1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/ValueSymbolTable.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/Program.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <cctype> 32 #include <map> 33 using namespace llvm; 34 35 static cl::opt<bool> 36 EnablePreserveUseListOrdering("enable-bc-uselist-preserve", 37 cl::desc("Turn on experimental support for " 38 "use-list order preservation."), 39 cl::init(false), cl::Hidden); 40 41 /// These are manifest constants used by the bitcode writer. They do not need to 42 /// be kept in sync with the reader, but need to be consistent within this file. 43 enum { 44 // VALUE_SYMTAB_BLOCK abbrev id's. 45 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 46 VST_ENTRY_7_ABBREV, 47 VST_ENTRY_6_ABBREV, 48 VST_BBENTRY_6_ABBREV, 49 50 // CONSTANTS_BLOCK abbrev id's. 51 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 CONSTANTS_INTEGER_ABBREV, 53 CONSTANTS_CE_CAST_Abbrev, 54 CONSTANTS_NULL_Abbrev, 55 56 // FUNCTION_BLOCK abbrev id's. 57 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 58 FUNCTION_INST_BINOP_ABBREV, 59 FUNCTION_INST_BINOP_FLAGS_ABBREV, 60 FUNCTION_INST_CAST_ABBREV, 61 FUNCTION_INST_RET_VOID_ABBREV, 62 FUNCTION_INST_RET_VAL_ABBREV, 63 FUNCTION_INST_UNREACHABLE_ABBREV 64 }; 65 66 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 67 switch (Opcode) { 68 default: llvm_unreachable("Unknown cast instruction!"); 69 case Instruction::Trunc : return bitc::CAST_TRUNC; 70 case Instruction::ZExt : return bitc::CAST_ZEXT; 71 case Instruction::SExt : return bitc::CAST_SEXT; 72 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 73 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 74 case Instruction::UIToFP : return bitc::CAST_UITOFP; 75 case Instruction::SIToFP : return bitc::CAST_SITOFP; 76 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 77 case Instruction::FPExt : return bitc::CAST_FPEXT; 78 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 79 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 80 case Instruction::BitCast : return bitc::CAST_BITCAST; 81 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 82 } 83 } 84 85 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 86 switch (Opcode) { 87 default: llvm_unreachable("Unknown binary instruction!"); 88 case Instruction::Add: 89 case Instruction::FAdd: return bitc::BINOP_ADD; 90 case Instruction::Sub: 91 case Instruction::FSub: return bitc::BINOP_SUB; 92 case Instruction::Mul: 93 case Instruction::FMul: return bitc::BINOP_MUL; 94 case Instruction::UDiv: return bitc::BINOP_UDIV; 95 case Instruction::FDiv: 96 case Instruction::SDiv: return bitc::BINOP_SDIV; 97 case Instruction::URem: return bitc::BINOP_UREM; 98 case Instruction::FRem: 99 case Instruction::SRem: return bitc::BINOP_SREM; 100 case Instruction::Shl: return bitc::BINOP_SHL; 101 case Instruction::LShr: return bitc::BINOP_LSHR; 102 case Instruction::AShr: return bitc::BINOP_ASHR; 103 case Instruction::And: return bitc::BINOP_AND; 104 case Instruction::Or: return bitc::BINOP_OR; 105 case Instruction::Xor: return bitc::BINOP_XOR; 106 } 107 } 108 109 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 110 switch (Op) { 111 default: llvm_unreachable("Unknown RMW operation!"); 112 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 113 case AtomicRMWInst::Add: return bitc::RMW_ADD; 114 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 115 case AtomicRMWInst::And: return bitc::RMW_AND; 116 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 117 case AtomicRMWInst::Or: return bitc::RMW_OR; 118 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 119 case AtomicRMWInst::Max: return bitc::RMW_MAX; 120 case AtomicRMWInst::Min: return bitc::RMW_MIN; 121 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 122 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 123 } 124 } 125 126 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 127 switch (Ordering) { 128 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 129 case Unordered: return bitc::ORDERING_UNORDERED; 130 case Monotonic: return bitc::ORDERING_MONOTONIC; 131 case Acquire: return bitc::ORDERING_ACQUIRE; 132 case Release: return bitc::ORDERING_RELEASE; 133 case AcquireRelease: return bitc::ORDERING_ACQREL; 134 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 135 } 136 llvm_unreachable("Invalid ordering"); 137 } 138 139 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 140 switch (SynchScope) { 141 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 142 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 143 } 144 llvm_unreachable("Invalid synch scope"); 145 } 146 147 static void WriteStringRecord(unsigned Code, StringRef Str, 148 unsigned AbbrevToUse, BitstreamWriter &Stream) { 149 SmallVector<unsigned, 64> Vals; 150 151 // Code: [strchar x N] 152 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 153 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 154 AbbrevToUse = 0; 155 Vals.push_back(Str[i]); 156 } 157 158 // Emit the finished record. 159 Stream.EmitRecord(Code, Vals, AbbrevToUse); 160 } 161 162 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 163 switch (Kind) { 164 case Attribute::Alignment: 165 return bitc::ATTR_KIND_ALIGNMENT; 166 case Attribute::AlwaysInline: 167 return bitc::ATTR_KIND_ALWAYS_INLINE; 168 case Attribute::Builtin: 169 return bitc::ATTR_KIND_BUILTIN; 170 case Attribute::ByVal: 171 return bitc::ATTR_KIND_BY_VAL; 172 case Attribute::InAlloca: 173 return bitc::ATTR_KIND_IN_ALLOCA; 174 case Attribute::Cold: 175 return bitc::ATTR_KIND_COLD; 176 case Attribute::InlineHint: 177 return bitc::ATTR_KIND_INLINE_HINT; 178 case Attribute::InReg: 179 return bitc::ATTR_KIND_IN_REG; 180 case Attribute::MinSize: 181 return bitc::ATTR_KIND_MIN_SIZE; 182 case Attribute::Naked: 183 return bitc::ATTR_KIND_NAKED; 184 case Attribute::Nest: 185 return bitc::ATTR_KIND_NEST; 186 case Attribute::NoAlias: 187 return bitc::ATTR_KIND_NO_ALIAS; 188 case Attribute::NoBuiltin: 189 return bitc::ATTR_KIND_NO_BUILTIN; 190 case Attribute::NoCapture: 191 return bitc::ATTR_KIND_NO_CAPTURE; 192 case Attribute::NoDuplicate: 193 return bitc::ATTR_KIND_NO_DUPLICATE; 194 case Attribute::NoImplicitFloat: 195 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 196 case Attribute::NoInline: 197 return bitc::ATTR_KIND_NO_INLINE; 198 case Attribute::NonLazyBind: 199 return bitc::ATTR_KIND_NON_LAZY_BIND; 200 case Attribute::NonNull: 201 return bitc::ATTR_KIND_NON_NULL; 202 case Attribute::NoRedZone: 203 return bitc::ATTR_KIND_NO_RED_ZONE; 204 case Attribute::NoReturn: 205 return bitc::ATTR_KIND_NO_RETURN; 206 case Attribute::NoUnwind: 207 return bitc::ATTR_KIND_NO_UNWIND; 208 case Attribute::OptimizeForSize: 209 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 210 case Attribute::OptimizeNone: 211 return bitc::ATTR_KIND_OPTIMIZE_NONE; 212 case Attribute::ReadNone: 213 return bitc::ATTR_KIND_READ_NONE; 214 case Attribute::ReadOnly: 215 return bitc::ATTR_KIND_READ_ONLY; 216 case Attribute::Returned: 217 return bitc::ATTR_KIND_RETURNED; 218 case Attribute::ReturnsTwice: 219 return bitc::ATTR_KIND_RETURNS_TWICE; 220 case Attribute::SExt: 221 return bitc::ATTR_KIND_S_EXT; 222 case Attribute::StackAlignment: 223 return bitc::ATTR_KIND_STACK_ALIGNMENT; 224 case Attribute::StackProtect: 225 return bitc::ATTR_KIND_STACK_PROTECT; 226 case Attribute::StackProtectReq: 227 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 228 case Attribute::StackProtectStrong: 229 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 230 case Attribute::StructRet: 231 return bitc::ATTR_KIND_STRUCT_RET; 232 case Attribute::SanitizeAddress: 233 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 234 case Attribute::SanitizeThread: 235 return bitc::ATTR_KIND_SANITIZE_THREAD; 236 case Attribute::SanitizeMemory: 237 return bitc::ATTR_KIND_SANITIZE_MEMORY; 238 case Attribute::UWTable: 239 return bitc::ATTR_KIND_UW_TABLE; 240 case Attribute::ZExt: 241 return bitc::ATTR_KIND_Z_EXT; 242 case Attribute::EndAttrKinds: 243 llvm_unreachable("Can not encode end-attribute kinds marker."); 244 case Attribute::None: 245 llvm_unreachable("Can not encode none-attribute."); 246 } 247 248 llvm_unreachable("Trying to encode unknown attribute"); 249 } 250 251 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 252 BitstreamWriter &Stream) { 253 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 254 if (AttrGrps.empty()) return; 255 256 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 257 258 SmallVector<uint64_t, 64> Record; 259 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 260 AttributeSet AS = AttrGrps[i]; 261 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 262 AttributeSet A = AS.getSlotAttributes(i); 263 264 Record.push_back(VE.getAttributeGroupID(A)); 265 Record.push_back(AS.getSlotIndex(i)); 266 267 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 268 I != E; ++I) { 269 Attribute Attr = *I; 270 if (Attr.isEnumAttribute()) { 271 Record.push_back(0); 272 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 273 } else if (Attr.isAlignAttribute()) { 274 Record.push_back(1); 275 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 276 Record.push_back(Attr.getValueAsInt()); 277 } else { 278 StringRef Kind = Attr.getKindAsString(); 279 StringRef Val = Attr.getValueAsString(); 280 281 Record.push_back(Val.empty() ? 3 : 4); 282 Record.append(Kind.begin(), Kind.end()); 283 Record.push_back(0); 284 if (!Val.empty()) { 285 Record.append(Val.begin(), Val.end()); 286 Record.push_back(0); 287 } 288 } 289 } 290 291 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 292 Record.clear(); 293 } 294 } 295 296 Stream.ExitBlock(); 297 } 298 299 static void WriteAttributeTable(const ValueEnumerator &VE, 300 BitstreamWriter &Stream) { 301 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 302 if (Attrs.empty()) return; 303 304 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 305 306 SmallVector<uint64_t, 64> Record; 307 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 308 const AttributeSet &A = Attrs[i]; 309 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 310 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 311 312 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 313 Record.clear(); 314 } 315 316 Stream.ExitBlock(); 317 } 318 319 /// WriteTypeTable - Write out the type table for a module. 320 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 321 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 322 323 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 324 SmallVector<uint64_t, 64> TypeVals; 325 326 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 327 328 // Abbrev for TYPE_CODE_POINTER. 329 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 330 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 332 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 333 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 334 335 // Abbrev for TYPE_CODE_FUNCTION. 336 Abbv = new BitCodeAbbrev(); 337 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 341 342 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 343 344 // Abbrev for TYPE_CODE_STRUCT_ANON. 345 Abbv = new BitCodeAbbrev(); 346 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 350 351 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 352 353 // Abbrev for TYPE_CODE_STRUCT_NAME. 354 Abbv = new BitCodeAbbrev(); 355 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 358 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 359 360 // Abbrev for TYPE_CODE_STRUCT_NAMED. 361 Abbv = new BitCodeAbbrev(); 362 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 366 367 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 368 369 // Abbrev for TYPE_CODE_ARRAY. 370 Abbv = new BitCodeAbbrev(); 371 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 374 375 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 376 377 // Emit an entry count so the reader can reserve space. 378 TypeVals.push_back(TypeList.size()); 379 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 380 TypeVals.clear(); 381 382 // Loop over all of the types, emitting each in turn. 383 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 384 Type *T = TypeList[i]; 385 int AbbrevToUse = 0; 386 unsigned Code = 0; 387 388 switch (T->getTypeID()) { 389 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 390 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 391 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 392 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 393 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 394 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 395 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 396 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 397 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 398 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 399 case Type::IntegerTyID: 400 // INTEGER: [width] 401 Code = bitc::TYPE_CODE_INTEGER; 402 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 403 break; 404 case Type::PointerTyID: { 405 PointerType *PTy = cast<PointerType>(T); 406 // POINTER: [pointee type, address space] 407 Code = bitc::TYPE_CODE_POINTER; 408 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 409 unsigned AddressSpace = PTy->getAddressSpace(); 410 TypeVals.push_back(AddressSpace); 411 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 412 break; 413 } 414 case Type::FunctionTyID: { 415 FunctionType *FT = cast<FunctionType>(T); 416 // FUNCTION: [isvararg, retty, paramty x N] 417 Code = bitc::TYPE_CODE_FUNCTION; 418 TypeVals.push_back(FT->isVarArg()); 419 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 420 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 421 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 422 AbbrevToUse = FunctionAbbrev; 423 break; 424 } 425 case Type::StructTyID: { 426 StructType *ST = cast<StructType>(T); 427 // STRUCT: [ispacked, eltty x N] 428 TypeVals.push_back(ST->isPacked()); 429 // Output all of the element types. 430 for (StructType::element_iterator I = ST->element_begin(), 431 E = ST->element_end(); I != E; ++I) 432 TypeVals.push_back(VE.getTypeID(*I)); 433 434 if (ST->isLiteral()) { 435 Code = bitc::TYPE_CODE_STRUCT_ANON; 436 AbbrevToUse = StructAnonAbbrev; 437 } else { 438 if (ST->isOpaque()) { 439 Code = bitc::TYPE_CODE_OPAQUE; 440 } else { 441 Code = bitc::TYPE_CODE_STRUCT_NAMED; 442 AbbrevToUse = StructNamedAbbrev; 443 } 444 445 // Emit the name if it is present. 446 if (!ST->getName().empty()) 447 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 448 StructNameAbbrev, Stream); 449 } 450 break; 451 } 452 case Type::ArrayTyID: { 453 ArrayType *AT = cast<ArrayType>(T); 454 // ARRAY: [numelts, eltty] 455 Code = bitc::TYPE_CODE_ARRAY; 456 TypeVals.push_back(AT->getNumElements()); 457 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 458 AbbrevToUse = ArrayAbbrev; 459 break; 460 } 461 case Type::VectorTyID: { 462 VectorType *VT = cast<VectorType>(T); 463 // VECTOR [numelts, eltty] 464 Code = bitc::TYPE_CODE_VECTOR; 465 TypeVals.push_back(VT->getNumElements()); 466 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 467 break; 468 } 469 } 470 471 // Emit the finished record. 472 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 473 TypeVals.clear(); 474 } 475 476 Stream.ExitBlock(); 477 } 478 479 static unsigned getEncodedLinkage(const GlobalValue &GV) { 480 switch (GV.getLinkage()) { 481 case GlobalValue::ExternalLinkage: return 0; 482 case GlobalValue::WeakAnyLinkage: return 1; 483 case GlobalValue::AppendingLinkage: return 2; 484 case GlobalValue::InternalLinkage: return 3; 485 case GlobalValue::LinkOnceAnyLinkage: return 4; 486 case GlobalValue::ExternalWeakLinkage: return 7; 487 case GlobalValue::CommonLinkage: return 8; 488 case GlobalValue::PrivateLinkage: return 9; 489 case GlobalValue::WeakODRLinkage: return 10; 490 case GlobalValue::LinkOnceODRLinkage: return 11; 491 case GlobalValue::AvailableExternallyLinkage: return 12; 492 } 493 llvm_unreachable("Invalid linkage"); 494 } 495 496 static unsigned getEncodedVisibility(const GlobalValue &GV) { 497 switch (GV.getVisibility()) { 498 case GlobalValue::DefaultVisibility: return 0; 499 case GlobalValue::HiddenVisibility: return 1; 500 case GlobalValue::ProtectedVisibility: return 2; 501 } 502 llvm_unreachable("Invalid visibility"); 503 } 504 505 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 506 switch (GV.getDLLStorageClass()) { 507 case GlobalValue::DefaultStorageClass: return 0; 508 case GlobalValue::DLLImportStorageClass: return 1; 509 case GlobalValue::DLLExportStorageClass: return 2; 510 } 511 llvm_unreachable("Invalid DLL storage class"); 512 } 513 514 static unsigned getEncodedThreadLocalMode(const GlobalVariable &GV) { 515 switch (GV.getThreadLocalMode()) { 516 case GlobalVariable::NotThreadLocal: return 0; 517 case GlobalVariable::GeneralDynamicTLSModel: return 1; 518 case GlobalVariable::LocalDynamicTLSModel: return 2; 519 case GlobalVariable::InitialExecTLSModel: return 3; 520 case GlobalVariable::LocalExecTLSModel: return 4; 521 } 522 llvm_unreachable("Invalid TLS model"); 523 } 524 525 // Emit top-level description of module, including target triple, inline asm, 526 // descriptors for global variables, and function prototype info. 527 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 528 BitstreamWriter &Stream) { 529 // Emit various pieces of data attached to a module. 530 if (!M->getTargetTriple().empty()) 531 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 532 0/*TODO*/, Stream); 533 const std::string &DL = M->getDataLayoutStr(); 534 if (!DL.empty()) 535 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 536 if (!M->getModuleInlineAsm().empty()) 537 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 538 0/*TODO*/, Stream); 539 540 // Emit information about sections and GC, computing how many there are. Also 541 // compute the maximum alignment value. 542 std::map<std::string, unsigned> SectionMap; 543 std::map<std::string, unsigned> GCMap; 544 unsigned MaxAlignment = 0; 545 unsigned MaxGlobalType = 0; 546 for (const GlobalValue &GV : M->globals()) { 547 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 548 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType())); 549 if (GV.hasSection()) { 550 // Give section names unique ID's. 551 unsigned &Entry = SectionMap[GV.getSection()]; 552 if (!Entry) { 553 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 554 0/*TODO*/, Stream); 555 Entry = SectionMap.size(); 556 } 557 } 558 } 559 for (const Function &F : *M) { 560 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 561 if (F.hasSection()) { 562 // Give section names unique ID's. 563 unsigned &Entry = SectionMap[F.getSection()]; 564 if (!Entry) { 565 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 566 0/*TODO*/, Stream); 567 Entry = SectionMap.size(); 568 } 569 } 570 if (F.hasGC()) { 571 // Same for GC names. 572 unsigned &Entry = GCMap[F.getGC()]; 573 if (!Entry) { 574 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 575 0/*TODO*/, Stream); 576 Entry = GCMap.size(); 577 } 578 } 579 } 580 581 // Emit abbrev for globals, now that we know # sections and max alignment. 582 unsigned SimpleGVarAbbrev = 0; 583 if (!M->global_empty()) { 584 // Add an abbrev for common globals with no visibility or thread localness. 585 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 586 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 587 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 588 Log2_32_Ceil(MaxGlobalType+1))); 589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 592 if (MaxAlignment == 0) // Alignment. 593 Abbv->Add(BitCodeAbbrevOp(0)); 594 else { 595 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 597 Log2_32_Ceil(MaxEncAlignment+1))); 598 } 599 if (SectionMap.empty()) // Section. 600 Abbv->Add(BitCodeAbbrevOp(0)); 601 else 602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 603 Log2_32_Ceil(SectionMap.size()+1))); 604 // Don't bother emitting vis + thread local. 605 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 606 } 607 608 // Emit the global variable information. 609 SmallVector<unsigned, 64> Vals; 610 for (const GlobalVariable &GV : M->globals()) { 611 unsigned AbbrevToUse = 0; 612 613 // GLOBALVAR: [type, isconst, initid, 614 // linkage, alignment, section, visibility, threadlocal, 615 // unnamed_addr, externally_initialized, dllstorageclass] 616 Vals.push_back(VE.getTypeID(GV.getType())); 617 Vals.push_back(GV.isConstant()); 618 Vals.push_back(GV.isDeclaration() ? 0 : 619 (VE.getValueID(GV.getInitializer()) + 1)); 620 Vals.push_back(getEncodedLinkage(GV)); 621 Vals.push_back(Log2_32(GV.getAlignment())+1); 622 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 623 if (GV.isThreadLocal() || 624 GV.getVisibility() != GlobalValue::DefaultVisibility || 625 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 626 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass) { 627 Vals.push_back(getEncodedVisibility(GV)); 628 Vals.push_back(getEncodedThreadLocalMode(GV)); 629 Vals.push_back(GV.hasUnnamedAddr()); 630 Vals.push_back(GV.isExternallyInitialized()); 631 Vals.push_back(getEncodedDLLStorageClass(GV)); 632 } else { 633 AbbrevToUse = SimpleGVarAbbrev; 634 } 635 636 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 637 Vals.clear(); 638 } 639 640 // Emit the function proto information. 641 for (const Function &F : *M) { 642 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 643 // section, visibility, gc, unnamed_addr, prefix] 644 Vals.push_back(VE.getTypeID(F.getType())); 645 Vals.push_back(F.getCallingConv()); 646 Vals.push_back(F.isDeclaration()); 647 Vals.push_back(getEncodedLinkage(F)); 648 Vals.push_back(VE.getAttributeID(F.getAttributes())); 649 Vals.push_back(Log2_32(F.getAlignment())+1); 650 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 651 Vals.push_back(getEncodedVisibility(F)); 652 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 653 Vals.push_back(F.hasUnnamedAddr()); 654 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 655 : 0); 656 Vals.push_back(getEncodedDLLStorageClass(F)); 657 658 unsigned AbbrevToUse = 0; 659 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 660 Vals.clear(); 661 } 662 663 // Emit the alias information. 664 for (const GlobalAlias &A : M->aliases()) { 665 // ALIAS: [alias type, aliasee val#, linkage, visibility] 666 Vals.push_back(VE.getTypeID(A.getType())); 667 Vals.push_back(VE.getValueID(A.getAliasee())); 668 Vals.push_back(getEncodedLinkage(A)); 669 Vals.push_back(getEncodedVisibility(A)); 670 Vals.push_back(getEncodedDLLStorageClass(A)); 671 unsigned AbbrevToUse = 0; 672 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 673 Vals.clear(); 674 } 675 } 676 677 static uint64_t GetOptimizationFlags(const Value *V) { 678 uint64_t Flags = 0; 679 680 if (const OverflowingBinaryOperator *OBO = 681 dyn_cast<OverflowingBinaryOperator>(V)) { 682 if (OBO->hasNoSignedWrap()) 683 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 684 if (OBO->hasNoUnsignedWrap()) 685 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 686 } else if (const PossiblyExactOperator *PEO = 687 dyn_cast<PossiblyExactOperator>(V)) { 688 if (PEO->isExact()) 689 Flags |= 1 << bitc::PEO_EXACT; 690 } else if (const FPMathOperator *FPMO = 691 dyn_cast<const FPMathOperator>(V)) { 692 if (FPMO->hasUnsafeAlgebra()) 693 Flags |= FastMathFlags::UnsafeAlgebra; 694 if (FPMO->hasNoNaNs()) 695 Flags |= FastMathFlags::NoNaNs; 696 if (FPMO->hasNoInfs()) 697 Flags |= FastMathFlags::NoInfs; 698 if (FPMO->hasNoSignedZeros()) 699 Flags |= FastMathFlags::NoSignedZeros; 700 if (FPMO->hasAllowReciprocal()) 701 Flags |= FastMathFlags::AllowReciprocal; 702 } 703 704 return Flags; 705 } 706 707 static void WriteMDNode(const MDNode *N, 708 const ValueEnumerator &VE, 709 BitstreamWriter &Stream, 710 SmallVectorImpl<uint64_t> &Record) { 711 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 712 if (N->getOperand(i)) { 713 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 714 Record.push_back(VE.getValueID(N->getOperand(i))); 715 } else { 716 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 717 Record.push_back(0); 718 } 719 } 720 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE : 721 bitc::METADATA_NODE; 722 Stream.EmitRecord(MDCode, Record, 0); 723 Record.clear(); 724 } 725 726 static void WriteModuleMetadata(const Module *M, 727 const ValueEnumerator &VE, 728 BitstreamWriter &Stream) { 729 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 730 bool StartedMetadataBlock = false; 731 unsigned MDSAbbrev = 0; 732 SmallVector<uint64_t, 64> Record; 733 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 734 735 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 736 if (!N->isFunctionLocal() || !N->getFunction()) { 737 if (!StartedMetadataBlock) { 738 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 739 StartedMetadataBlock = true; 740 } 741 WriteMDNode(N, VE, Stream, Record); 742 } 743 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 744 if (!StartedMetadataBlock) { 745 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 746 747 // Abbrev for METADATA_STRING. 748 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 749 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 751 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 752 MDSAbbrev = Stream.EmitAbbrev(Abbv); 753 StartedMetadataBlock = true; 754 } 755 756 // Code: [strchar x N] 757 Record.append(MDS->begin(), MDS->end()); 758 759 // Emit the finished record. 760 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 761 Record.clear(); 762 } 763 } 764 765 // Write named metadata. 766 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 767 E = M->named_metadata_end(); I != E; ++I) { 768 const NamedMDNode *NMD = I; 769 if (!StartedMetadataBlock) { 770 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 771 StartedMetadataBlock = true; 772 } 773 774 // Write name. 775 StringRef Str = NMD->getName(); 776 for (unsigned i = 0, e = Str.size(); i != e; ++i) 777 Record.push_back(Str[i]); 778 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 779 Record.clear(); 780 781 // Write named metadata operands. 782 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 783 Record.push_back(VE.getValueID(NMD->getOperand(i))); 784 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 785 Record.clear(); 786 } 787 788 if (StartedMetadataBlock) 789 Stream.ExitBlock(); 790 } 791 792 static void WriteFunctionLocalMetadata(const Function &F, 793 const ValueEnumerator &VE, 794 BitstreamWriter &Stream) { 795 bool StartedMetadataBlock = false; 796 SmallVector<uint64_t, 64> Record; 797 const SmallVectorImpl<const MDNode *> &Vals = VE.getFunctionLocalMDValues(); 798 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 799 if (const MDNode *N = Vals[i]) 800 if (N->isFunctionLocal() && N->getFunction() == &F) { 801 if (!StartedMetadataBlock) { 802 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 803 StartedMetadataBlock = true; 804 } 805 WriteMDNode(N, VE, Stream, Record); 806 } 807 808 if (StartedMetadataBlock) 809 Stream.ExitBlock(); 810 } 811 812 static void WriteMetadataAttachment(const Function &F, 813 const ValueEnumerator &VE, 814 BitstreamWriter &Stream) { 815 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 816 817 SmallVector<uint64_t, 64> Record; 818 819 // Write metadata attachments 820 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 821 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 822 823 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 824 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 825 I != E; ++I) { 826 MDs.clear(); 827 I->getAllMetadataOtherThanDebugLoc(MDs); 828 829 // If no metadata, ignore instruction. 830 if (MDs.empty()) continue; 831 832 Record.push_back(VE.getInstructionID(I)); 833 834 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 835 Record.push_back(MDs[i].first); 836 Record.push_back(VE.getValueID(MDs[i].second)); 837 } 838 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 839 Record.clear(); 840 } 841 842 Stream.ExitBlock(); 843 } 844 845 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 846 SmallVector<uint64_t, 64> Record; 847 848 // Write metadata kinds 849 // METADATA_KIND - [n x [id, name]] 850 SmallVector<StringRef, 8> Names; 851 M->getMDKindNames(Names); 852 853 if (Names.empty()) return; 854 855 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 856 857 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 858 Record.push_back(MDKindID); 859 StringRef KName = Names[MDKindID]; 860 Record.append(KName.begin(), KName.end()); 861 862 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 863 Record.clear(); 864 } 865 866 Stream.ExitBlock(); 867 } 868 869 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 870 if ((int64_t)V >= 0) 871 Vals.push_back(V << 1); 872 else 873 Vals.push_back((-V << 1) | 1); 874 } 875 876 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 877 const ValueEnumerator &VE, 878 BitstreamWriter &Stream, bool isGlobal) { 879 if (FirstVal == LastVal) return; 880 881 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 882 883 unsigned AggregateAbbrev = 0; 884 unsigned String8Abbrev = 0; 885 unsigned CString7Abbrev = 0; 886 unsigned CString6Abbrev = 0; 887 // If this is a constant pool for the module, emit module-specific abbrevs. 888 if (isGlobal) { 889 // Abbrev for CST_CODE_AGGREGATE. 890 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 891 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 893 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 894 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 895 896 // Abbrev for CST_CODE_STRING. 897 Abbv = new BitCodeAbbrev(); 898 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 899 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 901 String8Abbrev = Stream.EmitAbbrev(Abbv); 902 // Abbrev for CST_CODE_CSTRING. 903 Abbv = new BitCodeAbbrev(); 904 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 905 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 906 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 907 CString7Abbrev = Stream.EmitAbbrev(Abbv); 908 // Abbrev for CST_CODE_CSTRING. 909 Abbv = new BitCodeAbbrev(); 910 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 911 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 912 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 913 CString6Abbrev = Stream.EmitAbbrev(Abbv); 914 } 915 916 SmallVector<uint64_t, 64> Record; 917 918 const ValueEnumerator::ValueList &Vals = VE.getValues(); 919 Type *LastTy = nullptr; 920 for (unsigned i = FirstVal; i != LastVal; ++i) { 921 const Value *V = Vals[i].first; 922 // If we need to switch types, do so now. 923 if (V->getType() != LastTy) { 924 LastTy = V->getType(); 925 Record.push_back(VE.getTypeID(LastTy)); 926 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 927 CONSTANTS_SETTYPE_ABBREV); 928 Record.clear(); 929 } 930 931 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 932 Record.push_back(unsigned(IA->hasSideEffects()) | 933 unsigned(IA->isAlignStack()) << 1 | 934 unsigned(IA->getDialect()&1) << 2); 935 936 // Add the asm string. 937 const std::string &AsmStr = IA->getAsmString(); 938 Record.push_back(AsmStr.size()); 939 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 940 Record.push_back(AsmStr[i]); 941 942 // Add the constraint string. 943 const std::string &ConstraintStr = IA->getConstraintString(); 944 Record.push_back(ConstraintStr.size()); 945 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 946 Record.push_back(ConstraintStr[i]); 947 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 948 Record.clear(); 949 continue; 950 } 951 const Constant *C = cast<Constant>(V); 952 unsigned Code = -1U; 953 unsigned AbbrevToUse = 0; 954 if (C->isNullValue()) { 955 Code = bitc::CST_CODE_NULL; 956 } else if (isa<UndefValue>(C)) { 957 Code = bitc::CST_CODE_UNDEF; 958 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 959 if (IV->getBitWidth() <= 64) { 960 uint64_t V = IV->getSExtValue(); 961 emitSignedInt64(Record, V); 962 Code = bitc::CST_CODE_INTEGER; 963 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 964 } else { // Wide integers, > 64 bits in size. 965 // We have an arbitrary precision integer value to write whose 966 // bit width is > 64. However, in canonical unsigned integer 967 // format it is likely that the high bits are going to be zero. 968 // So, we only write the number of active words. 969 unsigned NWords = IV->getValue().getActiveWords(); 970 const uint64_t *RawWords = IV->getValue().getRawData(); 971 for (unsigned i = 0; i != NWords; ++i) { 972 emitSignedInt64(Record, RawWords[i]); 973 } 974 Code = bitc::CST_CODE_WIDE_INTEGER; 975 } 976 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 977 Code = bitc::CST_CODE_FLOAT; 978 Type *Ty = CFP->getType(); 979 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 980 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 981 } else if (Ty->isX86_FP80Ty()) { 982 // api needed to prevent premature destruction 983 // bits are not in the same order as a normal i80 APInt, compensate. 984 APInt api = CFP->getValueAPF().bitcastToAPInt(); 985 const uint64_t *p = api.getRawData(); 986 Record.push_back((p[1] << 48) | (p[0] >> 16)); 987 Record.push_back(p[0] & 0xffffLL); 988 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 989 APInt api = CFP->getValueAPF().bitcastToAPInt(); 990 const uint64_t *p = api.getRawData(); 991 Record.push_back(p[0]); 992 Record.push_back(p[1]); 993 } else { 994 assert (0 && "Unknown FP type!"); 995 } 996 } else if (isa<ConstantDataSequential>(C) && 997 cast<ConstantDataSequential>(C)->isString()) { 998 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 999 // Emit constant strings specially. 1000 unsigned NumElts = Str->getNumElements(); 1001 // If this is a null-terminated string, use the denser CSTRING encoding. 1002 if (Str->isCString()) { 1003 Code = bitc::CST_CODE_CSTRING; 1004 --NumElts; // Don't encode the null, which isn't allowed by char6. 1005 } else { 1006 Code = bitc::CST_CODE_STRING; 1007 AbbrevToUse = String8Abbrev; 1008 } 1009 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1010 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1011 for (unsigned i = 0; i != NumElts; ++i) { 1012 unsigned char V = Str->getElementAsInteger(i); 1013 Record.push_back(V); 1014 isCStr7 &= (V & 128) == 0; 1015 if (isCStrChar6) 1016 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1017 } 1018 1019 if (isCStrChar6) 1020 AbbrevToUse = CString6Abbrev; 1021 else if (isCStr7) 1022 AbbrevToUse = CString7Abbrev; 1023 } else if (const ConstantDataSequential *CDS = 1024 dyn_cast<ConstantDataSequential>(C)) { 1025 Code = bitc::CST_CODE_DATA; 1026 Type *EltTy = CDS->getType()->getElementType(); 1027 if (isa<IntegerType>(EltTy)) { 1028 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1029 Record.push_back(CDS->getElementAsInteger(i)); 1030 } else if (EltTy->isFloatTy()) { 1031 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1032 union { float F; uint32_t I; }; 1033 F = CDS->getElementAsFloat(i); 1034 Record.push_back(I); 1035 } 1036 } else { 1037 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1038 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1039 union { double F; uint64_t I; }; 1040 F = CDS->getElementAsDouble(i); 1041 Record.push_back(I); 1042 } 1043 } 1044 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1045 isa<ConstantVector>(C)) { 1046 Code = bitc::CST_CODE_AGGREGATE; 1047 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1048 Record.push_back(VE.getValueID(C->getOperand(i))); 1049 AbbrevToUse = AggregateAbbrev; 1050 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1051 switch (CE->getOpcode()) { 1052 default: 1053 if (Instruction::isCast(CE->getOpcode())) { 1054 Code = bitc::CST_CODE_CE_CAST; 1055 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1056 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1057 Record.push_back(VE.getValueID(C->getOperand(0))); 1058 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1059 } else { 1060 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1061 Code = bitc::CST_CODE_CE_BINOP; 1062 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1063 Record.push_back(VE.getValueID(C->getOperand(0))); 1064 Record.push_back(VE.getValueID(C->getOperand(1))); 1065 uint64_t Flags = GetOptimizationFlags(CE); 1066 if (Flags != 0) 1067 Record.push_back(Flags); 1068 } 1069 break; 1070 case Instruction::GetElementPtr: 1071 Code = bitc::CST_CODE_CE_GEP; 1072 if (cast<GEPOperator>(C)->isInBounds()) 1073 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1074 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1075 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1076 Record.push_back(VE.getValueID(C->getOperand(i))); 1077 } 1078 break; 1079 case Instruction::Select: 1080 Code = bitc::CST_CODE_CE_SELECT; 1081 Record.push_back(VE.getValueID(C->getOperand(0))); 1082 Record.push_back(VE.getValueID(C->getOperand(1))); 1083 Record.push_back(VE.getValueID(C->getOperand(2))); 1084 break; 1085 case Instruction::ExtractElement: 1086 Code = bitc::CST_CODE_CE_EXTRACTELT; 1087 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1088 Record.push_back(VE.getValueID(C->getOperand(0))); 1089 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1090 Record.push_back(VE.getValueID(C->getOperand(1))); 1091 break; 1092 case Instruction::InsertElement: 1093 Code = bitc::CST_CODE_CE_INSERTELT; 1094 Record.push_back(VE.getValueID(C->getOperand(0))); 1095 Record.push_back(VE.getValueID(C->getOperand(1))); 1096 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1097 Record.push_back(VE.getValueID(C->getOperand(2))); 1098 break; 1099 case Instruction::ShuffleVector: 1100 // If the return type and argument types are the same, this is a 1101 // standard shufflevector instruction. If the types are different, 1102 // then the shuffle is widening or truncating the input vectors, and 1103 // the argument type must also be encoded. 1104 if (C->getType() == C->getOperand(0)->getType()) { 1105 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1106 } else { 1107 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1108 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1109 } 1110 Record.push_back(VE.getValueID(C->getOperand(0))); 1111 Record.push_back(VE.getValueID(C->getOperand(1))); 1112 Record.push_back(VE.getValueID(C->getOperand(2))); 1113 break; 1114 case Instruction::ICmp: 1115 case Instruction::FCmp: 1116 Code = bitc::CST_CODE_CE_CMP; 1117 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1118 Record.push_back(VE.getValueID(C->getOperand(0))); 1119 Record.push_back(VE.getValueID(C->getOperand(1))); 1120 Record.push_back(CE->getPredicate()); 1121 break; 1122 } 1123 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1124 Code = bitc::CST_CODE_BLOCKADDRESS; 1125 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1126 Record.push_back(VE.getValueID(BA->getFunction())); 1127 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1128 } else { 1129 #ifndef NDEBUG 1130 C->dump(); 1131 #endif 1132 llvm_unreachable("Unknown constant!"); 1133 } 1134 Stream.EmitRecord(Code, Record, AbbrevToUse); 1135 Record.clear(); 1136 } 1137 1138 Stream.ExitBlock(); 1139 } 1140 1141 static void WriteModuleConstants(const ValueEnumerator &VE, 1142 BitstreamWriter &Stream) { 1143 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1144 1145 // Find the first constant to emit, which is the first non-globalvalue value. 1146 // We know globalvalues have been emitted by WriteModuleInfo. 1147 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1148 if (!isa<GlobalValue>(Vals[i].first)) { 1149 WriteConstants(i, Vals.size(), VE, Stream, true); 1150 return; 1151 } 1152 } 1153 } 1154 1155 /// PushValueAndType - The file has to encode both the value and type id for 1156 /// many values, because we need to know what type to create for forward 1157 /// references. However, most operands are not forward references, so this type 1158 /// field is not needed. 1159 /// 1160 /// This function adds V's value ID to Vals. If the value ID is higher than the 1161 /// instruction ID, then it is a forward reference, and it also includes the 1162 /// type ID. The value ID that is written is encoded relative to the InstID. 1163 static bool PushValueAndType(const Value *V, unsigned InstID, 1164 SmallVectorImpl<unsigned> &Vals, 1165 ValueEnumerator &VE) { 1166 unsigned ValID = VE.getValueID(V); 1167 // Make encoding relative to the InstID. 1168 Vals.push_back(InstID - ValID); 1169 if (ValID >= InstID) { 1170 Vals.push_back(VE.getTypeID(V->getType())); 1171 return true; 1172 } 1173 return false; 1174 } 1175 1176 /// pushValue - Like PushValueAndType, but where the type of the value is 1177 /// omitted (perhaps it was already encoded in an earlier operand). 1178 static void pushValue(const Value *V, unsigned InstID, 1179 SmallVectorImpl<unsigned> &Vals, 1180 ValueEnumerator &VE) { 1181 unsigned ValID = VE.getValueID(V); 1182 Vals.push_back(InstID - ValID); 1183 } 1184 1185 static void pushValueSigned(const Value *V, unsigned InstID, 1186 SmallVectorImpl<uint64_t> &Vals, 1187 ValueEnumerator &VE) { 1188 unsigned ValID = VE.getValueID(V); 1189 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1190 emitSignedInt64(Vals, diff); 1191 } 1192 1193 /// WriteInstruction - Emit an instruction to the specified stream. 1194 static void WriteInstruction(const Instruction &I, unsigned InstID, 1195 ValueEnumerator &VE, BitstreamWriter &Stream, 1196 SmallVectorImpl<unsigned> &Vals) { 1197 unsigned Code = 0; 1198 unsigned AbbrevToUse = 0; 1199 VE.setInstructionID(&I); 1200 switch (I.getOpcode()) { 1201 default: 1202 if (Instruction::isCast(I.getOpcode())) { 1203 Code = bitc::FUNC_CODE_INST_CAST; 1204 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1205 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1206 Vals.push_back(VE.getTypeID(I.getType())); 1207 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1208 } else { 1209 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1210 Code = bitc::FUNC_CODE_INST_BINOP; 1211 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1212 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1213 pushValue(I.getOperand(1), InstID, Vals, VE); 1214 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1215 uint64_t Flags = GetOptimizationFlags(&I); 1216 if (Flags != 0) { 1217 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1218 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1219 Vals.push_back(Flags); 1220 } 1221 } 1222 break; 1223 1224 case Instruction::GetElementPtr: 1225 Code = bitc::FUNC_CODE_INST_GEP; 1226 if (cast<GEPOperator>(&I)->isInBounds()) 1227 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1228 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1229 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1230 break; 1231 case Instruction::ExtractValue: { 1232 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1233 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1234 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1235 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1236 Vals.push_back(*i); 1237 break; 1238 } 1239 case Instruction::InsertValue: { 1240 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1241 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1242 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1243 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1244 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1245 Vals.push_back(*i); 1246 break; 1247 } 1248 case Instruction::Select: 1249 Code = bitc::FUNC_CODE_INST_VSELECT; 1250 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1251 pushValue(I.getOperand(2), InstID, Vals, VE); 1252 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1253 break; 1254 case Instruction::ExtractElement: 1255 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1256 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1257 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1258 break; 1259 case Instruction::InsertElement: 1260 Code = bitc::FUNC_CODE_INST_INSERTELT; 1261 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1262 pushValue(I.getOperand(1), InstID, Vals, VE); 1263 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1264 break; 1265 case Instruction::ShuffleVector: 1266 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1267 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1268 pushValue(I.getOperand(1), InstID, Vals, VE); 1269 pushValue(I.getOperand(2), InstID, Vals, VE); 1270 break; 1271 case Instruction::ICmp: 1272 case Instruction::FCmp: 1273 // compare returning Int1Ty or vector of Int1Ty 1274 Code = bitc::FUNC_CODE_INST_CMP2; 1275 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1276 pushValue(I.getOperand(1), InstID, Vals, VE); 1277 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1278 break; 1279 1280 case Instruction::Ret: 1281 { 1282 Code = bitc::FUNC_CODE_INST_RET; 1283 unsigned NumOperands = I.getNumOperands(); 1284 if (NumOperands == 0) 1285 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1286 else if (NumOperands == 1) { 1287 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1288 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1289 } else { 1290 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1291 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1292 } 1293 } 1294 break; 1295 case Instruction::Br: 1296 { 1297 Code = bitc::FUNC_CODE_INST_BR; 1298 const BranchInst &II = cast<BranchInst>(I); 1299 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1300 if (II.isConditional()) { 1301 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1302 pushValue(II.getCondition(), InstID, Vals, VE); 1303 } 1304 } 1305 break; 1306 case Instruction::Switch: 1307 { 1308 Code = bitc::FUNC_CODE_INST_SWITCH; 1309 const SwitchInst &SI = cast<SwitchInst>(I); 1310 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1311 pushValue(SI.getCondition(), InstID, Vals, VE); 1312 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1313 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1314 i != e; ++i) { 1315 Vals.push_back(VE.getValueID(i.getCaseValue())); 1316 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1317 } 1318 } 1319 break; 1320 case Instruction::IndirectBr: 1321 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1322 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1323 // Encode the address operand as relative, but not the basic blocks. 1324 pushValue(I.getOperand(0), InstID, Vals, VE); 1325 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1326 Vals.push_back(VE.getValueID(I.getOperand(i))); 1327 break; 1328 1329 case Instruction::Invoke: { 1330 const InvokeInst *II = cast<InvokeInst>(&I); 1331 const Value *Callee(II->getCalledValue()); 1332 PointerType *PTy = cast<PointerType>(Callee->getType()); 1333 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1334 Code = bitc::FUNC_CODE_INST_INVOKE; 1335 1336 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1337 Vals.push_back(II->getCallingConv()); 1338 Vals.push_back(VE.getValueID(II->getNormalDest())); 1339 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1340 PushValueAndType(Callee, InstID, Vals, VE); 1341 1342 // Emit value #'s for the fixed parameters. 1343 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1344 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1345 1346 // Emit type/value pairs for varargs params. 1347 if (FTy->isVarArg()) { 1348 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1349 i != e; ++i) 1350 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1351 } 1352 break; 1353 } 1354 case Instruction::Resume: 1355 Code = bitc::FUNC_CODE_INST_RESUME; 1356 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1357 break; 1358 case Instruction::Unreachable: 1359 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1360 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1361 break; 1362 1363 case Instruction::PHI: { 1364 const PHINode &PN = cast<PHINode>(I); 1365 Code = bitc::FUNC_CODE_INST_PHI; 1366 // With the newer instruction encoding, forward references could give 1367 // negative valued IDs. This is most common for PHIs, so we use 1368 // signed VBRs. 1369 SmallVector<uint64_t, 128> Vals64; 1370 Vals64.push_back(VE.getTypeID(PN.getType())); 1371 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1372 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1373 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1374 } 1375 // Emit a Vals64 vector and exit. 1376 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1377 Vals64.clear(); 1378 return; 1379 } 1380 1381 case Instruction::LandingPad: { 1382 const LandingPadInst &LP = cast<LandingPadInst>(I); 1383 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1384 Vals.push_back(VE.getTypeID(LP.getType())); 1385 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1386 Vals.push_back(LP.isCleanup()); 1387 Vals.push_back(LP.getNumClauses()); 1388 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1389 if (LP.isCatch(I)) 1390 Vals.push_back(LandingPadInst::Catch); 1391 else 1392 Vals.push_back(LandingPadInst::Filter); 1393 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1394 } 1395 break; 1396 } 1397 1398 case Instruction::Alloca: 1399 Code = bitc::FUNC_CODE_INST_ALLOCA; 1400 Vals.push_back(VE.getTypeID(I.getType())); 1401 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1402 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1403 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1404 break; 1405 1406 case Instruction::Load: 1407 if (cast<LoadInst>(I).isAtomic()) { 1408 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1409 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1410 } else { 1411 Code = bitc::FUNC_CODE_INST_LOAD; 1412 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1413 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1414 } 1415 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1416 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1417 if (cast<LoadInst>(I).isAtomic()) { 1418 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1419 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1420 } 1421 break; 1422 case Instruction::Store: 1423 if (cast<StoreInst>(I).isAtomic()) 1424 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1425 else 1426 Code = bitc::FUNC_CODE_INST_STORE; 1427 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1428 pushValue(I.getOperand(0), InstID, Vals, VE); // val. 1429 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1430 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1431 if (cast<StoreInst>(I).isAtomic()) { 1432 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1433 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1434 } 1435 break; 1436 case Instruction::AtomicCmpXchg: 1437 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1438 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1439 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1440 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1441 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1442 Vals.push_back(GetEncodedOrdering( 1443 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1444 Vals.push_back(GetEncodedSynchScope( 1445 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1446 Vals.push_back(GetEncodedOrdering( 1447 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1448 break; 1449 case Instruction::AtomicRMW: 1450 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1451 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1452 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1453 Vals.push_back(GetEncodedRMWOperation( 1454 cast<AtomicRMWInst>(I).getOperation())); 1455 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1456 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1457 Vals.push_back(GetEncodedSynchScope( 1458 cast<AtomicRMWInst>(I).getSynchScope())); 1459 break; 1460 case Instruction::Fence: 1461 Code = bitc::FUNC_CODE_INST_FENCE; 1462 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1463 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1464 break; 1465 case Instruction::Call: { 1466 const CallInst &CI = cast<CallInst>(I); 1467 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1468 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1469 1470 Code = bitc::FUNC_CODE_INST_CALL; 1471 1472 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1473 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1474 unsigned(CI.isMustTailCall()) << 14); 1475 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1476 1477 // Emit value #'s for the fixed parameters. 1478 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1479 // Check for labels (can happen with asm labels). 1480 if (FTy->getParamType(i)->isLabelTy()) 1481 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1482 else 1483 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1484 } 1485 1486 // Emit type/value pairs for varargs params. 1487 if (FTy->isVarArg()) { 1488 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1489 i != e; ++i) 1490 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1491 } 1492 break; 1493 } 1494 case Instruction::VAArg: 1495 Code = bitc::FUNC_CODE_INST_VAARG; 1496 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1497 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1498 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1499 break; 1500 } 1501 1502 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1503 Vals.clear(); 1504 } 1505 1506 // Emit names for globals/functions etc. 1507 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1508 const ValueEnumerator &VE, 1509 BitstreamWriter &Stream) { 1510 if (VST.empty()) return; 1511 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1512 1513 // FIXME: Set up the abbrev, we know how many values there are! 1514 // FIXME: We know if the type names can use 7-bit ascii. 1515 SmallVector<unsigned, 64> NameVals; 1516 1517 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1518 SI != SE; ++SI) { 1519 1520 const ValueName &Name = *SI; 1521 1522 // Figure out the encoding to use for the name. 1523 bool is7Bit = true; 1524 bool isChar6 = true; 1525 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1526 C != E; ++C) { 1527 if (isChar6) 1528 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1529 if ((unsigned char)*C & 128) { 1530 is7Bit = false; 1531 break; // don't bother scanning the rest. 1532 } 1533 } 1534 1535 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1536 1537 // VST_ENTRY: [valueid, namechar x N] 1538 // VST_BBENTRY: [bbid, namechar x N] 1539 unsigned Code; 1540 if (isa<BasicBlock>(SI->getValue())) { 1541 Code = bitc::VST_CODE_BBENTRY; 1542 if (isChar6) 1543 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1544 } else { 1545 Code = bitc::VST_CODE_ENTRY; 1546 if (isChar6) 1547 AbbrevToUse = VST_ENTRY_6_ABBREV; 1548 else if (is7Bit) 1549 AbbrevToUse = VST_ENTRY_7_ABBREV; 1550 } 1551 1552 NameVals.push_back(VE.getValueID(SI->getValue())); 1553 for (const char *P = Name.getKeyData(), 1554 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1555 NameVals.push_back((unsigned char)*P); 1556 1557 // Emit the finished record. 1558 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1559 NameVals.clear(); 1560 } 1561 Stream.ExitBlock(); 1562 } 1563 1564 /// WriteFunction - Emit a function body to the module stream. 1565 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1566 BitstreamWriter &Stream) { 1567 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1568 VE.incorporateFunction(F); 1569 1570 SmallVector<unsigned, 64> Vals; 1571 1572 // Emit the number of basic blocks, so the reader can create them ahead of 1573 // time. 1574 Vals.push_back(VE.getBasicBlocks().size()); 1575 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1576 Vals.clear(); 1577 1578 // If there are function-local constants, emit them now. 1579 unsigned CstStart, CstEnd; 1580 VE.getFunctionConstantRange(CstStart, CstEnd); 1581 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1582 1583 // If there is function-local metadata, emit it now. 1584 WriteFunctionLocalMetadata(F, VE, Stream); 1585 1586 // Keep a running idea of what the instruction ID is. 1587 unsigned InstID = CstEnd; 1588 1589 bool NeedsMetadataAttachment = false; 1590 1591 DebugLoc LastDL; 1592 1593 // Finally, emit all the instructions, in order. 1594 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1595 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1596 I != E; ++I) { 1597 WriteInstruction(*I, InstID, VE, Stream, Vals); 1598 1599 if (!I->getType()->isVoidTy()) 1600 ++InstID; 1601 1602 // If the instruction has metadata, write a metadata attachment later. 1603 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1604 1605 // If the instruction has a debug location, emit it. 1606 DebugLoc DL = I->getDebugLoc(); 1607 if (DL.isUnknown()) { 1608 // nothing todo. 1609 } else if (DL == LastDL) { 1610 // Just repeat the same debug loc as last time. 1611 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1612 } else { 1613 MDNode *Scope, *IA; 1614 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1615 1616 Vals.push_back(DL.getLine()); 1617 Vals.push_back(DL.getCol()); 1618 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); 1619 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); 1620 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1621 Vals.clear(); 1622 1623 LastDL = DL; 1624 } 1625 } 1626 1627 // Emit names for all the instructions etc. 1628 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1629 1630 if (NeedsMetadataAttachment) 1631 WriteMetadataAttachment(F, VE, Stream); 1632 VE.purgeFunction(); 1633 Stream.ExitBlock(); 1634 } 1635 1636 // Emit blockinfo, which defines the standard abbreviations etc. 1637 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1638 // We only want to emit block info records for blocks that have multiple 1639 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 1640 // Other blocks can define their abbrevs inline. 1641 Stream.EnterBlockInfoBlock(2); 1642 1643 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1644 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1645 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1646 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1648 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1649 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1650 Abbv) != VST_ENTRY_8_ABBREV) 1651 llvm_unreachable("Unexpected abbrev ordering!"); 1652 } 1653 1654 { // 7-bit fixed width VST_ENTRY strings. 1655 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1656 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1657 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1658 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1659 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1660 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1661 Abbv) != VST_ENTRY_7_ABBREV) 1662 llvm_unreachable("Unexpected abbrev ordering!"); 1663 } 1664 { // 6-bit char6 VST_ENTRY strings. 1665 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1666 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1667 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1668 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1669 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1670 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1671 Abbv) != VST_ENTRY_6_ABBREV) 1672 llvm_unreachable("Unexpected abbrev ordering!"); 1673 } 1674 { // 6-bit char6 VST_BBENTRY strings. 1675 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1676 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1677 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1678 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1679 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1680 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1681 Abbv) != VST_BBENTRY_6_ABBREV) 1682 llvm_unreachable("Unexpected abbrev ordering!"); 1683 } 1684 1685 1686 1687 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1688 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1689 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1690 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1691 Log2_32_Ceil(VE.getTypes().size()+1))); 1692 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1693 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1694 llvm_unreachable("Unexpected abbrev ordering!"); 1695 } 1696 1697 { // INTEGER abbrev for CONSTANTS_BLOCK. 1698 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1699 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1700 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1701 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1702 Abbv) != CONSTANTS_INTEGER_ABBREV) 1703 llvm_unreachable("Unexpected abbrev ordering!"); 1704 } 1705 1706 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1707 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1708 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1711 Log2_32_Ceil(VE.getTypes().size()+1))); 1712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1713 1714 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1715 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1716 llvm_unreachable("Unexpected abbrev ordering!"); 1717 } 1718 { // NULL abbrev for CONSTANTS_BLOCK. 1719 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1720 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1721 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1722 Abbv) != CONSTANTS_NULL_Abbrev) 1723 llvm_unreachable("Unexpected abbrev ordering!"); 1724 } 1725 1726 // FIXME: This should only use space for first class types! 1727 1728 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1729 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1730 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1732 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1734 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1735 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1736 llvm_unreachable("Unexpected abbrev ordering!"); 1737 } 1738 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1739 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1740 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1741 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1742 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1743 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1744 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1745 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1746 llvm_unreachable("Unexpected abbrev ordering!"); 1747 } 1748 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1749 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1750 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1751 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1752 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1754 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1755 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1756 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1757 llvm_unreachable("Unexpected abbrev ordering!"); 1758 } 1759 { // INST_CAST abbrev for FUNCTION_BLOCK. 1760 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1761 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1762 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1763 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1764 Log2_32_Ceil(VE.getTypes().size()+1))); 1765 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1766 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1767 Abbv) != FUNCTION_INST_CAST_ABBREV) 1768 llvm_unreachable("Unexpected abbrev ordering!"); 1769 } 1770 1771 { // INST_RET abbrev for FUNCTION_BLOCK. 1772 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1773 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1774 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1775 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1776 llvm_unreachable("Unexpected abbrev ordering!"); 1777 } 1778 { // INST_RET abbrev for FUNCTION_BLOCK. 1779 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1780 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1782 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1783 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1784 llvm_unreachable("Unexpected abbrev ordering!"); 1785 } 1786 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1787 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1788 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1789 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1790 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1791 llvm_unreachable("Unexpected abbrev ordering!"); 1792 } 1793 1794 Stream.ExitBlock(); 1795 } 1796 1797 // Sort the Users based on the order in which the reader parses the bitcode 1798 // file. 1799 static bool bitcodereader_order(const User *lhs, const User *rhs) { 1800 // TODO: Implement. 1801 return true; 1802 } 1803 1804 static void WriteUseList(const Value *V, const ValueEnumerator &VE, 1805 BitstreamWriter &Stream) { 1806 1807 // One or zero uses can't get out of order. 1808 if (V->use_empty() || V->hasNUses(1)) 1809 return; 1810 1811 // Make a copy of the in-memory use-list for sorting. 1812 SmallVector<const User*, 8> UserList(V->user_begin(), V->user_end()); 1813 1814 // Sort the copy based on the order read by the BitcodeReader. 1815 std::sort(UserList.begin(), UserList.end(), bitcodereader_order); 1816 1817 // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the 1818 // sorted list (i.e., the expected BitcodeReader in-memory use-list). 1819 1820 // TODO: Emit the USELIST_CODE_ENTRYs. 1821 } 1822 1823 static void WriteFunctionUseList(const Function *F, ValueEnumerator &VE, 1824 BitstreamWriter &Stream) { 1825 VE.incorporateFunction(*F); 1826 1827 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); 1828 AI != AE; ++AI) 1829 WriteUseList(AI, VE, Stream); 1830 for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE; 1831 ++BB) { 1832 WriteUseList(BB, VE, Stream); 1833 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE; 1834 ++II) { 1835 WriteUseList(II, VE, Stream); 1836 for (User::const_op_iterator OI = II->op_begin(), E = II->op_end(); 1837 OI != E; ++OI) { 1838 if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || 1839 isa<InlineAsm>(*OI)) 1840 WriteUseList(*OI, VE, Stream); 1841 } 1842 } 1843 } 1844 VE.purgeFunction(); 1845 } 1846 1847 // Emit use-lists. 1848 static void WriteModuleUseLists(const Module *M, ValueEnumerator &VE, 1849 BitstreamWriter &Stream) { 1850 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1851 1852 // XXX: this modifies the module, but in a way that should never change the 1853 // behavior of any pass or codegen in LLVM. The problem is that GVs may 1854 // contain entries in the use_list that do not exist in the Module and are 1855 // not stored in the .bc file. 1856 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); 1857 I != E; ++I) 1858 I->removeDeadConstantUsers(); 1859 1860 // Write the global variables. 1861 for (Module::const_global_iterator GI = M->global_begin(), 1862 GE = M->global_end(); GI != GE; ++GI) { 1863 WriteUseList(GI, VE, Stream); 1864 1865 // Write the global variable initializers. 1866 if (GI->hasInitializer()) 1867 WriteUseList(GI->getInitializer(), VE, Stream); 1868 } 1869 1870 // Write the functions. 1871 for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 1872 WriteUseList(FI, VE, Stream); 1873 if (!FI->isDeclaration()) 1874 WriteFunctionUseList(FI, VE, Stream); 1875 if (FI->hasPrefixData()) 1876 WriteUseList(FI->getPrefixData(), VE, Stream); 1877 } 1878 1879 // Write the aliases. 1880 for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end(); 1881 AI != AE; ++AI) { 1882 WriteUseList(AI, VE, Stream); 1883 WriteUseList(AI->getAliasee(), VE, Stream); 1884 } 1885 1886 Stream.ExitBlock(); 1887 } 1888 1889 /// WriteModule - Emit the specified module to the bitstream. 1890 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1891 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1892 1893 SmallVector<unsigned, 1> Vals; 1894 unsigned CurVersion = 1; 1895 Vals.push_back(CurVersion); 1896 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1897 1898 // Analyze the module, enumerating globals, functions, etc. 1899 ValueEnumerator VE(M); 1900 1901 // Emit blockinfo, which defines the standard abbreviations etc. 1902 WriteBlockInfo(VE, Stream); 1903 1904 // Emit information about attribute groups. 1905 WriteAttributeGroupTable(VE, Stream); 1906 1907 // Emit information about parameter attributes. 1908 WriteAttributeTable(VE, Stream); 1909 1910 // Emit information describing all of the types in the module. 1911 WriteTypeTable(VE, Stream); 1912 1913 // Emit top-level description of module, including target triple, inline asm, 1914 // descriptors for global variables, and function prototype info. 1915 WriteModuleInfo(M, VE, Stream); 1916 1917 // Emit constants. 1918 WriteModuleConstants(VE, Stream); 1919 1920 // Emit metadata. 1921 WriteModuleMetadata(M, VE, Stream); 1922 1923 // Emit metadata. 1924 WriteModuleMetadataStore(M, Stream); 1925 1926 // Emit names for globals/functions etc. 1927 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1928 1929 // Emit use-lists. 1930 if (EnablePreserveUseListOrdering) 1931 WriteModuleUseLists(M, VE, Stream); 1932 1933 // Emit function bodies. 1934 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1935 if (!F->isDeclaration()) 1936 WriteFunction(*F, VE, Stream); 1937 1938 Stream.ExitBlock(); 1939 } 1940 1941 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1942 /// header and trailer to make it compatible with the system archiver. To do 1943 /// this we emit the following header, and then emit a trailer that pads the 1944 /// file out to be a multiple of 16 bytes. 1945 /// 1946 /// struct bc_header { 1947 /// uint32_t Magic; // 0x0B17C0DE 1948 /// uint32_t Version; // Version, currently always 0. 1949 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1950 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1951 /// uint32_t CPUType; // CPU specifier. 1952 /// ... potentially more later ... 1953 /// }; 1954 enum { 1955 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1956 DarwinBCHeaderSize = 5*4 1957 }; 1958 1959 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 1960 uint32_t &Position) { 1961 Buffer[Position + 0] = (unsigned char) (Value >> 0); 1962 Buffer[Position + 1] = (unsigned char) (Value >> 8); 1963 Buffer[Position + 2] = (unsigned char) (Value >> 16); 1964 Buffer[Position + 3] = (unsigned char) (Value >> 24); 1965 Position += 4; 1966 } 1967 1968 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 1969 const Triple &TT) { 1970 unsigned CPUType = ~0U; 1971 1972 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1973 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1974 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1975 // specific constants here because they are implicitly part of the Darwin ABI. 1976 enum { 1977 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1978 DARWIN_CPU_TYPE_X86 = 7, 1979 DARWIN_CPU_TYPE_ARM = 12, 1980 DARWIN_CPU_TYPE_POWERPC = 18 1981 }; 1982 1983 Triple::ArchType Arch = TT.getArch(); 1984 if (Arch == Triple::x86_64) 1985 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1986 else if (Arch == Triple::x86) 1987 CPUType = DARWIN_CPU_TYPE_X86; 1988 else if (Arch == Triple::ppc) 1989 CPUType = DARWIN_CPU_TYPE_POWERPC; 1990 else if (Arch == Triple::ppc64) 1991 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1992 else if (Arch == Triple::arm || Arch == Triple::thumb) 1993 CPUType = DARWIN_CPU_TYPE_ARM; 1994 1995 // Traditional Bitcode starts after header. 1996 assert(Buffer.size() >= DarwinBCHeaderSize && 1997 "Expected header size to be reserved"); 1998 unsigned BCOffset = DarwinBCHeaderSize; 1999 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2000 2001 // Write the magic and version. 2002 unsigned Position = 0; 2003 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2004 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2005 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2006 WriteInt32ToBuffer(BCSize , Buffer, Position); 2007 WriteInt32ToBuffer(CPUType , Buffer, Position); 2008 2009 // If the file is not a multiple of 16 bytes, insert dummy padding. 2010 while (Buffer.size() & 15) 2011 Buffer.push_back(0); 2012 } 2013 2014 /// WriteBitcodeToFile - Write the specified module to the specified output 2015 /// stream. 2016 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 2017 SmallVector<char, 0> Buffer; 2018 Buffer.reserve(256*1024); 2019 2020 // If this is darwin or another generic macho target, reserve space for the 2021 // header. 2022 Triple TT(M->getTargetTriple()); 2023 if (TT.isOSDarwin()) 2024 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2025 2026 // Emit the module into the buffer. 2027 { 2028 BitstreamWriter Stream(Buffer); 2029 2030 // Emit the file header. 2031 Stream.Emit((unsigned)'B', 8); 2032 Stream.Emit((unsigned)'C', 8); 2033 Stream.Emit(0x0, 4); 2034 Stream.Emit(0xC, 4); 2035 Stream.Emit(0xE, 4); 2036 Stream.Emit(0xD, 4); 2037 2038 // Emit the module. 2039 WriteModule(M, Stream); 2040 } 2041 2042 if (TT.isOSDarwin()) 2043 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2044 2045 // Write the generated bitstream to "Out". 2046 Out.write((char*)&Buffer.front(), Buffer.size()); 2047 } 2048