1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Metadata.h" 23 #include "llvm/Module.h" 24 #include "llvm/Operator.h" 25 #include "llvm/TypeSymbolTable.h" 26 #include "llvm/ValueSymbolTable.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/Streams.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/System/Program.h" 32 using namespace llvm; 33 34 /// These are manifest constants used by the bitcode writer. They do not need to 35 /// be kept in sync with the reader, but need to be consistent within this file. 36 enum { 37 CurVersion = 0, 38 39 // VALUE_SYMTAB_BLOCK abbrev id's. 40 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 41 VST_ENTRY_7_ABBREV, 42 VST_ENTRY_6_ABBREV, 43 VST_BBENTRY_6_ABBREV, 44 45 // CONSTANTS_BLOCK abbrev id's. 46 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 47 CONSTANTS_INTEGER_ABBREV, 48 CONSTANTS_CE_CAST_Abbrev, 49 CONSTANTS_NULL_Abbrev, 50 51 // FUNCTION_BLOCK abbrev id's. 52 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 53 FUNCTION_INST_BINOP_ABBREV, 54 FUNCTION_INST_BINOP_FLAGS_ABBREV, 55 FUNCTION_INST_CAST_ABBREV, 56 FUNCTION_INST_RET_VOID_ABBREV, 57 FUNCTION_INST_RET_VAL_ABBREV, 58 FUNCTION_INST_UNREACHABLE_ABBREV 59 }; 60 61 62 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 63 switch (Opcode) { 64 default: llvm_unreachable("Unknown cast instruction!"); 65 case Instruction::Trunc : return bitc::CAST_TRUNC; 66 case Instruction::ZExt : return bitc::CAST_ZEXT; 67 case Instruction::SExt : return bitc::CAST_SEXT; 68 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 69 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 70 case Instruction::UIToFP : return bitc::CAST_UITOFP; 71 case Instruction::SIToFP : return bitc::CAST_SITOFP; 72 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 73 case Instruction::FPExt : return bitc::CAST_FPEXT; 74 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 75 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 76 case Instruction::BitCast : return bitc::CAST_BITCAST; 77 } 78 } 79 80 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 81 switch (Opcode) { 82 default: llvm_unreachable("Unknown binary instruction!"); 83 case Instruction::Add: 84 case Instruction::FAdd: return bitc::BINOP_ADD; 85 case Instruction::Sub: 86 case Instruction::FSub: return bitc::BINOP_SUB; 87 case Instruction::Mul: 88 case Instruction::FMul: return bitc::BINOP_MUL; 89 case Instruction::UDiv: return bitc::BINOP_UDIV; 90 case Instruction::FDiv: 91 case Instruction::SDiv: return bitc::BINOP_SDIV; 92 case Instruction::URem: return bitc::BINOP_UREM; 93 case Instruction::FRem: 94 case Instruction::SRem: return bitc::BINOP_SREM; 95 case Instruction::Shl: return bitc::BINOP_SHL; 96 case Instruction::LShr: return bitc::BINOP_LSHR; 97 case Instruction::AShr: return bitc::BINOP_ASHR; 98 case Instruction::And: return bitc::BINOP_AND; 99 case Instruction::Or: return bitc::BINOP_OR; 100 case Instruction::Xor: return bitc::BINOP_XOR; 101 } 102 } 103 104 105 106 static void WriteStringRecord(unsigned Code, const std::string &Str, 107 unsigned AbbrevToUse, BitstreamWriter &Stream) { 108 SmallVector<unsigned, 64> Vals; 109 110 // Code: [strchar x N] 111 for (unsigned i = 0, e = Str.size(); i != e; ++i) 112 Vals.push_back(Str[i]); 113 114 // Emit the finished record. 115 Stream.EmitRecord(Code, Vals, AbbrevToUse); 116 } 117 118 // Emit information about parameter attributes. 119 static void WriteAttributeTable(const ValueEnumerator &VE, 120 BitstreamWriter &Stream) { 121 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 122 if (Attrs.empty()) return; 123 124 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 125 126 SmallVector<uint64_t, 64> Record; 127 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 128 const AttrListPtr &A = Attrs[i]; 129 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 130 const AttributeWithIndex &PAWI = A.getSlot(i); 131 Record.push_back(PAWI.Index); 132 133 // FIXME: remove in LLVM 3.0 134 // Store the alignment in the bitcode as a 16-bit raw value instead of a 135 // 5-bit log2 encoded value. Shift the bits above the alignment up by 136 // 11 bits. 137 uint64_t FauxAttr = PAWI.Attrs & 0xffff; 138 if (PAWI.Attrs & Attribute::Alignment) 139 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16); 140 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11; 141 142 Record.push_back(FauxAttr); 143 } 144 145 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 146 Record.clear(); 147 } 148 149 Stream.ExitBlock(); 150 } 151 152 /// WriteTypeTable - Write out the type table for a module. 153 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 154 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 155 156 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 157 SmallVector<uint64_t, 64> TypeVals; 158 159 // Abbrev for TYPE_CODE_POINTER. 160 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 161 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 163 Log2_32_Ceil(VE.getTypes().size()+1))); 164 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 165 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 166 167 // Abbrev for TYPE_CODE_FUNCTION. 168 Abbv = new BitCodeAbbrev(); 169 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 171 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 174 Log2_32_Ceil(VE.getTypes().size()+1))); 175 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 176 177 // Abbrev for TYPE_CODE_STRUCT. 178 Abbv = new BitCodeAbbrev(); 179 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 183 Log2_32_Ceil(VE.getTypes().size()+1))); 184 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 185 186 // Abbrev for TYPE_CODE_ARRAY. 187 Abbv = new BitCodeAbbrev(); 188 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 191 Log2_32_Ceil(VE.getTypes().size()+1))); 192 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 193 194 // Emit an entry count so the reader can reserve space. 195 TypeVals.push_back(TypeList.size()); 196 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 197 TypeVals.clear(); 198 199 // Loop over all of the types, emitting each in turn. 200 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 201 const Type *T = TypeList[i].first; 202 int AbbrevToUse = 0; 203 unsigned Code = 0; 204 205 switch (T->getTypeID()) { 206 default: llvm_unreachable("Unknown type!"); 207 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 208 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 209 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 210 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 211 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 212 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 213 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 214 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 215 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 216 case Type::IntegerTyID: 217 // INTEGER: [width] 218 Code = bitc::TYPE_CODE_INTEGER; 219 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 220 break; 221 case Type::PointerTyID: { 222 const PointerType *PTy = cast<PointerType>(T); 223 // POINTER: [pointee type, address space] 224 Code = bitc::TYPE_CODE_POINTER; 225 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 226 unsigned AddressSpace = PTy->getAddressSpace(); 227 TypeVals.push_back(AddressSpace); 228 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 229 break; 230 } 231 case Type::FunctionTyID: { 232 const FunctionType *FT = cast<FunctionType>(T); 233 // FUNCTION: [isvararg, attrid, retty, paramty x N] 234 Code = bitc::TYPE_CODE_FUNCTION; 235 TypeVals.push_back(FT->isVarArg()); 236 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 237 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 238 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 239 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 240 AbbrevToUse = FunctionAbbrev; 241 break; 242 } 243 case Type::StructTyID: { 244 const StructType *ST = cast<StructType>(T); 245 // STRUCT: [ispacked, eltty x N] 246 Code = bitc::TYPE_CODE_STRUCT; 247 TypeVals.push_back(ST->isPacked()); 248 // Output all of the element types. 249 for (StructType::element_iterator I = ST->element_begin(), 250 E = ST->element_end(); I != E; ++I) 251 TypeVals.push_back(VE.getTypeID(*I)); 252 AbbrevToUse = StructAbbrev; 253 break; 254 } 255 case Type::ArrayTyID: { 256 const ArrayType *AT = cast<ArrayType>(T); 257 // ARRAY: [numelts, eltty] 258 Code = bitc::TYPE_CODE_ARRAY; 259 TypeVals.push_back(AT->getNumElements()); 260 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 261 AbbrevToUse = ArrayAbbrev; 262 break; 263 } 264 case Type::VectorTyID: { 265 const VectorType *VT = cast<VectorType>(T); 266 // VECTOR [numelts, eltty] 267 Code = bitc::TYPE_CODE_VECTOR; 268 TypeVals.push_back(VT->getNumElements()); 269 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 270 break; 271 } 272 } 273 274 // Emit the finished record. 275 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 276 TypeVals.clear(); 277 } 278 279 Stream.ExitBlock(); 280 } 281 282 static unsigned getEncodedLinkage(const GlobalValue *GV) { 283 switch (GV->getLinkage()) { 284 default: llvm_unreachable("Invalid linkage!"); 285 case GlobalValue::GhostLinkage: // Map ghost linkage onto external. 286 case GlobalValue::ExternalLinkage: return 0; 287 case GlobalValue::WeakAnyLinkage: return 1; 288 case GlobalValue::AppendingLinkage: return 2; 289 case GlobalValue::InternalLinkage: return 3; 290 case GlobalValue::LinkOnceAnyLinkage: return 4; 291 case GlobalValue::DLLImportLinkage: return 5; 292 case GlobalValue::DLLExportLinkage: return 6; 293 case GlobalValue::ExternalWeakLinkage: return 7; 294 case GlobalValue::CommonLinkage: return 8; 295 case GlobalValue::PrivateLinkage: return 9; 296 case GlobalValue::WeakODRLinkage: return 10; 297 case GlobalValue::LinkOnceODRLinkage: return 11; 298 case GlobalValue::AvailableExternallyLinkage: return 12; 299 case GlobalValue::LinkerPrivateLinkage: return 13; 300 } 301 } 302 303 static unsigned getEncodedVisibility(const GlobalValue *GV) { 304 switch (GV->getVisibility()) { 305 default: llvm_unreachable("Invalid visibility!"); 306 case GlobalValue::DefaultVisibility: return 0; 307 case GlobalValue::HiddenVisibility: return 1; 308 case GlobalValue::ProtectedVisibility: return 2; 309 } 310 } 311 312 // Emit top-level description of module, including target triple, inline asm, 313 // descriptors for global variables, and function prototype info. 314 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 315 BitstreamWriter &Stream) { 316 // Emit the list of dependent libraries for the Module. 317 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 318 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 319 320 // Emit various pieces of data attached to a module. 321 if (!M->getTargetTriple().empty()) 322 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 323 0/*TODO*/, Stream); 324 if (!M->getDataLayout().empty()) 325 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 326 0/*TODO*/, Stream); 327 if (!M->getModuleInlineAsm().empty()) 328 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 329 0/*TODO*/, Stream); 330 331 // Emit information about sections and GC, computing how many there are. Also 332 // compute the maximum alignment value. 333 std::map<std::string, unsigned> SectionMap; 334 std::map<std::string, unsigned> GCMap; 335 unsigned MaxAlignment = 0; 336 unsigned MaxGlobalType = 0; 337 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 338 GV != E; ++GV) { 339 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 340 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 341 342 if (!GV->hasSection()) continue; 343 // Give section names unique ID's. 344 unsigned &Entry = SectionMap[GV->getSection()]; 345 if (Entry != 0) continue; 346 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 347 0/*TODO*/, Stream); 348 Entry = SectionMap.size(); 349 } 350 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 351 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 352 if (F->hasSection()) { 353 // Give section names unique ID's. 354 unsigned &Entry = SectionMap[F->getSection()]; 355 if (!Entry) { 356 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 357 0/*TODO*/, Stream); 358 Entry = SectionMap.size(); 359 } 360 } 361 if (F->hasGC()) { 362 // Same for GC names. 363 unsigned &Entry = GCMap[F->getGC()]; 364 if (!Entry) { 365 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 366 0/*TODO*/, Stream); 367 Entry = GCMap.size(); 368 } 369 } 370 } 371 372 // Emit abbrev for globals, now that we know # sections and max alignment. 373 unsigned SimpleGVarAbbrev = 0; 374 if (!M->global_empty()) { 375 // Add an abbrev for common globals with no visibility or thread localness. 376 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 377 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 379 Log2_32_Ceil(MaxGlobalType+1))); 380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 383 if (MaxAlignment == 0) // Alignment. 384 Abbv->Add(BitCodeAbbrevOp(0)); 385 else { 386 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 388 Log2_32_Ceil(MaxEncAlignment+1))); 389 } 390 if (SectionMap.empty()) // Section. 391 Abbv->Add(BitCodeAbbrevOp(0)); 392 else 393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 394 Log2_32_Ceil(SectionMap.size()+1))); 395 // Don't bother emitting vis + thread local. 396 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 397 } 398 399 // Emit the global variable information. 400 SmallVector<unsigned, 64> Vals; 401 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 402 GV != E; ++GV) { 403 unsigned AbbrevToUse = 0; 404 405 // GLOBALVAR: [type, isconst, initid, 406 // linkage, alignment, section, visibility, threadlocal] 407 Vals.push_back(VE.getTypeID(GV->getType())); 408 Vals.push_back(GV->isConstant()); 409 Vals.push_back(GV->isDeclaration() ? 0 : 410 (VE.getValueID(GV->getInitializer()) + 1)); 411 Vals.push_back(getEncodedLinkage(GV)); 412 Vals.push_back(Log2_32(GV->getAlignment())+1); 413 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 414 if (GV->isThreadLocal() || 415 GV->getVisibility() != GlobalValue::DefaultVisibility) { 416 Vals.push_back(getEncodedVisibility(GV)); 417 Vals.push_back(GV->isThreadLocal()); 418 } else { 419 AbbrevToUse = SimpleGVarAbbrev; 420 } 421 422 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 423 Vals.clear(); 424 } 425 426 // Emit the function proto information. 427 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 428 // FUNCTION: [type, callingconv, isproto, paramattr, 429 // linkage, alignment, section, visibility, gc] 430 Vals.push_back(VE.getTypeID(F->getType())); 431 Vals.push_back(F->getCallingConv()); 432 Vals.push_back(F->isDeclaration()); 433 Vals.push_back(getEncodedLinkage(F)); 434 Vals.push_back(VE.getAttributeID(F->getAttributes())); 435 Vals.push_back(Log2_32(F->getAlignment())+1); 436 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 437 Vals.push_back(getEncodedVisibility(F)); 438 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 439 440 unsigned AbbrevToUse = 0; 441 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 442 Vals.clear(); 443 } 444 445 446 // Emit the alias information. 447 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 448 AI != E; ++AI) { 449 Vals.push_back(VE.getTypeID(AI->getType())); 450 Vals.push_back(VE.getValueID(AI->getAliasee())); 451 Vals.push_back(getEncodedLinkage(AI)); 452 Vals.push_back(getEncodedVisibility(AI)); 453 unsigned AbbrevToUse = 0; 454 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 455 Vals.clear(); 456 } 457 } 458 459 static uint64_t GetOptimizationFlags(const Value *V) { 460 uint64_t Flags = 0; 461 462 if (const OverflowingBinaryOperator *OBO = 463 dyn_cast<OverflowingBinaryOperator>(V)) { 464 if (OBO->hasNoSignedOverflow()) 465 Flags |= 1 << bitc::OBO_NO_SIGNED_OVERFLOW; 466 if (OBO->hasNoUnsignedOverflow()) 467 Flags |= 1 << bitc::OBO_NO_UNSIGNED_OVERFLOW; 468 } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) { 469 if (Div->isExact()) 470 Flags |= 1 << bitc::SDIV_EXACT; 471 } 472 473 return Flags; 474 } 475 476 /// WriteValues - Write Constants and Metadata. 477 /// This function could use some refactoring help. 478 static void WriteValues(unsigned FirstVal, unsigned LastVal, 479 const ValueEnumerator &VE, 480 BitstreamWriter &Stream, bool isGlobal) { 481 if (FirstVal == LastVal) return; 482 483 // MODULE_BLOCK_ID is 0, which is not handled here. So it is OK to use 484 // 0 as the initializer to indicate that block is not set. 485 enum bitc::BlockIDs LastBlockID = bitc::MODULE_BLOCK_ID; 486 487 unsigned AggregateAbbrev = 0; 488 unsigned String8Abbrev = 0; 489 unsigned CString7Abbrev = 0; 490 unsigned CString6Abbrev = 0; 491 unsigned MDSAbbrev = 0; 492 493 SmallVector<uint64_t, 64> Record; 494 495 const ValueEnumerator::ValueList &Vals = VE.getValues(); 496 const Type *LastTy = 0; 497 for (unsigned i = FirstVal; i != LastVal; ++i) { 498 const Value *V = Vals[i].first; 499 if (isa<MetadataBase>(V)) { 500 if (LastBlockID != bitc::METADATA_BLOCK_ID) { 501 // Exit privious block. 502 if (LastBlockID != bitc::MODULE_BLOCK_ID) 503 Stream.ExitBlock(); 504 505 LastBlockID = bitc::METADATA_BLOCK_ID; 506 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 507 // Abbrev for METADATA_STRING. 508 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 509 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 510 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 511 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 512 MDSAbbrev = Stream.EmitAbbrev(Abbv); 513 } 514 } 515 if (const MDString *MDS = dyn_cast<MDString>(V)) { 516 // Code: [strchar x N] 517 const char *StrBegin = MDS->begin(); 518 for (unsigned i = 0, e = MDS->length(); i != e; ++i) 519 Record.push_back(StrBegin[i]); 520 521 // Emit the finished record. 522 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 523 Record.clear(); 524 continue; 525 } else if (const MDNode *N = dyn_cast<MDNode>(V)) { 526 for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) { 527 if (N->getElement(i)) { 528 Record.push_back(VE.getTypeID(N->getElement(i)->getType())); 529 Record.push_back(VE.getValueID(N->getElement(i))); 530 } else { 531 Record.push_back(VE.getTypeID(Type::VoidTy)); 532 Record.push_back(0); 533 } 534 } 535 Stream.EmitRecord(bitc::METADATA_NODE, Record, 0); 536 Record.clear(); 537 continue; 538 } else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(V)) { 539 // Write name. 540 std::string Str = NMD->getNameStr(); 541 const char *StrBegin = Str.c_str(); 542 for (unsigned i = 0, e = Str.length(); i != e; ++i) 543 Record.push_back(StrBegin[i]); 544 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 545 Record.clear(); 546 547 // Write named metadata elements. 548 for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) { 549 if (NMD->getElement(i)) 550 Record.push_back(VE.getValueID(NMD->getElement(i))); 551 else 552 Record.push_back(0); 553 } 554 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 555 Record.clear(); 556 continue; 557 } 558 559 // If we need to switch block, do so now. 560 if (LastBlockID != bitc::CONSTANTS_BLOCK_ID) { 561 // Exit privious block. 562 if (LastBlockID != bitc::MODULE_BLOCK_ID) 563 Stream.ExitBlock(); 564 565 LastBlockID = bitc::CONSTANTS_BLOCK_ID; 566 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 567 // If this is a constant pool for the module, emit module-specific abbrevs. 568 if (isGlobal) { 569 // Abbrev for CST_CODE_AGGREGATE. 570 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 571 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 573 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 574 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 575 576 // Abbrev for CST_CODE_STRING. 577 Abbv = new BitCodeAbbrev(); 578 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 581 String8Abbrev = Stream.EmitAbbrev(Abbv); 582 583 // Abbrev for CST_CODE_CSTRING. 584 Abbv = new BitCodeAbbrev(); 585 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 587 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 588 CString7Abbrev = Stream.EmitAbbrev(Abbv); 589 590 // Abbrev for CST_CODE_CSTRING. 591 Abbv = new BitCodeAbbrev(); 592 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 595 CString6Abbrev = Stream.EmitAbbrev(Abbv); 596 } 597 598 } 599 if (isa<MetadataBase>(V)) 600 continue; 601 // If we need to switch types, do so now. 602 if (V->getType() != LastTy) { 603 LastTy = V->getType(); 604 Record.push_back(VE.getTypeID(LastTy)); 605 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 606 CONSTANTS_SETTYPE_ABBREV); 607 Record.clear(); 608 } 609 610 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 611 Record.push_back(unsigned(IA->hasSideEffects())); 612 613 // Add the asm string. 614 const std::string &AsmStr = IA->getAsmString(); 615 Record.push_back(AsmStr.size()); 616 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 617 Record.push_back(AsmStr[i]); 618 619 // Add the constraint string. 620 const std::string &ConstraintStr = IA->getConstraintString(); 621 Record.push_back(ConstraintStr.size()); 622 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 623 Record.push_back(ConstraintStr[i]); 624 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 625 Record.clear(); 626 continue; 627 } 628 const Constant *C = cast<Constant>(V); 629 unsigned Code = -1U; 630 unsigned AbbrevToUse = 0; 631 if (C->isNullValue()) { 632 Code = bitc::CST_CODE_NULL; 633 } else if (isa<UndefValue>(C)) { 634 Code = bitc::CST_CODE_UNDEF; 635 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 636 if (IV->getBitWidth() <= 64) { 637 int64_t V = IV->getSExtValue(); 638 if (V >= 0) 639 Record.push_back(V << 1); 640 else 641 Record.push_back((-V << 1) | 1); 642 Code = bitc::CST_CODE_INTEGER; 643 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 644 } else { // Wide integers, > 64 bits in size. 645 // We have an arbitrary precision integer value to write whose 646 // bit width is > 64. However, in canonical unsigned integer 647 // format it is likely that the high bits are going to be zero. 648 // So, we only write the number of active words. 649 unsigned NWords = IV->getValue().getActiveWords(); 650 const uint64_t *RawWords = IV->getValue().getRawData(); 651 for (unsigned i = 0; i != NWords; ++i) { 652 int64_t V = RawWords[i]; 653 if (V >= 0) 654 Record.push_back(V << 1); 655 else 656 Record.push_back((-V << 1) | 1); 657 } 658 Code = bitc::CST_CODE_WIDE_INTEGER; 659 } 660 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 661 Code = bitc::CST_CODE_FLOAT; 662 const Type *Ty = CFP->getType(); 663 if (Ty == Type::FloatTy || Ty == Type::DoubleTy) { 664 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 665 } else if (Ty == Type::X86_FP80Ty) { 666 // api needed to prevent premature destruction 667 // bits are not in the same order as a normal i80 APInt, compensate. 668 APInt api = CFP->getValueAPF().bitcastToAPInt(); 669 const uint64_t *p = api.getRawData(); 670 Record.push_back((p[1] << 48) | (p[0] >> 16)); 671 Record.push_back(p[0] & 0xffffLL); 672 } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) { 673 APInt api = CFP->getValueAPF().bitcastToAPInt(); 674 const uint64_t *p = api.getRawData(); 675 Record.push_back(p[0]); 676 Record.push_back(p[1]); 677 } else { 678 assert (0 && "Unknown FP type!"); 679 } 680 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 681 // Emit constant strings specially. 682 unsigned NumOps = C->getNumOperands(); 683 // If this is a null-terminated string, use the denser CSTRING encoding. 684 if (C->getOperand(NumOps-1)->isNullValue()) { 685 Code = bitc::CST_CODE_CSTRING; 686 --NumOps; // Don't encode the null, which isn't allowed by char6. 687 } else { 688 Code = bitc::CST_CODE_STRING; 689 AbbrevToUse = String8Abbrev; 690 } 691 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 692 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 693 for (unsigned i = 0; i != NumOps; ++i) { 694 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue(); 695 Record.push_back(V); 696 isCStr7 &= (V & 128) == 0; 697 if (isCStrChar6) 698 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 699 } 700 701 if (isCStrChar6) 702 AbbrevToUse = CString6Abbrev; 703 else if (isCStr7) 704 AbbrevToUse = CString7Abbrev; 705 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 706 isa<ConstantVector>(V)) { 707 Code = bitc::CST_CODE_AGGREGATE; 708 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 709 Record.push_back(VE.getValueID(C->getOperand(i))); 710 AbbrevToUse = AggregateAbbrev; 711 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 712 switch (CE->getOpcode()) { 713 default: 714 if (Instruction::isCast(CE->getOpcode())) { 715 Code = bitc::CST_CODE_CE_CAST; 716 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 717 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 718 Record.push_back(VE.getValueID(C->getOperand(0))); 719 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 720 } else { 721 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 722 Code = bitc::CST_CODE_CE_BINOP; 723 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 724 Record.push_back(VE.getValueID(C->getOperand(0))); 725 Record.push_back(VE.getValueID(C->getOperand(1))); 726 uint64_t Flags = GetOptimizationFlags(CE); 727 if (Flags != 0) 728 Record.push_back(Flags); 729 } 730 break; 731 case Instruction::GetElementPtr: 732 Code = bitc::CST_CODE_CE_GEP; 733 if (cast<GEPOperator>(C)->isInBounds()) 734 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 735 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 736 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 737 Record.push_back(VE.getValueID(C->getOperand(i))); 738 } 739 break; 740 case Instruction::Select: 741 Code = bitc::CST_CODE_CE_SELECT; 742 Record.push_back(VE.getValueID(C->getOperand(0))); 743 Record.push_back(VE.getValueID(C->getOperand(1))); 744 Record.push_back(VE.getValueID(C->getOperand(2))); 745 break; 746 case Instruction::ExtractElement: 747 Code = bitc::CST_CODE_CE_EXTRACTELT; 748 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 749 Record.push_back(VE.getValueID(C->getOperand(0))); 750 Record.push_back(VE.getValueID(C->getOperand(1))); 751 break; 752 case Instruction::InsertElement: 753 Code = bitc::CST_CODE_CE_INSERTELT; 754 Record.push_back(VE.getValueID(C->getOperand(0))); 755 Record.push_back(VE.getValueID(C->getOperand(1))); 756 Record.push_back(VE.getValueID(C->getOperand(2))); 757 break; 758 case Instruction::ShuffleVector: 759 // If the return type and argument types are the same, this is a 760 // standard shufflevector instruction. If the types are different, 761 // then the shuffle is widening or truncating the input vectors, and 762 // the argument type must also be encoded. 763 if (C->getType() == C->getOperand(0)->getType()) { 764 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 765 } else { 766 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 767 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 768 } 769 Record.push_back(VE.getValueID(C->getOperand(0))); 770 Record.push_back(VE.getValueID(C->getOperand(1))); 771 Record.push_back(VE.getValueID(C->getOperand(2))); 772 break; 773 case Instruction::ICmp: 774 case Instruction::FCmp: 775 Code = bitc::CST_CODE_CE_CMP; 776 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 777 Record.push_back(VE.getValueID(C->getOperand(0))); 778 Record.push_back(VE.getValueID(C->getOperand(1))); 779 Record.push_back(CE->getPredicate()); 780 break; 781 } 782 } else { 783 llvm_unreachable("Unknown constant!"); 784 } 785 Stream.EmitRecord(Code, Record, AbbrevToUse); 786 Record.clear(); 787 } 788 789 Stream.ExitBlock(); 790 } 791 792 static void WriteModuleConstants(const ValueEnumerator &VE, 793 BitstreamWriter &Stream) { 794 const ValueEnumerator::ValueList &Vals = VE.getValues(); 795 796 // Find the first constant to emit, which is the first non-globalvalue value. 797 // We know globalvalues have been emitted by WriteModuleInfo. 798 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 799 if (!isa<GlobalValue>(Vals[i].first)) { 800 WriteValues(i, Vals.size(), VE, Stream, true); 801 return; 802 } 803 } 804 } 805 806 /// PushValueAndType - The file has to encode both the value and type id for 807 /// many values, because we need to know what type to create for forward 808 /// references. However, most operands are not forward references, so this type 809 /// field is not needed. 810 /// 811 /// This function adds V's value ID to Vals. If the value ID is higher than the 812 /// instruction ID, then it is a forward reference, and it also includes the 813 /// type ID. 814 static bool PushValueAndType(const Value *V, unsigned InstID, 815 SmallVector<unsigned, 64> &Vals, 816 ValueEnumerator &VE) { 817 unsigned ValID = VE.getValueID(V); 818 Vals.push_back(ValID); 819 if (ValID >= InstID) { 820 Vals.push_back(VE.getTypeID(V->getType())); 821 return true; 822 } 823 return false; 824 } 825 826 /// WriteInstruction - Emit an instruction to the specified stream. 827 static void WriteInstruction(const Instruction &I, unsigned InstID, 828 ValueEnumerator &VE, BitstreamWriter &Stream, 829 SmallVector<unsigned, 64> &Vals) { 830 unsigned Code = 0; 831 unsigned AbbrevToUse = 0; 832 switch (I.getOpcode()) { 833 default: 834 if (Instruction::isCast(I.getOpcode())) { 835 Code = bitc::FUNC_CODE_INST_CAST; 836 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 837 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 838 Vals.push_back(VE.getTypeID(I.getType())); 839 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 840 } else { 841 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 842 Code = bitc::FUNC_CODE_INST_BINOP; 843 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 844 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 845 Vals.push_back(VE.getValueID(I.getOperand(1))); 846 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 847 uint64_t Flags = GetOptimizationFlags(&I); 848 if (Flags != 0) { 849 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 850 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 851 Vals.push_back(Flags); 852 } 853 } 854 break; 855 856 case Instruction::GetElementPtr: 857 Code = bitc::FUNC_CODE_INST_GEP; 858 if (cast<GEPOperator>(&I)->isInBounds()) 859 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 860 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 861 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 862 break; 863 case Instruction::ExtractValue: { 864 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 865 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 866 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 867 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 868 Vals.push_back(*i); 869 break; 870 } 871 case Instruction::InsertValue: { 872 Code = bitc::FUNC_CODE_INST_INSERTVAL; 873 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 874 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 875 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 876 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 877 Vals.push_back(*i); 878 break; 879 } 880 case Instruction::Select: 881 Code = bitc::FUNC_CODE_INST_VSELECT; 882 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 883 Vals.push_back(VE.getValueID(I.getOperand(2))); 884 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 885 break; 886 case Instruction::ExtractElement: 887 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 888 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 889 Vals.push_back(VE.getValueID(I.getOperand(1))); 890 break; 891 case Instruction::InsertElement: 892 Code = bitc::FUNC_CODE_INST_INSERTELT; 893 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 894 Vals.push_back(VE.getValueID(I.getOperand(1))); 895 Vals.push_back(VE.getValueID(I.getOperand(2))); 896 break; 897 case Instruction::ShuffleVector: 898 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 899 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 900 Vals.push_back(VE.getValueID(I.getOperand(1))); 901 Vals.push_back(VE.getValueID(I.getOperand(2))); 902 break; 903 case Instruction::ICmp: 904 case Instruction::FCmp: 905 // compare returning Int1Ty or vector of Int1Ty 906 Code = bitc::FUNC_CODE_INST_CMP2; 907 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 908 Vals.push_back(VE.getValueID(I.getOperand(1))); 909 Vals.push_back(cast<CmpInst>(I).getPredicate()); 910 break; 911 912 case Instruction::Ret: 913 { 914 Code = bitc::FUNC_CODE_INST_RET; 915 unsigned NumOperands = I.getNumOperands(); 916 if (NumOperands == 0) 917 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 918 else if (NumOperands == 1) { 919 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 920 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 921 } else { 922 for (unsigned i = 0, e = NumOperands; i != e; ++i) 923 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 924 } 925 } 926 break; 927 case Instruction::Br: 928 { 929 Code = bitc::FUNC_CODE_INST_BR; 930 BranchInst &II(cast<BranchInst>(I)); 931 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 932 if (II.isConditional()) { 933 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 934 Vals.push_back(VE.getValueID(II.getCondition())); 935 } 936 } 937 break; 938 case Instruction::Switch: 939 Code = bitc::FUNC_CODE_INST_SWITCH; 940 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 941 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 942 Vals.push_back(VE.getValueID(I.getOperand(i))); 943 break; 944 case Instruction::Invoke: { 945 const InvokeInst *II = cast<InvokeInst>(&I); 946 const Value *Callee(II->getCalledValue()); 947 const PointerType *PTy = cast<PointerType>(Callee->getType()); 948 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 949 Code = bitc::FUNC_CODE_INST_INVOKE; 950 951 Vals.push_back(VE.getAttributeID(II->getAttributes())); 952 Vals.push_back(II->getCallingConv()); 953 Vals.push_back(VE.getValueID(II->getNormalDest())); 954 Vals.push_back(VE.getValueID(II->getUnwindDest())); 955 PushValueAndType(Callee, InstID, Vals, VE); 956 957 // Emit value #'s for the fixed parameters. 958 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 959 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 960 961 // Emit type/value pairs for varargs params. 962 if (FTy->isVarArg()) { 963 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); 964 i != e; ++i) 965 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 966 } 967 break; 968 } 969 case Instruction::Unwind: 970 Code = bitc::FUNC_CODE_INST_UNWIND; 971 break; 972 case Instruction::Unreachable: 973 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 974 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 975 break; 976 977 case Instruction::PHI: 978 Code = bitc::FUNC_CODE_INST_PHI; 979 Vals.push_back(VE.getTypeID(I.getType())); 980 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 981 Vals.push_back(VE.getValueID(I.getOperand(i))); 982 break; 983 984 case Instruction::Malloc: 985 Code = bitc::FUNC_CODE_INST_MALLOC; 986 Vals.push_back(VE.getTypeID(I.getType())); 987 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 988 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); 989 break; 990 991 case Instruction::Free: 992 Code = bitc::FUNC_CODE_INST_FREE; 993 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 994 break; 995 996 case Instruction::Alloca: 997 Code = bitc::FUNC_CODE_INST_ALLOCA; 998 Vals.push_back(VE.getTypeID(I.getType())); 999 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1000 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1001 break; 1002 1003 case Instruction::Load: 1004 Code = bitc::FUNC_CODE_INST_LOAD; 1005 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1006 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1007 1008 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1009 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1010 break; 1011 case Instruction::Store: 1012 Code = bitc::FUNC_CODE_INST_STORE2; 1013 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1014 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 1015 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1016 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1017 break; 1018 case Instruction::Call: { 1019 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 1020 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1021 1022 Code = bitc::FUNC_CODE_INST_CALL; 1023 1024 const CallInst *CI = cast<CallInst>(&I); 1025 Vals.push_back(VE.getAttributeID(CI->getAttributes())); 1026 Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall())); 1027 PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee 1028 1029 // Emit value #'s for the fixed parameters. 1030 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1031 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 1032 1033 // Emit type/value pairs for varargs params. 1034 if (FTy->isVarArg()) { 1035 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 1036 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 1037 i != e; ++i) 1038 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs 1039 } 1040 break; 1041 } 1042 case Instruction::VAArg: 1043 Code = bitc::FUNC_CODE_INST_VAARG; 1044 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1045 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 1046 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1047 break; 1048 } 1049 1050 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1051 Vals.clear(); 1052 } 1053 1054 // Emit names for globals/functions etc. 1055 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1056 const ValueEnumerator &VE, 1057 BitstreamWriter &Stream) { 1058 if (VST.empty()) return; 1059 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1060 1061 // FIXME: Set up the abbrev, we know how many values there are! 1062 // FIXME: We know if the type names can use 7-bit ascii. 1063 SmallVector<unsigned, 64> NameVals; 1064 1065 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1066 SI != SE; ++SI) { 1067 1068 const ValueName &Name = *SI; 1069 1070 // Figure out the encoding to use for the name. 1071 bool is7Bit = true; 1072 bool isChar6 = true; 1073 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1074 C != E; ++C) { 1075 if (isChar6) 1076 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1077 if ((unsigned char)*C & 128) { 1078 is7Bit = false; 1079 break; // don't bother scanning the rest. 1080 } 1081 } 1082 1083 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1084 1085 // VST_ENTRY: [valueid, namechar x N] 1086 // VST_BBENTRY: [bbid, namechar x N] 1087 unsigned Code; 1088 if (isa<BasicBlock>(SI->getValue())) { 1089 Code = bitc::VST_CODE_BBENTRY; 1090 if (isChar6) 1091 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1092 } else { 1093 Code = bitc::VST_CODE_ENTRY; 1094 if (isChar6) 1095 AbbrevToUse = VST_ENTRY_6_ABBREV; 1096 else if (is7Bit) 1097 AbbrevToUse = VST_ENTRY_7_ABBREV; 1098 } 1099 1100 NameVals.push_back(VE.getValueID(SI->getValue())); 1101 for (const char *P = Name.getKeyData(), 1102 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1103 NameVals.push_back((unsigned char)*P); 1104 1105 // Emit the finished record. 1106 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1107 NameVals.clear(); 1108 } 1109 Stream.ExitBlock(); 1110 } 1111 1112 /// WriteFunction - Emit a function body to the module stream. 1113 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1114 BitstreamWriter &Stream) { 1115 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1116 VE.incorporateFunction(F); 1117 1118 SmallVector<unsigned, 64> Vals; 1119 1120 // Emit the number of basic blocks, so the reader can create them ahead of 1121 // time. 1122 Vals.push_back(VE.getBasicBlocks().size()); 1123 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1124 Vals.clear(); 1125 1126 // If there are function-local constants, emit them now. 1127 unsigned CstStart, CstEnd; 1128 VE.getFunctionConstantRange(CstStart, CstEnd); 1129 WriteValues(CstStart, CstEnd, VE, Stream, false); 1130 1131 // Keep a running idea of what the instruction ID is. 1132 unsigned InstID = CstEnd; 1133 1134 // Finally, emit all the instructions, in order. 1135 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1136 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1137 I != E; ++I) { 1138 WriteInstruction(*I, InstID, VE, Stream, Vals); 1139 if (I->getType() != Type::VoidTy) 1140 ++InstID; 1141 } 1142 1143 // Emit names for all the instructions etc. 1144 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1145 1146 VE.purgeFunction(); 1147 Stream.ExitBlock(); 1148 } 1149 1150 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 1151 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 1152 const ValueEnumerator &VE, 1153 BitstreamWriter &Stream) { 1154 if (TST.empty()) return; 1155 1156 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 1157 1158 // 7-bit fixed width VST_CODE_ENTRY strings. 1159 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1160 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1162 Log2_32_Ceil(VE.getTypes().size()+1))); 1163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1165 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 1166 1167 SmallVector<unsigned, 64> NameVals; 1168 1169 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 1170 TI != TE; ++TI) { 1171 // TST_ENTRY: [typeid, namechar x N] 1172 NameVals.push_back(VE.getTypeID(TI->second)); 1173 1174 const std::string &Str = TI->first; 1175 bool is7Bit = true; 1176 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 1177 NameVals.push_back((unsigned char)Str[i]); 1178 if (Str[i] & 128) 1179 is7Bit = false; 1180 } 1181 1182 // Emit the finished record. 1183 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1184 NameVals.clear(); 1185 } 1186 1187 Stream.ExitBlock(); 1188 } 1189 1190 // Emit blockinfo, which defines the standard abbreviations etc. 1191 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1192 // We only want to emit block info records for blocks that have multiple 1193 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1194 // blocks can defined their abbrevs inline. 1195 Stream.EnterBlockInfoBlock(2); 1196 1197 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1198 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1199 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1200 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1203 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1204 Abbv) != VST_ENTRY_8_ABBREV) 1205 llvm_unreachable("Unexpected abbrev ordering!"); 1206 } 1207 1208 { // 7-bit fixed width VST_ENTRY strings. 1209 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1210 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1214 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1215 Abbv) != VST_ENTRY_7_ABBREV) 1216 llvm_unreachable("Unexpected abbrev ordering!"); 1217 } 1218 { // 6-bit char6 VST_ENTRY strings. 1219 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1220 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1222 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1224 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1225 Abbv) != VST_ENTRY_6_ABBREV) 1226 llvm_unreachable("Unexpected abbrev ordering!"); 1227 } 1228 { // 6-bit char6 VST_BBENTRY strings. 1229 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1230 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1234 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1235 Abbv) != VST_BBENTRY_6_ABBREV) 1236 llvm_unreachable("Unexpected abbrev ordering!"); 1237 } 1238 1239 1240 1241 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1242 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1243 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1245 Log2_32_Ceil(VE.getTypes().size()+1))); 1246 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1247 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1248 llvm_unreachable("Unexpected abbrev ordering!"); 1249 } 1250 1251 { // INTEGER abbrev for CONSTANTS_BLOCK. 1252 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1253 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1254 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1255 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1256 Abbv) != CONSTANTS_INTEGER_ABBREV) 1257 llvm_unreachable("Unexpected abbrev ordering!"); 1258 } 1259 1260 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1261 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1262 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1263 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1264 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1265 Log2_32_Ceil(VE.getTypes().size()+1))); 1266 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1267 1268 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1269 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1270 llvm_unreachable("Unexpected abbrev ordering!"); 1271 } 1272 { // NULL abbrev for CONSTANTS_BLOCK. 1273 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1274 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1275 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1276 Abbv) != CONSTANTS_NULL_Abbrev) 1277 llvm_unreachable("Unexpected abbrev ordering!"); 1278 } 1279 1280 // FIXME: This should only use space for first class types! 1281 1282 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1283 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1284 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1288 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1289 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1290 llvm_unreachable("Unexpected abbrev ordering!"); 1291 } 1292 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1293 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1294 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1298 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1299 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1300 llvm_unreachable("Unexpected abbrev ordering!"); 1301 } 1302 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1303 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1304 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1305 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1307 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1309 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1310 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1311 llvm_unreachable("Unexpected abbrev ordering!"); 1312 } 1313 { // INST_CAST abbrev for FUNCTION_BLOCK. 1314 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1315 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1318 Log2_32_Ceil(VE.getTypes().size()+1))); 1319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1320 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1321 Abbv) != FUNCTION_INST_CAST_ABBREV) 1322 llvm_unreachable("Unexpected abbrev ordering!"); 1323 } 1324 1325 { // INST_RET abbrev for FUNCTION_BLOCK. 1326 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1327 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1328 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1329 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1330 llvm_unreachable("Unexpected abbrev ordering!"); 1331 } 1332 { // INST_RET abbrev for FUNCTION_BLOCK. 1333 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1334 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1336 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1337 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1338 llvm_unreachable("Unexpected abbrev ordering!"); 1339 } 1340 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1341 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1342 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1343 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1344 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1345 llvm_unreachable("Unexpected abbrev ordering!"); 1346 } 1347 1348 Stream.ExitBlock(); 1349 } 1350 1351 1352 /// WriteModule - Emit the specified module to the bitstream. 1353 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1354 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1355 1356 // Emit the version number if it is non-zero. 1357 if (CurVersion) { 1358 SmallVector<unsigned, 1> Vals; 1359 Vals.push_back(CurVersion); 1360 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1361 } 1362 1363 // Analyze the module, enumerating globals, functions, etc. 1364 ValueEnumerator VE(M); 1365 1366 // Emit blockinfo, which defines the standard abbreviations etc. 1367 WriteBlockInfo(VE, Stream); 1368 1369 // Emit information about parameter attributes. 1370 WriteAttributeTable(VE, Stream); 1371 1372 // Emit information describing all of the types in the module. 1373 WriteTypeTable(VE, Stream); 1374 1375 // Emit top-level description of module, including target triple, inline asm, 1376 // descriptors for global variables, and function prototype info. 1377 WriteModuleInfo(M, VE, Stream); 1378 1379 // Emit constants. 1380 WriteModuleConstants(VE, Stream); 1381 1382 // Emit function bodies. 1383 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1384 if (!I->isDeclaration()) 1385 WriteFunction(*I, VE, Stream); 1386 1387 // Emit the type symbol table information. 1388 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1389 1390 // Emit names for globals/functions etc. 1391 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1392 1393 Stream.ExitBlock(); 1394 } 1395 1396 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1397 /// header and trailer to make it compatible with the system archiver. To do 1398 /// this we emit the following header, and then emit a trailer that pads the 1399 /// file out to be a multiple of 16 bytes. 1400 /// 1401 /// struct bc_header { 1402 /// uint32_t Magic; // 0x0B17C0DE 1403 /// uint32_t Version; // Version, currently always 0. 1404 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1405 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1406 /// uint32_t CPUType; // CPU specifier. 1407 /// ... potentially more later ... 1408 /// }; 1409 enum { 1410 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1411 DarwinBCHeaderSize = 5*4 1412 }; 1413 1414 static void EmitDarwinBCHeader(BitstreamWriter &Stream, 1415 const std::string &TT) { 1416 unsigned CPUType = ~0U; 1417 1418 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*. The CPUType is a 1419 // magic number from /usr/include/mach/machine.h. It is ok to reproduce the 1420 // specific constants here because they are implicitly part of the Darwin ABI. 1421 enum { 1422 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1423 DARWIN_CPU_TYPE_X86 = 7, 1424 DARWIN_CPU_TYPE_POWERPC = 18 1425 }; 1426 1427 if (TT.find("x86_64-") == 0) 1428 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1429 else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' && 1430 TT[4] == '-' && TT[1] - '3' < 6) 1431 CPUType = DARWIN_CPU_TYPE_X86; 1432 else if (TT.find("powerpc-") == 0) 1433 CPUType = DARWIN_CPU_TYPE_POWERPC; 1434 else if (TT.find("powerpc64-") == 0) 1435 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1436 1437 // Traditional Bitcode starts after header. 1438 unsigned BCOffset = DarwinBCHeaderSize; 1439 1440 Stream.Emit(0x0B17C0DE, 32); 1441 Stream.Emit(0 , 32); // Version. 1442 Stream.Emit(BCOffset , 32); 1443 Stream.Emit(0 , 32); // Filled in later. 1444 Stream.Emit(CPUType , 32); 1445 } 1446 1447 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and 1448 /// finalize the header. 1449 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { 1450 // Update the size field in the header. 1451 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); 1452 1453 // If the file is not a multiple of 16 bytes, insert dummy padding. 1454 while (BufferSize & 15) { 1455 Stream.Emit(0, 8); 1456 ++BufferSize; 1457 } 1458 } 1459 1460 1461 /// WriteBitcodeToFile - Write the specified module to the specified output 1462 /// stream. 1463 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { 1464 raw_os_ostream RawOut(Out); 1465 // If writing to stdout, set binary mode. 1466 if (llvm::cout == Out) 1467 sys::Program::ChangeStdoutToBinary(); 1468 WriteBitcodeToFile(M, RawOut); 1469 } 1470 1471 /// WriteBitcodeToFile - Write the specified module to the specified output 1472 /// stream. 1473 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1474 std::vector<unsigned char> Buffer; 1475 BitstreamWriter Stream(Buffer); 1476 1477 Buffer.reserve(256*1024); 1478 1479 WriteBitcodeToStream( M, Stream ); 1480 1481 // If writing to stdout, set binary mode. 1482 if (&llvm::outs() == &Out) 1483 sys::Program::ChangeStdoutToBinary(); 1484 1485 // Write the generated bitstream to "Out". 1486 Out.write((char*)&Buffer.front(), Buffer.size()); 1487 1488 // Make sure it hits disk now. 1489 Out.flush(); 1490 } 1491 1492 /// WriteBitcodeToStream - Write the specified module to the specified output 1493 /// stream. 1494 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) { 1495 // If this is darwin, emit a file header and trailer if needed. 1496 bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos; 1497 if (isDarwin) 1498 EmitDarwinBCHeader(Stream, M->getTargetTriple()); 1499 1500 // Emit the file header. 1501 Stream.Emit((unsigned)'B', 8); 1502 Stream.Emit((unsigned)'C', 8); 1503 Stream.Emit(0x0, 4); 1504 Stream.Emit(0xC, 4); 1505 Stream.Emit(0xE, 4); 1506 Stream.Emit(0xD, 4); 1507 1508 // Emit the module. 1509 WriteModule(M, Stream); 1510 1511 if (isDarwin) 1512 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size()); 1513 } 1514