1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by Chris Lattner and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/ParameterAttributes.h" 24 #include "llvm/TypeSymbolTable.h" 25 #include "llvm/ValueSymbolTable.h" 26 #include "llvm/Support/MathExtras.h" 27 using namespace llvm; 28 29 /// These are manifest constants used by the bitcode writer. They do not need to 30 /// be kept in sync with the reader, but need to be consistent within this file. 31 enum { 32 CurVersion = 0, 33 34 // VALUE_SYMTAB_BLOCK abbrev id's. 35 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 36 VST_ENTRY_7_ABBREV, 37 VST_ENTRY_6_ABBREV, 38 VST_BBENTRY_6_ABBREV, 39 40 // CONSTANTS_BLOCK abbrev id's. 41 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 CONSTANTS_INTEGER_ABBREV, 43 CONSTANTS_CE_CAST_Abbrev, 44 CONSTANTS_NULL_Abbrev, 45 46 // FUNCTION_BLOCK abbrev id's. 47 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 FUNCTION_INST_BINOP_ABBREV, 49 FUNCTION_INST_CAST_ABBREV, 50 FUNCTION_INST_RET_VOID_ABBREV, 51 FUNCTION_INST_RET_VAL_ABBREV, 52 FUNCTION_INST_UNREACHABLE_ABBREV 53 }; 54 55 56 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 57 switch (Opcode) { 58 default: assert(0 && "Unknown cast instruction!"); 59 case Instruction::Trunc : return bitc::CAST_TRUNC; 60 case Instruction::ZExt : return bitc::CAST_ZEXT; 61 case Instruction::SExt : return bitc::CAST_SEXT; 62 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 63 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 64 case Instruction::UIToFP : return bitc::CAST_UITOFP; 65 case Instruction::SIToFP : return bitc::CAST_SITOFP; 66 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 67 case Instruction::FPExt : return bitc::CAST_FPEXT; 68 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 69 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 70 case Instruction::BitCast : return bitc::CAST_BITCAST; 71 } 72 } 73 74 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 75 switch (Opcode) { 76 default: assert(0 && "Unknown binary instruction!"); 77 case Instruction::Add: return bitc::BINOP_ADD; 78 case Instruction::Sub: return bitc::BINOP_SUB; 79 case Instruction::Mul: return bitc::BINOP_MUL; 80 case Instruction::UDiv: return bitc::BINOP_UDIV; 81 case Instruction::FDiv: 82 case Instruction::SDiv: return bitc::BINOP_SDIV; 83 case Instruction::URem: return bitc::BINOP_UREM; 84 case Instruction::FRem: 85 case Instruction::SRem: return bitc::BINOP_SREM; 86 case Instruction::Shl: return bitc::BINOP_SHL; 87 case Instruction::LShr: return bitc::BINOP_LSHR; 88 case Instruction::AShr: return bitc::BINOP_ASHR; 89 case Instruction::And: return bitc::BINOP_AND; 90 case Instruction::Or: return bitc::BINOP_OR; 91 case Instruction::Xor: return bitc::BINOP_XOR; 92 } 93 } 94 95 96 97 static void WriteStringRecord(unsigned Code, const std::string &Str, 98 unsigned AbbrevToUse, BitstreamWriter &Stream) { 99 SmallVector<unsigned, 64> Vals; 100 101 // Code: [strchar x N] 102 for (unsigned i = 0, e = Str.size(); i != e; ++i) 103 Vals.push_back(Str[i]); 104 105 // Emit the finished record. 106 Stream.EmitRecord(Code, Vals, AbbrevToUse); 107 } 108 109 // Emit information about parameter attributes. 110 static void WriteParamAttrTable(const ValueEnumerator &VE, 111 BitstreamWriter &Stream) { 112 const std::vector<const ParamAttrsList*> &Attrs = VE.getParamAttrs(); 113 if (Attrs.empty()) return; 114 115 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 116 117 SmallVector<uint64_t, 64> Record; 118 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 119 const ParamAttrsList *A = Attrs[i]; 120 for (unsigned op = 0, e = A->size(); op != e; ++op) { 121 Record.push_back(A->getParamIndex(op)); 122 Record.push_back(A->getParamAttrsAtIndex(op)); 123 } 124 125 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 126 Record.clear(); 127 } 128 129 Stream.ExitBlock(); 130 } 131 132 /// WriteTypeTable - Write out the type table for a module. 133 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 134 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 135 136 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 137 SmallVector<uint64_t, 64> TypeVals; 138 139 // Abbrev for TYPE_CODE_POINTER. 140 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 141 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 143 Log2_32_Ceil(VE.getTypes().size()+1))); 144 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 145 146 // Abbrev for TYPE_CODE_FUNCTION. 147 Abbv = new BitCodeAbbrev(); 148 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 152 Log2_32_Ceil(VE.getTypes().size()+1))); 153 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 154 155 // Abbrev for TYPE_CODE_STRUCT. 156 Abbv = new BitCodeAbbrev(); 157 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 161 Log2_32_Ceil(VE.getTypes().size()+1))); 162 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 163 164 // Abbrev for TYPE_CODE_ARRAY. 165 Abbv = new BitCodeAbbrev(); 166 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 169 Log2_32_Ceil(VE.getTypes().size()+1))); 170 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 171 172 // Emit an entry count so the reader can reserve space. 173 TypeVals.push_back(TypeList.size()); 174 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 175 TypeVals.clear(); 176 177 // Loop over all of the types, emitting each in turn. 178 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 179 const Type *T = TypeList[i].first; 180 int AbbrevToUse = 0; 181 unsigned Code = 0; 182 183 switch (T->getTypeID()) { 184 default: assert(0 && "Unknown type!"); 185 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 186 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 187 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 188 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 189 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 190 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 191 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 192 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 193 case Type::IntegerTyID: 194 // INTEGER: [width] 195 Code = bitc::TYPE_CODE_INTEGER; 196 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 197 break; 198 case Type::PointerTyID: 199 // POINTER: [pointee type] 200 Code = bitc::TYPE_CODE_POINTER; 201 TypeVals.push_back(VE.getTypeID(cast<PointerType>(T)->getElementType())); 202 AbbrevToUse = PtrAbbrev; 203 break; 204 205 case Type::FunctionTyID: { 206 const FunctionType *FT = cast<FunctionType>(T); 207 // FUNCTION: [isvararg, retty, paramty x N] 208 Code = bitc::TYPE_CODE_FUNCTION; 209 TypeVals.push_back(FT->isVarArg()); 210 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 211 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 212 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 213 AbbrevToUse = FunctionAbbrev; 214 break; 215 } 216 case Type::StructTyID: { 217 const StructType *ST = cast<StructType>(T); 218 // STRUCT: [ispacked, eltty x N] 219 Code = bitc::TYPE_CODE_STRUCT; 220 TypeVals.push_back(ST->isPacked()); 221 // Output all of the element types. 222 for (StructType::element_iterator I = ST->element_begin(), 223 E = ST->element_end(); I != E; ++I) 224 TypeVals.push_back(VE.getTypeID(*I)); 225 AbbrevToUse = StructAbbrev; 226 break; 227 } 228 case Type::ArrayTyID: { 229 const ArrayType *AT = cast<ArrayType>(T); 230 // ARRAY: [numelts, eltty] 231 Code = bitc::TYPE_CODE_ARRAY; 232 TypeVals.push_back(AT->getNumElements()); 233 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 234 AbbrevToUse = ArrayAbbrev; 235 break; 236 } 237 case Type::VectorTyID: { 238 const VectorType *VT = cast<VectorType>(T); 239 // VECTOR [numelts, eltty] 240 Code = bitc::TYPE_CODE_VECTOR; 241 TypeVals.push_back(VT->getNumElements()); 242 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 243 break; 244 } 245 } 246 247 // Emit the finished record. 248 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 249 TypeVals.clear(); 250 } 251 252 Stream.ExitBlock(); 253 } 254 255 static unsigned getEncodedLinkage(const GlobalValue *GV) { 256 switch (GV->getLinkage()) { 257 default: assert(0 && "Invalid linkage!"); 258 case GlobalValue::GhostLinkage: // Map ghost linkage onto external. 259 case GlobalValue::ExternalLinkage: return 0; 260 case GlobalValue::WeakLinkage: return 1; 261 case GlobalValue::AppendingLinkage: return 2; 262 case GlobalValue::InternalLinkage: return 3; 263 case GlobalValue::LinkOnceLinkage: return 4; 264 case GlobalValue::DLLImportLinkage: return 5; 265 case GlobalValue::DLLExportLinkage: return 6; 266 case GlobalValue::ExternalWeakLinkage: return 7; 267 } 268 } 269 270 static unsigned getEncodedVisibility(const GlobalValue *GV) { 271 switch (GV->getVisibility()) { 272 default: assert(0 && "Invalid visibility!"); 273 case GlobalValue::DefaultVisibility: return 0; 274 case GlobalValue::HiddenVisibility: return 1; 275 case GlobalValue::ProtectedVisibility: return 2; 276 } 277 } 278 279 // Emit top-level description of module, including target triple, inline asm, 280 // descriptors for global variables, and function prototype info. 281 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 282 BitstreamWriter &Stream) { 283 // Emit the list of dependent libraries for the Module. 284 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 285 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 286 287 // Emit various pieces of data attached to a module. 288 if (!M->getTargetTriple().empty()) 289 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 290 0/*TODO*/, Stream); 291 if (!M->getDataLayout().empty()) 292 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 293 0/*TODO*/, Stream); 294 if (!M->getModuleInlineAsm().empty()) 295 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 296 0/*TODO*/, Stream); 297 298 // Emit information about sections, computing how many there are. Also 299 // compute the maximum alignment value. 300 std::map<std::string, unsigned> SectionMap; 301 unsigned MaxAlignment = 0; 302 unsigned MaxGlobalType = 0; 303 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 304 GV != E; ++GV) { 305 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 306 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 307 308 if (!GV->hasSection()) continue; 309 // Give section names unique ID's. 310 unsigned &Entry = SectionMap[GV->getSection()]; 311 if (Entry != 0) continue; 312 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 313 0/*TODO*/, Stream); 314 Entry = SectionMap.size(); 315 } 316 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 317 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 318 if (!F->hasSection()) continue; 319 // Give section names unique ID's. 320 unsigned &Entry = SectionMap[F->getSection()]; 321 if (Entry != 0) continue; 322 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 323 0/*TODO*/, Stream); 324 Entry = SectionMap.size(); 325 } 326 327 // Emit abbrev for globals, now that we know # sections and max alignment. 328 unsigned SimpleGVarAbbrev = 0; 329 if (!M->global_empty()) { 330 // Add an abbrev for common globals with no visibility or thread localness. 331 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 332 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 334 Log2_32_Ceil(MaxGlobalType+1))); 335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Linkage. 338 if (MaxAlignment == 0) // Alignment. 339 Abbv->Add(BitCodeAbbrevOp(0)); 340 else { 341 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 343 Log2_32_Ceil(MaxEncAlignment+1))); 344 } 345 if (SectionMap.empty()) // Section. 346 Abbv->Add(BitCodeAbbrevOp(0)); 347 else 348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 349 Log2_32_Ceil(SectionMap.size()+1))); 350 // Don't bother emitting vis + thread local. 351 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 352 } 353 354 // Emit the global variable information. 355 SmallVector<unsigned, 64> Vals; 356 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 357 GV != E; ++GV) { 358 unsigned AbbrevToUse = 0; 359 360 // GLOBALVAR: [type, isconst, initid, 361 // linkage, alignment, section, visibility, threadlocal] 362 Vals.push_back(VE.getTypeID(GV->getType())); 363 Vals.push_back(GV->isConstant()); 364 Vals.push_back(GV->isDeclaration() ? 0 : 365 (VE.getValueID(GV->getInitializer()) + 1)); 366 Vals.push_back(getEncodedLinkage(GV)); 367 Vals.push_back(Log2_32(GV->getAlignment())+1); 368 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 369 if (GV->isThreadLocal() || 370 GV->getVisibility() != GlobalValue::DefaultVisibility) { 371 Vals.push_back(getEncodedVisibility(GV)); 372 Vals.push_back(GV->isThreadLocal()); 373 } else { 374 AbbrevToUse = SimpleGVarAbbrev; 375 } 376 377 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 378 Vals.clear(); 379 } 380 381 // Emit the function proto information. 382 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 383 // FUNCTION: [type, callingconv, isproto, paramattr, 384 // linkage, alignment, section, visibility] 385 Vals.push_back(VE.getTypeID(F->getType())); 386 Vals.push_back(F->getCallingConv()); 387 Vals.push_back(F->isDeclaration()); 388 Vals.push_back(getEncodedLinkage(F)); 389 Vals.push_back(VE.getParamAttrID(F->getParamAttrs())); 390 Vals.push_back(Log2_32(F->getAlignment())+1); 391 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 392 Vals.push_back(getEncodedVisibility(F)); 393 394 unsigned AbbrevToUse = 0; 395 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 396 Vals.clear(); 397 } 398 399 400 // Emit the alias information. 401 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 402 AI != E; ++AI) { 403 Vals.push_back(VE.getTypeID(AI->getType())); 404 Vals.push_back(VE.getValueID(AI->getAliasee())); 405 Vals.push_back(getEncodedLinkage(AI)); 406 unsigned AbbrevToUse = 0; 407 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 408 Vals.clear(); 409 } 410 } 411 412 413 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 414 const ValueEnumerator &VE, 415 BitstreamWriter &Stream, bool isGlobal) { 416 if (FirstVal == LastVal) return; 417 418 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 419 420 unsigned AggregateAbbrev = 0; 421 unsigned String8Abbrev = 0; 422 unsigned CString7Abbrev = 0; 423 unsigned CString6Abbrev = 0; 424 // If this is a constant pool for the module, emit module-specific abbrevs. 425 if (isGlobal) { 426 // Abbrev for CST_CODE_AGGREGATE. 427 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 428 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 431 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 432 433 // Abbrev for CST_CODE_STRING. 434 Abbv = new BitCodeAbbrev(); 435 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 438 String8Abbrev = Stream.EmitAbbrev(Abbv); 439 // Abbrev for CST_CODE_CSTRING. 440 Abbv = new BitCodeAbbrev(); 441 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 443 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 444 CString7Abbrev = Stream.EmitAbbrev(Abbv); 445 // Abbrev for CST_CODE_CSTRING. 446 Abbv = new BitCodeAbbrev(); 447 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 450 CString6Abbrev = Stream.EmitAbbrev(Abbv); 451 } 452 453 SmallVector<uint64_t, 64> Record; 454 455 const ValueEnumerator::ValueList &Vals = VE.getValues(); 456 const Type *LastTy = 0; 457 for (unsigned i = FirstVal; i != LastVal; ++i) { 458 const Value *V = Vals[i].first; 459 // If we need to switch types, do so now. 460 if (V->getType() != LastTy) { 461 LastTy = V->getType(); 462 Record.push_back(VE.getTypeID(LastTy)); 463 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 464 CONSTANTS_SETTYPE_ABBREV); 465 Record.clear(); 466 } 467 468 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 469 Record.push_back(unsigned(IA->hasSideEffects())); 470 471 // Add the asm string. 472 const std::string &AsmStr = IA->getAsmString(); 473 Record.push_back(AsmStr.size()); 474 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 475 Record.push_back(AsmStr[i]); 476 477 // Add the constraint string. 478 const std::string &ConstraintStr = IA->getConstraintString(); 479 Record.push_back(ConstraintStr.size()); 480 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 481 Record.push_back(ConstraintStr[i]); 482 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 483 Record.clear(); 484 continue; 485 } 486 const Constant *C = cast<Constant>(V); 487 unsigned Code = -1U; 488 unsigned AbbrevToUse = 0; 489 if (C->isNullValue()) { 490 Code = bitc::CST_CODE_NULL; 491 } else if (isa<UndefValue>(C)) { 492 Code = bitc::CST_CODE_UNDEF; 493 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 494 if (IV->getBitWidth() <= 64) { 495 int64_t V = IV->getSExtValue(); 496 if (V >= 0) 497 Record.push_back(V << 1); 498 else 499 Record.push_back((-V << 1) | 1); 500 Code = bitc::CST_CODE_INTEGER; 501 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 502 } else { // Wide integers, > 64 bits in size. 503 // We have an arbitrary precision integer value to write whose 504 // bit width is > 64. However, in canonical unsigned integer 505 // format it is likely that the high bits are going to be zero. 506 // So, we only write the number of active words. 507 unsigned NWords = IV->getValue().getActiveWords(); 508 const uint64_t *RawWords = IV->getValue().getRawData(); 509 for (unsigned i = 0; i != NWords; ++i) { 510 int64_t V = RawWords[i]; 511 if (V >= 0) 512 Record.push_back(V << 1); 513 else 514 Record.push_back((-V << 1) | 1); 515 } 516 Code = bitc::CST_CODE_WIDE_INTEGER; 517 } 518 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 519 Code = bitc::CST_CODE_FLOAT; 520 const Type *Ty = CFP->getType(); 521 if (Ty == Type::FloatTy || Ty == Type::DoubleTy) { 522 Record.push_back(CFP->getValueAPF().convertToAPInt().getZExtValue()); 523 } else if (Ty == Type::X86_FP80Ty) { 524 // api needed to prevent premature destruction 525 APInt api = CFP->getValueAPF().convertToAPInt(); 526 const uint64_t *p = api.getRawData(); 527 Record.push_back(p[0]); 528 Record.push_back((uint16_t)p[1]); 529 } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) { 530 APInt api = CFP->getValueAPF().convertToAPInt(); 531 const uint64_t *p = api.getRawData(); 532 Record.push_back(p[0]); 533 Record.push_back(p[1]); 534 } else { 535 assert (0 && "Unknown FP type!"); 536 } 537 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 538 // Emit constant strings specially. 539 unsigned NumOps = C->getNumOperands(); 540 // If this is a null-terminated string, use the denser CSTRING encoding. 541 if (C->getOperand(NumOps-1)->isNullValue()) { 542 Code = bitc::CST_CODE_CSTRING; 543 --NumOps; // Don't encode the null, which isn't allowed by char6. 544 } else { 545 Code = bitc::CST_CODE_STRING; 546 AbbrevToUse = String8Abbrev; 547 } 548 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 549 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 550 for (unsigned i = 0; i != NumOps; ++i) { 551 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue(); 552 Record.push_back(V); 553 isCStr7 &= (V & 128) == 0; 554 if (isCStrChar6) 555 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 556 } 557 558 if (isCStrChar6) 559 AbbrevToUse = CString6Abbrev; 560 else if (isCStr7) 561 AbbrevToUse = CString7Abbrev; 562 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 563 isa<ConstantVector>(V)) { 564 Code = bitc::CST_CODE_AGGREGATE; 565 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 566 Record.push_back(VE.getValueID(C->getOperand(i))); 567 AbbrevToUse = AggregateAbbrev; 568 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 569 switch (CE->getOpcode()) { 570 default: 571 if (Instruction::isCast(CE->getOpcode())) { 572 Code = bitc::CST_CODE_CE_CAST; 573 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 574 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 575 Record.push_back(VE.getValueID(C->getOperand(0))); 576 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 577 } else { 578 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 579 Code = bitc::CST_CODE_CE_BINOP; 580 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 581 Record.push_back(VE.getValueID(C->getOperand(0))); 582 Record.push_back(VE.getValueID(C->getOperand(1))); 583 } 584 break; 585 case Instruction::GetElementPtr: 586 Code = bitc::CST_CODE_CE_GEP; 587 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 588 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 589 Record.push_back(VE.getValueID(C->getOperand(i))); 590 } 591 break; 592 case Instruction::Select: 593 Code = bitc::CST_CODE_CE_SELECT; 594 Record.push_back(VE.getValueID(C->getOperand(0))); 595 Record.push_back(VE.getValueID(C->getOperand(1))); 596 Record.push_back(VE.getValueID(C->getOperand(2))); 597 break; 598 case Instruction::ExtractElement: 599 Code = bitc::CST_CODE_CE_EXTRACTELT; 600 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 601 Record.push_back(VE.getValueID(C->getOperand(0))); 602 Record.push_back(VE.getValueID(C->getOperand(1))); 603 break; 604 case Instruction::InsertElement: 605 Code = bitc::CST_CODE_CE_INSERTELT; 606 Record.push_back(VE.getValueID(C->getOperand(0))); 607 Record.push_back(VE.getValueID(C->getOperand(1))); 608 Record.push_back(VE.getValueID(C->getOperand(2))); 609 break; 610 case Instruction::ShuffleVector: 611 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 612 Record.push_back(VE.getValueID(C->getOperand(0))); 613 Record.push_back(VE.getValueID(C->getOperand(1))); 614 Record.push_back(VE.getValueID(C->getOperand(2))); 615 break; 616 case Instruction::ICmp: 617 case Instruction::FCmp: 618 Code = bitc::CST_CODE_CE_CMP; 619 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 620 Record.push_back(VE.getValueID(C->getOperand(0))); 621 Record.push_back(VE.getValueID(C->getOperand(1))); 622 Record.push_back(CE->getPredicate()); 623 break; 624 } 625 } else { 626 assert(0 && "Unknown constant!"); 627 } 628 Stream.EmitRecord(Code, Record, AbbrevToUse); 629 Record.clear(); 630 } 631 632 Stream.ExitBlock(); 633 } 634 635 static void WriteModuleConstants(const ValueEnumerator &VE, 636 BitstreamWriter &Stream) { 637 const ValueEnumerator::ValueList &Vals = VE.getValues(); 638 639 // Find the first constant to emit, which is the first non-globalvalue value. 640 // We know globalvalues have been emitted by WriteModuleInfo. 641 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 642 if (!isa<GlobalValue>(Vals[i].first)) { 643 WriteConstants(i, Vals.size(), VE, Stream, true); 644 return; 645 } 646 } 647 } 648 649 /// PushValueAndType - The file has to encode both the value and type id for 650 /// many values, because we need to know what type to create for forward 651 /// references. However, most operands are not forward references, so this type 652 /// field is not needed. 653 /// 654 /// This function adds V's value ID to Vals. If the value ID is higher than the 655 /// instruction ID, then it is a forward reference, and it also includes the 656 /// type ID. 657 static bool PushValueAndType(Value *V, unsigned InstID, 658 SmallVector<unsigned, 64> &Vals, 659 ValueEnumerator &VE) { 660 unsigned ValID = VE.getValueID(V); 661 Vals.push_back(ValID); 662 if (ValID >= InstID) { 663 Vals.push_back(VE.getTypeID(V->getType())); 664 return true; 665 } 666 return false; 667 } 668 669 /// WriteInstruction - Emit an instruction to the specified stream. 670 static void WriteInstruction(const Instruction &I, unsigned InstID, 671 ValueEnumerator &VE, BitstreamWriter &Stream, 672 SmallVector<unsigned, 64> &Vals) { 673 unsigned Code = 0; 674 unsigned AbbrevToUse = 0; 675 switch (I.getOpcode()) { 676 default: 677 if (Instruction::isCast(I.getOpcode())) { 678 Code = bitc::FUNC_CODE_INST_CAST; 679 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 680 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 681 Vals.push_back(VE.getTypeID(I.getType())); 682 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 683 } else { 684 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 685 Code = bitc::FUNC_CODE_INST_BINOP; 686 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 687 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 688 Vals.push_back(VE.getValueID(I.getOperand(1))); 689 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 690 } 691 break; 692 693 case Instruction::GetElementPtr: 694 Code = bitc::FUNC_CODE_INST_GEP; 695 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 696 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 697 break; 698 case Instruction::Select: 699 Code = bitc::FUNC_CODE_INST_SELECT; 700 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 701 Vals.push_back(VE.getValueID(I.getOperand(2))); 702 Vals.push_back(VE.getValueID(I.getOperand(0))); 703 break; 704 case Instruction::ExtractElement: 705 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 706 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 707 Vals.push_back(VE.getValueID(I.getOperand(1))); 708 break; 709 case Instruction::InsertElement: 710 Code = bitc::FUNC_CODE_INST_INSERTELT; 711 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 712 Vals.push_back(VE.getValueID(I.getOperand(1))); 713 Vals.push_back(VE.getValueID(I.getOperand(2))); 714 break; 715 case Instruction::ShuffleVector: 716 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 717 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 718 Vals.push_back(VE.getValueID(I.getOperand(1))); 719 Vals.push_back(VE.getValueID(I.getOperand(2))); 720 break; 721 case Instruction::ICmp: 722 case Instruction::FCmp: 723 Code = bitc::FUNC_CODE_INST_CMP; 724 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 725 Vals.push_back(VE.getValueID(I.getOperand(1))); 726 Vals.push_back(cast<CmpInst>(I).getPredicate()); 727 break; 728 729 case Instruction::Ret: 730 Code = bitc::FUNC_CODE_INST_RET; 731 if (!I.getNumOperands()) 732 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 733 else if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 734 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 735 break; 736 case Instruction::Br: 737 Code = bitc::FUNC_CODE_INST_BR; 738 Vals.push_back(VE.getValueID(I.getOperand(0))); 739 if (cast<BranchInst>(I).isConditional()) { 740 Vals.push_back(VE.getValueID(I.getOperand(1))); 741 Vals.push_back(VE.getValueID(I.getOperand(2))); 742 } 743 break; 744 case Instruction::Switch: 745 Code = bitc::FUNC_CODE_INST_SWITCH; 746 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 747 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 748 Vals.push_back(VE.getValueID(I.getOperand(i))); 749 break; 750 case Instruction::Invoke: { 751 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 752 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 753 Code = bitc::FUNC_CODE_INST_INVOKE; 754 755 const InvokeInst *II = cast<InvokeInst>(&I); 756 Vals.push_back(VE.getParamAttrID(II->getParamAttrs())); 757 Vals.push_back(II->getCallingConv()); 758 Vals.push_back(VE.getValueID(I.getOperand(1))); // normal dest 759 Vals.push_back(VE.getValueID(I.getOperand(2))); // unwind dest 760 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee 761 762 // Emit value #'s for the fixed parameters. 763 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 764 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 765 766 // Emit type/value pairs for varargs params. 767 if (FTy->isVarArg()) { 768 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); 769 i != e; ++i) 770 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 771 } 772 break; 773 } 774 case Instruction::Unwind: 775 Code = bitc::FUNC_CODE_INST_UNWIND; 776 break; 777 case Instruction::Unreachable: 778 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 779 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 780 break; 781 782 case Instruction::PHI: 783 Code = bitc::FUNC_CODE_INST_PHI; 784 Vals.push_back(VE.getTypeID(I.getType())); 785 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 786 Vals.push_back(VE.getValueID(I.getOperand(i))); 787 break; 788 789 case Instruction::Malloc: 790 Code = bitc::FUNC_CODE_INST_MALLOC; 791 Vals.push_back(VE.getTypeID(I.getType())); 792 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 793 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); 794 break; 795 796 case Instruction::Free: 797 Code = bitc::FUNC_CODE_INST_FREE; 798 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 799 break; 800 801 case Instruction::Alloca: 802 Code = bitc::FUNC_CODE_INST_ALLOCA; 803 Vals.push_back(VE.getTypeID(I.getType())); 804 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 805 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 806 break; 807 808 case Instruction::Load: 809 Code = bitc::FUNC_CODE_INST_LOAD; 810 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 811 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 812 813 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 814 Vals.push_back(cast<LoadInst>(I).isVolatile()); 815 break; 816 case Instruction::Store: 817 Code = bitc::FUNC_CODE_INST_STORE; 818 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // val. 819 Vals.push_back(VE.getValueID(I.getOperand(1))); // ptr. 820 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 821 Vals.push_back(cast<StoreInst>(I).isVolatile()); 822 break; 823 case Instruction::Call: { 824 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 825 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 826 827 Code = bitc::FUNC_CODE_INST_CALL; 828 829 const CallInst *CI = cast<CallInst>(&I); 830 Vals.push_back(VE.getParamAttrID(CI->getParamAttrs())); 831 Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall())); 832 PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee 833 834 // Emit value #'s for the fixed parameters. 835 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 836 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 837 838 // Emit type/value pairs for varargs params. 839 if (FTy->isVarArg()) { 840 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 841 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 842 i != e; ++i) 843 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs 844 } 845 break; 846 } 847 case Instruction::VAArg: 848 Code = bitc::FUNC_CODE_INST_VAARG; 849 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 850 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 851 Vals.push_back(VE.getTypeID(I.getType())); // restype. 852 break; 853 } 854 855 Stream.EmitRecord(Code, Vals, AbbrevToUse); 856 Vals.clear(); 857 } 858 859 // Emit names for globals/functions etc. 860 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 861 const ValueEnumerator &VE, 862 BitstreamWriter &Stream) { 863 if (VST.empty()) return; 864 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 865 866 // FIXME: Set up the abbrev, we know how many values there are! 867 // FIXME: We know if the type names can use 7-bit ascii. 868 SmallVector<unsigned, 64> NameVals; 869 870 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 871 SI != SE; ++SI) { 872 873 const ValueName &Name = *SI; 874 875 // Figure out the encoding to use for the name. 876 bool is7Bit = true; 877 bool isChar6 = true; 878 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 879 C != E; ++C) { 880 if (isChar6) 881 isChar6 = BitCodeAbbrevOp::isChar6(*C); 882 if ((unsigned char)*C & 128) { 883 is7Bit = false; 884 break; // don't bother scanning the rest. 885 } 886 } 887 888 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 889 890 // VST_ENTRY: [valueid, namechar x N] 891 // VST_BBENTRY: [bbid, namechar x N] 892 unsigned Code; 893 if (isa<BasicBlock>(SI->getValue())) { 894 Code = bitc::VST_CODE_BBENTRY; 895 if (isChar6) 896 AbbrevToUse = VST_BBENTRY_6_ABBREV; 897 } else { 898 Code = bitc::VST_CODE_ENTRY; 899 if (isChar6) 900 AbbrevToUse = VST_ENTRY_6_ABBREV; 901 else if (is7Bit) 902 AbbrevToUse = VST_ENTRY_7_ABBREV; 903 } 904 905 NameVals.push_back(VE.getValueID(SI->getValue())); 906 for (const char *P = Name.getKeyData(), 907 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 908 NameVals.push_back((unsigned char)*P); 909 910 // Emit the finished record. 911 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 912 NameVals.clear(); 913 } 914 Stream.ExitBlock(); 915 } 916 917 /// WriteFunction - Emit a function body to the module stream. 918 static void WriteFunction(const Function &F, ValueEnumerator &VE, 919 BitstreamWriter &Stream) { 920 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 921 VE.incorporateFunction(F); 922 923 SmallVector<unsigned, 64> Vals; 924 925 // Emit the number of basic blocks, so the reader can create them ahead of 926 // time. 927 Vals.push_back(VE.getBasicBlocks().size()); 928 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 929 Vals.clear(); 930 931 // If there are function-local constants, emit them now. 932 unsigned CstStart, CstEnd; 933 VE.getFunctionConstantRange(CstStart, CstEnd); 934 WriteConstants(CstStart, CstEnd, VE, Stream, false); 935 936 // Keep a running idea of what the instruction ID is. 937 unsigned InstID = CstEnd; 938 939 // Finally, emit all the instructions, in order. 940 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 941 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 942 I != E; ++I) { 943 WriteInstruction(*I, InstID, VE, Stream, Vals); 944 if (I->getType() != Type::VoidTy) 945 ++InstID; 946 } 947 948 // Emit names for all the instructions etc. 949 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 950 951 VE.purgeFunction(); 952 Stream.ExitBlock(); 953 } 954 955 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 956 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 957 const ValueEnumerator &VE, 958 BitstreamWriter &Stream) { 959 if (TST.empty()) return; 960 961 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 962 963 // 7-bit fixed width VST_CODE_ENTRY strings. 964 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 965 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 967 Log2_32_Ceil(VE.getTypes().size()+1))); 968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 970 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 971 972 SmallVector<unsigned, 64> NameVals; 973 974 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 975 TI != TE; ++TI) { 976 // TST_ENTRY: [typeid, namechar x N] 977 NameVals.push_back(VE.getTypeID(TI->second)); 978 979 const std::string &Str = TI->first; 980 bool is7Bit = true; 981 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 982 NameVals.push_back((unsigned char)Str[i]); 983 if (Str[i] & 128) 984 is7Bit = false; 985 } 986 987 // Emit the finished record. 988 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 989 NameVals.clear(); 990 } 991 992 Stream.ExitBlock(); 993 } 994 995 // Emit blockinfo, which defines the standard abbreviations etc. 996 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 997 // We only want to emit block info records for blocks that have multiple 998 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 999 // blocks can defined their abbrevs inline. 1000 Stream.EnterBlockInfoBlock(2); 1001 1002 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1003 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1006 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1007 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1008 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1009 Abbv) != VST_ENTRY_8_ABBREV) 1010 assert(0 && "Unexpected abbrev ordering!"); 1011 } 1012 1013 { // 7-bit fixed width VST_ENTRY strings. 1014 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1015 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1016 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1017 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1018 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1019 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1020 Abbv) != VST_ENTRY_7_ABBREV) 1021 assert(0 && "Unexpected abbrev ordering!"); 1022 } 1023 { // 6-bit char6 VST_ENTRY strings. 1024 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1025 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1026 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1027 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1028 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1029 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1030 Abbv) != VST_ENTRY_6_ABBREV) 1031 assert(0 && "Unexpected abbrev ordering!"); 1032 } 1033 { // 6-bit char6 VST_BBENTRY strings. 1034 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1035 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1036 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1037 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1038 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1039 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1040 Abbv) != VST_BBENTRY_6_ABBREV) 1041 assert(0 && "Unexpected abbrev ordering!"); 1042 } 1043 1044 1045 1046 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1047 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1048 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1049 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1050 Log2_32_Ceil(VE.getTypes().size()+1))); 1051 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1052 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1053 assert(0 && "Unexpected abbrev ordering!"); 1054 } 1055 1056 { // INTEGER abbrev for CONSTANTS_BLOCK. 1057 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1058 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1059 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1060 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1061 Abbv) != CONSTANTS_INTEGER_ABBREV) 1062 assert(0 && "Unexpected abbrev ordering!"); 1063 } 1064 1065 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1066 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1067 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1068 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1070 Log2_32_Ceil(VE.getTypes().size()+1))); 1071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1072 1073 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1074 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1075 assert(0 && "Unexpected abbrev ordering!"); 1076 } 1077 { // NULL abbrev for CONSTANTS_BLOCK. 1078 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1079 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1080 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1081 Abbv) != CONSTANTS_NULL_Abbrev) 1082 assert(0 && "Unexpected abbrev ordering!"); 1083 } 1084 1085 // FIXME: This should only use space for first class types! 1086 1087 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1088 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1089 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1093 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1094 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1095 assert(0 && "Unexpected abbrev ordering!"); 1096 } 1097 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1098 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1099 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1103 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1104 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1105 assert(0 && "Unexpected abbrev ordering!"); 1106 } 1107 { // INST_CAST abbrev for FUNCTION_BLOCK. 1108 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1109 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1110 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1112 Log2_32_Ceil(VE.getTypes().size()+1))); 1113 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1114 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1115 Abbv) != FUNCTION_INST_CAST_ABBREV) 1116 assert(0 && "Unexpected abbrev ordering!"); 1117 } 1118 1119 { // INST_RET abbrev for FUNCTION_BLOCK. 1120 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1121 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1122 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1123 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1124 assert(0 && "Unexpected abbrev ordering!"); 1125 } 1126 { // INST_RET abbrev for FUNCTION_BLOCK. 1127 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1128 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1130 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1131 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1132 assert(0 && "Unexpected abbrev ordering!"); 1133 } 1134 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1135 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1136 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1137 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1138 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1139 assert(0 && "Unexpected abbrev ordering!"); 1140 } 1141 1142 Stream.ExitBlock(); 1143 } 1144 1145 1146 /// WriteModule - Emit the specified module to the bitstream. 1147 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1148 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1149 1150 // Emit the version number if it is non-zero. 1151 if (CurVersion) { 1152 SmallVector<unsigned, 1> Vals; 1153 Vals.push_back(CurVersion); 1154 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1155 } 1156 1157 // Analyze the module, enumerating globals, functions, etc. 1158 ValueEnumerator VE(M); 1159 1160 // Emit blockinfo, which defines the standard abbreviations etc. 1161 WriteBlockInfo(VE, Stream); 1162 1163 // Emit information about parameter attributes. 1164 WriteParamAttrTable(VE, Stream); 1165 1166 // Emit information describing all of the types in the module. 1167 WriteTypeTable(VE, Stream); 1168 1169 // Emit top-level description of module, including target triple, inline asm, 1170 // descriptors for global variables, and function prototype info. 1171 WriteModuleInfo(M, VE, Stream); 1172 1173 // Emit constants. 1174 WriteModuleConstants(VE, Stream); 1175 1176 // If we have any aggregate values in the value table, purge them - these can 1177 // only be used to initialize global variables. Doing so makes the value 1178 // namespace smaller for code in functions. 1179 int NumNonAggregates = VE.PurgeAggregateValues(); 1180 if (NumNonAggregates != -1) { 1181 SmallVector<unsigned, 1> Vals; 1182 Vals.push_back(NumNonAggregates); 1183 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals); 1184 } 1185 1186 // Emit function bodies. 1187 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1188 if (!I->isDeclaration()) 1189 WriteFunction(*I, VE, Stream); 1190 1191 // Emit the type symbol table information. 1192 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1193 1194 // Emit names for globals/functions etc. 1195 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1196 1197 Stream.ExitBlock(); 1198 } 1199 1200 1201 /// WriteBitcodeToFile - Write the specified module to the specified output 1202 /// stream. 1203 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { 1204 std::vector<unsigned char> Buffer; 1205 BitstreamWriter Stream(Buffer); 1206 1207 Buffer.reserve(256*1024); 1208 1209 // Emit the file header. 1210 Stream.Emit((unsigned)'B', 8); 1211 Stream.Emit((unsigned)'C', 8); 1212 Stream.Emit(0x0, 4); 1213 Stream.Emit(0xC, 4); 1214 Stream.Emit(0xE, 4); 1215 Stream.Emit(0xD, 4); 1216 1217 // Emit the module. 1218 WriteModule(M, Stream); 1219 1220 // Write the generated bitstream to "Out". 1221 Out.write((char*)&Buffer.front(), Buffer.size()); 1222 1223 // Make sure it hits disk now. 1224 Out.flush(); 1225 } 1226