1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitstreamWriter.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/UseListOrder.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/MC/StringTableBuilder.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/Program.h" 35 #include "llvm/Support/SHA1.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <cctype> 38 #include <map> 39 using namespace llvm; 40 41 namespace { 42 43 cl::opt<unsigned> 44 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 45 cl::desc("Number of metadatas above which we emit an index " 46 "to enable lazy-loading")); 47 /// These are manifest constants used by the bitcode writer. They do not need to 48 /// be kept in sync with the reader, but need to be consistent within this file. 49 enum { 50 // VALUE_SYMTAB_BLOCK abbrev id's. 51 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 VST_ENTRY_7_ABBREV, 53 VST_ENTRY_6_ABBREV, 54 VST_BBENTRY_6_ABBREV, 55 56 // CONSTANTS_BLOCK abbrev id's. 57 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 58 CONSTANTS_INTEGER_ABBREV, 59 CONSTANTS_CE_CAST_Abbrev, 60 CONSTANTS_NULL_Abbrev, 61 62 // FUNCTION_BLOCK abbrev id's. 63 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 64 FUNCTION_INST_BINOP_ABBREV, 65 FUNCTION_INST_BINOP_FLAGS_ABBREV, 66 FUNCTION_INST_CAST_ABBREV, 67 FUNCTION_INST_RET_VOID_ABBREV, 68 FUNCTION_INST_RET_VAL_ABBREV, 69 FUNCTION_INST_UNREACHABLE_ABBREV, 70 FUNCTION_INST_GEP_ABBREV, 71 }; 72 73 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 74 /// file type. 75 class BitcodeWriterBase { 76 protected: 77 /// The stream created and owned by the client. 78 BitstreamWriter &Stream; 79 80 public: 81 /// Constructs a BitcodeWriterBase object that writes to the provided 82 /// \p Stream. 83 BitcodeWriterBase(BitstreamWriter &Stream) : Stream(Stream) {} 84 85 protected: 86 void writeBitcodeHeader(); 87 void writeModuleVersion(); 88 }; 89 90 void BitcodeWriterBase::writeModuleVersion() { 91 // VERSION: [version#] 92 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 93 } 94 95 /// Class to manage the bitcode writing for a module. 96 class ModuleBitcodeWriter : public BitcodeWriterBase { 97 /// Pointer to the buffer allocated by caller for bitcode writing. 98 const SmallVectorImpl<char> &Buffer; 99 100 StringTableBuilder &StrtabBuilder; 101 102 /// The Module to write to bitcode. 103 const Module &M; 104 105 /// Enumerates ids for all values in the module. 106 ValueEnumerator VE; 107 108 /// Optional per-module index to write for ThinLTO. 109 const ModuleSummaryIndex *Index; 110 111 /// True if a module hash record should be written. 112 bool GenerateHash; 113 114 /// If non-null, when GenerateHash is true, the resulting hash is written 115 /// into ModHash. When GenerateHash is false, that specified value 116 /// is used as the hash instead of computing from the generated bitcode. 117 /// Can be used to produce the same module hash for a minimized bitcode 118 /// used just for the thin link as in the regular full bitcode that will 119 /// be used in the backend. 120 ModuleHash *ModHash; 121 122 /// The start bit of the identification block. 123 uint64_t BitcodeStartBit; 124 125 /// Map that holds the correspondence between GUIDs in the summary index, 126 /// that came from indirect call profiles, and a value id generated by this 127 /// class to use in the VST and summary block records. 128 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 129 130 /// Tracks the last value id recorded in the GUIDToValueMap. 131 unsigned GlobalValueId; 132 133 /// Saves the offset of the VSTOffset record that must eventually be 134 /// backpatched with the offset of the actual VST. 135 uint64_t VSTOffsetPlaceholder = 0; 136 137 public: 138 /// Constructs a ModuleBitcodeWriter object for the given Module, 139 /// writing to the provided \p Buffer. 140 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 141 StringTableBuilder &StrtabBuilder, 142 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 143 const ModuleSummaryIndex *Index, bool GenerateHash, 144 ModuleHash *ModHash = nullptr) 145 : BitcodeWriterBase(Stream), Buffer(Buffer), StrtabBuilder(StrtabBuilder), 146 M(*M), VE(*M, ShouldPreserveUseListOrder), Index(Index), 147 GenerateHash(GenerateHash), ModHash(ModHash), 148 BitcodeStartBit(Stream.GetCurrentBitNo()) { 149 // Assign ValueIds to any callee values in the index that came from 150 // indirect call profiles and were recorded as a GUID not a Value* 151 // (which would have been assigned an ID by the ValueEnumerator). 152 // The starting ValueId is just after the number of values in the 153 // ValueEnumerator, so that they can be emitted in the VST. 154 GlobalValueId = VE.getValues().size(); 155 if (!Index) 156 return; 157 for (const auto &GUIDSummaryLists : *Index) 158 // Examine all summaries for this GUID. 159 for (auto &Summary : GUIDSummaryLists.second) 160 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 161 // For each call in the function summary, see if the call 162 // is to a GUID (which means it is for an indirect call, 163 // otherwise we would have a Value for it). If so, synthesize 164 // a value id. 165 for (auto &CallEdge : FS->calls()) 166 if (CallEdge.first.isGUID()) 167 assignValueId(CallEdge.first.getGUID()); 168 } 169 170 /// Emit the current module to the bitstream. 171 void write(); 172 173 private: 174 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 175 176 void writeAttributeGroupTable(); 177 void writeAttributeTable(); 178 void writeTypeTable(); 179 void writeComdats(); 180 void writeValueSymbolTableForwardDecl(); 181 void writeModuleInfo(); 182 void writeValueAsMetadata(const ValueAsMetadata *MD, 183 SmallVectorImpl<uint64_t> &Record); 184 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 185 unsigned Abbrev); 186 unsigned createDILocationAbbrev(); 187 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 188 unsigned &Abbrev); 189 unsigned createGenericDINodeAbbrev(); 190 void writeGenericDINode(const GenericDINode *N, 191 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 192 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 193 unsigned Abbrev); 194 void writeDIEnumerator(const DIEnumerator *N, 195 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 196 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 197 unsigned Abbrev); 198 void writeDIDerivedType(const DIDerivedType *N, 199 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 200 void writeDICompositeType(const DICompositeType *N, 201 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 202 void writeDISubroutineType(const DISubroutineType *N, 203 SmallVectorImpl<uint64_t> &Record, 204 unsigned Abbrev); 205 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 206 unsigned Abbrev); 207 void writeDICompileUnit(const DICompileUnit *N, 208 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 209 void writeDISubprogram(const DISubprogram *N, 210 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 211 void writeDILexicalBlock(const DILexicalBlock *N, 212 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 213 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 214 SmallVectorImpl<uint64_t> &Record, 215 unsigned Abbrev); 216 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 217 unsigned Abbrev); 218 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 219 unsigned Abbrev); 220 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 221 unsigned Abbrev); 222 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 223 unsigned Abbrev); 224 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 225 SmallVectorImpl<uint64_t> &Record, 226 unsigned Abbrev); 227 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 228 SmallVectorImpl<uint64_t> &Record, 229 unsigned Abbrev); 230 void writeDIGlobalVariable(const DIGlobalVariable *N, 231 SmallVectorImpl<uint64_t> &Record, 232 unsigned Abbrev); 233 void writeDILocalVariable(const DILocalVariable *N, 234 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 235 void writeDIExpression(const DIExpression *N, 236 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 237 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 238 SmallVectorImpl<uint64_t> &Record, 239 unsigned Abbrev); 240 void writeDIObjCProperty(const DIObjCProperty *N, 241 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 242 void writeDIImportedEntity(const DIImportedEntity *N, 243 SmallVectorImpl<uint64_t> &Record, 244 unsigned Abbrev); 245 unsigned createNamedMetadataAbbrev(); 246 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 247 unsigned createMetadataStringsAbbrev(); 248 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 249 SmallVectorImpl<uint64_t> &Record); 250 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 251 SmallVectorImpl<uint64_t> &Record, 252 std::vector<unsigned> *MDAbbrevs = nullptr, 253 std::vector<uint64_t> *IndexPos = nullptr); 254 void writeModuleMetadata(); 255 void writeFunctionMetadata(const Function &F); 256 void writeFunctionMetadataAttachment(const Function &F); 257 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 258 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 259 const GlobalObject &GO); 260 void writeModuleMetadataKinds(); 261 void writeOperandBundleTags(); 262 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 263 void writeModuleConstants(); 264 bool pushValueAndType(const Value *V, unsigned InstID, 265 SmallVectorImpl<unsigned> &Vals); 266 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 267 void pushValue(const Value *V, unsigned InstID, 268 SmallVectorImpl<unsigned> &Vals); 269 void pushValueSigned(const Value *V, unsigned InstID, 270 SmallVectorImpl<uint64_t> &Vals); 271 void writeInstruction(const Instruction &I, unsigned InstID, 272 SmallVectorImpl<unsigned> &Vals); 273 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 274 void writeGlobalValueSymbolTable( 275 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 276 void writeUseList(UseListOrder &&Order); 277 void writeUseListBlock(const Function *F); 278 void 279 writeFunction(const Function &F, 280 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 281 void writeBlockInfo(); 282 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 283 GlobalValueSummary *Summary, 284 unsigned ValueID, 285 unsigned FSCallsAbbrev, 286 unsigned FSCallsProfileAbbrev, 287 const Function &F); 288 void writeModuleLevelReferences(const GlobalVariable &V, 289 SmallVector<uint64_t, 64> &NameVals, 290 unsigned FSModRefsAbbrev); 291 void writePerModuleGlobalValueSummary(); 292 void writeModuleHash(size_t BlockStartPos); 293 294 void assignValueId(GlobalValue::GUID ValGUID) { 295 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 296 } 297 unsigned getValueId(GlobalValue::GUID ValGUID) { 298 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 299 // Expect that any GUID value had a value Id assigned by an 300 // earlier call to assignValueId. 301 assert(VMI != GUIDToValueIdMap.end() && 302 "GUID does not have assigned value Id"); 303 return VMI->second; 304 } 305 // Helper to get the valueId for the type of value recorded in VI. 306 unsigned getValueId(ValueInfo VI) { 307 if (VI.isGUID()) 308 return getValueId(VI.getGUID()); 309 return VE.getValueID(VI.getValue()); 310 } 311 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 312 }; 313 314 /// Class to manage the bitcode writing for a combined index. 315 class IndexBitcodeWriter : public BitcodeWriterBase { 316 /// The combined index to write to bitcode. 317 const ModuleSummaryIndex &Index; 318 319 /// When writing a subset of the index for distributed backends, client 320 /// provides a map of modules to the corresponding GUIDs/summaries to write. 321 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 322 323 /// Map that holds the correspondence between the GUID used in the combined 324 /// index and a value id generated by this class to use in references. 325 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 326 327 /// Tracks the last value id recorded in the GUIDToValueMap. 328 unsigned GlobalValueId = 0; 329 330 public: 331 /// Constructs a IndexBitcodeWriter object for the given combined index, 332 /// writing to the provided \p Buffer. When writing a subset of the index 333 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 334 IndexBitcodeWriter(BitstreamWriter &Stream, const ModuleSummaryIndex &Index, 335 const std::map<std::string, GVSummaryMapTy> 336 *ModuleToSummariesForIndex = nullptr) 337 : BitcodeWriterBase(Stream), Index(Index), 338 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 339 // Assign unique value ids to all summaries to be written, for use 340 // in writing out the call graph edges. Save the mapping from GUID 341 // to the new global value id to use when writing those edges, which 342 // are currently saved in the index in terms of GUID. 343 for (const auto &I : *this) 344 GUIDToValueIdMap[I.first] = ++GlobalValueId; 345 } 346 347 /// The below iterator returns the GUID and associated summary. 348 typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo; 349 350 /// Iterator over the value GUID and summaries to be written to bitcode, 351 /// hides the details of whether they are being pulled from the entire 352 /// index or just those in a provided ModuleToSummariesForIndex map. 353 class iterator 354 : public llvm::iterator_facade_base<iterator, std::forward_iterator_tag, 355 GVInfo> { 356 /// Enables access to parent class. 357 const IndexBitcodeWriter &Writer; 358 359 // Iterators used when writing only those summaries in a provided 360 // ModuleToSummariesForIndex map: 361 362 /// Points to the last element in outer ModuleToSummariesForIndex map. 363 std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesBack; 364 /// Iterator on outer ModuleToSummariesForIndex map. 365 std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesIter; 366 /// Iterator on an inner global variable summary map. 367 GVSummaryMapTy::const_iterator ModuleGVSummariesIter; 368 369 // Iterators used when writing all summaries in the index: 370 371 /// Points to the last element in the Index outer GlobalValueMap. 372 const_gvsummary_iterator IndexSummariesBack; 373 /// Iterator on outer GlobalValueMap. 374 const_gvsummary_iterator IndexSummariesIter; 375 /// Iterator on an inner GlobalValueSummaryList. 376 GlobalValueSummaryList::const_iterator IndexGVSummariesIter; 377 378 public: 379 /// Construct iterator from parent \p Writer and indicate if we are 380 /// constructing the end iterator. 381 iterator(const IndexBitcodeWriter &Writer, bool IsAtEnd) : Writer(Writer) { 382 // Set up the appropriate set of iterators given whether we are writing 383 // the full index or just a subset. 384 // Can't setup the Back or inner iterators if the corresponding map 385 // is empty. This will be handled specially in operator== as well. 386 if (Writer.ModuleToSummariesForIndex && 387 !Writer.ModuleToSummariesForIndex->empty()) { 388 for (ModuleSummariesBack = Writer.ModuleToSummariesForIndex->begin(); 389 std::next(ModuleSummariesBack) != 390 Writer.ModuleToSummariesForIndex->end(); 391 ModuleSummariesBack++) 392 ; 393 ModuleSummariesIter = !IsAtEnd 394 ? Writer.ModuleToSummariesForIndex->begin() 395 : ModuleSummariesBack; 396 ModuleGVSummariesIter = !IsAtEnd ? ModuleSummariesIter->second.begin() 397 : ModuleSummariesBack->second.end(); 398 } else if (!Writer.ModuleToSummariesForIndex && 399 Writer.Index.begin() != Writer.Index.end()) { 400 for (IndexSummariesBack = Writer.Index.begin(); 401 std::next(IndexSummariesBack) != Writer.Index.end(); 402 IndexSummariesBack++) 403 ; 404 IndexSummariesIter = 405 !IsAtEnd ? Writer.Index.begin() : IndexSummariesBack; 406 IndexGVSummariesIter = !IsAtEnd ? IndexSummariesIter->second.begin() 407 : IndexSummariesBack->second.end(); 408 } 409 } 410 411 /// Increment the appropriate set of iterators. 412 iterator &operator++() { 413 // First the inner iterator is incremented, then if it is at the end 414 // and there are more outer iterations to go, the inner is reset to 415 // the start of the next inner list. 416 if (Writer.ModuleToSummariesForIndex) { 417 ++ModuleGVSummariesIter; 418 if (ModuleGVSummariesIter == ModuleSummariesIter->second.end() && 419 ModuleSummariesIter != ModuleSummariesBack) { 420 ++ModuleSummariesIter; 421 ModuleGVSummariesIter = ModuleSummariesIter->second.begin(); 422 } 423 } else { 424 ++IndexGVSummariesIter; 425 if (IndexGVSummariesIter == IndexSummariesIter->second.end() && 426 IndexSummariesIter != IndexSummariesBack) { 427 ++IndexSummariesIter; 428 IndexGVSummariesIter = IndexSummariesIter->second.begin(); 429 } 430 } 431 return *this; 432 } 433 434 /// Access the <GUID,GlobalValueSummary*> pair corresponding to the current 435 /// outer and inner iterator positions. 436 GVInfo operator*() { 437 if (Writer.ModuleToSummariesForIndex) 438 return std::make_pair(ModuleGVSummariesIter->first, 439 ModuleGVSummariesIter->second); 440 return std::make_pair(IndexSummariesIter->first, 441 IndexGVSummariesIter->get()); 442 } 443 444 /// Checks if the iterators are equal, with special handling for empty 445 /// indexes. 446 bool operator==(const iterator &RHS) const { 447 if (Writer.ModuleToSummariesForIndex) { 448 // First ensure that both are writing the same subset. 449 if (Writer.ModuleToSummariesForIndex != 450 RHS.Writer.ModuleToSummariesForIndex) 451 return false; 452 // Already determined above that maps are the same, so if one is 453 // empty, they both are. 454 if (Writer.ModuleToSummariesForIndex->empty()) 455 return true; 456 // Ensure the ModuleGVSummariesIter are iterating over the same 457 // container before checking them below. 458 if (ModuleSummariesIter != RHS.ModuleSummariesIter) 459 return false; 460 return ModuleGVSummariesIter == RHS.ModuleGVSummariesIter; 461 } 462 // First ensure RHS also writing the full index, and that both are 463 // writing the same full index. 464 if (RHS.Writer.ModuleToSummariesForIndex || 465 &Writer.Index != &RHS.Writer.Index) 466 return false; 467 // Already determined above that maps are the same, so if one is 468 // empty, they both are. 469 if (Writer.Index.begin() == Writer.Index.end()) 470 return true; 471 // Ensure the IndexGVSummariesIter are iterating over the same 472 // container before checking them below. 473 if (IndexSummariesIter != RHS.IndexSummariesIter) 474 return false; 475 return IndexGVSummariesIter == RHS.IndexGVSummariesIter; 476 } 477 }; 478 479 /// Obtain the start iterator over the summaries to be written. 480 iterator begin() { return iterator(*this, /*IsAtEnd=*/false); } 481 /// Obtain the end iterator over the summaries to be written. 482 iterator end() { return iterator(*this, /*IsAtEnd=*/true); } 483 484 /// Main entry point for writing a combined index to bitcode. 485 void write(); 486 487 private: 488 void writeModStrings(); 489 void writeCombinedGlobalValueSummary(); 490 491 /// Indicates whether the provided \p ModulePath should be written into 492 /// the module string table, e.g. if full index written or if it is in 493 /// the provided subset. 494 bool doIncludeModule(StringRef ModulePath) { 495 return !ModuleToSummariesForIndex || 496 ModuleToSummariesForIndex->count(ModulePath); 497 } 498 499 bool hasValueId(GlobalValue::GUID ValGUID) { 500 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 501 return VMI != GUIDToValueIdMap.end(); 502 } 503 void assignValueId(GlobalValue::GUID ValGUID) { 504 unsigned &ValueId = GUIDToValueIdMap[ValGUID]; 505 if (ValueId == 0) 506 ValueId = ++GlobalValueId; 507 } 508 unsigned getValueId(GlobalValue::GUID ValGUID) { 509 auto VMI = GUIDToValueIdMap.find(ValGUID); 510 assert(VMI != GUIDToValueIdMap.end()); 511 return VMI->second; 512 } 513 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 514 }; 515 } // end anonymous namespace 516 517 static unsigned getEncodedCastOpcode(unsigned Opcode) { 518 switch (Opcode) { 519 default: llvm_unreachable("Unknown cast instruction!"); 520 case Instruction::Trunc : return bitc::CAST_TRUNC; 521 case Instruction::ZExt : return bitc::CAST_ZEXT; 522 case Instruction::SExt : return bitc::CAST_SEXT; 523 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 524 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 525 case Instruction::UIToFP : return bitc::CAST_UITOFP; 526 case Instruction::SIToFP : return bitc::CAST_SITOFP; 527 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 528 case Instruction::FPExt : return bitc::CAST_FPEXT; 529 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 530 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 531 case Instruction::BitCast : return bitc::CAST_BITCAST; 532 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 533 } 534 } 535 536 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 537 switch (Opcode) { 538 default: llvm_unreachable("Unknown binary instruction!"); 539 case Instruction::Add: 540 case Instruction::FAdd: return bitc::BINOP_ADD; 541 case Instruction::Sub: 542 case Instruction::FSub: return bitc::BINOP_SUB; 543 case Instruction::Mul: 544 case Instruction::FMul: return bitc::BINOP_MUL; 545 case Instruction::UDiv: return bitc::BINOP_UDIV; 546 case Instruction::FDiv: 547 case Instruction::SDiv: return bitc::BINOP_SDIV; 548 case Instruction::URem: return bitc::BINOP_UREM; 549 case Instruction::FRem: 550 case Instruction::SRem: return bitc::BINOP_SREM; 551 case Instruction::Shl: return bitc::BINOP_SHL; 552 case Instruction::LShr: return bitc::BINOP_LSHR; 553 case Instruction::AShr: return bitc::BINOP_ASHR; 554 case Instruction::And: return bitc::BINOP_AND; 555 case Instruction::Or: return bitc::BINOP_OR; 556 case Instruction::Xor: return bitc::BINOP_XOR; 557 } 558 } 559 560 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 561 switch (Op) { 562 default: llvm_unreachable("Unknown RMW operation!"); 563 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 564 case AtomicRMWInst::Add: return bitc::RMW_ADD; 565 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 566 case AtomicRMWInst::And: return bitc::RMW_AND; 567 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 568 case AtomicRMWInst::Or: return bitc::RMW_OR; 569 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 570 case AtomicRMWInst::Max: return bitc::RMW_MAX; 571 case AtomicRMWInst::Min: return bitc::RMW_MIN; 572 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 573 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 574 } 575 } 576 577 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 578 switch (Ordering) { 579 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 580 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 581 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 582 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 583 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 584 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 585 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 586 } 587 llvm_unreachable("Invalid ordering"); 588 } 589 590 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) { 591 switch (SynchScope) { 592 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 593 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 594 } 595 llvm_unreachable("Invalid synch scope"); 596 } 597 598 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 599 StringRef Str, unsigned AbbrevToUse) { 600 SmallVector<unsigned, 64> Vals; 601 602 // Code: [strchar x N] 603 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 604 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 605 AbbrevToUse = 0; 606 Vals.push_back(Str[i]); 607 } 608 609 // Emit the finished record. 610 Stream.EmitRecord(Code, Vals, AbbrevToUse); 611 } 612 613 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 614 switch (Kind) { 615 case Attribute::Alignment: 616 return bitc::ATTR_KIND_ALIGNMENT; 617 case Attribute::AllocSize: 618 return bitc::ATTR_KIND_ALLOC_SIZE; 619 case Attribute::AlwaysInline: 620 return bitc::ATTR_KIND_ALWAYS_INLINE; 621 case Attribute::ArgMemOnly: 622 return bitc::ATTR_KIND_ARGMEMONLY; 623 case Attribute::Builtin: 624 return bitc::ATTR_KIND_BUILTIN; 625 case Attribute::ByVal: 626 return bitc::ATTR_KIND_BY_VAL; 627 case Attribute::Convergent: 628 return bitc::ATTR_KIND_CONVERGENT; 629 case Attribute::InAlloca: 630 return bitc::ATTR_KIND_IN_ALLOCA; 631 case Attribute::Cold: 632 return bitc::ATTR_KIND_COLD; 633 case Attribute::InaccessibleMemOnly: 634 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 635 case Attribute::InaccessibleMemOrArgMemOnly: 636 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 637 case Attribute::InlineHint: 638 return bitc::ATTR_KIND_INLINE_HINT; 639 case Attribute::InReg: 640 return bitc::ATTR_KIND_IN_REG; 641 case Attribute::JumpTable: 642 return bitc::ATTR_KIND_JUMP_TABLE; 643 case Attribute::MinSize: 644 return bitc::ATTR_KIND_MIN_SIZE; 645 case Attribute::Naked: 646 return bitc::ATTR_KIND_NAKED; 647 case Attribute::Nest: 648 return bitc::ATTR_KIND_NEST; 649 case Attribute::NoAlias: 650 return bitc::ATTR_KIND_NO_ALIAS; 651 case Attribute::NoBuiltin: 652 return bitc::ATTR_KIND_NO_BUILTIN; 653 case Attribute::NoCapture: 654 return bitc::ATTR_KIND_NO_CAPTURE; 655 case Attribute::NoDuplicate: 656 return bitc::ATTR_KIND_NO_DUPLICATE; 657 case Attribute::NoImplicitFloat: 658 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 659 case Attribute::NoInline: 660 return bitc::ATTR_KIND_NO_INLINE; 661 case Attribute::NoRecurse: 662 return bitc::ATTR_KIND_NO_RECURSE; 663 case Attribute::NonLazyBind: 664 return bitc::ATTR_KIND_NON_LAZY_BIND; 665 case Attribute::NonNull: 666 return bitc::ATTR_KIND_NON_NULL; 667 case Attribute::Dereferenceable: 668 return bitc::ATTR_KIND_DEREFERENCEABLE; 669 case Attribute::DereferenceableOrNull: 670 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 671 case Attribute::NoRedZone: 672 return bitc::ATTR_KIND_NO_RED_ZONE; 673 case Attribute::NoReturn: 674 return bitc::ATTR_KIND_NO_RETURN; 675 case Attribute::NoUnwind: 676 return bitc::ATTR_KIND_NO_UNWIND; 677 case Attribute::OptimizeForSize: 678 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 679 case Attribute::OptimizeNone: 680 return bitc::ATTR_KIND_OPTIMIZE_NONE; 681 case Attribute::ReadNone: 682 return bitc::ATTR_KIND_READ_NONE; 683 case Attribute::ReadOnly: 684 return bitc::ATTR_KIND_READ_ONLY; 685 case Attribute::Returned: 686 return bitc::ATTR_KIND_RETURNED; 687 case Attribute::ReturnsTwice: 688 return bitc::ATTR_KIND_RETURNS_TWICE; 689 case Attribute::SExt: 690 return bitc::ATTR_KIND_S_EXT; 691 case Attribute::Speculatable: 692 return bitc::ATTR_KIND_SPECULATABLE; 693 case Attribute::StackAlignment: 694 return bitc::ATTR_KIND_STACK_ALIGNMENT; 695 case Attribute::StackProtect: 696 return bitc::ATTR_KIND_STACK_PROTECT; 697 case Attribute::StackProtectReq: 698 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 699 case Attribute::StackProtectStrong: 700 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 701 case Attribute::SafeStack: 702 return bitc::ATTR_KIND_SAFESTACK; 703 case Attribute::StructRet: 704 return bitc::ATTR_KIND_STRUCT_RET; 705 case Attribute::SanitizeAddress: 706 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 707 case Attribute::SanitizeThread: 708 return bitc::ATTR_KIND_SANITIZE_THREAD; 709 case Attribute::SanitizeMemory: 710 return bitc::ATTR_KIND_SANITIZE_MEMORY; 711 case Attribute::SwiftError: 712 return bitc::ATTR_KIND_SWIFT_ERROR; 713 case Attribute::SwiftSelf: 714 return bitc::ATTR_KIND_SWIFT_SELF; 715 case Attribute::UWTable: 716 return bitc::ATTR_KIND_UW_TABLE; 717 case Attribute::WriteOnly: 718 return bitc::ATTR_KIND_WRITEONLY; 719 case Attribute::ZExt: 720 return bitc::ATTR_KIND_Z_EXT; 721 case Attribute::EndAttrKinds: 722 llvm_unreachable("Can not encode end-attribute kinds marker."); 723 case Attribute::None: 724 llvm_unreachable("Can not encode none-attribute."); 725 } 726 727 llvm_unreachable("Trying to encode unknown attribute"); 728 } 729 730 void ModuleBitcodeWriter::writeAttributeGroupTable() { 731 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 732 VE.getAttributeGroups(); 733 if (AttrGrps.empty()) return; 734 735 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 736 737 SmallVector<uint64_t, 64> Record; 738 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 739 unsigned AttrListIndex = Pair.first; 740 AttributeSet AS = Pair.second; 741 Record.push_back(VE.getAttributeGroupID(Pair)); 742 Record.push_back(AttrListIndex); 743 744 for (Attribute Attr : AS) { 745 if (Attr.isEnumAttribute()) { 746 Record.push_back(0); 747 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 748 } else if (Attr.isIntAttribute()) { 749 Record.push_back(1); 750 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 751 Record.push_back(Attr.getValueAsInt()); 752 } else { 753 StringRef Kind = Attr.getKindAsString(); 754 StringRef Val = Attr.getValueAsString(); 755 756 Record.push_back(Val.empty() ? 3 : 4); 757 Record.append(Kind.begin(), Kind.end()); 758 Record.push_back(0); 759 if (!Val.empty()) { 760 Record.append(Val.begin(), Val.end()); 761 Record.push_back(0); 762 } 763 } 764 } 765 766 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 767 Record.clear(); 768 } 769 770 Stream.ExitBlock(); 771 } 772 773 void ModuleBitcodeWriter::writeAttributeTable() { 774 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 775 if (Attrs.empty()) return; 776 777 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 778 779 SmallVector<uint64_t, 64> Record; 780 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 781 const AttributeList &A = Attrs[i]; 782 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 783 Record.push_back( 784 VE.getAttributeGroupID({A.getSlotIndex(i), A.getSlotAttributes(i)})); 785 786 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 787 Record.clear(); 788 } 789 790 Stream.ExitBlock(); 791 } 792 793 /// WriteTypeTable - Write out the type table for a module. 794 void ModuleBitcodeWriter::writeTypeTable() { 795 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 796 797 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 798 SmallVector<uint64_t, 64> TypeVals; 799 800 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 801 802 // Abbrev for TYPE_CODE_POINTER. 803 auto Abbv = std::make_shared<BitCodeAbbrev>(); 804 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 806 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 807 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 808 809 // Abbrev for TYPE_CODE_FUNCTION. 810 Abbv = std::make_shared<BitCodeAbbrev>(); 811 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 815 816 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 817 818 // Abbrev for TYPE_CODE_STRUCT_ANON. 819 Abbv = std::make_shared<BitCodeAbbrev>(); 820 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 824 825 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 826 827 // Abbrev for TYPE_CODE_STRUCT_NAME. 828 Abbv = std::make_shared<BitCodeAbbrev>(); 829 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 832 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 833 834 // Abbrev for TYPE_CODE_STRUCT_NAMED. 835 Abbv = std::make_shared<BitCodeAbbrev>(); 836 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 840 841 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 842 843 // Abbrev for TYPE_CODE_ARRAY. 844 Abbv = std::make_shared<BitCodeAbbrev>(); 845 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 846 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 847 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 848 849 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 850 851 // Emit an entry count so the reader can reserve space. 852 TypeVals.push_back(TypeList.size()); 853 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 854 TypeVals.clear(); 855 856 // Loop over all of the types, emitting each in turn. 857 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 858 Type *T = TypeList[i]; 859 int AbbrevToUse = 0; 860 unsigned Code = 0; 861 862 switch (T->getTypeID()) { 863 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 864 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 865 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 866 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 867 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 868 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 869 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 870 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 871 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 872 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 873 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 874 case Type::IntegerTyID: 875 // INTEGER: [width] 876 Code = bitc::TYPE_CODE_INTEGER; 877 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 878 break; 879 case Type::PointerTyID: { 880 PointerType *PTy = cast<PointerType>(T); 881 // POINTER: [pointee type, address space] 882 Code = bitc::TYPE_CODE_POINTER; 883 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 884 unsigned AddressSpace = PTy->getAddressSpace(); 885 TypeVals.push_back(AddressSpace); 886 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 887 break; 888 } 889 case Type::FunctionTyID: { 890 FunctionType *FT = cast<FunctionType>(T); 891 // FUNCTION: [isvararg, retty, paramty x N] 892 Code = bitc::TYPE_CODE_FUNCTION; 893 TypeVals.push_back(FT->isVarArg()); 894 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 895 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 896 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 897 AbbrevToUse = FunctionAbbrev; 898 break; 899 } 900 case Type::StructTyID: { 901 StructType *ST = cast<StructType>(T); 902 // STRUCT: [ispacked, eltty x N] 903 TypeVals.push_back(ST->isPacked()); 904 // Output all of the element types. 905 for (StructType::element_iterator I = ST->element_begin(), 906 E = ST->element_end(); I != E; ++I) 907 TypeVals.push_back(VE.getTypeID(*I)); 908 909 if (ST->isLiteral()) { 910 Code = bitc::TYPE_CODE_STRUCT_ANON; 911 AbbrevToUse = StructAnonAbbrev; 912 } else { 913 if (ST->isOpaque()) { 914 Code = bitc::TYPE_CODE_OPAQUE; 915 } else { 916 Code = bitc::TYPE_CODE_STRUCT_NAMED; 917 AbbrevToUse = StructNamedAbbrev; 918 } 919 920 // Emit the name if it is present. 921 if (!ST->getName().empty()) 922 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 923 StructNameAbbrev); 924 } 925 break; 926 } 927 case Type::ArrayTyID: { 928 ArrayType *AT = cast<ArrayType>(T); 929 // ARRAY: [numelts, eltty] 930 Code = bitc::TYPE_CODE_ARRAY; 931 TypeVals.push_back(AT->getNumElements()); 932 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 933 AbbrevToUse = ArrayAbbrev; 934 break; 935 } 936 case Type::VectorTyID: { 937 VectorType *VT = cast<VectorType>(T); 938 // VECTOR [numelts, eltty] 939 Code = bitc::TYPE_CODE_VECTOR; 940 TypeVals.push_back(VT->getNumElements()); 941 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 942 break; 943 } 944 } 945 946 // Emit the finished record. 947 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 948 TypeVals.clear(); 949 } 950 951 Stream.ExitBlock(); 952 } 953 954 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 955 switch (Linkage) { 956 case GlobalValue::ExternalLinkage: 957 return 0; 958 case GlobalValue::WeakAnyLinkage: 959 return 16; 960 case GlobalValue::AppendingLinkage: 961 return 2; 962 case GlobalValue::InternalLinkage: 963 return 3; 964 case GlobalValue::LinkOnceAnyLinkage: 965 return 18; 966 case GlobalValue::ExternalWeakLinkage: 967 return 7; 968 case GlobalValue::CommonLinkage: 969 return 8; 970 case GlobalValue::PrivateLinkage: 971 return 9; 972 case GlobalValue::WeakODRLinkage: 973 return 17; 974 case GlobalValue::LinkOnceODRLinkage: 975 return 19; 976 case GlobalValue::AvailableExternallyLinkage: 977 return 12; 978 } 979 llvm_unreachable("Invalid linkage"); 980 } 981 982 static unsigned getEncodedLinkage(const GlobalValue &GV) { 983 return getEncodedLinkage(GV.getLinkage()); 984 } 985 986 // Decode the flags for GlobalValue in the summary 987 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 988 uint64_t RawFlags = 0; 989 990 RawFlags |= Flags.NotEligibleToImport; // bool 991 RawFlags |= (Flags.LiveRoot << 1); 992 // Linkage don't need to be remapped at that time for the summary. Any future 993 // change to the getEncodedLinkage() function will need to be taken into 994 // account here as well. 995 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 996 997 return RawFlags; 998 } 999 1000 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1001 switch (GV.getVisibility()) { 1002 case GlobalValue::DefaultVisibility: return 0; 1003 case GlobalValue::HiddenVisibility: return 1; 1004 case GlobalValue::ProtectedVisibility: return 2; 1005 } 1006 llvm_unreachable("Invalid visibility"); 1007 } 1008 1009 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1010 switch (GV.getDLLStorageClass()) { 1011 case GlobalValue::DefaultStorageClass: return 0; 1012 case GlobalValue::DLLImportStorageClass: return 1; 1013 case GlobalValue::DLLExportStorageClass: return 2; 1014 } 1015 llvm_unreachable("Invalid DLL storage class"); 1016 } 1017 1018 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1019 switch (GV.getThreadLocalMode()) { 1020 case GlobalVariable::NotThreadLocal: return 0; 1021 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1022 case GlobalVariable::LocalDynamicTLSModel: return 2; 1023 case GlobalVariable::InitialExecTLSModel: return 3; 1024 case GlobalVariable::LocalExecTLSModel: return 4; 1025 } 1026 llvm_unreachable("Invalid TLS model"); 1027 } 1028 1029 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1030 switch (C.getSelectionKind()) { 1031 case Comdat::Any: 1032 return bitc::COMDAT_SELECTION_KIND_ANY; 1033 case Comdat::ExactMatch: 1034 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1035 case Comdat::Largest: 1036 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1037 case Comdat::NoDuplicates: 1038 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1039 case Comdat::SameSize: 1040 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1041 } 1042 llvm_unreachable("Invalid selection kind"); 1043 } 1044 1045 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1046 switch (GV.getUnnamedAddr()) { 1047 case GlobalValue::UnnamedAddr::None: return 0; 1048 case GlobalValue::UnnamedAddr::Local: return 2; 1049 case GlobalValue::UnnamedAddr::Global: return 1; 1050 } 1051 llvm_unreachable("Invalid unnamed_addr"); 1052 } 1053 1054 void ModuleBitcodeWriter::writeComdats() { 1055 SmallVector<unsigned, 64> Vals; 1056 for (const Comdat *C : VE.getComdats()) { 1057 // COMDAT: [strtab offset, strtab size, selection_kind] 1058 Vals.push_back(StrtabBuilder.add(C->getName())); 1059 Vals.push_back(C->getName().size()); 1060 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1061 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1062 Vals.clear(); 1063 } 1064 } 1065 1066 /// Write a record that will eventually hold the word offset of the 1067 /// module-level VST. For now the offset is 0, which will be backpatched 1068 /// after the real VST is written. Saves the bit offset to backpatch. 1069 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1070 // Write a placeholder value in for the offset of the real VST, 1071 // which is written after the function blocks so that it can include 1072 // the offset of each function. The placeholder offset will be 1073 // updated when the real VST is written. 1074 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1075 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1076 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1077 // hold the real VST offset. Must use fixed instead of VBR as we don't 1078 // know how many VBR chunks to reserve ahead of time. 1079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1080 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1081 1082 // Emit the placeholder 1083 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1084 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1085 1086 // Compute and save the bit offset to the placeholder, which will be 1087 // patched when the real VST is written. We can simply subtract the 32-bit 1088 // fixed size from the current bit number to get the location to backpatch. 1089 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1090 } 1091 1092 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1093 1094 /// Determine the encoding to use for the given string name and length. 1095 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 1096 bool isChar6 = true; 1097 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 1098 if (isChar6) 1099 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1100 if ((unsigned char)*C & 128) 1101 // don't bother scanning the rest. 1102 return SE_Fixed8; 1103 } 1104 if (isChar6) 1105 return SE_Char6; 1106 else 1107 return SE_Fixed7; 1108 } 1109 1110 /// Emit top-level description of module, including target triple, inline asm, 1111 /// descriptors for global variables, and function prototype info. 1112 /// Returns the bit offset to backpatch with the location of the real VST. 1113 void ModuleBitcodeWriter::writeModuleInfo() { 1114 // Emit various pieces of data attached to a module. 1115 if (!M.getTargetTriple().empty()) 1116 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1117 0 /*TODO*/); 1118 const std::string &DL = M.getDataLayoutStr(); 1119 if (!DL.empty()) 1120 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1121 if (!M.getModuleInlineAsm().empty()) 1122 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1123 0 /*TODO*/); 1124 1125 // Emit information about sections and GC, computing how many there are. Also 1126 // compute the maximum alignment value. 1127 std::map<std::string, unsigned> SectionMap; 1128 std::map<std::string, unsigned> GCMap; 1129 unsigned MaxAlignment = 0; 1130 unsigned MaxGlobalType = 0; 1131 for (const GlobalValue &GV : M.globals()) { 1132 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1133 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1134 if (GV.hasSection()) { 1135 // Give section names unique ID's. 1136 unsigned &Entry = SectionMap[GV.getSection()]; 1137 if (!Entry) { 1138 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1139 0 /*TODO*/); 1140 Entry = SectionMap.size(); 1141 } 1142 } 1143 } 1144 for (const Function &F : M) { 1145 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1146 if (F.hasSection()) { 1147 // Give section names unique ID's. 1148 unsigned &Entry = SectionMap[F.getSection()]; 1149 if (!Entry) { 1150 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1151 0 /*TODO*/); 1152 Entry = SectionMap.size(); 1153 } 1154 } 1155 if (F.hasGC()) { 1156 // Same for GC names. 1157 unsigned &Entry = GCMap[F.getGC()]; 1158 if (!Entry) { 1159 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1160 0 /*TODO*/); 1161 Entry = GCMap.size(); 1162 } 1163 } 1164 } 1165 1166 // Emit abbrev for globals, now that we know # sections and max alignment. 1167 unsigned SimpleGVarAbbrev = 0; 1168 if (!M.global_empty()) { 1169 // Add an abbrev for common globals with no visibility or thread localness. 1170 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1171 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1175 Log2_32_Ceil(MaxGlobalType+1))); 1176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1177 //| explicitType << 1 1178 //| constant 1179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1181 if (MaxAlignment == 0) // Alignment. 1182 Abbv->Add(BitCodeAbbrevOp(0)); 1183 else { 1184 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1185 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1186 Log2_32_Ceil(MaxEncAlignment+1))); 1187 } 1188 if (SectionMap.empty()) // Section. 1189 Abbv->Add(BitCodeAbbrevOp(0)); 1190 else 1191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1192 Log2_32_Ceil(SectionMap.size()+1))); 1193 // Don't bother emitting vis + thread local. 1194 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1195 } 1196 1197 SmallVector<unsigned, 64> Vals; 1198 // Emit the module's source file name. 1199 { 1200 StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(), 1201 M.getSourceFileName().size()); 1202 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1203 if (Bits == SE_Char6) 1204 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1205 else if (Bits == SE_Fixed7) 1206 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1207 1208 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1209 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1210 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1212 Abbv->Add(AbbrevOpToUse); 1213 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1214 1215 for (const auto P : M.getSourceFileName()) 1216 Vals.push_back((unsigned char)P); 1217 1218 // Emit the finished record. 1219 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1220 Vals.clear(); 1221 } 1222 1223 // Emit the global variable information. 1224 for (const GlobalVariable &GV : M.globals()) { 1225 unsigned AbbrevToUse = 0; 1226 1227 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1228 // linkage, alignment, section, visibility, threadlocal, 1229 // unnamed_addr, externally_initialized, dllstorageclass, 1230 // comdat] 1231 Vals.push_back(StrtabBuilder.add(GV.getName())); 1232 Vals.push_back(GV.getName().size()); 1233 Vals.push_back(VE.getTypeID(GV.getValueType())); 1234 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1235 Vals.push_back(GV.isDeclaration() ? 0 : 1236 (VE.getValueID(GV.getInitializer()) + 1)); 1237 Vals.push_back(getEncodedLinkage(GV)); 1238 Vals.push_back(Log2_32(GV.getAlignment())+1); 1239 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1240 if (GV.isThreadLocal() || 1241 GV.getVisibility() != GlobalValue::DefaultVisibility || 1242 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1243 GV.isExternallyInitialized() || 1244 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1245 GV.hasComdat()) { 1246 Vals.push_back(getEncodedVisibility(GV)); 1247 Vals.push_back(getEncodedThreadLocalMode(GV)); 1248 Vals.push_back(getEncodedUnnamedAddr(GV)); 1249 Vals.push_back(GV.isExternallyInitialized()); 1250 Vals.push_back(getEncodedDLLStorageClass(GV)); 1251 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1252 } else { 1253 AbbrevToUse = SimpleGVarAbbrev; 1254 } 1255 1256 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1257 Vals.clear(); 1258 } 1259 1260 // Emit the function proto information. 1261 for (const Function &F : M) { 1262 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1263 // linkage, paramattrs, alignment, section, visibility, gc, 1264 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1265 // prefixdata, personalityfn] 1266 Vals.push_back(StrtabBuilder.add(F.getName())); 1267 Vals.push_back(F.getName().size()); 1268 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1269 Vals.push_back(F.getCallingConv()); 1270 Vals.push_back(F.isDeclaration()); 1271 Vals.push_back(getEncodedLinkage(F)); 1272 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1273 Vals.push_back(Log2_32(F.getAlignment())+1); 1274 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1275 Vals.push_back(getEncodedVisibility(F)); 1276 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1277 Vals.push_back(getEncodedUnnamedAddr(F)); 1278 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1279 : 0); 1280 Vals.push_back(getEncodedDLLStorageClass(F)); 1281 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1282 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1283 : 0); 1284 Vals.push_back( 1285 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1286 1287 unsigned AbbrevToUse = 0; 1288 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1289 Vals.clear(); 1290 } 1291 1292 // Emit the alias information. 1293 for (const GlobalAlias &A : M.aliases()) { 1294 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1295 // visibility, dllstorageclass, threadlocal, unnamed_addr] 1296 Vals.push_back(StrtabBuilder.add(A.getName())); 1297 Vals.push_back(A.getName().size()); 1298 Vals.push_back(VE.getTypeID(A.getValueType())); 1299 Vals.push_back(A.getType()->getAddressSpace()); 1300 Vals.push_back(VE.getValueID(A.getAliasee())); 1301 Vals.push_back(getEncodedLinkage(A)); 1302 Vals.push_back(getEncodedVisibility(A)); 1303 Vals.push_back(getEncodedDLLStorageClass(A)); 1304 Vals.push_back(getEncodedThreadLocalMode(A)); 1305 Vals.push_back(getEncodedUnnamedAddr(A)); 1306 unsigned AbbrevToUse = 0; 1307 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1308 Vals.clear(); 1309 } 1310 1311 // Emit the ifunc information. 1312 for (const GlobalIFunc &I : M.ifuncs()) { 1313 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1314 // val#, linkage, visibility] 1315 Vals.push_back(StrtabBuilder.add(I.getName())); 1316 Vals.push_back(I.getName().size()); 1317 Vals.push_back(VE.getTypeID(I.getValueType())); 1318 Vals.push_back(I.getType()->getAddressSpace()); 1319 Vals.push_back(VE.getValueID(I.getResolver())); 1320 Vals.push_back(getEncodedLinkage(I)); 1321 Vals.push_back(getEncodedVisibility(I)); 1322 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1323 Vals.clear(); 1324 } 1325 1326 writeValueSymbolTableForwardDecl(); 1327 } 1328 1329 static uint64_t getOptimizationFlags(const Value *V) { 1330 uint64_t Flags = 0; 1331 1332 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1333 if (OBO->hasNoSignedWrap()) 1334 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1335 if (OBO->hasNoUnsignedWrap()) 1336 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1337 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1338 if (PEO->isExact()) 1339 Flags |= 1 << bitc::PEO_EXACT; 1340 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1341 if (FPMO->hasUnsafeAlgebra()) 1342 Flags |= FastMathFlags::UnsafeAlgebra; 1343 if (FPMO->hasNoNaNs()) 1344 Flags |= FastMathFlags::NoNaNs; 1345 if (FPMO->hasNoInfs()) 1346 Flags |= FastMathFlags::NoInfs; 1347 if (FPMO->hasNoSignedZeros()) 1348 Flags |= FastMathFlags::NoSignedZeros; 1349 if (FPMO->hasAllowReciprocal()) 1350 Flags |= FastMathFlags::AllowReciprocal; 1351 if (FPMO->hasAllowContract()) 1352 Flags |= FastMathFlags::AllowContract; 1353 } 1354 1355 return Flags; 1356 } 1357 1358 void ModuleBitcodeWriter::writeValueAsMetadata( 1359 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1360 // Mimic an MDNode with a value as one operand. 1361 Value *V = MD->getValue(); 1362 Record.push_back(VE.getTypeID(V->getType())); 1363 Record.push_back(VE.getValueID(V)); 1364 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1365 Record.clear(); 1366 } 1367 1368 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1369 SmallVectorImpl<uint64_t> &Record, 1370 unsigned Abbrev) { 1371 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1372 Metadata *MD = N->getOperand(i); 1373 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1374 "Unexpected function-local metadata"); 1375 Record.push_back(VE.getMetadataOrNullID(MD)); 1376 } 1377 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1378 : bitc::METADATA_NODE, 1379 Record, Abbrev); 1380 Record.clear(); 1381 } 1382 1383 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1384 // Assume the column is usually under 128, and always output the inlined-at 1385 // location (it's never more expensive than building an array size 1). 1386 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1387 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1393 return Stream.EmitAbbrev(std::move(Abbv)); 1394 } 1395 1396 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1397 SmallVectorImpl<uint64_t> &Record, 1398 unsigned &Abbrev) { 1399 if (!Abbrev) 1400 Abbrev = createDILocationAbbrev(); 1401 1402 Record.push_back(N->isDistinct()); 1403 Record.push_back(N->getLine()); 1404 Record.push_back(N->getColumn()); 1405 Record.push_back(VE.getMetadataID(N->getScope())); 1406 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1407 1408 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1409 Record.clear(); 1410 } 1411 1412 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1413 // Assume the column is usually under 128, and always output the inlined-at 1414 // location (it's never more expensive than building an array size 1). 1415 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1416 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1420 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1421 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1423 return Stream.EmitAbbrev(std::move(Abbv)); 1424 } 1425 1426 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1427 SmallVectorImpl<uint64_t> &Record, 1428 unsigned &Abbrev) { 1429 if (!Abbrev) 1430 Abbrev = createGenericDINodeAbbrev(); 1431 1432 Record.push_back(N->isDistinct()); 1433 Record.push_back(N->getTag()); 1434 Record.push_back(0); // Per-tag version field; unused for now. 1435 1436 for (auto &I : N->operands()) 1437 Record.push_back(VE.getMetadataOrNullID(I)); 1438 1439 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1440 Record.clear(); 1441 } 1442 1443 static uint64_t rotateSign(int64_t I) { 1444 uint64_t U = I; 1445 return I < 0 ? ~(U << 1) : U << 1; 1446 } 1447 1448 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1449 SmallVectorImpl<uint64_t> &Record, 1450 unsigned Abbrev) { 1451 Record.push_back(N->isDistinct()); 1452 Record.push_back(N->getCount()); 1453 Record.push_back(rotateSign(N->getLowerBound())); 1454 1455 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1456 Record.clear(); 1457 } 1458 1459 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1460 SmallVectorImpl<uint64_t> &Record, 1461 unsigned Abbrev) { 1462 Record.push_back(N->isDistinct()); 1463 Record.push_back(rotateSign(N->getValue())); 1464 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1465 1466 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1467 Record.clear(); 1468 } 1469 1470 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1471 SmallVectorImpl<uint64_t> &Record, 1472 unsigned Abbrev) { 1473 Record.push_back(N->isDistinct()); 1474 Record.push_back(N->getTag()); 1475 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1476 Record.push_back(N->getSizeInBits()); 1477 Record.push_back(N->getAlignInBits()); 1478 Record.push_back(N->getEncoding()); 1479 1480 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1481 Record.clear(); 1482 } 1483 1484 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1485 SmallVectorImpl<uint64_t> &Record, 1486 unsigned Abbrev) { 1487 Record.push_back(N->isDistinct()); 1488 Record.push_back(N->getTag()); 1489 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1490 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1491 Record.push_back(N->getLine()); 1492 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1493 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1494 Record.push_back(N->getSizeInBits()); 1495 Record.push_back(N->getAlignInBits()); 1496 Record.push_back(N->getOffsetInBits()); 1497 Record.push_back(N->getFlags()); 1498 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1499 1500 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1501 // that there is no DWARF address space associated with DIDerivedType. 1502 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1503 Record.push_back(*DWARFAddressSpace + 1); 1504 else 1505 Record.push_back(0); 1506 1507 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1508 Record.clear(); 1509 } 1510 1511 void ModuleBitcodeWriter::writeDICompositeType( 1512 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1513 unsigned Abbrev) { 1514 const unsigned IsNotUsedInOldTypeRef = 0x2; 1515 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1516 Record.push_back(N->getTag()); 1517 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1518 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1519 Record.push_back(N->getLine()); 1520 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1521 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1522 Record.push_back(N->getSizeInBits()); 1523 Record.push_back(N->getAlignInBits()); 1524 Record.push_back(N->getOffsetInBits()); 1525 Record.push_back(N->getFlags()); 1526 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1527 Record.push_back(N->getRuntimeLang()); 1528 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1529 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1530 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1531 1532 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1533 Record.clear(); 1534 } 1535 1536 void ModuleBitcodeWriter::writeDISubroutineType( 1537 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1538 unsigned Abbrev) { 1539 const unsigned HasNoOldTypeRefs = 0x2; 1540 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1541 Record.push_back(N->getFlags()); 1542 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1543 Record.push_back(N->getCC()); 1544 1545 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1546 Record.clear(); 1547 } 1548 1549 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1550 SmallVectorImpl<uint64_t> &Record, 1551 unsigned Abbrev) { 1552 Record.push_back(N->isDistinct()); 1553 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1554 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1555 Record.push_back(N->getChecksumKind()); 1556 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum())); 1557 1558 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1559 Record.clear(); 1560 } 1561 1562 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1563 SmallVectorImpl<uint64_t> &Record, 1564 unsigned Abbrev) { 1565 assert(N->isDistinct() && "Expected distinct compile units"); 1566 Record.push_back(/* IsDistinct */ true); 1567 Record.push_back(N->getSourceLanguage()); 1568 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1569 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1570 Record.push_back(N->isOptimized()); 1571 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1572 Record.push_back(N->getRuntimeVersion()); 1573 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1574 Record.push_back(N->getEmissionKind()); 1575 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1576 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1577 Record.push_back(/* subprograms */ 0); 1578 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1579 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1580 Record.push_back(N->getDWOId()); 1581 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1582 Record.push_back(N->getSplitDebugInlining()); 1583 Record.push_back(N->getDebugInfoForProfiling()); 1584 1585 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1586 Record.clear(); 1587 } 1588 1589 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1590 SmallVectorImpl<uint64_t> &Record, 1591 unsigned Abbrev) { 1592 uint64_t HasUnitFlag = 1 << 1; 1593 Record.push_back(N->isDistinct() | HasUnitFlag); 1594 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1595 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1596 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1597 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1598 Record.push_back(N->getLine()); 1599 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1600 Record.push_back(N->isLocalToUnit()); 1601 Record.push_back(N->isDefinition()); 1602 Record.push_back(N->getScopeLine()); 1603 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1604 Record.push_back(N->getVirtuality()); 1605 Record.push_back(N->getVirtualIndex()); 1606 Record.push_back(N->getFlags()); 1607 Record.push_back(N->isOptimized()); 1608 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1609 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1610 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1611 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1612 Record.push_back(N->getThisAdjustment()); 1613 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1614 1615 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1616 Record.clear(); 1617 } 1618 1619 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1620 SmallVectorImpl<uint64_t> &Record, 1621 unsigned Abbrev) { 1622 Record.push_back(N->isDistinct()); 1623 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1624 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1625 Record.push_back(N->getLine()); 1626 Record.push_back(N->getColumn()); 1627 1628 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1629 Record.clear(); 1630 } 1631 1632 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1633 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1634 unsigned Abbrev) { 1635 Record.push_back(N->isDistinct()); 1636 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1637 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1638 Record.push_back(N->getDiscriminator()); 1639 1640 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1641 Record.clear(); 1642 } 1643 1644 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1645 SmallVectorImpl<uint64_t> &Record, 1646 unsigned Abbrev) { 1647 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1648 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1649 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1650 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1651 Record.push_back(N->getLine()); 1652 1653 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1654 Record.clear(); 1655 } 1656 1657 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1658 SmallVectorImpl<uint64_t> &Record, 1659 unsigned Abbrev) { 1660 Record.push_back(N->isDistinct()); 1661 Record.push_back(N->getMacinfoType()); 1662 Record.push_back(N->getLine()); 1663 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1664 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1665 1666 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1667 Record.clear(); 1668 } 1669 1670 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1671 SmallVectorImpl<uint64_t> &Record, 1672 unsigned Abbrev) { 1673 Record.push_back(N->isDistinct()); 1674 Record.push_back(N->getMacinfoType()); 1675 Record.push_back(N->getLine()); 1676 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1677 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1678 1679 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1680 Record.clear(); 1681 } 1682 1683 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1684 SmallVectorImpl<uint64_t> &Record, 1685 unsigned Abbrev) { 1686 Record.push_back(N->isDistinct()); 1687 for (auto &I : N->operands()) 1688 Record.push_back(VE.getMetadataOrNullID(I)); 1689 1690 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1691 Record.clear(); 1692 } 1693 1694 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1695 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1696 unsigned Abbrev) { 1697 Record.push_back(N->isDistinct()); 1698 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1699 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1700 1701 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1702 Record.clear(); 1703 } 1704 1705 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1706 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1707 unsigned Abbrev) { 1708 Record.push_back(N->isDistinct()); 1709 Record.push_back(N->getTag()); 1710 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1711 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1712 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1713 1714 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1715 Record.clear(); 1716 } 1717 1718 void ModuleBitcodeWriter::writeDIGlobalVariable( 1719 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1720 unsigned Abbrev) { 1721 const uint64_t Version = 1 << 1; 1722 Record.push_back((uint64_t)N->isDistinct() | Version); 1723 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1724 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1725 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1726 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1727 Record.push_back(N->getLine()); 1728 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1729 Record.push_back(N->isLocalToUnit()); 1730 Record.push_back(N->isDefinition()); 1731 Record.push_back(/* expr */ 0); 1732 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1733 Record.push_back(N->getAlignInBits()); 1734 1735 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1736 Record.clear(); 1737 } 1738 1739 void ModuleBitcodeWriter::writeDILocalVariable( 1740 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1741 unsigned Abbrev) { 1742 // In order to support all possible bitcode formats in BitcodeReader we need 1743 // to distinguish the following cases: 1744 // 1) Record has no artificial tag (Record[1]), 1745 // has no obsolete inlinedAt field (Record[9]). 1746 // In this case Record size will be 8, HasAlignment flag is false. 1747 // 2) Record has artificial tag (Record[1]), 1748 // has no obsolete inlignedAt field (Record[9]). 1749 // In this case Record size will be 9, HasAlignment flag is false. 1750 // 3) Record has both artificial tag (Record[1]) and 1751 // obsolete inlignedAt field (Record[9]). 1752 // In this case Record size will be 10, HasAlignment flag is false. 1753 // 4) Record has neither artificial tag, nor inlignedAt field, but 1754 // HasAlignment flag is true and Record[8] contains alignment value. 1755 const uint64_t HasAlignmentFlag = 1 << 1; 1756 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1757 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1758 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1759 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1760 Record.push_back(N->getLine()); 1761 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1762 Record.push_back(N->getArg()); 1763 Record.push_back(N->getFlags()); 1764 Record.push_back(N->getAlignInBits()); 1765 1766 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1767 Record.clear(); 1768 } 1769 1770 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1771 SmallVectorImpl<uint64_t> &Record, 1772 unsigned Abbrev) { 1773 Record.reserve(N->getElements().size() + 1); 1774 const uint64_t Version = 2 << 1; 1775 Record.push_back((uint64_t)N->isDistinct() | Version); 1776 Record.append(N->elements_begin(), N->elements_end()); 1777 1778 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1779 Record.clear(); 1780 } 1781 1782 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1783 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1784 unsigned Abbrev) { 1785 Record.push_back(N->isDistinct()); 1786 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1787 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1788 1789 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1790 Record.clear(); 1791 } 1792 1793 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1794 SmallVectorImpl<uint64_t> &Record, 1795 unsigned Abbrev) { 1796 Record.push_back(N->isDistinct()); 1797 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1798 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1799 Record.push_back(N->getLine()); 1800 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1801 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1802 Record.push_back(N->getAttributes()); 1803 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1804 1805 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1806 Record.clear(); 1807 } 1808 1809 void ModuleBitcodeWriter::writeDIImportedEntity( 1810 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1811 unsigned Abbrev) { 1812 Record.push_back(N->isDistinct()); 1813 Record.push_back(N->getTag()); 1814 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1815 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1816 Record.push_back(N->getLine()); 1817 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1818 1819 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1820 Record.clear(); 1821 } 1822 1823 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1824 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1825 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1826 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1827 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1828 return Stream.EmitAbbrev(std::move(Abbv)); 1829 } 1830 1831 void ModuleBitcodeWriter::writeNamedMetadata( 1832 SmallVectorImpl<uint64_t> &Record) { 1833 if (M.named_metadata_empty()) 1834 return; 1835 1836 unsigned Abbrev = createNamedMetadataAbbrev(); 1837 for (const NamedMDNode &NMD : M.named_metadata()) { 1838 // Write name. 1839 StringRef Str = NMD.getName(); 1840 Record.append(Str.bytes_begin(), Str.bytes_end()); 1841 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1842 Record.clear(); 1843 1844 // Write named metadata operands. 1845 for (const MDNode *N : NMD.operands()) 1846 Record.push_back(VE.getMetadataID(N)); 1847 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1848 Record.clear(); 1849 } 1850 } 1851 1852 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1853 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1854 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1855 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1856 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1857 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1858 return Stream.EmitAbbrev(std::move(Abbv)); 1859 } 1860 1861 /// Write out a record for MDString. 1862 /// 1863 /// All the metadata strings in a metadata block are emitted in a single 1864 /// record. The sizes and strings themselves are shoved into a blob. 1865 void ModuleBitcodeWriter::writeMetadataStrings( 1866 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1867 if (Strings.empty()) 1868 return; 1869 1870 // Start the record with the number of strings. 1871 Record.push_back(bitc::METADATA_STRINGS); 1872 Record.push_back(Strings.size()); 1873 1874 // Emit the sizes of the strings in the blob. 1875 SmallString<256> Blob; 1876 { 1877 BitstreamWriter W(Blob); 1878 for (const Metadata *MD : Strings) 1879 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1880 W.FlushToWord(); 1881 } 1882 1883 // Add the offset to the strings to the record. 1884 Record.push_back(Blob.size()); 1885 1886 // Add the strings to the blob. 1887 for (const Metadata *MD : Strings) 1888 Blob.append(cast<MDString>(MD)->getString()); 1889 1890 // Emit the final record. 1891 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1892 Record.clear(); 1893 } 1894 1895 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1896 enum MetadataAbbrev : unsigned { 1897 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1898 #include "llvm/IR/Metadata.def" 1899 LastPlusOne 1900 }; 1901 1902 void ModuleBitcodeWriter::writeMetadataRecords( 1903 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1904 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1905 if (MDs.empty()) 1906 return; 1907 1908 // Initialize MDNode abbreviations. 1909 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1910 #include "llvm/IR/Metadata.def" 1911 1912 for (const Metadata *MD : MDs) { 1913 if (IndexPos) 1914 IndexPos->push_back(Stream.GetCurrentBitNo()); 1915 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1916 assert(N->isResolved() && "Expected forward references to be resolved"); 1917 1918 switch (N->getMetadataID()) { 1919 default: 1920 llvm_unreachable("Invalid MDNode subclass"); 1921 #define HANDLE_MDNODE_LEAF(CLASS) \ 1922 case Metadata::CLASS##Kind: \ 1923 if (MDAbbrevs) \ 1924 write##CLASS(cast<CLASS>(N), Record, \ 1925 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1926 else \ 1927 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1928 continue; 1929 #include "llvm/IR/Metadata.def" 1930 } 1931 } 1932 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1933 } 1934 } 1935 1936 void ModuleBitcodeWriter::writeModuleMetadata() { 1937 if (!VE.hasMDs() && M.named_metadata_empty()) 1938 return; 1939 1940 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1941 SmallVector<uint64_t, 64> Record; 1942 1943 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1944 // block and load any metadata. 1945 std::vector<unsigned> MDAbbrevs; 1946 1947 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1948 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1949 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1950 createGenericDINodeAbbrev(); 1951 1952 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1953 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1956 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1957 1958 Abbv = std::make_shared<BitCodeAbbrev>(); 1959 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1962 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1963 1964 // Emit MDStrings together upfront. 1965 writeMetadataStrings(VE.getMDStrings(), Record); 1966 1967 // We only emit an index for the metadata record if we have more than a given 1968 // (naive) threshold of metadatas, otherwise it is not worth it. 1969 if (VE.getNonMDStrings().size() > IndexThreshold) { 1970 // Write a placeholder value in for the offset of the metadata index, 1971 // which is written after the records, so that it can include 1972 // the offset of each entry. The placeholder offset will be 1973 // updated after all records are emitted. 1974 uint64_t Vals[] = {0, 0}; 1975 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1976 } 1977 1978 // Compute and save the bit offset to the current position, which will be 1979 // patched when we emit the index later. We can simply subtract the 64-bit 1980 // fixed size from the current bit number to get the location to backpatch. 1981 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1982 1983 // This index will contain the bitpos for each individual record. 1984 std::vector<uint64_t> IndexPos; 1985 IndexPos.reserve(VE.getNonMDStrings().size()); 1986 1987 // Write all the records 1988 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1989 1990 if (VE.getNonMDStrings().size() > IndexThreshold) { 1991 // Now that we have emitted all the records we will emit the index. But 1992 // first 1993 // backpatch the forward reference so that the reader can skip the records 1994 // efficiently. 1995 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 1996 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 1997 1998 // Delta encode the index. 1999 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2000 for (auto &Elt : IndexPos) { 2001 auto EltDelta = Elt - PreviousValue; 2002 PreviousValue = Elt; 2003 Elt = EltDelta; 2004 } 2005 // Emit the index record. 2006 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2007 IndexPos.clear(); 2008 } 2009 2010 // Write the named metadata now. 2011 writeNamedMetadata(Record); 2012 2013 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2014 SmallVector<uint64_t, 4> Record; 2015 Record.push_back(VE.getValueID(&GO)); 2016 pushGlobalMetadataAttachment(Record, GO); 2017 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2018 }; 2019 for (const Function &F : M) 2020 if (F.isDeclaration() && F.hasMetadata()) 2021 AddDeclAttachedMetadata(F); 2022 // FIXME: Only store metadata for declarations here, and move data for global 2023 // variable definitions to a separate block (PR28134). 2024 for (const GlobalVariable &GV : M.globals()) 2025 if (GV.hasMetadata()) 2026 AddDeclAttachedMetadata(GV); 2027 2028 Stream.ExitBlock(); 2029 } 2030 2031 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2032 if (!VE.hasMDs()) 2033 return; 2034 2035 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2036 SmallVector<uint64_t, 64> Record; 2037 writeMetadataStrings(VE.getMDStrings(), Record); 2038 writeMetadataRecords(VE.getNonMDStrings(), Record); 2039 Stream.ExitBlock(); 2040 } 2041 2042 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2043 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2044 // [n x [id, mdnode]] 2045 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2046 GO.getAllMetadata(MDs); 2047 for (const auto &I : MDs) { 2048 Record.push_back(I.first); 2049 Record.push_back(VE.getMetadataID(I.second)); 2050 } 2051 } 2052 2053 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2054 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2055 2056 SmallVector<uint64_t, 64> Record; 2057 2058 if (F.hasMetadata()) { 2059 pushGlobalMetadataAttachment(Record, F); 2060 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2061 Record.clear(); 2062 } 2063 2064 // Write metadata attachments 2065 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2066 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2067 for (const BasicBlock &BB : F) 2068 for (const Instruction &I : BB) { 2069 MDs.clear(); 2070 I.getAllMetadataOtherThanDebugLoc(MDs); 2071 2072 // If no metadata, ignore instruction. 2073 if (MDs.empty()) continue; 2074 2075 Record.push_back(VE.getInstructionID(&I)); 2076 2077 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2078 Record.push_back(MDs[i].first); 2079 Record.push_back(VE.getMetadataID(MDs[i].second)); 2080 } 2081 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2082 Record.clear(); 2083 } 2084 2085 Stream.ExitBlock(); 2086 } 2087 2088 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2089 SmallVector<uint64_t, 64> Record; 2090 2091 // Write metadata kinds 2092 // METADATA_KIND - [n x [id, name]] 2093 SmallVector<StringRef, 8> Names; 2094 M.getMDKindNames(Names); 2095 2096 if (Names.empty()) return; 2097 2098 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2099 2100 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2101 Record.push_back(MDKindID); 2102 StringRef KName = Names[MDKindID]; 2103 Record.append(KName.begin(), KName.end()); 2104 2105 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2106 Record.clear(); 2107 } 2108 2109 Stream.ExitBlock(); 2110 } 2111 2112 void ModuleBitcodeWriter::writeOperandBundleTags() { 2113 // Write metadata kinds 2114 // 2115 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2116 // 2117 // OPERAND_BUNDLE_TAG - [strchr x N] 2118 2119 SmallVector<StringRef, 8> Tags; 2120 M.getOperandBundleTags(Tags); 2121 2122 if (Tags.empty()) 2123 return; 2124 2125 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2126 2127 SmallVector<uint64_t, 64> Record; 2128 2129 for (auto Tag : Tags) { 2130 Record.append(Tag.begin(), Tag.end()); 2131 2132 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2133 Record.clear(); 2134 } 2135 2136 Stream.ExitBlock(); 2137 } 2138 2139 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2140 if ((int64_t)V >= 0) 2141 Vals.push_back(V << 1); 2142 else 2143 Vals.push_back((-V << 1) | 1); 2144 } 2145 2146 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2147 bool isGlobal) { 2148 if (FirstVal == LastVal) return; 2149 2150 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2151 2152 unsigned AggregateAbbrev = 0; 2153 unsigned String8Abbrev = 0; 2154 unsigned CString7Abbrev = 0; 2155 unsigned CString6Abbrev = 0; 2156 // If this is a constant pool for the module, emit module-specific abbrevs. 2157 if (isGlobal) { 2158 // Abbrev for CST_CODE_AGGREGATE. 2159 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2160 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2163 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2164 2165 // Abbrev for CST_CODE_STRING. 2166 Abbv = std::make_shared<BitCodeAbbrev>(); 2167 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2170 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2171 // Abbrev for CST_CODE_CSTRING. 2172 Abbv = std::make_shared<BitCodeAbbrev>(); 2173 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2176 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2177 // Abbrev for CST_CODE_CSTRING. 2178 Abbv = std::make_shared<BitCodeAbbrev>(); 2179 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2182 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2183 } 2184 2185 SmallVector<uint64_t, 64> Record; 2186 2187 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2188 Type *LastTy = nullptr; 2189 for (unsigned i = FirstVal; i != LastVal; ++i) { 2190 const Value *V = Vals[i].first; 2191 // If we need to switch types, do so now. 2192 if (V->getType() != LastTy) { 2193 LastTy = V->getType(); 2194 Record.push_back(VE.getTypeID(LastTy)); 2195 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2196 CONSTANTS_SETTYPE_ABBREV); 2197 Record.clear(); 2198 } 2199 2200 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2201 Record.push_back(unsigned(IA->hasSideEffects()) | 2202 unsigned(IA->isAlignStack()) << 1 | 2203 unsigned(IA->getDialect()&1) << 2); 2204 2205 // Add the asm string. 2206 const std::string &AsmStr = IA->getAsmString(); 2207 Record.push_back(AsmStr.size()); 2208 Record.append(AsmStr.begin(), AsmStr.end()); 2209 2210 // Add the constraint string. 2211 const std::string &ConstraintStr = IA->getConstraintString(); 2212 Record.push_back(ConstraintStr.size()); 2213 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2214 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2215 Record.clear(); 2216 continue; 2217 } 2218 const Constant *C = cast<Constant>(V); 2219 unsigned Code = -1U; 2220 unsigned AbbrevToUse = 0; 2221 if (C->isNullValue()) { 2222 Code = bitc::CST_CODE_NULL; 2223 } else if (isa<UndefValue>(C)) { 2224 Code = bitc::CST_CODE_UNDEF; 2225 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2226 if (IV->getBitWidth() <= 64) { 2227 uint64_t V = IV->getSExtValue(); 2228 emitSignedInt64(Record, V); 2229 Code = bitc::CST_CODE_INTEGER; 2230 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2231 } else { // Wide integers, > 64 bits in size. 2232 // We have an arbitrary precision integer value to write whose 2233 // bit width is > 64. However, in canonical unsigned integer 2234 // format it is likely that the high bits are going to be zero. 2235 // So, we only write the number of active words. 2236 unsigned NWords = IV->getValue().getActiveWords(); 2237 const uint64_t *RawWords = IV->getValue().getRawData(); 2238 for (unsigned i = 0; i != NWords; ++i) { 2239 emitSignedInt64(Record, RawWords[i]); 2240 } 2241 Code = bitc::CST_CODE_WIDE_INTEGER; 2242 } 2243 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2244 Code = bitc::CST_CODE_FLOAT; 2245 Type *Ty = CFP->getType(); 2246 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2247 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2248 } else if (Ty->isX86_FP80Ty()) { 2249 // api needed to prevent premature destruction 2250 // bits are not in the same order as a normal i80 APInt, compensate. 2251 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2252 const uint64_t *p = api.getRawData(); 2253 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2254 Record.push_back(p[0] & 0xffffLL); 2255 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2256 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2257 const uint64_t *p = api.getRawData(); 2258 Record.push_back(p[0]); 2259 Record.push_back(p[1]); 2260 } else { 2261 assert (0 && "Unknown FP type!"); 2262 } 2263 } else if (isa<ConstantDataSequential>(C) && 2264 cast<ConstantDataSequential>(C)->isString()) { 2265 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2266 // Emit constant strings specially. 2267 unsigned NumElts = Str->getNumElements(); 2268 // If this is a null-terminated string, use the denser CSTRING encoding. 2269 if (Str->isCString()) { 2270 Code = bitc::CST_CODE_CSTRING; 2271 --NumElts; // Don't encode the null, which isn't allowed by char6. 2272 } else { 2273 Code = bitc::CST_CODE_STRING; 2274 AbbrevToUse = String8Abbrev; 2275 } 2276 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2277 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2278 for (unsigned i = 0; i != NumElts; ++i) { 2279 unsigned char V = Str->getElementAsInteger(i); 2280 Record.push_back(V); 2281 isCStr7 &= (V & 128) == 0; 2282 if (isCStrChar6) 2283 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2284 } 2285 2286 if (isCStrChar6) 2287 AbbrevToUse = CString6Abbrev; 2288 else if (isCStr7) 2289 AbbrevToUse = CString7Abbrev; 2290 } else if (const ConstantDataSequential *CDS = 2291 dyn_cast<ConstantDataSequential>(C)) { 2292 Code = bitc::CST_CODE_DATA; 2293 Type *EltTy = CDS->getType()->getElementType(); 2294 if (isa<IntegerType>(EltTy)) { 2295 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2296 Record.push_back(CDS->getElementAsInteger(i)); 2297 } else { 2298 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2299 Record.push_back( 2300 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2301 } 2302 } else if (isa<ConstantAggregate>(C)) { 2303 Code = bitc::CST_CODE_AGGREGATE; 2304 for (const Value *Op : C->operands()) 2305 Record.push_back(VE.getValueID(Op)); 2306 AbbrevToUse = AggregateAbbrev; 2307 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2308 switch (CE->getOpcode()) { 2309 default: 2310 if (Instruction::isCast(CE->getOpcode())) { 2311 Code = bitc::CST_CODE_CE_CAST; 2312 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2313 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2314 Record.push_back(VE.getValueID(C->getOperand(0))); 2315 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2316 } else { 2317 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2318 Code = bitc::CST_CODE_CE_BINOP; 2319 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2320 Record.push_back(VE.getValueID(C->getOperand(0))); 2321 Record.push_back(VE.getValueID(C->getOperand(1))); 2322 uint64_t Flags = getOptimizationFlags(CE); 2323 if (Flags != 0) 2324 Record.push_back(Flags); 2325 } 2326 break; 2327 case Instruction::GetElementPtr: { 2328 Code = bitc::CST_CODE_CE_GEP; 2329 const auto *GO = cast<GEPOperator>(C); 2330 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2331 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2332 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2333 Record.push_back((*Idx << 1) | GO->isInBounds()); 2334 } else if (GO->isInBounds()) 2335 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2336 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2337 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2338 Record.push_back(VE.getValueID(C->getOperand(i))); 2339 } 2340 break; 2341 } 2342 case Instruction::Select: 2343 Code = bitc::CST_CODE_CE_SELECT; 2344 Record.push_back(VE.getValueID(C->getOperand(0))); 2345 Record.push_back(VE.getValueID(C->getOperand(1))); 2346 Record.push_back(VE.getValueID(C->getOperand(2))); 2347 break; 2348 case Instruction::ExtractElement: 2349 Code = bitc::CST_CODE_CE_EXTRACTELT; 2350 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2351 Record.push_back(VE.getValueID(C->getOperand(0))); 2352 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2353 Record.push_back(VE.getValueID(C->getOperand(1))); 2354 break; 2355 case Instruction::InsertElement: 2356 Code = bitc::CST_CODE_CE_INSERTELT; 2357 Record.push_back(VE.getValueID(C->getOperand(0))); 2358 Record.push_back(VE.getValueID(C->getOperand(1))); 2359 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2360 Record.push_back(VE.getValueID(C->getOperand(2))); 2361 break; 2362 case Instruction::ShuffleVector: 2363 // If the return type and argument types are the same, this is a 2364 // standard shufflevector instruction. If the types are different, 2365 // then the shuffle is widening or truncating the input vectors, and 2366 // the argument type must also be encoded. 2367 if (C->getType() == C->getOperand(0)->getType()) { 2368 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2369 } else { 2370 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2371 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2372 } 2373 Record.push_back(VE.getValueID(C->getOperand(0))); 2374 Record.push_back(VE.getValueID(C->getOperand(1))); 2375 Record.push_back(VE.getValueID(C->getOperand(2))); 2376 break; 2377 case Instruction::ICmp: 2378 case Instruction::FCmp: 2379 Code = bitc::CST_CODE_CE_CMP; 2380 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2381 Record.push_back(VE.getValueID(C->getOperand(0))); 2382 Record.push_back(VE.getValueID(C->getOperand(1))); 2383 Record.push_back(CE->getPredicate()); 2384 break; 2385 } 2386 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2387 Code = bitc::CST_CODE_BLOCKADDRESS; 2388 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2389 Record.push_back(VE.getValueID(BA->getFunction())); 2390 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2391 } else { 2392 #ifndef NDEBUG 2393 C->dump(); 2394 #endif 2395 llvm_unreachable("Unknown constant!"); 2396 } 2397 Stream.EmitRecord(Code, Record, AbbrevToUse); 2398 Record.clear(); 2399 } 2400 2401 Stream.ExitBlock(); 2402 } 2403 2404 void ModuleBitcodeWriter::writeModuleConstants() { 2405 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2406 2407 // Find the first constant to emit, which is the first non-globalvalue value. 2408 // We know globalvalues have been emitted by WriteModuleInfo. 2409 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2410 if (!isa<GlobalValue>(Vals[i].first)) { 2411 writeConstants(i, Vals.size(), true); 2412 return; 2413 } 2414 } 2415 } 2416 2417 /// pushValueAndType - The file has to encode both the value and type id for 2418 /// many values, because we need to know what type to create for forward 2419 /// references. However, most operands are not forward references, so this type 2420 /// field is not needed. 2421 /// 2422 /// This function adds V's value ID to Vals. If the value ID is higher than the 2423 /// instruction ID, then it is a forward reference, and it also includes the 2424 /// type ID. The value ID that is written is encoded relative to the InstID. 2425 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2426 SmallVectorImpl<unsigned> &Vals) { 2427 unsigned ValID = VE.getValueID(V); 2428 // Make encoding relative to the InstID. 2429 Vals.push_back(InstID - ValID); 2430 if (ValID >= InstID) { 2431 Vals.push_back(VE.getTypeID(V->getType())); 2432 return true; 2433 } 2434 return false; 2435 } 2436 2437 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2438 unsigned InstID) { 2439 SmallVector<unsigned, 64> Record; 2440 LLVMContext &C = CS.getInstruction()->getContext(); 2441 2442 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2443 const auto &Bundle = CS.getOperandBundleAt(i); 2444 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2445 2446 for (auto &Input : Bundle.Inputs) 2447 pushValueAndType(Input, InstID, Record); 2448 2449 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2450 Record.clear(); 2451 } 2452 } 2453 2454 /// pushValue - Like pushValueAndType, but where the type of the value is 2455 /// omitted (perhaps it was already encoded in an earlier operand). 2456 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2457 SmallVectorImpl<unsigned> &Vals) { 2458 unsigned ValID = VE.getValueID(V); 2459 Vals.push_back(InstID - ValID); 2460 } 2461 2462 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2463 SmallVectorImpl<uint64_t> &Vals) { 2464 unsigned ValID = VE.getValueID(V); 2465 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2466 emitSignedInt64(Vals, diff); 2467 } 2468 2469 /// WriteInstruction - Emit an instruction to the specified stream. 2470 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2471 unsigned InstID, 2472 SmallVectorImpl<unsigned> &Vals) { 2473 unsigned Code = 0; 2474 unsigned AbbrevToUse = 0; 2475 VE.setInstructionID(&I); 2476 switch (I.getOpcode()) { 2477 default: 2478 if (Instruction::isCast(I.getOpcode())) { 2479 Code = bitc::FUNC_CODE_INST_CAST; 2480 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2481 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2482 Vals.push_back(VE.getTypeID(I.getType())); 2483 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2484 } else { 2485 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2486 Code = bitc::FUNC_CODE_INST_BINOP; 2487 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2488 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2489 pushValue(I.getOperand(1), InstID, Vals); 2490 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2491 uint64_t Flags = getOptimizationFlags(&I); 2492 if (Flags != 0) { 2493 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2494 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2495 Vals.push_back(Flags); 2496 } 2497 } 2498 break; 2499 2500 case Instruction::GetElementPtr: { 2501 Code = bitc::FUNC_CODE_INST_GEP; 2502 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2503 auto &GEPInst = cast<GetElementPtrInst>(I); 2504 Vals.push_back(GEPInst.isInBounds()); 2505 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2506 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2507 pushValueAndType(I.getOperand(i), InstID, Vals); 2508 break; 2509 } 2510 case Instruction::ExtractValue: { 2511 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2512 pushValueAndType(I.getOperand(0), InstID, Vals); 2513 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2514 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2515 break; 2516 } 2517 case Instruction::InsertValue: { 2518 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2519 pushValueAndType(I.getOperand(0), InstID, Vals); 2520 pushValueAndType(I.getOperand(1), InstID, Vals); 2521 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2522 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2523 break; 2524 } 2525 case Instruction::Select: 2526 Code = bitc::FUNC_CODE_INST_VSELECT; 2527 pushValueAndType(I.getOperand(1), InstID, Vals); 2528 pushValue(I.getOperand(2), InstID, Vals); 2529 pushValueAndType(I.getOperand(0), InstID, Vals); 2530 break; 2531 case Instruction::ExtractElement: 2532 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2533 pushValueAndType(I.getOperand(0), InstID, Vals); 2534 pushValueAndType(I.getOperand(1), InstID, Vals); 2535 break; 2536 case Instruction::InsertElement: 2537 Code = bitc::FUNC_CODE_INST_INSERTELT; 2538 pushValueAndType(I.getOperand(0), InstID, Vals); 2539 pushValue(I.getOperand(1), InstID, Vals); 2540 pushValueAndType(I.getOperand(2), InstID, Vals); 2541 break; 2542 case Instruction::ShuffleVector: 2543 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2544 pushValueAndType(I.getOperand(0), InstID, Vals); 2545 pushValue(I.getOperand(1), InstID, Vals); 2546 pushValue(I.getOperand(2), InstID, Vals); 2547 break; 2548 case Instruction::ICmp: 2549 case Instruction::FCmp: { 2550 // compare returning Int1Ty or vector of Int1Ty 2551 Code = bitc::FUNC_CODE_INST_CMP2; 2552 pushValueAndType(I.getOperand(0), InstID, Vals); 2553 pushValue(I.getOperand(1), InstID, Vals); 2554 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2555 uint64_t Flags = getOptimizationFlags(&I); 2556 if (Flags != 0) 2557 Vals.push_back(Flags); 2558 break; 2559 } 2560 2561 case Instruction::Ret: 2562 { 2563 Code = bitc::FUNC_CODE_INST_RET; 2564 unsigned NumOperands = I.getNumOperands(); 2565 if (NumOperands == 0) 2566 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2567 else if (NumOperands == 1) { 2568 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2569 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2570 } else { 2571 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2572 pushValueAndType(I.getOperand(i), InstID, Vals); 2573 } 2574 } 2575 break; 2576 case Instruction::Br: 2577 { 2578 Code = bitc::FUNC_CODE_INST_BR; 2579 const BranchInst &II = cast<BranchInst>(I); 2580 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2581 if (II.isConditional()) { 2582 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2583 pushValue(II.getCondition(), InstID, Vals); 2584 } 2585 } 2586 break; 2587 case Instruction::Switch: 2588 { 2589 Code = bitc::FUNC_CODE_INST_SWITCH; 2590 const SwitchInst &SI = cast<SwitchInst>(I); 2591 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2592 pushValue(SI.getCondition(), InstID, Vals); 2593 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2594 for (auto Case : SI.cases()) { 2595 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2596 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2597 } 2598 } 2599 break; 2600 case Instruction::IndirectBr: 2601 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2602 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2603 // Encode the address operand as relative, but not the basic blocks. 2604 pushValue(I.getOperand(0), InstID, Vals); 2605 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2606 Vals.push_back(VE.getValueID(I.getOperand(i))); 2607 break; 2608 2609 case Instruction::Invoke: { 2610 const InvokeInst *II = cast<InvokeInst>(&I); 2611 const Value *Callee = II->getCalledValue(); 2612 FunctionType *FTy = II->getFunctionType(); 2613 2614 if (II->hasOperandBundles()) 2615 writeOperandBundles(II, InstID); 2616 2617 Code = bitc::FUNC_CODE_INST_INVOKE; 2618 2619 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2620 Vals.push_back(II->getCallingConv() | 1 << 13); 2621 Vals.push_back(VE.getValueID(II->getNormalDest())); 2622 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2623 Vals.push_back(VE.getTypeID(FTy)); 2624 pushValueAndType(Callee, InstID, Vals); 2625 2626 // Emit value #'s for the fixed parameters. 2627 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2628 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2629 2630 // Emit type/value pairs for varargs params. 2631 if (FTy->isVarArg()) { 2632 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2633 i != e; ++i) 2634 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2635 } 2636 break; 2637 } 2638 case Instruction::Resume: 2639 Code = bitc::FUNC_CODE_INST_RESUME; 2640 pushValueAndType(I.getOperand(0), InstID, Vals); 2641 break; 2642 case Instruction::CleanupRet: { 2643 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2644 const auto &CRI = cast<CleanupReturnInst>(I); 2645 pushValue(CRI.getCleanupPad(), InstID, Vals); 2646 if (CRI.hasUnwindDest()) 2647 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2648 break; 2649 } 2650 case Instruction::CatchRet: { 2651 Code = bitc::FUNC_CODE_INST_CATCHRET; 2652 const auto &CRI = cast<CatchReturnInst>(I); 2653 pushValue(CRI.getCatchPad(), InstID, Vals); 2654 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2655 break; 2656 } 2657 case Instruction::CleanupPad: 2658 case Instruction::CatchPad: { 2659 const auto &FuncletPad = cast<FuncletPadInst>(I); 2660 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2661 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2662 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2663 2664 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2665 Vals.push_back(NumArgOperands); 2666 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2667 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2668 break; 2669 } 2670 case Instruction::CatchSwitch: { 2671 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2672 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2673 2674 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2675 2676 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2677 Vals.push_back(NumHandlers); 2678 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2679 Vals.push_back(VE.getValueID(CatchPadBB)); 2680 2681 if (CatchSwitch.hasUnwindDest()) 2682 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2683 break; 2684 } 2685 case Instruction::Unreachable: 2686 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2687 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2688 break; 2689 2690 case Instruction::PHI: { 2691 const PHINode &PN = cast<PHINode>(I); 2692 Code = bitc::FUNC_CODE_INST_PHI; 2693 // With the newer instruction encoding, forward references could give 2694 // negative valued IDs. This is most common for PHIs, so we use 2695 // signed VBRs. 2696 SmallVector<uint64_t, 128> Vals64; 2697 Vals64.push_back(VE.getTypeID(PN.getType())); 2698 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2699 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2700 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2701 } 2702 // Emit a Vals64 vector and exit. 2703 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2704 Vals64.clear(); 2705 return; 2706 } 2707 2708 case Instruction::LandingPad: { 2709 const LandingPadInst &LP = cast<LandingPadInst>(I); 2710 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2711 Vals.push_back(VE.getTypeID(LP.getType())); 2712 Vals.push_back(LP.isCleanup()); 2713 Vals.push_back(LP.getNumClauses()); 2714 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2715 if (LP.isCatch(I)) 2716 Vals.push_back(LandingPadInst::Catch); 2717 else 2718 Vals.push_back(LandingPadInst::Filter); 2719 pushValueAndType(LP.getClause(I), InstID, Vals); 2720 } 2721 break; 2722 } 2723 2724 case Instruction::Alloca: { 2725 Code = bitc::FUNC_CODE_INST_ALLOCA; 2726 const AllocaInst &AI = cast<AllocaInst>(I); 2727 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2728 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2729 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2730 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2731 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2732 "not enough bits for maximum alignment"); 2733 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2734 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2735 AlignRecord |= 1 << 6; 2736 AlignRecord |= AI.isSwiftError() << 7; 2737 Vals.push_back(AlignRecord); 2738 break; 2739 } 2740 2741 case Instruction::Load: 2742 if (cast<LoadInst>(I).isAtomic()) { 2743 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2744 pushValueAndType(I.getOperand(0), InstID, Vals); 2745 } else { 2746 Code = bitc::FUNC_CODE_INST_LOAD; 2747 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2748 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2749 } 2750 Vals.push_back(VE.getTypeID(I.getType())); 2751 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2752 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2753 if (cast<LoadInst>(I).isAtomic()) { 2754 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2755 Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2756 } 2757 break; 2758 case Instruction::Store: 2759 if (cast<StoreInst>(I).isAtomic()) 2760 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2761 else 2762 Code = bitc::FUNC_CODE_INST_STORE; 2763 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2764 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2765 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2766 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2767 if (cast<StoreInst>(I).isAtomic()) { 2768 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2769 Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2770 } 2771 break; 2772 case Instruction::AtomicCmpXchg: 2773 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2774 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2775 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2776 pushValue(I.getOperand(2), InstID, Vals); // newval. 2777 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2778 Vals.push_back( 2779 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2780 Vals.push_back( 2781 getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope())); 2782 Vals.push_back( 2783 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2784 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2785 break; 2786 case Instruction::AtomicRMW: 2787 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2788 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2789 pushValue(I.getOperand(1), InstID, Vals); // val. 2790 Vals.push_back( 2791 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2792 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2793 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2794 Vals.push_back( 2795 getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope())); 2796 break; 2797 case Instruction::Fence: 2798 Code = bitc::FUNC_CODE_INST_FENCE; 2799 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2800 Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2801 break; 2802 case Instruction::Call: { 2803 const CallInst &CI = cast<CallInst>(I); 2804 FunctionType *FTy = CI.getFunctionType(); 2805 2806 if (CI.hasOperandBundles()) 2807 writeOperandBundles(&CI, InstID); 2808 2809 Code = bitc::FUNC_CODE_INST_CALL; 2810 2811 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2812 2813 unsigned Flags = getOptimizationFlags(&I); 2814 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2815 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2816 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2817 1 << bitc::CALL_EXPLICIT_TYPE | 2818 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2819 unsigned(Flags != 0) << bitc::CALL_FMF); 2820 if (Flags != 0) 2821 Vals.push_back(Flags); 2822 2823 Vals.push_back(VE.getTypeID(FTy)); 2824 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2825 2826 // Emit value #'s for the fixed parameters. 2827 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2828 // Check for labels (can happen with asm labels). 2829 if (FTy->getParamType(i)->isLabelTy()) 2830 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2831 else 2832 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2833 } 2834 2835 // Emit type/value pairs for varargs params. 2836 if (FTy->isVarArg()) { 2837 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2838 i != e; ++i) 2839 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2840 } 2841 break; 2842 } 2843 case Instruction::VAArg: 2844 Code = bitc::FUNC_CODE_INST_VAARG; 2845 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2846 pushValue(I.getOperand(0), InstID, Vals); // valist. 2847 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2848 break; 2849 } 2850 2851 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2852 Vals.clear(); 2853 } 2854 2855 /// Write a GlobalValue VST to the module. The purpose of this data structure is 2856 /// to allow clients to efficiently find the function body. 2857 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 2858 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2859 // Get the offset of the VST we are writing, and backpatch it into 2860 // the VST forward declaration record. 2861 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2862 // The BitcodeStartBit was the stream offset of the identification block. 2863 VSTOffset -= bitcodeStartBit(); 2864 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2865 // Note that we add 1 here because the offset is relative to one word 2866 // before the start of the identification block, which was historically 2867 // always the start of the regular bitcode header. 2868 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2869 2870 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2871 2872 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2873 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2874 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2875 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2876 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2877 2878 for (const Function &F : M) { 2879 uint64_t Record[2]; 2880 2881 if (F.isDeclaration()) 2882 continue; 2883 2884 Record[0] = VE.getValueID(&F); 2885 2886 // Save the word offset of the function (from the start of the 2887 // actual bitcode written to the stream). 2888 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 2889 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2890 // Note that we add 1 here because the offset is relative to one word 2891 // before the start of the identification block, which was historically 2892 // always the start of the regular bitcode header. 2893 Record[1] = BitcodeIndex / 32 + 1; 2894 2895 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 2896 } 2897 2898 Stream.ExitBlock(); 2899 } 2900 2901 /// Emit names for arguments, instructions and basic blocks in a function. 2902 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 2903 const ValueSymbolTable &VST) { 2904 if (VST.empty()) 2905 return; 2906 2907 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2908 2909 // FIXME: Set up the abbrev, we know how many values there are! 2910 // FIXME: We know if the type names can use 7-bit ascii. 2911 SmallVector<uint64_t, 64> NameVals; 2912 2913 for (const ValueName &Name : VST) { 2914 // Figure out the encoding to use for the name. 2915 StringEncoding Bits = 2916 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2917 2918 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2919 NameVals.push_back(VE.getValueID(Name.getValue())); 2920 2921 // VST_CODE_ENTRY: [valueid, namechar x N] 2922 // VST_CODE_BBENTRY: [bbid, namechar x N] 2923 unsigned Code; 2924 if (isa<BasicBlock>(Name.getValue())) { 2925 Code = bitc::VST_CODE_BBENTRY; 2926 if (Bits == SE_Char6) 2927 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2928 } else { 2929 Code = bitc::VST_CODE_ENTRY; 2930 if (Bits == SE_Char6) 2931 AbbrevToUse = VST_ENTRY_6_ABBREV; 2932 else if (Bits == SE_Fixed7) 2933 AbbrevToUse = VST_ENTRY_7_ABBREV; 2934 } 2935 2936 for (const auto P : Name.getKey()) 2937 NameVals.push_back((unsigned char)P); 2938 2939 // Emit the finished record. 2940 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2941 NameVals.clear(); 2942 } 2943 2944 Stream.ExitBlock(); 2945 } 2946 2947 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 2948 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2949 unsigned Code; 2950 if (isa<BasicBlock>(Order.V)) 2951 Code = bitc::USELIST_CODE_BB; 2952 else 2953 Code = bitc::USELIST_CODE_DEFAULT; 2954 2955 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2956 Record.push_back(VE.getValueID(Order.V)); 2957 Stream.EmitRecord(Code, Record); 2958 } 2959 2960 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 2961 assert(VE.shouldPreserveUseListOrder() && 2962 "Expected to be preserving use-list order"); 2963 2964 auto hasMore = [&]() { 2965 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2966 }; 2967 if (!hasMore()) 2968 // Nothing to do. 2969 return; 2970 2971 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2972 while (hasMore()) { 2973 writeUseList(std::move(VE.UseListOrders.back())); 2974 VE.UseListOrders.pop_back(); 2975 } 2976 Stream.ExitBlock(); 2977 } 2978 2979 /// Emit a function body to the module stream. 2980 void ModuleBitcodeWriter::writeFunction( 2981 const Function &F, 2982 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2983 // Save the bitcode index of the start of this function block for recording 2984 // in the VST. 2985 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 2986 2987 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2988 VE.incorporateFunction(F); 2989 2990 SmallVector<unsigned, 64> Vals; 2991 2992 // Emit the number of basic blocks, so the reader can create them ahead of 2993 // time. 2994 Vals.push_back(VE.getBasicBlocks().size()); 2995 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2996 Vals.clear(); 2997 2998 // If there are function-local constants, emit them now. 2999 unsigned CstStart, CstEnd; 3000 VE.getFunctionConstantRange(CstStart, CstEnd); 3001 writeConstants(CstStart, CstEnd, false); 3002 3003 // If there is function-local metadata, emit it now. 3004 writeFunctionMetadata(F); 3005 3006 // Keep a running idea of what the instruction ID is. 3007 unsigned InstID = CstEnd; 3008 3009 bool NeedsMetadataAttachment = F.hasMetadata(); 3010 3011 DILocation *LastDL = nullptr; 3012 // Finally, emit all the instructions, in order. 3013 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3014 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3015 I != E; ++I) { 3016 writeInstruction(*I, InstID, Vals); 3017 3018 if (!I->getType()->isVoidTy()) 3019 ++InstID; 3020 3021 // If the instruction has metadata, write a metadata attachment later. 3022 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3023 3024 // If the instruction has a debug location, emit it. 3025 DILocation *DL = I->getDebugLoc(); 3026 if (!DL) 3027 continue; 3028 3029 if (DL == LastDL) { 3030 // Just repeat the same debug loc as last time. 3031 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3032 continue; 3033 } 3034 3035 Vals.push_back(DL->getLine()); 3036 Vals.push_back(DL->getColumn()); 3037 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3038 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3039 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3040 Vals.clear(); 3041 3042 LastDL = DL; 3043 } 3044 3045 // Emit names for all the instructions etc. 3046 if (auto *Symtab = F.getValueSymbolTable()) 3047 writeFunctionLevelValueSymbolTable(*Symtab); 3048 3049 if (NeedsMetadataAttachment) 3050 writeFunctionMetadataAttachment(F); 3051 if (VE.shouldPreserveUseListOrder()) 3052 writeUseListBlock(&F); 3053 VE.purgeFunction(); 3054 Stream.ExitBlock(); 3055 } 3056 3057 // Emit blockinfo, which defines the standard abbreviations etc. 3058 void ModuleBitcodeWriter::writeBlockInfo() { 3059 // We only want to emit block info records for blocks that have multiple 3060 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3061 // Other blocks can define their abbrevs inline. 3062 Stream.EnterBlockInfoBlock(); 3063 3064 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3065 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3068 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3070 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3071 VST_ENTRY_8_ABBREV) 3072 llvm_unreachable("Unexpected abbrev ordering!"); 3073 } 3074 3075 { // 7-bit fixed width VST_CODE_ENTRY strings. 3076 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3077 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3080 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3081 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3082 VST_ENTRY_7_ABBREV) 3083 llvm_unreachable("Unexpected abbrev ordering!"); 3084 } 3085 { // 6-bit char6 VST_CODE_ENTRY strings. 3086 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3087 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3088 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3089 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3091 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3092 VST_ENTRY_6_ABBREV) 3093 llvm_unreachable("Unexpected abbrev ordering!"); 3094 } 3095 { // 6-bit char6 VST_CODE_BBENTRY strings. 3096 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3097 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3098 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3099 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3101 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3102 VST_BBENTRY_6_ABBREV) 3103 llvm_unreachable("Unexpected abbrev ordering!"); 3104 } 3105 3106 3107 3108 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3109 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3110 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3112 VE.computeBitsRequiredForTypeIndicies())); 3113 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3114 CONSTANTS_SETTYPE_ABBREV) 3115 llvm_unreachable("Unexpected abbrev ordering!"); 3116 } 3117 3118 { // INTEGER abbrev for CONSTANTS_BLOCK. 3119 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3120 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3121 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3122 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3123 CONSTANTS_INTEGER_ABBREV) 3124 llvm_unreachable("Unexpected abbrev ordering!"); 3125 } 3126 3127 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3128 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3129 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3132 VE.computeBitsRequiredForTypeIndicies())); 3133 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3134 3135 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3136 CONSTANTS_CE_CAST_Abbrev) 3137 llvm_unreachable("Unexpected abbrev ordering!"); 3138 } 3139 { // NULL abbrev for CONSTANTS_BLOCK. 3140 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3141 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3142 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3143 CONSTANTS_NULL_Abbrev) 3144 llvm_unreachable("Unexpected abbrev ordering!"); 3145 } 3146 3147 // FIXME: This should only use space for first class types! 3148 3149 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3150 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3151 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3154 VE.computeBitsRequiredForTypeIndicies())); 3155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3157 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3158 FUNCTION_INST_LOAD_ABBREV) 3159 llvm_unreachable("Unexpected abbrev ordering!"); 3160 } 3161 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3162 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3163 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3167 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3168 FUNCTION_INST_BINOP_ABBREV) 3169 llvm_unreachable("Unexpected abbrev ordering!"); 3170 } 3171 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3172 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3173 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3178 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3179 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3180 llvm_unreachable("Unexpected abbrev ordering!"); 3181 } 3182 { // INST_CAST abbrev for FUNCTION_BLOCK. 3183 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3184 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3185 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3187 VE.computeBitsRequiredForTypeIndicies())); 3188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3189 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3190 FUNCTION_INST_CAST_ABBREV) 3191 llvm_unreachable("Unexpected abbrev ordering!"); 3192 } 3193 3194 { // INST_RET abbrev for FUNCTION_BLOCK. 3195 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3196 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3197 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3198 FUNCTION_INST_RET_VOID_ABBREV) 3199 llvm_unreachable("Unexpected abbrev ordering!"); 3200 } 3201 { // INST_RET abbrev for FUNCTION_BLOCK. 3202 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3203 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3205 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3206 FUNCTION_INST_RET_VAL_ABBREV) 3207 llvm_unreachable("Unexpected abbrev ordering!"); 3208 } 3209 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3210 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3211 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3212 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3213 FUNCTION_INST_UNREACHABLE_ABBREV) 3214 llvm_unreachable("Unexpected abbrev ordering!"); 3215 } 3216 { 3217 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3218 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3219 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3221 Log2_32_Ceil(VE.getTypes().size() + 1))); 3222 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3224 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3225 FUNCTION_INST_GEP_ABBREV) 3226 llvm_unreachable("Unexpected abbrev ordering!"); 3227 } 3228 3229 Stream.ExitBlock(); 3230 } 3231 3232 /// Write the module path strings, currently only used when generating 3233 /// a combined index file. 3234 void IndexBitcodeWriter::writeModStrings() { 3235 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3236 3237 // TODO: See which abbrev sizes we actually need to emit 3238 3239 // 8-bit fixed-width MST_ENTRY strings. 3240 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3241 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3242 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3243 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3245 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3246 3247 // 7-bit fixed width MST_ENTRY strings. 3248 Abbv = std::make_shared<BitCodeAbbrev>(); 3249 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3251 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3252 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3253 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3254 3255 // 6-bit char6 MST_ENTRY strings. 3256 Abbv = std::make_shared<BitCodeAbbrev>(); 3257 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3258 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3259 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3260 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3261 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3262 3263 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3264 Abbv = std::make_shared<BitCodeAbbrev>(); 3265 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3266 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3267 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3268 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3270 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3271 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3272 3273 SmallVector<unsigned, 64> Vals; 3274 for (const auto &MPSE : Index.modulePaths()) { 3275 if (!doIncludeModule(MPSE.getKey())) 3276 continue; 3277 StringEncoding Bits = 3278 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 3279 unsigned AbbrevToUse = Abbrev8Bit; 3280 if (Bits == SE_Char6) 3281 AbbrevToUse = Abbrev6Bit; 3282 else if (Bits == SE_Fixed7) 3283 AbbrevToUse = Abbrev7Bit; 3284 3285 Vals.push_back(MPSE.getValue().first); 3286 3287 for (const auto P : MPSE.getKey()) 3288 Vals.push_back((unsigned char)P); 3289 3290 // Emit the finished record. 3291 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3292 3293 Vals.clear(); 3294 // Emit an optional hash for the module now 3295 auto &Hash = MPSE.getValue().second; 3296 bool AllZero = true; // Detect if the hash is empty, and do not generate it 3297 for (auto Val : Hash) { 3298 if (Val) 3299 AllZero = false; 3300 Vals.push_back(Val); 3301 } 3302 if (!AllZero) { 3303 // Emit the hash record. 3304 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3305 } 3306 3307 Vals.clear(); 3308 } 3309 Stream.ExitBlock(); 3310 } 3311 3312 /// Write the function type metadata related records that need to appear before 3313 /// a function summary entry (whether per-module or combined). 3314 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3315 FunctionSummary *FS) { 3316 if (!FS->type_tests().empty()) 3317 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3318 3319 SmallVector<uint64_t, 64> Record; 3320 3321 auto WriteVFuncIdVec = [&](uint64_t Ty, 3322 ArrayRef<FunctionSummary::VFuncId> VFs) { 3323 if (VFs.empty()) 3324 return; 3325 Record.clear(); 3326 for (auto &VF : VFs) { 3327 Record.push_back(VF.GUID); 3328 Record.push_back(VF.Offset); 3329 } 3330 Stream.EmitRecord(Ty, Record); 3331 }; 3332 3333 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3334 FS->type_test_assume_vcalls()); 3335 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3336 FS->type_checked_load_vcalls()); 3337 3338 auto WriteConstVCallVec = [&](uint64_t Ty, 3339 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3340 for (auto &VC : VCs) { 3341 Record.clear(); 3342 Record.push_back(VC.VFunc.GUID); 3343 Record.push_back(VC.VFunc.Offset); 3344 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3345 Stream.EmitRecord(Ty, Record); 3346 } 3347 }; 3348 3349 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3350 FS->type_test_assume_const_vcalls()); 3351 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3352 FS->type_checked_load_const_vcalls()); 3353 } 3354 3355 // Helper to emit a single function summary record. 3356 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord( 3357 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3358 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3359 const Function &F) { 3360 NameVals.push_back(ValueID); 3361 3362 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3363 writeFunctionTypeMetadataRecords(Stream, FS); 3364 3365 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3366 NameVals.push_back(FS->instCount()); 3367 NameVals.push_back(FS->refs().size()); 3368 3369 for (auto &RI : FS->refs()) 3370 NameVals.push_back(VE.getValueID(RI.getValue())); 3371 3372 bool HasProfileData = F.getEntryCount().hasValue(); 3373 for (auto &ECI : FS->calls()) { 3374 NameVals.push_back(getValueId(ECI.first)); 3375 if (HasProfileData) 3376 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3377 } 3378 3379 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3380 unsigned Code = 3381 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3382 3383 // Emit the finished record. 3384 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3385 NameVals.clear(); 3386 } 3387 3388 // Collect the global value references in the given variable's initializer, 3389 // and emit them in a summary record. 3390 void ModuleBitcodeWriter::writeModuleLevelReferences( 3391 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3392 unsigned FSModRefsAbbrev) { 3393 auto Summaries = 3394 Index->findGlobalValueSummaryList(GlobalValue::getGUID(V.getName())); 3395 if (Summaries == Index->end()) { 3396 // Only declarations should not have a summary (a declaration might however 3397 // have a summary if the def was in module level asm). 3398 assert(V.isDeclaration()); 3399 return; 3400 } 3401 auto *Summary = Summaries->second.front().get(); 3402 NameVals.push_back(VE.getValueID(&V)); 3403 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3404 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3405 3406 unsigned SizeBeforeRefs = NameVals.size(); 3407 for (auto &RI : VS->refs()) 3408 NameVals.push_back(VE.getValueID(RI.getValue())); 3409 // Sort the refs for determinism output, the vector returned by FS->refs() has 3410 // been initialized from a DenseSet. 3411 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3412 3413 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3414 FSModRefsAbbrev); 3415 NameVals.clear(); 3416 } 3417 3418 // Current version for the summary. 3419 // This is bumped whenever we introduce changes in the way some record are 3420 // interpreted, like flags for instance. 3421 static const uint64_t INDEX_VERSION = 3; 3422 3423 /// Emit the per-module summary section alongside the rest of 3424 /// the module's bitcode. 3425 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() { 3426 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 3427 3428 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3429 3430 if (Index->begin() == Index->end()) { 3431 Stream.ExitBlock(); 3432 return; 3433 } 3434 3435 for (const auto &GVI : valueIds()) { 3436 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3437 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3438 } 3439 3440 // Abbrev for FS_PERMODULE. 3441 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3442 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3443 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3447 // numrefs x valueid, n x (valueid) 3448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3450 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3451 3452 // Abbrev for FS_PERMODULE_PROFILE. 3453 Abbv = std::make_shared<BitCodeAbbrev>(); 3454 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3459 // numrefs x valueid, n x (valueid, hotness) 3460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3462 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3463 3464 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3465 Abbv = std::make_shared<BitCodeAbbrev>(); 3466 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3471 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3472 3473 // Abbrev for FS_ALIAS. 3474 Abbv = std::make_shared<BitCodeAbbrev>(); 3475 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3479 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3480 3481 SmallVector<uint64_t, 64> NameVals; 3482 // Iterate over the list of functions instead of the Index to 3483 // ensure the ordering is stable. 3484 for (const Function &F : M) { 3485 // Summary emission does not support anonymous functions, they have to 3486 // renamed using the anonymous function renaming pass. 3487 if (!F.hasName()) 3488 report_fatal_error("Unexpected anonymous function when writing summary"); 3489 3490 auto Summaries = 3491 Index->findGlobalValueSummaryList(GlobalValue::getGUID(F.getName())); 3492 if (Summaries == Index->end()) { 3493 // Only declarations should not have a summary (a declaration might 3494 // however have a summary if the def was in module level asm). 3495 assert(F.isDeclaration()); 3496 continue; 3497 } 3498 auto *Summary = Summaries->second.front().get(); 3499 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3500 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3501 } 3502 3503 // Capture references from GlobalVariable initializers, which are outside 3504 // of a function scope. 3505 for (const GlobalVariable &G : M.globals()) 3506 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3507 3508 for (const GlobalAlias &A : M.aliases()) { 3509 auto *Aliasee = A.getBaseObject(); 3510 if (!Aliasee->hasName()) 3511 // Nameless function don't have an entry in the summary, skip it. 3512 continue; 3513 auto AliasId = VE.getValueID(&A); 3514 auto AliaseeId = VE.getValueID(Aliasee); 3515 NameVals.push_back(AliasId); 3516 auto *Summary = Index->getGlobalValueSummary(A); 3517 AliasSummary *AS = cast<AliasSummary>(Summary); 3518 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3519 NameVals.push_back(AliaseeId); 3520 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3521 NameVals.clear(); 3522 } 3523 3524 Stream.ExitBlock(); 3525 } 3526 3527 /// Emit the combined summary section into the combined index file. 3528 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3529 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3530 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3531 3532 // Create value IDs for undefined references. 3533 for (const auto &I : *this) { 3534 if (auto *VS = dyn_cast<GlobalVarSummary>(I.second)) { 3535 for (auto &RI : VS->refs()) 3536 assignValueId(RI.getGUID()); 3537 continue; 3538 } 3539 3540 auto *FS = dyn_cast<FunctionSummary>(I.second); 3541 if (!FS) 3542 continue; 3543 for (auto &RI : FS->refs()) 3544 assignValueId(RI.getGUID()); 3545 3546 for (auto &EI : FS->calls()) { 3547 GlobalValue::GUID GUID = EI.first.getGUID(); 3548 if (!hasValueId(GUID)) { 3549 // For SamplePGO, the indirect call targets for local functions will 3550 // have its original name annotated in profile. We try to find the 3551 // corresponding PGOFuncName as the GUID. 3552 GUID = Index.getGUIDFromOriginalID(GUID); 3553 if (GUID == 0 || !hasValueId(GUID)) 3554 continue; 3555 } 3556 assignValueId(GUID); 3557 } 3558 } 3559 3560 for (const auto &GVI : valueIds()) { 3561 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3562 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3563 } 3564 3565 // Abbrev for FS_COMBINED. 3566 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3567 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3568 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3571 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3573 // numrefs x valueid, n x (valueid) 3574 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3575 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3576 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3577 3578 // Abbrev for FS_COMBINED_PROFILE. 3579 Abbv = std::make_shared<BitCodeAbbrev>(); 3580 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3586 // numrefs x valueid, n x (valueid, hotness) 3587 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3588 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3589 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3590 3591 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3592 Abbv = std::make_shared<BitCodeAbbrev>(); 3593 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3599 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3600 3601 // Abbrev for FS_COMBINED_ALIAS. 3602 Abbv = std::make_shared<BitCodeAbbrev>(); 3603 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3604 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3605 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3608 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3609 3610 // The aliases are emitted as a post-pass, and will point to the value 3611 // id of the aliasee. Save them in a vector for post-processing. 3612 SmallVector<AliasSummary *, 64> Aliases; 3613 3614 // Save the value id for each summary for alias emission. 3615 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3616 3617 SmallVector<uint64_t, 64> NameVals; 3618 3619 // For local linkage, we also emit the original name separately 3620 // immediately after the record. 3621 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3622 if (!GlobalValue::isLocalLinkage(S.linkage())) 3623 return; 3624 NameVals.push_back(S.getOriginalName()); 3625 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3626 NameVals.clear(); 3627 }; 3628 3629 for (const auto &I : *this) { 3630 GlobalValueSummary *S = I.second; 3631 assert(S); 3632 3633 assert(hasValueId(I.first)); 3634 unsigned ValueId = getValueId(I.first); 3635 SummaryToValueIdMap[S] = ValueId; 3636 3637 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3638 // Will process aliases as a post-pass because the reader wants all 3639 // global to be loaded first. 3640 Aliases.push_back(AS); 3641 continue; 3642 } 3643 3644 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3645 NameVals.push_back(ValueId); 3646 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3647 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3648 for (auto &RI : VS->refs()) { 3649 NameVals.push_back(getValueId(RI.getGUID())); 3650 } 3651 3652 // Emit the finished record. 3653 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3654 FSModRefsAbbrev); 3655 NameVals.clear(); 3656 MaybeEmitOriginalName(*S); 3657 continue; 3658 } 3659 3660 auto *FS = cast<FunctionSummary>(S); 3661 writeFunctionTypeMetadataRecords(Stream, FS); 3662 3663 NameVals.push_back(ValueId); 3664 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3665 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3666 NameVals.push_back(FS->instCount()); 3667 NameVals.push_back(FS->refs().size()); 3668 3669 for (auto &RI : FS->refs()) { 3670 NameVals.push_back(getValueId(RI.getGUID())); 3671 } 3672 3673 bool HasProfileData = false; 3674 for (auto &EI : FS->calls()) { 3675 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown; 3676 if (HasProfileData) 3677 break; 3678 } 3679 3680 for (auto &EI : FS->calls()) { 3681 // If this GUID doesn't have a value id, it doesn't have a function 3682 // summary and we don't need to record any calls to it. 3683 GlobalValue::GUID GUID = EI.first.getGUID(); 3684 if (!hasValueId(GUID)) { 3685 // For SamplePGO, the indirect call targets for local functions will 3686 // have its original name annotated in profile. We try to find the 3687 // corresponding PGOFuncName as the GUID. 3688 GUID = Index.getGUIDFromOriginalID(GUID); 3689 if (GUID == 0 || !hasValueId(GUID)) 3690 continue; 3691 } 3692 NameVals.push_back(getValueId(GUID)); 3693 if (HasProfileData) 3694 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3695 } 3696 3697 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3698 unsigned Code = 3699 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3700 3701 // Emit the finished record. 3702 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3703 NameVals.clear(); 3704 MaybeEmitOriginalName(*S); 3705 } 3706 3707 for (auto *AS : Aliases) { 3708 auto AliasValueId = SummaryToValueIdMap[AS]; 3709 assert(AliasValueId); 3710 NameVals.push_back(AliasValueId); 3711 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3712 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3713 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3714 assert(AliaseeValueId); 3715 NameVals.push_back(AliaseeValueId); 3716 3717 // Emit the finished record. 3718 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3719 NameVals.clear(); 3720 MaybeEmitOriginalName(*AS); 3721 } 3722 3723 Stream.ExitBlock(); 3724 } 3725 3726 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3727 /// current llvm version, and a record for the epoch number. 3728 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3729 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3730 3731 // Write the "user readable" string identifying the bitcode producer 3732 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3733 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3734 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3735 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3736 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3737 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3738 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3739 3740 // Write the epoch version 3741 Abbv = std::make_shared<BitCodeAbbrev>(); 3742 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3743 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3744 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3745 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3746 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3747 Stream.ExitBlock(); 3748 } 3749 3750 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3751 // Emit the module's hash. 3752 // MODULE_CODE_HASH: [5*i32] 3753 if (GenerateHash) { 3754 SHA1 Hasher; 3755 uint32_t Vals[5]; 3756 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3757 Buffer.size() - BlockStartPos)); 3758 StringRef Hash = Hasher.result(); 3759 for (int Pos = 0; Pos < 20; Pos += 4) { 3760 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3761 } 3762 3763 // Emit the finished record. 3764 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3765 3766 if (ModHash) 3767 // Save the written hash value. 3768 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash)); 3769 } else if (ModHash) 3770 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 3771 } 3772 3773 void ModuleBitcodeWriter::write() { 3774 writeIdentificationBlock(Stream); 3775 3776 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3777 size_t BlockStartPos = Buffer.size(); 3778 3779 writeModuleVersion(); 3780 3781 // Emit blockinfo, which defines the standard abbreviations etc. 3782 writeBlockInfo(); 3783 3784 // Emit information about attribute groups. 3785 writeAttributeGroupTable(); 3786 3787 // Emit information about parameter attributes. 3788 writeAttributeTable(); 3789 3790 // Emit information describing all of the types in the module. 3791 writeTypeTable(); 3792 3793 writeComdats(); 3794 3795 // Emit top-level description of module, including target triple, inline asm, 3796 // descriptors for global variables, and function prototype info. 3797 writeModuleInfo(); 3798 3799 // Emit constants. 3800 writeModuleConstants(); 3801 3802 // Emit metadata kind names. 3803 writeModuleMetadataKinds(); 3804 3805 // Emit metadata. 3806 writeModuleMetadata(); 3807 3808 // Emit module-level use-lists. 3809 if (VE.shouldPreserveUseListOrder()) 3810 writeUseListBlock(nullptr); 3811 3812 writeOperandBundleTags(); 3813 3814 // Emit function bodies. 3815 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3816 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3817 if (!F->isDeclaration()) 3818 writeFunction(*F, FunctionToBitcodeIndex); 3819 3820 // Need to write after the above call to WriteFunction which populates 3821 // the summary information in the index. 3822 if (Index) 3823 writePerModuleGlobalValueSummary(); 3824 3825 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 3826 3827 writeModuleHash(BlockStartPos); 3828 3829 Stream.ExitBlock(); 3830 } 3831 3832 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3833 uint32_t &Position) { 3834 support::endian::write32le(&Buffer[Position], Value); 3835 Position += 4; 3836 } 3837 3838 /// If generating a bc file on darwin, we have to emit a 3839 /// header and trailer to make it compatible with the system archiver. To do 3840 /// this we emit the following header, and then emit a trailer that pads the 3841 /// file out to be a multiple of 16 bytes. 3842 /// 3843 /// struct bc_header { 3844 /// uint32_t Magic; // 0x0B17C0DE 3845 /// uint32_t Version; // Version, currently always 0. 3846 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3847 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3848 /// uint32_t CPUType; // CPU specifier. 3849 /// ... potentially more later ... 3850 /// }; 3851 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3852 const Triple &TT) { 3853 unsigned CPUType = ~0U; 3854 3855 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3856 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3857 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3858 // specific constants here because they are implicitly part of the Darwin ABI. 3859 enum { 3860 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3861 DARWIN_CPU_TYPE_X86 = 7, 3862 DARWIN_CPU_TYPE_ARM = 12, 3863 DARWIN_CPU_TYPE_POWERPC = 18 3864 }; 3865 3866 Triple::ArchType Arch = TT.getArch(); 3867 if (Arch == Triple::x86_64) 3868 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3869 else if (Arch == Triple::x86) 3870 CPUType = DARWIN_CPU_TYPE_X86; 3871 else if (Arch == Triple::ppc) 3872 CPUType = DARWIN_CPU_TYPE_POWERPC; 3873 else if (Arch == Triple::ppc64) 3874 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3875 else if (Arch == Triple::arm || Arch == Triple::thumb) 3876 CPUType = DARWIN_CPU_TYPE_ARM; 3877 3878 // Traditional Bitcode starts after header. 3879 assert(Buffer.size() >= BWH_HeaderSize && 3880 "Expected header size to be reserved"); 3881 unsigned BCOffset = BWH_HeaderSize; 3882 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3883 3884 // Write the magic and version. 3885 unsigned Position = 0; 3886 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3887 writeInt32ToBuffer(0, Buffer, Position); // Version. 3888 writeInt32ToBuffer(BCOffset, Buffer, Position); 3889 writeInt32ToBuffer(BCSize, Buffer, Position); 3890 writeInt32ToBuffer(CPUType, Buffer, Position); 3891 3892 // If the file is not a multiple of 16 bytes, insert dummy padding. 3893 while (Buffer.size() & 15) 3894 Buffer.push_back(0); 3895 } 3896 3897 /// Helper to write the header common to all bitcode files. 3898 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3899 // Emit the file header. 3900 Stream.Emit((unsigned)'B', 8); 3901 Stream.Emit((unsigned)'C', 8); 3902 Stream.Emit(0x0, 4); 3903 Stream.Emit(0xC, 4); 3904 Stream.Emit(0xE, 4); 3905 Stream.Emit(0xD, 4); 3906 } 3907 3908 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3909 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3910 writeBitcodeHeader(*Stream); 3911 } 3912 3913 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 3914 3915 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 3916 Stream->EnterSubblock(Block, 3); 3917 3918 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3919 Abbv->Add(BitCodeAbbrevOp(Record)); 3920 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 3921 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 3922 3923 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 3924 3925 Stream->ExitBlock(); 3926 } 3927 3928 void BitcodeWriter::writeStrtab() { 3929 assert(!WroteStrtab); 3930 3931 std::vector<char> Strtab; 3932 StrtabBuilder.finalizeInOrder(); 3933 Strtab.resize(StrtabBuilder.getSize()); 3934 StrtabBuilder.write((uint8_t *)Strtab.data()); 3935 3936 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 3937 {Strtab.data(), Strtab.size()}); 3938 3939 WroteStrtab = true; 3940 } 3941 3942 void BitcodeWriter::copyStrtab(StringRef Strtab) { 3943 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 3944 WroteStrtab = true; 3945 } 3946 3947 void BitcodeWriter::writeModule(const Module *M, 3948 bool ShouldPreserveUseListOrder, 3949 const ModuleSummaryIndex *Index, 3950 bool GenerateHash, ModuleHash *ModHash) { 3951 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 3952 ShouldPreserveUseListOrder, Index, 3953 GenerateHash, ModHash); 3954 ModuleWriter.write(); 3955 } 3956 3957 /// WriteBitcodeToFile - Write the specified module to the specified output 3958 /// stream. 3959 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3960 bool ShouldPreserveUseListOrder, 3961 const ModuleSummaryIndex *Index, 3962 bool GenerateHash, ModuleHash *ModHash) { 3963 SmallVector<char, 0> Buffer; 3964 Buffer.reserve(256*1024); 3965 3966 // If this is darwin or another generic macho target, reserve space for the 3967 // header. 3968 Triple TT(M->getTargetTriple()); 3969 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3970 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3971 3972 BitcodeWriter Writer(Buffer); 3973 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 3974 ModHash); 3975 Writer.writeStrtab(); 3976 3977 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3978 emitDarwinBCHeaderAndTrailer(Buffer, TT); 3979 3980 // Write the generated bitstream to "Out". 3981 Out.write((char*)&Buffer.front(), Buffer.size()); 3982 } 3983 3984 void IndexBitcodeWriter::write() { 3985 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3986 3987 writeModuleVersion(); 3988 3989 // Write the module paths in the combined index. 3990 writeModStrings(); 3991 3992 // Write the summary combined index records. 3993 writeCombinedGlobalValueSummary(); 3994 3995 Stream.ExitBlock(); 3996 } 3997 3998 // Write the specified module summary index to the given raw output stream, 3999 // where it will be written in a new bitcode block. This is used when 4000 // writing the combined index file for ThinLTO. When writing a subset of the 4001 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4002 void llvm::WriteIndexToFile( 4003 const ModuleSummaryIndex &Index, raw_ostream &Out, 4004 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4005 SmallVector<char, 0> Buffer; 4006 Buffer.reserve(256 * 1024); 4007 4008 BitstreamWriter Stream(Buffer); 4009 writeBitcodeHeader(Stream); 4010 4011 IndexBitcodeWriter IndexWriter(Stream, Index, ModuleToSummariesForIndex); 4012 IndexWriter.write(); 4013 4014 Out.write((char *)&Buffer.front(), Buffer.size()); 4015 } 4016