1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/MDNode.h" 23 #include "llvm/Module.h" 24 #include "llvm/TypeSymbolTable.h" 25 #include "llvm/ValueSymbolTable.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/Streams.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/System/Program.h" 30 using namespace llvm; 31 32 /// These are manifest constants used by the bitcode writer. They do not need to 33 /// be kept in sync with the reader, but need to be consistent within this file. 34 enum { 35 CurVersion = 0, 36 37 // VALUE_SYMTAB_BLOCK abbrev id's. 38 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 39 VST_ENTRY_7_ABBREV, 40 VST_ENTRY_6_ABBREV, 41 VST_BBENTRY_6_ABBREV, 42 43 // CONSTANTS_BLOCK abbrev id's. 44 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 45 CONSTANTS_INTEGER_ABBREV, 46 CONSTANTS_CE_CAST_Abbrev, 47 CONSTANTS_NULL_Abbrev, 48 49 // FUNCTION_BLOCK abbrev id's. 50 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 51 FUNCTION_INST_BINOP_ABBREV, 52 FUNCTION_INST_CAST_ABBREV, 53 FUNCTION_INST_RET_VOID_ABBREV, 54 FUNCTION_INST_RET_VAL_ABBREV, 55 FUNCTION_INST_UNREACHABLE_ABBREV 56 }; 57 58 59 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 60 switch (Opcode) { 61 default: assert(0 && "Unknown cast instruction!"); 62 case Instruction::Trunc : return bitc::CAST_TRUNC; 63 case Instruction::ZExt : return bitc::CAST_ZEXT; 64 case Instruction::SExt : return bitc::CAST_SEXT; 65 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 66 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 67 case Instruction::UIToFP : return bitc::CAST_UITOFP; 68 case Instruction::SIToFP : return bitc::CAST_SITOFP; 69 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 70 case Instruction::FPExt : return bitc::CAST_FPEXT; 71 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 72 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 73 case Instruction::BitCast : return bitc::CAST_BITCAST; 74 } 75 } 76 77 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 78 switch (Opcode) { 79 default: assert(0 && "Unknown binary instruction!"); 80 case Instruction::Add: return bitc::BINOP_ADD; 81 case Instruction::Sub: return bitc::BINOP_SUB; 82 case Instruction::Mul: return bitc::BINOP_MUL; 83 case Instruction::UDiv: return bitc::BINOP_UDIV; 84 case Instruction::FDiv: 85 case Instruction::SDiv: return bitc::BINOP_SDIV; 86 case Instruction::URem: return bitc::BINOP_UREM; 87 case Instruction::FRem: 88 case Instruction::SRem: return bitc::BINOP_SREM; 89 case Instruction::Shl: return bitc::BINOP_SHL; 90 case Instruction::LShr: return bitc::BINOP_LSHR; 91 case Instruction::AShr: return bitc::BINOP_ASHR; 92 case Instruction::And: return bitc::BINOP_AND; 93 case Instruction::Or: return bitc::BINOP_OR; 94 case Instruction::Xor: return bitc::BINOP_XOR; 95 } 96 } 97 98 99 100 static void WriteStringRecord(unsigned Code, const std::string &Str, 101 unsigned AbbrevToUse, BitstreamWriter &Stream) { 102 SmallVector<unsigned, 64> Vals; 103 104 // Code: [strchar x N] 105 for (unsigned i = 0, e = Str.size(); i != e; ++i) 106 Vals.push_back(Str[i]); 107 108 // Emit the finished record. 109 Stream.EmitRecord(Code, Vals, AbbrevToUse); 110 } 111 112 // Emit information about parameter attributes. 113 static void WriteAttributeTable(const ValueEnumerator &VE, 114 BitstreamWriter &Stream) { 115 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 116 if (Attrs.empty()) return; 117 118 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 119 120 SmallVector<uint64_t, 64> Record; 121 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 122 const AttrListPtr &A = Attrs[i]; 123 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 124 const AttributeWithIndex &PAWI = A.getSlot(i); 125 Record.push_back(PAWI.Index); 126 127 // FIXME: remove in LLVM 3.0 128 // Store the alignment in the bitcode as a 16-bit raw value instead of a 129 // 5-bit log2 encoded value. Shift the bits above the alignment up by 130 // 11 bits. 131 uint64_t FauxAttr = PAWI.Attrs & 0xffff; 132 if (PAWI.Attrs & Attribute::Alignment) 133 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16); 134 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11; 135 136 Record.push_back(FauxAttr); 137 } 138 139 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 140 Record.clear(); 141 } 142 143 Stream.ExitBlock(); 144 } 145 146 /// WriteTypeTable - Write out the type table for a module. 147 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 148 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 149 150 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 151 SmallVector<uint64_t, 64> TypeVals; 152 153 // Abbrev for TYPE_CODE_POINTER. 154 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 155 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 157 Log2_32_Ceil(VE.getTypes().size()+1))); 158 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 159 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 160 161 // Abbrev for TYPE_CODE_FUNCTION. 162 Abbv = new BitCodeAbbrev(); 163 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 165 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 168 Log2_32_Ceil(VE.getTypes().size()+1))); 169 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 170 171 // Abbrev for TYPE_CODE_STRUCT. 172 Abbv = new BitCodeAbbrev(); 173 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 177 Log2_32_Ceil(VE.getTypes().size()+1))); 178 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 179 180 // Abbrev for TYPE_CODE_ARRAY. 181 Abbv = new BitCodeAbbrev(); 182 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 184 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 185 Log2_32_Ceil(VE.getTypes().size()+1))); 186 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 187 188 // Emit an entry count so the reader can reserve space. 189 TypeVals.push_back(TypeList.size()); 190 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 191 TypeVals.clear(); 192 193 // Loop over all of the types, emitting each in turn. 194 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 195 const Type *T = TypeList[i].first; 196 int AbbrevToUse = 0; 197 unsigned Code = 0; 198 199 switch (T->getTypeID()) { 200 default: assert(0 && "Unknown type!"); 201 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 202 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 203 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 204 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 205 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 206 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 207 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 208 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 209 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 210 case Type::IntegerTyID: 211 // INTEGER: [width] 212 Code = bitc::TYPE_CODE_INTEGER; 213 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 214 break; 215 case Type::PointerTyID: { 216 const PointerType *PTy = cast<PointerType>(T); 217 // POINTER: [pointee type, address space] 218 Code = bitc::TYPE_CODE_POINTER; 219 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 220 unsigned AddressSpace = PTy->getAddressSpace(); 221 TypeVals.push_back(AddressSpace); 222 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 223 break; 224 } 225 case Type::FunctionTyID: { 226 const FunctionType *FT = cast<FunctionType>(T); 227 // FUNCTION: [isvararg, attrid, retty, paramty x N] 228 Code = bitc::TYPE_CODE_FUNCTION; 229 TypeVals.push_back(FT->isVarArg()); 230 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 231 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 232 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 233 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 234 AbbrevToUse = FunctionAbbrev; 235 break; 236 } 237 case Type::StructTyID: { 238 const StructType *ST = cast<StructType>(T); 239 // STRUCT: [ispacked, eltty x N] 240 Code = bitc::TYPE_CODE_STRUCT; 241 TypeVals.push_back(ST->isPacked()); 242 // Output all of the element types. 243 for (StructType::element_iterator I = ST->element_begin(), 244 E = ST->element_end(); I != E; ++I) 245 TypeVals.push_back(VE.getTypeID(*I)); 246 AbbrevToUse = StructAbbrev; 247 break; 248 } 249 case Type::ArrayTyID: { 250 const ArrayType *AT = cast<ArrayType>(T); 251 // ARRAY: [numelts, eltty] 252 Code = bitc::TYPE_CODE_ARRAY; 253 TypeVals.push_back(AT->getNumElements()); 254 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 255 AbbrevToUse = ArrayAbbrev; 256 break; 257 } 258 case Type::VectorTyID: { 259 const VectorType *VT = cast<VectorType>(T); 260 // VECTOR [numelts, eltty] 261 Code = bitc::TYPE_CODE_VECTOR; 262 TypeVals.push_back(VT->getNumElements()); 263 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 264 break; 265 } 266 } 267 268 // Emit the finished record. 269 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 270 TypeVals.clear(); 271 } 272 273 Stream.ExitBlock(); 274 } 275 276 static unsigned getEncodedLinkage(const GlobalValue *GV) { 277 switch (GV->getLinkage()) { 278 default: assert(0 && "Invalid linkage!"); 279 case GlobalValue::GhostLinkage: // Map ghost linkage onto external. 280 case GlobalValue::ExternalLinkage: return 0; 281 case GlobalValue::WeakAnyLinkage: return 1; 282 case GlobalValue::AppendingLinkage: return 2; 283 case GlobalValue::InternalLinkage: return 3; 284 case GlobalValue::LinkOnceAnyLinkage: return 4; 285 case GlobalValue::DLLImportLinkage: return 5; 286 case GlobalValue::DLLExportLinkage: return 6; 287 case GlobalValue::ExternalWeakLinkage: return 7; 288 case GlobalValue::CommonLinkage: return 8; 289 case GlobalValue::PrivateLinkage: return 9; 290 case GlobalValue::WeakODRLinkage: return 10; 291 case GlobalValue::LinkOnceODRLinkage: return 11; 292 case GlobalValue::AvailableExternallyLinkage: return 12; 293 } 294 } 295 296 static unsigned getEncodedVisibility(const GlobalValue *GV) { 297 switch (GV->getVisibility()) { 298 default: assert(0 && "Invalid visibility!"); 299 case GlobalValue::DefaultVisibility: return 0; 300 case GlobalValue::HiddenVisibility: return 1; 301 case GlobalValue::ProtectedVisibility: return 2; 302 } 303 } 304 305 // Emit top-level description of module, including target triple, inline asm, 306 // descriptors for global variables, and function prototype info. 307 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 308 BitstreamWriter &Stream) { 309 // Emit the list of dependent libraries for the Module. 310 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 311 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 312 313 // Emit various pieces of data attached to a module. 314 if (!M->getTargetTriple().empty()) 315 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 316 0/*TODO*/, Stream); 317 if (!M->getDataLayout().empty()) 318 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 319 0/*TODO*/, Stream); 320 if (!M->getModuleInlineAsm().empty()) 321 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 322 0/*TODO*/, Stream); 323 324 // Emit information about sections and GC, computing how many there are. Also 325 // compute the maximum alignment value. 326 std::map<std::string, unsigned> SectionMap; 327 std::map<std::string, unsigned> GCMap; 328 unsigned MaxAlignment = 0; 329 unsigned MaxGlobalType = 0; 330 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 331 GV != E; ++GV) { 332 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 333 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 334 335 if (!GV->hasSection()) continue; 336 // Give section names unique ID's. 337 unsigned &Entry = SectionMap[GV->getSection()]; 338 if (Entry != 0) continue; 339 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 340 0/*TODO*/, Stream); 341 Entry = SectionMap.size(); 342 } 343 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 344 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 345 if (F->hasSection()) { 346 // Give section names unique ID's. 347 unsigned &Entry = SectionMap[F->getSection()]; 348 if (!Entry) { 349 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 350 0/*TODO*/, Stream); 351 Entry = SectionMap.size(); 352 } 353 } 354 if (F->hasGC()) { 355 // Same for GC names. 356 unsigned &Entry = GCMap[F->getGC()]; 357 if (!Entry) { 358 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 359 0/*TODO*/, Stream); 360 Entry = GCMap.size(); 361 } 362 } 363 } 364 365 // Emit abbrev for globals, now that we know # sections and max alignment. 366 unsigned SimpleGVarAbbrev = 0; 367 if (!M->global_empty()) { 368 // Add an abbrev for common globals with no visibility or thread localness. 369 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 370 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 372 Log2_32_Ceil(MaxGlobalType+1))); 373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 376 if (MaxAlignment == 0) // Alignment. 377 Abbv->Add(BitCodeAbbrevOp(0)); 378 else { 379 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 381 Log2_32_Ceil(MaxEncAlignment+1))); 382 } 383 if (SectionMap.empty()) // Section. 384 Abbv->Add(BitCodeAbbrevOp(0)); 385 else 386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 387 Log2_32_Ceil(SectionMap.size()+1))); 388 // Don't bother emitting vis + thread local. 389 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 390 } 391 392 // Emit the global variable information. 393 SmallVector<unsigned, 64> Vals; 394 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 395 GV != E; ++GV) { 396 unsigned AbbrevToUse = 0; 397 398 // GLOBALVAR: [type, isconst, initid, 399 // linkage, alignment, section, visibility, threadlocal] 400 Vals.push_back(VE.getTypeID(GV->getType())); 401 Vals.push_back(GV->isConstant()); 402 Vals.push_back(GV->isDeclaration() ? 0 : 403 (VE.getValueID(GV->getInitializer()) + 1)); 404 Vals.push_back(getEncodedLinkage(GV)); 405 Vals.push_back(Log2_32(GV->getAlignment())+1); 406 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 407 if (GV->isThreadLocal() || 408 GV->getVisibility() != GlobalValue::DefaultVisibility) { 409 Vals.push_back(getEncodedVisibility(GV)); 410 Vals.push_back(GV->isThreadLocal()); 411 } else { 412 AbbrevToUse = SimpleGVarAbbrev; 413 } 414 415 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 416 Vals.clear(); 417 } 418 419 // Emit the function proto information. 420 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 421 // FUNCTION: [type, callingconv, isproto, paramattr, 422 // linkage, alignment, section, visibility, gc] 423 Vals.push_back(VE.getTypeID(F->getType())); 424 Vals.push_back(F->getCallingConv()); 425 Vals.push_back(F->isDeclaration()); 426 Vals.push_back(getEncodedLinkage(F)); 427 Vals.push_back(VE.getAttributeID(F->getAttributes())); 428 Vals.push_back(Log2_32(F->getAlignment())+1); 429 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 430 Vals.push_back(getEncodedVisibility(F)); 431 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 432 433 unsigned AbbrevToUse = 0; 434 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 435 Vals.clear(); 436 } 437 438 439 // Emit the alias information. 440 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 441 AI != E; ++AI) { 442 Vals.push_back(VE.getTypeID(AI->getType())); 443 Vals.push_back(VE.getValueID(AI->getAliasee())); 444 Vals.push_back(getEncodedLinkage(AI)); 445 Vals.push_back(getEncodedVisibility(AI)); 446 unsigned AbbrevToUse = 0; 447 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 448 Vals.clear(); 449 } 450 } 451 452 453 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 454 const ValueEnumerator &VE, 455 BitstreamWriter &Stream, bool isGlobal) { 456 if (FirstVal == LastVal) return; 457 458 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 459 460 unsigned AggregateAbbrev = 0; 461 unsigned String8Abbrev = 0; 462 unsigned CString7Abbrev = 0; 463 unsigned CString6Abbrev = 0; 464 unsigned MDString8Abbrev = 0; 465 unsigned MDString6Abbrev = 0; 466 // If this is a constant pool for the module, emit module-specific abbrevs. 467 if (isGlobal) { 468 // Abbrev for CST_CODE_AGGREGATE. 469 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 470 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 473 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 474 475 // Abbrev for CST_CODE_STRING. 476 Abbv = new BitCodeAbbrev(); 477 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 480 String8Abbrev = Stream.EmitAbbrev(Abbv); 481 // Abbrev for CST_CODE_CSTRING. 482 Abbv = new BitCodeAbbrev(); 483 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 484 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 485 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 486 CString7Abbrev = Stream.EmitAbbrev(Abbv); 487 // Abbrev for CST_CODE_CSTRING. 488 Abbv = new BitCodeAbbrev(); 489 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 490 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 491 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 492 CString6Abbrev = Stream.EmitAbbrev(Abbv); 493 494 // Abbrev for CST_CODE_MDSTRING. 495 Abbv = new BitCodeAbbrev(); 496 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_MDSTRING)); 497 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 498 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 499 MDString8Abbrev = Stream.EmitAbbrev(Abbv); 500 // Abbrev for CST_CODE_MDSTRING. 501 Abbv = new BitCodeAbbrev(); 502 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_MDSTRING)); 503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 504 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 505 MDString6Abbrev = Stream.EmitAbbrev(Abbv); 506 } 507 508 SmallVector<uint64_t, 64> Record; 509 510 const ValueEnumerator::ValueList &Vals = VE.getValues(); 511 const Type *LastTy = 0; 512 for (unsigned i = FirstVal; i != LastVal; ++i) { 513 const Value *V = Vals[i].first; 514 // If we need to switch types, do so now. 515 if (V->getType() != LastTy) { 516 LastTy = V->getType(); 517 Record.push_back(VE.getTypeID(LastTy)); 518 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 519 CONSTANTS_SETTYPE_ABBREV); 520 Record.clear(); 521 } 522 523 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 524 Record.push_back(unsigned(IA->hasSideEffects())); 525 526 // Add the asm string. 527 const std::string &AsmStr = IA->getAsmString(); 528 Record.push_back(AsmStr.size()); 529 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 530 Record.push_back(AsmStr[i]); 531 532 // Add the constraint string. 533 const std::string &ConstraintStr = IA->getConstraintString(); 534 Record.push_back(ConstraintStr.size()); 535 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 536 Record.push_back(ConstraintStr[i]); 537 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 538 Record.clear(); 539 continue; 540 } 541 const Constant *C = cast<Constant>(V); 542 unsigned Code = -1U; 543 unsigned AbbrevToUse = 0; 544 if (C->isNullValue()) { 545 Code = bitc::CST_CODE_NULL; 546 } else if (isa<UndefValue>(C)) { 547 Code = bitc::CST_CODE_UNDEF; 548 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 549 if (IV->getBitWidth() <= 64) { 550 int64_t V = IV->getSExtValue(); 551 if (V >= 0) 552 Record.push_back(V << 1); 553 else 554 Record.push_back((-V << 1) | 1); 555 Code = bitc::CST_CODE_INTEGER; 556 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 557 } else { // Wide integers, > 64 bits in size. 558 // We have an arbitrary precision integer value to write whose 559 // bit width is > 64. However, in canonical unsigned integer 560 // format it is likely that the high bits are going to be zero. 561 // So, we only write the number of active words. 562 unsigned NWords = IV->getValue().getActiveWords(); 563 const uint64_t *RawWords = IV->getValue().getRawData(); 564 for (unsigned i = 0; i != NWords; ++i) { 565 int64_t V = RawWords[i]; 566 if (V >= 0) 567 Record.push_back(V << 1); 568 else 569 Record.push_back((-V << 1) | 1); 570 } 571 Code = bitc::CST_CODE_WIDE_INTEGER; 572 } 573 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 574 Code = bitc::CST_CODE_FLOAT; 575 const Type *Ty = CFP->getType(); 576 if (Ty == Type::FloatTy || Ty == Type::DoubleTy) { 577 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 578 } else if (Ty == Type::X86_FP80Ty) { 579 // api needed to prevent premature destruction 580 // bits are not in the same order as a normal i80 APInt, compensate. 581 APInt api = CFP->getValueAPF().bitcastToAPInt(); 582 const uint64_t *p = api.getRawData(); 583 Record.push_back((p[1] << 48) | (p[0] >> 16)); 584 Record.push_back(p[0] & 0xffffLL); 585 } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) { 586 APInt api = CFP->getValueAPF().bitcastToAPInt(); 587 const uint64_t *p = api.getRawData(); 588 Record.push_back(p[0]); 589 Record.push_back(p[1]); 590 } else { 591 assert (0 && "Unknown FP type!"); 592 } 593 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 594 // Emit constant strings specially. 595 unsigned NumOps = C->getNumOperands(); 596 // If this is a null-terminated string, use the denser CSTRING encoding. 597 if (C->getOperand(NumOps-1)->isNullValue()) { 598 Code = bitc::CST_CODE_CSTRING; 599 --NumOps; // Don't encode the null, which isn't allowed by char6. 600 } else { 601 Code = bitc::CST_CODE_STRING; 602 AbbrevToUse = String8Abbrev; 603 } 604 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 605 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 606 for (unsigned i = 0; i != NumOps; ++i) { 607 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue(); 608 Record.push_back(V); 609 isCStr7 &= (V & 128) == 0; 610 if (isCStrChar6) 611 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 612 } 613 614 if (isCStrChar6) 615 AbbrevToUse = CString6Abbrev; 616 else if (isCStr7) 617 AbbrevToUse = CString7Abbrev; 618 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 619 isa<ConstantVector>(V)) { 620 Code = bitc::CST_CODE_AGGREGATE; 621 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 622 Record.push_back(VE.getValueID(C->getOperand(i))); 623 AbbrevToUse = AggregateAbbrev; 624 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 625 switch (CE->getOpcode()) { 626 default: 627 if (Instruction::isCast(CE->getOpcode())) { 628 Code = bitc::CST_CODE_CE_CAST; 629 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 630 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 631 Record.push_back(VE.getValueID(C->getOperand(0))); 632 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 633 } else { 634 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 635 Code = bitc::CST_CODE_CE_BINOP; 636 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 637 Record.push_back(VE.getValueID(C->getOperand(0))); 638 Record.push_back(VE.getValueID(C->getOperand(1))); 639 } 640 break; 641 case Instruction::GetElementPtr: 642 Code = bitc::CST_CODE_CE_GEP; 643 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 644 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 645 Record.push_back(VE.getValueID(C->getOperand(i))); 646 } 647 break; 648 case Instruction::Select: 649 Code = bitc::CST_CODE_CE_SELECT; 650 Record.push_back(VE.getValueID(C->getOperand(0))); 651 Record.push_back(VE.getValueID(C->getOperand(1))); 652 Record.push_back(VE.getValueID(C->getOperand(2))); 653 break; 654 case Instruction::ExtractElement: 655 Code = bitc::CST_CODE_CE_EXTRACTELT; 656 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 657 Record.push_back(VE.getValueID(C->getOperand(0))); 658 Record.push_back(VE.getValueID(C->getOperand(1))); 659 break; 660 case Instruction::InsertElement: 661 Code = bitc::CST_CODE_CE_INSERTELT; 662 Record.push_back(VE.getValueID(C->getOperand(0))); 663 Record.push_back(VE.getValueID(C->getOperand(1))); 664 Record.push_back(VE.getValueID(C->getOperand(2))); 665 break; 666 case Instruction::ShuffleVector: 667 // If the return type and argument types are the same, this is a 668 // standard shufflevector instruction. If the types are different, 669 // then the shuffle is widening or truncating the input vectors, and 670 // the argument type must also be encoded. 671 if (C->getType() == C->getOperand(0)->getType()) { 672 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 673 } else { 674 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 675 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 676 } 677 Record.push_back(VE.getValueID(C->getOperand(0))); 678 Record.push_back(VE.getValueID(C->getOperand(1))); 679 Record.push_back(VE.getValueID(C->getOperand(2))); 680 break; 681 case Instruction::ICmp: 682 case Instruction::FCmp: 683 case Instruction::VICmp: 684 case Instruction::VFCmp: 685 if (isa<VectorType>(C->getOperand(0)->getType()) 686 && (CE->getOpcode() == Instruction::ICmp 687 || CE->getOpcode() == Instruction::FCmp)) { 688 // compare returning vector of Int1Ty 689 assert(0 && "Unsupported constant!"); 690 } else { 691 Code = bitc::CST_CODE_CE_CMP; 692 } 693 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 694 Record.push_back(VE.getValueID(C->getOperand(0))); 695 Record.push_back(VE.getValueID(C->getOperand(1))); 696 Record.push_back(CE->getPredicate()); 697 break; 698 } 699 } else if (const MDString *S = dyn_cast<MDString>(C)) { 700 Code = bitc::CST_CODE_MDSTRING; 701 AbbrevToUse = MDString6Abbrev; 702 for (unsigned i = 0, e = S->size(); i != e; ++i) { 703 char V = S->begin()[i]; 704 Record.push_back(V); 705 706 if (!BitCodeAbbrevOp::isChar6(V)) 707 AbbrevToUse = MDString8Abbrev; 708 } 709 } else if (const MDNode *N = dyn_cast<MDNode>(C)) { 710 Code = bitc::CST_CODE_MDNODE; 711 for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) { 712 if (N->getElement(i)) { 713 Record.push_back(VE.getTypeID(N->getElement(i)->getType())); 714 Record.push_back(VE.getValueID(N->getElement(i))); 715 } else { 716 Record.push_back(VE.getTypeID(Type::VoidTy)); 717 Record.push_back(0); 718 } 719 } 720 } else { 721 assert(0 && "Unknown constant!"); 722 } 723 Stream.EmitRecord(Code, Record, AbbrevToUse); 724 Record.clear(); 725 } 726 727 Stream.ExitBlock(); 728 } 729 730 static void WriteModuleConstants(const ValueEnumerator &VE, 731 BitstreamWriter &Stream) { 732 const ValueEnumerator::ValueList &Vals = VE.getValues(); 733 734 // Find the first constant to emit, which is the first non-globalvalue value. 735 // We know globalvalues have been emitted by WriteModuleInfo. 736 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 737 if (!isa<GlobalValue>(Vals[i].first)) { 738 WriteConstants(i, Vals.size(), VE, Stream, true); 739 return; 740 } 741 } 742 } 743 744 /// PushValueAndType - The file has to encode both the value and type id for 745 /// many values, because we need to know what type to create for forward 746 /// references. However, most operands are not forward references, so this type 747 /// field is not needed. 748 /// 749 /// This function adds V's value ID to Vals. If the value ID is higher than the 750 /// instruction ID, then it is a forward reference, and it also includes the 751 /// type ID. 752 static bool PushValueAndType(const Value *V, unsigned InstID, 753 SmallVector<unsigned, 64> &Vals, 754 ValueEnumerator &VE) { 755 unsigned ValID = VE.getValueID(V); 756 Vals.push_back(ValID); 757 if (ValID >= InstID) { 758 Vals.push_back(VE.getTypeID(V->getType())); 759 return true; 760 } 761 return false; 762 } 763 764 /// WriteInstruction - Emit an instruction to the specified stream. 765 static void WriteInstruction(const Instruction &I, unsigned InstID, 766 ValueEnumerator &VE, BitstreamWriter &Stream, 767 SmallVector<unsigned, 64> &Vals) { 768 unsigned Code = 0; 769 unsigned AbbrevToUse = 0; 770 switch (I.getOpcode()) { 771 default: 772 if (Instruction::isCast(I.getOpcode())) { 773 Code = bitc::FUNC_CODE_INST_CAST; 774 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 775 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 776 Vals.push_back(VE.getTypeID(I.getType())); 777 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 778 } else { 779 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 780 Code = bitc::FUNC_CODE_INST_BINOP; 781 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 782 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 783 Vals.push_back(VE.getValueID(I.getOperand(1))); 784 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 785 } 786 break; 787 788 case Instruction::GetElementPtr: 789 Code = bitc::FUNC_CODE_INST_GEP; 790 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 791 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 792 break; 793 case Instruction::ExtractValue: { 794 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 795 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 796 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 797 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 798 Vals.push_back(*i); 799 break; 800 } 801 case Instruction::InsertValue: { 802 Code = bitc::FUNC_CODE_INST_INSERTVAL; 803 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 804 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 805 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 806 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 807 Vals.push_back(*i); 808 break; 809 } 810 case Instruction::Select: 811 Code = bitc::FUNC_CODE_INST_VSELECT; 812 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 813 Vals.push_back(VE.getValueID(I.getOperand(2))); 814 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 815 break; 816 case Instruction::ExtractElement: 817 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 818 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 819 Vals.push_back(VE.getValueID(I.getOperand(1))); 820 break; 821 case Instruction::InsertElement: 822 Code = bitc::FUNC_CODE_INST_INSERTELT; 823 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 824 Vals.push_back(VE.getValueID(I.getOperand(1))); 825 Vals.push_back(VE.getValueID(I.getOperand(2))); 826 break; 827 case Instruction::ShuffleVector: 828 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 829 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 830 Vals.push_back(VE.getValueID(I.getOperand(1))); 831 Vals.push_back(VE.getValueID(I.getOperand(2))); 832 break; 833 case Instruction::ICmp: 834 case Instruction::FCmp: 835 case Instruction::VICmp: 836 case Instruction::VFCmp: 837 if (I.getOpcode() == Instruction::ICmp 838 || I.getOpcode() == Instruction::FCmp) { 839 // compare returning Int1Ty or vector of Int1Ty 840 Code = bitc::FUNC_CODE_INST_CMP2; 841 } else { 842 Code = bitc::FUNC_CODE_INST_CMP; 843 } 844 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 845 Vals.push_back(VE.getValueID(I.getOperand(1))); 846 Vals.push_back(cast<CmpInst>(I).getPredicate()); 847 break; 848 849 case Instruction::Ret: 850 { 851 Code = bitc::FUNC_CODE_INST_RET; 852 unsigned NumOperands = I.getNumOperands(); 853 if (NumOperands == 0) 854 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 855 else if (NumOperands == 1) { 856 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 857 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 858 } else { 859 for (unsigned i = 0, e = NumOperands; i != e; ++i) 860 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 861 } 862 } 863 break; 864 case Instruction::Br: 865 { 866 Code = bitc::FUNC_CODE_INST_BR; 867 BranchInst &II(cast<BranchInst>(I)); 868 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 869 if (II.isConditional()) { 870 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 871 Vals.push_back(VE.getValueID(II.getCondition())); 872 } 873 } 874 break; 875 case Instruction::Switch: 876 Code = bitc::FUNC_CODE_INST_SWITCH; 877 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 878 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 879 Vals.push_back(VE.getValueID(I.getOperand(i))); 880 break; 881 case Instruction::Invoke: { 882 const InvokeInst *II = cast<InvokeInst>(&I); 883 const Value *Callee(II->getCalledValue()); 884 const PointerType *PTy = cast<PointerType>(Callee->getType()); 885 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 886 Code = bitc::FUNC_CODE_INST_INVOKE; 887 888 Vals.push_back(VE.getAttributeID(II->getAttributes())); 889 Vals.push_back(II->getCallingConv()); 890 Vals.push_back(VE.getValueID(II->getNormalDest())); 891 Vals.push_back(VE.getValueID(II->getUnwindDest())); 892 PushValueAndType(Callee, InstID, Vals, VE); 893 894 // Emit value #'s for the fixed parameters. 895 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 896 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 897 898 // Emit type/value pairs for varargs params. 899 if (FTy->isVarArg()) { 900 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); 901 i != e; ++i) 902 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 903 } 904 break; 905 } 906 case Instruction::Unwind: 907 Code = bitc::FUNC_CODE_INST_UNWIND; 908 break; 909 case Instruction::Unreachable: 910 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 911 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 912 break; 913 914 case Instruction::PHI: 915 Code = bitc::FUNC_CODE_INST_PHI; 916 Vals.push_back(VE.getTypeID(I.getType())); 917 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 918 Vals.push_back(VE.getValueID(I.getOperand(i))); 919 break; 920 921 case Instruction::Malloc: 922 Code = bitc::FUNC_CODE_INST_MALLOC; 923 Vals.push_back(VE.getTypeID(I.getType())); 924 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 925 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); 926 break; 927 928 case Instruction::Free: 929 Code = bitc::FUNC_CODE_INST_FREE; 930 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 931 break; 932 933 case Instruction::Alloca: 934 Code = bitc::FUNC_CODE_INST_ALLOCA; 935 Vals.push_back(VE.getTypeID(I.getType())); 936 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 937 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 938 break; 939 940 case Instruction::Load: 941 Code = bitc::FUNC_CODE_INST_LOAD; 942 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 943 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 944 945 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 946 Vals.push_back(cast<LoadInst>(I).isVolatile()); 947 break; 948 case Instruction::Store: 949 Code = bitc::FUNC_CODE_INST_STORE2; 950 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 951 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 952 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 953 Vals.push_back(cast<StoreInst>(I).isVolatile()); 954 break; 955 case Instruction::Call: { 956 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 957 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 958 959 Code = bitc::FUNC_CODE_INST_CALL; 960 961 const CallInst *CI = cast<CallInst>(&I); 962 Vals.push_back(VE.getAttributeID(CI->getAttributes())); 963 Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall())); 964 PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee 965 966 // Emit value #'s for the fixed parameters. 967 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 968 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 969 970 // Emit type/value pairs for varargs params. 971 if (FTy->isVarArg()) { 972 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 973 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 974 i != e; ++i) 975 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs 976 } 977 break; 978 } 979 case Instruction::VAArg: 980 Code = bitc::FUNC_CODE_INST_VAARG; 981 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 982 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 983 Vals.push_back(VE.getTypeID(I.getType())); // restype. 984 break; 985 } 986 987 Stream.EmitRecord(Code, Vals, AbbrevToUse); 988 Vals.clear(); 989 } 990 991 // Emit names for globals/functions etc. 992 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 993 const ValueEnumerator &VE, 994 BitstreamWriter &Stream) { 995 if (VST.empty()) return; 996 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 997 998 // FIXME: Set up the abbrev, we know how many values there are! 999 // FIXME: We know if the type names can use 7-bit ascii. 1000 SmallVector<unsigned, 64> NameVals; 1001 1002 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1003 SI != SE; ++SI) { 1004 1005 const ValueName &Name = *SI; 1006 1007 // Figure out the encoding to use for the name. 1008 bool is7Bit = true; 1009 bool isChar6 = true; 1010 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1011 C != E; ++C) { 1012 if (isChar6) 1013 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1014 if ((unsigned char)*C & 128) { 1015 is7Bit = false; 1016 break; // don't bother scanning the rest. 1017 } 1018 } 1019 1020 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1021 1022 // VST_ENTRY: [valueid, namechar x N] 1023 // VST_BBENTRY: [bbid, namechar x N] 1024 unsigned Code; 1025 if (isa<BasicBlock>(SI->getValue())) { 1026 Code = bitc::VST_CODE_BBENTRY; 1027 if (isChar6) 1028 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1029 } else { 1030 Code = bitc::VST_CODE_ENTRY; 1031 if (isChar6) 1032 AbbrevToUse = VST_ENTRY_6_ABBREV; 1033 else if (is7Bit) 1034 AbbrevToUse = VST_ENTRY_7_ABBREV; 1035 } 1036 1037 NameVals.push_back(VE.getValueID(SI->getValue())); 1038 for (const char *P = Name.getKeyData(), 1039 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1040 NameVals.push_back((unsigned char)*P); 1041 1042 // Emit the finished record. 1043 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1044 NameVals.clear(); 1045 } 1046 Stream.ExitBlock(); 1047 } 1048 1049 /// WriteFunction - Emit a function body to the module stream. 1050 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1051 BitstreamWriter &Stream) { 1052 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1053 VE.incorporateFunction(F); 1054 1055 SmallVector<unsigned, 64> Vals; 1056 1057 // Emit the number of basic blocks, so the reader can create them ahead of 1058 // time. 1059 Vals.push_back(VE.getBasicBlocks().size()); 1060 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1061 Vals.clear(); 1062 1063 // If there are function-local constants, emit them now. 1064 unsigned CstStart, CstEnd; 1065 VE.getFunctionConstantRange(CstStart, CstEnd); 1066 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1067 1068 // Keep a running idea of what the instruction ID is. 1069 unsigned InstID = CstEnd; 1070 1071 // Finally, emit all the instructions, in order. 1072 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1073 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1074 I != E; ++I) { 1075 WriteInstruction(*I, InstID, VE, Stream, Vals); 1076 if (I->getType() != Type::VoidTy) 1077 ++InstID; 1078 } 1079 1080 // Emit names for all the instructions etc. 1081 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1082 1083 VE.purgeFunction(); 1084 Stream.ExitBlock(); 1085 } 1086 1087 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 1088 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 1089 const ValueEnumerator &VE, 1090 BitstreamWriter &Stream) { 1091 if (TST.empty()) return; 1092 1093 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 1094 1095 // 7-bit fixed width VST_CODE_ENTRY strings. 1096 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1097 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1098 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1099 Log2_32_Ceil(VE.getTypes().size()+1))); 1100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1102 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 1103 1104 SmallVector<unsigned, 64> NameVals; 1105 1106 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 1107 TI != TE; ++TI) { 1108 // TST_ENTRY: [typeid, namechar x N] 1109 NameVals.push_back(VE.getTypeID(TI->second)); 1110 1111 const std::string &Str = TI->first; 1112 bool is7Bit = true; 1113 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 1114 NameVals.push_back((unsigned char)Str[i]); 1115 if (Str[i] & 128) 1116 is7Bit = false; 1117 } 1118 1119 // Emit the finished record. 1120 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1121 NameVals.clear(); 1122 } 1123 1124 Stream.ExitBlock(); 1125 } 1126 1127 // Emit blockinfo, which defines the standard abbreviations etc. 1128 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1129 // We only want to emit block info records for blocks that have multiple 1130 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1131 // blocks can defined their abbrevs inline. 1132 Stream.EnterBlockInfoBlock(2); 1133 1134 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1135 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1140 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1141 Abbv) != VST_ENTRY_8_ABBREV) 1142 assert(0 && "Unexpected abbrev ordering!"); 1143 } 1144 1145 { // 7-bit fixed width VST_ENTRY strings. 1146 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1147 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1151 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1152 Abbv) != VST_ENTRY_7_ABBREV) 1153 assert(0 && "Unexpected abbrev ordering!"); 1154 } 1155 { // 6-bit char6 VST_ENTRY strings. 1156 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1157 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1161 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1162 Abbv) != VST_ENTRY_6_ABBREV) 1163 assert(0 && "Unexpected abbrev ordering!"); 1164 } 1165 { // 6-bit char6 VST_BBENTRY strings. 1166 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1167 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1171 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1172 Abbv) != VST_BBENTRY_6_ABBREV) 1173 assert(0 && "Unexpected abbrev ordering!"); 1174 } 1175 1176 1177 1178 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1179 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1180 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1182 Log2_32_Ceil(VE.getTypes().size()+1))); 1183 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1184 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1185 assert(0 && "Unexpected abbrev ordering!"); 1186 } 1187 1188 { // INTEGER abbrev for CONSTANTS_BLOCK. 1189 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1190 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1192 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1193 Abbv) != CONSTANTS_INTEGER_ABBREV) 1194 assert(0 && "Unexpected abbrev ordering!"); 1195 } 1196 1197 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1198 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1199 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1200 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1202 Log2_32_Ceil(VE.getTypes().size()+1))); 1203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1204 1205 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1206 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1207 assert(0 && "Unexpected abbrev ordering!"); 1208 } 1209 { // NULL abbrev for CONSTANTS_BLOCK. 1210 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1211 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1212 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1213 Abbv) != CONSTANTS_NULL_Abbrev) 1214 assert(0 && "Unexpected abbrev ordering!"); 1215 } 1216 1217 // FIXME: This should only use space for first class types! 1218 1219 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1220 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1221 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1222 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1224 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1225 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1226 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1227 assert(0 && "Unexpected abbrev ordering!"); 1228 } 1229 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1230 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1231 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1235 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1236 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1237 assert(0 && "Unexpected abbrev ordering!"); 1238 } 1239 { // INST_CAST abbrev for FUNCTION_BLOCK. 1240 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1241 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1242 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1243 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1244 Log2_32_Ceil(VE.getTypes().size()+1))); 1245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1246 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1247 Abbv) != FUNCTION_INST_CAST_ABBREV) 1248 assert(0 && "Unexpected abbrev ordering!"); 1249 } 1250 1251 { // INST_RET abbrev for FUNCTION_BLOCK. 1252 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1253 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1254 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1255 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1256 assert(0 && "Unexpected abbrev ordering!"); 1257 } 1258 { // INST_RET abbrev for FUNCTION_BLOCK. 1259 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1260 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1261 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1262 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1263 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1264 assert(0 && "Unexpected abbrev ordering!"); 1265 } 1266 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1267 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1268 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1269 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1270 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1271 assert(0 && "Unexpected abbrev ordering!"); 1272 } 1273 1274 Stream.ExitBlock(); 1275 } 1276 1277 1278 /// WriteModule - Emit the specified module to the bitstream. 1279 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1280 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1281 1282 // Emit the version number if it is non-zero. 1283 if (CurVersion) { 1284 SmallVector<unsigned, 1> Vals; 1285 Vals.push_back(CurVersion); 1286 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1287 } 1288 1289 // Analyze the module, enumerating globals, functions, etc. 1290 ValueEnumerator VE(M); 1291 1292 // Emit blockinfo, which defines the standard abbreviations etc. 1293 WriteBlockInfo(VE, Stream); 1294 1295 // Emit information about parameter attributes. 1296 WriteAttributeTable(VE, Stream); 1297 1298 // Emit information describing all of the types in the module. 1299 WriteTypeTable(VE, Stream); 1300 1301 // Emit top-level description of module, including target triple, inline asm, 1302 // descriptors for global variables, and function prototype info. 1303 WriteModuleInfo(M, VE, Stream); 1304 1305 // Emit constants. 1306 WriteModuleConstants(VE, Stream); 1307 1308 // If we have any aggregate values in the value table, purge them - these can 1309 // only be used to initialize global variables. Doing so makes the value 1310 // namespace smaller for code in functions. 1311 int NumNonAggregates = VE.PurgeAggregateValues(); 1312 if (NumNonAggregates != -1) { 1313 SmallVector<unsigned, 1> Vals; 1314 Vals.push_back(NumNonAggregates); 1315 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals); 1316 } 1317 1318 // Emit function bodies. 1319 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1320 if (!I->isDeclaration()) 1321 WriteFunction(*I, VE, Stream); 1322 1323 // Emit the type symbol table information. 1324 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1325 1326 // Emit names for globals/functions etc. 1327 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1328 1329 Stream.ExitBlock(); 1330 } 1331 1332 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1333 /// header and trailer to make it compatible with the system archiver. To do 1334 /// this we emit the following header, and then emit a trailer that pads the 1335 /// file out to be a multiple of 16 bytes. 1336 /// 1337 /// struct bc_header { 1338 /// uint32_t Magic; // 0x0B17C0DE 1339 /// uint32_t Version; // Version, currently always 0. 1340 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1341 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1342 /// uint32_t CPUType; // CPU specifier. 1343 /// ... potentially more later ... 1344 /// }; 1345 enum { 1346 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1347 DarwinBCHeaderSize = 5*4 1348 }; 1349 1350 static void EmitDarwinBCHeader(BitstreamWriter &Stream, 1351 const std::string &TT) { 1352 unsigned CPUType = ~0U; 1353 1354 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*. The CPUType is a 1355 // magic number from /usr/include/mach/machine.h. It is ok to reproduce the 1356 // specific constants here because they are implicitly part of the Darwin ABI. 1357 enum { 1358 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1359 DARWIN_CPU_TYPE_X86 = 7, 1360 DARWIN_CPU_TYPE_POWERPC = 18 1361 }; 1362 1363 if (TT.find("x86_64-") == 0) 1364 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1365 else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' && 1366 TT[4] == '-' && TT[1] - '3' < 6) 1367 CPUType = DARWIN_CPU_TYPE_X86; 1368 else if (TT.find("powerpc-") == 0) 1369 CPUType = DARWIN_CPU_TYPE_POWERPC; 1370 else if (TT.find("powerpc64-") == 0) 1371 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1372 1373 // Traditional Bitcode starts after header. 1374 unsigned BCOffset = DarwinBCHeaderSize; 1375 1376 Stream.Emit(0x0B17C0DE, 32); 1377 Stream.Emit(0 , 32); // Version. 1378 Stream.Emit(BCOffset , 32); 1379 Stream.Emit(0 , 32); // Filled in later. 1380 Stream.Emit(CPUType , 32); 1381 } 1382 1383 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and 1384 /// finalize the header. 1385 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { 1386 // Update the size field in the header. 1387 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); 1388 1389 // If the file is not a multiple of 16 bytes, insert dummy padding. 1390 while (BufferSize & 15) { 1391 Stream.Emit(0, 8); 1392 ++BufferSize; 1393 } 1394 } 1395 1396 1397 /// WriteBitcodeToFile - Write the specified module to the specified output 1398 /// stream. 1399 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { 1400 raw_os_ostream RawOut(Out); 1401 // If writing to stdout, set binary mode. 1402 if (llvm::cout == Out) 1403 sys::Program::ChangeStdoutToBinary(); 1404 WriteBitcodeToFile(M, RawOut); 1405 } 1406 1407 /// WriteBitcodeToFile - Write the specified module to the specified output 1408 /// stream. 1409 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1410 std::vector<unsigned char> Buffer; 1411 BitstreamWriter Stream(Buffer); 1412 1413 Buffer.reserve(256*1024); 1414 1415 WriteBitcodeToStream( M, Stream ); 1416 1417 // If writing to stdout, set binary mode. 1418 if (&llvm::outs() == &Out) 1419 sys::Program::ChangeStdoutToBinary(); 1420 1421 // Write the generated bitstream to "Out". 1422 Out.write((char*)&Buffer.front(), Buffer.size()); 1423 1424 // Make sure it hits disk now. 1425 Out.flush(); 1426 } 1427 1428 /// WriteBitcodeToStream - Write the specified module to the specified output 1429 /// stream. 1430 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) { 1431 // If this is darwin, emit a file header and trailer if needed. 1432 bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos; 1433 if (isDarwin) 1434 EmitDarwinBCHeader(Stream, M->getTargetTriple()); 1435 1436 // Emit the file header. 1437 Stream.Emit((unsigned)'B', 8); 1438 Stream.Emit((unsigned)'C', 8); 1439 Stream.Emit(0x0, 4); 1440 Stream.Emit(0xC, 4); 1441 Stream.Emit(0xE, 4); 1442 Stream.Emit(0xD, 4); 1443 1444 // Emit the module. 1445 WriteModule(M, Stream); 1446 1447 if (isDarwin) 1448 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size()); 1449 } 1450