1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/Operator.h" 24 #include "llvm/TypeSymbolTable.h" 25 #include "llvm/ValueSymbolTable.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/System/Program.h" 30 using namespace llvm; 31 32 /// These are manifest constants used by the bitcode writer. They do not need to 33 /// be kept in sync with the reader, but need to be consistent within this file. 34 enum { 35 CurVersion = 0, 36 37 // VALUE_SYMTAB_BLOCK abbrev id's. 38 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 39 VST_ENTRY_7_ABBREV, 40 VST_ENTRY_6_ABBREV, 41 VST_BBENTRY_6_ABBREV, 42 43 // CONSTANTS_BLOCK abbrev id's. 44 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 45 CONSTANTS_INTEGER_ABBREV, 46 CONSTANTS_CE_CAST_Abbrev, 47 CONSTANTS_NULL_Abbrev, 48 49 // FUNCTION_BLOCK abbrev id's. 50 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 51 FUNCTION_INST_BINOP_ABBREV, 52 FUNCTION_INST_BINOP_FLAGS_ABBREV, 53 FUNCTION_INST_CAST_ABBREV, 54 FUNCTION_INST_RET_VOID_ABBREV, 55 FUNCTION_INST_RET_VAL_ABBREV, 56 FUNCTION_INST_UNREACHABLE_ABBREV 57 }; 58 59 60 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 61 switch (Opcode) { 62 default: llvm_unreachable("Unknown cast instruction!"); 63 case Instruction::Trunc : return bitc::CAST_TRUNC; 64 case Instruction::ZExt : return bitc::CAST_ZEXT; 65 case Instruction::SExt : return bitc::CAST_SEXT; 66 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 67 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 68 case Instruction::UIToFP : return bitc::CAST_UITOFP; 69 case Instruction::SIToFP : return bitc::CAST_SITOFP; 70 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 71 case Instruction::FPExt : return bitc::CAST_FPEXT; 72 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 73 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 74 case Instruction::BitCast : return bitc::CAST_BITCAST; 75 } 76 } 77 78 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 79 switch (Opcode) { 80 default: llvm_unreachable("Unknown binary instruction!"); 81 case Instruction::Add: 82 case Instruction::FAdd: return bitc::BINOP_ADD; 83 case Instruction::Sub: 84 case Instruction::FSub: return bitc::BINOP_SUB; 85 case Instruction::Mul: 86 case Instruction::FMul: return bitc::BINOP_MUL; 87 case Instruction::UDiv: return bitc::BINOP_UDIV; 88 case Instruction::FDiv: 89 case Instruction::SDiv: return bitc::BINOP_SDIV; 90 case Instruction::URem: return bitc::BINOP_UREM; 91 case Instruction::FRem: 92 case Instruction::SRem: return bitc::BINOP_SREM; 93 case Instruction::Shl: return bitc::BINOP_SHL; 94 case Instruction::LShr: return bitc::BINOP_LSHR; 95 case Instruction::AShr: return bitc::BINOP_ASHR; 96 case Instruction::And: return bitc::BINOP_AND; 97 case Instruction::Or: return bitc::BINOP_OR; 98 case Instruction::Xor: return bitc::BINOP_XOR; 99 } 100 } 101 102 103 104 static void WriteStringRecord(unsigned Code, const std::string &Str, 105 unsigned AbbrevToUse, BitstreamWriter &Stream) { 106 SmallVector<unsigned, 64> Vals; 107 108 // Code: [strchar x N] 109 for (unsigned i = 0, e = Str.size(); i != e; ++i) 110 Vals.push_back(Str[i]); 111 112 // Emit the finished record. 113 Stream.EmitRecord(Code, Vals, AbbrevToUse); 114 } 115 116 // Emit information about parameter attributes. 117 static void WriteAttributeTable(const ValueEnumerator &VE, 118 BitstreamWriter &Stream) { 119 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 120 if (Attrs.empty()) return; 121 122 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 123 124 SmallVector<uint64_t, 64> Record; 125 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 126 const AttrListPtr &A = Attrs[i]; 127 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 128 const AttributeWithIndex &PAWI = A.getSlot(i); 129 Record.push_back(PAWI.Index); 130 131 // FIXME: remove in LLVM 3.0 132 // Store the alignment in the bitcode as a 16-bit raw value instead of a 133 // 5-bit log2 encoded value. Shift the bits above the alignment up by 134 // 11 bits. 135 uint64_t FauxAttr = PAWI.Attrs & 0xffff; 136 if (PAWI.Attrs & Attribute::Alignment) 137 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16); 138 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11; 139 140 Record.push_back(FauxAttr); 141 } 142 143 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 144 Record.clear(); 145 } 146 147 Stream.ExitBlock(); 148 } 149 150 /// WriteTypeTable - Write out the type table for a module. 151 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 152 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 153 154 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 155 SmallVector<uint64_t, 64> TypeVals; 156 157 // Abbrev for TYPE_CODE_POINTER. 158 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 159 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 161 Log2_32_Ceil(VE.getTypes().size()+1))); 162 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 163 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 164 165 // Abbrev for TYPE_CODE_FUNCTION. 166 Abbv = new BitCodeAbbrev(); 167 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 169 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 172 Log2_32_Ceil(VE.getTypes().size()+1))); 173 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 174 175 // Abbrev for TYPE_CODE_STRUCT. 176 Abbv = new BitCodeAbbrev(); 177 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 181 Log2_32_Ceil(VE.getTypes().size()+1))); 182 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 183 184 // Abbrev for TYPE_CODE_ARRAY. 185 Abbv = new BitCodeAbbrev(); 186 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 189 Log2_32_Ceil(VE.getTypes().size()+1))); 190 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 191 192 // Emit an entry count so the reader can reserve space. 193 TypeVals.push_back(TypeList.size()); 194 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 195 TypeVals.clear(); 196 197 // Loop over all of the types, emitting each in turn. 198 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 199 const Type *T = TypeList[i].first; 200 int AbbrevToUse = 0; 201 unsigned Code = 0; 202 203 switch (T->getTypeID()) { 204 default: llvm_unreachable("Unknown type!"); 205 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 206 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 207 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 208 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 209 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 210 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 211 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 212 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 213 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 214 case Type::IntegerTyID: 215 // INTEGER: [width] 216 Code = bitc::TYPE_CODE_INTEGER; 217 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 218 break; 219 case Type::PointerTyID: { 220 const PointerType *PTy = cast<PointerType>(T); 221 // POINTER: [pointee type, address space] 222 Code = bitc::TYPE_CODE_POINTER; 223 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 224 unsigned AddressSpace = PTy->getAddressSpace(); 225 TypeVals.push_back(AddressSpace); 226 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 227 break; 228 } 229 case Type::FunctionTyID: { 230 const FunctionType *FT = cast<FunctionType>(T); 231 // FUNCTION: [isvararg, attrid, retty, paramty x N] 232 Code = bitc::TYPE_CODE_FUNCTION; 233 TypeVals.push_back(FT->isVarArg()); 234 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 235 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 236 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 237 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 238 AbbrevToUse = FunctionAbbrev; 239 break; 240 } 241 case Type::StructTyID: { 242 const StructType *ST = cast<StructType>(T); 243 // STRUCT: [ispacked, eltty x N] 244 Code = bitc::TYPE_CODE_STRUCT; 245 TypeVals.push_back(ST->isPacked()); 246 // Output all of the element types. 247 for (StructType::element_iterator I = ST->element_begin(), 248 E = ST->element_end(); I != E; ++I) 249 TypeVals.push_back(VE.getTypeID(*I)); 250 AbbrevToUse = StructAbbrev; 251 break; 252 } 253 case Type::ArrayTyID: { 254 const ArrayType *AT = cast<ArrayType>(T); 255 // ARRAY: [numelts, eltty] 256 Code = bitc::TYPE_CODE_ARRAY; 257 TypeVals.push_back(AT->getNumElements()); 258 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 259 AbbrevToUse = ArrayAbbrev; 260 break; 261 } 262 case Type::VectorTyID: { 263 const VectorType *VT = cast<VectorType>(T); 264 // VECTOR [numelts, eltty] 265 Code = bitc::TYPE_CODE_VECTOR; 266 TypeVals.push_back(VT->getNumElements()); 267 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 268 break; 269 } 270 } 271 272 // Emit the finished record. 273 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 274 TypeVals.clear(); 275 } 276 277 Stream.ExitBlock(); 278 } 279 280 static unsigned getEncodedLinkage(const GlobalValue *GV) { 281 switch (GV->getLinkage()) { 282 default: llvm_unreachable("Invalid linkage!"); 283 case GlobalValue::GhostLinkage: // Map ghost linkage onto external. 284 case GlobalValue::ExternalLinkage: return 0; 285 case GlobalValue::WeakAnyLinkage: return 1; 286 case GlobalValue::AppendingLinkage: return 2; 287 case GlobalValue::InternalLinkage: return 3; 288 case GlobalValue::LinkOnceAnyLinkage: return 4; 289 case GlobalValue::DLLImportLinkage: return 5; 290 case GlobalValue::DLLExportLinkage: return 6; 291 case GlobalValue::ExternalWeakLinkage: return 7; 292 case GlobalValue::CommonLinkage: return 8; 293 case GlobalValue::PrivateLinkage: return 9; 294 case GlobalValue::WeakODRLinkage: return 10; 295 case GlobalValue::LinkOnceODRLinkage: return 11; 296 case GlobalValue::AvailableExternallyLinkage: return 12; 297 case GlobalValue::LinkerPrivateLinkage: return 13; 298 } 299 } 300 301 static unsigned getEncodedVisibility(const GlobalValue *GV) { 302 switch (GV->getVisibility()) { 303 default: llvm_unreachable("Invalid visibility!"); 304 case GlobalValue::DefaultVisibility: return 0; 305 case GlobalValue::HiddenVisibility: return 1; 306 case GlobalValue::ProtectedVisibility: return 2; 307 } 308 } 309 310 // Emit top-level description of module, including target triple, inline asm, 311 // descriptors for global variables, and function prototype info. 312 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 313 BitstreamWriter &Stream) { 314 // Emit the list of dependent libraries for the Module. 315 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 316 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 317 318 // Emit various pieces of data attached to a module. 319 if (!M->getTargetTriple().empty()) 320 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 321 0/*TODO*/, Stream); 322 if (!M->getDataLayout().empty()) 323 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 324 0/*TODO*/, Stream); 325 if (!M->getModuleInlineAsm().empty()) 326 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 327 0/*TODO*/, Stream); 328 329 // Emit information about sections and GC, computing how many there are. Also 330 // compute the maximum alignment value. 331 std::map<std::string, unsigned> SectionMap; 332 std::map<std::string, unsigned> GCMap; 333 unsigned MaxAlignment = 0; 334 unsigned MaxGlobalType = 0; 335 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 336 GV != E; ++GV) { 337 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 338 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 339 340 if (!GV->hasSection()) continue; 341 // Give section names unique ID's. 342 unsigned &Entry = SectionMap[GV->getSection()]; 343 if (Entry != 0) continue; 344 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 345 0/*TODO*/, Stream); 346 Entry = SectionMap.size(); 347 } 348 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 349 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 350 if (F->hasSection()) { 351 // Give section names unique ID's. 352 unsigned &Entry = SectionMap[F->getSection()]; 353 if (!Entry) { 354 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 355 0/*TODO*/, Stream); 356 Entry = SectionMap.size(); 357 } 358 } 359 if (F->hasGC()) { 360 // Same for GC names. 361 unsigned &Entry = GCMap[F->getGC()]; 362 if (!Entry) { 363 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 364 0/*TODO*/, Stream); 365 Entry = GCMap.size(); 366 } 367 } 368 } 369 370 // Emit abbrev for globals, now that we know # sections and max alignment. 371 unsigned SimpleGVarAbbrev = 0; 372 if (!M->global_empty()) { 373 // Add an abbrev for common globals with no visibility or thread localness. 374 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 375 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 377 Log2_32_Ceil(MaxGlobalType+1))); 378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 381 if (MaxAlignment == 0) // Alignment. 382 Abbv->Add(BitCodeAbbrevOp(0)); 383 else { 384 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 386 Log2_32_Ceil(MaxEncAlignment+1))); 387 } 388 if (SectionMap.empty()) // Section. 389 Abbv->Add(BitCodeAbbrevOp(0)); 390 else 391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 392 Log2_32_Ceil(SectionMap.size()+1))); 393 // Don't bother emitting vis + thread local. 394 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 395 } 396 397 // Emit the global variable information. 398 SmallVector<unsigned, 64> Vals; 399 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 400 GV != E; ++GV) { 401 unsigned AbbrevToUse = 0; 402 403 // GLOBALVAR: [type, isconst, initid, 404 // linkage, alignment, section, visibility, threadlocal] 405 Vals.push_back(VE.getTypeID(GV->getType())); 406 Vals.push_back(GV->isConstant()); 407 Vals.push_back(GV->isDeclaration() ? 0 : 408 (VE.getValueID(GV->getInitializer()) + 1)); 409 Vals.push_back(getEncodedLinkage(GV)); 410 Vals.push_back(Log2_32(GV->getAlignment())+1); 411 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 412 if (GV->isThreadLocal() || 413 GV->getVisibility() != GlobalValue::DefaultVisibility) { 414 Vals.push_back(getEncodedVisibility(GV)); 415 Vals.push_back(GV->isThreadLocal()); 416 } else { 417 AbbrevToUse = SimpleGVarAbbrev; 418 } 419 420 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 421 Vals.clear(); 422 } 423 424 // Emit the function proto information. 425 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 426 // FUNCTION: [type, callingconv, isproto, paramattr, 427 // linkage, alignment, section, visibility, gc] 428 Vals.push_back(VE.getTypeID(F->getType())); 429 Vals.push_back(F->getCallingConv()); 430 Vals.push_back(F->isDeclaration()); 431 Vals.push_back(getEncodedLinkage(F)); 432 Vals.push_back(VE.getAttributeID(F->getAttributes())); 433 Vals.push_back(Log2_32(F->getAlignment())+1); 434 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 435 Vals.push_back(getEncodedVisibility(F)); 436 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 437 438 unsigned AbbrevToUse = 0; 439 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 440 Vals.clear(); 441 } 442 443 444 // Emit the alias information. 445 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 446 AI != E; ++AI) { 447 Vals.push_back(VE.getTypeID(AI->getType())); 448 Vals.push_back(VE.getValueID(AI->getAliasee())); 449 Vals.push_back(getEncodedLinkage(AI)); 450 Vals.push_back(getEncodedVisibility(AI)); 451 unsigned AbbrevToUse = 0; 452 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 453 Vals.clear(); 454 } 455 } 456 457 static uint64_t GetOptimizationFlags(const Value *V) { 458 uint64_t Flags = 0; 459 460 if (const OverflowingBinaryOperator *OBO = 461 dyn_cast<OverflowingBinaryOperator>(V)) { 462 if (OBO->hasNoSignedWrap()) 463 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 464 if (OBO->hasNoUnsignedWrap()) 465 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 466 } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) { 467 if (Div->isExact()) 468 Flags |= 1 << bitc::SDIV_EXACT; 469 } 470 471 return Flags; 472 } 473 474 static void WriteMDNode(const MDNode *N, 475 const ValueEnumerator &VE, 476 BitstreamWriter &Stream, 477 SmallVector<uint64_t, 64> &Record) { 478 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 479 if (N->getOperand(i)) { 480 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 481 Record.push_back(VE.getValueID(N->getOperand(i))); 482 } else { 483 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 484 Record.push_back(0); 485 } 486 } 487 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE : 488 bitc::METADATA_NODE; 489 Stream.EmitRecord(MDCode, Record, 0); 490 Record.clear(); 491 } 492 493 static void WriteModuleMetadata(const ValueEnumerator &VE, 494 BitstreamWriter &Stream) { 495 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 496 bool StartedMetadataBlock = false; 497 unsigned MDSAbbrev = 0; 498 SmallVector<uint64_t, 64> Record; 499 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 500 501 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 502 if (!N->isFunctionLocal()) { 503 if (!StartedMetadataBlock) { 504 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 505 StartedMetadataBlock = true; 506 } 507 WriteMDNode(N, VE, Stream, Record); 508 } 509 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 510 if (!StartedMetadataBlock) { 511 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 512 513 // Abbrev for METADATA_STRING. 514 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 515 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 517 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 518 MDSAbbrev = Stream.EmitAbbrev(Abbv); 519 StartedMetadataBlock = true; 520 } 521 522 // Code: [strchar x N] 523 Record.append(MDS->begin(), MDS->end()); 524 525 // Emit the finished record. 526 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 527 Record.clear(); 528 } else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(Vals[i].first)) { 529 if (!StartedMetadataBlock) { 530 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 531 StartedMetadataBlock = true; 532 } 533 534 // Write name. 535 StringRef Str = NMD->getName(); 536 for (unsigned i = 0, e = Str.size(); i != e; ++i) 537 Record.push_back(Str[i]); 538 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 539 Record.clear(); 540 541 // Write named metadata operands. 542 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 543 if (NMD->getOperand(i)) 544 Record.push_back(VE.getValueID(NMD->getOperand(i))); 545 else 546 Record.push_back(~0U); 547 } 548 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 549 Record.clear(); 550 } 551 } 552 553 if (StartedMetadataBlock) 554 Stream.ExitBlock(); 555 } 556 557 static void WriteFunctionLocalMetadata(const ValueEnumerator &VE, 558 BitstreamWriter &Stream) { 559 bool StartedMetadataBlock = false; 560 SmallVector<uint64_t, 64> Record; 561 ValueEnumerator::ValueList Vals = VE.getMDValues(); 562 ValueEnumerator::ValueList::iterator it = Vals.begin(); 563 ValueEnumerator::ValueList::iterator end = Vals.end(); 564 565 while (it != end) { 566 if (const MDNode *N = dyn_cast<MDNode>((*it).first)) { 567 if (N->isFunctionLocal()) { 568 if (!StartedMetadataBlock) { 569 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 570 StartedMetadataBlock = true; 571 } 572 WriteMDNode(N, VE, Stream, Record); 573 // Remove function-local MD, since it is used outside of function. 574 it = Vals.erase(it); 575 end = Vals.end(); 576 continue; 577 } 578 } 579 ++it; 580 } 581 582 if (StartedMetadataBlock) 583 Stream.ExitBlock(); 584 } 585 586 static void WriteMetadataAttachment(const Function &F, 587 const ValueEnumerator &VE, 588 BitstreamWriter &Stream) { 589 bool StartedMetadataBlock = false; 590 SmallVector<uint64_t, 64> Record; 591 592 // Write metadata attachments 593 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 594 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 595 596 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 597 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 598 I != E; ++I) { 599 MDs.clear(); 600 I->getAllMetadata(MDs); 601 602 // If no metadata, ignore instruction. 603 if (MDs.empty()) continue; 604 605 Record.push_back(VE.getInstructionID(I)); 606 607 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 608 Record.push_back(MDs[i].first); 609 Record.push_back(VE.getValueID(MDs[i].second)); 610 } 611 if (!StartedMetadataBlock) { 612 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 613 StartedMetadataBlock = true; 614 } 615 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 616 Record.clear(); 617 } 618 619 if (StartedMetadataBlock) 620 Stream.ExitBlock(); 621 } 622 623 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 624 SmallVector<uint64_t, 64> Record; 625 626 // Write metadata kinds 627 // METADATA_KIND - [n x [id, name]] 628 SmallVector<StringRef, 4> Names; 629 M->getMDKindNames(Names); 630 631 assert(Names[0] == "" && "MDKind #0 is invalid"); 632 if (Names.size() == 1) return; 633 634 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 635 636 for (unsigned MDKindID = 1, e = Names.size(); MDKindID != e; ++MDKindID) { 637 Record.push_back(MDKindID); 638 StringRef KName = Names[MDKindID]; 639 Record.append(KName.begin(), KName.end()); 640 641 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 642 Record.clear(); 643 } 644 645 Stream.ExitBlock(); 646 } 647 648 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 649 const ValueEnumerator &VE, 650 BitstreamWriter &Stream, bool isGlobal) { 651 if (FirstVal == LastVal) return; 652 653 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 654 655 unsigned AggregateAbbrev = 0; 656 unsigned String8Abbrev = 0; 657 unsigned CString7Abbrev = 0; 658 unsigned CString6Abbrev = 0; 659 // If this is a constant pool for the module, emit module-specific abbrevs. 660 if (isGlobal) { 661 // Abbrev for CST_CODE_AGGREGATE. 662 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 663 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 664 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 665 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 666 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 667 668 // Abbrev for CST_CODE_STRING. 669 Abbv = new BitCodeAbbrev(); 670 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 671 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 672 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 673 String8Abbrev = Stream.EmitAbbrev(Abbv); 674 // Abbrev for CST_CODE_CSTRING. 675 Abbv = new BitCodeAbbrev(); 676 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 677 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 678 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 679 CString7Abbrev = Stream.EmitAbbrev(Abbv); 680 // Abbrev for CST_CODE_CSTRING. 681 Abbv = new BitCodeAbbrev(); 682 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 683 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 684 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 685 CString6Abbrev = Stream.EmitAbbrev(Abbv); 686 } 687 688 SmallVector<uint64_t, 64> Record; 689 690 const ValueEnumerator::ValueList &Vals = VE.getValues(); 691 const Type *LastTy = 0; 692 for (unsigned i = FirstVal; i != LastVal; ++i) { 693 const Value *V = Vals[i].first; 694 // If we need to switch types, do so now. 695 if (V->getType() != LastTy) { 696 LastTy = V->getType(); 697 Record.push_back(VE.getTypeID(LastTy)); 698 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 699 CONSTANTS_SETTYPE_ABBREV); 700 Record.clear(); 701 } 702 703 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 704 Record.push_back(unsigned(IA->hasSideEffects()) | 705 unsigned(IA->isAlignStack()) << 1); 706 707 // Add the asm string. 708 const std::string &AsmStr = IA->getAsmString(); 709 Record.push_back(AsmStr.size()); 710 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 711 Record.push_back(AsmStr[i]); 712 713 // Add the constraint string. 714 const std::string &ConstraintStr = IA->getConstraintString(); 715 Record.push_back(ConstraintStr.size()); 716 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 717 Record.push_back(ConstraintStr[i]); 718 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 719 Record.clear(); 720 continue; 721 } 722 const Constant *C = cast<Constant>(V); 723 unsigned Code = -1U; 724 unsigned AbbrevToUse = 0; 725 if (C->isNullValue()) { 726 Code = bitc::CST_CODE_NULL; 727 } else if (isa<UndefValue>(C)) { 728 Code = bitc::CST_CODE_UNDEF; 729 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 730 if (IV->getBitWidth() <= 64) { 731 int64_t V = IV->getSExtValue(); 732 if (V >= 0) 733 Record.push_back(V << 1); 734 else 735 Record.push_back((-V << 1) | 1); 736 Code = bitc::CST_CODE_INTEGER; 737 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 738 } else { // Wide integers, > 64 bits in size. 739 // We have an arbitrary precision integer value to write whose 740 // bit width is > 64. However, in canonical unsigned integer 741 // format it is likely that the high bits are going to be zero. 742 // So, we only write the number of active words. 743 unsigned NWords = IV->getValue().getActiveWords(); 744 const uint64_t *RawWords = IV->getValue().getRawData(); 745 for (unsigned i = 0; i != NWords; ++i) { 746 int64_t V = RawWords[i]; 747 if (V >= 0) 748 Record.push_back(V << 1); 749 else 750 Record.push_back((-V << 1) | 1); 751 } 752 Code = bitc::CST_CODE_WIDE_INTEGER; 753 } 754 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 755 Code = bitc::CST_CODE_FLOAT; 756 const Type *Ty = CFP->getType(); 757 if (Ty->isFloatTy() || Ty->isDoubleTy()) { 758 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 759 } else if (Ty->isX86_FP80Ty()) { 760 // api needed to prevent premature destruction 761 // bits are not in the same order as a normal i80 APInt, compensate. 762 APInt api = CFP->getValueAPF().bitcastToAPInt(); 763 const uint64_t *p = api.getRawData(); 764 Record.push_back((p[1] << 48) | (p[0] >> 16)); 765 Record.push_back(p[0] & 0xffffLL); 766 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 767 APInt api = CFP->getValueAPF().bitcastToAPInt(); 768 const uint64_t *p = api.getRawData(); 769 Record.push_back(p[0]); 770 Record.push_back(p[1]); 771 } else { 772 assert (0 && "Unknown FP type!"); 773 } 774 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 775 const ConstantArray *CA = cast<ConstantArray>(C); 776 // Emit constant strings specially. 777 unsigned NumOps = CA->getNumOperands(); 778 // If this is a null-terminated string, use the denser CSTRING encoding. 779 if (CA->getOperand(NumOps-1)->isNullValue()) { 780 Code = bitc::CST_CODE_CSTRING; 781 --NumOps; // Don't encode the null, which isn't allowed by char6. 782 } else { 783 Code = bitc::CST_CODE_STRING; 784 AbbrevToUse = String8Abbrev; 785 } 786 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 787 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 788 for (unsigned i = 0; i != NumOps; ++i) { 789 unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue(); 790 Record.push_back(V); 791 isCStr7 &= (V & 128) == 0; 792 if (isCStrChar6) 793 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 794 } 795 796 if (isCStrChar6) 797 AbbrevToUse = CString6Abbrev; 798 else if (isCStr7) 799 AbbrevToUse = CString7Abbrev; 800 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 801 isa<ConstantVector>(V)) { 802 Code = bitc::CST_CODE_AGGREGATE; 803 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 804 Record.push_back(VE.getValueID(C->getOperand(i))); 805 AbbrevToUse = AggregateAbbrev; 806 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 807 switch (CE->getOpcode()) { 808 default: 809 if (Instruction::isCast(CE->getOpcode())) { 810 Code = bitc::CST_CODE_CE_CAST; 811 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 812 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 813 Record.push_back(VE.getValueID(C->getOperand(0))); 814 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 815 } else { 816 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 817 Code = bitc::CST_CODE_CE_BINOP; 818 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 819 Record.push_back(VE.getValueID(C->getOperand(0))); 820 Record.push_back(VE.getValueID(C->getOperand(1))); 821 uint64_t Flags = GetOptimizationFlags(CE); 822 if (Flags != 0) 823 Record.push_back(Flags); 824 } 825 break; 826 case Instruction::GetElementPtr: 827 Code = bitc::CST_CODE_CE_GEP; 828 if (cast<GEPOperator>(C)->isInBounds()) 829 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 830 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 831 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 832 Record.push_back(VE.getValueID(C->getOperand(i))); 833 } 834 break; 835 case Instruction::Select: 836 Code = bitc::CST_CODE_CE_SELECT; 837 Record.push_back(VE.getValueID(C->getOperand(0))); 838 Record.push_back(VE.getValueID(C->getOperand(1))); 839 Record.push_back(VE.getValueID(C->getOperand(2))); 840 break; 841 case Instruction::ExtractElement: 842 Code = bitc::CST_CODE_CE_EXTRACTELT; 843 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 844 Record.push_back(VE.getValueID(C->getOperand(0))); 845 Record.push_back(VE.getValueID(C->getOperand(1))); 846 break; 847 case Instruction::InsertElement: 848 Code = bitc::CST_CODE_CE_INSERTELT; 849 Record.push_back(VE.getValueID(C->getOperand(0))); 850 Record.push_back(VE.getValueID(C->getOperand(1))); 851 Record.push_back(VE.getValueID(C->getOperand(2))); 852 break; 853 case Instruction::ShuffleVector: 854 // If the return type and argument types are the same, this is a 855 // standard shufflevector instruction. If the types are different, 856 // then the shuffle is widening or truncating the input vectors, and 857 // the argument type must also be encoded. 858 if (C->getType() == C->getOperand(0)->getType()) { 859 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 860 } else { 861 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 862 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 863 } 864 Record.push_back(VE.getValueID(C->getOperand(0))); 865 Record.push_back(VE.getValueID(C->getOperand(1))); 866 Record.push_back(VE.getValueID(C->getOperand(2))); 867 break; 868 case Instruction::ICmp: 869 case Instruction::FCmp: 870 Code = bitc::CST_CODE_CE_CMP; 871 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 872 Record.push_back(VE.getValueID(C->getOperand(0))); 873 Record.push_back(VE.getValueID(C->getOperand(1))); 874 Record.push_back(CE->getPredicate()); 875 break; 876 } 877 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 878 assert(BA->getFunction() == BA->getBasicBlock()->getParent() && 879 "Malformed blockaddress"); 880 Code = bitc::CST_CODE_BLOCKADDRESS; 881 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 882 Record.push_back(VE.getValueID(BA->getFunction())); 883 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 884 } else { 885 llvm_unreachable("Unknown constant!"); 886 } 887 Stream.EmitRecord(Code, Record, AbbrevToUse); 888 Record.clear(); 889 } 890 891 Stream.ExitBlock(); 892 } 893 894 static void WriteModuleConstants(const ValueEnumerator &VE, 895 BitstreamWriter &Stream) { 896 const ValueEnumerator::ValueList &Vals = VE.getValues(); 897 898 // Find the first constant to emit, which is the first non-globalvalue value. 899 // We know globalvalues have been emitted by WriteModuleInfo. 900 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 901 if (!isa<GlobalValue>(Vals[i].first)) { 902 WriteConstants(i, Vals.size(), VE, Stream, true); 903 return; 904 } 905 } 906 } 907 908 /// PushValueAndType - The file has to encode both the value and type id for 909 /// many values, because we need to know what type to create for forward 910 /// references. However, most operands are not forward references, so this type 911 /// field is not needed. 912 /// 913 /// This function adds V's value ID to Vals. If the value ID is higher than the 914 /// instruction ID, then it is a forward reference, and it also includes the 915 /// type ID. 916 static bool PushValueAndType(const Value *V, unsigned InstID, 917 SmallVector<unsigned, 64> &Vals, 918 ValueEnumerator &VE) { 919 unsigned ValID = VE.getValueID(V); 920 Vals.push_back(ValID); 921 if (ValID >= InstID) { 922 Vals.push_back(VE.getTypeID(V->getType())); 923 return true; 924 } 925 return false; 926 } 927 928 /// WriteInstruction - Emit an instruction to the specified stream. 929 static void WriteInstruction(const Instruction &I, unsigned InstID, 930 ValueEnumerator &VE, BitstreamWriter &Stream, 931 SmallVector<unsigned, 64> &Vals) { 932 unsigned Code = 0; 933 unsigned AbbrevToUse = 0; 934 VE.setInstructionID(&I); 935 switch (I.getOpcode()) { 936 default: 937 if (Instruction::isCast(I.getOpcode())) { 938 Code = bitc::FUNC_CODE_INST_CAST; 939 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 940 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 941 Vals.push_back(VE.getTypeID(I.getType())); 942 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 943 } else { 944 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 945 Code = bitc::FUNC_CODE_INST_BINOP; 946 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 947 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 948 Vals.push_back(VE.getValueID(I.getOperand(1))); 949 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 950 uint64_t Flags = GetOptimizationFlags(&I); 951 if (Flags != 0) { 952 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 953 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 954 Vals.push_back(Flags); 955 } 956 } 957 break; 958 959 case Instruction::GetElementPtr: 960 Code = bitc::FUNC_CODE_INST_GEP; 961 if (cast<GEPOperator>(&I)->isInBounds()) 962 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 963 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 964 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 965 break; 966 case Instruction::ExtractValue: { 967 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 968 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 969 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 970 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 971 Vals.push_back(*i); 972 break; 973 } 974 case Instruction::InsertValue: { 975 Code = bitc::FUNC_CODE_INST_INSERTVAL; 976 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 977 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 978 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 979 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 980 Vals.push_back(*i); 981 break; 982 } 983 case Instruction::Select: 984 Code = bitc::FUNC_CODE_INST_VSELECT; 985 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 986 Vals.push_back(VE.getValueID(I.getOperand(2))); 987 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 988 break; 989 case Instruction::ExtractElement: 990 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 991 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 992 Vals.push_back(VE.getValueID(I.getOperand(1))); 993 break; 994 case Instruction::InsertElement: 995 Code = bitc::FUNC_CODE_INST_INSERTELT; 996 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 997 Vals.push_back(VE.getValueID(I.getOperand(1))); 998 Vals.push_back(VE.getValueID(I.getOperand(2))); 999 break; 1000 case Instruction::ShuffleVector: 1001 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1002 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1003 Vals.push_back(VE.getValueID(I.getOperand(1))); 1004 Vals.push_back(VE.getValueID(I.getOperand(2))); 1005 break; 1006 case Instruction::ICmp: 1007 case Instruction::FCmp: 1008 // compare returning Int1Ty or vector of Int1Ty 1009 Code = bitc::FUNC_CODE_INST_CMP2; 1010 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1011 Vals.push_back(VE.getValueID(I.getOperand(1))); 1012 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1013 break; 1014 1015 case Instruction::Ret: 1016 { 1017 Code = bitc::FUNC_CODE_INST_RET; 1018 unsigned NumOperands = I.getNumOperands(); 1019 if (NumOperands == 0) 1020 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1021 else if (NumOperands == 1) { 1022 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1023 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1024 } else { 1025 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1026 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1027 } 1028 } 1029 break; 1030 case Instruction::Br: 1031 { 1032 Code = bitc::FUNC_CODE_INST_BR; 1033 BranchInst &II = cast<BranchInst>(I); 1034 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1035 if (II.isConditional()) { 1036 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1037 Vals.push_back(VE.getValueID(II.getCondition())); 1038 } 1039 } 1040 break; 1041 case Instruction::Switch: 1042 Code = bitc::FUNC_CODE_INST_SWITCH; 1043 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1044 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1045 Vals.push_back(VE.getValueID(I.getOperand(i))); 1046 break; 1047 case Instruction::IndirectBr: 1048 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1049 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1050 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1051 Vals.push_back(VE.getValueID(I.getOperand(i))); 1052 break; 1053 1054 case Instruction::Invoke: { 1055 const InvokeInst *II = cast<InvokeInst>(&I); 1056 const Value *Callee(II->getCalledValue()); 1057 const PointerType *PTy = cast<PointerType>(Callee->getType()); 1058 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1059 Code = bitc::FUNC_CODE_INST_INVOKE; 1060 1061 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1062 Vals.push_back(II->getCallingConv()); 1063 Vals.push_back(VE.getValueID(II->getNormalDest())); 1064 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1065 PushValueAndType(Callee, InstID, Vals, VE); 1066 1067 // Emit value #'s for the fixed parameters. 1068 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1069 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 1070 1071 // Emit type/value pairs for varargs params. 1072 if (FTy->isVarArg()) { 1073 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); 1074 i != e; ++i) 1075 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1076 } 1077 break; 1078 } 1079 case Instruction::Unwind: 1080 Code = bitc::FUNC_CODE_INST_UNWIND; 1081 break; 1082 case Instruction::Unreachable: 1083 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1084 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1085 break; 1086 1087 case Instruction::PHI: 1088 Code = bitc::FUNC_CODE_INST_PHI; 1089 Vals.push_back(VE.getTypeID(I.getType())); 1090 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1091 Vals.push_back(VE.getValueID(I.getOperand(i))); 1092 break; 1093 1094 case Instruction::Alloca: 1095 Code = bitc::FUNC_CODE_INST_ALLOCA; 1096 Vals.push_back(VE.getTypeID(I.getType())); 1097 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1098 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1099 break; 1100 1101 case Instruction::Load: 1102 Code = bitc::FUNC_CODE_INST_LOAD; 1103 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1104 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1105 1106 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1107 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1108 break; 1109 case Instruction::Store: 1110 Code = bitc::FUNC_CODE_INST_STORE2; 1111 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1112 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 1113 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1114 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1115 break; 1116 case Instruction::Call: { 1117 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 1118 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1119 1120 Code = bitc::FUNC_CODE_INST_CALL; 1121 1122 const CallInst *CI = cast<CallInst>(&I); 1123 Vals.push_back(VE.getAttributeID(CI->getAttributes())); 1124 Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall())); 1125 PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee 1126 1127 // Emit value #'s for the fixed parameters. 1128 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1129 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 1130 1131 // Emit type/value pairs for varargs params. 1132 if (FTy->isVarArg()) { 1133 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 1134 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 1135 i != e; ++i) 1136 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs 1137 } 1138 break; 1139 } 1140 case Instruction::VAArg: 1141 Code = bitc::FUNC_CODE_INST_VAARG; 1142 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1143 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 1144 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1145 break; 1146 } 1147 1148 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1149 Vals.clear(); 1150 } 1151 1152 // Emit names for globals/functions etc. 1153 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1154 const ValueEnumerator &VE, 1155 BitstreamWriter &Stream) { 1156 if (VST.empty()) return; 1157 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1158 1159 // FIXME: Set up the abbrev, we know how many values there are! 1160 // FIXME: We know if the type names can use 7-bit ascii. 1161 SmallVector<unsigned, 64> NameVals; 1162 1163 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1164 SI != SE; ++SI) { 1165 1166 const ValueName &Name = *SI; 1167 1168 // Figure out the encoding to use for the name. 1169 bool is7Bit = true; 1170 bool isChar6 = true; 1171 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1172 C != E; ++C) { 1173 if (isChar6) 1174 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1175 if ((unsigned char)*C & 128) { 1176 is7Bit = false; 1177 break; // don't bother scanning the rest. 1178 } 1179 } 1180 1181 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1182 1183 // VST_ENTRY: [valueid, namechar x N] 1184 // VST_BBENTRY: [bbid, namechar x N] 1185 unsigned Code; 1186 if (isa<BasicBlock>(SI->getValue())) { 1187 Code = bitc::VST_CODE_BBENTRY; 1188 if (isChar6) 1189 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1190 } else { 1191 Code = bitc::VST_CODE_ENTRY; 1192 if (isChar6) 1193 AbbrevToUse = VST_ENTRY_6_ABBREV; 1194 else if (is7Bit) 1195 AbbrevToUse = VST_ENTRY_7_ABBREV; 1196 } 1197 1198 NameVals.push_back(VE.getValueID(SI->getValue())); 1199 for (const char *P = Name.getKeyData(), 1200 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1201 NameVals.push_back((unsigned char)*P); 1202 1203 // Emit the finished record. 1204 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1205 NameVals.clear(); 1206 } 1207 Stream.ExitBlock(); 1208 } 1209 1210 /// WriteFunction - Emit a function body to the module stream. 1211 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1212 BitstreamWriter &Stream) { 1213 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1214 VE.incorporateFunction(F); 1215 1216 SmallVector<unsigned, 64> Vals; 1217 1218 // Emit the number of basic blocks, so the reader can create them ahead of 1219 // time. 1220 Vals.push_back(VE.getBasicBlocks().size()); 1221 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1222 Vals.clear(); 1223 1224 // If there are function-local constants, emit them now. 1225 unsigned CstStart, CstEnd; 1226 VE.getFunctionConstantRange(CstStart, CstEnd); 1227 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1228 1229 // Keep a running idea of what the instruction ID is. 1230 unsigned InstID = CstEnd; 1231 1232 // Finally, emit all the instructions, in order. 1233 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1234 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1235 I != E; ++I) { 1236 WriteInstruction(*I, InstID, VE, Stream, Vals); 1237 if (!I->getType()->isVoidTy()) 1238 ++InstID; 1239 } 1240 1241 // Emit names for all the instructions etc. 1242 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1243 1244 WriteFunctionLocalMetadata(VE, Stream); 1245 WriteMetadataAttachment(F, VE, Stream); 1246 VE.purgeFunction(); 1247 Stream.ExitBlock(); 1248 } 1249 1250 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 1251 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 1252 const ValueEnumerator &VE, 1253 BitstreamWriter &Stream) { 1254 if (TST.empty()) return; 1255 1256 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 1257 1258 // 7-bit fixed width VST_CODE_ENTRY strings. 1259 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1260 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1261 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1262 Log2_32_Ceil(VE.getTypes().size()+1))); 1263 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1264 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1265 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 1266 1267 SmallVector<unsigned, 64> NameVals; 1268 1269 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 1270 TI != TE; ++TI) { 1271 // TST_ENTRY: [typeid, namechar x N] 1272 NameVals.push_back(VE.getTypeID(TI->second)); 1273 1274 const std::string &Str = TI->first; 1275 bool is7Bit = true; 1276 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 1277 NameVals.push_back((unsigned char)Str[i]); 1278 if (Str[i] & 128) 1279 is7Bit = false; 1280 } 1281 1282 // Emit the finished record. 1283 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1284 NameVals.clear(); 1285 } 1286 1287 Stream.ExitBlock(); 1288 } 1289 1290 // Emit blockinfo, which defines the standard abbreviations etc. 1291 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1292 // We only want to emit block info records for blocks that have multiple 1293 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1294 // blocks can defined their abbrevs inline. 1295 Stream.EnterBlockInfoBlock(2); 1296 1297 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1298 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1303 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1304 Abbv) != VST_ENTRY_8_ABBREV) 1305 llvm_unreachable("Unexpected abbrev ordering!"); 1306 } 1307 1308 { // 7-bit fixed width VST_ENTRY strings. 1309 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1310 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1314 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1315 Abbv) != VST_ENTRY_7_ABBREV) 1316 llvm_unreachable("Unexpected abbrev ordering!"); 1317 } 1318 { // 6-bit char6 VST_ENTRY strings. 1319 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1320 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1324 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1325 Abbv) != VST_ENTRY_6_ABBREV) 1326 llvm_unreachable("Unexpected abbrev ordering!"); 1327 } 1328 { // 6-bit char6 VST_BBENTRY strings. 1329 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1330 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1334 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1335 Abbv) != VST_BBENTRY_6_ABBREV) 1336 llvm_unreachable("Unexpected abbrev ordering!"); 1337 } 1338 1339 1340 1341 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1342 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1343 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1345 Log2_32_Ceil(VE.getTypes().size()+1))); 1346 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1347 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1348 llvm_unreachable("Unexpected abbrev ordering!"); 1349 } 1350 1351 { // INTEGER abbrev for CONSTANTS_BLOCK. 1352 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1353 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1355 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1356 Abbv) != CONSTANTS_INTEGER_ABBREV) 1357 llvm_unreachable("Unexpected abbrev ordering!"); 1358 } 1359 1360 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1361 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1362 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1365 Log2_32_Ceil(VE.getTypes().size()+1))); 1366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1367 1368 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1369 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1370 llvm_unreachable("Unexpected abbrev ordering!"); 1371 } 1372 { // NULL abbrev for CONSTANTS_BLOCK. 1373 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1374 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1375 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1376 Abbv) != CONSTANTS_NULL_Abbrev) 1377 llvm_unreachable("Unexpected abbrev ordering!"); 1378 } 1379 1380 // FIXME: This should only use space for first class types! 1381 1382 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1383 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1384 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1388 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1389 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1390 llvm_unreachable("Unexpected abbrev ordering!"); 1391 } 1392 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1393 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1394 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1398 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1399 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1400 llvm_unreachable("Unexpected abbrev ordering!"); 1401 } 1402 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1403 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1404 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1407 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1408 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1409 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1410 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1411 llvm_unreachable("Unexpected abbrev ordering!"); 1412 } 1413 { // INST_CAST abbrev for FUNCTION_BLOCK. 1414 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1415 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1418 Log2_32_Ceil(VE.getTypes().size()+1))); 1419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1420 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1421 Abbv) != FUNCTION_INST_CAST_ABBREV) 1422 llvm_unreachable("Unexpected abbrev ordering!"); 1423 } 1424 1425 { // INST_RET abbrev for FUNCTION_BLOCK. 1426 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1427 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1428 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1429 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1430 llvm_unreachable("Unexpected abbrev ordering!"); 1431 } 1432 { // INST_RET abbrev for FUNCTION_BLOCK. 1433 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1434 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1436 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1437 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1438 llvm_unreachable("Unexpected abbrev ordering!"); 1439 } 1440 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1441 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1442 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1443 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1444 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1445 llvm_unreachable("Unexpected abbrev ordering!"); 1446 } 1447 1448 Stream.ExitBlock(); 1449 } 1450 1451 1452 /// WriteModule - Emit the specified module to the bitstream. 1453 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1454 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1455 1456 // Emit the version number if it is non-zero. 1457 if (CurVersion) { 1458 SmallVector<unsigned, 1> Vals; 1459 Vals.push_back(CurVersion); 1460 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1461 } 1462 1463 // Analyze the module, enumerating globals, functions, etc. 1464 ValueEnumerator VE(M); 1465 1466 // Emit blockinfo, which defines the standard abbreviations etc. 1467 WriteBlockInfo(VE, Stream); 1468 1469 // Emit information about parameter attributes. 1470 WriteAttributeTable(VE, Stream); 1471 1472 // Emit information describing all of the types in the module. 1473 WriteTypeTable(VE, Stream); 1474 1475 // Emit top-level description of module, including target triple, inline asm, 1476 // descriptors for global variables, and function prototype info. 1477 WriteModuleInfo(M, VE, Stream); 1478 1479 // Emit constants. 1480 WriteModuleConstants(VE, Stream); 1481 1482 // Emit metadata. 1483 WriteModuleMetadata(VE, Stream); 1484 1485 // Emit function bodies. 1486 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1487 if (!I->isDeclaration()) 1488 WriteFunction(*I, VE, Stream); 1489 1490 // Emit metadata. 1491 WriteModuleMetadataStore(M, Stream); 1492 1493 // Emit the type symbol table information. 1494 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1495 1496 // Emit names for globals/functions etc. 1497 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1498 1499 Stream.ExitBlock(); 1500 } 1501 1502 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1503 /// header and trailer to make it compatible with the system archiver. To do 1504 /// this we emit the following header, and then emit a trailer that pads the 1505 /// file out to be a multiple of 16 bytes. 1506 /// 1507 /// struct bc_header { 1508 /// uint32_t Magic; // 0x0B17C0DE 1509 /// uint32_t Version; // Version, currently always 0. 1510 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1511 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1512 /// uint32_t CPUType; // CPU specifier. 1513 /// ... potentially more later ... 1514 /// }; 1515 enum { 1516 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1517 DarwinBCHeaderSize = 5*4 1518 }; 1519 1520 static void EmitDarwinBCHeader(BitstreamWriter &Stream, 1521 const std::string &TT) { 1522 unsigned CPUType = ~0U; 1523 1524 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*. The CPUType is a 1525 // magic number from /usr/include/mach/machine.h. It is ok to reproduce the 1526 // specific constants here because they are implicitly part of the Darwin ABI. 1527 enum { 1528 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1529 DARWIN_CPU_TYPE_X86 = 7, 1530 DARWIN_CPU_TYPE_POWERPC = 18 1531 }; 1532 1533 if (TT.find("x86_64-") == 0) 1534 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1535 else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' && 1536 TT[4] == '-' && TT[1] - '3' < 6) 1537 CPUType = DARWIN_CPU_TYPE_X86; 1538 else if (TT.find("powerpc-") == 0) 1539 CPUType = DARWIN_CPU_TYPE_POWERPC; 1540 else if (TT.find("powerpc64-") == 0) 1541 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1542 1543 // Traditional Bitcode starts after header. 1544 unsigned BCOffset = DarwinBCHeaderSize; 1545 1546 Stream.Emit(0x0B17C0DE, 32); 1547 Stream.Emit(0 , 32); // Version. 1548 Stream.Emit(BCOffset , 32); 1549 Stream.Emit(0 , 32); // Filled in later. 1550 Stream.Emit(CPUType , 32); 1551 } 1552 1553 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and 1554 /// finalize the header. 1555 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { 1556 // Update the size field in the header. 1557 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); 1558 1559 // If the file is not a multiple of 16 bytes, insert dummy padding. 1560 while (BufferSize & 15) { 1561 Stream.Emit(0, 8); 1562 ++BufferSize; 1563 } 1564 } 1565 1566 1567 /// WriteBitcodeToFile - Write the specified module to the specified output 1568 /// stream. 1569 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1570 std::vector<unsigned char> Buffer; 1571 BitstreamWriter Stream(Buffer); 1572 1573 Buffer.reserve(256*1024); 1574 1575 WriteBitcodeToStream( M, Stream ); 1576 1577 // If writing to stdout, set binary mode. 1578 if (&llvm::outs() == &Out) 1579 sys::Program::ChangeStdoutToBinary(); 1580 1581 // Write the generated bitstream to "Out". 1582 Out.write((char*)&Buffer.front(), Buffer.size()); 1583 1584 // Make sure it hits disk now. 1585 Out.flush(); 1586 } 1587 1588 /// WriteBitcodeToStream - Write the specified module to the specified output 1589 /// stream. 1590 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) { 1591 // If this is darwin, emit a file header and trailer if needed. 1592 bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos; 1593 if (isDarwin) 1594 EmitDarwinBCHeader(Stream, M->getTargetTriple()); 1595 1596 // Emit the file header. 1597 Stream.Emit((unsigned)'B', 8); 1598 Stream.Emit((unsigned)'C', 8); 1599 Stream.Emit(0x0, 4); 1600 Stream.Emit(0xC, 4); 1601 Stream.Emit(0xE, 4); 1602 Stream.Emit(0xD, 4); 1603 1604 // Emit the module. 1605 WriteModule(M, Stream); 1606 1607 if (isDarwin) 1608 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size()); 1609 } 1610