xref: /llvm-project/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp (revision b2997904118e4763b34786d66f30cdbb9fe91481)
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Metadata.h"
23 #include "llvm/Module.h"
24 #include "llvm/Operator.h"
25 #include "llvm/TypeSymbolTable.h"
26 #include "llvm/ValueSymbolTable.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/Streams.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/System/Program.h"
32 using namespace llvm;
33 
34 /// These are manifest constants used by the bitcode writer. They do not need to
35 /// be kept in sync with the reader, but need to be consistent within this file.
36 enum {
37   CurVersion = 0,
38 
39   // VALUE_SYMTAB_BLOCK abbrev id's.
40   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
41   VST_ENTRY_7_ABBREV,
42   VST_ENTRY_6_ABBREV,
43   VST_BBENTRY_6_ABBREV,
44 
45   // CONSTANTS_BLOCK abbrev id's.
46   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
47   CONSTANTS_INTEGER_ABBREV,
48   CONSTANTS_CE_CAST_Abbrev,
49   CONSTANTS_NULL_Abbrev,
50 
51   // FUNCTION_BLOCK abbrev id's.
52   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
53   FUNCTION_INST_BINOP_ABBREV,
54   FUNCTION_INST_BINOP_FLAGS_ABBREV,
55   FUNCTION_INST_CAST_ABBREV,
56   FUNCTION_INST_RET_VOID_ABBREV,
57   FUNCTION_INST_RET_VAL_ABBREV,
58   FUNCTION_INST_UNREACHABLE_ABBREV
59 };
60 
61 
62 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
63   switch (Opcode) {
64   default: llvm_unreachable("Unknown cast instruction!");
65   case Instruction::Trunc   : return bitc::CAST_TRUNC;
66   case Instruction::ZExt    : return bitc::CAST_ZEXT;
67   case Instruction::SExt    : return bitc::CAST_SEXT;
68   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
69   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
70   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
71   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
72   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
73   case Instruction::FPExt   : return bitc::CAST_FPEXT;
74   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
75   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
76   case Instruction::BitCast : return bitc::CAST_BITCAST;
77   }
78 }
79 
80 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
81   switch (Opcode) {
82   default: llvm_unreachable("Unknown binary instruction!");
83   case Instruction::Add:
84   case Instruction::FAdd: return bitc::BINOP_ADD;
85   case Instruction::Sub:
86   case Instruction::FSub: return bitc::BINOP_SUB;
87   case Instruction::Mul:
88   case Instruction::FMul: return bitc::BINOP_MUL;
89   case Instruction::UDiv: return bitc::BINOP_UDIV;
90   case Instruction::FDiv:
91   case Instruction::SDiv: return bitc::BINOP_SDIV;
92   case Instruction::URem: return bitc::BINOP_UREM;
93   case Instruction::FRem:
94   case Instruction::SRem: return bitc::BINOP_SREM;
95   case Instruction::Shl:  return bitc::BINOP_SHL;
96   case Instruction::LShr: return bitc::BINOP_LSHR;
97   case Instruction::AShr: return bitc::BINOP_ASHR;
98   case Instruction::And:  return bitc::BINOP_AND;
99   case Instruction::Or:   return bitc::BINOP_OR;
100   case Instruction::Xor:  return bitc::BINOP_XOR;
101   }
102 }
103 
104 
105 
106 static void WriteStringRecord(unsigned Code, const std::string &Str,
107                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
108   SmallVector<unsigned, 64> Vals;
109 
110   // Code: [strchar x N]
111   for (unsigned i = 0, e = Str.size(); i != e; ++i)
112     Vals.push_back(Str[i]);
113 
114   // Emit the finished record.
115   Stream.EmitRecord(Code, Vals, AbbrevToUse);
116 }
117 
118 // Emit information about parameter attributes.
119 static void WriteAttributeTable(const ValueEnumerator &VE,
120                                 BitstreamWriter &Stream) {
121   const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
122   if (Attrs.empty()) return;
123 
124   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
125 
126   SmallVector<uint64_t, 64> Record;
127   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
128     const AttrListPtr &A = Attrs[i];
129     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
130       const AttributeWithIndex &PAWI = A.getSlot(i);
131       Record.push_back(PAWI.Index);
132 
133       // FIXME: remove in LLVM 3.0
134       // Store the alignment in the bitcode as a 16-bit raw value instead of a
135       // 5-bit log2 encoded value. Shift the bits above the alignment up by
136       // 11 bits.
137       uint64_t FauxAttr = PAWI.Attrs & 0xffff;
138       if (PAWI.Attrs & Attribute::Alignment)
139         FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
140       FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
141 
142       Record.push_back(FauxAttr);
143     }
144 
145     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
146     Record.clear();
147   }
148 
149   Stream.ExitBlock();
150 }
151 
152 /// WriteTypeTable - Write out the type table for a module.
153 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
154   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
155 
156   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
157   SmallVector<uint64_t, 64> TypeVals;
158 
159   // Abbrev for TYPE_CODE_POINTER.
160   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
161   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
162   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
163                             Log2_32_Ceil(VE.getTypes().size()+1)));
164   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
165   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
166 
167   // Abbrev for TYPE_CODE_FUNCTION.
168   Abbv = new BitCodeAbbrev();
169   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
170   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
171   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
172   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
173   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
174                             Log2_32_Ceil(VE.getTypes().size()+1)));
175   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
176 
177   // Abbrev for TYPE_CODE_STRUCT.
178   Abbv = new BitCodeAbbrev();
179   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
180   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
181   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
182   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
183                             Log2_32_Ceil(VE.getTypes().size()+1)));
184   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
185 
186   // Abbrev for TYPE_CODE_ARRAY.
187   Abbv = new BitCodeAbbrev();
188   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
189   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
190   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
191                             Log2_32_Ceil(VE.getTypes().size()+1)));
192   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
193 
194   // Emit an entry count so the reader can reserve space.
195   TypeVals.push_back(TypeList.size());
196   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
197   TypeVals.clear();
198 
199   // Loop over all of the types, emitting each in turn.
200   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
201     const Type *T = TypeList[i].first;
202     int AbbrevToUse = 0;
203     unsigned Code = 0;
204 
205     switch (T->getTypeID()) {
206     default: llvm_unreachable("Unknown type!");
207     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
208     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
209     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
210     case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
211     case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
212     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
213     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
214     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
215     case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
216     case Type::IntegerTyID:
217       // INTEGER: [width]
218       Code = bitc::TYPE_CODE_INTEGER;
219       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
220       break;
221     case Type::PointerTyID: {
222       const PointerType *PTy = cast<PointerType>(T);
223       // POINTER: [pointee type, address space]
224       Code = bitc::TYPE_CODE_POINTER;
225       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
226       unsigned AddressSpace = PTy->getAddressSpace();
227       TypeVals.push_back(AddressSpace);
228       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
229       break;
230     }
231     case Type::FunctionTyID: {
232       const FunctionType *FT = cast<FunctionType>(T);
233       // FUNCTION: [isvararg, attrid, retty, paramty x N]
234       Code = bitc::TYPE_CODE_FUNCTION;
235       TypeVals.push_back(FT->isVarArg());
236       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
237       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
238       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
239         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
240       AbbrevToUse = FunctionAbbrev;
241       break;
242     }
243     case Type::StructTyID: {
244       const StructType *ST = cast<StructType>(T);
245       // STRUCT: [ispacked, eltty x N]
246       Code = bitc::TYPE_CODE_STRUCT;
247       TypeVals.push_back(ST->isPacked());
248       // Output all of the element types.
249       for (StructType::element_iterator I = ST->element_begin(),
250            E = ST->element_end(); I != E; ++I)
251         TypeVals.push_back(VE.getTypeID(*I));
252       AbbrevToUse = StructAbbrev;
253       break;
254     }
255     case Type::ArrayTyID: {
256       const ArrayType *AT = cast<ArrayType>(T);
257       // ARRAY: [numelts, eltty]
258       Code = bitc::TYPE_CODE_ARRAY;
259       TypeVals.push_back(AT->getNumElements());
260       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
261       AbbrevToUse = ArrayAbbrev;
262       break;
263     }
264     case Type::VectorTyID: {
265       const VectorType *VT = cast<VectorType>(T);
266       // VECTOR [numelts, eltty]
267       Code = bitc::TYPE_CODE_VECTOR;
268       TypeVals.push_back(VT->getNumElements());
269       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
270       break;
271     }
272     }
273 
274     // Emit the finished record.
275     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
276     TypeVals.clear();
277   }
278 
279   Stream.ExitBlock();
280 }
281 
282 static unsigned getEncodedLinkage(const GlobalValue *GV) {
283   switch (GV->getLinkage()) {
284   default: llvm_unreachable("Invalid linkage!");
285   case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
286   case GlobalValue::ExternalLinkage:            return 0;
287   case GlobalValue::WeakAnyLinkage:             return 1;
288   case GlobalValue::AppendingLinkage:           return 2;
289   case GlobalValue::InternalLinkage:            return 3;
290   case GlobalValue::LinkOnceAnyLinkage:         return 4;
291   case GlobalValue::DLLImportLinkage:           return 5;
292   case GlobalValue::DLLExportLinkage:           return 6;
293   case GlobalValue::ExternalWeakLinkage:        return 7;
294   case GlobalValue::CommonLinkage:              return 8;
295   case GlobalValue::PrivateLinkage:             return 9;
296   case GlobalValue::WeakODRLinkage:             return 10;
297   case GlobalValue::LinkOnceODRLinkage:         return 11;
298   case GlobalValue::AvailableExternallyLinkage: return 12;
299   case GlobalValue::LinkerPrivateLinkage:       return 13;
300   }
301 }
302 
303 static unsigned getEncodedVisibility(const GlobalValue *GV) {
304   switch (GV->getVisibility()) {
305   default: llvm_unreachable("Invalid visibility!");
306   case GlobalValue::DefaultVisibility:   return 0;
307   case GlobalValue::HiddenVisibility:    return 1;
308   case GlobalValue::ProtectedVisibility: return 2;
309   }
310 }
311 
312 // Emit top-level description of module, including target triple, inline asm,
313 // descriptors for global variables, and function prototype info.
314 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
315                             BitstreamWriter &Stream) {
316   // Emit the list of dependent libraries for the Module.
317   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
318     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
319 
320   // Emit various pieces of data attached to a module.
321   if (!M->getTargetTriple().empty())
322     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
323                       0/*TODO*/, Stream);
324   if (!M->getDataLayout().empty())
325     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
326                       0/*TODO*/, Stream);
327   if (!M->getModuleInlineAsm().empty())
328     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
329                       0/*TODO*/, Stream);
330 
331   // Emit information about sections and GC, computing how many there are. Also
332   // compute the maximum alignment value.
333   std::map<std::string, unsigned> SectionMap;
334   std::map<std::string, unsigned> GCMap;
335   unsigned MaxAlignment = 0;
336   unsigned MaxGlobalType = 0;
337   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
338        GV != E; ++GV) {
339     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
340     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
341 
342     if (!GV->hasSection()) continue;
343     // Give section names unique ID's.
344     unsigned &Entry = SectionMap[GV->getSection()];
345     if (Entry != 0) continue;
346     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
347                       0/*TODO*/, Stream);
348     Entry = SectionMap.size();
349   }
350   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
351     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
352     if (F->hasSection()) {
353       // Give section names unique ID's.
354       unsigned &Entry = SectionMap[F->getSection()];
355       if (!Entry) {
356         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
357                           0/*TODO*/, Stream);
358         Entry = SectionMap.size();
359       }
360     }
361     if (F->hasGC()) {
362       // Same for GC names.
363       unsigned &Entry = GCMap[F->getGC()];
364       if (!Entry) {
365         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
366                           0/*TODO*/, Stream);
367         Entry = GCMap.size();
368       }
369     }
370   }
371 
372   // Emit abbrev for globals, now that we know # sections and max alignment.
373   unsigned SimpleGVarAbbrev = 0;
374   if (!M->global_empty()) {
375     // Add an abbrev for common globals with no visibility or thread localness.
376     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
377     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
378     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
379                               Log2_32_Ceil(MaxGlobalType+1)));
380     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
381     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
382     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
383     if (MaxAlignment == 0)                                      // Alignment.
384       Abbv->Add(BitCodeAbbrevOp(0));
385     else {
386       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
387       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
388                                Log2_32_Ceil(MaxEncAlignment+1)));
389     }
390     if (SectionMap.empty())                                    // Section.
391       Abbv->Add(BitCodeAbbrevOp(0));
392     else
393       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
394                                Log2_32_Ceil(SectionMap.size()+1)));
395     // Don't bother emitting vis + thread local.
396     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
397   }
398 
399   // Emit the global variable information.
400   SmallVector<unsigned, 64> Vals;
401   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
402        GV != E; ++GV) {
403     unsigned AbbrevToUse = 0;
404 
405     // GLOBALVAR: [type, isconst, initid,
406     //             linkage, alignment, section, visibility, threadlocal]
407     Vals.push_back(VE.getTypeID(GV->getType()));
408     Vals.push_back(GV->isConstant());
409     Vals.push_back(GV->isDeclaration() ? 0 :
410                    (VE.getValueID(GV->getInitializer()) + 1));
411     Vals.push_back(getEncodedLinkage(GV));
412     Vals.push_back(Log2_32(GV->getAlignment())+1);
413     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
414     if (GV->isThreadLocal() ||
415         GV->getVisibility() != GlobalValue::DefaultVisibility) {
416       Vals.push_back(getEncodedVisibility(GV));
417       Vals.push_back(GV->isThreadLocal());
418     } else {
419       AbbrevToUse = SimpleGVarAbbrev;
420     }
421 
422     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
423     Vals.clear();
424   }
425 
426   // Emit the function proto information.
427   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
428     // FUNCTION:  [type, callingconv, isproto, paramattr,
429     //             linkage, alignment, section, visibility, gc]
430     Vals.push_back(VE.getTypeID(F->getType()));
431     Vals.push_back(F->getCallingConv());
432     Vals.push_back(F->isDeclaration());
433     Vals.push_back(getEncodedLinkage(F));
434     Vals.push_back(VE.getAttributeID(F->getAttributes()));
435     Vals.push_back(Log2_32(F->getAlignment())+1);
436     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
437     Vals.push_back(getEncodedVisibility(F));
438     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
439 
440     unsigned AbbrevToUse = 0;
441     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
442     Vals.clear();
443   }
444 
445 
446   // Emit the alias information.
447   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
448        AI != E; ++AI) {
449     Vals.push_back(VE.getTypeID(AI->getType()));
450     Vals.push_back(VE.getValueID(AI->getAliasee()));
451     Vals.push_back(getEncodedLinkage(AI));
452     Vals.push_back(getEncodedVisibility(AI));
453     unsigned AbbrevToUse = 0;
454     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
455     Vals.clear();
456   }
457 }
458 
459 static uint64_t GetOptimizationFlags(const Value *V) {
460   uint64_t Flags = 0;
461 
462   if (const OverflowingBinaryOperator *OBO =
463         dyn_cast<OverflowingBinaryOperator>(V)) {
464     if (OBO->hasNoSignedOverflow())
465       Flags |= 1 << bitc::OBO_NO_SIGNED_OVERFLOW;
466     if (OBO->hasNoUnsignedOverflow())
467       Flags |= 1 << bitc::OBO_NO_UNSIGNED_OVERFLOW;
468   } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) {
469     if (Div->isExact())
470       Flags |= 1 << bitc::SDIV_EXACT;
471   }
472 
473   return Flags;
474 }
475 
476 /// WriteValues - Write Constants and Metadata.
477 /// This function could use some refactoring help.
478 static void WriteValues(unsigned FirstVal, unsigned LastVal,
479                         const ValueEnumerator &VE,
480                         BitstreamWriter &Stream, bool isGlobal) {
481   if (FirstVal == LastVal) return;
482 
483   // MODULE_BLOCK_ID is 0, which is not handled here. So it is OK to use
484   // 0 as the initializer to indicate that block is not set.
485   enum bitc::BlockIDs LastBlockID = bitc::MODULE_BLOCK_ID;
486 
487   unsigned AggregateAbbrev = 0;
488   unsigned String8Abbrev = 0;
489   unsigned CString7Abbrev = 0;
490   unsigned CString6Abbrev = 0;
491   unsigned MDSAbbrev = 0;
492 
493   SmallVector<uint64_t, 64> Record;
494 
495   const ValueEnumerator::ValueList &Vals = VE.getValues();
496   const Type *LastTy = 0;
497   for (unsigned i = FirstVal; i != LastVal; ++i) {
498     const Value *V = Vals[i].first;
499     if (isa<MetadataBase>(V)) {
500       if (LastBlockID != bitc::METADATA_BLOCK_ID) {
501         // Exit privious block.
502         if (LastBlockID != bitc::MODULE_BLOCK_ID)
503           Stream.ExitBlock();
504 
505         LastBlockID = bitc::METADATA_BLOCK_ID;
506         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
507         // Abbrev for METADATA_STRING.
508         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
509         Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
510         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
511         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
512         MDSAbbrev = Stream.EmitAbbrev(Abbv);
513       }
514     }
515     if (const MDString *MDS = dyn_cast<MDString>(V)) {
516       // Code: [strchar x N]
517       const char *StrBegin = MDS->begin();
518       for (unsigned i = 0, e = MDS->length(); i != e; ++i)
519         Record.push_back(StrBegin[i]);
520 
521       // Emit the finished record.
522       Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
523       Record.clear();
524       continue;
525     } else if (const MDNode *N = dyn_cast<MDNode>(V)) {
526       for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
527         if (N->getElement(i)) {
528           Record.push_back(VE.getTypeID(N->getElement(i)->getType()));
529           Record.push_back(VE.getValueID(N->getElement(i)));
530         } else {
531           Record.push_back(VE.getTypeID(Type::VoidTy));
532           Record.push_back(0);
533         }
534       }
535       Stream.EmitRecord(bitc::METADATA_NODE, Record, 0);
536       Record.clear();
537       continue;
538     } else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(V)) {
539       // Write name.
540       std::string Str = NMD->getNameStr();
541       const char *StrBegin = Str.c_str();
542       for (unsigned i = 0, e = Str.length(); i != e; ++i)
543         Record.push_back(StrBegin[i]);
544       Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
545       Record.clear();
546 
547       // Write named metadata elements.
548       for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) {
549         if (NMD->getElement(i))
550           Record.push_back(VE.getValueID(NMD->getElement(i)));
551         else
552           Record.push_back(0);
553       }
554       Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
555       Record.clear();
556       continue;
557     }
558 
559     // If we need to switch block, do so now.
560     if (LastBlockID != bitc::CONSTANTS_BLOCK_ID) {
561       // Exit privious block.
562       if (LastBlockID != bitc::MODULE_BLOCK_ID)
563         Stream.ExitBlock();
564 
565       LastBlockID = bitc::CONSTANTS_BLOCK_ID;
566       Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
567       // If this is a constant pool for the module, emit module-specific abbrevs.
568       if (isGlobal) {
569         // Abbrev for CST_CODE_AGGREGATE.
570         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
571         Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
572         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
573         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
574         AggregateAbbrev = Stream.EmitAbbrev(Abbv);
575 
576         // Abbrev for CST_CODE_STRING.
577         Abbv = new BitCodeAbbrev();
578         Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
579         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
580         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
581         String8Abbrev = Stream.EmitAbbrev(Abbv);
582 
583         // Abbrev for CST_CODE_CSTRING.
584         Abbv = new BitCodeAbbrev();
585         Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
586         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
587         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
588         CString7Abbrev = Stream.EmitAbbrev(Abbv);
589 
590         // Abbrev for CST_CODE_CSTRING.
591         Abbv = new BitCodeAbbrev();
592         Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
593         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
594         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
595         CString6Abbrev = Stream.EmitAbbrev(Abbv);
596       }
597 
598     }
599     if (isa<MetadataBase>(V))
600       continue;
601     // If we need to switch types, do so now.
602     if (V->getType() != LastTy) {
603       LastTy = V->getType();
604       Record.push_back(VE.getTypeID(LastTy));
605       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
606                         CONSTANTS_SETTYPE_ABBREV);
607       Record.clear();
608     }
609 
610     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
611       Record.push_back(unsigned(IA->hasSideEffects()));
612 
613       // Add the asm string.
614       const std::string &AsmStr = IA->getAsmString();
615       Record.push_back(AsmStr.size());
616       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
617         Record.push_back(AsmStr[i]);
618 
619       // Add the constraint string.
620       const std::string &ConstraintStr = IA->getConstraintString();
621       Record.push_back(ConstraintStr.size());
622       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
623         Record.push_back(ConstraintStr[i]);
624       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
625       Record.clear();
626       continue;
627     }
628     const Constant *C = cast<Constant>(V);
629     unsigned Code = -1U;
630     unsigned AbbrevToUse = 0;
631     if (C->isNullValue()) {
632       Code = bitc::CST_CODE_NULL;
633     } else if (isa<UndefValue>(C)) {
634       Code = bitc::CST_CODE_UNDEF;
635     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
636       if (IV->getBitWidth() <= 64) {
637         int64_t V = IV->getSExtValue();
638         if (V >= 0)
639           Record.push_back(V << 1);
640         else
641           Record.push_back((-V << 1) | 1);
642         Code = bitc::CST_CODE_INTEGER;
643         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
644       } else {                             // Wide integers, > 64 bits in size.
645         // We have an arbitrary precision integer value to write whose
646         // bit width is > 64. However, in canonical unsigned integer
647         // format it is likely that the high bits are going to be zero.
648         // So, we only write the number of active words.
649         unsigned NWords = IV->getValue().getActiveWords();
650         const uint64_t *RawWords = IV->getValue().getRawData();
651         for (unsigned i = 0; i != NWords; ++i) {
652           int64_t V = RawWords[i];
653           if (V >= 0)
654             Record.push_back(V << 1);
655           else
656             Record.push_back((-V << 1) | 1);
657         }
658         Code = bitc::CST_CODE_WIDE_INTEGER;
659       }
660     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
661       Code = bitc::CST_CODE_FLOAT;
662       const Type *Ty = CFP->getType();
663       if (Ty == Type::FloatTy || Ty == Type::DoubleTy) {
664         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
665       } else if (Ty == Type::X86_FP80Ty) {
666         // api needed to prevent premature destruction
667         // bits are not in the same order as a normal i80 APInt, compensate.
668         APInt api = CFP->getValueAPF().bitcastToAPInt();
669         const uint64_t *p = api.getRawData();
670         Record.push_back((p[1] << 48) | (p[0] >> 16));
671         Record.push_back(p[0] & 0xffffLL);
672       } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) {
673         APInt api = CFP->getValueAPF().bitcastToAPInt();
674         const uint64_t *p = api.getRawData();
675         Record.push_back(p[0]);
676         Record.push_back(p[1]);
677       } else {
678         assert (0 && "Unknown FP type!");
679       }
680     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
681       // Emit constant strings specially.
682       unsigned NumOps = C->getNumOperands();
683       // If this is a null-terminated string, use the denser CSTRING encoding.
684       if (C->getOperand(NumOps-1)->isNullValue()) {
685         Code = bitc::CST_CODE_CSTRING;
686         --NumOps;  // Don't encode the null, which isn't allowed by char6.
687       } else {
688         Code = bitc::CST_CODE_STRING;
689         AbbrevToUse = String8Abbrev;
690       }
691       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
692       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
693       for (unsigned i = 0; i != NumOps; ++i) {
694         unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
695         Record.push_back(V);
696         isCStr7 &= (V & 128) == 0;
697         if (isCStrChar6)
698           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
699       }
700 
701       if (isCStrChar6)
702         AbbrevToUse = CString6Abbrev;
703       else if (isCStr7)
704         AbbrevToUse = CString7Abbrev;
705     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
706                isa<ConstantVector>(V)) {
707       Code = bitc::CST_CODE_AGGREGATE;
708       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
709         Record.push_back(VE.getValueID(C->getOperand(i)));
710       AbbrevToUse = AggregateAbbrev;
711     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
712       switch (CE->getOpcode()) {
713       default:
714         if (Instruction::isCast(CE->getOpcode())) {
715           Code = bitc::CST_CODE_CE_CAST;
716           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
717           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
718           Record.push_back(VE.getValueID(C->getOperand(0)));
719           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
720         } else {
721           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
722           Code = bitc::CST_CODE_CE_BINOP;
723           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
724           Record.push_back(VE.getValueID(C->getOperand(0)));
725           Record.push_back(VE.getValueID(C->getOperand(1)));
726           uint64_t Flags = GetOptimizationFlags(CE);
727           if (Flags != 0)
728             Record.push_back(Flags);
729         }
730         break;
731       case Instruction::GetElementPtr:
732         Code = bitc::CST_CODE_CE_GEP;
733         if (cast<GEPOperator>(C)->isInBounds())
734           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
735         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
736           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
737           Record.push_back(VE.getValueID(C->getOperand(i)));
738         }
739         break;
740       case Instruction::Select:
741         Code = bitc::CST_CODE_CE_SELECT;
742         Record.push_back(VE.getValueID(C->getOperand(0)));
743         Record.push_back(VE.getValueID(C->getOperand(1)));
744         Record.push_back(VE.getValueID(C->getOperand(2)));
745         break;
746       case Instruction::ExtractElement:
747         Code = bitc::CST_CODE_CE_EXTRACTELT;
748         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
749         Record.push_back(VE.getValueID(C->getOperand(0)));
750         Record.push_back(VE.getValueID(C->getOperand(1)));
751         break;
752       case Instruction::InsertElement:
753         Code = bitc::CST_CODE_CE_INSERTELT;
754         Record.push_back(VE.getValueID(C->getOperand(0)));
755         Record.push_back(VE.getValueID(C->getOperand(1)));
756         Record.push_back(VE.getValueID(C->getOperand(2)));
757         break;
758       case Instruction::ShuffleVector:
759         // If the return type and argument types are the same, this is a
760         // standard shufflevector instruction.  If the types are different,
761         // then the shuffle is widening or truncating the input vectors, and
762         // the argument type must also be encoded.
763         if (C->getType() == C->getOperand(0)->getType()) {
764           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
765         } else {
766           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
767           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
768         }
769         Record.push_back(VE.getValueID(C->getOperand(0)));
770         Record.push_back(VE.getValueID(C->getOperand(1)));
771         Record.push_back(VE.getValueID(C->getOperand(2)));
772         break;
773       case Instruction::ICmp:
774       case Instruction::FCmp:
775         Code = bitc::CST_CODE_CE_CMP;
776         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
777         Record.push_back(VE.getValueID(C->getOperand(0)));
778         Record.push_back(VE.getValueID(C->getOperand(1)));
779         Record.push_back(CE->getPredicate());
780         break;
781       }
782     } else {
783       llvm_unreachable("Unknown constant!");
784     }
785     Stream.EmitRecord(Code, Record, AbbrevToUse);
786     Record.clear();
787   }
788 
789   Stream.ExitBlock();
790 }
791 
792 static void WriteModuleConstants(const ValueEnumerator &VE,
793                                  BitstreamWriter &Stream) {
794   const ValueEnumerator::ValueList &Vals = VE.getValues();
795 
796   // Find the first constant to emit, which is the first non-globalvalue value.
797   // We know globalvalues have been emitted by WriteModuleInfo.
798   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
799     if (!isa<GlobalValue>(Vals[i].first)) {
800       WriteValues(i, Vals.size(), VE, Stream, true);
801       return;
802     }
803   }
804 }
805 
806 /// PushValueAndType - The file has to encode both the value and type id for
807 /// many values, because we need to know what type to create for forward
808 /// references.  However, most operands are not forward references, so this type
809 /// field is not needed.
810 ///
811 /// This function adds V's value ID to Vals.  If the value ID is higher than the
812 /// instruction ID, then it is a forward reference, and it also includes the
813 /// type ID.
814 static bool PushValueAndType(const Value *V, unsigned InstID,
815                              SmallVector<unsigned, 64> &Vals,
816                              ValueEnumerator &VE) {
817   unsigned ValID = VE.getValueID(V);
818   Vals.push_back(ValID);
819   if (ValID >= InstID) {
820     Vals.push_back(VE.getTypeID(V->getType()));
821     return true;
822   }
823   return false;
824 }
825 
826 /// WriteInstruction - Emit an instruction to the specified stream.
827 static void WriteInstruction(const Instruction &I, unsigned InstID,
828                              ValueEnumerator &VE, BitstreamWriter &Stream,
829                              SmallVector<unsigned, 64> &Vals) {
830   unsigned Code = 0;
831   unsigned AbbrevToUse = 0;
832   switch (I.getOpcode()) {
833   default:
834     if (Instruction::isCast(I.getOpcode())) {
835       Code = bitc::FUNC_CODE_INST_CAST;
836       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
837         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
838       Vals.push_back(VE.getTypeID(I.getType()));
839       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
840     } else {
841       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
842       Code = bitc::FUNC_CODE_INST_BINOP;
843       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
844         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
845       Vals.push_back(VE.getValueID(I.getOperand(1)));
846       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
847       uint64_t Flags = GetOptimizationFlags(&I);
848       if (Flags != 0) {
849         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
850           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
851         Vals.push_back(Flags);
852       }
853     }
854     break;
855 
856   case Instruction::GetElementPtr:
857     Code = bitc::FUNC_CODE_INST_GEP;
858     if (cast<GEPOperator>(&I)->isInBounds())
859       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
860     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
861       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
862     break;
863   case Instruction::ExtractValue: {
864     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
865     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
866     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
867     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
868       Vals.push_back(*i);
869     break;
870   }
871   case Instruction::InsertValue: {
872     Code = bitc::FUNC_CODE_INST_INSERTVAL;
873     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
874     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
875     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
876     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
877       Vals.push_back(*i);
878     break;
879   }
880   case Instruction::Select:
881     Code = bitc::FUNC_CODE_INST_VSELECT;
882     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
883     Vals.push_back(VE.getValueID(I.getOperand(2)));
884     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
885     break;
886   case Instruction::ExtractElement:
887     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
888     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
889     Vals.push_back(VE.getValueID(I.getOperand(1)));
890     break;
891   case Instruction::InsertElement:
892     Code = bitc::FUNC_CODE_INST_INSERTELT;
893     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
894     Vals.push_back(VE.getValueID(I.getOperand(1)));
895     Vals.push_back(VE.getValueID(I.getOperand(2)));
896     break;
897   case Instruction::ShuffleVector:
898     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
899     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
900     Vals.push_back(VE.getValueID(I.getOperand(1)));
901     Vals.push_back(VE.getValueID(I.getOperand(2)));
902     break;
903   case Instruction::ICmp:
904   case Instruction::FCmp:
905     // compare returning Int1Ty or vector of Int1Ty
906     Code = bitc::FUNC_CODE_INST_CMP2;
907     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
908     Vals.push_back(VE.getValueID(I.getOperand(1)));
909     Vals.push_back(cast<CmpInst>(I).getPredicate());
910     break;
911 
912   case Instruction::Ret:
913     {
914       Code = bitc::FUNC_CODE_INST_RET;
915       unsigned NumOperands = I.getNumOperands();
916       if (NumOperands == 0)
917         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
918       else if (NumOperands == 1) {
919         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
920           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
921       } else {
922         for (unsigned i = 0, e = NumOperands; i != e; ++i)
923           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
924       }
925     }
926     break;
927   case Instruction::Br:
928     {
929       Code = bitc::FUNC_CODE_INST_BR;
930       BranchInst &II(cast<BranchInst>(I));
931       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
932       if (II.isConditional()) {
933         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
934         Vals.push_back(VE.getValueID(II.getCondition()));
935       }
936     }
937     break;
938   case Instruction::Switch:
939     Code = bitc::FUNC_CODE_INST_SWITCH;
940     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
941     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
942       Vals.push_back(VE.getValueID(I.getOperand(i)));
943     break;
944   case Instruction::Invoke: {
945     const InvokeInst *II = cast<InvokeInst>(&I);
946     const Value *Callee(II->getCalledValue());
947     const PointerType *PTy = cast<PointerType>(Callee->getType());
948     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
949     Code = bitc::FUNC_CODE_INST_INVOKE;
950 
951     Vals.push_back(VE.getAttributeID(II->getAttributes()));
952     Vals.push_back(II->getCallingConv());
953     Vals.push_back(VE.getValueID(II->getNormalDest()));
954     Vals.push_back(VE.getValueID(II->getUnwindDest()));
955     PushValueAndType(Callee, InstID, Vals, VE);
956 
957     // Emit value #'s for the fixed parameters.
958     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
959       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
960 
961     // Emit type/value pairs for varargs params.
962     if (FTy->isVarArg()) {
963       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
964            i != e; ++i)
965         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
966     }
967     break;
968   }
969   case Instruction::Unwind:
970     Code = bitc::FUNC_CODE_INST_UNWIND;
971     break;
972   case Instruction::Unreachable:
973     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
974     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
975     break;
976 
977   case Instruction::PHI:
978     Code = bitc::FUNC_CODE_INST_PHI;
979     Vals.push_back(VE.getTypeID(I.getType()));
980     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
981       Vals.push_back(VE.getValueID(I.getOperand(i)));
982     break;
983 
984   case Instruction::Malloc:
985     Code = bitc::FUNC_CODE_INST_MALLOC;
986     Vals.push_back(VE.getTypeID(I.getType()));
987     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
988     Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
989     break;
990 
991   case Instruction::Free:
992     Code = bitc::FUNC_CODE_INST_FREE;
993     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
994     break;
995 
996   case Instruction::Alloca:
997     Code = bitc::FUNC_CODE_INST_ALLOCA;
998     Vals.push_back(VE.getTypeID(I.getType()));
999     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1000     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1001     break;
1002 
1003   case Instruction::Load:
1004     Code = bitc::FUNC_CODE_INST_LOAD;
1005     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1006       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1007 
1008     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1009     Vals.push_back(cast<LoadInst>(I).isVolatile());
1010     break;
1011   case Instruction::Store:
1012     Code = bitc::FUNC_CODE_INST_STORE2;
1013     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1014     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
1015     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1016     Vals.push_back(cast<StoreInst>(I).isVolatile());
1017     break;
1018   case Instruction::Call: {
1019     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
1020     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1021 
1022     Code = bitc::FUNC_CODE_INST_CALL;
1023 
1024     const CallInst *CI = cast<CallInst>(&I);
1025     Vals.push_back(VE.getAttributeID(CI->getAttributes()));
1026     Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
1027     PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
1028 
1029     // Emit value #'s for the fixed parameters.
1030     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1031       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
1032 
1033     // Emit type/value pairs for varargs params.
1034     if (FTy->isVarArg()) {
1035       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
1036       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
1037            i != e; ++i)
1038         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
1039     }
1040     break;
1041   }
1042   case Instruction::VAArg:
1043     Code = bitc::FUNC_CODE_INST_VAARG;
1044     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1045     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1046     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1047     break;
1048   }
1049 
1050   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1051   Vals.clear();
1052 }
1053 
1054 // Emit names for globals/functions etc.
1055 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1056                                   const ValueEnumerator &VE,
1057                                   BitstreamWriter &Stream) {
1058   if (VST.empty()) return;
1059   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1060 
1061   // FIXME: Set up the abbrev, we know how many values there are!
1062   // FIXME: We know if the type names can use 7-bit ascii.
1063   SmallVector<unsigned, 64> NameVals;
1064 
1065   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1066        SI != SE; ++SI) {
1067 
1068     const ValueName &Name = *SI;
1069 
1070     // Figure out the encoding to use for the name.
1071     bool is7Bit = true;
1072     bool isChar6 = true;
1073     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1074          C != E; ++C) {
1075       if (isChar6)
1076         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1077       if ((unsigned char)*C & 128) {
1078         is7Bit = false;
1079         break;  // don't bother scanning the rest.
1080       }
1081     }
1082 
1083     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1084 
1085     // VST_ENTRY:   [valueid, namechar x N]
1086     // VST_BBENTRY: [bbid, namechar x N]
1087     unsigned Code;
1088     if (isa<BasicBlock>(SI->getValue())) {
1089       Code = bitc::VST_CODE_BBENTRY;
1090       if (isChar6)
1091         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1092     } else {
1093       Code = bitc::VST_CODE_ENTRY;
1094       if (isChar6)
1095         AbbrevToUse = VST_ENTRY_6_ABBREV;
1096       else if (is7Bit)
1097         AbbrevToUse = VST_ENTRY_7_ABBREV;
1098     }
1099 
1100     NameVals.push_back(VE.getValueID(SI->getValue()));
1101     for (const char *P = Name.getKeyData(),
1102          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1103       NameVals.push_back((unsigned char)*P);
1104 
1105     // Emit the finished record.
1106     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1107     NameVals.clear();
1108   }
1109   Stream.ExitBlock();
1110 }
1111 
1112 /// WriteFunction - Emit a function body to the module stream.
1113 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1114                           BitstreamWriter &Stream) {
1115   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1116   VE.incorporateFunction(F);
1117 
1118   SmallVector<unsigned, 64> Vals;
1119 
1120   // Emit the number of basic blocks, so the reader can create them ahead of
1121   // time.
1122   Vals.push_back(VE.getBasicBlocks().size());
1123   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1124   Vals.clear();
1125 
1126   // If there are function-local constants, emit them now.
1127   unsigned CstStart, CstEnd;
1128   VE.getFunctionConstantRange(CstStart, CstEnd);
1129   WriteValues(CstStart, CstEnd, VE, Stream, false);
1130 
1131   // Keep a running idea of what the instruction ID is.
1132   unsigned InstID = CstEnd;
1133 
1134   // Finally, emit all the instructions, in order.
1135   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1136     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1137          I != E; ++I) {
1138       WriteInstruction(*I, InstID, VE, Stream, Vals);
1139       if (I->getType() != Type::VoidTy)
1140         ++InstID;
1141     }
1142 
1143   // Emit names for all the instructions etc.
1144   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1145 
1146   VE.purgeFunction();
1147   Stream.ExitBlock();
1148 }
1149 
1150 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
1151 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
1152                                  const ValueEnumerator &VE,
1153                                  BitstreamWriter &Stream) {
1154   if (TST.empty()) return;
1155 
1156   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1157 
1158   // 7-bit fixed width VST_CODE_ENTRY strings.
1159   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1160   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1161   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1162                             Log2_32_Ceil(VE.getTypes().size()+1)));
1163   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1164   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1165   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1166 
1167   SmallVector<unsigned, 64> NameVals;
1168 
1169   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
1170        TI != TE; ++TI) {
1171     // TST_ENTRY: [typeid, namechar x N]
1172     NameVals.push_back(VE.getTypeID(TI->second));
1173 
1174     const std::string &Str = TI->first;
1175     bool is7Bit = true;
1176     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1177       NameVals.push_back((unsigned char)Str[i]);
1178       if (Str[i] & 128)
1179         is7Bit = false;
1180     }
1181 
1182     // Emit the finished record.
1183     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1184     NameVals.clear();
1185   }
1186 
1187   Stream.ExitBlock();
1188 }
1189 
1190 // Emit blockinfo, which defines the standard abbreviations etc.
1191 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1192   // We only want to emit block info records for blocks that have multiple
1193   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1194   // blocks can defined their abbrevs inline.
1195   Stream.EnterBlockInfoBlock(2);
1196 
1197   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1198     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1199     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1200     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1201     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1202     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1203     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1204                                    Abbv) != VST_ENTRY_8_ABBREV)
1205       llvm_unreachable("Unexpected abbrev ordering!");
1206   }
1207 
1208   { // 7-bit fixed width VST_ENTRY strings.
1209     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1210     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1211     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1212     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1213     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1214     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1215                                    Abbv) != VST_ENTRY_7_ABBREV)
1216       llvm_unreachable("Unexpected abbrev ordering!");
1217   }
1218   { // 6-bit char6 VST_ENTRY strings.
1219     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1220     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1221     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1222     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1223     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1224     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1225                                    Abbv) != VST_ENTRY_6_ABBREV)
1226       llvm_unreachable("Unexpected abbrev ordering!");
1227   }
1228   { // 6-bit char6 VST_BBENTRY strings.
1229     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1230     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1231     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1232     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1233     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1234     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1235                                    Abbv) != VST_BBENTRY_6_ABBREV)
1236       llvm_unreachable("Unexpected abbrev ordering!");
1237   }
1238 
1239 
1240 
1241   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1242     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1243     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1244     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1245                               Log2_32_Ceil(VE.getTypes().size()+1)));
1246     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1247                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1248       llvm_unreachable("Unexpected abbrev ordering!");
1249   }
1250 
1251   { // INTEGER abbrev for CONSTANTS_BLOCK.
1252     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1253     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1254     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1255     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1256                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1257       llvm_unreachable("Unexpected abbrev ordering!");
1258   }
1259 
1260   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1261     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1262     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1263     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1264     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1265                               Log2_32_Ceil(VE.getTypes().size()+1)));
1266     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1267 
1268     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1269                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1270       llvm_unreachable("Unexpected abbrev ordering!");
1271   }
1272   { // NULL abbrev for CONSTANTS_BLOCK.
1273     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1274     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1275     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1276                                    Abbv) != CONSTANTS_NULL_Abbrev)
1277       llvm_unreachable("Unexpected abbrev ordering!");
1278   }
1279 
1280   // FIXME: This should only use space for first class types!
1281 
1282   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1283     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1284     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1285     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1286     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1287     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1288     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1289                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1290       llvm_unreachable("Unexpected abbrev ordering!");
1291   }
1292   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1293     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1294     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1295     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1296     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1297     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1298     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1299                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1300       llvm_unreachable("Unexpected abbrev ordering!");
1301   }
1302   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1303     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1304     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1305     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1306     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1307     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1308     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1309     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1310                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1311       llvm_unreachable("Unexpected abbrev ordering!");
1312   }
1313   { // INST_CAST abbrev for FUNCTION_BLOCK.
1314     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1315     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1316     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1317     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1318                               Log2_32_Ceil(VE.getTypes().size()+1)));
1319     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1320     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1321                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1322       llvm_unreachable("Unexpected abbrev ordering!");
1323   }
1324 
1325   { // INST_RET abbrev for FUNCTION_BLOCK.
1326     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1327     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1328     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1329                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1330       llvm_unreachable("Unexpected abbrev ordering!");
1331   }
1332   { // INST_RET abbrev for FUNCTION_BLOCK.
1333     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1334     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1335     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1336     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1337                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1338       llvm_unreachable("Unexpected abbrev ordering!");
1339   }
1340   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1341     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1342     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1343     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1344                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1345       llvm_unreachable("Unexpected abbrev ordering!");
1346   }
1347 
1348   Stream.ExitBlock();
1349 }
1350 
1351 
1352 /// WriteModule - Emit the specified module to the bitstream.
1353 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1354   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1355 
1356   // Emit the version number if it is non-zero.
1357   if (CurVersion) {
1358     SmallVector<unsigned, 1> Vals;
1359     Vals.push_back(CurVersion);
1360     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1361   }
1362 
1363   // Analyze the module, enumerating globals, functions, etc.
1364   ValueEnumerator VE(M);
1365 
1366   // Emit blockinfo, which defines the standard abbreviations etc.
1367   WriteBlockInfo(VE, Stream);
1368 
1369   // Emit information about parameter attributes.
1370   WriteAttributeTable(VE, Stream);
1371 
1372   // Emit information describing all of the types in the module.
1373   WriteTypeTable(VE, Stream);
1374 
1375   // Emit top-level description of module, including target triple, inline asm,
1376   // descriptors for global variables, and function prototype info.
1377   WriteModuleInfo(M, VE, Stream);
1378 
1379   // Emit constants.
1380   WriteModuleConstants(VE, Stream);
1381 
1382   // Emit function bodies.
1383   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1384     if (!I->isDeclaration())
1385       WriteFunction(*I, VE, Stream);
1386 
1387   // Emit the type symbol table information.
1388   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1389 
1390   // Emit names for globals/functions etc.
1391   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1392 
1393   Stream.ExitBlock();
1394 }
1395 
1396 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1397 /// header and trailer to make it compatible with the system archiver.  To do
1398 /// this we emit the following header, and then emit a trailer that pads the
1399 /// file out to be a multiple of 16 bytes.
1400 ///
1401 /// struct bc_header {
1402 ///   uint32_t Magic;         // 0x0B17C0DE
1403 ///   uint32_t Version;       // Version, currently always 0.
1404 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1405 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1406 ///   uint32_t CPUType;       // CPU specifier.
1407 ///   ... potentially more later ...
1408 /// };
1409 enum {
1410   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1411   DarwinBCHeaderSize = 5*4
1412 };
1413 
1414 static void EmitDarwinBCHeader(BitstreamWriter &Stream,
1415                                const std::string &TT) {
1416   unsigned CPUType = ~0U;
1417 
1418   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*.  The CPUType is a
1419   // magic number from /usr/include/mach/machine.h.  It is ok to reproduce the
1420   // specific constants here because they are implicitly part of the Darwin ABI.
1421   enum {
1422     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1423     DARWIN_CPU_TYPE_X86        = 7,
1424     DARWIN_CPU_TYPE_POWERPC    = 18
1425   };
1426 
1427   if (TT.find("x86_64-") == 0)
1428     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1429   else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
1430            TT[4] == '-' && TT[1] - '3' < 6)
1431     CPUType = DARWIN_CPU_TYPE_X86;
1432   else if (TT.find("powerpc-") == 0)
1433     CPUType = DARWIN_CPU_TYPE_POWERPC;
1434   else if (TT.find("powerpc64-") == 0)
1435     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1436 
1437   // Traditional Bitcode starts after header.
1438   unsigned BCOffset = DarwinBCHeaderSize;
1439 
1440   Stream.Emit(0x0B17C0DE, 32);
1441   Stream.Emit(0         , 32);  // Version.
1442   Stream.Emit(BCOffset  , 32);
1443   Stream.Emit(0         , 32);  // Filled in later.
1444   Stream.Emit(CPUType   , 32);
1445 }
1446 
1447 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1448 /// finalize the header.
1449 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1450   // Update the size field in the header.
1451   Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1452 
1453   // If the file is not a multiple of 16 bytes, insert dummy padding.
1454   while (BufferSize & 15) {
1455     Stream.Emit(0, 8);
1456     ++BufferSize;
1457   }
1458 }
1459 
1460 
1461 /// WriteBitcodeToFile - Write the specified module to the specified output
1462 /// stream.
1463 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
1464   raw_os_ostream RawOut(Out);
1465   // If writing to stdout, set binary mode.
1466   if (llvm::cout == Out)
1467     sys::Program::ChangeStdoutToBinary();
1468   WriteBitcodeToFile(M, RawOut);
1469 }
1470 
1471 /// WriteBitcodeToFile - Write the specified module to the specified output
1472 /// stream.
1473 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1474   std::vector<unsigned char> Buffer;
1475   BitstreamWriter Stream(Buffer);
1476 
1477   Buffer.reserve(256*1024);
1478 
1479   WriteBitcodeToStream( M, Stream );
1480 
1481   // If writing to stdout, set binary mode.
1482   if (&llvm::outs() == &Out)
1483     sys::Program::ChangeStdoutToBinary();
1484 
1485   // Write the generated bitstream to "Out".
1486   Out.write((char*)&Buffer.front(), Buffer.size());
1487 
1488   // Make sure it hits disk now.
1489   Out.flush();
1490 }
1491 
1492 /// WriteBitcodeToStream - Write the specified module to the specified output
1493 /// stream.
1494 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1495   // If this is darwin, emit a file header and trailer if needed.
1496   bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
1497   if (isDarwin)
1498     EmitDarwinBCHeader(Stream, M->getTargetTriple());
1499 
1500   // Emit the file header.
1501   Stream.Emit((unsigned)'B', 8);
1502   Stream.Emit((unsigned)'C', 8);
1503   Stream.Emit(0x0, 4);
1504   Stream.Emit(0xC, 4);
1505   Stream.Emit(0xE, 4);
1506   Stream.Emit(0xD, 4);
1507 
1508   // Emit the module.
1509   WriteModule(M, Stream);
1510 
1511   if (isDarwin)
1512     EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
1513 }
1514