abbv = std::make_shared<BitCodeAbbrev>(); 1060 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 1061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1064 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1065 1066 // Abbrev for TYPE_CODE_STRUCT_NAME. 1067 Abbv = std::make_shared<BitCodeAbbrev>(); 1068 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 1069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1071 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1072 1073 // Abbrev for TYPE_CODE_STRUCT_NAMED. 1074 Abbv = std::make_shared<BitCodeAbbrev>(); 1075 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 1076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1079 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1080 1081 // Abbrev for TYPE_CODE_ARRAY. 1082 Abbv = std::make_shared<BitCodeAbbrev>(); 1083 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 1084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 1085 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1086 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1087 1088 // Emit an entry count so the reader can reserve space. 1089 TypeVals.push_back(TypeList.size()); 1090 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 1091 TypeVals.clear(); 1092 1093 // Loop over all of the types, emitting each in turn. 1094 for (Type *T : TypeList) { 1095 int AbbrevToUse = 0; 1096 unsigned Code = 0; 1097 1098 switch (T->getTypeID()) { 1099 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 1100 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 1101 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 1102 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 1103 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 1104 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 1105 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 1106 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 1107 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 1108 case Type::MetadataTyID: 1109 Code = bitc::TYPE_CODE_METADATA; 1110 break; 1111 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 1112 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 1113 case Type::IntegerTyID: 1114 // INTEGER: [width] 1115 Code = bitc::TYPE_CODE_INTEGER; 1116 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 1117 break; 1118 case Type::PointerTyID: { 1119 PointerType *PTy = cast<PointerType>(T); 1120 unsigned AddressSpace = PTy->getAddressSpace(); 1121 // OPAQUE_POINTER: [address space] 1122 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 1123 TypeVals.push_back(AddressSpace); 1124 if (AddressSpace == 0) 1125 AbbrevToUse = OpaquePtrAbbrev; 1126 break; 1127 } 1128 case Type::FunctionTyID: { 1129 FunctionType *FT = cast<FunctionType>(T); 1130 // FUNCTION: [isvararg, retty, paramty x N] 1131 Code = bitc::TYPE_CODE_FUNCTION; 1132 TypeVals.push_back(FT->isVarArg()); 1133 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 1134 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 1135 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 1136 AbbrevToUse = FunctionAbbrev; 1137 break; 1138 } 1139 case Type::StructTyID: { 1140 StructType *ST = cast<StructType>(T); 1141 // STRUCT: [ispacked, eltty x N] 1142 TypeVals.push_back(ST->isPacked()); 1143 // Output all of the element types. 1144 for (Type *ET : ST->elements()) 1145 TypeVals.push_back(VE.getTypeID(ET)); 1146 1147 if (ST->isLiteral()) { 1148 Code = bitc::TYPE_CODE_STRUCT_ANON; 1149 AbbrevToUse = StructAnonAbbrev; 1150 } else { 1151 if (ST->isOpaque()) { 1152 Code = bitc::TYPE_CODE_OPAQUE; 1153 } else { 1154 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1155 AbbrevToUse = StructNamedAbbrev; 1156 } 1157 1158 // Emit the name if it is present. 1159 if (!ST->getName().empty()) 1160 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1161 StructNameAbbrev); 1162 } 1163 break; 1164 } 1165 case Type::ArrayTyID: { 1166 ArrayType *AT = cast<ArrayType>(T); 1167 // ARRAY: [numelts, eltty] 1168 Code = bitc::TYPE_CODE_ARRAY; 1169 TypeVals.push_back(AT->getNumElements()); 1170 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1171 AbbrevToUse = ArrayAbbrev; 1172 break; 1173 } 1174 case Type::FixedVectorTyID: 1175 case Type::ScalableVectorTyID: { 1176 VectorType *VT = cast<VectorType>(T); 1177 // VECTOR [numelts, eltty] or 1178 // [numelts, eltty, scalable] 1179 Code = bitc::TYPE_CODE_VECTOR; 1180 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1181 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1182 if (isa<ScalableVectorType>(VT)) 1183 TypeVals.push_back(true); 1184 break; 1185 } 1186 case Type::TargetExtTyID: { 1187 TargetExtType *TET = cast<TargetExtType>(T); 1188 Code = bitc::TYPE_CODE_TARGET_TYPE; 1189 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), 1190 StructNameAbbrev); 1191 TypeVals.push_back(TET->getNumTypeParameters()); 1192 for (Type *InnerTy : TET->type_params()) 1193 TypeVals.push_back(VE.getTypeID(InnerTy)); 1194 for (unsigned IntParam : TET->int_params()) 1195 TypeVals.push_back(IntParam); 1196 break; 1197 } 1198 case Type::TypedPointerTyID: 1199 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1200 } 1201 1202 // Emit the finished record. 1203 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1204 TypeVals.clear(); 1205 } 1206 1207 Stream.ExitBlock(); 1208 } 1209 1210 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1211 switch (Linkage) { 1212 case GlobalValue::ExternalLinkage: 1213 return 0; 1214 case GlobalValue::WeakAnyLinkage: 1215 return 16; 1216 case GlobalValue::AppendingLinkage: 1217 return 2; 1218 case GlobalValue::InternalLinkage: 1219 return 3; 1220 case GlobalValue::LinkOnceAnyLinkage: 1221 return 18; 1222 case GlobalValue::ExternalWeakLinkage: 1223 return 7; 1224 case GlobalValue::CommonLinkage: 1225 return 8; 1226 case GlobalValue::PrivateLinkage: 1227 return 9; 1228 case GlobalValue::WeakODRLinkage: 1229 return 17; 1230 case GlobalValue::LinkOnceODRLinkage: 1231 return 19; 1232 case GlobalValue::AvailableExternallyLinkage: 1233 return 12; 1234 } 1235 llvm_unreachable("Invalid linkage"); 1236 } 1237 1238 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1239 return getEncodedLinkage(GV.getLinkage()); 1240 } 1241 1242 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1243 uint64_t RawFlags = 0; 1244 RawFlags |= Flags.ReadNone; 1245 RawFlags |= (Flags.ReadOnly << 1); 1246 RawFlags |= (Flags.NoRecurse << 2); 1247 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1248 RawFlags |= (Flags.NoInline << 4); 1249 RawFlags |= (Flags.AlwaysInline << 5); 1250 RawFlags |= (Flags.NoUnwind << 6); 1251 RawFlags |= (Flags.MayThrow << 7); 1252 RawFlags |= (Flags.HasUnknownCall << 8); 1253 RawFlags |= (Flags.MustBeUnreachable << 9); 1254 return RawFlags; 1255 } 1256 1257 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1258 // in BitcodeReader.cpp. 1259 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags, 1260 bool ImportAsDecl = false) { 1261 uint64_t RawFlags = 0; 1262 1263 RawFlags |= Flags.NotEligibleToImport; // bool 1264 RawFlags |= (Flags.Live << 1); 1265 RawFlags |= (Flags.DSOLocal << 2); 1266 RawFlags |= (Flags.CanAutoHide << 3); 1267 1268 // Linkage don't need to be remapped at that time for the summary. Any future 1269 // change to the getEncodedLinkage() function will need to be taken into 1270 // account here as well. 1271 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1272 1273 RawFlags |= (Flags.Visibility << 8); // 2 bits 1274 1275 unsigned ImportType = Flags.ImportType | ImportAsDecl; 1276 RawFlags |= (ImportType << 10); // 1 bit 1277 1278 return RawFlags; 1279 } 1280 1281 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1282 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1283 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1284 return RawFlags; 1285 } 1286 1287 static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo &CI) { 1288 uint64_t RawFlags = 0; 1289 1290 RawFlags |= CI.Hotness; // 3 bits 1291 RawFlags |= (CI.HasTailCall << 3); // 1 bit 1292 1293 return RawFlags; 1294 } 1295 1296 static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo &CI) { 1297 uint64_t RawFlags = 0; 1298 1299 RawFlags |= CI.RelBlockFreq; // CalleeInfo::RelBlockFreqBits bits 1300 RawFlags |= (CI.HasTailCall << CalleeInfo::RelBlockFreqBits); // 1 bit 1301 1302 return RawFlags; 1303 } 1304 1305 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1306 switch (GV.getVisibility()) { 1307 case GlobalValue::DefaultVisibility: return 0; 1308 case GlobalValue::HiddenVisibility: return 1; 1309 case GlobalValue::ProtectedVisibility: return 2; 1310 } 1311 llvm_unreachable("Invalid visibility"); 1312 } 1313 1314 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1315 switch (GV.getDLLStorageClass()) { 1316 case GlobalValue::DefaultStorageClass: return 0; 1317 case GlobalValue::DLLImportStorageClass: return 1; 1318 case GlobalValue::DLLExportStorageClass: return 2; 1319 } 1320 llvm_unreachable("Invalid DLL storage class"); 1321 } 1322 1323 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1324 switch (GV.getThreadLocalMode()) { 1325 case GlobalVariable::NotThreadLocal: return 0; 1326 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1327 case GlobalVariable::LocalDynamicTLSModel: return 2; 1328 case GlobalVariable::InitialExecTLSModel: return 3; 1329 case GlobalVariable::LocalExecTLSModel: return 4; 1330 } 1331 llvm_unreachable("Invalid TLS model"); 1332 } 1333 1334 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1335 switch (C.getSelectionKind()) { 1336 case Comdat::Any: 1337 return bitc::COMDAT_SELECTION_KIND_ANY; 1338 case Comdat::ExactMatch: 1339 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1340 case Comdat::Largest: 1341 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1342 case Comdat::NoDeduplicate: 1343 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1344 case Comdat::SameSize: 1345 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1346 } 1347 llvm_unreachable("Invalid selection kind"); 1348 } 1349 1350 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1351 switch (GV.getUnnamedAddr()) { 1352 case GlobalValue::UnnamedAddr::None: return 0; 1353 case GlobalValue::UnnamedAddr::Local: return 2; 1354 case GlobalValue::UnnamedAddr::Global: return 1; 1355 } 1356 llvm_unreachable("Invalid unnamed_addr"); 1357 } 1358 1359 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1360 if (GenerateHash) 1361 Hasher.update(Str); 1362 return StrtabBuilder.add(Str); 1363 } 1364 1365 void ModuleBitcodeWriter::writeComdats() { 1366 SmallVector<unsigned, 64> Vals; 1367 for (const Comdat *C : VE.getComdats()) { 1368 // COMDAT: [strtab offset, strtab size, selection_kind] 1369 Vals.push_back(addToStrtab(C->getName())); 1370 Vals.push_back(C->getName().size()); 1371 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1372 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1373 Vals.clear(); 1374 } 1375 } 1376 1377 /// Write a record that will eventually hold the word offset of the 1378 /// module-level VST. For now the offset is 0, which will be backpatched 1379 /// after the real VST is written. Saves the bit offset to backpatch. 1380 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1381 // Write a placeholder value in for the offset of the real VST, 1382 // which is written after the function blocks so that it can include 1383 // the offset of each function. The placeholder offset will be 1384 // updated when the real VST is written. 1385 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1386 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1387 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1388 // hold the real VST offset. Must use fixed instead of VBR as we don't 1389 // know how many VBR chunks to reserve ahead of time. 1390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1391 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1392 1393 // Emit the placeholder 1394 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1395 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1396 1397 // Compute and save the bit offset to the placeholder, which will be 1398 // patched when the real VST is written. We can simply subtract the 32-bit 1399 // fixed size from the current bit number to get the location to backpatch. 1400 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1401 } 1402 1403 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1404 1405 /// Determine the encoding to use for the given string name and length. 1406 static StringEncoding getStringEncoding(StringRef Str) { 1407 bool isChar6 = true; 1408 for (char C : Str) { 1409 if (isChar6) 1410 isChar6 = BitCodeAbbrevOp::isChar6(C); 1411 if ((unsigned char)C & 128) 1412 // don't bother scanning the rest. 1413 return SE_Fixed8; 1414 } 1415 if (isChar6) 1416 return SE_Char6; 1417 return SE_Fixed7; 1418 } 1419 1420 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1421 "Sanitizer Metadata is too large for naive serialization."); 1422 static unsigned 1423 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1424 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1425 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1426 } 1427 1428 /// Emit top-level description of module, including target triple, inline asm, 1429 /// descriptors for global variables, and function prototype info. 1430 /// Returns the bit offset to backpatch with the location of the real VST. 1431 void ModuleBitcodeWriter::writeModuleInfo() { 1432 // Emit various pieces of data attached to a module. 1433 if (!M.getTargetTriple().empty()) 1434 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1435 0 /*TODO*/); 1436 const std::string &DL = M.getDataLayoutStr(); 1437 if (!DL.empty()) 1438 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1439 if (!M.getModuleInlineAsm().empty()) 1440 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1441 0 /*TODO*/); 1442 1443 // Emit information about sections and GC, computing how many there are. Also 1444 // compute the maximum alignment value. 1445 std::map<std::string, unsigned> SectionMap; 1446 std::map<std::string, unsigned> GCMap; 1447 MaybeAlign MaxAlignment; 1448 unsigned MaxGlobalType = 0; 1449 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1450 if (A) 1451 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1452 }; 1453 for (const GlobalVariable &GV : M.globals()) { 1454 UpdateMaxAlignment(GV.getAlign()); 1455 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1456 if (GV.hasSection()) { 1457 // Give section names unique ID's. 1458 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1459 if (!Entry) { 1460 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1461 0 /*TODO*/); 1462 Entry = SectionMap.size(); 1463 } 1464 } 1465 } 1466 for (const Function &F : M) { 1467 UpdateMaxAlignment(F.getAlign()); 1468 if (F.hasSection()) { 1469 // Give section names unique ID's. 1470 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1471 if (!Entry) { 1472 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1473 0 /*TODO*/); 1474 Entry = SectionMap.size(); 1475 } 1476 } 1477 if (F.hasGC()) { 1478 // Same for GC names. 1479 unsigned &Entry = GCMap[F.getGC()]; 1480 if (!Entry) { 1481 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1482 0 /*TODO*/); 1483 Entry = GCMap.size(); 1484 } 1485 } 1486 } 1487 1488 // Emit abbrev for globals, now that we know # sections and max alignment. 1489 unsigned SimpleGVarAbbrev = 0; 1490 if (!M.global_empty()) { 1491 // Add an abbrev for common globals with no visibility or thread localness. 1492 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1493 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1494 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1497 Log2_32_Ceil(MaxGlobalType+1))); 1498 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1499 //| explicitType << 1 1500 //| constant 1501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1503 if (!MaxAlignment) // Alignment. 1504 Abbv->Add(BitCodeAbbrevOp(0)); 1505 else { 1506 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1507 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1508 Log2_32_Ceil(MaxEncAlignment+1))); 1509 } 1510 if (SectionMap.empty()) // Section. 1511 Abbv->Add(BitCodeAbbrevOp(0)); 1512 else 1513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1514 Log2_32_Ceil(SectionMap.size()+1))); 1515 // Don't bother emitting vis + thread local. 1516 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1517 } 1518 1519 SmallVector<unsigned, 64> Vals; 1520 // Emit the module's source file name. 1521 { 1522 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1523 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1524 if (Bits == SE_Char6) 1525 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1526 else if (Bits == SE_Fixed7) 1527 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1528 1529 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1530 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1531 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1533 Abbv->Add(AbbrevOpToUse); 1534 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1535 1536 for (const auto P : M.getSourceFileName()) 1537 Vals.push_back((unsigned char)P); 1538 1539 // Emit the finished record. 1540 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1541 Vals.clear(); 1542 } 1543 1544 // Emit the global variable information. 1545 for (const GlobalVariable &GV : M.globals()) { 1546 unsigned AbbrevToUse = 0; 1547 1548 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1549 // linkage, alignment, section, visibility, threadlocal, 1550 // unnamed_addr, externally_initialized, dllstorageclass, 1551 // comdat, attributes, DSO_Local, GlobalSanitizer, code_model] 1552 Vals.push_back(addToStrtab(GV.getName())); 1553 Vals.push_back(GV.getName().size()); 1554 Vals.push_back(VE.getTypeID(GV.getValueType())); 1555 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1556 Vals.push_back(GV.isDeclaration() ? 0 : 1557 (VE.getValueID(GV.getInitializer()) + 1)); 1558 Vals.push_back(getEncodedLinkage(GV)); 1559 Vals.push_back(getEncodedAlign(GV.getAlign())); 1560 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1561 : 0); 1562 if (GV.isThreadLocal() || 1563 GV.getVisibility() != GlobalValue::DefaultVisibility || 1564 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1565 GV.isExternallyInitialized() || 1566 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1567 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1568 GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) { 1569 Vals.push_back(getEncodedVisibility(GV)); 1570 Vals.push_back(getEncodedThreadLocalMode(GV)); 1571 Vals.push_back(getEncodedUnnamedAddr(GV)); 1572 Vals.push_back(GV.isExternallyInitialized()); 1573 Vals.push_back(getEncodedDLLStorageClass(GV)); 1574 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1575 1576 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1577 Vals.push_back(VE.getAttributeListID(AL)); 1578 1579 Vals.push_back(GV.isDSOLocal()); 1580 Vals.push_back(addToStrtab(GV.getPartition())); 1581 Vals.push_back(GV.getPartition().size()); 1582 1583 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1584 GV.getSanitizerMetadata()) 1585 : 0)); 1586 Vals.push_back(GV.getCodeModelRaw()); 1587 } else { 1588 AbbrevToUse = SimpleGVarAbbrev; 1589 } 1590 1591 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1592 Vals.clear(); 1593 } 1594 1595 // Emit the function proto information. 1596 for (const Function &F : M) { 1597 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1598 // linkage, paramattrs, alignment, section, visibility, gc, 1599 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1600 // prefixdata, personalityfn, DSO_Local, addrspace] 1601 Vals.push_back(addToStrtab(F.getName())); 1602 Vals.push_back(F.getName().size()); 1603 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1604 Vals.push_back(F.getCallingConv()); 1605 Vals.push_back(F.isDeclaration()); 1606 Vals.push_back(getEncodedLinkage(F)); 1607 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1608 Vals.push_back(getEncodedAlign(F.getAlign())); 1609 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1610 : 0); 1611 Vals.push_back(getEncodedVisibility(F)); 1612 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1613 Vals.push_back(getEncodedUnnamedAddr(F)); 1614 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1615 : 0); 1616 Vals.push_back(getEncodedDLLStorageClass(F)); 1617 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1618 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1619 : 0); 1620 Vals.push_back( 1621 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1622 1623 Vals.push_back(F.isDSOLocal()); 1624 Vals.push_back(F.getAddressSpace()); 1625 Vals.push_back(addToStrtab(F.getPartition())); 1626 Vals.push_back(F.getPartition().size()); 1627 1628 unsigned AbbrevToUse = 0; 1629 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1630 Vals.clear(); 1631 } 1632 1633 // Emit the alias information. 1634 for (const GlobalAlias &A : M.aliases()) { 1635 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1636 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1637 // DSO_Local] 1638 Vals.push_back(addToStrtab(A.getName())); 1639 Vals.push_back(A.getName().size()); 1640 Vals.push_back(VE.getTypeID(A.getValueType())); 1641 Vals.push_back(A.getType()->getAddressSpace()); 1642 Vals.push_back(VE.getValueID(A.getAliasee())); 1643 Vals.push_back(getEncodedLinkage(A)); 1644 Vals.push_back(getEncodedVisibility(A)); 1645 Vals.push_back(getEncodedDLLStorageClass(A)); 1646 Vals.push_back(getEncodedThreadLocalMode(A)); 1647 Vals.push_back(getEncodedUnnamedAddr(A)); 1648 Vals.push_back(A.isDSOLocal()); 1649 Vals.push_back(addToStrtab(A.getPartition())); 1650 Vals.push_back(A.getPartition().size()); 1651 1652 unsigned AbbrevToUse = 0; 1653 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1654 Vals.clear(); 1655 } 1656 1657 // Emit the ifunc information. 1658 for (const GlobalIFunc &I : M.ifuncs()) { 1659 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1660 // val#, linkage, visibility, DSO_Local] 1661 Vals.push_back(addToStrtab(I.getName())); 1662 Vals.push_back(I.getName().size()); 1663 Vals.push_back(VE.getTypeID(I.getValueType())); 1664 Vals.push_back(I.getType()->getAddressSpace()); 1665 Vals.push_back(VE.getValueID(I.getResolver())); 1666 Vals.push_back(getEncodedLinkage(I)); 1667 Vals.push_back(getEncodedVisibility(I)); 1668 Vals.push_back(I.isDSOLocal()); 1669 Vals.push_back(addToStrtab(I.getPartition())); 1670 Vals.push_back(I.getPartition().size()); 1671 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1672 Vals.clear(); 1673 } 1674 1675 writeValueSymbolTableForwardDecl(); 1676 } 1677 1678 static uint64_t getOptimizationFlags(const Value *V) { 1679 uint64_t Flags = 0; 1680 1681 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1682 if (OBO->hasNoSignedWrap()) 1683 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1684 if (OBO->hasNoUnsignedWrap()) 1685 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1686 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1687 if (PEO->isExact()) 1688 Flags |= 1 << bitc::PEO_EXACT; 1689 } else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) { 1690 if (PDI->isDisjoint()) 1691 Flags |= 1 << bitc::PDI_DISJOINT; 1692 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1693 if (FPMO->hasAllowReassoc()) 1694 Flags |= bitc::AllowReassoc; 1695 if (FPMO->hasNoNaNs()) 1696 Flags |= bitc::NoNaNs; 1697 if (FPMO->hasNoInfs()) 1698 Flags |= bitc::NoInfs; 1699 if (FPMO->hasNoSignedZeros()) 1700 Flags |= bitc::NoSignedZeros; 1701 if (FPMO->hasAllowReciprocal()) 1702 Flags |= bitc::AllowReciprocal; 1703 if (FPMO->hasAllowContract()) 1704 Flags |= bitc::AllowContract; 1705 if (FPMO->hasApproxFunc()) 1706 Flags |= bitc::ApproxFunc; 1707 } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) { 1708 if (NNI->hasNonNeg()) 1709 Flags |= 1 << bitc::PNNI_NON_NEG; 1710 } else if (const auto *TI = dyn_cast<TruncInst>(V)) { 1711 if (TI->hasNoSignedWrap()) 1712 Flags |= 1 << bitc::TIO_NO_SIGNED_WRAP; 1713 if (TI->hasNoUnsignedWrap()) 1714 Flags |= 1 << bitc::TIO_NO_UNSIGNED_WRAP; 1715 } else if (const auto *GEP = dyn_cast<GEPOperator>(V)) { 1716 if (GEP->isInBounds()) 1717 Flags |= 1 << bitc::GEP_INBOUNDS; 1718 if (GEP->hasNoUnsignedSignedWrap()) 1719 Flags |= 1 << bitc::GEP_NUSW; 1720 if (GEP->hasNoUnsignedWrap()) 1721 Flags |= 1 << bitc::GEP_NUW; 1722 } else if (const auto *ICmp = dyn_cast<ICmpInst>(V)) { 1723 if (ICmp->hasSameSign()) 1724 Flags |= 1 << bitc::ICMP_SAME_SIGN; 1725 } 1726 1727 return Flags; 1728 } 1729 1730 void ModuleBitcodeWriter::writeValueAsMetadata( 1731 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1732 // Mimic an MDNode with a value as one operand. 1733 Value *V = MD->getValue(); 1734 Record.push_back(VE.getTypeID(V->getType())); 1735 Record.push_back(VE.getValueID(V)); 1736 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1737 Record.clear(); 1738 } 1739 1740 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1741 SmallVectorImpl<uint64_t> &Record, 1742 unsigned Abbrev) { 1743 for (const MDOperand &MDO : N->operands()) { 1744 Metadata *MD = MDO; 1745 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1746 "Unexpected function-local metadata"); 1747 Record.push_back(VE.getMetadataOrNullID(MD)); 1748 } 1749 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1750 : bitc::METADATA_NODE, 1751 Record, Abbrev); 1752 Record.clear(); 1753 } 1754 1755 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1756 // Assume the column is usually under 128, and always output the inlined-at 1757 // location (it's never more expensive than building an array size 1). 1758 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1759 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1761 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1762 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1763 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1764 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1765 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1766 return Stream.EmitAbbrev(std::move(Abbv)); 1767 } 1768 1769 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1770 SmallVectorImpl<uint64_t> &Record, 1771 unsigned &Abbrev) { 1772 if (!Abbrev) 1773 Abbrev = createDILocationAbbrev(); 1774 1775 Record.push_back(N->isDistinct()); 1776 Record.push_back(N->getLine()); 1777 Record.push_back(N->getColumn()); 1778 Record.push_back(VE.getMetadataID(N->getScope())); 1779 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1780 Record.push_back(N->isImplicitCode()); 1781 1782 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1783 Record.clear(); 1784 } 1785 1786 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1787 // Assume the column is usually under 128, and always output the inlined-at 1788 // location (it's never more expensive than building an array size 1). 1789 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1790 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1797 return Stream.EmitAbbrev(std::move(Abbv)); 1798 } 1799 1800 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1801 SmallVectorImpl<uint64_t> &Record, 1802 unsigned &Abbrev) { 1803 if (!Abbrev) 1804 Abbrev = createGenericDINodeAbbrev(); 1805 1806 Record.push_back(N->isDistinct()); 1807 Record.push_back(N->getTag()); 1808 Record.push_back(0); // Per-tag version field; unused for now. 1809 1810 for (auto &I : N->operands()) 1811 Record.push_back(VE.getMetadataOrNullID(I)); 1812 1813 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1814 Record.clear(); 1815 } 1816 1817 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1818 SmallVectorImpl<uint64_t> &Record, 1819 unsigned Abbrev) { 1820 const uint64_t Version = 2 << 1; 1821 Record.push_back((uint64_t)N->isDistinct() | Version); 1822 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1823 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1824 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1825 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1826 1827 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1828 Record.clear(); 1829 } 1830 1831 void ModuleBitcodeWriter::writeDIGenericSubrange( 1832 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1833 unsigned Abbrev) { 1834 Record.push_back((uint64_t)N->isDistinct()); 1835 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1836 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1837 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1838 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1839 1840 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1841 Record.clear(); 1842 } 1843 1844 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1845 SmallVectorImpl<uint64_t> &Record, 1846 unsigned Abbrev) { 1847 const uint64_t IsBigInt = 1 << 2; 1848 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1849 Record.push_back(N->getValue().getBitWidth()); 1850 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1851 emitWideAPInt(Record, N->getValue()); 1852 1853 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1854 Record.clear(); 1855 } 1856 1857 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1858 SmallVectorImpl<uint64_t> &Record, 1859 unsigned Abbrev) { 1860 Record.push_back(N->isDistinct()); 1861 Record.push_back(N->getTag()); 1862 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1863 Record.push_back(N->getSizeInBits()); 1864 Record.push_back(N->getAlignInBits()); 1865 Record.push_back(N->getEncoding()); 1866 Record.push_back(N->getFlags()); 1867 Record.push_back(N->getNumExtraInhabitants()); 1868 1869 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1870 Record.clear(); 1871 } 1872 1873 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1874 SmallVectorImpl<uint64_t> &Record, 1875 unsigned Abbrev) { 1876 Record.push_back(N->isDistinct()); 1877 Record.push_back(N->getTag()); 1878 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1879 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1880 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1881 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1882 Record.push_back(N->getSizeInBits()); 1883 Record.push_back(N->getAlignInBits()); 1884 Record.push_back(N->getEncoding()); 1885 1886 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1887 Record.clear(); 1888 } 1889 1890 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1891 SmallVectorImpl<uint64_t> &Record, 1892 unsigned Abbrev) { 1893 Record.push_back(N->isDistinct()); 1894 Record.push_back(N->getTag()); 1895 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1896 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1897 Record.push_back(N->getLine()); 1898 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1899 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1900 Record.push_back(N->getSizeInBits()); 1901 Record.push_back(N->getAlignInBits()); 1902 Record.push_back(N->getOffsetInBits()); 1903 Record.push_back(N->getFlags()); 1904 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1905 1906 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1907 // that there is no DWARF address space associated with DIDerivedType. 1908 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1909 Record.push_back(*DWARFAddressSpace + 1); 1910 else 1911 Record.push_back(0); 1912 1913 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1914 1915 if (auto PtrAuthData = N->getPtrAuthData()) 1916 Record.push_back(PtrAuthData->RawData); 1917 else 1918 Record.push_back(0); 1919 1920 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1921 Record.clear(); 1922 } 1923 1924 void ModuleBitcodeWriter::writeDICompositeType( 1925 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1926 unsigned Abbrev) { 1927 const unsigned IsNotUsedInOldTypeRef = 0x2; 1928 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1929 Record.push_back(N->getTag()); 1930 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1931 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1932 Record.push_back(N->getLine()); 1933 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1934 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1935 Record.push_back(N->getSizeInBits()); 1936 Record.push_back(N->getAlignInBits()); 1937 Record.push_back(N->getOffsetInBits()); 1938 Record.push_back(N->getFlags()); 1939 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1940 Record.push_back(N->getRuntimeLang()); 1941 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1942 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1943 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1944 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1945 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1946 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1947 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1948 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1949 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1950 Record.push_back(N->getNumExtraInhabitants()); 1951 Record.push_back(VE.getMetadataOrNullID(N->getRawSpecification())); 1952 1953 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1954 Record.clear(); 1955 } 1956 1957 void ModuleBitcodeWriter::writeDISubroutineType( 1958 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1959 unsigned Abbrev) { 1960 const unsigned HasNoOldTypeRefs = 0x2; 1961 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1962 Record.push_back(N->getFlags()); 1963 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1964 Record.push_back(N->getCC()); 1965 1966 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1967 Record.clear(); 1968 } 1969 1970 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1971 SmallVectorImpl<uint64_t> &Record, 1972 unsigned Abbrev) { 1973 Record.push_back(N->isDistinct()); 1974 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1975 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1976 if (N->getRawChecksum()) { 1977 Record.push_back(N->getRawChecksum()->Kind); 1978 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1979 } else { 1980 // Maintain backwards compatibility with the old internal representation of 1981 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1982 Record.push_back(0); 1983 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1984 } 1985 auto Source = N->getRawSource(); 1986 if (Source) 1987 Record.push_back(VE.getMetadataOrNullID(Source)); 1988 1989 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1990 Record.clear(); 1991 } 1992 1993 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1994 SmallVectorImpl<uint64_t> &Record, 1995 unsigned Abbrev) { 1996 assert(N->isDistinct() && "Expected distinct compile units"); 1997 Record.push_back(/* IsDistinct */ true); 1998 Record.push_back(N->getSourceLanguage()); 1999 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2000 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 2001 Record.push_back(N->isOptimized()); 2002 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 2003 Record.push_back(N->getRuntimeVersion()); 2004 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 2005 Record.push_back(N->getEmissionKind()); 2006 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 2007 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 2008 Record.push_back(/* subprograms */ 0); 2009 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 2010 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 2011 Record.push_back(N->getDWOId()); 2012 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 2013 Record.push_back(N->getSplitDebugInlining()); 2014 Record.push_back(N->getDebugInfoForProfiling()); 2015 Record.push_back((unsigned)N->getNameTableKind()); 2016 Record.push_back(N->getRangesBaseAddress()); 2017 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 2018 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 2019 2020 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 2021 Record.clear(); 2022 } 2023 2024 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 2025 SmallVectorImpl<uint64_t> &Record, 2026 unsigned Abbrev) { 2027 const uint64_t HasUnitFlag = 1 << 1; 2028 const uint64_t HasSPFlagsFlag = 1 << 2; 2029 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 2030 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2031 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2032 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2033 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2034 Record.push_back(N->getLine()); 2035 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2036 Record.push_back(N->getScopeLine()); 2037 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 2038 Record.push_back(N->getSPFlags()); 2039 Record.push_back(N->getVirtualIndex()); 2040 Record.push_back(N->getFlags()); 2041 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 2042 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 2043 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 2044 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 2045 Record.push_back(N->getThisAdjustment()); 2046 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 2047 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2048 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 2049 2050 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 2051 Record.clear(); 2052 } 2053 2054 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 2055 SmallVectorImpl<uint64_t> &Record, 2056 unsigned Abbrev) { 2057 Record.push_back(N->isDistinct()); 2058 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2059 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2060 Record.push_back(N->getLine()); 2061 Record.push_back(N->getColumn()); 2062 2063 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 2064 Record.clear(); 2065 } 2066 2067 void ModuleBitcodeWriter::writeDILexicalBlockFile( 2068 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 2069 unsigned Abbrev) { 2070 Record.push_back(N->isDistinct()); 2071 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2072 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2073 Record.push_back(N->getDiscriminator()); 2074 2075 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 2076 Record.clear(); 2077 } 2078 2079 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 2080 SmallVectorImpl<uint64_t> &Record, 2081 unsigned Abbrev) { 2082 Record.push_back(N->isDistinct()); 2083 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2084 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 2085 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2086 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2087 Record.push_back(N->getLineNo()); 2088 2089 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 2090 Record.clear(); 2091 } 2092 2093 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 2094 SmallVectorImpl<uint64_t> &Record, 2095 unsigned Abbrev) { 2096 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 2097 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2098 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2099 2100 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 2101 Record.clear(); 2102 } 2103 2104 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 2105 SmallVectorImpl<uint64_t> &Record, 2106 unsigned Abbrev) { 2107 Record.push_back(N->isDistinct()); 2108 Record.push_back(N->getMacinfoType()); 2109 Record.push_back(N->getLine()); 2110 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2111 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 2112 2113 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 2114 Record.clear(); 2115 } 2116 2117 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 2118 SmallVectorImpl<uint64_t> &Record, 2119 unsigned Abbrev) { 2120 Record.push_back(N->isDistinct()); 2121 Record.push_back(N->getMacinfoType()); 2122 Record.push_back(N->getLine()); 2123 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2124 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2125 2126 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 2127 Record.clear(); 2128 } 2129 2130 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 2131 SmallVectorImpl<uint64_t> &Record) { 2132 Record.reserve(N->getArgs().size()); 2133 for (ValueAsMetadata *MD : N->getArgs()) 2134 Record.push_back(VE.getMetadataID(MD)); 2135 2136 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record); 2137 Record.clear(); 2138 } 2139 2140 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 2141 SmallVectorImpl<uint64_t> &Record, 2142 unsigned Abbrev) { 2143 Record.push_back(N->isDistinct()); 2144 for (auto &I : N->operands()) 2145 Record.push_back(VE.getMetadataOrNullID(I)); 2146 Record.push_back(N->getLineNo()); 2147 Record.push_back(N->getIsDecl()); 2148 2149 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 2150 Record.clear(); 2151 } 2152 2153 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 2154 SmallVectorImpl<uint64_t> &Record, 2155 unsigned Abbrev) { 2156 // There are no arguments for this metadata type. 2157 Record.push_back(N->isDistinct()); 2158 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 2159 Record.clear(); 2160 } 2161 2162 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 2163 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 2164 unsigned Abbrev) { 2165 Record.push_back(N->isDistinct()); 2166 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2167 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2168 Record.push_back(N->isDefault()); 2169 2170 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 2171 Record.clear(); 2172 } 2173 2174 void ModuleBitcodeWriter::writeDITemplateValueParameter( 2175 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 2176 unsigned Abbrev) { 2177 Record.push_back(N->isDistinct()); 2178 Record.push_back(N->getTag()); 2179 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2180 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2181 Record.push_back(N->isDefault()); 2182 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 2183 2184 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 2185 Record.clear(); 2186 } 2187 2188 void ModuleBitcodeWriter::writeDIGlobalVariable( 2189 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 2190 unsigned Abbrev) { 2191 const uint64_t Version = 2 << 1; 2192 Record.push_back((uint64_t)N->isDistinct() | Version); 2193 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2194 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2195 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2196 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2197 Record.push_back(N->getLine()); 2198 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2199 Record.push_back(N->isLocalToUnit()); 2200 Record.push_back(N->isDefinition()); 2201 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2202 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2203 Record.push_back(N->getAlignInBits()); 2204 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2205 2206 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2207 Record.clear(); 2208 } 2209 2210 void ModuleBitcodeWriter::writeDILocalVariable( 2211 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2212 unsigned Abbrev) { 2213 // In order to support all possible bitcode formats in BitcodeReader we need 2214 // to distinguish the following cases: 2215 // 1) Record has no artificial tag (Record[1]), 2216 // has no obsolete inlinedAt field (Record[9]). 2217 // In this case Record size will be 8, HasAlignment flag is false. 2218 // 2) Record has artificial tag (Record[1]), 2219 // has no obsolete inlignedAt field (Record[9]). 2220 // In this case Record size will be 9, HasAlignment flag is false. 2221 // 3) Record has both artificial tag (Record[1]) and 2222 // obsolete inlignedAt field (Record[9]). 2223 // In this case Record size will be 10, HasAlignment flag is false. 2224 // 4) Record has neither artificial tag, nor inlignedAt field, but 2225 // HasAlignment flag is true and Record[8] contains alignment value. 2226 const uint64_t HasAlignmentFlag = 1 << 1; 2227 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2228 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2229 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2230 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2231 Record.push_back(N->getLine()); 2232 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2233 Record.push_back(N->getArg()); 2234 Record.push_back(N->getFlags()); 2235 Record.push_back(N->getAlignInBits()); 2236 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2237 2238 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2239 Record.clear(); 2240 } 2241 2242 void ModuleBitcodeWriter::writeDILabel( 2243 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2244 unsigned Abbrev) { 2245 Record.push_back((uint64_t)N->isDistinct()); 2246 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2247 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2248 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2249 Record.push_back(N->getLine()); 2250 2251 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2252 Record.clear(); 2253 } 2254 2255 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2256 SmallVectorImpl<uint64_t> &Record, 2257 unsigned Abbrev) { 2258 Record.reserve(N->getElements().size() + 1); 2259 const uint64_t Version = 3 << 1; 2260 Record.push_back((uint64_t)N->isDistinct() | Version); 2261 Record.append(N->elements_begin(), N->elements_end()); 2262 2263 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2264 Record.clear(); 2265 } 2266 2267 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2268 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2269 unsigned Abbrev) { 2270 Record.push_back(N->isDistinct()); 2271 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2272 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2273 2274 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2275 Record.clear(); 2276 } 2277 2278 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2279 SmallVectorImpl<uint64_t> &Record, 2280 unsigned Abbrev) { 2281 Record.push_back(N->isDistinct()); 2282 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2283 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2284 Record.push_back(N->getLine()); 2285 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2286 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2287 Record.push_back(N->getAttributes()); 2288 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2289 2290 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2291 Record.clear(); 2292 } 2293 2294 void ModuleBitcodeWriter::writeDIImportedEntity( 2295 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2296 unsigned Abbrev) { 2297 Record.push_back(N->isDistinct()); 2298 Record.push_back(N->getTag()); 2299 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2300 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2301 Record.push_back(N->getLine()); 2302 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2303 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2304 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2305 2306 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2307 Record.clear(); 2308 } 2309 2310 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2311 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2312 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2315 return Stream.EmitAbbrev(std::move(Abbv)); 2316 } 2317 2318 void ModuleBitcodeWriter::writeNamedMetadata( 2319 SmallVectorImpl<uint64_t> &Record) { 2320 if (M.named_metadata_empty()) 2321 return; 2322 2323 unsigned Abbrev = createNamedMetadataAbbrev(); 2324 for (const NamedMDNode &NMD : M.named_metadata()) { 2325 // Write name. 2326 StringRef Str = NMD.getName(); 2327 Record.append(Str.bytes_begin(), Str.bytes_end()); 2328 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2329 Record.clear(); 2330 2331 // Write named metadata operands. 2332 for (const MDNode *N : NMD.operands()) 2333 Record.push_back(VE.getMetadataID(N)); 2334 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2335 Record.clear(); 2336 } 2337 } 2338 2339 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2340 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2341 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2345 return Stream.EmitAbbrev(std::move(Abbv)); 2346 } 2347 2348 /// Write out a record for MDString. 2349 /// 2350 /// All the metadata strings in a metadata block are emitted in a single 2351 /// record. The sizes and strings themselves are shoved into a blob. 2352 void ModuleBitcodeWriter::writeMetadataStrings( 2353 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2354 if (Strings.empty()) 2355 return; 2356 2357 // Start the record with the number of strings. 2358 Record.push_back(bitc::METADATA_STRINGS); 2359 Record.push_back(Strings.size()); 2360 2361 // Emit the sizes of the strings in the blob. 2362 SmallString<256> Blob; 2363 { 2364 BitstreamWriter W(Blob); 2365 for (const Metadata *MD : Strings) 2366 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2367 W.FlushToWord(); 2368 } 2369 2370 // Add the offset to the strings to the record. 2371 Record.push_back(Blob.size()); 2372 2373 // Add the strings to the blob. 2374 for (const Metadata *MD : Strings) 2375 Blob.append(cast<MDString>(MD)->getString()); 2376 2377 // Emit the final record. 2378 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2379 Record.clear(); 2380 } 2381 2382 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2383 enum MetadataAbbrev : unsigned { 2384 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2385 #include "llvm/IR/Metadata.def" 2386 LastPlusOne 2387 }; 2388 2389 void ModuleBitcodeWriter::writeMetadataRecords( 2390 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2391 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2392 if (MDs.empty()) 2393 return; 2394 2395 // Initialize MDNode abbreviations. 2396 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2397 #include "llvm/IR/Metadata.def" 2398 2399 for (const Metadata *MD : MDs) { 2400 if (IndexPos) 2401 IndexPos->push_back(Stream.GetCurrentBitNo()); 2402 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2403 assert(N->isResolved() && "Expected forward references to be resolved"); 2404 2405 switch (N->getMetadataID()) { 2406 default: 2407 llvm_unreachable("Invalid MDNode subclass"); 2408 #define HANDLE_MDNODE_LEAF(CLASS) \ 2409 case Metadata::CLASS##Kind: \ 2410 if (MDAbbrevs) \ 2411 write##CLASS(cast<CLASS>(N), Record, \ 2412 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2413 else \ 2414 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2415 continue; 2416 #include "llvm/IR/Metadata.def" 2417 } 2418 } 2419 if (auto *AL = dyn_cast<DIArgList>(MD)) { 2420 writeDIArgList(AL, Record); 2421 continue; 2422 } 2423 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2424 } 2425 } 2426 2427 void ModuleBitcodeWriter::writeModuleMetadata() { 2428 if (!VE.hasMDs() && M.named_metadata_empty()) 2429 return; 2430 2431 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2432 SmallVector<uint64_t, 64> Record; 2433 2434 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2435 // block and load any metadata. 2436 std::vector<unsigned> MDAbbrevs; 2437 2438 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2439 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2440 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2441 createGenericDINodeAbbrev(); 2442 2443 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2444 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2447 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2448 2449 Abbv = std::make_shared<BitCodeAbbrev>(); 2450 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2453 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2454 2455 // Emit MDStrings together upfront. 2456 writeMetadataStrings(VE.getMDStrings(), Record); 2457 2458 // We only emit an index for the metadata record if we have more than a given 2459 // (naive) threshold of metadatas, otherwise it is not worth it. 2460 if (VE.getNonMDStrings().size() > IndexThreshold) { 2461 // Write a placeholder value in for the offset of the metadata index, 2462 // which is written after the records, so that it can include 2463 // the offset of each entry. The placeholder offset will be 2464 // updated after all records are emitted. 2465 uint64_t Vals[] = {0, 0}; 2466 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2467 } 2468 2469 // Compute and save the bit offset to the current position, which will be 2470 // patched when we emit the index later. We can simply subtract the 64-bit 2471 // fixed size from the current bit number to get the location to backpatch. 2472 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2473 2474 // This index will contain the bitpos for each individual record. 2475 std::vector<uint64_t> IndexPos; 2476 IndexPos.reserve(VE.getNonMDStrings().size()); 2477 2478 // Write all the records 2479 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2480 2481 if (VE.getNonMDStrings().size() > IndexThreshold) { 2482 // Now that we have emitted all the records we will emit the index. But 2483 // first 2484 // backpatch the forward reference so that the reader can skip the records 2485 // efficiently. 2486 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2487 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2488 2489 // Delta encode the index. 2490 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2491 for (auto &Elt : IndexPos) { 2492 auto EltDelta = Elt - PreviousValue; 2493 PreviousValue = Elt; 2494 Elt = EltDelta; 2495 } 2496 // Emit the index record. 2497 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2498 IndexPos.clear(); 2499 } 2500 2501 // Write the named metadata now. 2502 writeNamedMetadata(Record); 2503 2504 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2505 SmallVector<uint64_t, 4> Record; 2506 Record.push_back(VE.getValueID(&GO)); 2507 pushGlobalMetadataAttachment(Record, GO); 2508 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2509 }; 2510 for (const Function &F : M) 2511 if (F.isDeclaration() && F.hasMetadata()) 2512 AddDeclAttachedMetadata(F); 2513 // FIXME: Only store metadata for declarations here, and move data for global 2514 // variable definitions to a separate block (PR28134). 2515 for (const GlobalVariable &GV : M.globals()) 2516 if (GV.hasMetadata()) 2517 AddDeclAttachedMetadata(GV); 2518 2519 Stream.ExitBlock(); 2520 } 2521 2522 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2523 if (!VE.hasMDs()) 2524 return; 2525 2526 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2527 SmallVector<uint64_t, 64> Record; 2528 writeMetadataStrings(VE.getMDStrings(), Record); 2529 writeMetadataRecords(VE.getNonMDStrings(), Record); 2530 Stream.ExitBlock(); 2531 } 2532 2533 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2534 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2535 // [n x [id, mdnode]] 2536 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2537 GO.getAllMetadata(MDs); 2538 for (const auto &I : MDs) { 2539 Record.push_back(I.first); 2540 Record.push_back(VE.getMetadataID(I.second)); 2541 } 2542 } 2543 2544 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2545 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2546 2547 SmallVector<uint64_t, 64> Record; 2548 2549 if (F.hasMetadata()) { 2550 pushGlobalMetadataAttachment(Record, F); 2551 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2552 Record.clear(); 2553 } 2554 2555 // Write metadata attachments 2556 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2557 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2558 for (const BasicBlock &BB : F) 2559 for (const Instruction &I : BB) { 2560 MDs.clear(); 2561 I.getAllMetadataOtherThanDebugLoc(MDs); 2562 2563 // If no metadata, ignore instruction. 2564 if (MDs.empty()) continue; 2565 2566 Record.push_back(VE.getInstructionID(&I)); 2567 2568 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2569 Record.push_back(MDs[i].first); 2570 Record.push_back(VE.getMetadataID(MDs[i].second)); 2571 } 2572 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2573 Record.clear(); 2574 } 2575 2576 Stream.ExitBlock(); 2577 } 2578 2579 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2580 SmallVector<uint64_t, 64> Record; 2581 2582 // Write metadata kinds 2583 // METADATA_KIND - [n x [id, name]] 2584 SmallVector<StringRef, 8> Names; 2585 M.getMDKindNames(Names); 2586 2587 if (Names.empty()) return; 2588 2589 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2590 2591 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2592 Record.push_back(MDKindID); 2593 StringRef KName = Names[MDKindID]; 2594 Record.append(KName.begin(), KName.end()); 2595 2596 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2597 Record.clear(); 2598 } 2599 2600 Stream.ExitBlock(); 2601 } 2602 2603 void ModuleBitcodeWriter::writeOperandBundleTags() { 2604 // Write metadata kinds 2605 // 2606 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2607 // 2608 // OPERAND_BUNDLE_TAG - [strchr x N] 2609 2610 SmallVector<StringRef, 8> Tags; 2611 M.getOperandBundleTags(Tags); 2612 2613 if (Tags.empty()) 2614 return; 2615 2616 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2617 2618 SmallVector<uint64_t, 64> Record; 2619 2620 for (auto Tag : Tags) { 2621 Record.append(Tag.begin(), Tag.end()); 2622 2623 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2624 Record.clear(); 2625 } 2626 2627 Stream.ExitBlock(); 2628 } 2629 2630 void ModuleBitcodeWriter::writeSyncScopeNames() { 2631 SmallVector<StringRef, 8> SSNs; 2632 M.getContext().getSyncScopeNames(SSNs); 2633 if (SSNs.empty()) 2634 return; 2635 2636 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2637 2638 SmallVector<uint64_t, 64> Record; 2639 for (auto SSN : SSNs) { 2640 Record.append(SSN.begin(), SSN.end()); 2641 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2642 Record.clear(); 2643 } 2644 2645 Stream.ExitBlock(); 2646 } 2647 2648 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2649 bool isGlobal) { 2650 if (FirstVal == LastVal) return; 2651 2652 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2653 2654 unsigned AggregateAbbrev = 0; 2655 unsigned String8Abbrev = 0; 2656 unsigned CString7Abbrev = 0; 2657 unsigned CString6Abbrev = 0; 2658 // If this is a constant pool for the module, emit module-specific abbrevs. 2659 if (isGlobal) { 2660 // Abbrev for CST_CODE_AGGREGATE. 2661 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2662 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2663 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2664 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2665 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2666 2667 // Abbrev for CST_CODE_STRING. 2668 Abbv = std::make_shared<BitCodeAbbrev>(); 2669 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2670 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2671 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2672 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2673 // Abbrev for CST_CODE_CSTRING. 2674 Abbv = std::make_shared<BitCodeAbbrev>(); 2675 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2676 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2677 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2678 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2679 // Abbrev for CST_CODE_CSTRING. 2680 Abbv = std::make_shared<BitCodeAbbrev>(); 2681 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2682 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2683 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2684 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2685 } 2686 2687 SmallVector<uint64_t, 64> Record; 2688 2689 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2690 Type *LastTy = nullptr; 2691 for (unsigned i = FirstVal; i != LastVal; ++i) { 2692 const Value *V = Vals[i].first; 2693 // If we need to switch types, do so now. 2694 if (V->getType() != LastTy) { 2695 LastTy = V->getType(); 2696 Record.push_back(VE.getTypeID(LastTy)); 2697 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2698 CONSTANTS_SETTYPE_ABBREV); 2699 Record.clear(); 2700 } 2701 2702 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2703 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2704 Record.push_back( 2705 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2706 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2707 2708 // Add the asm string. 2709 const std::string &AsmStr = IA->getAsmString(); 2710 Record.push_back(AsmStr.size()); 2711 Record.append(AsmStr.begin(), AsmStr.end()); 2712 2713 // Add the constraint string. 2714 const std::string &ConstraintStr = IA->getConstraintString(); 2715 Record.push_back(ConstraintStr.size()); 2716 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2717 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2718 Record.clear(); 2719 continue; 2720 } 2721 const Constant *C = cast<Constant>(V); 2722 unsigned Code = -1U; 2723 unsigned AbbrevToUse = 0; 2724 if (C->isNullValue()) { 2725 Code = bitc::CST_CODE_NULL; 2726 } else if (isa<PoisonValue>(C)) { 2727 Code = bitc::CST_CODE_POISON; 2728 } else if (isa<UndefValue>(C)) { 2729 Code = bitc::CST_CODE_UNDEF; 2730 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2731 if (IV->getBitWidth() <= 64) { 2732 uint64_t V = IV->getSExtValue(); 2733 emitSignedInt64(Record, V); 2734 Code = bitc::CST_CODE_INTEGER; 2735 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2736 } else { // Wide integers, > 64 bits in size. 2737 emitWideAPInt(Record, IV->getValue()); 2738 Code = bitc::CST_CODE_WIDE_INTEGER; 2739 } 2740 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2741 Code = bitc::CST_CODE_FLOAT; 2742 Type *Ty = CFP->getType()->getScalarType(); 2743 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2744 Ty->isDoubleTy()) { 2745 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2746 } else if (Ty->isX86_FP80Ty()) { 2747 // api needed to prevent premature destruction 2748 // bits are not in the same order as a normal i80 APInt, compensate. 2749 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2750 const uint64_t *p = api.getRawData(); 2751 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2752 Record.push_back(p[0] & 0xffffLL); 2753 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2754 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2755 const uint64_t *p = api.getRawData(); 2756 Record.push_back(p[0]); 2757 Record.push_back(p[1]); 2758 } else { 2759 assert(0 && "Unknown FP type!"); 2760 } 2761 } else if (isa<ConstantDataSequential>(C) && 2762 cast<ConstantDataSequential>(C)->isString()) { 2763 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2764 // Emit constant strings specially. 2765 unsigned NumElts = Str->getNumElements(); 2766 // If this is a null-terminated string, use the denser CSTRING encoding. 2767 if (Str->isCString()) { 2768 Code = bitc::CST_CODE_CSTRING; 2769 --NumElts; // Don't encode the null, which isn't allowed by char6. 2770 } else { 2771 Code = bitc::CST_CODE_STRING; 2772 AbbrevToUse = String8Abbrev; 2773 } 2774 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2775 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2776 for (unsigned i = 0; i != NumElts; ++i) { 2777 unsigned char V = Str->getElementAsInteger(i); 2778 Record.push_back(V); 2779 isCStr7 &= (V & 128) == 0; 2780 if (isCStrChar6) 2781 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2782 } 2783 2784 if (isCStrChar6) 2785 AbbrevToUse = CString6Abbrev; 2786 else if (isCStr7) 2787 AbbrevToUse = CString7Abbrev; 2788 } else if (const ConstantDataSequential *CDS = 2789 dyn_cast<ConstantDataSequential>(C)) { 2790 Code = bitc::CST_CODE_DATA; 2791 Type *EltTy = CDS->getElementType(); 2792 if (isa<IntegerType>(EltTy)) { 2793 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2794 Record.push_back(CDS->getElementAsInteger(i)); 2795 } else { 2796 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2797 Record.push_back( 2798 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2799 } 2800 } else if (isa<ConstantAggregate>(C)) { 2801 Code = bitc::CST_CODE_AGGREGATE; 2802 for (const Value *Op : C->operands()) 2803 Record.push_back(VE.getValueID(Op)); 2804 AbbrevToUse = AggregateAbbrev; 2805 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2806 switch (CE->getOpcode()) { 2807 default: 2808 if (Instruction::isCast(CE->getOpcode())) { 2809 Code = bitc::CST_CODE_CE_CAST; 2810 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2811 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2812 Record.push_back(VE.getValueID(C->getOperand(0))); 2813 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2814 } else { 2815 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2816 Code = bitc::CST_CODE_CE_BINOP; 2817 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2818 Record.push_back(VE.getValueID(C->getOperand(0))); 2819 Record.push_back(VE.getValueID(C->getOperand(1))); 2820 uint64_t Flags = getOptimizationFlags(CE); 2821 if (Flags != 0) 2822 Record.push_back(Flags); 2823 } 2824 break; 2825 case Instruction::FNeg: { 2826 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2827 Code = bitc::CST_CODE_CE_UNOP; 2828 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2829 Record.push_back(VE.getValueID(C->getOperand(0))); 2830 uint64_t Flags = getOptimizationFlags(CE); 2831 if (Flags != 0) 2832 Record.push_back(Flags); 2833 break; 2834 } 2835 case Instruction::GetElementPtr: { 2836 Code = bitc::CST_CODE_CE_GEP; 2837 const auto *GO = cast<GEPOperator>(C); 2838 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2839 Record.push_back(getOptimizationFlags(GO)); 2840 if (std::optional<ConstantRange> Range = GO->getInRange()) { 2841 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE; 2842 emitConstantRange(Record, *Range, /*EmitBitWidth=*/true); 2843 } 2844 for (const Value *Op : CE->operands()) { 2845 Record.push_back(VE.getTypeID(Op->getType())); 2846 Record.push_back(VE.getValueID(Op)); 2847 } 2848 break; 2849 } 2850 case Instruction::ExtractElement: 2851 Code = bitc::CST_CODE_CE_EXTRACTELT; 2852 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2853 Record.push_back(VE.getValueID(C->getOperand(0))); 2854 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2855 Record.push_back(VE.getValueID(C->getOperand(1))); 2856 break; 2857 case Instruction::InsertElement: 2858 Code = bitc::CST_CODE_CE_INSERTELT; 2859 Record.push_back(VE.getValueID(C->getOperand(0))); 2860 Record.push_back(VE.getValueID(C->getOperand(1))); 2861 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2862 Record.push_back(VE.getValueID(C->getOperand(2))); 2863 break; 2864 case Instruction::ShuffleVector: 2865 // If the return type and argument types are the same, this is a 2866 // standard shufflevector instruction. If the types are different, 2867 // then the shuffle is widening or truncating the input vectors, and 2868 // the argument type must also be encoded. 2869 if (C->getType() == C->getOperand(0)->getType()) { 2870 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2871 } else { 2872 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2873 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2874 } 2875 Record.push_back(VE.getValueID(C->getOperand(0))); 2876 Record.push_back(VE.getValueID(C->getOperand(1))); 2877 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2878 break; 2879 } 2880 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2881 Code = bitc::CST_CODE_BLOCKADDRESS; 2882 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2883 Record.push_back(VE.getValueID(BA->getFunction())); 2884 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2885 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2886 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2887 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2888 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2889 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2890 Code = bitc::CST_CODE_NO_CFI_VALUE; 2891 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2892 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2893 } else if (const auto *CPA = dyn_cast<ConstantPtrAuth>(C)) { 2894 Code = bitc::CST_CODE_PTRAUTH; 2895 Record.push_back(VE.getValueID(CPA->getPointer())); 2896 Record.push_back(VE.getValueID(CPA->getKey())); 2897 Record.push_back(VE.getValueID(CPA->getDiscriminator())); 2898 Record.push_back(VE.getValueID(CPA->getAddrDiscriminator())); 2899 } else { 2900 #ifndef NDEBUG 2901 C->dump(); 2902 #endif 2903 llvm_unreachable("Unknown constant!"); 2904 } 2905 Stream.EmitRecord(Code, Record, AbbrevToUse); 2906 Record.clear(); 2907 } 2908 2909 Stream.ExitBlock(); 2910 } 2911 2912 void ModuleBitcodeWriter::writeModuleConstants() { 2913 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2914 2915 // Find the first constant to emit, which is the first non-globalvalue value. 2916 // We know globalvalues have been emitted by WriteModuleInfo. 2917 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2918 if (!isa<GlobalValue>(Vals[i].first)) { 2919 writeConstants(i, Vals.size(), true); 2920 return; 2921 } 2922 } 2923 } 2924 2925 /// pushValueAndType - The file has to encode both the value and type id for 2926 /// many values, because we need to know what type to create for forward 2927 /// references. However, most operands are not forward references, so this type 2928 /// field is not needed. 2929 /// 2930 /// This function adds V's value ID to Vals. If the value ID is higher than the 2931 /// instruction ID, then it is a forward reference, and it also includes the 2932 /// type ID. The value ID that is written is encoded relative to the InstID. 2933 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2934 SmallVectorImpl<unsigned> &Vals) { 2935 unsigned ValID = VE.getValueID(V); 2936 // Make encoding relative to the InstID. 2937 Vals.push_back(InstID - ValID); 2938 if (ValID >= InstID) { 2939 Vals.push_back(VE.getTypeID(V->getType())); 2940 return true; 2941 } 2942 return false; 2943 } 2944 2945 bool ModuleBitcodeWriter::pushValueOrMetadata(const Value *V, unsigned InstID, 2946 SmallVectorImpl<unsigned> &Vals) { 2947 bool IsMetadata = V->getType()->isMetadataTy(); 2948 if (IsMetadata) { 2949 Vals.push_back(bitc::OB_METADATA); 2950 Metadata *MD = cast<MetadataAsValue>(V)->getMetadata(); 2951 unsigned ValID = VE.getMetadataID(MD); 2952 Vals.push_back(InstID - ValID); 2953 return false; 2954 } 2955 return pushValueAndType(V, InstID, Vals); 2956 } 2957 2958 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2959 unsigned InstID) { 2960 SmallVector<unsigned, 64> Record; 2961 LLVMContext &C = CS.getContext(); 2962 2963 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2964 const auto &Bundle = CS.getOperandBundleAt(i); 2965 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2966 2967 for (auto &Input : Bundle.Inputs) 2968 pushValueOrMetadata(Input, InstID, Record); 2969 2970 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2971 Record.clear(); 2972 } 2973 } 2974 2975 /// pushValue - Like pushValueAndType, but where the type of the value is 2976 /// omitted (perhaps it was already encoded in an earlier operand). 2977 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2978 SmallVectorImpl<unsigned> &Vals) { 2979 unsigned ValID = VE.getValueID(V); 2980 Vals.push_back(InstID - ValID); 2981 } 2982 2983 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2984 SmallVectorImpl<uint64_t> &Vals) { 2985 unsigned ValID = VE.getValueID(V); 2986 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2987 emitSignedInt64(Vals, diff); 2988 } 2989 2990 /// WriteInstruction - Emit an instruction to the specified stream. 2991 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2992 unsigned InstID, 2993 SmallVectorImpl<unsigned> &Vals) { 2994 unsigned Code = 0; 2995 unsigned AbbrevToUse = 0; 2996 VE.setInstructionID(&I); 2997 switch (I.getOpcode()) { 2998 default: 2999 if (Instruction::isCast(I.getOpcode())) { 3000 Code = bitc::FUNC_CODE_INST_CAST; 3001 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3002 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 3003 Vals.push_back(VE.getTypeID(I.getType())); 3004 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 3005 uint64_t Flags = getOptimizationFlags(&I); 3006 if (Flags != 0) { 3007 if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV) 3008 AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV; 3009 Vals.push_back(Flags); 3010 } 3011 } else { 3012 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 3013 Code = bitc::FUNC_CODE_INST_BINOP; 3014 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3015 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 3016 pushValue(I.getOperand(1), InstID, Vals); 3017 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 3018 uint64_t Flags = getOptimizationFlags(&I); 3019 if (Flags != 0) { 3020 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 3021 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 3022 Vals.push_back(Flags); 3023 } 3024 } 3025 break; 3026 case Instruction::FNeg: { 3027 Code = bitc::FUNC_CODE_INST_UNOP; 3028 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3029 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 3030 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 3031 uint64_t Flags = getOptimizationFlags(&I); 3032 if (Flags != 0) { 3033 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 3034 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 3035 Vals.push_back(Flags); 3036 } 3037 break; 3038 } 3039 case Instruction::GetElementPtr: { 3040 Code = bitc::FUNC_CODE_INST_GEP; 3041 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 3042 auto &GEPInst = cast<GetElementPtrInst>(I); 3043 Vals.push_back(getOptimizationFlags(&I)); 3044 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 3045 for (const Value *Op : I.operands()) 3046 pushValueAndType(Op, InstID, Vals); 3047 break; 3048 } 3049 case Instruction::ExtractValue: { 3050 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 3051 pushValueAndType(I.getOperand(0), InstID, Vals); 3052 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 3053 Vals.append(EVI->idx_begin(), EVI->idx_end()); 3054 break; 3055 } 3056 case Instruction::InsertValue: { 3057 Code = bitc::FUNC_CODE_INST_INSERTVAL; 3058 pushValueAndType(I.getOperand(0), InstID, Vals); 3059 pushValueAndType(I.getOperand(1), InstID, Vals); 3060 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 3061 Vals.append(IVI->idx_begin(), IVI->idx_end()); 3062 break; 3063 } 3064 case Instruction::Select: { 3065 Code = bitc::FUNC_CODE_INST_VSELECT; 3066 pushValueAndType(I.getOperand(1), InstID, Vals); 3067 pushValue(I.getOperand(2), InstID, Vals); 3068 pushValueAndType(I.getOperand(0), InstID, Vals); 3069 uint64_t Flags = getOptimizationFlags(&I); 3070 if (Flags != 0) 3071 Vals.push_back(Flags); 3072 break; 3073 } 3074 case Instruction::ExtractElement: 3075 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 3076 pushValueAndType(I.getOperand(0), InstID, Vals); 3077 pushValueAndType(I.getOperand(1), InstID, Vals); 3078 break; 3079 case Instruction::InsertElement: 3080 Code = bitc::FUNC_CODE_INST_INSERTELT; 3081 pushValueAndType(I.getOperand(0), InstID, Vals); 3082 pushValue(I.getOperand(1), InstID, Vals); 3083 pushValueAndType(I.getOperand(2), InstID, Vals); 3084 break; 3085 case Instruction::ShuffleVector: 3086 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 3087 pushValueAndType(I.getOperand(0), InstID, Vals); 3088 pushValue(I.getOperand(1), InstID, Vals); 3089 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 3090 Vals); 3091 break; 3092 case Instruction::ICmp: 3093 case Instruction::FCmp: { 3094 // compare returning Int1Ty or vector of Int1Ty 3095 Code = bitc::FUNC_CODE_INST_CMP2; 3096 pushValueAndType(I.getOperand(0), InstID, Vals); 3097 pushValue(I.getOperand(1), InstID, Vals); 3098 Vals.push_back(cast<CmpInst>(I).getPredicate()); 3099 uint64_t Flags = getOptimizationFlags(&I); 3100 if (Flags != 0) 3101 Vals.push_back(Flags); 3102 break; 3103 } 3104 3105 case Instruction::Ret: 3106 { 3107 Code = bitc::FUNC_CODE_INST_RET; 3108 unsigned NumOperands = I.getNumOperands(); 3109 if (NumOperands == 0) 3110 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 3111 else if (NumOperands == 1) { 3112 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3113 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 3114 } else { 3115 for (const Value *Op : I.operands()) 3116 pushValueAndType(Op, InstID, Vals); 3117 } 3118 } 3119 break; 3120 case Instruction::Br: 3121 { 3122 Code = bitc::FUNC_CODE_INST_BR; 3123 const BranchInst &II = cast<BranchInst>(I); 3124 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 3125 if (II.isConditional()) { 3126 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 3127 pushValue(II.getCondition(), InstID, Vals); 3128 } 3129 } 3130 break; 3131 case Instruction::Switch: 3132 { 3133 Code = bitc::FUNC_CODE_INST_SWITCH; 3134 const SwitchInst &SI = cast<SwitchInst>(I); 3135 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 3136 pushValue(SI.getCondition(), InstID, Vals); 3137 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 3138 for (auto Case : SI.cases()) { 3139 Vals.push_back(VE.getValueID(Case.getCaseValue())); 3140 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 3141 } 3142 } 3143 break; 3144 case Instruction::IndirectBr: 3145 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 3146 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3147 // Encode the address operand as relative, but not the basic blocks. 3148 pushValue(I.getOperand(0), InstID, Vals); 3149 for (const Value *Op : drop_begin(I.operands())) 3150 Vals.push_back(VE.getValueID(Op)); 3151 break; 3152 3153 case Instruction::Invoke: { 3154 const InvokeInst *II = cast<InvokeInst>(&I); 3155 const Value *Callee = II->getCalledOperand(); 3156 FunctionType *FTy = II->getFunctionType(); 3157 3158 if (II->hasOperandBundles()) 3159 writeOperandBundles(*II, InstID); 3160 3161 Code = bitc::FUNC_CODE_INST_INVOKE; 3162 3163 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 3164 Vals.push_back(II->getCallingConv() | 1 << 13); 3165 Vals.push_back(VE.getValueID(II->getNormalDest())); 3166 Vals.push_back(VE.getValueID(II->getUnwindDest())); 3167 Vals.push_back(VE.getTypeID(FTy)); 3168 pushValueAndType(Callee, InstID, Vals); 3169 3170 // Emit value #'s for the fixed parameters. 3171 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3172 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3173 3174 // Emit type/value pairs for varargs params. 3175 if (FTy->isVarArg()) { 3176 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 3177 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3178 } 3179 break; 3180 } 3181 case Instruction::Resume: 3182 Code = bitc::FUNC_CODE_INST_RESUME; 3183 pushValueAndType(I.getOperand(0), InstID, Vals); 3184 break; 3185 case Instruction::CleanupRet: { 3186 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 3187 const auto &CRI = cast<CleanupReturnInst>(I); 3188 pushValue(CRI.getCleanupPad(), InstID, Vals); 3189 if (CRI.hasUnwindDest()) 3190 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 3191 break; 3192 } 3193 case Instruction::CatchRet: { 3194 Code = bitc::FUNC_CODE_INST_CATCHRET; 3195 const auto &CRI = cast<CatchReturnInst>(I); 3196 pushValue(CRI.getCatchPad(), InstID, Vals); 3197 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 3198 break; 3199 } 3200 case Instruction::CleanupPad: 3201 case Instruction::CatchPad: { 3202 const auto &FuncletPad = cast<FuncletPadInst>(I); 3203 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 3204 : bitc::FUNC_CODE_INST_CLEANUPPAD; 3205 pushValue(FuncletPad.getParentPad(), InstID, Vals); 3206 3207 unsigned NumArgOperands = FuncletPad.arg_size(); 3208 Vals.push_back(NumArgOperands); 3209 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 3210 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 3211 break; 3212 } 3213 case Instruction::CatchSwitch: { 3214 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3215 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3216 3217 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3218 3219 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3220 Vals.push_back(NumHandlers); 3221 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3222 Vals.push_back(VE.getValueID(CatchPadBB)); 3223 3224 if (CatchSwitch.hasUnwindDest()) 3225 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3226 break; 3227 } 3228 case Instruction::CallBr: { 3229 const CallBrInst *CBI = cast<CallBrInst>(&I); 3230 const Value *Callee = CBI->getCalledOperand(); 3231 FunctionType *FTy = CBI->getFunctionType(); 3232 3233 if (CBI->hasOperandBundles()) 3234 writeOperandBundles(*CBI, InstID); 3235 3236 Code = bitc::FUNC_CODE_INST_CALLBR; 3237 3238 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3239 3240 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3241 1 << bitc::CALL_EXPLICIT_TYPE); 3242 3243 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3244 Vals.push_back(CBI->getNumIndirectDests()); 3245 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3246 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3247 3248 Vals.push_back(VE.getTypeID(FTy)); 3249 pushValueAndType(Callee, InstID, Vals); 3250 3251 // Emit value #'s for the fixed parameters. 3252 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3253 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3254 3255 // Emit type/value pairs for varargs params. 3256 if (FTy->isVarArg()) { 3257 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3258 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3259 } 3260 break; 3261 } 3262 case Instruction::Unreachable: 3263 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3264 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3265 break; 3266 3267 case Instruction::PHI: { 3268 const PHINode &PN = cast<PHINode>(I); 3269 Code = bitc::FUNC_CODE_INST_PHI; 3270 // With the newer instruction encoding, forward references could give 3271 // negative valued IDs. This is most common for PHIs, so we use 3272 // signed VBRs. 3273 SmallVector<uint64_t, 128> Vals64; 3274 Vals64.push_back(VE.getTypeID(PN.getType())); 3275 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3276 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3277 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3278 } 3279 3280 uint64_t Flags = getOptimizationFlags(&I); 3281 if (Flags != 0) 3282 Vals64.push_back(Flags); 3283 3284 // Emit a Vals64 vector and exit. 3285 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3286 Vals64.clear(); 3287 return; 3288 } 3289 3290 case Instruction::LandingPad: { 3291 const LandingPadInst &LP = cast<LandingPadInst>(I); 3292 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3293 Vals.push_back(VE.getTypeID(LP.getType())); 3294 Vals.push_back(LP.isCleanup()); 3295 Vals.push_back(LP.getNumClauses()); 3296 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3297 if (LP.isCatch(I)) 3298 Vals.push_back(LandingPadInst::Catch); 3299 else 3300 Vals.push_back(LandingPadInst::Filter); 3301 pushValueAndType(LP.getClause(I), InstID, Vals); 3302 } 3303 break; 3304 } 3305 3306 case Instruction::Alloca: { 3307 Code = bitc::FUNC_CODE_INST_ALLOCA; 3308 const AllocaInst &AI = cast<AllocaInst>(I); 3309 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3310 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3311 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3312 using APV = AllocaPackedValues; 3313 unsigned Record = 0; 3314 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3315 Bitfield::set<APV::AlignLower>( 3316 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3317 Bitfield::set<APV::AlignUpper>(Record, 3318 EncodedAlign >> APV::AlignLower::Bits); 3319 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3320 Bitfield::set<APV::ExplicitType>(Record, true); 3321 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3322 Vals.push_back(Record); 3323 3324 unsigned AS = AI.getAddressSpace(); 3325 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3326 Vals.push_back(AS); 3327 break; 3328 } 3329 3330 case Instruction::Load: 3331 if (cast<LoadInst>(I).isAtomic()) { 3332 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3333 pushValueAndType(I.getOperand(0), InstID, Vals); 3334 } else { 3335 Code = bitc::FUNC_CODE_INST_LOAD; 3336 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3337 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3338 } 3339 Vals.push_back(VE.getTypeID(I.getType())); 3340 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3341 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3342 if (cast<LoadInst>(I).isAtomic()) { 3343 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3344 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3345 } 3346 break; 3347 case Instruction::Store: 3348 if (cast<StoreInst>(I).isAtomic()) 3349 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3350 else 3351 Code = bitc::FUNC_CODE_INST_STORE; 3352 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3353 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3354 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3355 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3356 if (cast<StoreInst>(I).isAtomic()) { 3357 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3358 Vals.push_back( 3359 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3360 } 3361 break; 3362 case Instruction::AtomicCmpXchg: 3363 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3364 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3365 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3366 pushValue(I.getOperand(2), InstID, Vals); // newval. 3367 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3368 Vals.push_back( 3369 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3370 Vals.push_back( 3371 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3372 Vals.push_back( 3373 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3374 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3375 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3376 break; 3377 case Instruction::AtomicRMW: 3378 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3379 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3380 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3381 Vals.push_back( 3382 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3383 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3384 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3385 Vals.push_back( 3386 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3387 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3388 break; 3389 case Instruction::Fence: 3390 Code = bitc::FUNC_CODE_INST_FENCE; 3391 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3392 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3393 break; 3394 case Instruction::Call: { 3395 const CallInst &CI = cast<CallInst>(I); 3396 FunctionType *FTy = CI.getFunctionType(); 3397 3398 if (CI.hasOperandBundles()) 3399 writeOperandBundles(CI, InstID); 3400 3401 Code = bitc::FUNC_CODE_INST_CALL; 3402 3403 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3404 3405 unsigned Flags = getOptimizationFlags(&I); 3406 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3407 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3408 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3409 1 << bitc::CALL_EXPLICIT_TYPE | 3410 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3411 unsigned(Flags != 0) << bitc::CALL_FMF); 3412 if (Flags != 0) 3413 Vals.push_back(Flags); 3414 3415 Vals.push_back(VE.getTypeID(FTy)); 3416 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3417 3418 // Emit value #'s for the fixed parameters. 3419 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3420 // Check for labels (can happen with asm labels). 3421 if (FTy->getParamType(i)->isLabelTy()) 3422 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3423 else 3424 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3425 } 3426 3427 // Emit type/value pairs for varargs params. 3428 if (FTy->isVarArg()) { 3429 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3430 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3431 } 3432 break; 3433 } 3434 case Instruction::VAArg: 3435 Code = bitc::FUNC_CODE_INST_VAARG; 3436 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3437 pushValue(I.getOperand(0), InstID, Vals); // valist. 3438 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3439 break; 3440 case Instruction::Freeze: 3441 Code = bitc::FUNC_CODE_INST_FREEZE; 3442 pushValueAndType(I.getOperand(0), InstID, Vals); 3443 break; 3444 } 3445 3446 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3447 Vals.clear(); 3448 } 3449 3450 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3451 /// to allow clients to efficiently find the function body. 3452 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3453 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3454 // Get the offset of the VST we are writing, and backpatch it into 3455 // the VST forward declaration record. 3456 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3457 // The BitcodeStartBit was the stream offset of the identification block. 3458 VSTOffset -= bitcodeStartBit(); 3459 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3460 // Note that we add 1 here because the offset is relative to one word 3461 // before the start of the identification block, which was historically 3462 // always the start of the regular bitcode header. 3463 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3464 3465 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3466 3467 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3468 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3471 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3472 3473 for (const Function &F : M) { 3474 uint64_t Record[2]; 3475 3476 if (F.isDeclaration()) 3477 continue; 3478 3479 Record[0] = VE.getValueID(&F); 3480 3481 // Save the word offset of the function (from the start of the 3482 // actual bitcode written to the stream). 3483 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3484 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3485 // Note that we add 1 here because the offset is relative to one word 3486 // before the start of the identification block, which was historically 3487 // always the start of the regular bitcode header. 3488 Record[1] = BitcodeIndex / 32 + 1; 3489 3490 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3491 } 3492 3493 Stream.ExitBlock(); 3494 } 3495 3496 /// Emit names for arguments, instructions and basic blocks in a function. 3497 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3498 const ValueSymbolTable &VST) { 3499 if (VST.empty()) 3500 return; 3501 3502 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3503 3504 // FIXME: Set up the abbrev, we know how many values there are! 3505 // FIXME: We know if the type names can use 7-bit ascii. 3506 SmallVector<uint64_t, 64> NameVals; 3507 3508 for (const ValueName &Name : VST) { 3509 // Figure out the encoding to use for the name. 3510 StringEncoding Bits = getStringEncoding(Name.getKey()); 3511 3512 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3513 NameVals.push_back(VE.getValueID(Name.getValue())); 3514 3515 // VST_CODE_ENTRY: [valueid, namechar x N] 3516 // VST_CODE_BBENTRY: [bbid, namechar x N] 3517 unsigned Code; 3518 if (isa<BasicBlock>(Name.getValue())) { 3519 Code = bitc::VST_CODE_BBENTRY; 3520 if (Bits == SE_Char6) 3521 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3522 } else { 3523 Code = bitc::VST_CODE_ENTRY; 3524 if (Bits == SE_Char6) 3525 AbbrevToUse = VST_ENTRY_6_ABBREV; 3526 else if (Bits == SE_Fixed7) 3527 AbbrevToUse = VST_ENTRY_7_ABBREV; 3528 } 3529 3530 for (const auto P : Name.getKey()) 3531 NameVals.push_back((unsigned char)P); 3532 3533 // Emit the finished record. 3534 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3535 NameVals.clear(); 3536 } 3537 3538 Stream.ExitBlock(); 3539 } 3540 3541 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3542 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3543 unsigned Code; 3544 if (isa<BasicBlock>(Order.V)) 3545 Code = bitc::USELIST_CODE_BB; 3546 else 3547 Code = bitc::USELIST_CODE_DEFAULT; 3548 3549 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3550 Record.push_back(VE.getValueID(Order.V)); 3551 Stream.EmitRecord(Code, Record); 3552 } 3553 3554 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3555 assert(VE.shouldPreserveUseListOrder() && 3556 "Expected to be preserving use-list order"); 3557 3558 auto hasMore = [&]() { 3559 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3560 }; 3561 if (!hasMore()) 3562 // Nothing to do. 3563 return; 3564 3565 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3566 while (hasMore()) { 3567 writeUseList(std::move(VE.UseListOrders.back())); 3568 VE.UseListOrders.pop_back(); 3569 } 3570 Stream.ExitBlock(); 3571 } 3572 3573 /// Emit a function body to the module stream. 3574 void ModuleBitcodeWriter::writeFunction( 3575 const Function &F, 3576 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3577 // Save the bitcode index of the start of this function block for recording 3578 // in the VST. 3579 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3580 3581 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3582 VE.incorporateFunction(F); 3583 3584 SmallVector<unsigned, 64> Vals; 3585 3586 // Emit the number of basic blocks, so the reader can create them ahead of 3587 // time. 3588 Vals.push_back(VE.getBasicBlocks().size()); 3589 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3590 Vals.clear(); 3591 3592 // If there are function-local constants, emit them now. 3593 unsigned CstStart, CstEnd; 3594 VE.getFunctionConstantRange(CstStart, CstEnd); 3595 writeConstants(CstStart, CstEnd, false); 3596 3597 // If there is function-local metadata, emit it now. 3598 writeFunctionMetadata(F); 3599 3600 // Keep a running idea of what the instruction ID is. 3601 unsigned InstID = CstEnd; 3602 3603 bool NeedsMetadataAttachment = F.hasMetadata(); 3604 3605 DILocation *LastDL = nullptr; 3606 SmallSetVector<Function *, 4> BlockAddressUsers; 3607 3608 // Finally, emit all the instructions, in order. 3609 for (const BasicBlock &BB : F) { 3610 for (const Instruction &I : BB) { 3611 writeInstruction(I, InstID, Vals); 3612 3613 if (!I.getType()->isVoidTy()) 3614 ++InstID; 3615 3616 // If the instruction has metadata, write a metadata attachment later. 3617 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3618 3619 // If the instruction has a debug location, emit it. 3620 if (DILocation *DL = I.getDebugLoc()) { 3621 if (DL == LastDL) { 3622 // Just repeat the same debug loc as last time. 3623 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3624 } else { 3625 Vals.push_back(DL->getLine()); 3626 Vals.push_back(DL->getColumn()); 3627 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3628 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3629 Vals.push_back(DL->isImplicitCode()); 3630 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3631 Vals.clear(); 3632 LastDL = DL; 3633 } 3634 } 3635 3636 // If the instruction has DbgRecords attached to it, emit them. Note that 3637 // they come after the instruction so that it's easy to attach them again 3638 // when reading the bitcode, even though conceptually the debug locations 3639 // start "before" the instruction. 3640 if (I.hasDbgRecords() && WriteNewDbgInfoFormatToBitcode) { 3641 /// Try to push the value only (unwrapped), otherwise push the 3642 /// metadata wrapped value. Returns true if the value was pushed 3643 /// without the ValueAsMetadata wrapper. 3644 auto PushValueOrMetadata = [&Vals, InstID, 3645 this](Metadata *RawLocation) { 3646 assert(RawLocation && 3647 "RawLocation unexpectedly null in DbgVariableRecord"); 3648 if (ValueAsMetadata *VAM = dyn_cast<ValueAsMetadata>(RawLocation)) { 3649 SmallVector<unsigned, 2> ValAndType; 3650 // If the value is a fwd-ref the type is also pushed. We don't 3651 // want the type, so fwd-refs are kept wrapped (pushValueAndType 3652 // returns false if the value is pushed without type). 3653 if (!pushValueAndType(VAM->getValue(), InstID, ValAndType)) { 3654 Vals.push_back(ValAndType[0]); 3655 return true; 3656 } 3657 } 3658 // The metadata is a DIArgList, or ValueAsMetadata wrapping a 3659 // fwd-ref. Push the metadata ID. 3660 Vals.push_back(VE.getMetadataID(RawLocation)); 3661 return false; 3662 }; 3663 3664 // Write out non-instruction debug information attached to this 3665 // instruction. Write it after the instruction so that it's easy to 3666 // re-attach to the instruction reading the records in. 3667 for (DbgRecord &DR : I.DebugMarker->getDbgRecordRange()) { 3668 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 3669 Vals.push_back(VE.getMetadataID(&*DLR->getDebugLoc())); 3670 Vals.push_back(VE.getMetadataID(DLR->getLabel())); 3671 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_LABEL, Vals); 3672 Vals.clear(); 3673 continue; 3674 } 3675 3676 // First 3 fields are common to all kinds: 3677 // DILocation, DILocalVariable, DIExpression 3678 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) 3679 // ..., LocationMetadata 3680 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) 3681 // ..., Value 3682 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) 3683 // ..., LocationMetadata 3684 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) 3685 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata 3686 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 3687 Vals.push_back(VE.getMetadataID(&*DVR.getDebugLoc())); 3688 Vals.push_back(VE.getMetadataID(DVR.getVariable())); 3689 Vals.push_back(VE.getMetadataID(DVR.getExpression())); 3690 if (DVR.isDbgValue()) { 3691 if (PushValueOrMetadata(DVR.getRawLocation())) 3692 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE, Vals, 3693 FUNCTION_DEBUG_RECORD_VALUE_ABBREV); 3694 else 3695 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE, Vals); 3696 } else if (DVR.isDbgDeclare()) { 3697 Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); 3698 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_DECLARE, Vals); 3699 } else { 3700 assert(DVR.isDbgAssign() && "Unexpected DbgRecord kind"); 3701 Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); 3702 Vals.push_back(VE.getMetadataID(DVR.getAssignID())); 3703 Vals.push_back(VE.getMetadataID(DVR.getAddressExpression())); 3704 Vals.push_back(VE.getMetadataID(DVR.getRawAddress())); 3705 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN, Vals); 3706 } 3707 Vals.clear(); 3708 } 3709 } 3710 } 3711 3712 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3713 SmallVector<Value *> Worklist{BA}; 3714 SmallPtrSet<Value *, 8> Visited{BA}; 3715 while (!Worklist.empty()) { 3716 Value *V = Worklist.pop_back_val(); 3717 for (User *U : V->users()) { 3718 if (auto *I = dyn_cast<Instruction>(U)) { 3719 Function *P = I->getFunction(); 3720 if (P != &F) 3721 BlockAddressUsers.insert(P); 3722 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3723 Visited.insert(U).second) 3724 Worklist.push_back(U); 3725 } 3726 } 3727 } 3728 } 3729 3730 if (!BlockAddressUsers.empty()) { 3731 Vals.resize(BlockAddressUsers.size()); 3732 for (auto I : llvm::enumerate(BlockAddressUsers)) 3733 Vals[I.index()] = VE.getValueID(I.value()); 3734 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3735 Vals.clear(); 3736 } 3737 3738 // Emit names for all the instructions etc. 3739 if (auto *Symtab = F.getValueSymbolTable()) 3740 writeFunctionLevelValueSymbolTable(*Symtab); 3741 3742 if (NeedsMetadataAttachment) 3743 writeFunctionMetadataAttachment(F); 3744 if (VE.shouldPreserveUseListOrder()) 3745 writeUseListBlock(&F); 3746 VE.purgeFunction(); 3747 Stream.ExitBlock(); 3748 } 3749 3750 // Emit blockinfo, which defines the standard abbreviations etc. 3751 void ModuleBitcodeWriter::writeBlockInfo() { 3752 // We only want to emit block info records for blocks that have multiple 3753 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3754 // Other blocks can define their abbrevs inline. 3755 Stream.EnterBlockInfoBlock(); 3756 3757 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3758 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3761 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3762 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3763 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3764 VST_ENTRY_8_ABBREV) 3765 llvm_unreachable("Unexpected abbrev ordering!"); 3766 } 3767 3768 { // 7-bit fixed width VST_CODE_ENTRY strings. 3769 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3770 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3771 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3773 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3774 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3775 VST_ENTRY_7_ABBREV) 3776 llvm_unreachable("Unexpected abbrev ordering!"); 3777 } 3778 { // 6-bit char6 VST_CODE_ENTRY strings. 3779 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3780 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3784 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3785 VST_ENTRY_6_ABBREV) 3786 llvm_unreachable("Unexpected abbrev ordering!"); 3787 } 3788 { // 6-bit char6 VST_CODE_BBENTRY strings. 3789 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3790 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3794 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3795 VST_BBENTRY_6_ABBREV) 3796 llvm_unreachable("Unexpected abbrev ordering!"); 3797 } 3798 3799 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3800 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3801 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3803 VE.computeBitsRequiredForTypeIndices())); 3804 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3805 CONSTANTS_SETTYPE_ABBREV) 3806 llvm_unreachable("Unexpected abbrev ordering!"); 3807 } 3808 3809 { // INTEGER abbrev for CONSTANTS_BLOCK. 3810 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3811 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3813 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3814 CONSTANTS_INTEGER_ABBREV) 3815 llvm_unreachable("Unexpected abbrev ordering!"); 3816 } 3817 3818 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3819 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3820 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3823 VE.computeBitsRequiredForTypeIndices())); 3824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3825 3826 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3827 CONSTANTS_CE_CAST_Abbrev) 3828 llvm_unreachable("Unexpected abbrev ordering!"); 3829 } 3830 { // NULL abbrev for CONSTANTS_BLOCK. 3831 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3832 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3833 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3834 CONSTANTS_NULL_Abbrev) 3835 llvm_unreachable("Unexpected abbrev ordering!"); 3836 } 3837 3838 // FIXME: This should only use space for first class types! 3839 3840 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3841 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3842 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3845 VE.computeBitsRequiredForTypeIndices())); 3846 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3847 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3848 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3849 FUNCTION_INST_LOAD_ABBREV) 3850 llvm_unreachable("Unexpected abbrev ordering!"); 3851 } 3852 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3853 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3854 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3855 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3856 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3857 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3858 FUNCTION_INST_UNOP_ABBREV) 3859 llvm_unreachable("Unexpected abbrev ordering!"); 3860 } 3861 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3862 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3863 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3864 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3865 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3866 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3867 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3868 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3869 llvm_unreachable("Unexpected abbrev ordering!"); 3870 } 3871 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3872 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3873 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3874 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3875 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3876 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3877 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3878 FUNCTION_INST_BINOP_ABBREV) 3879 llvm_unreachable("Unexpected abbrev ordering!"); 3880 } 3881 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3882 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3883 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3885 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3886 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3887 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3888 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3889 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3890 llvm_unreachable("Unexpected abbrev ordering!"); 3891 } 3892 { // INST_CAST abbrev for FUNCTION_BLOCK. 3893 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3894 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3895 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3896 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3897 VE.computeBitsRequiredForTypeIndices())); 3898 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3899 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3900 FUNCTION_INST_CAST_ABBREV) 3901 llvm_unreachable("Unexpected abbrev ordering!"); 3902 } 3903 { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK. 3904 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3905 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3906 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3907 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3908 VE.computeBitsRequiredForTypeIndices())); 3909 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3910 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3911 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3912 FUNCTION_INST_CAST_FLAGS_ABBREV) 3913 llvm_unreachable("Unexpected abbrev ordering!"); 3914 } 3915 3916 { // INST_RET abbrev for FUNCTION_BLOCK. 3917 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3918 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3919 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3920 FUNCTION_INST_RET_VOID_ABBREV) 3921 llvm_unreachable("Unexpected abbrev ordering!"); 3922 } 3923 { // INST_RET abbrev for FUNCTION_BLOCK. 3924 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3925 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3926 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3927 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3928 FUNCTION_INST_RET_VAL_ABBREV) 3929 llvm_unreachable("Unexpected abbrev ordering!"); 3930 } 3931 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3932 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3933 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3934 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3935 FUNCTION_INST_UNREACHABLE_ABBREV) 3936 llvm_unreachable("Unexpected abbrev ordering!"); 3937 } 3938 { 3939 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3940 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3943 Log2_32_Ceil(VE.getTypes().size() + 1))); 3944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3946 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3947 FUNCTION_INST_GEP_ABBREV) 3948 llvm_unreachable("Unexpected abbrev ordering!"); 3949 } 3950 { 3951 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3952 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE)); 3953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // dbgloc 3954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // var 3955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // expr 3956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // val 3957 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3958 FUNCTION_DEBUG_RECORD_VALUE_ABBREV) 3959 llvm_unreachable("Unexpected abbrev ordering! 1"); 3960 } 3961 Stream.ExitBlock(); 3962 } 3963 3964 /// Write the module path strings, currently only used when generating 3965 /// a combined index file. 3966 void IndexBitcodeWriter::writeModStrings() { 3967 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3968 3969 // TODO: See which abbrev sizes we actually need to emit 3970 3971 // 8-bit fixed-width MST_ENTRY strings. 3972 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3973 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3976 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3977 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3978 3979 // 7-bit fixed width MST_ENTRY strings. 3980 Abbv = std::make_shared<BitCodeAbbrev>(); 3981 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3983 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3984 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3985 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3986 3987 // 6-bit char6 MST_ENTRY strings. 3988 Abbv = std::make_shared<BitCodeAbbrev>(); 3989 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3990 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3991 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3992 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3993 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3994 3995 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3996 Abbv = std::make_shared<BitCodeAbbrev>(); 3997 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3998 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4002 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4003 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 4004 4005 SmallVector<unsigned, 64> Vals; 4006 forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) { 4007 StringRef Key = MPSE.getKey(); 4008 const auto &Hash = MPSE.getValue(); 4009 StringEncoding Bits = getStringEncoding(Key); 4010 unsigned AbbrevToUse = Abbrev8Bit; 4011 if (Bits == SE_Char6) 4012 AbbrevToUse = Abbrev6Bit; 4013 else if (Bits == SE_Fixed7) 4014 AbbrevToUse = Abbrev7Bit; 4015 4016 auto ModuleId = ModuleIdMap.size(); 4017 ModuleIdMap[Key] = ModuleId; 4018 Vals.push_back(ModuleId); 4019 Vals.append(Key.begin(), Key.end()); 4020 4021 // Emit the finished record. 4022 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 4023 4024 // Emit an optional hash for the module now 4025 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 4026 Vals.assign(Hash.begin(), Hash.end()); 4027 // Emit the hash record. 4028 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 4029 } 4030 4031 Vals.clear(); 4032 }); 4033 Stream.ExitBlock(); 4034 } 4035 4036 /// Write the function type metadata related records that need to appear before 4037 /// a function summary entry (whether per-module or combined). 4038 template <typename Fn> 4039 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 4040 FunctionSummary *FS, 4041 Fn GetValueID) { 4042 if (!FS->type_tests().empty()) 4043 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 4044 4045 SmallVector<uint64_t, 64> Record; 4046 4047 auto WriteVFuncIdVec = [&](uint64_t Ty, 4048 ArrayRef<FunctionSummary::VFuncId> VFs) { 4049 if (VFs.empty()) 4050 return; 4051 Record.clear(); 4052 for (auto &VF : VFs) { 4053 Record.push_back(VF.GUID); 4054 Record.push_back(VF.Offset); 4055 } 4056 Stream.EmitRecord(Ty, Record); 4057 }; 4058 4059 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 4060 FS->type_test_assume_vcalls()); 4061 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 4062 FS->type_checked_load_vcalls()); 4063 4064 auto WriteConstVCallVec = [&](uint64_t Ty, 4065 ArrayRef<FunctionSummary::ConstVCall> VCs) { 4066 for (auto &VC : VCs) { 4067 Record.clear(); 4068 Record.push_back(VC.VFunc.GUID); 4069 Record.push_back(VC.VFunc.Offset); 4070 llvm::append_range(Record, VC.Args); 4071 Stream.EmitRecord(Ty, Record); 4072 } 4073 }; 4074 4075 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 4076 FS->type_test_assume_const_vcalls()); 4077 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 4078 FS->type_checked_load_const_vcalls()); 4079 4080 auto WriteRange = [&](ConstantRange Range) { 4081 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 4082 assert(Range.getLower().getNumWords() == 1); 4083 assert(Range.getUpper().getNumWords() == 1); 4084 emitSignedInt64(Record, *Range.getLower().getRawData()); 4085 emitSignedInt64(Record, *Range.getUpper().getRawData()); 4086 }; 4087 4088 if (!FS->paramAccesses().empty()) { 4089 Record.clear(); 4090 for (auto &Arg : FS->paramAccesses()) { 4091 size_t UndoSize = Record.size(); 4092 Record.push_back(Arg.ParamNo); 4093 WriteRange(Arg.Use); 4094 Record.push_back(Arg.Calls.size()); 4095 for (auto &Call : Arg.Calls) { 4096 Record.push_back(Call.ParamNo); 4097 std::optional<unsigned> ValueID = GetValueID(Call.Callee); 4098 if (!ValueID) { 4099 // If ValueID is unknown we can't drop just this call, we must drop 4100 // entire parameter. 4101 Record.resize(UndoSize); 4102 break; 4103 } 4104 Record.push_back(*ValueID); 4105 WriteRange(Call.Offsets); 4106 } 4107 } 4108 if (!Record.empty()) 4109 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 4110 } 4111 } 4112 4113 /// Collect type IDs from type tests used by function. 4114 static void 4115 getReferencedTypeIds(FunctionSummary *FS, 4116 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 4117 if (!FS->type_tests().empty()) 4118 for (auto &TT : FS->type_tests()) 4119 ReferencedTypeIds.insert(TT); 4120 4121 auto GetReferencedTypesFromVFuncIdVec = 4122 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 4123 for (auto &VF : VFs) 4124 ReferencedTypeIds.insert(VF.GUID); 4125 }; 4126 4127 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 4128 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 4129 4130 auto GetReferencedTypesFromConstVCallVec = 4131 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 4132 for (auto &VC : VCs) 4133 ReferencedTypeIds.insert(VC.VFunc.GUID); 4134 }; 4135 4136 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 4137 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 4138 } 4139 4140 static void writeWholeProgramDevirtResolutionByArg( 4141 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 4142 const WholeProgramDevirtResolution::ByArg &ByArg) { 4143 NameVals.push_back(args.size()); 4144 llvm::append_range(NameVals, args); 4145 4146 NameVals.push_back(ByArg.TheKind); 4147 NameVals.push_back(ByArg.Info); 4148 NameVals.push_back(ByArg.Byte); 4149 NameVals.push_back(ByArg.Bit); 4150 } 4151 4152 static void writeWholeProgramDevirtResolution( 4153 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 4154 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 4155 NameVals.push_back(Id); 4156 4157 NameVals.push_back(Wpd.TheKind); 4158 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 4159 NameVals.push_back(Wpd.SingleImplName.size()); 4160 4161 NameVals.push_back(Wpd.ResByArg.size()); 4162 for (auto &A : Wpd.ResByArg) 4163 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 4164 } 4165 4166 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 4167 StringTableBuilder &StrtabBuilder, 4168 const std::string &Id, 4169 const TypeIdSummary &Summary) { 4170 NameVals.push_back(StrtabBuilder.add(Id)); 4171 NameVals.push_back(Id.size()); 4172 4173 NameVals.push_back(Summary.TTRes.TheKind); 4174 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 4175 NameVals.push_back(Summary.TTRes.AlignLog2); 4176 NameVals.push_back(Summary.TTRes.SizeM1); 4177 NameVals.push_back(Summary.TTRes.BitMask); 4178 NameVals.push_back(Summary.TTRes.InlineBits); 4179 4180 for (auto &W : Summary.WPDRes) 4181 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 4182 W.second); 4183 } 4184 4185 static void writeTypeIdCompatibleVtableSummaryRecord( 4186 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 4187 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 4188 ValueEnumerator &VE) { 4189 NameVals.push_back(StrtabBuilder.add(Id)); 4190 NameVals.push_back(Id.size()); 4191 4192 for (auto &P : Summary) { 4193 NameVals.push_back(P.AddressPointOffset); 4194 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 4195 } 4196 } 4197 4198 static void writeFunctionHeapProfileRecords( 4199 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, 4200 unsigned AllocAbbrev, unsigned ContextIdAbbvId, bool PerModule, 4201 std::function<unsigned(const ValueInfo &VI)> GetValueID, 4202 std::function<unsigned(unsigned)> GetStackIndex, 4203 bool WriteContextSizeInfoIndex) { 4204 SmallVector<uint64_t> Record; 4205 4206 for (auto &CI : FS->callsites()) { 4207 Record.clear(); 4208 // Per module callsite clones should always have a single entry of 4209 // value 0. 4210 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); 4211 Record.push_back(GetValueID(CI.Callee)); 4212 if (!PerModule) { 4213 Record.push_back(CI.StackIdIndices.size()); 4214 Record.push_back(CI.Clones.size()); 4215 } 4216 for (auto Id : CI.StackIdIndices) 4217 Record.push_back(GetStackIndex(Id)); 4218 if (!PerModule) { 4219 for (auto V : CI.Clones) 4220 Record.push_back(V); 4221 } 4222 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO 4223 : bitc::FS_COMBINED_CALLSITE_INFO, 4224 Record, CallsiteAbbrev); 4225 } 4226 4227 for (auto &AI : FS->allocs()) { 4228 Record.clear(); 4229 // Per module alloc versions should always have a single entry of 4230 // value 0. 4231 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); 4232 Record.push_back(AI.MIBs.size()); 4233 if (!PerModule) 4234 Record.push_back(AI.Versions.size()); 4235 for (auto &MIB : AI.MIBs) { 4236 Record.push_back((uint8_t)MIB.AllocType); 4237 Record.push_back(MIB.StackIdIndices.size()); 4238 for (auto Id : MIB.StackIdIndices) 4239 Record.push_back(GetStackIndex(Id)); 4240 } 4241 if (!PerModule) { 4242 for (auto V : AI.Versions) 4243 Record.push_back(V); 4244 } 4245 assert(AI.ContextSizeInfos.empty() || 4246 AI.ContextSizeInfos.size() == AI.MIBs.size()); 4247 // Optionally emit the context size information if it exists. 4248 if (WriteContextSizeInfoIndex && !AI.ContextSizeInfos.empty()) { 4249 // The abbreviation id for the context ids record should have been created 4250 // if we are emitting the per-module index, which is where we write this 4251 // info. 4252 assert(ContextIdAbbvId); 4253 SmallVector<uint32_t> ContextIds; 4254 // At least one context id per ContextSizeInfos entry (MIB), broken into 2 4255 // halves. 4256 ContextIds.reserve(AI.ContextSizeInfos.size() * 2); 4257 for (auto &Infos : AI.ContextSizeInfos) { 4258 Record.push_back(Infos.size()); 4259 for (auto [FullStackId, TotalSize] : Infos) { 4260 // The context ids are emitted separately as a fixed width array, 4261 // which is more efficient than a VBR given that these hashes are 4262 // typically close to 64-bits. The max fixed width entry is 32 bits so 4263 // it is split into 2. 4264 ContextIds.push_back(static_cast<uint32_t>(FullStackId >> 32)); 4265 ContextIds.push_back(static_cast<uint32_t>(FullStackId)); 4266 Record.push_back(TotalSize); 4267 } 4268 } 4269 // The context ids are expected by the reader to immediately precede the 4270 // associated alloc info record. 4271 Stream.EmitRecord(bitc::FS_ALLOC_CONTEXT_IDS, ContextIds, 4272 ContextIdAbbvId); 4273 } 4274 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO 4275 : bitc::FS_COMBINED_ALLOC_INFO, 4276 Record, AllocAbbrev); 4277 } 4278 } 4279 4280 // Helper to emit a single function summary record. 4281 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 4282 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 4283 unsigned ValueID, unsigned FSCallsRelBFAbbrev, 4284 unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev, 4285 unsigned AllocAbbrev, unsigned ContextIdAbbvId, const Function &F) { 4286 NameVals.push_back(ValueID); 4287 4288 FunctionSummary *FS = cast<FunctionSummary>(Summary); 4289 4290 writeFunctionTypeMetadataRecords( 4291 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> { 4292 return {VE.getValueID(VI.getValue())}; 4293 }); 4294 4295 writeFunctionHeapProfileRecords( 4296 Stream, FS, CallsiteAbbrev, AllocAbbrev, ContextIdAbbvId, 4297 /*PerModule*/ true, 4298 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, 4299 /*GetStackIndex*/ [&](unsigned I) { return I; }, 4300 /*WriteContextSizeInfoIndex*/ true); 4301 4302 auto SpecialRefCnts = FS->specialRefCounts(); 4303 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4304 NameVals.push_back(FS->instCount()); 4305 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4306 NameVals.push_back(FS->refs().size()); 4307 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 4308 NameVals.push_back(SpecialRefCnts.second); // worefcnt 4309 4310 for (auto &RI : FS->refs()) 4311 NameVals.push_back(getValueId(RI)); 4312 4313 const bool UseRelBFRecord = 4314 WriteRelBFToSummary && !F.hasProfileData() && 4315 ForceSummaryEdgesCold == FunctionSummary::FSHT_None; 4316 for (auto &ECI : FS->calls()) { 4317 NameVals.push_back(getValueId(ECI.first)); 4318 if (UseRelBFRecord) 4319 NameVals.push_back(getEncodedRelBFCallEdgeInfo(ECI.second)); 4320 else 4321 NameVals.push_back(getEncodedHotnessCallEdgeInfo(ECI.second)); 4322 } 4323 4324 unsigned FSAbbrev = 4325 (UseRelBFRecord ? FSCallsRelBFAbbrev : FSCallsProfileAbbrev); 4326 unsigned Code = 4327 (UseRelBFRecord ? bitc::FS_PERMODULE_RELBF : bitc::FS_PERMODULE_PROFILE); 4328 4329 // Emit the finished record. 4330 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4331 NameVals.clear(); 4332 } 4333 4334 // Collect the global value references in the given variable's initializer, 4335 // and emit them in a summary record. 4336 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 4337 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 4338 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 4339 auto VI = Index->getValueInfo(V.getGUID()); 4340 if (!VI || VI.getSummaryList().empty()) { 4341 // Only declarations should not have a summary (a declaration might however 4342 // have a summary if the def was in module level asm). 4343 assert(V.isDeclaration()); 4344 return; 4345 } 4346 auto *Summary = VI.getSummaryList()[0].get(); 4347 NameVals.push_back(VE.getValueID(&V)); 4348 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 4349 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4350 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4351 4352 auto VTableFuncs = VS->vTableFuncs(); 4353 if (!VTableFuncs.empty()) 4354 NameVals.push_back(VS->refs().size()); 4355 4356 unsigned SizeBeforeRefs = NameVals.size(); 4357 for (auto &RI : VS->refs()) 4358 NameVals.push_back(VE.getValueID(RI.getValue())); 4359 // Sort the refs for determinism output, the vector returned by FS->refs() has 4360 // been initialized from a DenseSet. 4361 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 4362 4363 if (VTableFuncs.empty()) 4364 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 4365 FSModRefsAbbrev); 4366 else { 4367 // VTableFuncs pairs should already be sorted by offset. 4368 for (auto &P : VTableFuncs) { 4369 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 4370 NameVals.push_back(P.VTableOffset); 4371 } 4372 4373 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 4374 FSModVTableRefsAbbrev); 4375 } 4376 NameVals.clear(); 4377 } 4378 4379 /// Emit the per-module summary section alongside the rest of 4380 /// the module's bitcode. 4381 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 4382 // By default we compile with ThinLTO if the module has a summary, but the 4383 // client can request full LTO with a module flag. 4384 bool IsThinLTO = true; 4385 if (auto *MD = 4386 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 4387 IsThinLTO = MD->getZExtValue(); 4388 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 4389 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 4390 4); 4391 4392 Stream.EmitRecord( 4393 bitc::FS_VERSION, 4394 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4395 4396 // Write the index flags. 4397 uint64_t Flags = 0; 4398 // Bits 1-3 are set only in the combined index, skip them. 4399 if (Index->enableSplitLTOUnit()) 4400 Flags |= 0x8; 4401 if (Index->hasUnifiedLTO()) 4402 Flags |= 0x200; 4403 4404 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4405 4406 if (Index->begin() == Index->end()) { 4407 Stream.ExitBlock(); 4408 return; 4409 } 4410 4411 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4412 Abbv->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID)); 4413 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4414 // GUIDS often use up most of 64-bits, so encode as two Fixed 32. 4415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4417 unsigned ValueGuidAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4418 4419 for (const auto &GVI : valueIds()) { 4420 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4421 ArrayRef<uint32_t>{GVI.second, 4422 static_cast<uint32_t>(GVI.first >> 32), 4423 static_cast<uint32_t>(GVI.first)}, 4424 ValueGuidAbbrev); 4425 } 4426 4427 if (!Index->stackIds().empty()) { 4428 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4429 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4430 // numids x stackid 4431 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4432 // The stack ids are hashes that are close to 64 bits in size, so emitting 4433 // as a pair of 32-bit fixed-width values is more efficient than a VBR. 4434 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4435 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4436 SmallVector<uint32_t> Vals; 4437 Vals.reserve(Index->stackIds().size() * 2); 4438 for (auto Id : Index->stackIds()) { 4439 Vals.push_back(static_cast<uint32_t>(Id >> 32)); 4440 Vals.push_back(static_cast<uint32_t>(Id)); 4441 } 4442 Stream.EmitRecord(bitc::FS_STACK_IDS, Vals, StackIdAbbvId); 4443 } 4444 4445 // n x context id 4446 auto ContextIdAbbv = std::make_shared<BitCodeAbbrev>(); 4447 ContextIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_ALLOC_CONTEXT_IDS)); 4448 ContextIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4449 // The context ids are hashes that are close to 64 bits in size, so emitting 4450 // as a pair of 32-bit fixed-width values is more efficient than a VBR. 4451 ContextIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4452 unsigned ContextIdAbbvId = Stream.EmitAbbrev(std::move(ContextIdAbbv)); 4453 4454 // Abbrev for FS_PERMODULE_PROFILE. 4455 Abbv = std::make_shared<BitCodeAbbrev>(); 4456 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags 4459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4464 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4467 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4468 4469 // Abbrev for FS_PERMODULE_RELBF. 4470 Abbv = std::make_shared<BitCodeAbbrev>(); 4471 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4474 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4475 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4479 // numrefs x valueid, n x (valueid, rel_block_freq+tailcall]) 4480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4482 unsigned FSCallsRelBFAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4483 4484 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4485 Abbv = std::make_shared<BitCodeAbbrev>(); 4486 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4490 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4491 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4492 4493 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4494 Abbv = std::make_shared<BitCodeAbbrev>(); 4495 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4497 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4498 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4499 // numrefs x valueid, n x (valueid , offset) 4500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4502 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4503 4504 // Abbrev for FS_ALIAS. 4505 Abbv = std::make_shared<BitCodeAbbrev>(); 4506 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4507 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4508 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4509 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4510 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4511 4512 // Abbrev for FS_TYPE_ID_METADATA 4513 Abbv = std::make_shared<BitCodeAbbrev>(); 4514 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4517 // n x (valueid , offset) 4518 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4519 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4520 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4521 4522 Abbv = std::make_shared<BitCodeAbbrev>(); 4523 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); 4524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4525 // n x stackidindex 4526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4528 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4529 4530 Abbv = std::make_shared<BitCodeAbbrev>(); 4531 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); 4532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4533 // n x (alloc type, numstackids, numstackids x stackidindex) 4534 // optional: nummib x (numcontext x total size) 4535 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4537 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4538 4539 SmallVector<uint64_t, 64> NameVals; 4540 // Iterate over the list of functions instead of the Index to 4541 // ensure the ordering is stable. 4542 for (const Function &F : M) { 4543 // Summary emission does not support anonymous functions, they have to 4544 // renamed using the anonymous function renaming pass. 4545 if (!F.hasName()) 4546 report_fatal_error("Unexpected anonymous function when writing summary"); 4547 4548 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4549 if (!VI || VI.getSummaryList().empty()) { 4550 // Only declarations should not have a summary (a declaration might 4551 // however have a summary if the def was in module level asm). 4552 assert(F.isDeclaration()); 4553 continue; 4554 } 4555 auto *Summary = VI.getSummaryList()[0].get(); 4556 writePerModuleFunctionSummaryRecord( 4557 NameVals, Summary, VE.getValueID(&F), FSCallsRelBFAbbrev, 4558 FSCallsProfileAbbrev, CallsiteAbbrev, AllocAbbrev, ContextIdAbbvId, F); 4559 } 4560 4561 // Capture references from GlobalVariable initializers, which are outside 4562 // of a function scope. 4563 for (const GlobalVariable &G : M.globals()) 4564 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4565 FSModVTableRefsAbbrev); 4566 4567 for (const GlobalAlias &A : M.aliases()) { 4568 auto *Aliasee = A.getAliaseeObject(); 4569 // Skip ifunc and nameless functions which don't have an entry in the 4570 // summary. 4571 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4572 continue; 4573 auto AliasId = VE.getValueID(&A); 4574 auto AliaseeId = VE.getValueID(Aliasee); 4575 NameVals.push_back(AliasId); 4576 auto *Summary = Index->getGlobalValueSummary(A); 4577 AliasSummary *AS = cast<AliasSummary>(Summary); 4578 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4579 NameVals.push_back(AliaseeId); 4580 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4581 NameVals.clear(); 4582 } 4583 4584 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4585 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4586 S.second, VE); 4587 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4588 TypeIdCompatibleVtableAbbrev); 4589 NameVals.clear(); 4590 } 4591 4592 if (Index->getBlockCount()) 4593 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4594 ArrayRef<uint64_t>{Index->getBlockCount()}); 4595 4596 Stream.ExitBlock(); 4597 } 4598 4599 /// Emit the combined summary section into the combined index file. 4600 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4601 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 4602 Stream.EmitRecord( 4603 bitc::FS_VERSION, 4604 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4605 4606 // Write the index flags. 4607 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4608 4609 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4610 Abbv->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID)); 4611 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4612 // GUIDS often use up most of 64-bits, so encode as two Fixed 32. 4613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4614 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4615 unsigned ValueGuidAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4616 4617 for (const auto &GVI : valueIds()) { 4618 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4619 ArrayRef<uint32_t>{GVI.second, 4620 static_cast<uint32_t>(GVI.first >> 32), 4621 static_cast<uint32_t>(GVI.first)}, 4622 ValueGuidAbbrev); 4623 } 4624 4625 // Write the stack ids used by this index, which will be a subset of those in 4626 // the full index in the case of distributed indexes. 4627 if (!StackIds.empty()) { 4628 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4629 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4630 // numids x stackid 4631 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4632 // The stack ids are hashes that are close to 64 bits in size, so emitting 4633 // as a pair of 32-bit fixed-width values is more efficient than a VBR. 4634 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4635 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4636 SmallVector<uint32_t> Vals; 4637 Vals.reserve(StackIds.size() * 2); 4638 for (auto Id : StackIds) { 4639 Vals.push_back(static_cast<uint32_t>(Id >> 32)); 4640 Vals.push_back(static_cast<uint32_t>(Id)); 4641 } 4642 Stream.EmitRecord(bitc::FS_STACK_IDS, Vals, StackIdAbbvId); 4643 } 4644 4645 // Abbrev for FS_COMBINED_PROFILE. 4646 Abbv = std::make_shared<BitCodeAbbrev>(); 4647 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4648 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4649 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4650 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4651 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4652 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4653 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4654 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4655 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4656 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4657 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4658 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4659 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4660 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4661 4662 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4663 Abbv = std::make_shared<BitCodeAbbrev>(); 4664 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4665 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4666 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4667 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4668 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4669 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4670 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4671 4672 // Abbrev for FS_COMBINED_ALIAS. 4673 Abbv = std::make_shared<BitCodeAbbrev>(); 4674 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4675 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4676 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4677 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4678 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4679 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4680 4681 Abbv = std::make_shared<BitCodeAbbrev>(); 4682 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); 4683 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4684 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices 4685 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4686 // numstackindices x stackidindex, numver x version 4687 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4688 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4689 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4690 4691 Abbv = std::make_shared<BitCodeAbbrev>(); 4692 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); 4693 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4694 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4695 // nummib x (alloc type, numstackids, numstackids x stackidindex), 4696 // numver x version 4697 // optional: nummib x total size 4698 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4699 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4700 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4701 4702 auto shouldImportValueAsDecl = [&](GlobalValueSummary *GVS) -> bool { 4703 if (DecSummaries == nullptr) 4704 return false; 4705 return DecSummaries->count(GVS); 4706 }; 4707 4708 // The aliases are emitted as a post-pass, and will point to the value 4709 // id of the aliasee. Save them in a vector for post-processing. 4710 SmallVector<AliasSummary *, 64> Aliases; 4711 4712 // Save the value id for each summary for alias emission. 4713 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4714 4715 SmallVector<uint64_t, 64> NameVals; 4716 4717 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4718 // with the type ids referenced by this index file. 4719 std::set<GlobalValue::GUID> ReferencedTypeIds; 4720 4721 // For local linkage, we also emit the original name separately 4722 // immediately after the record. 4723 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4724 // We don't need to emit the original name if we are writing the index for 4725 // distributed backends (in which case ModuleToSummariesForIndex is 4726 // non-null). The original name is only needed during the thin link, since 4727 // for SamplePGO the indirect call targets for local functions have 4728 // have the original name annotated in profile. 4729 // Continue to emit it when writing out the entire combined index, which is 4730 // used in testing the thin link via llvm-lto. 4731 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4732 return; 4733 NameVals.push_back(S.getOriginalName()); 4734 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4735 NameVals.clear(); 4736 }; 4737 4738 DenseSet<GlobalValue::GUID> DefOrUseGUIDs; 4739 forEachSummary([&](GVInfo I, bool IsAliasee) { 4740 GlobalValueSummary *S = I.second; 4741 assert(S); 4742 DefOrUseGUIDs.insert(I.first); 4743 for (const ValueInfo &VI : S->refs()) 4744 DefOrUseGUIDs.insert(VI.getGUID()); 4745 4746 auto ValueId = getValueId(I.first); 4747 assert(ValueId); 4748 SummaryToValueIdMap[S] = *ValueId; 4749 4750 // If this is invoked for an aliasee, we want to record the above 4751 // mapping, but then not emit a summary entry (if the aliasee is 4752 // to be imported, we will invoke this separately with IsAliasee=false). 4753 if (IsAliasee) 4754 return; 4755 4756 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4757 // Will process aliases as a post-pass because the reader wants all 4758 // global to be loaded first. 4759 Aliases.push_back(AS); 4760 return; 4761 } 4762 4763 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4764 NameVals.push_back(*ValueId); 4765 assert(ModuleIdMap.count(VS->modulePath())); 4766 NameVals.push_back(ModuleIdMap[VS->modulePath()]); 4767 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4768 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4769 for (auto &RI : VS->refs()) { 4770 auto RefValueId = getValueId(RI.getGUID()); 4771 if (!RefValueId) 4772 continue; 4773 NameVals.push_back(*RefValueId); 4774 } 4775 4776 // Emit the finished record. 4777 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4778 FSModRefsAbbrev); 4779 NameVals.clear(); 4780 MaybeEmitOriginalName(*S); 4781 return; 4782 } 4783 4784 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { 4785 if (!VI) 4786 return std::nullopt; 4787 return getValueId(VI.getGUID()); 4788 }; 4789 4790 auto *FS = cast<FunctionSummary>(S); 4791 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4792 getReferencedTypeIds(FS, ReferencedTypeIds); 4793 4794 writeFunctionHeapProfileRecords( 4795 Stream, FS, CallsiteAbbrev, AllocAbbrev, /*ContextIdAbbvId*/ 0, 4796 /*PerModule*/ false, 4797 /*GetValueId*/ 4798 [&](const ValueInfo &VI) -> unsigned { 4799 std::optional<unsigned> ValueID = GetValueId(VI); 4800 // This can happen in shared index files for distributed ThinLTO if 4801 // the callee function summary is not included. Record 0 which we 4802 // will have to deal with conservatively when doing any kind of 4803 // validation in the ThinLTO backends. 4804 if (!ValueID) 4805 return 0; 4806 return *ValueID; 4807 }, 4808 /*GetStackIndex*/ 4809 [&](unsigned I) { 4810 // Get the corresponding index into the list of StackIds actually 4811 // being written for this combined index (which may be a subset in 4812 // the case of distributed indexes). 4813 assert(StackIdIndicesToIndex.contains(I)); 4814 return StackIdIndicesToIndex[I]; 4815 }, 4816 /*WriteContextSizeInfoIndex*/ false); 4817 4818 NameVals.push_back(*ValueId); 4819 assert(ModuleIdMap.count(FS->modulePath())); 4820 NameVals.push_back(ModuleIdMap[FS->modulePath()]); 4821 NameVals.push_back( 4822 getEncodedGVSummaryFlags(FS->flags(), shouldImportValueAsDecl(FS))); 4823 NameVals.push_back(FS->instCount()); 4824 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4825 // TODO: Stop writing entry count and bump bitcode version. 4826 NameVals.push_back(0 /* EntryCount */); 4827 4828 // Fill in below 4829 NameVals.push_back(0); // numrefs 4830 NameVals.push_back(0); // rorefcnt 4831 NameVals.push_back(0); // worefcnt 4832 4833 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4834 for (auto &RI : FS->refs()) { 4835 auto RefValueId = getValueId(RI.getGUID()); 4836 if (!RefValueId) 4837 continue; 4838 NameVals.push_back(*RefValueId); 4839 if (RI.isReadOnly()) 4840 RORefCnt++; 4841 else if (RI.isWriteOnly()) 4842 WORefCnt++; 4843 Count++; 4844 } 4845 NameVals[6] = Count; 4846 NameVals[7] = RORefCnt; 4847 NameVals[8] = WORefCnt; 4848 4849 for (auto &EI : FS->calls()) { 4850 // If this GUID doesn't have a value id, it doesn't have a function 4851 // summary and we don't need to record any calls to it. 4852 std::optional<unsigned> CallValueId = GetValueId(EI.first); 4853 if (!CallValueId) 4854 continue; 4855 NameVals.push_back(*CallValueId); 4856 NameVals.push_back(getEncodedHotnessCallEdgeInfo(EI.second)); 4857 } 4858 4859 // Emit the finished record. 4860 Stream.EmitRecord(bitc::FS_COMBINED_PROFILE, NameVals, 4861 FSCallsProfileAbbrev); 4862 NameVals.clear(); 4863 MaybeEmitOriginalName(*S); 4864 }); 4865 4866 for (auto *AS : Aliases) { 4867 auto AliasValueId = SummaryToValueIdMap[AS]; 4868 assert(AliasValueId); 4869 NameVals.push_back(AliasValueId); 4870 assert(ModuleIdMap.count(AS->modulePath())); 4871 NameVals.push_back(ModuleIdMap[AS->modulePath()]); 4872 NameVals.push_back( 4873 getEncodedGVSummaryFlags(AS->flags(), shouldImportValueAsDecl(AS))); 4874 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4875 assert(AliaseeValueId); 4876 NameVals.push_back(AliaseeValueId); 4877 4878 // Emit the finished record. 4879 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4880 NameVals.clear(); 4881 MaybeEmitOriginalName(*AS); 4882 4883 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4884 getReferencedTypeIds(FS, ReferencedTypeIds); 4885 } 4886 4887 if (!Index.cfiFunctionDefs().empty()) { 4888 for (auto &S : Index.cfiFunctionDefs()) { 4889 if (DefOrUseGUIDs.contains( 4890 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4891 NameVals.push_back(StrtabBuilder.add(S)); 4892 NameVals.push_back(S.size()); 4893 } 4894 } 4895 if (!NameVals.empty()) { 4896 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4897 NameVals.clear(); 4898 } 4899 } 4900 4901 if (!Index.cfiFunctionDecls().empty()) { 4902 for (auto &S : Index.cfiFunctionDecls()) { 4903 if (DefOrUseGUIDs.contains( 4904 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4905 NameVals.push_back(StrtabBuilder.add(S)); 4906 NameVals.push_back(S.size()); 4907 } 4908 } 4909 if (!NameVals.empty()) { 4910 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4911 NameVals.clear(); 4912 } 4913 } 4914 4915 // Walk the GUIDs that were referenced, and write the 4916 // corresponding type id records. 4917 for (auto &T : ReferencedTypeIds) { 4918 auto TidIter = Index.typeIds().equal_range(T); 4919 for (const auto &[GUID, TypeIdPair] : make_range(TidIter)) { 4920 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, TypeIdPair.first, 4921 TypeIdPair.second); 4922 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4923 NameVals.clear(); 4924 } 4925 } 4926 4927 if (Index.getBlockCount()) 4928 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4929 ArrayRef<uint64_t>{Index.getBlockCount()}); 4930 4931 Stream.ExitBlock(); 4932 } 4933 4934 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4935 /// current llvm version, and a record for the epoch number. 4936 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4937 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4938 4939 // Write the "user readable" string identifying the bitcode producer 4940 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4941 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4944 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4945 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4946 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4947 4948 // Write the epoch version 4949 Abbv = std::make_shared<BitCodeAbbrev>(); 4950 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4952 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4953 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4954 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4955 Stream.ExitBlock(); 4956 } 4957 4958 void ModuleBitcodeWriter::writeModuleHash(StringRef View) { 4959 // Emit the module's hash. 4960 // MODULE_CODE_HASH: [5*i32] 4961 if (GenerateHash) { 4962 uint32_t Vals[5]; 4963 Hasher.update(ArrayRef<uint8_t>( 4964 reinterpret_cast<const uint8_t *>(View.data()), View.size())); 4965 std::array<uint8_t, 20> Hash = Hasher.result(); 4966 for (int Pos = 0; Pos < 20; Pos += 4) { 4967 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4968 } 4969 4970 // Emit the finished record. 4971 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4972 4973 if (ModHash) 4974 // Save the written hash value. 4975 llvm::copy(Vals, std::begin(*ModHash)); 4976 } 4977 } 4978 4979 void ModuleBitcodeWriter::write() { 4980 writeIdentificationBlock(Stream); 4981 4982 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4983 // We will want to write the module hash at this point. Block any flushing so 4984 // we can have access to the whole underlying data later. 4985 Stream.markAndBlockFlushing(); 4986 4987 writeModuleVersion(); 4988 4989 // Emit blockinfo, which defines the standard abbreviations etc. 4990 writeBlockInfo(); 4991 4992 // Emit information describing all of the types in the module. 4993 writeTypeTable(); 4994 4995 // Emit information about attribute groups. 4996 writeAttributeGroupTable(); 4997 4998 // Emit information about parameter attributes. 4999 writeAttributeTable(); 5000 5001 writeComdats(); 5002 5003 // Emit top-level description of module, including target triple, inline asm, 5004 // descriptors for global variables, and function prototype info. 5005 writeModuleInfo(); 5006 5007 // Emit constants. 5008 writeModuleConstants(); 5009 5010 // Emit metadata kind names. 5011 writeModuleMetadataKinds(); 5012 5013 // Emit metadata. 5014 writeModuleMetadata(); 5015 5016 // Emit module-level use-lists. 5017 if (VE.shouldPreserveUseListOrder()) 5018 writeUseListBlock(nullptr); 5019 5020 writeOperandBundleTags(); 5021 writeSyncScopeNames(); 5022 5023 // Emit function bodies. 5024 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 5025 for (const Function &F : M) 5026 if (!F.isDeclaration()) 5027 writeFunction(F, FunctionToBitcodeIndex); 5028 5029 // Need to write after the above call to WriteFunction which populates 5030 // the summary information in the index. 5031 if (Index) 5032 writePerModuleGlobalValueSummary(); 5033 5034 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 5035 5036 writeModuleHash(Stream.getMarkedBufferAndResumeFlushing()); 5037 5038 Stream.ExitBlock(); 5039 } 5040 5041 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 5042 uint32_t &Position) { 5043 support::endian::write32le(&Buffer[Position], Value); 5044 Position += 4; 5045 } 5046 5047 /// If generating a bc file on darwin, we have to emit a 5048 /// header and trailer to make it compatible with the system archiver. To do 5049 /// this we emit the following header, and then emit a trailer that pads the 5050 /// file out to be a multiple of 16 bytes. 5051 /// 5052 /// struct bc_header { 5053 /// uint32_t Magic; // 0x0B17C0DE 5054 /// uint32_t Version; // Version, currently always 0. 5055 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 5056 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 5057 /// uint32_t CPUType; // CPU specifier. 5058 /// ... potentially more later ... 5059 /// }; 5060 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 5061 const Triple &TT) { 5062 unsigned CPUType = ~0U; 5063 5064 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 5065 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 5066 // number from /usr/include/mach/machine.h. It is ok to reproduce the 5067 // specific constants here because they are implicitly part of the Darwin ABI. 5068 enum { 5069 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 5070 DARWIN_CPU_TYPE_X86 = 7, 5071 DARWIN_CPU_TYPE_ARM = 12, 5072 DARWIN_CPU_TYPE_POWERPC = 18 5073 }; 5074 5075 Triple::ArchType Arch = TT.getArch(); 5076 if (Arch == Triple::x86_64) 5077 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 5078 else if (Arch == Triple::x86) 5079 CPUType = DARWIN_CPU_TYPE_X86; 5080 else if (Arch == Triple::ppc) 5081 CPUType = DARWIN_CPU_TYPE_POWERPC; 5082 else if (Arch == Triple::ppc64) 5083 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 5084 else if (Arch == Triple::arm || Arch == Triple::thumb) 5085 CPUType = DARWIN_CPU_TYPE_ARM; 5086 5087 // Traditional Bitcode starts after header. 5088 assert(Buffer.size() >= BWH_HeaderSize && 5089 "Expected header size to be reserved"); 5090 unsigned BCOffset = BWH_HeaderSize; 5091 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 5092 5093 // Write the magic and version. 5094 unsigned Position = 0; 5095 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 5096 writeInt32ToBuffer(0, Buffer, Position); // Version. 5097 writeInt32ToBuffer(BCOffset, Buffer, Position); 5098 writeInt32ToBuffer(BCSize, Buffer, Position); 5099 writeInt32ToBuffer(CPUType, Buffer, Position); 5100 5101 // If the file is not a multiple of 16 bytes, insert dummy padding. 5102 while (Buffer.size() & 15) 5103 Buffer.push_back(0); 5104 } 5105 5106 /// Helper to write the header common to all bitcode files. 5107 static void writeBitcodeHeader(BitstreamWriter &Stream) { 5108 // Emit the file header. 5109 Stream.Emit((unsigned)'B', 8); 5110 Stream.Emit((unsigned)'C', 8); 5111 Stream.Emit(0x0, 4); 5112 Stream.Emit(0xC, 4); 5113 Stream.Emit(0xE, 4); 5114 Stream.Emit(0xD, 4); 5115 } 5116 5117 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 5118 : Stream(new BitstreamWriter(Buffer)) { 5119 writeBitcodeHeader(*Stream); 5120 } 5121 5122 BitcodeWriter::BitcodeWriter(raw_ostream &FS) 5123 : Stream(new BitstreamWriter(FS, FlushThreshold)) { 5124 writeBitcodeHeader(*Stream); 5125 } 5126 5127 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 5128 5129 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 5130 Stream->EnterSubblock(Block, 3); 5131 5132 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5133 Abbv->Add(BitCodeAbbrevOp(Record)); 5134 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 5135 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 5136 5137 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 5138 5139 Stream->ExitBlock(); 5140 } 5141 5142 void BitcodeWriter::writeSymtab() { 5143 assert(!WroteStrtab && !WroteSymtab); 5144 5145 // If any module has module-level inline asm, we will require a registered asm 5146 // parser for the target so that we can create an accurate symbol table for 5147 // the module. 5148 for (Module *M : Mods) { 5149 if (M->getModuleInlineAsm().empty()) 5150 continue; 5151 5152 std::string Err; 5153 const Triple TT(M->getTargetTriple()); 5154 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 5155 if (!T || !T->hasMCAsmParser()) 5156 return; 5157 } 5158 5159 WroteSymtab = true; 5160 SmallVector<char, 0> Symtab; 5161 // The irsymtab::build function may be unable to create a symbol table if the 5162 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 5163 // table is not required for correctness, but we still want to be able to 5164 // write malformed modules to bitcode files, so swallow the error. 5165 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 5166 consumeError(std::move(E)); 5167 return; 5168 } 5169 5170 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 5171 {Symtab.data(), Symtab.size()}); 5172 } 5173 5174 void BitcodeWriter::writeStrtab() { 5175 assert(!WroteStrtab); 5176 5177 std::vector<char> Strtab; 5178 StrtabBuilder.finalizeInOrder(); 5179 Strtab.resize(StrtabBuilder.getSize()); 5180 StrtabBuilder.write((uint8_t *)Strtab.data()); 5181 5182 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 5183 {Strtab.data(), Strtab.size()}); 5184 5185 WroteStrtab = true; 5186 } 5187 5188 void BitcodeWriter::copyStrtab(StringRef Strtab) { 5189 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 5190 WroteStrtab = true; 5191 } 5192 5193 void BitcodeWriter::writeModule(const Module &M, 5194 bool ShouldPreserveUseListOrder, 5195 const ModuleSummaryIndex *Index, 5196 bool GenerateHash, ModuleHash *ModHash) { 5197 assert(!WroteStrtab); 5198 5199 // The Mods vector is used by irsymtab::build, which requires non-const 5200 // Modules in case it needs to materialize metadata. But the bitcode writer 5201 // requires that the module is materialized, so we can cast to non-const here, 5202 // after checking that it is in fact materialized. 5203 assert(M.isMaterialized()); 5204 Mods.push_back(const_cast<Module *>(&M)); 5205 5206 ModuleBitcodeWriter ModuleWriter(M, StrtabBuilder, *Stream, 5207 ShouldPreserveUseListOrder, Index, 5208 GenerateHash, ModHash); 5209 ModuleWriter.write(); 5210 } 5211 5212 void BitcodeWriter::writeIndex( 5213 const ModuleSummaryIndex *Index, 5214 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex, 5215 const GVSummaryPtrSet *DecSummaries) { 5216 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, DecSummaries, 5217 ModuleToSummariesForIndex); 5218 IndexWriter.write(); 5219 } 5220 5221 /// Write the specified module to the specified output stream. 5222 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 5223 bool ShouldPreserveUseListOrder, 5224 const ModuleSummaryIndex *Index, 5225 bool GenerateHash, ModuleHash *ModHash) { 5226 auto Write = [&](BitcodeWriter &Writer) { 5227 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 5228 ModHash); 5229 Writer.writeSymtab(); 5230 Writer.writeStrtab(); 5231 }; 5232 Triple TT(M.getTargetTriple()); 5233 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) { 5234 // If this is darwin or another generic macho target, reserve space for the 5235 // header. Note that the header is computed *after* the output is known, so 5236 // we currently explicitly use a buffer, write to it, and then subsequently 5237 // flush to Out. 5238 SmallVector<char, 0> Buffer; 5239 Buffer.reserve(256 * 1024); 5240 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 5241 BitcodeWriter Writer(Buffer); 5242 Write(Writer); 5243 emitDarwinBCHeaderAndTrailer(Buffer, TT); 5244 Out.write(Buffer.data(), Buffer.size()); 5245 } else { 5246 BitcodeWriter Writer(Out); 5247 Write(Writer); 5248 } 5249 } 5250 5251 void IndexBitcodeWriter::write() { 5252 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5253 5254 writeModuleVersion(); 5255 5256 // Write the module paths in the combined index. 5257 writeModStrings(); 5258 5259 // Write the summary combined index records. 5260 writeCombinedGlobalValueSummary(); 5261 5262 Stream.ExitBlock(); 5263 } 5264 5265 // Write the specified module summary index to the given raw output stream, 5266 // where it will be written in a new bitcode block. This is used when 5267 // writing the combined index file for ThinLTO. When writing a subset of the 5268 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 5269 void llvm::writeIndexToFile( 5270 const ModuleSummaryIndex &Index, raw_ostream &Out, 5271 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex, 5272 const GVSummaryPtrSet *DecSummaries) { 5273 SmallVector<char, 0> Buffer; 5274 Buffer.reserve(256 * 1024); 5275 5276 BitcodeWriter Writer(Buffer); 5277 Writer.writeIndex(&Index, ModuleToSummariesForIndex, DecSummaries); 5278 Writer.writeStrtab(); 5279 5280 Out.write((char *)&Buffer.front(), Buffer.size()); 5281 } 5282 5283 namespace { 5284 5285 /// Class to manage the bitcode writing for a thin link bitcode file. 5286 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 5287 /// ModHash is for use in ThinLTO incremental build, generated while writing 5288 /// the module bitcode file. 5289 const ModuleHash *ModHash; 5290 5291 public: 5292 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 5293 BitstreamWriter &Stream, 5294 const ModuleSummaryIndex &Index, 5295 const ModuleHash &ModHash) 5296 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 5297 /*ShouldPreserveUseListOrder=*/false, &Index), 5298 ModHash(&ModHash) {} 5299 5300 void write(); 5301 5302 private: 5303 void writeSimplifiedModuleInfo(); 5304 }; 5305 5306 } // end anonymous namespace 5307 5308 // This function writes a simpilified module info for thin link bitcode file. 5309 // It only contains the source file name along with the name(the offset and 5310 // size in strtab) and linkage for global values. For the global value info 5311 // entry, in order to keep linkage at offset 5, there are three zeros used 5312 // as padding. 5313 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 5314 SmallVector<unsigned, 64> Vals; 5315 // Emit the module's source file name. 5316 { 5317 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 5318 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 5319 if (Bits == SE_Char6) 5320 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 5321 else if (Bits == SE_Fixed7) 5322 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 5323 5324 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5325 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5326 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 5327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 5328 Abbv->Add(AbbrevOpToUse); 5329 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5330 5331 for (const auto P : M.getSourceFileName()) 5332 Vals.push_back((unsigned char)P); 5333 5334 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 5335 Vals.clear(); 5336 } 5337 5338 // Emit the global variable information. 5339 for (const GlobalVariable &GV : M.globals()) { 5340 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 5341 Vals.push_back(StrtabBuilder.add(GV.getName())); 5342 Vals.push_back(GV.getName().size()); 5343 Vals.push_back(0); 5344 Vals.push_back(0); 5345 Vals.push_back(0); 5346 Vals.push_back(getEncodedLinkage(GV)); 5347 5348 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 5349 Vals.clear(); 5350 } 5351 5352 // Emit the function proto information. 5353 for (const Function &F : M) { 5354 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 5355 Vals.push_back(StrtabBuilder.add(F.getName())); 5356 Vals.push_back(F.getName().size()); 5357 Vals.push_back(0); 5358 Vals.push_back(0); 5359 Vals.push_back(0); 5360 Vals.push_back(getEncodedLinkage(F)); 5361 5362 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 5363 Vals.clear(); 5364 } 5365 5366 // Emit the alias information. 5367 for (const GlobalAlias &A : M.aliases()) { 5368 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 5369 Vals.push_back(StrtabBuilder.add(A.getName())); 5370 Vals.push_back(A.getName().size()); 5371 Vals.push_back(0); 5372 Vals.push_back(0); 5373 Vals.push_back(0); 5374 Vals.push_back(getEncodedLinkage(A)); 5375 5376 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 5377 Vals.clear(); 5378 } 5379 5380 // Emit the ifunc information. 5381 for (const GlobalIFunc &I : M.ifuncs()) { 5382 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 5383 Vals.push_back(StrtabBuilder.add(I.getName())); 5384 Vals.push_back(I.getName().size()); 5385 Vals.push_back(0); 5386 Vals.push_back(0); 5387 Vals.push_back(0); 5388 Vals.push_back(getEncodedLinkage(I)); 5389 5390 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 5391 Vals.clear(); 5392 } 5393 } 5394 5395 void ThinLinkBitcodeWriter::write() { 5396 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5397 5398 writeModuleVersion(); 5399 5400 writeSimplifiedModuleInfo(); 5401 5402 writePerModuleGlobalValueSummary(); 5403 5404 // Write module hash. 5405 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 5406 5407 Stream.ExitBlock(); 5408 } 5409 5410 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 5411 const ModuleSummaryIndex &Index, 5412 const ModuleHash &ModHash) { 5413 assert(!WroteStrtab); 5414 5415 // The Mods vector is used by irsymtab::build, which requires non-const 5416 // Modules in case it needs to materialize metadata. But the bitcode writer 5417 // requires that the module is materialized, so we can cast to non-const here, 5418 // after checking that it is in fact materialized. 5419 assert(M.isMaterialized()); 5420 Mods.push_back(const_cast<Module *>(&M)); 5421 5422 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 5423 ModHash); 5424 ThinLinkWriter.write(); 5425 } 5426 5427 // Write the specified thin link bitcode file to the given raw output stream, 5428 // where it will be written in a new bitcode block. This is used when 5429 // writing the per-module index file for ThinLTO. 5430 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 5431 const ModuleSummaryIndex &Index, 5432 const ModuleHash &ModHash) { 5433 SmallVector<char, 0> Buffer; 5434 Buffer.reserve(256 * 1024); 5435 5436 BitcodeWriter Writer(Buffer); 5437 Writer.writeThinLinkBitcode(M, Index, ModHash); 5438 Writer.writeSymtab(); 5439 Writer.writeStrtab(); 5440 5441 Out.write((char *)&Buffer.front(), Buffer.size()); 5442 } 5443 5444 static const char *getSectionNameForBitcode(const Triple &T) { 5445 switch (T.getObjectFormat()) { 5446 case Triple::MachO: 5447 return "__LLVM,__bitcode"; 5448 case Triple::COFF: 5449 case Triple::ELF: 5450 case Triple::Wasm: 5451 case Triple::UnknownObjectFormat: 5452 return ".llvmbc"; 5453 case Triple::GOFF: 5454 llvm_unreachable("GOFF is not yet implemented"); 5455 break; 5456 case Triple::SPIRV: 5457 if (T.getVendor() == Triple::AMD) 5458 return ".llvmbc"; 5459 llvm_unreachable("SPIRV is not yet implemented"); 5460 break; 5461 case Triple::XCOFF: 5462 llvm_unreachable("XCOFF is not yet implemented"); 5463 break; 5464 case Triple::DXContainer: 5465 llvm_unreachable("DXContainer is not yet implemented"); 5466 break; 5467 } 5468 llvm_unreachable("Unimplemented ObjectFormatType"); 5469 } 5470 5471 static const char *getSectionNameForCommandline(const Triple &T) { 5472 switch (T.getObjectFormat()) { 5473 case Triple::MachO: 5474 return "__LLVM,__cmdline"; 5475 case Triple::COFF: 5476 case Triple::ELF: 5477 case Triple::Wasm: 5478 case Triple::UnknownObjectFormat: 5479 return ".llvmcmd"; 5480 case Triple::GOFF: 5481 llvm_unreachable("GOFF is not yet implemented"); 5482 break; 5483 case Triple::SPIRV: 5484 if (T.getVendor() == Triple::AMD) 5485 return ".llvmcmd"; 5486 llvm_unreachable("SPIRV is not yet implemented"); 5487 break; 5488 case Triple::XCOFF: 5489 llvm_unreachable("XCOFF is not yet implemented"); 5490 break; 5491 case Triple::DXContainer: 5492 llvm_unreachable("DXC is not yet implemented"); 5493 break; 5494 } 5495 llvm_unreachable("Unimplemented ObjectFormatType"); 5496 } 5497 5498 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 5499 bool EmbedBitcode, bool EmbedCmdline, 5500 const std::vector<uint8_t> &CmdArgs) { 5501 // Save llvm.compiler.used and remove it. 5502 SmallVector<Constant *, 2> UsedArray; 5503 SmallVector<GlobalValue *, 4> UsedGlobals; 5504 Type *UsedElementType = PointerType::getUnqual(M.getContext()); 5505 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 5506 for (auto *GV : UsedGlobals) { 5507 if (GV->getName() != "llvm.embedded.module" && 5508 GV->getName() != "llvm.cmdline") 5509 UsedArray.push_back( 5510 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5511 } 5512 if (Used) 5513 Used->eraseFromParent(); 5514 5515 // Embed the bitcode for the llvm module. 5516 std::string Data; 5517 ArrayRef<uint8_t> ModuleData; 5518 Triple T(M.getTargetTriple()); 5519 5520 if (EmbedBitcode) { 5521 if (Buf.getBufferSize() == 0 || 5522 !isBitcode((const unsigned char *)Buf.getBufferStart(), 5523 (const unsigned char *)Buf.getBufferEnd())) { 5524 // If the input is LLVM Assembly, bitcode is produced by serializing 5525 // the module. Use-lists order need to be preserved in this case. 5526 llvm::raw_string_ostream OS(Data); 5527 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 5528 ModuleData = 5529 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 5530 } else 5531 // If the input is LLVM bitcode, write the input byte stream directly. 5532 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5533 Buf.getBufferSize()); 5534 } 5535 llvm::Constant *ModuleConstant = 5536 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5537 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5538 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5539 ModuleConstant); 5540 GV->setSection(getSectionNameForBitcode(T)); 5541 // Set alignment to 1 to prevent padding between two contributions from input 5542 // sections after linking. 5543 GV->setAlignment(Align(1)); 5544 UsedArray.push_back( 5545 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5546 if (llvm::GlobalVariable *Old = 5547 M.getGlobalVariable("llvm.embedded.module", true)) { 5548 assert(Old->hasZeroLiveUses() && 5549 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5550 GV->takeName(Old); 5551 Old->eraseFromParent(); 5552 } else { 5553 GV->setName("llvm.embedded.module"); 5554 } 5555 5556 // Skip if only bitcode needs to be embedded. 5557 if (EmbedCmdline) { 5558 // Embed command-line options. 5559 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5560 CmdArgs.size()); 5561 llvm::Constant *CmdConstant = 5562 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5563 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5564 llvm::GlobalValue::PrivateLinkage, 5565 CmdConstant); 5566 GV->setSection(getSectionNameForCommandline(T)); 5567 GV->setAlignment(Align(1)); 5568 UsedArray.push_back( 5569 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5570 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5571 assert(Old->hasZeroLiveUses() && 5572 "llvm.cmdline can only be used once in llvm.compiler.used"); 5573 GV->takeName(Old); 5574 Old->eraseFromParent(); 5575 } else { 5576 GV->setName("llvm.cmdline"); 5577 } 5578 } 5579 5580 if (UsedArray.empty()) 5581 return; 5582 5583 // Recreate llvm.compiler.used. 5584 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5585 auto *NewUsed = new GlobalVariable( 5586 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5587 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5588 NewUsed->setSection("llvm.metadata"); 5589 } 5590