1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitstream/BitCodes.h" 28 #include "llvm/Bitstream/BitstreamWriter.h" 29 #include "llvm/Bitcode/LLVMBitCodes.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/Object/IRSymtab.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Endian.h" 65 #include "llvm/Support/Error.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/SHA1.h" 69 #include "llvm/Support/TargetRegistry.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <map> 77 #include <memory> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 static cl::opt<unsigned> 85 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 86 cl::desc("Number of metadatas above which we emit an index " 87 "to enable lazy-loading")); 88 89 static cl::opt<bool> WriteRelBFToSummary( 90 "write-relbf-to-summary", cl::Hidden, cl::init(false), 91 cl::desc("Write relative block frequency to function summary ")); 92 93 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 94 95 namespace { 96 97 /// These are manifest constants used by the bitcode writer. They do not need to 98 /// be kept in sync with the reader, but need to be consistent within this file. 99 enum { 100 // VALUE_SYMTAB_BLOCK abbrev id's. 101 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 102 VST_ENTRY_7_ABBREV, 103 VST_ENTRY_6_ABBREV, 104 VST_BBENTRY_6_ABBREV, 105 106 // CONSTANTS_BLOCK abbrev id's. 107 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 108 CONSTANTS_INTEGER_ABBREV, 109 CONSTANTS_CE_CAST_Abbrev, 110 CONSTANTS_NULL_Abbrev, 111 112 // FUNCTION_BLOCK abbrev id's. 113 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 114 FUNCTION_INST_UNOP_ABBREV, 115 FUNCTION_INST_UNOP_FLAGS_ABBREV, 116 FUNCTION_INST_BINOP_ABBREV, 117 FUNCTION_INST_BINOP_FLAGS_ABBREV, 118 FUNCTION_INST_CAST_ABBREV, 119 FUNCTION_INST_RET_VOID_ABBREV, 120 FUNCTION_INST_RET_VAL_ABBREV, 121 FUNCTION_INST_UNREACHABLE_ABBREV, 122 FUNCTION_INST_GEP_ABBREV, 123 }; 124 125 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 126 /// file type. 127 class BitcodeWriterBase { 128 protected: 129 /// The stream created and owned by the client. 130 BitstreamWriter &Stream; 131 132 StringTableBuilder &StrtabBuilder; 133 134 public: 135 /// Constructs a BitcodeWriterBase object that writes to the provided 136 /// \p Stream. 137 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 138 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 139 140 protected: 141 void writeBitcodeHeader(); 142 void writeModuleVersion(); 143 }; 144 145 void BitcodeWriterBase::writeModuleVersion() { 146 // VERSION: [version#] 147 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 148 } 149 150 /// Base class to manage the module bitcode writing, currently subclassed for 151 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 152 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 153 protected: 154 /// The Module to write to bitcode. 155 const Module &M; 156 157 /// Enumerates ids for all values in the module. 158 ValueEnumerator VE; 159 160 /// Optional per-module index to write for ThinLTO. 161 const ModuleSummaryIndex *Index; 162 163 /// Map that holds the correspondence between GUIDs in the summary index, 164 /// that came from indirect call profiles, and a value id generated by this 165 /// class to use in the VST and summary block records. 166 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 167 168 /// Tracks the last value id recorded in the GUIDToValueMap. 169 unsigned GlobalValueId; 170 171 /// Saves the offset of the VSTOffset record that must eventually be 172 /// backpatched with the offset of the actual VST. 173 uint64_t VSTOffsetPlaceholder = 0; 174 175 public: 176 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 177 /// writing to the provided \p Buffer. 178 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 179 BitstreamWriter &Stream, 180 bool ShouldPreserveUseListOrder, 181 const ModuleSummaryIndex *Index) 182 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 183 VE(M, ShouldPreserveUseListOrder), Index(Index) { 184 // Assign ValueIds to any callee values in the index that came from 185 // indirect call profiles and were recorded as a GUID not a Value* 186 // (which would have been assigned an ID by the ValueEnumerator). 187 // The starting ValueId is just after the number of values in the 188 // ValueEnumerator, so that they can be emitted in the VST. 189 GlobalValueId = VE.getValues().size(); 190 if (!Index) 191 return; 192 for (const auto &GUIDSummaryLists : *Index) 193 // Examine all summaries for this GUID. 194 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 195 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 196 // For each call in the function summary, see if the call 197 // is to a GUID (which means it is for an indirect call, 198 // otherwise we would have a Value for it). If so, synthesize 199 // a value id. 200 for (auto &CallEdge : FS->calls()) 201 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 202 assignValueId(CallEdge.first.getGUID()); 203 } 204 205 protected: 206 void writePerModuleGlobalValueSummary(); 207 208 private: 209 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 210 GlobalValueSummary *Summary, 211 unsigned ValueID, 212 unsigned FSCallsAbbrev, 213 unsigned FSCallsProfileAbbrev, 214 const Function &F); 215 void writeModuleLevelReferences(const GlobalVariable &V, 216 SmallVector<uint64_t, 64> &NameVals, 217 unsigned FSModRefsAbbrev, 218 unsigned FSModVTableRefsAbbrev); 219 220 void assignValueId(GlobalValue::GUID ValGUID) { 221 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 222 } 223 224 unsigned getValueId(GlobalValue::GUID ValGUID) { 225 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 226 // Expect that any GUID value had a value Id assigned by an 227 // earlier call to assignValueId. 228 assert(VMI != GUIDToValueIdMap.end() && 229 "GUID does not have assigned value Id"); 230 return VMI->second; 231 } 232 233 // Helper to get the valueId for the type of value recorded in VI. 234 unsigned getValueId(ValueInfo VI) { 235 if (!VI.haveGVs() || !VI.getValue()) 236 return getValueId(VI.getGUID()); 237 return VE.getValueID(VI.getValue()); 238 } 239 240 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 241 }; 242 243 /// Class to manage the bitcode writing for a module. 244 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 245 /// Pointer to the buffer allocated by caller for bitcode writing. 246 const SmallVectorImpl<char> &Buffer; 247 248 /// True if a module hash record should be written. 249 bool GenerateHash; 250 251 /// If non-null, when GenerateHash is true, the resulting hash is written 252 /// into ModHash. 253 ModuleHash *ModHash; 254 255 SHA1 Hasher; 256 257 /// The start bit of the identification block. 258 uint64_t BitcodeStartBit; 259 260 public: 261 /// Constructs a ModuleBitcodeWriter object for the given Module, 262 /// writing to the provided \p Buffer. 263 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 264 StringTableBuilder &StrtabBuilder, 265 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 266 const ModuleSummaryIndex *Index, bool GenerateHash, 267 ModuleHash *ModHash = nullptr) 268 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 269 ShouldPreserveUseListOrder, Index), 270 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 271 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 272 273 /// Emit the current module to the bitstream. 274 void write(); 275 276 private: 277 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 278 279 size_t addToStrtab(StringRef Str); 280 281 void writeAttributeGroupTable(); 282 void writeAttributeTable(); 283 void writeTypeTable(); 284 void writeComdats(); 285 void writeValueSymbolTableForwardDecl(); 286 void writeModuleInfo(); 287 void writeValueAsMetadata(const ValueAsMetadata *MD, 288 SmallVectorImpl<uint64_t> &Record); 289 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 290 unsigned Abbrev); 291 unsigned createDILocationAbbrev(); 292 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 293 unsigned &Abbrev); 294 unsigned createGenericDINodeAbbrev(); 295 void writeGenericDINode(const GenericDINode *N, 296 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 297 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 298 unsigned Abbrev); 299 void writeDIEnumerator(const DIEnumerator *N, 300 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 301 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDIDerivedType(const DIDerivedType *N, 304 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 305 void writeDICompositeType(const DICompositeType *N, 306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 307 void writeDISubroutineType(const DISubroutineType *N, 308 SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 311 unsigned Abbrev); 312 void writeDICompileUnit(const DICompileUnit *N, 313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 314 void writeDISubprogram(const DISubprogram *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 316 void writeDILexicalBlock(const DILexicalBlock *N, 317 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 318 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 319 SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDICommonBlock(const DICommonBlock *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 324 unsigned Abbrev); 325 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 326 unsigned Abbrev); 327 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 332 SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 335 SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIGlobalVariable(const DIGlobalVariable *N, 338 SmallVectorImpl<uint64_t> &Record, 339 unsigned Abbrev); 340 void writeDILocalVariable(const DILocalVariable *N, 341 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 342 void writeDILabel(const DILabel *N, 343 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 344 void writeDIExpression(const DIExpression *N, 345 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 346 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 347 SmallVectorImpl<uint64_t> &Record, 348 unsigned Abbrev); 349 void writeDIObjCProperty(const DIObjCProperty *N, 350 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 351 void writeDIImportedEntity(const DIImportedEntity *N, 352 SmallVectorImpl<uint64_t> &Record, 353 unsigned Abbrev); 354 unsigned createNamedMetadataAbbrev(); 355 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 356 unsigned createMetadataStringsAbbrev(); 357 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 358 SmallVectorImpl<uint64_t> &Record); 359 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 360 SmallVectorImpl<uint64_t> &Record, 361 std::vector<unsigned> *MDAbbrevs = nullptr, 362 std::vector<uint64_t> *IndexPos = nullptr); 363 void writeModuleMetadata(); 364 void writeFunctionMetadata(const Function &F); 365 void writeFunctionMetadataAttachment(const Function &F); 366 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 367 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 368 const GlobalObject &GO); 369 void writeModuleMetadataKinds(); 370 void writeOperandBundleTags(); 371 void writeSyncScopeNames(); 372 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 373 void writeModuleConstants(); 374 bool pushValueAndType(const Value *V, unsigned InstID, 375 SmallVectorImpl<unsigned> &Vals); 376 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 377 void pushValue(const Value *V, unsigned InstID, 378 SmallVectorImpl<unsigned> &Vals); 379 void pushValueSigned(const Value *V, unsigned InstID, 380 SmallVectorImpl<uint64_t> &Vals); 381 void writeInstruction(const Instruction &I, unsigned InstID, 382 SmallVectorImpl<unsigned> &Vals); 383 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 384 void writeGlobalValueSymbolTable( 385 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 386 void writeUseList(UseListOrder &&Order); 387 void writeUseListBlock(const Function *F); 388 void 389 writeFunction(const Function &F, 390 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 391 void writeBlockInfo(); 392 void writeModuleHash(size_t BlockStartPos); 393 394 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 395 return unsigned(SSID); 396 } 397 }; 398 399 /// Class to manage the bitcode writing for a combined index. 400 class IndexBitcodeWriter : public BitcodeWriterBase { 401 /// The combined index to write to bitcode. 402 const ModuleSummaryIndex &Index; 403 404 /// When writing a subset of the index for distributed backends, client 405 /// provides a map of modules to the corresponding GUIDs/summaries to write. 406 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 407 408 /// Map that holds the correspondence between the GUID used in the combined 409 /// index and a value id generated by this class to use in references. 410 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 411 412 /// Tracks the last value id recorded in the GUIDToValueMap. 413 unsigned GlobalValueId = 0; 414 415 public: 416 /// Constructs a IndexBitcodeWriter object for the given combined index, 417 /// writing to the provided \p Buffer. When writing a subset of the index 418 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 419 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 420 const ModuleSummaryIndex &Index, 421 const std::map<std::string, GVSummaryMapTy> 422 *ModuleToSummariesForIndex = nullptr) 423 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 424 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 425 // Assign unique value ids to all summaries to be written, for use 426 // in writing out the call graph edges. Save the mapping from GUID 427 // to the new global value id to use when writing those edges, which 428 // are currently saved in the index in terms of GUID. 429 forEachSummary([&](GVInfo I, bool) { 430 GUIDToValueIdMap[I.first] = ++GlobalValueId; 431 }); 432 } 433 434 /// The below iterator returns the GUID and associated summary. 435 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 436 437 /// Calls the callback for each value GUID and summary to be written to 438 /// bitcode. This hides the details of whether they are being pulled from the 439 /// entire index or just those in a provided ModuleToSummariesForIndex map. 440 template<typename Functor> 441 void forEachSummary(Functor Callback) { 442 if (ModuleToSummariesForIndex) { 443 for (auto &M : *ModuleToSummariesForIndex) 444 for (auto &Summary : M.second) { 445 Callback(Summary, false); 446 // Ensure aliasee is handled, e.g. for assigning a valueId, 447 // even if we are not importing the aliasee directly (the 448 // imported alias will contain a copy of aliasee). 449 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 450 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 451 } 452 } else { 453 for (auto &Summaries : Index) 454 for (auto &Summary : Summaries.second.SummaryList) 455 Callback({Summaries.first, Summary.get()}, false); 456 } 457 } 458 459 /// Calls the callback for each entry in the modulePaths StringMap that 460 /// should be written to the module path string table. This hides the details 461 /// of whether they are being pulled from the entire index or just those in a 462 /// provided ModuleToSummariesForIndex map. 463 template <typename Functor> void forEachModule(Functor Callback) { 464 if (ModuleToSummariesForIndex) { 465 for (const auto &M : *ModuleToSummariesForIndex) { 466 const auto &MPI = Index.modulePaths().find(M.first); 467 if (MPI == Index.modulePaths().end()) { 468 // This should only happen if the bitcode file was empty, in which 469 // case we shouldn't be importing (the ModuleToSummariesForIndex 470 // would only include the module we are writing and index for). 471 assert(ModuleToSummariesForIndex->size() == 1); 472 continue; 473 } 474 Callback(*MPI); 475 } 476 } else { 477 for (const auto &MPSE : Index.modulePaths()) 478 Callback(MPSE); 479 } 480 } 481 482 /// Main entry point for writing a combined index to bitcode. 483 void write(); 484 485 private: 486 void writeModStrings(); 487 void writeCombinedGlobalValueSummary(); 488 489 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 490 auto VMI = GUIDToValueIdMap.find(ValGUID); 491 if (VMI == GUIDToValueIdMap.end()) 492 return None; 493 return VMI->second; 494 } 495 496 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 497 }; 498 499 } // end anonymous namespace 500 501 static unsigned getEncodedCastOpcode(unsigned Opcode) { 502 switch (Opcode) { 503 default: llvm_unreachable("Unknown cast instruction!"); 504 case Instruction::Trunc : return bitc::CAST_TRUNC; 505 case Instruction::ZExt : return bitc::CAST_ZEXT; 506 case Instruction::SExt : return bitc::CAST_SEXT; 507 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 508 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 509 case Instruction::UIToFP : return bitc::CAST_UITOFP; 510 case Instruction::SIToFP : return bitc::CAST_SITOFP; 511 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 512 case Instruction::FPExt : return bitc::CAST_FPEXT; 513 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 514 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 515 case Instruction::BitCast : return bitc::CAST_BITCAST; 516 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 517 } 518 } 519 520 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 521 switch (Opcode) { 522 default: llvm_unreachable("Unknown binary instruction!"); 523 case Instruction::FNeg: return bitc::UNOP_FNEG; 524 case Instruction::Freeze: return bitc::UNOP_FREEZE; 525 } 526 } 527 528 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 529 switch (Opcode) { 530 default: llvm_unreachable("Unknown binary instruction!"); 531 case Instruction::Add: 532 case Instruction::FAdd: return bitc::BINOP_ADD; 533 case Instruction::Sub: 534 case Instruction::FSub: return bitc::BINOP_SUB; 535 case Instruction::Mul: 536 case Instruction::FMul: return bitc::BINOP_MUL; 537 case Instruction::UDiv: return bitc::BINOP_UDIV; 538 case Instruction::FDiv: 539 case Instruction::SDiv: return bitc::BINOP_SDIV; 540 case Instruction::URem: return bitc::BINOP_UREM; 541 case Instruction::FRem: 542 case Instruction::SRem: return bitc::BINOP_SREM; 543 case Instruction::Shl: return bitc::BINOP_SHL; 544 case Instruction::LShr: return bitc::BINOP_LSHR; 545 case Instruction::AShr: return bitc::BINOP_ASHR; 546 case Instruction::And: return bitc::BINOP_AND; 547 case Instruction::Or: return bitc::BINOP_OR; 548 case Instruction::Xor: return bitc::BINOP_XOR; 549 } 550 } 551 552 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 553 switch (Op) { 554 default: llvm_unreachable("Unknown RMW operation!"); 555 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 556 case AtomicRMWInst::Add: return bitc::RMW_ADD; 557 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 558 case AtomicRMWInst::And: return bitc::RMW_AND; 559 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 560 case AtomicRMWInst::Or: return bitc::RMW_OR; 561 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 562 case AtomicRMWInst::Max: return bitc::RMW_MAX; 563 case AtomicRMWInst::Min: return bitc::RMW_MIN; 564 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 565 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 566 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 567 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 568 } 569 } 570 571 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 572 switch (Ordering) { 573 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 574 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 575 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 576 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 577 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 578 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 579 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 580 } 581 llvm_unreachable("Invalid ordering"); 582 } 583 584 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 585 StringRef Str, unsigned AbbrevToUse) { 586 SmallVector<unsigned, 64> Vals; 587 588 // Code: [strchar x N] 589 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 590 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 591 AbbrevToUse = 0; 592 Vals.push_back(Str[i]); 593 } 594 595 // Emit the finished record. 596 Stream.EmitRecord(Code, Vals, AbbrevToUse); 597 } 598 599 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 600 switch (Kind) { 601 case Attribute::Alignment: 602 return bitc::ATTR_KIND_ALIGNMENT; 603 case Attribute::AllocSize: 604 return bitc::ATTR_KIND_ALLOC_SIZE; 605 case Attribute::AlwaysInline: 606 return bitc::ATTR_KIND_ALWAYS_INLINE; 607 case Attribute::ArgMemOnly: 608 return bitc::ATTR_KIND_ARGMEMONLY; 609 case Attribute::Builtin: 610 return bitc::ATTR_KIND_BUILTIN; 611 case Attribute::ByVal: 612 return bitc::ATTR_KIND_BY_VAL; 613 case Attribute::Convergent: 614 return bitc::ATTR_KIND_CONVERGENT; 615 case Attribute::InAlloca: 616 return bitc::ATTR_KIND_IN_ALLOCA; 617 case Attribute::Cold: 618 return bitc::ATTR_KIND_COLD; 619 case Attribute::InaccessibleMemOnly: 620 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 621 case Attribute::InaccessibleMemOrArgMemOnly: 622 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 623 case Attribute::InlineHint: 624 return bitc::ATTR_KIND_INLINE_HINT; 625 case Attribute::InReg: 626 return bitc::ATTR_KIND_IN_REG; 627 case Attribute::JumpTable: 628 return bitc::ATTR_KIND_JUMP_TABLE; 629 case Attribute::MinSize: 630 return bitc::ATTR_KIND_MIN_SIZE; 631 case Attribute::Naked: 632 return bitc::ATTR_KIND_NAKED; 633 case Attribute::Nest: 634 return bitc::ATTR_KIND_NEST; 635 case Attribute::NoAlias: 636 return bitc::ATTR_KIND_NO_ALIAS; 637 case Attribute::NoBuiltin: 638 return bitc::ATTR_KIND_NO_BUILTIN; 639 case Attribute::NoCapture: 640 return bitc::ATTR_KIND_NO_CAPTURE; 641 case Attribute::NoDuplicate: 642 return bitc::ATTR_KIND_NO_DUPLICATE; 643 case Attribute::NoFree: 644 return bitc::ATTR_KIND_NOFREE; 645 case Attribute::NoImplicitFloat: 646 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 647 case Attribute::NoInline: 648 return bitc::ATTR_KIND_NO_INLINE; 649 case Attribute::NoRecurse: 650 return bitc::ATTR_KIND_NO_RECURSE; 651 case Attribute::NonLazyBind: 652 return bitc::ATTR_KIND_NON_LAZY_BIND; 653 case Attribute::NonNull: 654 return bitc::ATTR_KIND_NON_NULL; 655 case Attribute::Dereferenceable: 656 return bitc::ATTR_KIND_DEREFERENCEABLE; 657 case Attribute::DereferenceableOrNull: 658 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 659 case Attribute::NoRedZone: 660 return bitc::ATTR_KIND_NO_RED_ZONE; 661 case Attribute::NoReturn: 662 return bitc::ATTR_KIND_NO_RETURN; 663 case Attribute::NoSync: 664 return bitc::ATTR_KIND_NOSYNC; 665 case Attribute::NoCfCheck: 666 return bitc::ATTR_KIND_NOCF_CHECK; 667 case Attribute::NoUnwind: 668 return bitc::ATTR_KIND_NO_UNWIND; 669 case Attribute::OptForFuzzing: 670 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 671 case Attribute::OptimizeForSize: 672 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 673 case Attribute::OptimizeNone: 674 return bitc::ATTR_KIND_OPTIMIZE_NONE; 675 case Attribute::ReadNone: 676 return bitc::ATTR_KIND_READ_NONE; 677 case Attribute::ReadOnly: 678 return bitc::ATTR_KIND_READ_ONLY; 679 case Attribute::Returned: 680 return bitc::ATTR_KIND_RETURNED; 681 case Attribute::ReturnsTwice: 682 return bitc::ATTR_KIND_RETURNS_TWICE; 683 case Attribute::SExt: 684 return bitc::ATTR_KIND_S_EXT; 685 case Attribute::Speculatable: 686 return bitc::ATTR_KIND_SPECULATABLE; 687 case Attribute::StackAlignment: 688 return bitc::ATTR_KIND_STACK_ALIGNMENT; 689 case Attribute::StackProtect: 690 return bitc::ATTR_KIND_STACK_PROTECT; 691 case Attribute::StackProtectReq: 692 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 693 case Attribute::StackProtectStrong: 694 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 695 case Attribute::SafeStack: 696 return bitc::ATTR_KIND_SAFESTACK; 697 case Attribute::ShadowCallStack: 698 return bitc::ATTR_KIND_SHADOWCALLSTACK; 699 case Attribute::StrictFP: 700 return bitc::ATTR_KIND_STRICT_FP; 701 case Attribute::StructRet: 702 return bitc::ATTR_KIND_STRUCT_RET; 703 case Attribute::SanitizeAddress: 704 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 705 case Attribute::SanitizeHWAddress: 706 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 707 case Attribute::SanitizeThread: 708 return bitc::ATTR_KIND_SANITIZE_THREAD; 709 case Attribute::SanitizeMemory: 710 return bitc::ATTR_KIND_SANITIZE_MEMORY; 711 case Attribute::SpeculativeLoadHardening: 712 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 713 case Attribute::SwiftError: 714 return bitc::ATTR_KIND_SWIFT_ERROR; 715 case Attribute::SwiftSelf: 716 return bitc::ATTR_KIND_SWIFT_SELF; 717 case Attribute::UWTable: 718 return bitc::ATTR_KIND_UW_TABLE; 719 case Attribute::WillReturn: 720 return bitc::ATTR_KIND_WILLRETURN; 721 case Attribute::WriteOnly: 722 return bitc::ATTR_KIND_WRITEONLY; 723 case Attribute::ZExt: 724 return bitc::ATTR_KIND_Z_EXT; 725 case Attribute::ImmArg: 726 return bitc::ATTR_KIND_IMMARG; 727 case Attribute::SanitizeMemTag: 728 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 729 case Attribute::EndAttrKinds: 730 llvm_unreachable("Can not encode end-attribute kinds marker."); 731 case Attribute::None: 732 llvm_unreachable("Can not encode none-attribute."); 733 } 734 735 llvm_unreachable("Trying to encode unknown attribute"); 736 } 737 738 void ModuleBitcodeWriter::writeAttributeGroupTable() { 739 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 740 VE.getAttributeGroups(); 741 if (AttrGrps.empty()) return; 742 743 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 744 745 SmallVector<uint64_t, 64> Record; 746 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 747 unsigned AttrListIndex = Pair.first; 748 AttributeSet AS = Pair.second; 749 Record.push_back(VE.getAttributeGroupID(Pair)); 750 Record.push_back(AttrListIndex); 751 752 for (Attribute Attr : AS) { 753 if (Attr.isEnumAttribute()) { 754 Record.push_back(0); 755 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 756 } else if (Attr.isIntAttribute()) { 757 Record.push_back(1); 758 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 759 Record.push_back(Attr.getValueAsInt()); 760 } else if (Attr.isStringAttribute()) { 761 StringRef Kind = Attr.getKindAsString(); 762 StringRef Val = Attr.getValueAsString(); 763 764 Record.push_back(Val.empty() ? 3 : 4); 765 Record.append(Kind.begin(), Kind.end()); 766 Record.push_back(0); 767 if (!Val.empty()) { 768 Record.append(Val.begin(), Val.end()); 769 Record.push_back(0); 770 } 771 } else { 772 assert(Attr.isTypeAttribute()); 773 Type *Ty = Attr.getValueAsType(); 774 Record.push_back(Ty ? 6 : 5); 775 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 776 if (Ty) 777 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 778 } 779 } 780 781 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 782 Record.clear(); 783 } 784 785 Stream.ExitBlock(); 786 } 787 788 void ModuleBitcodeWriter::writeAttributeTable() { 789 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 790 if (Attrs.empty()) return; 791 792 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 793 794 SmallVector<uint64_t, 64> Record; 795 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 796 AttributeList AL = Attrs[i]; 797 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 798 AttributeSet AS = AL.getAttributes(i); 799 if (AS.hasAttributes()) 800 Record.push_back(VE.getAttributeGroupID({i, AS})); 801 } 802 803 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 804 Record.clear(); 805 } 806 807 Stream.ExitBlock(); 808 } 809 810 /// WriteTypeTable - Write out the type table for a module. 811 void ModuleBitcodeWriter::writeTypeTable() { 812 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 813 814 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 815 SmallVector<uint64_t, 64> TypeVals; 816 817 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 818 819 // Abbrev for TYPE_CODE_POINTER. 820 auto Abbv = std::make_shared<BitCodeAbbrev>(); 821 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 823 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 824 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 825 826 // Abbrev for TYPE_CODE_FUNCTION. 827 Abbv = std::make_shared<BitCodeAbbrev>(); 828 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 832 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 833 834 // Abbrev for TYPE_CODE_STRUCT_ANON. 835 Abbv = std::make_shared<BitCodeAbbrev>(); 836 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 840 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 841 842 // Abbrev for TYPE_CODE_STRUCT_NAME. 843 Abbv = std::make_shared<BitCodeAbbrev>(); 844 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 846 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 847 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 848 849 // Abbrev for TYPE_CODE_STRUCT_NAMED. 850 Abbv = std::make_shared<BitCodeAbbrev>(); 851 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 852 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 855 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 856 857 // Abbrev for TYPE_CODE_ARRAY. 858 Abbv = std::make_shared<BitCodeAbbrev>(); 859 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 862 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 863 864 // Emit an entry count so the reader can reserve space. 865 TypeVals.push_back(TypeList.size()); 866 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 867 TypeVals.clear(); 868 869 // Loop over all of the types, emitting each in turn. 870 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 871 Type *T = TypeList[i]; 872 int AbbrevToUse = 0; 873 unsigned Code = 0; 874 875 switch (T->getTypeID()) { 876 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 877 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 878 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 879 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 880 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 881 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 882 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 883 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 884 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 885 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 886 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 887 case Type::IntegerTyID: 888 // INTEGER: [width] 889 Code = bitc::TYPE_CODE_INTEGER; 890 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 891 break; 892 case Type::PointerTyID: { 893 PointerType *PTy = cast<PointerType>(T); 894 // POINTER: [pointee type, address space] 895 Code = bitc::TYPE_CODE_POINTER; 896 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 897 unsigned AddressSpace = PTy->getAddressSpace(); 898 TypeVals.push_back(AddressSpace); 899 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 900 break; 901 } 902 case Type::FunctionTyID: { 903 FunctionType *FT = cast<FunctionType>(T); 904 // FUNCTION: [isvararg, retty, paramty x N] 905 Code = bitc::TYPE_CODE_FUNCTION; 906 TypeVals.push_back(FT->isVarArg()); 907 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 908 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 909 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 910 AbbrevToUse = FunctionAbbrev; 911 break; 912 } 913 case Type::StructTyID: { 914 StructType *ST = cast<StructType>(T); 915 // STRUCT: [ispacked, eltty x N] 916 TypeVals.push_back(ST->isPacked()); 917 // Output all of the element types. 918 for (StructType::element_iterator I = ST->element_begin(), 919 E = ST->element_end(); I != E; ++I) 920 TypeVals.push_back(VE.getTypeID(*I)); 921 922 if (ST->isLiteral()) { 923 Code = bitc::TYPE_CODE_STRUCT_ANON; 924 AbbrevToUse = StructAnonAbbrev; 925 } else { 926 if (ST->isOpaque()) { 927 Code = bitc::TYPE_CODE_OPAQUE; 928 } else { 929 Code = bitc::TYPE_CODE_STRUCT_NAMED; 930 AbbrevToUse = StructNamedAbbrev; 931 } 932 933 // Emit the name if it is present. 934 if (!ST->getName().empty()) 935 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 936 StructNameAbbrev); 937 } 938 break; 939 } 940 case Type::ArrayTyID: { 941 ArrayType *AT = cast<ArrayType>(T); 942 // ARRAY: [numelts, eltty] 943 Code = bitc::TYPE_CODE_ARRAY; 944 TypeVals.push_back(AT->getNumElements()); 945 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 946 AbbrevToUse = ArrayAbbrev; 947 break; 948 } 949 case Type::VectorTyID: { 950 VectorType *VT = cast<VectorType>(T); 951 // VECTOR [numelts, eltty] or 952 // [numelts, eltty, scalable] 953 Code = bitc::TYPE_CODE_VECTOR; 954 TypeVals.push_back(VT->getNumElements()); 955 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 956 if (VT->isScalable()) 957 TypeVals.push_back(VT->isScalable()); 958 break; 959 } 960 } 961 962 // Emit the finished record. 963 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 964 TypeVals.clear(); 965 } 966 967 Stream.ExitBlock(); 968 } 969 970 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 971 switch (Linkage) { 972 case GlobalValue::ExternalLinkage: 973 return 0; 974 case GlobalValue::WeakAnyLinkage: 975 return 16; 976 case GlobalValue::AppendingLinkage: 977 return 2; 978 case GlobalValue::InternalLinkage: 979 return 3; 980 case GlobalValue::LinkOnceAnyLinkage: 981 return 18; 982 case GlobalValue::ExternalWeakLinkage: 983 return 7; 984 case GlobalValue::CommonLinkage: 985 return 8; 986 case GlobalValue::PrivateLinkage: 987 return 9; 988 case GlobalValue::WeakODRLinkage: 989 return 17; 990 case GlobalValue::LinkOnceODRLinkage: 991 return 19; 992 case GlobalValue::AvailableExternallyLinkage: 993 return 12; 994 } 995 llvm_unreachable("Invalid linkage"); 996 } 997 998 static unsigned getEncodedLinkage(const GlobalValue &GV) { 999 return getEncodedLinkage(GV.getLinkage()); 1000 } 1001 1002 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1003 uint64_t RawFlags = 0; 1004 RawFlags |= Flags.ReadNone; 1005 RawFlags |= (Flags.ReadOnly << 1); 1006 RawFlags |= (Flags.NoRecurse << 2); 1007 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1008 RawFlags |= (Flags.NoInline << 4); 1009 RawFlags |= (Flags.AlwaysInline << 5); 1010 return RawFlags; 1011 } 1012 1013 // Decode the flags for GlobalValue in the summary 1014 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1015 uint64_t RawFlags = 0; 1016 1017 RawFlags |= Flags.NotEligibleToImport; // bool 1018 RawFlags |= (Flags.Live << 1); 1019 RawFlags |= (Flags.DSOLocal << 2); 1020 RawFlags |= (Flags.CanAutoHide << 3); 1021 1022 // Linkage don't need to be remapped at that time for the summary. Any future 1023 // change to the getEncodedLinkage() function will need to be taken into 1024 // account here as well. 1025 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1026 1027 return RawFlags; 1028 } 1029 1030 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1031 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1); 1032 return RawFlags; 1033 } 1034 1035 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1036 switch (GV.getVisibility()) { 1037 case GlobalValue::DefaultVisibility: return 0; 1038 case GlobalValue::HiddenVisibility: return 1; 1039 case GlobalValue::ProtectedVisibility: return 2; 1040 } 1041 llvm_unreachable("Invalid visibility"); 1042 } 1043 1044 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1045 switch (GV.getDLLStorageClass()) { 1046 case GlobalValue::DefaultStorageClass: return 0; 1047 case GlobalValue::DLLImportStorageClass: return 1; 1048 case GlobalValue::DLLExportStorageClass: return 2; 1049 } 1050 llvm_unreachable("Invalid DLL storage class"); 1051 } 1052 1053 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1054 switch (GV.getThreadLocalMode()) { 1055 case GlobalVariable::NotThreadLocal: return 0; 1056 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1057 case GlobalVariable::LocalDynamicTLSModel: return 2; 1058 case GlobalVariable::InitialExecTLSModel: return 3; 1059 case GlobalVariable::LocalExecTLSModel: return 4; 1060 } 1061 llvm_unreachable("Invalid TLS model"); 1062 } 1063 1064 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1065 switch (C.getSelectionKind()) { 1066 case Comdat::Any: 1067 return bitc::COMDAT_SELECTION_KIND_ANY; 1068 case Comdat::ExactMatch: 1069 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1070 case Comdat::Largest: 1071 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1072 case Comdat::NoDuplicates: 1073 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1074 case Comdat::SameSize: 1075 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1076 } 1077 llvm_unreachable("Invalid selection kind"); 1078 } 1079 1080 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1081 switch (GV.getUnnamedAddr()) { 1082 case GlobalValue::UnnamedAddr::None: return 0; 1083 case GlobalValue::UnnamedAddr::Local: return 2; 1084 case GlobalValue::UnnamedAddr::Global: return 1; 1085 } 1086 llvm_unreachable("Invalid unnamed_addr"); 1087 } 1088 1089 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1090 if (GenerateHash) 1091 Hasher.update(Str); 1092 return StrtabBuilder.add(Str); 1093 } 1094 1095 void ModuleBitcodeWriter::writeComdats() { 1096 SmallVector<unsigned, 64> Vals; 1097 for (const Comdat *C : VE.getComdats()) { 1098 // COMDAT: [strtab offset, strtab size, selection_kind] 1099 Vals.push_back(addToStrtab(C->getName())); 1100 Vals.push_back(C->getName().size()); 1101 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1102 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1103 Vals.clear(); 1104 } 1105 } 1106 1107 /// Write a record that will eventually hold the word offset of the 1108 /// module-level VST. For now the offset is 0, which will be backpatched 1109 /// after the real VST is written. Saves the bit offset to backpatch. 1110 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1111 // Write a placeholder value in for the offset of the real VST, 1112 // which is written after the function blocks so that it can include 1113 // the offset of each function. The placeholder offset will be 1114 // updated when the real VST is written. 1115 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1116 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1117 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1118 // hold the real VST offset. Must use fixed instead of VBR as we don't 1119 // know how many VBR chunks to reserve ahead of time. 1120 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1121 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1122 1123 // Emit the placeholder 1124 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1125 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1126 1127 // Compute and save the bit offset to the placeholder, which will be 1128 // patched when the real VST is written. We can simply subtract the 32-bit 1129 // fixed size from the current bit number to get the location to backpatch. 1130 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1131 } 1132 1133 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1134 1135 /// Determine the encoding to use for the given string name and length. 1136 static StringEncoding getStringEncoding(StringRef Str) { 1137 bool isChar6 = true; 1138 for (char C : Str) { 1139 if (isChar6) 1140 isChar6 = BitCodeAbbrevOp::isChar6(C); 1141 if ((unsigned char)C & 128) 1142 // don't bother scanning the rest. 1143 return SE_Fixed8; 1144 } 1145 if (isChar6) 1146 return SE_Char6; 1147 return SE_Fixed7; 1148 } 1149 1150 /// Emit top-level description of module, including target triple, inline asm, 1151 /// descriptors for global variables, and function prototype info. 1152 /// Returns the bit offset to backpatch with the location of the real VST. 1153 void ModuleBitcodeWriter::writeModuleInfo() { 1154 // Emit various pieces of data attached to a module. 1155 if (!M.getTargetTriple().empty()) 1156 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1157 0 /*TODO*/); 1158 const std::string &DL = M.getDataLayoutStr(); 1159 if (!DL.empty()) 1160 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1161 if (!M.getModuleInlineAsm().empty()) 1162 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1163 0 /*TODO*/); 1164 1165 // Emit information about sections and GC, computing how many there are. Also 1166 // compute the maximum alignment value. 1167 std::map<std::string, unsigned> SectionMap; 1168 std::map<std::string, unsigned> GCMap; 1169 unsigned MaxAlignment = 0; 1170 unsigned MaxGlobalType = 0; 1171 for (const GlobalValue &GV : M.globals()) { 1172 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1173 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1174 if (GV.hasSection()) { 1175 // Give section names unique ID's. 1176 unsigned &Entry = SectionMap[GV.getSection()]; 1177 if (!Entry) { 1178 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1179 0 /*TODO*/); 1180 Entry = SectionMap.size(); 1181 } 1182 } 1183 } 1184 for (const Function &F : M) { 1185 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1186 if (F.hasSection()) { 1187 // Give section names unique ID's. 1188 unsigned &Entry = SectionMap[F.getSection()]; 1189 if (!Entry) { 1190 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1191 0 /*TODO*/); 1192 Entry = SectionMap.size(); 1193 } 1194 } 1195 if (F.hasGC()) { 1196 // Same for GC names. 1197 unsigned &Entry = GCMap[F.getGC()]; 1198 if (!Entry) { 1199 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1200 0 /*TODO*/); 1201 Entry = GCMap.size(); 1202 } 1203 } 1204 } 1205 1206 // Emit abbrev for globals, now that we know # sections and max alignment. 1207 unsigned SimpleGVarAbbrev = 0; 1208 if (!M.global_empty()) { 1209 // Add an abbrev for common globals with no visibility or thread localness. 1210 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1211 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1215 Log2_32_Ceil(MaxGlobalType+1))); 1216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1217 //| explicitType << 1 1218 //| constant 1219 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1221 if (MaxAlignment == 0) // Alignment. 1222 Abbv->Add(BitCodeAbbrevOp(0)); 1223 else { 1224 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1226 Log2_32_Ceil(MaxEncAlignment+1))); 1227 } 1228 if (SectionMap.empty()) // Section. 1229 Abbv->Add(BitCodeAbbrevOp(0)); 1230 else 1231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1232 Log2_32_Ceil(SectionMap.size()+1))); 1233 // Don't bother emitting vis + thread local. 1234 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1235 } 1236 1237 SmallVector<unsigned, 64> Vals; 1238 // Emit the module's source file name. 1239 { 1240 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1241 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1242 if (Bits == SE_Char6) 1243 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1244 else if (Bits == SE_Fixed7) 1245 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1246 1247 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1248 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1249 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1251 Abbv->Add(AbbrevOpToUse); 1252 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1253 1254 for (const auto P : M.getSourceFileName()) 1255 Vals.push_back((unsigned char)P); 1256 1257 // Emit the finished record. 1258 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1259 Vals.clear(); 1260 } 1261 1262 // Emit the global variable information. 1263 for (const GlobalVariable &GV : M.globals()) { 1264 unsigned AbbrevToUse = 0; 1265 1266 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1267 // linkage, alignment, section, visibility, threadlocal, 1268 // unnamed_addr, externally_initialized, dllstorageclass, 1269 // comdat, attributes, DSO_Local] 1270 Vals.push_back(addToStrtab(GV.getName())); 1271 Vals.push_back(GV.getName().size()); 1272 Vals.push_back(VE.getTypeID(GV.getValueType())); 1273 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1274 Vals.push_back(GV.isDeclaration() ? 0 : 1275 (VE.getValueID(GV.getInitializer()) + 1)); 1276 Vals.push_back(getEncodedLinkage(GV)); 1277 Vals.push_back(Log2_32(GV.getAlignment())+1); 1278 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1279 if (GV.isThreadLocal() || 1280 GV.getVisibility() != GlobalValue::DefaultVisibility || 1281 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1282 GV.isExternallyInitialized() || 1283 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1284 GV.hasComdat() || 1285 GV.hasAttributes() || 1286 GV.isDSOLocal() || 1287 GV.hasPartition()) { 1288 Vals.push_back(getEncodedVisibility(GV)); 1289 Vals.push_back(getEncodedThreadLocalMode(GV)); 1290 Vals.push_back(getEncodedUnnamedAddr(GV)); 1291 Vals.push_back(GV.isExternallyInitialized()); 1292 Vals.push_back(getEncodedDLLStorageClass(GV)); 1293 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1294 1295 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1296 Vals.push_back(VE.getAttributeListID(AL)); 1297 1298 Vals.push_back(GV.isDSOLocal()); 1299 Vals.push_back(addToStrtab(GV.getPartition())); 1300 Vals.push_back(GV.getPartition().size()); 1301 } else { 1302 AbbrevToUse = SimpleGVarAbbrev; 1303 } 1304 1305 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1306 Vals.clear(); 1307 } 1308 1309 // Emit the function proto information. 1310 for (const Function &F : M) { 1311 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1312 // linkage, paramattrs, alignment, section, visibility, gc, 1313 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1314 // prefixdata, personalityfn, DSO_Local, addrspace] 1315 Vals.push_back(addToStrtab(F.getName())); 1316 Vals.push_back(F.getName().size()); 1317 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1318 Vals.push_back(F.getCallingConv()); 1319 Vals.push_back(F.isDeclaration()); 1320 Vals.push_back(getEncodedLinkage(F)); 1321 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1322 Vals.push_back(Log2_32(F.getAlignment())+1); 1323 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1324 Vals.push_back(getEncodedVisibility(F)); 1325 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1326 Vals.push_back(getEncodedUnnamedAddr(F)); 1327 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1328 : 0); 1329 Vals.push_back(getEncodedDLLStorageClass(F)); 1330 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1331 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1332 : 0); 1333 Vals.push_back( 1334 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1335 1336 Vals.push_back(F.isDSOLocal()); 1337 Vals.push_back(F.getAddressSpace()); 1338 Vals.push_back(addToStrtab(F.getPartition())); 1339 Vals.push_back(F.getPartition().size()); 1340 1341 unsigned AbbrevToUse = 0; 1342 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1343 Vals.clear(); 1344 } 1345 1346 // Emit the alias information. 1347 for (const GlobalAlias &A : M.aliases()) { 1348 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1349 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1350 // DSO_Local] 1351 Vals.push_back(addToStrtab(A.getName())); 1352 Vals.push_back(A.getName().size()); 1353 Vals.push_back(VE.getTypeID(A.getValueType())); 1354 Vals.push_back(A.getType()->getAddressSpace()); 1355 Vals.push_back(VE.getValueID(A.getAliasee())); 1356 Vals.push_back(getEncodedLinkage(A)); 1357 Vals.push_back(getEncodedVisibility(A)); 1358 Vals.push_back(getEncodedDLLStorageClass(A)); 1359 Vals.push_back(getEncodedThreadLocalMode(A)); 1360 Vals.push_back(getEncodedUnnamedAddr(A)); 1361 Vals.push_back(A.isDSOLocal()); 1362 Vals.push_back(addToStrtab(A.getPartition())); 1363 Vals.push_back(A.getPartition().size()); 1364 1365 unsigned AbbrevToUse = 0; 1366 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1367 Vals.clear(); 1368 } 1369 1370 // Emit the ifunc information. 1371 for (const GlobalIFunc &I : M.ifuncs()) { 1372 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1373 // val#, linkage, visibility, DSO_Local] 1374 Vals.push_back(addToStrtab(I.getName())); 1375 Vals.push_back(I.getName().size()); 1376 Vals.push_back(VE.getTypeID(I.getValueType())); 1377 Vals.push_back(I.getType()->getAddressSpace()); 1378 Vals.push_back(VE.getValueID(I.getResolver())); 1379 Vals.push_back(getEncodedLinkage(I)); 1380 Vals.push_back(getEncodedVisibility(I)); 1381 Vals.push_back(I.isDSOLocal()); 1382 Vals.push_back(addToStrtab(I.getPartition())); 1383 Vals.push_back(I.getPartition().size()); 1384 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1385 Vals.clear(); 1386 } 1387 1388 writeValueSymbolTableForwardDecl(); 1389 } 1390 1391 static uint64_t getOptimizationFlags(const Value *V) { 1392 uint64_t Flags = 0; 1393 1394 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1395 if (OBO->hasNoSignedWrap()) 1396 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1397 if (OBO->hasNoUnsignedWrap()) 1398 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1399 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1400 if (PEO->isExact()) 1401 Flags |= 1 << bitc::PEO_EXACT; 1402 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1403 if (FPMO->hasAllowReassoc()) 1404 Flags |= bitc::AllowReassoc; 1405 if (FPMO->hasNoNaNs()) 1406 Flags |= bitc::NoNaNs; 1407 if (FPMO->hasNoInfs()) 1408 Flags |= bitc::NoInfs; 1409 if (FPMO->hasNoSignedZeros()) 1410 Flags |= bitc::NoSignedZeros; 1411 if (FPMO->hasAllowReciprocal()) 1412 Flags |= bitc::AllowReciprocal; 1413 if (FPMO->hasAllowContract()) 1414 Flags |= bitc::AllowContract; 1415 if (FPMO->hasApproxFunc()) 1416 Flags |= bitc::ApproxFunc; 1417 } 1418 1419 return Flags; 1420 } 1421 1422 void ModuleBitcodeWriter::writeValueAsMetadata( 1423 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1424 // Mimic an MDNode with a value as one operand. 1425 Value *V = MD->getValue(); 1426 Record.push_back(VE.getTypeID(V->getType())); 1427 Record.push_back(VE.getValueID(V)); 1428 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1429 Record.clear(); 1430 } 1431 1432 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1433 SmallVectorImpl<uint64_t> &Record, 1434 unsigned Abbrev) { 1435 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1436 Metadata *MD = N->getOperand(i); 1437 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1438 "Unexpected function-local metadata"); 1439 Record.push_back(VE.getMetadataOrNullID(MD)); 1440 } 1441 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1442 : bitc::METADATA_NODE, 1443 Record, Abbrev); 1444 Record.clear(); 1445 } 1446 1447 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1448 // Assume the column is usually under 128, and always output the inlined-at 1449 // location (it's never more expensive than building an array size 1). 1450 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1451 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1458 return Stream.EmitAbbrev(std::move(Abbv)); 1459 } 1460 1461 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1462 SmallVectorImpl<uint64_t> &Record, 1463 unsigned &Abbrev) { 1464 if (!Abbrev) 1465 Abbrev = createDILocationAbbrev(); 1466 1467 Record.push_back(N->isDistinct()); 1468 Record.push_back(N->getLine()); 1469 Record.push_back(N->getColumn()); 1470 Record.push_back(VE.getMetadataID(N->getScope())); 1471 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1472 Record.push_back(N->isImplicitCode()); 1473 1474 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1475 Record.clear(); 1476 } 1477 1478 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1479 // Assume the column is usually under 128, and always output the inlined-at 1480 // location (it's never more expensive than building an array size 1). 1481 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1482 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1484 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1485 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1489 return Stream.EmitAbbrev(std::move(Abbv)); 1490 } 1491 1492 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1493 SmallVectorImpl<uint64_t> &Record, 1494 unsigned &Abbrev) { 1495 if (!Abbrev) 1496 Abbrev = createGenericDINodeAbbrev(); 1497 1498 Record.push_back(N->isDistinct()); 1499 Record.push_back(N->getTag()); 1500 Record.push_back(0); // Per-tag version field; unused for now. 1501 1502 for (auto &I : N->operands()) 1503 Record.push_back(VE.getMetadataOrNullID(I)); 1504 1505 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1506 Record.clear(); 1507 } 1508 1509 static uint64_t rotateSign(int64_t I) { 1510 uint64_t U = I; 1511 return I < 0 ? ~(U << 1) : U << 1; 1512 } 1513 1514 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1515 SmallVectorImpl<uint64_t> &Record, 1516 unsigned Abbrev) { 1517 const uint64_t Version = 1 << 1; 1518 Record.push_back((uint64_t)N->isDistinct() | Version); 1519 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1520 Record.push_back(rotateSign(N->getLowerBound())); 1521 1522 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1523 Record.clear(); 1524 } 1525 1526 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1527 SmallVectorImpl<uint64_t> &Record, 1528 unsigned Abbrev) { 1529 Record.push_back((N->isUnsigned() << 1) | N->isDistinct()); 1530 Record.push_back(rotateSign(N->getValue())); 1531 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1532 1533 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1534 Record.clear(); 1535 } 1536 1537 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1538 SmallVectorImpl<uint64_t> &Record, 1539 unsigned Abbrev) { 1540 Record.push_back(N->isDistinct()); 1541 Record.push_back(N->getTag()); 1542 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1543 Record.push_back(N->getSizeInBits()); 1544 Record.push_back(N->getAlignInBits()); 1545 Record.push_back(N->getEncoding()); 1546 Record.push_back(N->getFlags()); 1547 1548 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1549 Record.clear(); 1550 } 1551 1552 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1553 SmallVectorImpl<uint64_t> &Record, 1554 unsigned Abbrev) { 1555 Record.push_back(N->isDistinct()); 1556 Record.push_back(N->getTag()); 1557 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1558 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1559 Record.push_back(N->getLine()); 1560 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1561 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1562 Record.push_back(N->getSizeInBits()); 1563 Record.push_back(N->getAlignInBits()); 1564 Record.push_back(N->getOffsetInBits()); 1565 Record.push_back(N->getFlags()); 1566 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1567 1568 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1569 // that there is no DWARF address space associated with DIDerivedType. 1570 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1571 Record.push_back(*DWARFAddressSpace + 1); 1572 else 1573 Record.push_back(0); 1574 1575 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1576 Record.clear(); 1577 } 1578 1579 void ModuleBitcodeWriter::writeDICompositeType( 1580 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1581 unsigned Abbrev) { 1582 const unsigned IsNotUsedInOldTypeRef = 0x2; 1583 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1584 Record.push_back(N->getTag()); 1585 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1586 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1587 Record.push_back(N->getLine()); 1588 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1589 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1590 Record.push_back(N->getSizeInBits()); 1591 Record.push_back(N->getAlignInBits()); 1592 Record.push_back(N->getOffsetInBits()); 1593 Record.push_back(N->getFlags()); 1594 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1595 Record.push_back(N->getRuntimeLang()); 1596 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1597 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1598 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1599 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1600 1601 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1602 Record.clear(); 1603 } 1604 1605 void ModuleBitcodeWriter::writeDISubroutineType( 1606 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1607 unsigned Abbrev) { 1608 const unsigned HasNoOldTypeRefs = 0x2; 1609 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1610 Record.push_back(N->getFlags()); 1611 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1612 Record.push_back(N->getCC()); 1613 1614 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1615 Record.clear(); 1616 } 1617 1618 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1619 SmallVectorImpl<uint64_t> &Record, 1620 unsigned Abbrev) { 1621 Record.push_back(N->isDistinct()); 1622 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1623 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1624 if (N->getRawChecksum()) { 1625 Record.push_back(N->getRawChecksum()->Kind); 1626 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1627 } else { 1628 // Maintain backwards compatibility with the old internal representation of 1629 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1630 Record.push_back(0); 1631 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1632 } 1633 auto Source = N->getRawSource(); 1634 if (Source) 1635 Record.push_back(VE.getMetadataOrNullID(*Source)); 1636 1637 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1638 Record.clear(); 1639 } 1640 1641 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1642 SmallVectorImpl<uint64_t> &Record, 1643 unsigned Abbrev) { 1644 assert(N->isDistinct() && "Expected distinct compile units"); 1645 Record.push_back(/* IsDistinct */ true); 1646 Record.push_back(N->getSourceLanguage()); 1647 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1648 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1649 Record.push_back(N->isOptimized()); 1650 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1651 Record.push_back(N->getRuntimeVersion()); 1652 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1653 Record.push_back(N->getEmissionKind()); 1654 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1655 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1656 Record.push_back(/* subprograms */ 0); 1657 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1658 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1659 Record.push_back(N->getDWOId()); 1660 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1661 Record.push_back(N->getSplitDebugInlining()); 1662 Record.push_back(N->getDebugInfoForProfiling()); 1663 Record.push_back((unsigned)N->getNameTableKind()); 1664 1665 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1666 Record.clear(); 1667 } 1668 1669 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1670 SmallVectorImpl<uint64_t> &Record, 1671 unsigned Abbrev) { 1672 const uint64_t HasUnitFlag = 1 << 1; 1673 const uint64_t HasSPFlagsFlag = 1 << 2; 1674 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1675 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1676 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1677 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1678 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1679 Record.push_back(N->getLine()); 1680 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1681 Record.push_back(N->getScopeLine()); 1682 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1683 Record.push_back(N->getSPFlags()); 1684 Record.push_back(N->getVirtualIndex()); 1685 Record.push_back(N->getFlags()); 1686 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1687 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1688 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1689 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1690 Record.push_back(N->getThisAdjustment()); 1691 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1692 1693 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1694 Record.clear(); 1695 } 1696 1697 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1698 SmallVectorImpl<uint64_t> &Record, 1699 unsigned Abbrev) { 1700 Record.push_back(N->isDistinct()); 1701 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1702 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1703 Record.push_back(N->getLine()); 1704 Record.push_back(N->getColumn()); 1705 1706 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1707 Record.clear(); 1708 } 1709 1710 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1711 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1712 unsigned Abbrev) { 1713 Record.push_back(N->isDistinct()); 1714 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1715 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1716 Record.push_back(N->getDiscriminator()); 1717 1718 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1719 Record.clear(); 1720 } 1721 1722 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1723 SmallVectorImpl<uint64_t> &Record, 1724 unsigned Abbrev) { 1725 Record.push_back(N->isDistinct()); 1726 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1727 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1728 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1729 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1730 Record.push_back(N->getLineNo()); 1731 1732 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1733 Record.clear(); 1734 } 1735 1736 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1737 SmallVectorImpl<uint64_t> &Record, 1738 unsigned Abbrev) { 1739 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1740 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1741 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1742 1743 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1744 Record.clear(); 1745 } 1746 1747 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1748 SmallVectorImpl<uint64_t> &Record, 1749 unsigned Abbrev) { 1750 Record.push_back(N->isDistinct()); 1751 Record.push_back(N->getMacinfoType()); 1752 Record.push_back(N->getLine()); 1753 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1754 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1755 1756 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1757 Record.clear(); 1758 } 1759 1760 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1761 SmallVectorImpl<uint64_t> &Record, 1762 unsigned Abbrev) { 1763 Record.push_back(N->isDistinct()); 1764 Record.push_back(N->getMacinfoType()); 1765 Record.push_back(N->getLine()); 1766 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1767 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1768 1769 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1770 Record.clear(); 1771 } 1772 1773 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1774 SmallVectorImpl<uint64_t> &Record, 1775 unsigned Abbrev) { 1776 Record.push_back(N->isDistinct()); 1777 for (auto &I : N->operands()) 1778 Record.push_back(VE.getMetadataOrNullID(I)); 1779 1780 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1781 Record.clear(); 1782 } 1783 1784 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1785 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1786 unsigned Abbrev) { 1787 Record.push_back(N->isDistinct()); 1788 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1789 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1790 1791 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1792 Record.clear(); 1793 } 1794 1795 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1796 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1797 unsigned Abbrev) { 1798 Record.push_back(N->isDistinct()); 1799 Record.push_back(N->getTag()); 1800 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1801 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1802 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1803 1804 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1805 Record.clear(); 1806 } 1807 1808 void ModuleBitcodeWriter::writeDIGlobalVariable( 1809 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1810 unsigned Abbrev) { 1811 const uint64_t Version = 2 << 1; 1812 Record.push_back((uint64_t)N->isDistinct() | Version); 1813 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1814 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1815 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1816 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1817 Record.push_back(N->getLine()); 1818 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1819 Record.push_back(N->isLocalToUnit()); 1820 Record.push_back(N->isDefinition()); 1821 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1822 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1823 Record.push_back(N->getAlignInBits()); 1824 1825 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1826 Record.clear(); 1827 } 1828 1829 void ModuleBitcodeWriter::writeDILocalVariable( 1830 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1831 unsigned Abbrev) { 1832 // In order to support all possible bitcode formats in BitcodeReader we need 1833 // to distinguish the following cases: 1834 // 1) Record has no artificial tag (Record[1]), 1835 // has no obsolete inlinedAt field (Record[9]). 1836 // In this case Record size will be 8, HasAlignment flag is false. 1837 // 2) Record has artificial tag (Record[1]), 1838 // has no obsolete inlignedAt field (Record[9]). 1839 // In this case Record size will be 9, HasAlignment flag is false. 1840 // 3) Record has both artificial tag (Record[1]) and 1841 // obsolete inlignedAt field (Record[9]). 1842 // In this case Record size will be 10, HasAlignment flag is false. 1843 // 4) Record has neither artificial tag, nor inlignedAt field, but 1844 // HasAlignment flag is true and Record[8] contains alignment value. 1845 const uint64_t HasAlignmentFlag = 1 << 1; 1846 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1847 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1848 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1849 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1850 Record.push_back(N->getLine()); 1851 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1852 Record.push_back(N->getArg()); 1853 Record.push_back(N->getFlags()); 1854 Record.push_back(N->getAlignInBits()); 1855 1856 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1857 Record.clear(); 1858 } 1859 1860 void ModuleBitcodeWriter::writeDILabel( 1861 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1862 unsigned Abbrev) { 1863 Record.push_back((uint64_t)N->isDistinct()); 1864 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1865 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1866 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1867 Record.push_back(N->getLine()); 1868 1869 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 1870 Record.clear(); 1871 } 1872 1873 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1874 SmallVectorImpl<uint64_t> &Record, 1875 unsigned Abbrev) { 1876 Record.reserve(N->getElements().size() + 1); 1877 const uint64_t Version = 3 << 1; 1878 Record.push_back((uint64_t)N->isDistinct() | Version); 1879 Record.append(N->elements_begin(), N->elements_end()); 1880 1881 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1882 Record.clear(); 1883 } 1884 1885 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1886 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1887 unsigned Abbrev) { 1888 Record.push_back(N->isDistinct()); 1889 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1890 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1891 1892 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1893 Record.clear(); 1894 } 1895 1896 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1897 SmallVectorImpl<uint64_t> &Record, 1898 unsigned Abbrev) { 1899 Record.push_back(N->isDistinct()); 1900 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1901 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1902 Record.push_back(N->getLine()); 1903 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1904 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1905 Record.push_back(N->getAttributes()); 1906 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1907 1908 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1909 Record.clear(); 1910 } 1911 1912 void ModuleBitcodeWriter::writeDIImportedEntity( 1913 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1914 unsigned Abbrev) { 1915 Record.push_back(N->isDistinct()); 1916 Record.push_back(N->getTag()); 1917 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1918 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1919 Record.push_back(N->getLine()); 1920 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1921 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1922 1923 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1924 Record.clear(); 1925 } 1926 1927 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1928 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1929 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1932 return Stream.EmitAbbrev(std::move(Abbv)); 1933 } 1934 1935 void ModuleBitcodeWriter::writeNamedMetadata( 1936 SmallVectorImpl<uint64_t> &Record) { 1937 if (M.named_metadata_empty()) 1938 return; 1939 1940 unsigned Abbrev = createNamedMetadataAbbrev(); 1941 for (const NamedMDNode &NMD : M.named_metadata()) { 1942 // Write name. 1943 StringRef Str = NMD.getName(); 1944 Record.append(Str.bytes_begin(), Str.bytes_end()); 1945 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1946 Record.clear(); 1947 1948 // Write named metadata operands. 1949 for (const MDNode *N : NMD.operands()) 1950 Record.push_back(VE.getMetadataID(N)); 1951 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1952 Record.clear(); 1953 } 1954 } 1955 1956 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1957 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1958 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1962 return Stream.EmitAbbrev(std::move(Abbv)); 1963 } 1964 1965 /// Write out a record for MDString. 1966 /// 1967 /// All the metadata strings in a metadata block are emitted in a single 1968 /// record. The sizes and strings themselves are shoved into a blob. 1969 void ModuleBitcodeWriter::writeMetadataStrings( 1970 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1971 if (Strings.empty()) 1972 return; 1973 1974 // Start the record with the number of strings. 1975 Record.push_back(bitc::METADATA_STRINGS); 1976 Record.push_back(Strings.size()); 1977 1978 // Emit the sizes of the strings in the blob. 1979 SmallString<256> Blob; 1980 { 1981 BitstreamWriter W(Blob); 1982 for (const Metadata *MD : Strings) 1983 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1984 W.FlushToWord(); 1985 } 1986 1987 // Add the offset to the strings to the record. 1988 Record.push_back(Blob.size()); 1989 1990 // Add the strings to the blob. 1991 for (const Metadata *MD : Strings) 1992 Blob.append(cast<MDString>(MD)->getString()); 1993 1994 // Emit the final record. 1995 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1996 Record.clear(); 1997 } 1998 1999 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2000 enum MetadataAbbrev : unsigned { 2001 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2002 #include "llvm/IR/Metadata.def" 2003 LastPlusOne 2004 }; 2005 2006 void ModuleBitcodeWriter::writeMetadataRecords( 2007 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2008 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2009 if (MDs.empty()) 2010 return; 2011 2012 // Initialize MDNode abbreviations. 2013 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2014 #include "llvm/IR/Metadata.def" 2015 2016 for (const Metadata *MD : MDs) { 2017 if (IndexPos) 2018 IndexPos->push_back(Stream.GetCurrentBitNo()); 2019 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2020 assert(N->isResolved() && "Expected forward references to be resolved"); 2021 2022 switch (N->getMetadataID()) { 2023 default: 2024 llvm_unreachable("Invalid MDNode subclass"); 2025 #define HANDLE_MDNODE_LEAF(CLASS) \ 2026 case Metadata::CLASS##Kind: \ 2027 if (MDAbbrevs) \ 2028 write##CLASS(cast<CLASS>(N), Record, \ 2029 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2030 else \ 2031 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2032 continue; 2033 #include "llvm/IR/Metadata.def" 2034 } 2035 } 2036 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2037 } 2038 } 2039 2040 void ModuleBitcodeWriter::writeModuleMetadata() { 2041 if (!VE.hasMDs() && M.named_metadata_empty()) 2042 return; 2043 2044 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2045 SmallVector<uint64_t, 64> Record; 2046 2047 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2048 // block and load any metadata. 2049 std::vector<unsigned> MDAbbrevs; 2050 2051 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2052 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2053 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2054 createGenericDINodeAbbrev(); 2055 2056 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2057 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2059 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2060 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2061 2062 Abbv = std::make_shared<BitCodeAbbrev>(); 2063 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2064 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2066 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2067 2068 // Emit MDStrings together upfront. 2069 writeMetadataStrings(VE.getMDStrings(), Record); 2070 2071 // We only emit an index for the metadata record if we have more than a given 2072 // (naive) threshold of metadatas, otherwise it is not worth it. 2073 if (VE.getNonMDStrings().size() > IndexThreshold) { 2074 // Write a placeholder value in for the offset of the metadata index, 2075 // which is written after the records, so that it can include 2076 // the offset of each entry. The placeholder offset will be 2077 // updated after all records are emitted. 2078 uint64_t Vals[] = {0, 0}; 2079 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2080 } 2081 2082 // Compute and save the bit offset to the current position, which will be 2083 // patched when we emit the index later. We can simply subtract the 64-bit 2084 // fixed size from the current bit number to get the location to backpatch. 2085 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2086 2087 // This index will contain the bitpos for each individual record. 2088 std::vector<uint64_t> IndexPos; 2089 IndexPos.reserve(VE.getNonMDStrings().size()); 2090 2091 // Write all the records 2092 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2093 2094 if (VE.getNonMDStrings().size() > IndexThreshold) { 2095 // Now that we have emitted all the records we will emit the index. But 2096 // first 2097 // backpatch the forward reference so that the reader can skip the records 2098 // efficiently. 2099 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2100 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2101 2102 // Delta encode the index. 2103 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2104 for (auto &Elt : IndexPos) { 2105 auto EltDelta = Elt - PreviousValue; 2106 PreviousValue = Elt; 2107 Elt = EltDelta; 2108 } 2109 // Emit the index record. 2110 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2111 IndexPos.clear(); 2112 } 2113 2114 // Write the named metadata now. 2115 writeNamedMetadata(Record); 2116 2117 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2118 SmallVector<uint64_t, 4> Record; 2119 Record.push_back(VE.getValueID(&GO)); 2120 pushGlobalMetadataAttachment(Record, GO); 2121 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2122 }; 2123 for (const Function &F : M) 2124 if (F.isDeclaration() && F.hasMetadata()) 2125 AddDeclAttachedMetadata(F); 2126 // FIXME: Only store metadata for declarations here, and move data for global 2127 // variable definitions to a separate block (PR28134). 2128 for (const GlobalVariable &GV : M.globals()) 2129 if (GV.hasMetadata()) 2130 AddDeclAttachedMetadata(GV); 2131 2132 Stream.ExitBlock(); 2133 } 2134 2135 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2136 if (!VE.hasMDs()) 2137 return; 2138 2139 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2140 SmallVector<uint64_t, 64> Record; 2141 writeMetadataStrings(VE.getMDStrings(), Record); 2142 writeMetadataRecords(VE.getNonMDStrings(), Record); 2143 Stream.ExitBlock(); 2144 } 2145 2146 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2147 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2148 // [n x [id, mdnode]] 2149 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2150 GO.getAllMetadata(MDs); 2151 for (const auto &I : MDs) { 2152 Record.push_back(I.first); 2153 Record.push_back(VE.getMetadataID(I.second)); 2154 } 2155 } 2156 2157 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2158 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2159 2160 SmallVector<uint64_t, 64> Record; 2161 2162 if (F.hasMetadata()) { 2163 pushGlobalMetadataAttachment(Record, F); 2164 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2165 Record.clear(); 2166 } 2167 2168 // Write metadata attachments 2169 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2170 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2171 for (const BasicBlock &BB : F) 2172 for (const Instruction &I : BB) { 2173 MDs.clear(); 2174 I.getAllMetadataOtherThanDebugLoc(MDs); 2175 2176 // If no metadata, ignore instruction. 2177 if (MDs.empty()) continue; 2178 2179 Record.push_back(VE.getInstructionID(&I)); 2180 2181 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2182 Record.push_back(MDs[i].first); 2183 Record.push_back(VE.getMetadataID(MDs[i].second)); 2184 } 2185 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2186 Record.clear(); 2187 } 2188 2189 Stream.ExitBlock(); 2190 } 2191 2192 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2193 SmallVector<uint64_t, 64> Record; 2194 2195 // Write metadata kinds 2196 // METADATA_KIND - [n x [id, name]] 2197 SmallVector<StringRef, 8> Names; 2198 M.getMDKindNames(Names); 2199 2200 if (Names.empty()) return; 2201 2202 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2203 2204 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2205 Record.push_back(MDKindID); 2206 StringRef KName = Names[MDKindID]; 2207 Record.append(KName.begin(), KName.end()); 2208 2209 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2210 Record.clear(); 2211 } 2212 2213 Stream.ExitBlock(); 2214 } 2215 2216 void ModuleBitcodeWriter::writeOperandBundleTags() { 2217 // Write metadata kinds 2218 // 2219 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2220 // 2221 // OPERAND_BUNDLE_TAG - [strchr x N] 2222 2223 SmallVector<StringRef, 8> Tags; 2224 M.getOperandBundleTags(Tags); 2225 2226 if (Tags.empty()) 2227 return; 2228 2229 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2230 2231 SmallVector<uint64_t, 64> Record; 2232 2233 for (auto Tag : Tags) { 2234 Record.append(Tag.begin(), Tag.end()); 2235 2236 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2237 Record.clear(); 2238 } 2239 2240 Stream.ExitBlock(); 2241 } 2242 2243 void ModuleBitcodeWriter::writeSyncScopeNames() { 2244 SmallVector<StringRef, 8> SSNs; 2245 M.getContext().getSyncScopeNames(SSNs); 2246 if (SSNs.empty()) 2247 return; 2248 2249 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2250 2251 SmallVector<uint64_t, 64> Record; 2252 for (auto SSN : SSNs) { 2253 Record.append(SSN.begin(), SSN.end()); 2254 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2255 Record.clear(); 2256 } 2257 2258 Stream.ExitBlock(); 2259 } 2260 2261 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2262 if ((int64_t)V >= 0) 2263 Vals.push_back(V << 1); 2264 else 2265 Vals.push_back((-V << 1) | 1); 2266 } 2267 2268 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2269 bool isGlobal) { 2270 if (FirstVal == LastVal) return; 2271 2272 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2273 2274 unsigned AggregateAbbrev = 0; 2275 unsigned String8Abbrev = 0; 2276 unsigned CString7Abbrev = 0; 2277 unsigned CString6Abbrev = 0; 2278 // If this is a constant pool for the module, emit module-specific abbrevs. 2279 if (isGlobal) { 2280 // Abbrev for CST_CODE_AGGREGATE. 2281 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2282 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2283 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2284 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2285 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2286 2287 // Abbrev for CST_CODE_STRING. 2288 Abbv = std::make_shared<BitCodeAbbrev>(); 2289 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2291 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2292 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2293 // Abbrev for CST_CODE_CSTRING. 2294 Abbv = std::make_shared<BitCodeAbbrev>(); 2295 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2298 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2299 // Abbrev for CST_CODE_CSTRING. 2300 Abbv = std::make_shared<BitCodeAbbrev>(); 2301 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2303 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2304 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2305 } 2306 2307 SmallVector<uint64_t, 64> Record; 2308 2309 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2310 Type *LastTy = nullptr; 2311 for (unsigned i = FirstVal; i != LastVal; ++i) { 2312 const Value *V = Vals[i].first; 2313 // If we need to switch types, do so now. 2314 if (V->getType() != LastTy) { 2315 LastTy = V->getType(); 2316 Record.push_back(VE.getTypeID(LastTy)); 2317 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2318 CONSTANTS_SETTYPE_ABBREV); 2319 Record.clear(); 2320 } 2321 2322 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2323 Record.push_back(unsigned(IA->hasSideEffects()) | 2324 unsigned(IA->isAlignStack()) << 1 | 2325 unsigned(IA->getDialect()&1) << 2); 2326 2327 // Add the asm string. 2328 const std::string &AsmStr = IA->getAsmString(); 2329 Record.push_back(AsmStr.size()); 2330 Record.append(AsmStr.begin(), AsmStr.end()); 2331 2332 // Add the constraint string. 2333 const std::string &ConstraintStr = IA->getConstraintString(); 2334 Record.push_back(ConstraintStr.size()); 2335 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2336 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2337 Record.clear(); 2338 continue; 2339 } 2340 const Constant *C = cast<Constant>(V); 2341 unsigned Code = -1U; 2342 unsigned AbbrevToUse = 0; 2343 if (C->isNullValue()) { 2344 Code = bitc::CST_CODE_NULL; 2345 } else if (isa<UndefValue>(C)) { 2346 Code = bitc::CST_CODE_UNDEF; 2347 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2348 if (IV->getBitWidth() <= 64) { 2349 uint64_t V = IV->getSExtValue(); 2350 emitSignedInt64(Record, V); 2351 Code = bitc::CST_CODE_INTEGER; 2352 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2353 } else { // Wide integers, > 64 bits in size. 2354 // We have an arbitrary precision integer value to write whose 2355 // bit width is > 64. However, in canonical unsigned integer 2356 // format it is likely that the high bits are going to be zero. 2357 // So, we only write the number of active words. 2358 unsigned NWords = IV->getValue().getActiveWords(); 2359 const uint64_t *RawWords = IV->getValue().getRawData(); 2360 for (unsigned i = 0; i != NWords; ++i) { 2361 emitSignedInt64(Record, RawWords[i]); 2362 } 2363 Code = bitc::CST_CODE_WIDE_INTEGER; 2364 } 2365 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2366 Code = bitc::CST_CODE_FLOAT; 2367 Type *Ty = CFP->getType(); 2368 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2369 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2370 } else if (Ty->isX86_FP80Ty()) { 2371 // api needed to prevent premature destruction 2372 // bits are not in the same order as a normal i80 APInt, compensate. 2373 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2374 const uint64_t *p = api.getRawData(); 2375 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2376 Record.push_back(p[0] & 0xffffLL); 2377 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2378 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2379 const uint64_t *p = api.getRawData(); 2380 Record.push_back(p[0]); 2381 Record.push_back(p[1]); 2382 } else { 2383 assert(0 && "Unknown FP type!"); 2384 } 2385 } else if (isa<ConstantDataSequential>(C) && 2386 cast<ConstantDataSequential>(C)->isString()) { 2387 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2388 // Emit constant strings specially. 2389 unsigned NumElts = Str->getNumElements(); 2390 // If this is a null-terminated string, use the denser CSTRING encoding. 2391 if (Str->isCString()) { 2392 Code = bitc::CST_CODE_CSTRING; 2393 --NumElts; // Don't encode the null, which isn't allowed by char6. 2394 } else { 2395 Code = bitc::CST_CODE_STRING; 2396 AbbrevToUse = String8Abbrev; 2397 } 2398 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2399 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2400 for (unsigned i = 0; i != NumElts; ++i) { 2401 unsigned char V = Str->getElementAsInteger(i); 2402 Record.push_back(V); 2403 isCStr7 &= (V & 128) == 0; 2404 if (isCStrChar6) 2405 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2406 } 2407 2408 if (isCStrChar6) 2409 AbbrevToUse = CString6Abbrev; 2410 else if (isCStr7) 2411 AbbrevToUse = CString7Abbrev; 2412 } else if (const ConstantDataSequential *CDS = 2413 dyn_cast<ConstantDataSequential>(C)) { 2414 Code = bitc::CST_CODE_DATA; 2415 Type *EltTy = CDS->getType()->getElementType(); 2416 if (isa<IntegerType>(EltTy)) { 2417 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2418 Record.push_back(CDS->getElementAsInteger(i)); 2419 } else { 2420 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2421 Record.push_back( 2422 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2423 } 2424 } else if (isa<ConstantAggregate>(C)) { 2425 Code = bitc::CST_CODE_AGGREGATE; 2426 for (const Value *Op : C->operands()) 2427 Record.push_back(VE.getValueID(Op)); 2428 AbbrevToUse = AggregateAbbrev; 2429 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2430 switch (CE->getOpcode()) { 2431 default: 2432 if (Instruction::isCast(CE->getOpcode())) { 2433 Code = bitc::CST_CODE_CE_CAST; 2434 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2435 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2436 Record.push_back(VE.getValueID(C->getOperand(0))); 2437 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2438 } else if (Instruction::isUnaryOp(CE->getOpcode())) { 2439 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2440 Code = bitc::CST_CODE_CE_UNOP; 2441 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2442 Record.push_back(VE.getValueID(C->getOperand(0))); 2443 uint64_t Flags = getOptimizationFlags(CE); 2444 if (Flags != 0) { 2445 assert(CE->getOpcode() == Instruction::FNeg); 2446 Record.push_back(Flags); 2447 } 2448 break; 2449 } else { 2450 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2451 Code = bitc::CST_CODE_CE_BINOP; 2452 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2453 Record.push_back(VE.getValueID(C->getOperand(0))); 2454 Record.push_back(VE.getValueID(C->getOperand(1))); 2455 uint64_t Flags = getOptimizationFlags(CE); 2456 if (Flags != 0) 2457 Record.push_back(Flags); 2458 } 2459 break; 2460 case Instruction::GetElementPtr: { 2461 Code = bitc::CST_CODE_CE_GEP; 2462 const auto *GO = cast<GEPOperator>(C); 2463 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2464 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2465 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2466 Record.push_back((*Idx << 1) | GO->isInBounds()); 2467 } else if (GO->isInBounds()) 2468 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2469 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2470 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2471 Record.push_back(VE.getValueID(C->getOperand(i))); 2472 } 2473 break; 2474 } 2475 case Instruction::Select: 2476 Code = bitc::CST_CODE_CE_SELECT; 2477 Record.push_back(VE.getValueID(C->getOperand(0))); 2478 Record.push_back(VE.getValueID(C->getOperand(1))); 2479 Record.push_back(VE.getValueID(C->getOperand(2))); 2480 break; 2481 case Instruction::ExtractElement: 2482 Code = bitc::CST_CODE_CE_EXTRACTELT; 2483 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2484 Record.push_back(VE.getValueID(C->getOperand(0))); 2485 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2486 Record.push_back(VE.getValueID(C->getOperand(1))); 2487 break; 2488 case Instruction::InsertElement: 2489 Code = bitc::CST_CODE_CE_INSERTELT; 2490 Record.push_back(VE.getValueID(C->getOperand(0))); 2491 Record.push_back(VE.getValueID(C->getOperand(1))); 2492 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2493 Record.push_back(VE.getValueID(C->getOperand(2))); 2494 break; 2495 case Instruction::ShuffleVector: 2496 // If the return type and argument types are the same, this is a 2497 // standard shufflevector instruction. If the types are different, 2498 // then the shuffle is widening or truncating the input vectors, and 2499 // the argument type must also be encoded. 2500 if (C->getType() == C->getOperand(0)->getType()) { 2501 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2502 } else { 2503 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2504 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2505 } 2506 Record.push_back(VE.getValueID(C->getOperand(0))); 2507 Record.push_back(VE.getValueID(C->getOperand(1))); 2508 Record.push_back(VE.getValueID(C->getOperand(2))); 2509 break; 2510 case Instruction::ICmp: 2511 case Instruction::FCmp: 2512 Code = bitc::CST_CODE_CE_CMP; 2513 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2514 Record.push_back(VE.getValueID(C->getOperand(0))); 2515 Record.push_back(VE.getValueID(C->getOperand(1))); 2516 Record.push_back(CE->getPredicate()); 2517 break; 2518 } 2519 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2520 Code = bitc::CST_CODE_BLOCKADDRESS; 2521 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2522 Record.push_back(VE.getValueID(BA->getFunction())); 2523 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2524 } else { 2525 #ifndef NDEBUG 2526 C->dump(); 2527 #endif 2528 llvm_unreachable("Unknown constant!"); 2529 } 2530 Stream.EmitRecord(Code, Record, AbbrevToUse); 2531 Record.clear(); 2532 } 2533 2534 Stream.ExitBlock(); 2535 } 2536 2537 void ModuleBitcodeWriter::writeModuleConstants() { 2538 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2539 2540 // Find the first constant to emit, which is the first non-globalvalue value. 2541 // We know globalvalues have been emitted by WriteModuleInfo. 2542 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2543 if (!isa<GlobalValue>(Vals[i].first)) { 2544 writeConstants(i, Vals.size(), true); 2545 return; 2546 } 2547 } 2548 } 2549 2550 /// pushValueAndType - The file has to encode both the value and type id for 2551 /// many values, because we need to know what type to create for forward 2552 /// references. However, most operands are not forward references, so this type 2553 /// field is not needed. 2554 /// 2555 /// This function adds V's value ID to Vals. If the value ID is higher than the 2556 /// instruction ID, then it is a forward reference, and it also includes the 2557 /// type ID. The value ID that is written is encoded relative to the InstID. 2558 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2559 SmallVectorImpl<unsigned> &Vals) { 2560 unsigned ValID = VE.getValueID(V); 2561 // Make encoding relative to the InstID. 2562 Vals.push_back(InstID - ValID); 2563 if (ValID >= InstID) { 2564 Vals.push_back(VE.getTypeID(V->getType())); 2565 return true; 2566 } 2567 return false; 2568 } 2569 2570 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2571 unsigned InstID) { 2572 SmallVector<unsigned, 64> Record; 2573 LLVMContext &C = CS.getInstruction()->getContext(); 2574 2575 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2576 const auto &Bundle = CS.getOperandBundleAt(i); 2577 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2578 2579 for (auto &Input : Bundle.Inputs) 2580 pushValueAndType(Input, InstID, Record); 2581 2582 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2583 Record.clear(); 2584 } 2585 } 2586 2587 /// pushValue - Like pushValueAndType, but where the type of the value is 2588 /// omitted (perhaps it was already encoded in an earlier operand). 2589 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2590 SmallVectorImpl<unsigned> &Vals) { 2591 unsigned ValID = VE.getValueID(V); 2592 Vals.push_back(InstID - ValID); 2593 } 2594 2595 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2596 SmallVectorImpl<uint64_t> &Vals) { 2597 unsigned ValID = VE.getValueID(V); 2598 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2599 emitSignedInt64(Vals, diff); 2600 } 2601 2602 /// WriteInstruction - Emit an instruction to the specified stream. 2603 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2604 unsigned InstID, 2605 SmallVectorImpl<unsigned> &Vals) { 2606 unsigned Code = 0; 2607 unsigned AbbrevToUse = 0; 2608 VE.setInstructionID(&I); 2609 switch (I.getOpcode()) { 2610 default: 2611 if (Instruction::isCast(I.getOpcode())) { 2612 Code = bitc::FUNC_CODE_INST_CAST; 2613 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2614 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2615 Vals.push_back(VE.getTypeID(I.getType())); 2616 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2617 } else if (isa<UnaryOperator>(I)) { 2618 Code = bitc::FUNC_CODE_INST_UNOP; 2619 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2620 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2621 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2622 uint64_t Flags = getOptimizationFlags(&I); 2623 if (Flags != 0) { 2624 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2625 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2626 Vals.push_back(Flags); 2627 } 2628 } else { 2629 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2630 Code = bitc::FUNC_CODE_INST_BINOP; 2631 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2632 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2633 pushValue(I.getOperand(1), InstID, Vals); 2634 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2635 uint64_t Flags = getOptimizationFlags(&I); 2636 if (Flags != 0) { 2637 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2638 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2639 Vals.push_back(Flags); 2640 } 2641 } 2642 break; 2643 case Instruction::GetElementPtr: { 2644 Code = bitc::FUNC_CODE_INST_GEP; 2645 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2646 auto &GEPInst = cast<GetElementPtrInst>(I); 2647 Vals.push_back(GEPInst.isInBounds()); 2648 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2649 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2650 pushValueAndType(I.getOperand(i), InstID, Vals); 2651 break; 2652 } 2653 case Instruction::ExtractValue: { 2654 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2655 pushValueAndType(I.getOperand(0), InstID, Vals); 2656 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2657 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2658 break; 2659 } 2660 case Instruction::InsertValue: { 2661 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2662 pushValueAndType(I.getOperand(0), InstID, Vals); 2663 pushValueAndType(I.getOperand(1), InstID, Vals); 2664 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2665 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2666 break; 2667 } 2668 case Instruction::Select: { 2669 Code = bitc::FUNC_CODE_INST_VSELECT; 2670 pushValueAndType(I.getOperand(1), InstID, Vals); 2671 pushValue(I.getOperand(2), InstID, Vals); 2672 pushValueAndType(I.getOperand(0), InstID, Vals); 2673 uint64_t Flags = getOptimizationFlags(&I); 2674 if (Flags != 0) 2675 Vals.push_back(Flags); 2676 break; 2677 } 2678 case Instruction::ExtractElement: 2679 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2680 pushValueAndType(I.getOperand(0), InstID, Vals); 2681 pushValueAndType(I.getOperand(1), InstID, Vals); 2682 break; 2683 case Instruction::InsertElement: 2684 Code = bitc::FUNC_CODE_INST_INSERTELT; 2685 pushValueAndType(I.getOperand(0), InstID, Vals); 2686 pushValue(I.getOperand(1), InstID, Vals); 2687 pushValueAndType(I.getOperand(2), InstID, Vals); 2688 break; 2689 case Instruction::ShuffleVector: 2690 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2691 pushValueAndType(I.getOperand(0), InstID, Vals); 2692 pushValue(I.getOperand(1), InstID, Vals); 2693 pushValue(I.getOperand(2), InstID, Vals); 2694 break; 2695 case Instruction::ICmp: 2696 case Instruction::FCmp: { 2697 // compare returning Int1Ty or vector of Int1Ty 2698 Code = bitc::FUNC_CODE_INST_CMP2; 2699 pushValueAndType(I.getOperand(0), InstID, Vals); 2700 pushValue(I.getOperand(1), InstID, Vals); 2701 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2702 uint64_t Flags = getOptimizationFlags(&I); 2703 if (Flags != 0) 2704 Vals.push_back(Flags); 2705 break; 2706 } 2707 2708 case Instruction::Ret: 2709 { 2710 Code = bitc::FUNC_CODE_INST_RET; 2711 unsigned NumOperands = I.getNumOperands(); 2712 if (NumOperands == 0) 2713 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2714 else if (NumOperands == 1) { 2715 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2716 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2717 } else { 2718 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2719 pushValueAndType(I.getOperand(i), InstID, Vals); 2720 } 2721 } 2722 break; 2723 case Instruction::Br: 2724 { 2725 Code = bitc::FUNC_CODE_INST_BR; 2726 const BranchInst &II = cast<BranchInst>(I); 2727 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2728 if (II.isConditional()) { 2729 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2730 pushValue(II.getCondition(), InstID, Vals); 2731 } 2732 } 2733 break; 2734 case Instruction::Switch: 2735 { 2736 Code = bitc::FUNC_CODE_INST_SWITCH; 2737 const SwitchInst &SI = cast<SwitchInst>(I); 2738 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2739 pushValue(SI.getCondition(), InstID, Vals); 2740 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2741 for (auto Case : SI.cases()) { 2742 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2743 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2744 } 2745 } 2746 break; 2747 case Instruction::IndirectBr: 2748 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2749 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2750 // Encode the address operand as relative, but not the basic blocks. 2751 pushValue(I.getOperand(0), InstID, Vals); 2752 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2753 Vals.push_back(VE.getValueID(I.getOperand(i))); 2754 break; 2755 2756 case Instruction::Invoke: { 2757 const InvokeInst *II = cast<InvokeInst>(&I); 2758 const Value *Callee = II->getCalledValue(); 2759 FunctionType *FTy = II->getFunctionType(); 2760 2761 if (II->hasOperandBundles()) 2762 writeOperandBundles(II, InstID); 2763 2764 Code = bitc::FUNC_CODE_INST_INVOKE; 2765 2766 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2767 Vals.push_back(II->getCallingConv() | 1 << 13); 2768 Vals.push_back(VE.getValueID(II->getNormalDest())); 2769 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2770 Vals.push_back(VE.getTypeID(FTy)); 2771 pushValueAndType(Callee, InstID, Vals); 2772 2773 // Emit value #'s for the fixed parameters. 2774 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2775 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2776 2777 // Emit type/value pairs for varargs params. 2778 if (FTy->isVarArg()) { 2779 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2780 i != e; ++i) 2781 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2782 } 2783 break; 2784 } 2785 case Instruction::Resume: 2786 Code = bitc::FUNC_CODE_INST_RESUME; 2787 pushValueAndType(I.getOperand(0), InstID, Vals); 2788 break; 2789 case Instruction::CleanupRet: { 2790 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2791 const auto &CRI = cast<CleanupReturnInst>(I); 2792 pushValue(CRI.getCleanupPad(), InstID, Vals); 2793 if (CRI.hasUnwindDest()) 2794 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2795 break; 2796 } 2797 case Instruction::CatchRet: { 2798 Code = bitc::FUNC_CODE_INST_CATCHRET; 2799 const auto &CRI = cast<CatchReturnInst>(I); 2800 pushValue(CRI.getCatchPad(), InstID, Vals); 2801 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2802 break; 2803 } 2804 case Instruction::CleanupPad: 2805 case Instruction::CatchPad: { 2806 const auto &FuncletPad = cast<FuncletPadInst>(I); 2807 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2808 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2809 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2810 2811 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2812 Vals.push_back(NumArgOperands); 2813 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2814 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2815 break; 2816 } 2817 case Instruction::CatchSwitch: { 2818 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2819 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2820 2821 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2822 2823 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2824 Vals.push_back(NumHandlers); 2825 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2826 Vals.push_back(VE.getValueID(CatchPadBB)); 2827 2828 if (CatchSwitch.hasUnwindDest()) 2829 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2830 break; 2831 } 2832 case Instruction::CallBr: { 2833 const CallBrInst *CBI = cast<CallBrInst>(&I); 2834 const Value *Callee = CBI->getCalledValue(); 2835 FunctionType *FTy = CBI->getFunctionType(); 2836 2837 if (CBI->hasOperandBundles()) 2838 writeOperandBundles(CBI, InstID); 2839 2840 Code = bitc::FUNC_CODE_INST_CALLBR; 2841 2842 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2843 2844 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2845 1 << bitc::CALL_EXPLICIT_TYPE); 2846 2847 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2848 Vals.push_back(CBI->getNumIndirectDests()); 2849 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2850 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2851 2852 Vals.push_back(VE.getTypeID(FTy)); 2853 pushValueAndType(Callee, InstID, Vals); 2854 2855 // Emit value #'s for the fixed parameters. 2856 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2857 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2858 2859 // Emit type/value pairs for varargs params. 2860 if (FTy->isVarArg()) { 2861 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2862 i != e; ++i) 2863 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2864 } 2865 break; 2866 } 2867 case Instruction::Unreachable: 2868 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2869 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2870 break; 2871 2872 case Instruction::PHI: { 2873 const PHINode &PN = cast<PHINode>(I); 2874 Code = bitc::FUNC_CODE_INST_PHI; 2875 // With the newer instruction encoding, forward references could give 2876 // negative valued IDs. This is most common for PHIs, so we use 2877 // signed VBRs. 2878 SmallVector<uint64_t, 128> Vals64; 2879 Vals64.push_back(VE.getTypeID(PN.getType())); 2880 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2881 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2882 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2883 } 2884 2885 uint64_t Flags = getOptimizationFlags(&I); 2886 if (Flags != 0) 2887 Vals64.push_back(Flags); 2888 2889 // Emit a Vals64 vector and exit. 2890 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2891 Vals64.clear(); 2892 return; 2893 } 2894 2895 case Instruction::LandingPad: { 2896 const LandingPadInst &LP = cast<LandingPadInst>(I); 2897 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2898 Vals.push_back(VE.getTypeID(LP.getType())); 2899 Vals.push_back(LP.isCleanup()); 2900 Vals.push_back(LP.getNumClauses()); 2901 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2902 if (LP.isCatch(I)) 2903 Vals.push_back(LandingPadInst::Catch); 2904 else 2905 Vals.push_back(LandingPadInst::Filter); 2906 pushValueAndType(LP.getClause(I), InstID, Vals); 2907 } 2908 break; 2909 } 2910 2911 case Instruction::Alloca: { 2912 Code = bitc::FUNC_CODE_INST_ALLOCA; 2913 const AllocaInst &AI = cast<AllocaInst>(I); 2914 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2915 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2916 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2917 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2918 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2919 "not enough bits for maximum alignment"); 2920 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2921 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2922 AlignRecord |= 1 << 6; 2923 AlignRecord |= AI.isSwiftError() << 7; 2924 Vals.push_back(AlignRecord); 2925 break; 2926 } 2927 2928 case Instruction::Load: 2929 if (cast<LoadInst>(I).isAtomic()) { 2930 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2931 pushValueAndType(I.getOperand(0), InstID, Vals); 2932 } else { 2933 Code = bitc::FUNC_CODE_INST_LOAD; 2934 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2935 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2936 } 2937 Vals.push_back(VE.getTypeID(I.getType())); 2938 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2939 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2940 if (cast<LoadInst>(I).isAtomic()) { 2941 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2942 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2943 } 2944 break; 2945 case Instruction::Store: 2946 if (cast<StoreInst>(I).isAtomic()) 2947 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2948 else 2949 Code = bitc::FUNC_CODE_INST_STORE; 2950 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2951 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2952 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2953 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2954 if (cast<StoreInst>(I).isAtomic()) { 2955 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2956 Vals.push_back( 2957 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2958 } 2959 break; 2960 case Instruction::AtomicCmpXchg: 2961 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2962 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2963 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2964 pushValue(I.getOperand(2), InstID, Vals); // newval. 2965 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2966 Vals.push_back( 2967 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2968 Vals.push_back( 2969 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2970 Vals.push_back( 2971 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2972 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2973 break; 2974 case Instruction::AtomicRMW: 2975 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2976 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2977 pushValue(I.getOperand(1), InstID, Vals); // val. 2978 Vals.push_back( 2979 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2980 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2981 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2982 Vals.push_back( 2983 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2984 break; 2985 case Instruction::Fence: 2986 Code = bitc::FUNC_CODE_INST_FENCE; 2987 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2988 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2989 break; 2990 case Instruction::Call: { 2991 const CallInst &CI = cast<CallInst>(I); 2992 FunctionType *FTy = CI.getFunctionType(); 2993 2994 if (CI.hasOperandBundles()) 2995 writeOperandBundles(&CI, InstID); 2996 2997 Code = bitc::FUNC_CODE_INST_CALL; 2998 2999 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3000 3001 unsigned Flags = getOptimizationFlags(&I); 3002 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3003 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3004 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3005 1 << bitc::CALL_EXPLICIT_TYPE | 3006 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3007 unsigned(Flags != 0) << bitc::CALL_FMF); 3008 if (Flags != 0) 3009 Vals.push_back(Flags); 3010 3011 Vals.push_back(VE.getTypeID(FTy)); 3012 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 3013 3014 // Emit value #'s for the fixed parameters. 3015 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3016 // Check for labels (can happen with asm labels). 3017 if (FTy->getParamType(i)->isLabelTy()) 3018 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3019 else 3020 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3021 } 3022 3023 // Emit type/value pairs for varargs params. 3024 if (FTy->isVarArg()) { 3025 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3026 i != e; ++i) 3027 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3028 } 3029 break; 3030 } 3031 case Instruction::VAArg: 3032 Code = bitc::FUNC_CODE_INST_VAARG; 3033 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3034 pushValue(I.getOperand(0), InstID, Vals); // valist. 3035 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3036 break; 3037 } 3038 3039 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3040 Vals.clear(); 3041 } 3042 3043 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3044 /// to allow clients to efficiently find the function body. 3045 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3046 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3047 // Get the offset of the VST we are writing, and backpatch it into 3048 // the VST forward declaration record. 3049 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3050 // The BitcodeStartBit was the stream offset of the identification block. 3051 VSTOffset -= bitcodeStartBit(); 3052 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3053 // Note that we add 1 here because the offset is relative to one word 3054 // before the start of the identification block, which was historically 3055 // always the start of the regular bitcode header. 3056 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3057 3058 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3059 3060 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3061 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3064 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3065 3066 for (const Function &F : M) { 3067 uint64_t Record[2]; 3068 3069 if (F.isDeclaration()) 3070 continue; 3071 3072 Record[0] = VE.getValueID(&F); 3073 3074 // Save the word offset of the function (from the start of the 3075 // actual bitcode written to the stream). 3076 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3077 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3078 // Note that we add 1 here because the offset is relative to one word 3079 // before the start of the identification block, which was historically 3080 // always the start of the regular bitcode header. 3081 Record[1] = BitcodeIndex / 32 + 1; 3082 3083 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3084 } 3085 3086 Stream.ExitBlock(); 3087 } 3088 3089 /// Emit names for arguments, instructions and basic blocks in a function. 3090 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3091 const ValueSymbolTable &VST) { 3092 if (VST.empty()) 3093 return; 3094 3095 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3096 3097 // FIXME: Set up the abbrev, we know how many values there are! 3098 // FIXME: We know if the type names can use 7-bit ascii. 3099 SmallVector<uint64_t, 64> NameVals; 3100 3101 for (const ValueName &Name : VST) { 3102 // Figure out the encoding to use for the name. 3103 StringEncoding Bits = getStringEncoding(Name.getKey()); 3104 3105 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3106 NameVals.push_back(VE.getValueID(Name.getValue())); 3107 3108 // VST_CODE_ENTRY: [valueid, namechar x N] 3109 // VST_CODE_BBENTRY: [bbid, namechar x N] 3110 unsigned Code; 3111 if (isa<BasicBlock>(Name.getValue())) { 3112 Code = bitc::VST_CODE_BBENTRY; 3113 if (Bits == SE_Char6) 3114 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3115 } else { 3116 Code = bitc::VST_CODE_ENTRY; 3117 if (Bits == SE_Char6) 3118 AbbrevToUse = VST_ENTRY_6_ABBREV; 3119 else if (Bits == SE_Fixed7) 3120 AbbrevToUse = VST_ENTRY_7_ABBREV; 3121 } 3122 3123 for (const auto P : Name.getKey()) 3124 NameVals.push_back((unsigned char)P); 3125 3126 // Emit the finished record. 3127 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3128 NameVals.clear(); 3129 } 3130 3131 Stream.ExitBlock(); 3132 } 3133 3134 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3135 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3136 unsigned Code; 3137 if (isa<BasicBlock>(Order.V)) 3138 Code = bitc::USELIST_CODE_BB; 3139 else 3140 Code = bitc::USELIST_CODE_DEFAULT; 3141 3142 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3143 Record.push_back(VE.getValueID(Order.V)); 3144 Stream.EmitRecord(Code, Record); 3145 } 3146 3147 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3148 assert(VE.shouldPreserveUseListOrder() && 3149 "Expected to be preserving use-list order"); 3150 3151 auto hasMore = [&]() { 3152 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3153 }; 3154 if (!hasMore()) 3155 // Nothing to do. 3156 return; 3157 3158 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3159 while (hasMore()) { 3160 writeUseList(std::move(VE.UseListOrders.back())); 3161 VE.UseListOrders.pop_back(); 3162 } 3163 Stream.ExitBlock(); 3164 } 3165 3166 /// Emit a function body to the module stream. 3167 void ModuleBitcodeWriter::writeFunction( 3168 const Function &F, 3169 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3170 // Save the bitcode index of the start of this function block for recording 3171 // in the VST. 3172 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3173 3174 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3175 VE.incorporateFunction(F); 3176 3177 SmallVector<unsigned, 64> Vals; 3178 3179 // Emit the number of basic blocks, so the reader can create them ahead of 3180 // time. 3181 Vals.push_back(VE.getBasicBlocks().size()); 3182 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3183 Vals.clear(); 3184 3185 // If there are function-local constants, emit them now. 3186 unsigned CstStart, CstEnd; 3187 VE.getFunctionConstantRange(CstStart, CstEnd); 3188 writeConstants(CstStart, CstEnd, false); 3189 3190 // If there is function-local metadata, emit it now. 3191 writeFunctionMetadata(F); 3192 3193 // Keep a running idea of what the instruction ID is. 3194 unsigned InstID = CstEnd; 3195 3196 bool NeedsMetadataAttachment = F.hasMetadata(); 3197 3198 DILocation *LastDL = nullptr; 3199 // Finally, emit all the instructions, in order. 3200 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3201 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3202 I != E; ++I) { 3203 writeInstruction(*I, InstID, Vals); 3204 3205 if (!I->getType()->isVoidTy()) 3206 ++InstID; 3207 3208 // If the instruction has metadata, write a metadata attachment later. 3209 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3210 3211 // If the instruction has a debug location, emit it. 3212 DILocation *DL = I->getDebugLoc(); 3213 if (!DL) 3214 continue; 3215 3216 if (DL == LastDL) { 3217 // Just repeat the same debug loc as last time. 3218 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3219 continue; 3220 } 3221 3222 Vals.push_back(DL->getLine()); 3223 Vals.push_back(DL->getColumn()); 3224 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3225 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3226 Vals.push_back(DL->isImplicitCode()); 3227 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3228 Vals.clear(); 3229 3230 LastDL = DL; 3231 } 3232 3233 // Emit names for all the instructions etc. 3234 if (auto *Symtab = F.getValueSymbolTable()) 3235 writeFunctionLevelValueSymbolTable(*Symtab); 3236 3237 if (NeedsMetadataAttachment) 3238 writeFunctionMetadataAttachment(F); 3239 if (VE.shouldPreserveUseListOrder()) 3240 writeUseListBlock(&F); 3241 VE.purgeFunction(); 3242 Stream.ExitBlock(); 3243 } 3244 3245 // Emit blockinfo, which defines the standard abbreviations etc. 3246 void ModuleBitcodeWriter::writeBlockInfo() { 3247 // We only want to emit block info records for blocks that have multiple 3248 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3249 // Other blocks can define their abbrevs inline. 3250 Stream.EnterBlockInfoBlock(); 3251 3252 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3253 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3254 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3255 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3256 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3257 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3258 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3259 VST_ENTRY_8_ABBREV) 3260 llvm_unreachable("Unexpected abbrev ordering!"); 3261 } 3262 3263 { // 7-bit fixed width VST_CODE_ENTRY strings. 3264 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3265 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3266 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3267 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3268 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3269 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3270 VST_ENTRY_7_ABBREV) 3271 llvm_unreachable("Unexpected abbrev ordering!"); 3272 } 3273 { // 6-bit char6 VST_CODE_ENTRY strings. 3274 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3275 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3276 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3279 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3280 VST_ENTRY_6_ABBREV) 3281 llvm_unreachable("Unexpected abbrev ordering!"); 3282 } 3283 { // 6-bit char6 VST_CODE_BBENTRY strings. 3284 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3285 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3289 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3290 VST_BBENTRY_6_ABBREV) 3291 llvm_unreachable("Unexpected abbrev ordering!"); 3292 } 3293 3294 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3295 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3296 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3298 VE.computeBitsRequiredForTypeIndicies())); 3299 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3300 CONSTANTS_SETTYPE_ABBREV) 3301 llvm_unreachable("Unexpected abbrev ordering!"); 3302 } 3303 3304 { // INTEGER abbrev for CONSTANTS_BLOCK. 3305 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3306 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3307 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3308 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3309 CONSTANTS_INTEGER_ABBREV) 3310 llvm_unreachable("Unexpected abbrev ordering!"); 3311 } 3312 3313 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3314 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3315 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3318 VE.computeBitsRequiredForTypeIndicies())); 3319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3320 3321 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3322 CONSTANTS_CE_CAST_Abbrev) 3323 llvm_unreachable("Unexpected abbrev ordering!"); 3324 } 3325 { // NULL abbrev for CONSTANTS_BLOCK. 3326 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3327 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3328 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3329 CONSTANTS_NULL_Abbrev) 3330 llvm_unreachable("Unexpected abbrev ordering!"); 3331 } 3332 3333 // FIXME: This should only use space for first class types! 3334 3335 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3336 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3337 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3340 VE.computeBitsRequiredForTypeIndicies())); 3341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3343 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3344 FUNCTION_INST_LOAD_ABBREV) 3345 llvm_unreachable("Unexpected abbrev ordering!"); 3346 } 3347 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3348 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3349 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3352 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3353 FUNCTION_INST_UNOP_ABBREV) 3354 llvm_unreachable("Unexpected abbrev ordering!"); 3355 } 3356 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3357 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3358 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3362 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3363 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3364 llvm_unreachable("Unexpected abbrev ordering!"); 3365 } 3366 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3367 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3368 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3372 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3373 FUNCTION_INST_BINOP_ABBREV) 3374 llvm_unreachable("Unexpected abbrev ordering!"); 3375 } 3376 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3377 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3378 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3383 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3384 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3385 llvm_unreachable("Unexpected abbrev ordering!"); 3386 } 3387 { // INST_CAST abbrev for FUNCTION_BLOCK. 3388 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3389 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3392 VE.computeBitsRequiredForTypeIndicies())); 3393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3394 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3395 FUNCTION_INST_CAST_ABBREV) 3396 llvm_unreachable("Unexpected abbrev ordering!"); 3397 } 3398 3399 { // INST_RET abbrev for FUNCTION_BLOCK. 3400 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3401 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3402 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3403 FUNCTION_INST_RET_VOID_ABBREV) 3404 llvm_unreachable("Unexpected abbrev ordering!"); 3405 } 3406 { // INST_RET abbrev for FUNCTION_BLOCK. 3407 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3408 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3409 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3410 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3411 FUNCTION_INST_RET_VAL_ABBREV) 3412 llvm_unreachable("Unexpected abbrev ordering!"); 3413 } 3414 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3415 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3416 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3417 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3418 FUNCTION_INST_UNREACHABLE_ABBREV) 3419 llvm_unreachable("Unexpected abbrev ordering!"); 3420 } 3421 { 3422 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3423 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3424 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3425 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3426 Log2_32_Ceil(VE.getTypes().size() + 1))); 3427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3429 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3430 FUNCTION_INST_GEP_ABBREV) 3431 llvm_unreachable("Unexpected abbrev ordering!"); 3432 } 3433 3434 Stream.ExitBlock(); 3435 } 3436 3437 /// Write the module path strings, currently only used when generating 3438 /// a combined index file. 3439 void IndexBitcodeWriter::writeModStrings() { 3440 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3441 3442 // TODO: See which abbrev sizes we actually need to emit 3443 3444 // 8-bit fixed-width MST_ENTRY strings. 3445 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3446 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3450 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3451 3452 // 7-bit fixed width MST_ENTRY strings. 3453 Abbv = std::make_shared<BitCodeAbbrev>(); 3454 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3458 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3459 3460 // 6-bit char6 MST_ENTRY strings. 3461 Abbv = std::make_shared<BitCodeAbbrev>(); 3462 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3466 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3467 3468 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3469 Abbv = std::make_shared<BitCodeAbbrev>(); 3470 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3474 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3475 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3476 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3477 3478 SmallVector<unsigned, 64> Vals; 3479 forEachModule( 3480 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3481 StringRef Key = MPSE.getKey(); 3482 const auto &Value = MPSE.getValue(); 3483 StringEncoding Bits = getStringEncoding(Key); 3484 unsigned AbbrevToUse = Abbrev8Bit; 3485 if (Bits == SE_Char6) 3486 AbbrevToUse = Abbrev6Bit; 3487 else if (Bits == SE_Fixed7) 3488 AbbrevToUse = Abbrev7Bit; 3489 3490 Vals.push_back(Value.first); 3491 Vals.append(Key.begin(), Key.end()); 3492 3493 // Emit the finished record. 3494 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3495 3496 // Emit an optional hash for the module now 3497 const auto &Hash = Value.second; 3498 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3499 Vals.assign(Hash.begin(), Hash.end()); 3500 // Emit the hash record. 3501 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3502 } 3503 3504 Vals.clear(); 3505 }); 3506 Stream.ExitBlock(); 3507 } 3508 3509 /// Write the function type metadata related records that need to appear before 3510 /// a function summary entry (whether per-module or combined). 3511 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3512 FunctionSummary *FS) { 3513 if (!FS->type_tests().empty()) 3514 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3515 3516 SmallVector<uint64_t, 64> Record; 3517 3518 auto WriteVFuncIdVec = [&](uint64_t Ty, 3519 ArrayRef<FunctionSummary::VFuncId> VFs) { 3520 if (VFs.empty()) 3521 return; 3522 Record.clear(); 3523 for (auto &VF : VFs) { 3524 Record.push_back(VF.GUID); 3525 Record.push_back(VF.Offset); 3526 } 3527 Stream.EmitRecord(Ty, Record); 3528 }; 3529 3530 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3531 FS->type_test_assume_vcalls()); 3532 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3533 FS->type_checked_load_vcalls()); 3534 3535 auto WriteConstVCallVec = [&](uint64_t Ty, 3536 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3537 for (auto &VC : VCs) { 3538 Record.clear(); 3539 Record.push_back(VC.VFunc.GUID); 3540 Record.push_back(VC.VFunc.Offset); 3541 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3542 Stream.EmitRecord(Ty, Record); 3543 } 3544 }; 3545 3546 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3547 FS->type_test_assume_const_vcalls()); 3548 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3549 FS->type_checked_load_const_vcalls()); 3550 } 3551 3552 /// Collect type IDs from type tests used by function. 3553 static void 3554 getReferencedTypeIds(FunctionSummary *FS, 3555 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3556 if (!FS->type_tests().empty()) 3557 for (auto &TT : FS->type_tests()) 3558 ReferencedTypeIds.insert(TT); 3559 3560 auto GetReferencedTypesFromVFuncIdVec = 3561 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3562 for (auto &VF : VFs) 3563 ReferencedTypeIds.insert(VF.GUID); 3564 }; 3565 3566 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3567 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3568 3569 auto GetReferencedTypesFromConstVCallVec = 3570 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3571 for (auto &VC : VCs) 3572 ReferencedTypeIds.insert(VC.VFunc.GUID); 3573 }; 3574 3575 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3576 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3577 } 3578 3579 static void writeWholeProgramDevirtResolutionByArg( 3580 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3581 const WholeProgramDevirtResolution::ByArg &ByArg) { 3582 NameVals.push_back(args.size()); 3583 NameVals.insert(NameVals.end(), args.begin(), args.end()); 3584 3585 NameVals.push_back(ByArg.TheKind); 3586 NameVals.push_back(ByArg.Info); 3587 NameVals.push_back(ByArg.Byte); 3588 NameVals.push_back(ByArg.Bit); 3589 } 3590 3591 static void writeWholeProgramDevirtResolution( 3592 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3593 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3594 NameVals.push_back(Id); 3595 3596 NameVals.push_back(Wpd.TheKind); 3597 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3598 NameVals.push_back(Wpd.SingleImplName.size()); 3599 3600 NameVals.push_back(Wpd.ResByArg.size()); 3601 for (auto &A : Wpd.ResByArg) 3602 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3603 } 3604 3605 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3606 StringTableBuilder &StrtabBuilder, 3607 const std::string &Id, 3608 const TypeIdSummary &Summary) { 3609 NameVals.push_back(StrtabBuilder.add(Id)); 3610 NameVals.push_back(Id.size()); 3611 3612 NameVals.push_back(Summary.TTRes.TheKind); 3613 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3614 NameVals.push_back(Summary.TTRes.AlignLog2); 3615 NameVals.push_back(Summary.TTRes.SizeM1); 3616 NameVals.push_back(Summary.TTRes.BitMask); 3617 NameVals.push_back(Summary.TTRes.InlineBits); 3618 3619 for (auto &W : Summary.WPDRes) 3620 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3621 W.second); 3622 } 3623 3624 static void writeTypeIdCompatibleVtableSummaryRecord( 3625 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3626 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3627 ValueEnumerator &VE) { 3628 NameVals.push_back(StrtabBuilder.add(Id)); 3629 NameVals.push_back(Id.size()); 3630 3631 for (auto &P : Summary) { 3632 NameVals.push_back(P.AddressPointOffset); 3633 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3634 } 3635 } 3636 3637 // Helper to emit a single function summary record. 3638 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3639 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3640 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3641 const Function &F) { 3642 NameVals.push_back(ValueID); 3643 3644 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3645 writeFunctionTypeMetadataRecords(Stream, FS); 3646 3647 auto SpecialRefCnts = FS->specialRefCounts(); 3648 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3649 NameVals.push_back(FS->instCount()); 3650 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3651 NameVals.push_back(FS->refs().size()); 3652 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3653 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3654 3655 for (auto &RI : FS->refs()) 3656 NameVals.push_back(VE.getValueID(RI.getValue())); 3657 3658 bool HasProfileData = 3659 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3660 for (auto &ECI : FS->calls()) { 3661 NameVals.push_back(getValueId(ECI.first)); 3662 if (HasProfileData) 3663 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3664 else if (WriteRelBFToSummary) 3665 NameVals.push_back(ECI.second.RelBlockFreq); 3666 } 3667 3668 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3669 unsigned Code = 3670 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3671 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3672 : bitc::FS_PERMODULE)); 3673 3674 // Emit the finished record. 3675 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3676 NameVals.clear(); 3677 } 3678 3679 // Collect the global value references in the given variable's initializer, 3680 // and emit them in a summary record. 3681 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3682 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3683 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3684 auto VI = Index->getValueInfo(V.getGUID()); 3685 if (!VI || VI.getSummaryList().empty()) { 3686 // Only declarations should not have a summary (a declaration might however 3687 // have a summary if the def was in module level asm). 3688 assert(V.isDeclaration()); 3689 return; 3690 } 3691 auto *Summary = VI.getSummaryList()[0].get(); 3692 NameVals.push_back(VE.getValueID(&V)); 3693 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3694 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3695 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3696 3697 auto VTableFuncs = VS->vTableFuncs(); 3698 if (!VTableFuncs.empty()) 3699 NameVals.push_back(VS->refs().size()); 3700 3701 unsigned SizeBeforeRefs = NameVals.size(); 3702 for (auto &RI : VS->refs()) 3703 NameVals.push_back(VE.getValueID(RI.getValue())); 3704 // Sort the refs for determinism output, the vector returned by FS->refs() has 3705 // been initialized from a DenseSet. 3706 llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3707 3708 if (VTableFuncs.empty()) 3709 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3710 FSModRefsAbbrev); 3711 else { 3712 // VTableFuncs pairs should already be sorted by offset. 3713 for (auto &P : VTableFuncs) { 3714 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3715 NameVals.push_back(P.VTableOffset); 3716 } 3717 3718 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3719 FSModVTableRefsAbbrev); 3720 } 3721 NameVals.clear(); 3722 } 3723 3724 // Current version for the summary. 3725 // This is bumped whenever we introduce changes in the way some record are 3726 // interpreted, like flags for instance. 3727 static const uint64_t INDEX_VERSION = 8; 3728 3729 /// Emit the per-module summary section alongside the rest of 3730 /// the module's bitcode. 3731 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3732 // By default we compile with ThinLTO if the module has a summary, but the 3733 // client can request full LTO with a module flag. 3734 bool IsThinLTO = true; 3735 if (auto *MD = 3736 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3737 IsThinLTO = MD->getZExtValue(); 3738 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3739 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3740 4); 3741 3742 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3743 3744 // Write the index flags. 3745 uint64_t Flags = 0; 3746 // Bits 1-3 are set only in the combined index, skip them. 3747 if (Index->enableSplitLTOUnit()) 3748 Flags |= 0x8; 3749 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3750 3751 if (Index->begin() == Index->end()) { 3752 Stream.ExitBlock(); 3753 return; 3754 } 3755 3756 for (const auto &GVI : valueIds()) { 3757 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3758 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3759 } 3760 3761 // Abbrev for FS_PERMODULE_PROFILE. 3762 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3763 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3764 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3765 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3771 // numrefs x valueid, n x (valueid, hotness) 3772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3773 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3774 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3775 3776 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3777 Abbv = std::make_shared<BitCodeAbbrev>(); 3778 if (WriteRelBFToSummary) 3779 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3780 else 3781 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3787 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3789 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3792 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3793 3794 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3795 Abbv = std::make_shared<BitCodeAbbrev>(); 3796 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3801 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3802 3803 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3804 Abbv = std::make_shared<BitCodeAbbrev>(); 3805 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3808 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3809 // numrefs x valueid, n x (valueid , offset) 3810 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3811 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3812 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3813 3814 // Abbrev for FS_ALIAS. 3815 Abbv = std::make_shared<BitCodeAbbrev>(); 3816 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3818 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3820 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3821 3822 // Abbrev for FS_TYPE_ID_METADATA 3823 Abbv = std::make_shared<BitCodeAbbrev>(); 3824 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 3825 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 3826 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 3827 // n x (valueid , offset) 3828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3830 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3831 3832 SmallVector<uint64_t, 64> NameVals; 3833 // Iterate over the list of functions instead of the Index to 3834 // ensure the ordering is stable. 3835 for (const Function &F : M) { 3836 // Summary emission does not support anonymous functions, they have to 3837 // renamed using the anonymous function renaming pass. 3838 if (!F.hasName()) 3839 report_fatal_error("Unexpected anonymous function when writing summary"); 3840 3841 ValueInfo VI = Index->getValueInfo(F.getGUID()); 3842 if (!VI || VI.getSummaryList().empty()) { 3843 // Only declarations should not have a summary (a declaration might 3844 // however have a summary if the def was in module level asm). 3845 assert(F.isDeclaration()); 3846 continue; 3847 } 3848 auto *Summary = VI.getSummaryList()[0].get(); 3849 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3850 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3851 } 3852 3853 // Capture references from GlobalVariable initializers, which are outside 3854 // of a function scope. 3855 for (const GlobalVariable &G : M.globals()) 3856 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 3857 FSModVTableRefsAbbrev); 3858 3859 for (const GlobalAlias &A : M.aliases()) { 3860 auto *Aliasee = A.getBaseObject(); 3861 if (!Aliasee->hasName()) 3862 // Nameless function don't have an entry in the summary, skip it. 3863 continue; 3864 auto AliasId = VE.getValueID(&A); 3865 auto AliaseeId = VE.getValueID(Aliasee); 3866 NameVals.push_back(AliasId); 3867 auto *Summary = Index->getGlobalValueSummary(A); 3868 AliasSummary *AS = cast<AliasSummary>(Summary); 3869 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3870 NameVals.push_back(AliaseeId); 3871 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3872 NameVals.clear(); 3873 } 3874 3875 for (auto &S : Index->typeIdCompatibleVtableMap()) { 3876 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 3877 S.second, VE); 3878 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 3879 TypeIdCompatibleVtableAbbrev); 3880 NameVals.clear(); 3881 } 3882 3883 Stream.ExitBlock(); 3884 } 3885 3886 /// Emit the combined summary section into the combined index file. 3887 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3888 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3889 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3890 3891 // Write the index flags. 3892 uint64_t Flags = 0; 3893 if (Index.withGlobalValueDeadStripping()) 3894 Flags |= 0x1; 3895 if (Index.skipModuleByDistributedBackend()) 3896 Flags |= 0x2; 3897 if (Index.hasSyntheticEntryCounts()) 3898 Flags |= 0x4; 3899 if (Index.enableSplitLTOUnit()) 3900 Flags |= 0x8; 3901 if (Index.partiallySplitLTOUnits()) 3902 Flags |= 0x10; 3903 if (Index.withAttributePropagation()) 3904 Flags |= 0x20; 3905 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3906 3907 for (const auto &GVI : valueIds()) { 3908 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3909 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3910 } 3911 3912 // Abbrev for FS_COMBINED. 3913 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3914 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3915 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3916 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3917 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3918 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3919 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3920 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3921 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3924 // numrefs x valueid, n x (valueid) 3925 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3926 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3927 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3928 3929 // Abbrev for FS_COMBINED_PROFILE. 3930 Abbv = std::make_shared<BitCodeAbbrev>(); 3931 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3932 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3934 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3935 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3941 // numrefs x valueid, n x (valueid, hotness) 3942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3944 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3945 3946 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3947 Abbv = std::make_shared<BitCodeAbbrev>(); 3948 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3954 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3955 3956 // Abbrev for FS_COMBINED_ALIAS. 3957 Abbv = std::make_shared<BitCodeAbbrev>(); 3958 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3963 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3964 3965 // The aliases are emitted as a post-pass, and will point to the value 3966 // id of the aliasee. Save them in a vector for post-processing. 3967 SmallVector<AliasSummary *, 64> Aliases; 3968 3969 // Save the value id for each summary for alias emission. 3970 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3971 3972 SmallVector<uint64_t, 64> NameVals; 3973 3974 // Set that will be populated during call to writeFunctionTypeMetadataRecords 3975 // with the type ids referenced by this index file. 3976 std::set<GlobalValue::GUID> ReferencedTypeIds; 3977 3978 // For local linkage, we also emit the original name separately 3979 // immediately after the record. 3980 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3981 if (!GlobalValue::isLocalLinkage(S.linkage())) 3982 return; 3983 NameVals.push_back(S.getOriginalName()); 3984 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3985 NameVals.clear(); 3986 }; 3987 3988 std::set<GlobalValue::GUID> DefOrUseGUIDs; 3989 forEachSummary([&](GVInfo I, bool IsAliasee) { 3990 GlobalValueSummary *S = I.second; 3991 assert(S); 3992 DefOrUseGUIDs.insert(I.first); 3993 for (const ValueInfo &VI : S->refs()) 3994 DefOrUseGUIDs.insert(VI.getGUID()); 3995 3996 auto ValueId = getValueId(I.first); 3997 assert(ValueId); 3998 SummaryToValueIdMap[S] = *ValueId; 3999 4000 // If this is invoked for an aliasee, we want to record the above 4001 // mapping, but then not emit a summary entry (if the aliasee is 4002 // to be imported, we will invoke this separately with IsAliasee=false). 4003 if (IsAliasee) 4004 return; 4005 4006 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4007 // Will process aliases as a post-pass because the reader wants all 4008 // global to be loaded first. 4009 Aliases.push_back(AS); 4010 return; 4011 } 4012 4013 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4014 NameVals.push_back(*ValueId); 4015 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4016 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4017 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4018 for (auto &RI : VS->refs()) { 4019 auto RefValueId = getValueId(RI.getGUID()); 4020 if (!RefValueId) 4021 continue; 4022 NameVals.push_back(*RefValueId); 4023 } 4024 4025 // Emit the finished record. 4026 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4027 FSModRefsAbbrev); 4028 NameVals.clear(); 4029 MaybeEmitOriginalName(*S); 4030 return; 4031 } 4032 4033 auto *FS = cast<FunctionSummary>(S); 4034 writeFunctionTypeMetadataRecords(Stream, FS); 4035 getReferencedTypeIds(FS, ReferencedTypeIds); 4036 4037 NameVals.push_back(*ValueId); 4038 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4039 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4040 NameVals.push_back(FS->instCount()); 4041 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4042 NameVals.push_back(FS->entryCount()); 4043 4044 // Fill in below 4045 NameVals.push_back(0); // numrefs 4046 NameVals.push_back(0); // rorefcnt 4047 NameVals.push_back(0); // worefcnt 4048 4049 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4050 for (auto &RI : FS->refs()) { 4051 auto RefValueId = getValueId(RI.getGUID()); 4052 if (!RefValueId) 4053 continue; 4054 NameVals.push_back(*RefValueId); 4055 if (RI.isReadOnly()) 4056 RORefCnt++; 4057 else if (RI.isWriteOnly()) 4058 WORefCnt++; 4059 Count++; 4060 } 4061 NameVals[6] = Count; 4062 NameVals[7] = RORefCnt; 4063 NameVals[8] = WORefCnt; 4064 4065 bool HasProfileData = false; 4066 for (auto &EI : FS->calls()) { 4067 HasProfileData |= 4068 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4069 if (HasProfileData) 4070 break; 4071 } 4072 4073 for (auto &EI : FS->calls()) { 4074 // If this GUID doesn't have a value id, it doesn't have a function 4075 // summary and we don't need to record any calls to it. 4076 GlobalValue::GUID GUID = EI.first.getGUID(); 4077 auto CallValueId = getValueId(GUID); 4078 if (!CallValueId) { 4079 // For SamplePGO, the indirect call targets for local functions will 4080 // have its original name annotated in profile. We try to find the 4081 // corresponding PGOFuncName as the GUID. 4082 GUID = Index.getGUIDFromOriginalID(GUID); 4083 if (GUID == 0) 4084 continue; 4085 CallValueId = getValueId(GUID); 4086 if (!CallValueId) 4087 continue; 4088 // The mapping from OriginalId to GUID may return a GUID 4089 // that corresponds to a static variable. Filter it out here. 4090 // This can happen when 4091 // 1) There is a call to a library function which does not have 4092 // a CallValidId; 4093 // 2) There is a static variable with the OriginalGUID identical 4094 // to the GUID of the library function in 1); 4095 // When this happens, the logic for SamplePGO kicks in and 4096 // the static variable in 2) will be found, which needs to be 4097 // filtered out. 4098 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 4099 if (GVSum && 4100 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4101 continue; 4102 } 4103 NameVals.push_back(*CallValueId); 4104 if (HasProfileData) 4105 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4106 } 4107 4108 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4109 unsigned Code = 4110 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4111 4112 // Emit the finished record. 4113 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4114 NameVals.clear(); 4115 MaybeEmitOriginalName(*S); 4116 }); 4117 4118 for (auto *AS : Aliases) { 4119 auto AliasValueId = SummaryToValueIdMap[AS]; 4120 assert(AliasValueId); 4121 NameVals.push_back(AliasValueId); 4122 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4123 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4124 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4125 assert(AliaseeValueId); 4126 NameVals.push_back(AliaseeValueId); 4127 4128 // Emit the finished record. 4129 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4130 NameVals.clear(); 4131 MaybeEmitOriginalName(*AS); 4132 4133 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4134 getReferencedTypeIds(FS, ReferencedTypeIds); 4135 } 4136 4137 if (!Index.cfiFunctionDefs().empty()) { 4138 for (auto &S : Index.cfiFunctionDefs()) { 4139 if (DefOrUseGUIDs.count( 4140 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4141 NameVals.push_back(StrtabBuilder.add(S)); 4142 NameVals.push_back(S.size()); 4143 } 4144 } 4145 if (!NameVals.empty()) { 4146 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4147 NameVals.clear(); 4148 } 4149 } 4150 4151 if (!Index.cfiFunctionDecls().empty()) { 4152 for (auto &S : Index.cfiFunctionDecls()) { 4153 if (DefOrUseGUIDs.count( 4154 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4155 NameVals.push_back(StrtabBuilder.add(S)); 4156 NameVals.push_back(S.size()); 4157 } 4158 } 4159 if (!NameVals.empty()) { 4160 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4161 NameVals.clear(); 4162 } 4163 } 4164 4165 // Walk the GUIDs that were referenced, and write the 4166 // corresponding type id records. 4167 for (auto &T : ReferencedTypeIds) { 4168 auto TidIter = Index.typeIds().equal_range(T); 4169 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4170 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4171 It->second.second); 4172 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4173 NameVals.clear(); 4174 } 4175 } 4176 4177 Stream.ExitBlock(); 4178 } 4179 4180 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4181 /// current llvm version, and a record for the epoch number. 4182 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4183 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4184 4185 // Write the "user readable" string identifying the bitcode producer 4186 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4187 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4190 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4191 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4192 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4193 4194 // Write the epoch version 4195 Abbv = std::make_shared<BitCodeAbbrev>(); 4196 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4198 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4199 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 4200 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4201 Stream.ExitBlock(); 4202 } 4203 4204 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4205 // Emit the module's hash. 4206 // MODULE_CODE_HASH: [5*i32] 4207 if (GenerateHash) { 4208 uint32_t Vals[5]; 4209 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4210 Buffer.size() - BlockStartPos)); 4211 StringRef Hash = Hasher.result(); 4212 for (int Pos = 0; Pos < 20; Pos += 4) { 4213 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4214 } 4215 4216 // Emit the finished record. 4217 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4218 4219 if (ModHash) 4220 // Save the written hash value. 4221 llvm::copy(Vals, std::begin(*ModHash)); 4222 } 4223 } 4224 4225 void ModuleBitcodeWriter::write() { 4226 writeIdentificationBlock(Stream); 4227 4228 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4229 size_t BlockStartPos = Buffer.size(); 4230 4231 writeModuleVersion(); 4232 4233 // Emit blockinfo, which defines the standard abbreviations etc. 4234 writeBlockInfo(); 4235 4236 // Emit information describing all of the types in the module. 4237 writeTypeTable(); 4238 4239 // Emit information about attribute groups. 4240 writeAttributeGroupTable(); 4241 4242 // Emit information about parameter attributes. 4243 writeAttributeTable(); 4244 4245 writeComdats(); 4246 4247 // Emit top-level description of module, including target triple, inline asm, 4248 // descriptors for global variables, and function prototype info. 4249 writeModuleInfo(); 4250 4251 // Emit constants. 4252 writeModuleConstants(); 4253 4254 // Emit metadata kind names. 4255 writeModuleMetadataKinds(); 4256 4257 // Emit metadata. 4258 writeModuleMetadata(); 4259 4260 // Emit module-level use-lists. 4261 if (VE.shouldPreserveUseListOrder()) 4262 writeUseListBlock(nullptr); 4263 4264 writeOperandBundleTags(); 4265 writeSyncScopeNames(); 4266 4267 // Emit function bodies. 4268 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4269 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4270 if (!F->isDeclaration()) 4271 writeFunction(*F, FunctionToBitcodeIndex); 4272 4273 // Need to write after the above call to WriteFunction which populates 4274 // the summary information in the index. 4275 if (Index) 4276 writePerModuleGlobalValueSummary(); 4277 4278 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4279 4280 writeModuleHash(BlockStartPos); 4281 4282 Stream.ExitBlock(); 4283 } 4284 4285 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4286 uint32_t &Position) { 4287 support::endian::write32le(&Buffer[Position], Value); 4288 Position += 4; 4289 } 4290 4291 /// If generating a bc file on darwin, we have to emit a 4292 /// header and trailer to make it compatible with the system archiver. To do 4293 /// this we emit the following header, and then emit a trailer that pads the 4294 /// file out to be a multiple of 16 bytes. 4295 /// 4296 /// struct bc_header { 4297 /// uint32_t Magic; // 0x0B17C0DE 4298 /// uint32_t Version; // Version, currently always 0. 4299 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4300 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4301 /// uint32_t CPUType; // CPU specifier. 4302 /// ... potentially more later ... 4303 /// }; 4304 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4305 const Triple &TT) { 4306 unsigned CPUType = ~0U; 4307 4308 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4309 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4310 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4311 // specific constants here because they are implicitly part of the Darwin ABI. 4312 enum { 4313 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4314 DARWIN_CPU_TYPE_X86 = 7, 4315 DARWIN_CPU_TYPE_ARM = 12, 4316 DARWIN_CPU_TYPE_POWERPC = 18 4317 }; 4318 4319 Triple::ArchType Arch = TT.getArch(); 4320 if (Arch == Triple::x86_64) 4321 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4322 else if (Arch == Triple::x86) 4323 CPUType = DARWIN_CPU_TYPE_X86; 4324 else if (Arch == Triple::ppc) 4325 CPUType = DARWIN_CPU_TYPE_POWERPC; 4326 else if (Arch == Triple::ppc64) 4327 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4328 else if (Arch == Triple::arm || Arch == Triple::thumb) 4329 CPUType = DARWIN_CPU_TYPE_ARM; 4330 4331 // Traditional Bitcode starts after header. 4332 assert(Buffer.size() >= BWH_HeaderSize && 4333 "Expected header size to be reserved"); 4334 unsigned BCOffset = BWH_HeaderSize; 4335 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4336 4337 // Write the magic and version. 4338 unsigned Position = 0; 4339 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4340 writeInt32ToBuffer(0, Buffer, Position); // Version. 4341 writeInt32ToBuffer(BCOffset, Buffer, Position); 4342 writeInt32ToBuffer(BCSize, Buffer, Position); 4343 writeInt32ToBuffer(CPUType, Buffer, Position); 4344 4345 // If the file is not a multiple of 16 bytes, insert dummy padding. 4346 while (Buffer.size() & 15) 4347 Buffer.push_back(0); 4348 } 4349 4350 /// Helper to write the header common to all bitcode files. 4351 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4352 // Emit the file header. 4353 Stream.Emit((unsigned)'B', 8); 4354 Stream.Emit((unsigned)'C', 8); 4355 Stream.Emit(0x0, 4); 4356 Stream.Emit(0xC, 4); 4357 Stream.Emit(0xE, 4); 4358 Stream.Emit(0xD, 4); 4359 } 4360 4361 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 4362 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 4363 writeBitcodeHeader(*Stream); 4364 } 4365 4366 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4367 4368 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4369 Stream->EnterSubblock(Block, 3); 4370 4371 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4372 Abbv->Add(BitCodeAbbrevOp(Record)); 4373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4374 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4375 4376 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4377 4378 Stream->ExitBlock(); 4379 } 4380 4381 void BitcodeWriter::writeSymtab() { 4382 assert(!WroteStrtab && !WroteSymtab); 4383 4384 // If any module has module-level inline asm, we will require a registered asm 4385 // parser for the target so that we can create an accurate symbol table for 4386 // the module. 4387 for (Module *M : Mods) { 4388 if (M->getModuleInlineAsm().empty()) 4389 continue; 4390 4391 std::string Err; 4392 const Triple TT(M->getTargetTriple()); 4393 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4394 if (!T || !T->hasMCAsmParser()) 4395 return; 4396 } 4397 4398 WroteSymtab = true; 4399 SmallVector<char, 0> Symtab; 4400 // The irsymtab::build function may be unable to create a symbol table if the 4401 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4402 // table is not required for correctness, but we still want to be able to 4403 // write malformed modules to bitcode files, so swallow the error. 4404 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4405 consumeError(std::move(E)); 4406 return; 4407 } 4408 4409 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4410 {Symtab.data(), Symtab.size()}); 4411 } 4412 4413 void BitcodeWriter::writeStrtab() { 4414 assert(!WroteStrtab); 4415 4416 std::vector<char> Strtab; 4417 StrtabBuilder.finalizeInOrder(); 4418 Strtab.resize(StrtabBuilder.getSize()); 4419 StrtabBuilder.write((uint8_t *)Strtab.data()); 4420 4421 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4422 {Strtab.data(), Strtab.size()}); 4423 4424 WroteStrtab = true; 4425 } 4426 4427 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4428 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4429 WroteStrtab = true; 4430 } 4431 4432 void BitcodeWriter::writeModule(const Module &M, 4433 bool ShouldPreserveUseListOrder, 4434 const ModuleSummaryIndex *Index, 4435 bool GenerateHash, ModuleHash *ModHash) { 4436 assert(!WroteStrtab); 4437 4438 // The Mods vector is used by irsymtab::build, which requires non-const 4439 // Modules in case it needs to materialize metadata. But the bitcode writer 4440 // requires that the module is materialized, so we can cast to non-const here, 4441 // after checking that it is in fact materialized. 4442 assert(M.isMaterialized()); 4443 Mods.push_back(const_cast<Module *>(&M)); 4444 4445 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4446 ShouldPreserveUseListOrder, Index, 4447 GenerateHash, ModHash); 4448 ModuleWriter.write(); 4449 } 4450 4451 void BitcodeWriter::writeIndex( 4452 const ModuleSummaryIndex *Index, 4453 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4454 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4455 ModuleToSummariesForIndex); 4456 IndexWriter.write(); 4457 } 4458 4459 /// Write the specified module to the specified output stream. 4460 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4461 bool ShouldPreserveUseListOrder, 4462 const ModuleSummaryIndex *Index, 4463 bool GenerateHash, ModuleHash *ModHash) { 4464 SmallVector<char, 0> Buffer; 4465 Buffer.reserve(256*1024); 4466 4467 // If this is darwin or another generic macho target, reserve space for the 4468 // header. 4469 Triple TT(M.getTargetTriple()); 4470 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4471 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4472 4473 BitcodeWriter Writer(Buffer); 4474 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4475 ModHash); 4476 Writer.writeSymtab(); 4477 Writer.writeStrtab(); 4478 4479 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4480 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4481 4482 // Write the generated bitstream to "Out". 4483 Out.write((char*)&Buffer.front(), Buffer.size()); 4484 } 4485 4486 void IndexBitcodeWriter::write() { 4487 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4488 4489 writeModuleVersion(); 4490 4491 // Write the module paths in the combined index. 4492 writeModStrings(); 4493 4494 // Write the summary combined index records. 4495 writeCombinedGlobalValueSummary(); 4496 4497 Stream.ExitBlock(); 4498 } 4499 4500 // Write the specified module summary index to the given raw output stream, 4501 // where it will be written in a new bitcode block. This is used when 4502 // writing the combined index file for ThinLTO. When writing a subset of the 4503 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4504 void llvm::WriteIndexToFile( 4505 const ModuleSummaryIndex &Index, raw_ostream &Out, 4506 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4507 SmallVector<char, 0> Buffer; 4508 Buffer.reserve(256 * 1024); 4509 4510 BitcodeWriter Writer(Buffer); 4511 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4512 Writer.writeStrtab(); 4513 4514 Out.write((char *)&Buffer.front(), Buffer.size()); 4515 } 4516 4517 namespace { 4518 4519 /// Class to manage the bitcode writing for a thin link bitcode file. 4520 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4521 /// ModHash is for use in ThinLTO incremental build, generated while writing 4522 /// the module bitcode file. 4523 const ModuleHash *ModHash; 4524 4525 public: 4526 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4527 BitstreamWriter &Stream, 4528 const ModuleSummaryIndex &Index, 4529 const ModuleHash &ModHash) 4530 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4531 /*ShouldPreserveUseListOrder=*/false, &Index), 4532 ModHash(&ModHash) {} 4533 4534 void write(); 4535 4536 private: 4537 void writeSimplifiedModuleInfo(); 4538 }; 4539 4540 } // end anonymous namespace 4541 4542 // This function writes a simpilified module info for thin link bitcode file. 4543 // It only contains the source file name along with the name(the offset and 4544 // size in strtab) and linkage for global values. For the global value info 4545 // entry, in order to keep linkage at offset 5, there are three zeros used 4546 // as padding. 4547 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4548 SmallVector<unsigned, 64> Vals; 4549 // Emit the module's source file name. 4550 { 4551 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4552 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4553 if (Bits == SE_Char6) 4554 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4555 else if (Bits == SE_Fixed7) 4556 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4557 4558 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4559 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4560 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4562 Abbv->Add(AbbrevOpToUse); 4563 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4564 4565 for (const auto P : M.getSourceFileName()) 4566 Vals.push_back((unsigned char)P); 4567 4568 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4569 Vals.clear(); 4570 } 4571 4572 // Emit the global variable information. 4573 for (const GlobalVariable &GV : M.globals()) { 4574 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4575 Vals.push_back(StrtabBuilder.add(GV.getName())); 4576 Vals.push_back(GV.getName().size()); 4577 Vals.push_back(0); 4578 Vals.push_back(0); 4579 Vals.push_back(0); 4580 Vals.push_back(getEncodedLinkage(GV)); 4581 4582 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4583 Vals.clear(); 4584 } 4585 4586 // Emit the function proto information. 4587 for (const Function &F : M) { 4588 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4589 Vals.push_back(StrtabBuilder.add(F.getName())); 4590 Vals.push_back(F.getName().size()); 4591 Vals.push_back(0); 4592 Vals.push_back(0); 4593 Vals.push_back(0); 4594 Vals.push_back(getEncodedLinkage(F)); 4595 4596 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4597 Vals.clear(); 4598 } 4599 4600 // Emit the alias information. 4601 for (const GlobalAlias &A : M.aliases()) { 4602 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4603 Vals.push_back(StrtabBuilder.add(A.getName())); 4604 Vals.push_back(A.getName().size()); 4605 Vals.push_back(0); 4606 Vals.push_back(0); 4607 Vals.push_back(0); 4608 Vals.push_back(getEncodedLinkage(A)); 4609 4610 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4611 Vals.clear(); 4612 } 4613 4614 // Emit the ifunc information. 4615 for (const GlobalIFunc &I : M.ifuncs()) { 4616 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4617 Vals.push_back(StrtabBuilder.add(I.getName())); 4618 Vals.push_back(I.getName().size()); 4619 Vals.push_back(0); 4620 Vals.push_back(0); 4621 Vals.push_back(0); 4622 Vals.push_back(getEncodedLinkage(I)); 4623 4624 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4625 Vals.clear(); 4626 } 4627 } 4628 4629 void ThinLinkBitcodeWriter::write() { 4630 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4631 4632 writeModuleVersion(); 4633 4634 writeSimplifiedModuleInfo(); 4635 4636 writePerModuleGlobalValueSummary(); 4637 4638 // Write module hash. 4639 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4640 4641 Stream.ExitBlock(); 4642 } 4643 4644 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4645 const ModuleSummaryIndex &Index, 4646 const ModuleHash &ModHash) { 4647 assert(!WroteStrtab); 4648 4649 // The Mods vector is used by irsymtab::build, which requires non-const 4650 // Modules in case it needs to materialize metadata. But the bitcode writer 4651 // requires that the module is materialized, so we can cast to non-const here, 4652 // after checking that it is in fact materialized. 4653 assert(M.isMaterialized()); 4654 Mods.push_back(const_cast<Module *>(&M)); 4655 4656 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4657 ModHash); 4658 ThinLinkWriter.write(); 4659 } 4660 4661 // Write the specified thin link bitcode file to the given raw output stream, 4662 // where it will be written in a new bitcode block. This is used when 4663 // writing the per-module index file for ThinLTO. 4664 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4665 const ModuleSummaryIndex &Index, 4666 const ModuleHash &ModHash) { 4667 SmallVector<char, 0> Buffer; 4668 Buffer.reserve(256 * 1024); 4669 4670 BitcodeWriter Writer(Buffer); 4671 Writer.writeThinLinkBitcode(M, Index, ModHash); 4672 Writer.writeSymtab(); 4673 Writer.writeStrtab(); 4674 4675 Out.write((char *)&Buffer.front(), Buffer.size()); 4676 } 4677