1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/InlineAsm.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/UseListOrder.h" 27 #include "llvm/IR/ValueSymbolTable.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/Program.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <cctype> 34 #include <map> 35 using namespace llvm; 36 37 /// These are manifest constants used by the bitcode writer. They do not need to 38 /// be kept in sync with the reader, but need to be consistent within this file. 39 enum { 40 // VALUE_SYMTAB_BLOCK abbrev id's. 41 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 VST_ENTRY_7_ABBREV, 43 VST_ENTRY_6_ABBREV, 44 VST_BBENTRY_6_ABBREV, 45 46 // CONSTANTS_BLOCK abbrev id's. 47 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 CONSTANTS_INTEGER_ABBREV, 49 CONSTANTS_CE_CAST_Abbrev, 50 CONSTANTS_NULL_Abbrev, 51 52 // FUNCTION_BLOCK abbrev id's. 53 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 FUNCTION_INST_BINOP_ABBREV, 55 FUNCTION_INST_BINOP_FLAGS_ABBREV, 56 FUNCTION_INST_CAST_ABBREV, 57 FUNCTION_INST_RET_VOID_ABBREV, 58 FUNCTION_INST_RET_VAL_ABBREV, 59 FUNCTION_INST_UNREACHABLE_ABBREV 60 }; 61 62 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 63 switch (Opcode) { 64 default: llvm_unreachable("Unknown cast instruction!"); 65 case Instruction::Trunc : return bitc::CAST_TRUNC; 66 case Instruction::ZExt : return bitc::CAST_ZEXT; 67 case Instruction::SExt : return bitc::CAST_SEXT; 68 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 69 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 70 case Instruction::UIToFP : return bitc::CAST_UITOFP; 71 case Instruction::SIToFP : return bitc::CAST_SITOFP; 72 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 73 case Instruction::FPExt : return bitc::CAST_FPEXT; 74 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 75 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 76 case Instruction::BitCast : return bitc::CAST_BITCAST; 77 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 78 } 79 } 80 81 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 82 switch (Opcode) { 83 default: llvm_unreachable("Unknown binary instruction!"); 84 case Instruction::Add: 85 case Instruction::FAdd: return bitc::BINOP_ADD; 86 case Instruction::Sub: 87 case Instruction::FSub: return bitc::BINOP_SUB; 88 case Instruction::Mul: 89 case Instruction::FMul: return bitc::BINOP_MUL; 90 case Instruction::UDiv: return bitc::BINOP_UDIV; 91 case Instruction::FDiv: 92 case Instruction::SDiv: return bitc::BINOP_SDIV; 93 case Instruction::URem: return bitc::BINOP_UREM; 94 case Instruction::FRem: 95 case Instruction::SRem: return bitc::BINOP_SREM; 96 case Instruction::Shl: return bitc::BINOP_SHL; 97 case Instruction::LShr: return bitc::BINOP_LSHR; 98 case Instruction::AShr: return bitc::BINOP_ASHR; 99 case Instruction::And: return bitc::BINOP_AND; 100 case Instruction::Or: return bitc::BINOP_OR; 101 case Instruction::Xor: return bitc::BINOP_XOR; 102 } 103 } 104 105 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 106 switch (Op) { 107 default: llvm_unreachable("Unknown RMW operation!"); 108 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 109 case AtomicRMWInst::Add: return bitc::RMW_ADD; 110 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 111 case AtomicRMWInst::And: return bitc::RMW_AND; 112 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 113 case AtomicRMWInst::Or: return bitc::RMW_OR; 114 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 115 case AtomicRMWInst::Max: return bitc::RMW_MAX; 116 case AtomicRMWInst::Min: return bitc::RMW_MIN; 117 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 118 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 119 } 120 } 121 122 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 123 switch (Ordering) { 124 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 125 case Unordered: return bitc::ORDERING_UNORDERED; 126 case Monotonic: return bitc::ORDERING_MONOTONIC; 127 case Acquire: return bitc::ORDERING_ACQUIRE; 128 case Release: return bitc::ORDERING_RELEASE; 129 case AcquireRelease: return bitc::ORDERING_ACQREL; 130 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 131 } 132 llvm_unreachable("Invalid ordering"); 133 } 134 135 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 136 switch (SynchScope) { 137 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 138 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 139 } 140 llvm_unreachable("Invalid synch scope"); 141 } 142 143 static void WriteStringRecord(unsigned Code, StringRef Str, 144 unsigned AbbrevToUse, BitstreamWriter &Stream) { 145 SmallVector<unsigned, 64> Vals; 146 147 // Code: [strchar x N] 148 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 149 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 150 AbbrevToUse = 0; 151 Vals.push_back(Str[i]); 152 } 153 154 // Emit the finished record. 155 Stream.EmitRecord(Code, Vals, AbbrevToUse); 156 } 157 158 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 159 switch (Kind) { 160 case Attribute::Alignment: 161 return bitc::ATTR_KIND_ALIGNMENT; 162 case Attribute::AlwaysInline: 163 return bitc::ATTR_KIND_ALWAYS_INLINE; 164 case Attribute::Builtin: 165 return bitc::ATTR_KIND_BUILTIN; 166 case Attribute::ByVal: 167 return bitc::ATTR_KIND_BY_VAL; 168 case Attribute::InAlloca: 169 return bitc::ATTR_KIND_IN_ALLOCA; 170 case Attribute::Cold: 171 return bitc::ATTR_KIND_COLD; 172 case Attribute::InlineHint: 173 return bitc::ATTR_KIND_INLINE_HINT; 174 case Attribute::InReg: 175 return bitc::ATTR_KIND_IN_REG; 176 case Attribute::JumpTable: 177 return bitc::ATTR_KIND_JUMP_TABLE; 178 case Attribute::MinSize: 179 return bitc::ATTR_KIND_MIN_SIZE; 180 case Attribute::Naked: 181 return bitc::ATTR_KIND_NAKED; 182 case Attribute::Nest: 183 return bitc::ATTR_KIND_NEST; 184 case Attribute::NoAlias: 185 return bitc::ATTR_KIND_NO_ALIAS; 186 case Attribute::NoBuiltin: 187 return bitc::ATTR_KIND_NO_BUILTIN; 188 case Attribute::NoCapture: 189 return bitc::ATTR_KIND_NO_CAPTURE; 190 case Attribute::NoDuplicate: 191 return bitc::ATTR_KIND_NO_DUPLICATE; 192 case Attribute::NoImplicitFloat: 193 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 194 case Attribute::NoInline: 195 return bitc::ATTR_KIND_NO_INLINE; 196 case Attribute::NonLazyBind: 197 return bitc::ATTR_KIND_NON_LAZY_BIND; 198 case Attribute::NonNull: 199 return bitc::ATTR_KIND_NON_NULL; 200 case Attribute::Dereferenceable: 201 return bitc::ATTR_KIND_DEREFERENCEABLE; 202 case Attribute::NoRedZone: 203 return bitc::ATTR_KIND_NO_RED_ZONE; 204 case Attribute::NoReturn: 205 return bitc::ATTR_KIND_NO_RETURN; 206 case Attribute::NoUnwind: 207 return bitc::ATTR_KIND_NO_UNWIND; 208 case Attribute::OptimizeForSize: 209 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 210 case Attribute::OptimizeNone: 211 return bitc::ATTR_KIND_OPTIMIZE_NONE; 212 case Attribute::ReadNone: 213 return bitc::ATTR_KIND_READ_NONE; 214 case Attribute::ReadOnly: 215 return bitc::ATTR_KIND_READ_ONLY; 216 case Attribute::Returned: 217 return bitc::ATTR_KIND_RETURNED; 218 case Attribute::ReturnsTwice: 219 return bitc::ATTR_KIND_RETURNS_TWICE; 220 case Attribute::SExt: 221 return bitc::ATTR_KIND_S_EXT; 222 case Attribute::StackAlignment: 223 return bitc::ATTR_KIND_STACK_ALIGNMENT; 224 case Attribute::StackProtect: 225 return bitc::ATTR_KIND_STACK_PROTECT; 226 case Attribute::StackProtectReq: 227 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 228 case Attribute::StackProtectStrong: 229 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 230 case Attribute::StructRet: 231 return bitc::ATTR_KIND_STRUCT_RET; 232 case Attribute::SanitizeAddress: 233 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 234 case Attribute::SanitizeThread: 235 return bitc::ATTR_KIND_SANITIZE_THREAD; 236 case Attribute::SanitizeMemory: 237 return bitc::ATTR_KIND_SANITIZE_MEMORY; 238 case Attribute::UWTable: 239 return bitc::ATTR_KIND_UW_TABLE; 240 case Attribute::ZExt: 241 return bitc::ATTR_KIND_Z_EXT; 242 case Attribute::EndAttrKinds: 243 llvm_unreachable("Can not encode end-attribute kinds marker."); 244 case Attribute::None: 245 llvm_unreachable("Can not encode none-attribute."); 246 } 247 248 llvm_unreachable("Trying to encode unknown attribute"); 249 } 250 251 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 252 BitstreamWriter &Stream) { 253 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 254 if (AttrGrps.empty()) return; 255 256 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 257 258 SmallVector<uint64_t, 64> Record; 259 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 260 AttributeSet AS = AttrGrps[i]; 261 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 262 AttributeSet A = AS.getSlotAttributes(i); 263 264 Record.push_back(VE.getAttributeGroupID(A)); 265 Record.push_back(AS.getSlotIndex(i)); 266 267 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 268 I != E; ++I) { 269 Attribute Attr = *I; 270 if (Attr.isEnumAttribute()) { 271 Record.push_back(0); 272 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 273 } else if (Attr.isIntAttribute()) { 274 Record.push_back(1); 275 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 276 Record.push_back(Attr.getValueAsInt()); 277 } else { 278 StringRef Kind = Attr.getKindAsString(); 279 StringRef Val = Attr.getValueAsString(); 280 281 Record.push_back(Val.empty() ? 3 : 4); 282 Record.append(Kind.begin(), Kind.end()); 283 Record.push_back(0); 284 if (!Val.empty()) { 285 Record.append(Val.begin(), Val.end()); 286 Record.push_back(0); 287 } 288 } 289 } 290 291 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 292 Record.clear(); 293 } 294 } 295 296 Stream.ExitBlock(); 297 } 298 299 static void WriteAttributeTable(const ValueEnumerator &VE, 300 BitstreamWriter &Stream) { 301 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 302 if (Attrs.empty()) return; 303 304 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 305 306 SmallVector<uint64_t, 64> Record; 307 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 308 const AttributeSet &A = Attrs[i]; 309 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 310 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 311 312 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 313 Record.clear(); 314 } 315 316 Stream.ExitBlock(); 317 } 318 319 /// WriteTypeTable - Write out the type table for a module. 320 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 321 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 322 323 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 324 SmallVector<uint64_t, 64> TypeVals; 325 326 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 327 328 // Abbrev for TYPE_CODE_POINTER. 329 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 330 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 332 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 333 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 334 335 // Abbrev for TYPE_CODE_FUNCTION. 336 Abbv = new BitCodeAbbrev(); 337 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 341 342 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 343 344 // Abbrev for TYPE_CODE_STRUCT_ANON. 345 Abbv = new BitCodeAbbrev(); 346 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 350 351 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 352 353 // Abbrev for TYPE_CODE_STRUCT_NAME. 354 Abbv = new BitCodeAbbrev(); 355 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 358 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 359 360 // Abbrev for TYPE_CODE_STRUCT_NAMED. 361 Abbv = new BitCodeAbbrev(); 362 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 366 367 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 368 369 // Abbrev for TYPE_CODE_ARRAY. 370 Abbv = new BitCodeAbbrev(); 371 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 374 375 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 376 377 // Emit an entry count so the reader can reserve space. 378 TypeVals.push_back(TypeList.size()); 379 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 380 TypeVals.clear(); 381 382 // Loop over all of the types, emitting each in turn. 383 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 384 Type *T = TypeList[i]; 385 int AbbrevToUse = 0; 386 unsigned Code = 0; 387 388 switch (T->getTypeID()) { 389 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 390 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 391 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 392 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 393 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 394 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 395 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 396 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 397 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 398 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 399 case Type::IntegerTyID: 400 // INTEGER: [width] 401 Code = bitc::TYPE_CODE_INTEGER; 402 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 403 break; 404 case Type::PointerTyID: { 405 PointerType *PTy = cast<PointerType>(T); 406 // POINTER: [pointee type, address space] 407 Code = bitc::TYPE_CODE_POINTER; 408 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 409 unsigned AddressSpace = PTy->getAddressSpace(); 410 TypeVals.push_back(AddressSpace); 411 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 412 break; 413 } 414 case Type::FunctionTyID: { 415 FunctionType *FT = cast<FunctionType>(T); 416 // FUNCTION: [isvararg, retty, paramty x N] 417 Code = bitc::TYPE_CODE_FUNCTION; 418 TypeVals.push_back(FT->isVarArg()); 419 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 420 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 421 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 422 AbbrevToUse = FunctionAbbrev; 423 break; 424 } 425 case Type::StructTyID: { 426 StructType *ST = cast<StructType>(T); 427 // STRUCT: [ispacked, eltty x N] 428 TypeVals.push_back(ST->isPacked()); 429 // Output all of the element types. 430 for (StructType::element_iterator I = ST->element_begin(), 431 E = ST->element_end(); I != E; ++I) 432 TypeVals.push_back(VE.getTypeID(*I)); 433 434 if (ST->isLiteral()) { 435 Code = bitc::TYPE_CODE_STRUCT_ANON; 436 AbbrevToUse = StructAnonAbbrev; 437 } else { 438 if (ST->isOpaque()) { 439 Code = bitc::TYPE_CODE_OPAQUE; 440 } else { 441 Code = bitc::TYPE_CODE_STRUCT_NAMED; 442 AbbrevToUse = StructNamedAbbrev; 443 } 444 445 // Emit the name if it is present. 446 if (!ST->getName().empty()) 447 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 448 StructNameAbbrev, Stream); 449 } 450 break; 451 } 452 case Type::ArrayTyID: { 453 ArrayType *AT = cast<ArrayType>(T); 454 // ARRAY: [numelts, eltty] 455 Code = bitc::TYPE_CODE_ARRAY; 456 TypeVals.push_back(AT->getNumElements()); 457 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 458 AbbrevToUse = ArrayAbbrev; 459 break; 460 } 461 case Type::VectorTyID: { 462 VectorType *VT = cast<VectorType>(T); 463 // VECTOR [numelts, eltty] 464 Code = bitc::TYPE_CODE_VECTOR; 465 TypeVals.push_back(VT->getNumElements()); 466 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 467 break; 468 } 469 } 470 471 // Emit the finished record. 472 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 473 TypeVals.clear(); 474 } 475 476 Stream.ExitBlock(); 477 } 478 479 static unsigned getEncodedLinkage(const GlobalValue &GV) { 480 switch (GV.getLinkage()) { 481 case GlobalValue::ExternalLinkage: 482 return 0; 483 case GlobalValue::WeakAnyLinkage: 484 return 16; 485 case GlobalValue::AppendingLinkage: 486 return 2; 487 case GlobalValue::InternalLinkage: 488 return 3; 489 case GlobalValue::LinkOnceAnyLinkage: 490 return 18; 491 case GlobalValue::ExternalWeakLinkage: 492 return 7; 493 case GlobalValue::CommonLinkage: 494 return 8; 495 case GlobalValue::PrivateLinkage: 496 return 9; 497 case GlobalValue::WeakODRLinkage: 498 return 17; 499 case GlobalValue::LinkOnceODRLinkage: 500 return 19; 501 case GlobalValue::AvailableExternallyLinkage: 502 return 12; 503 } 504 llvm_unreachable("Invalid linkage"); 505 } 506 507 static unsigned getEncodedVisibility(const GlobalValue &GV) { 508 switch (GV.getVisibility()) { 509 case GlobalValue::DefaultVisibility: return 0; 510 case GlobalValue::HiddenVisibility: return 1; 511 case GlobalValue::ProtectedVisibility: return 2; 512 } 513 llvm_unreachable("Invalid visibility"); 514 } 515 516 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 517 switch (GV.getDLLStorageClass()) { 518 case GlobalValue::DefaultStorageClass: return 0; 519 case GlobalValue::DLLImportStorageClass: return 1; 520 case GlobalValue::DLLExportStorageClass: return 2; 521 } 522 llvm_unreachable("Invalid DLL storage class"); 523 } 524 525 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 526 switch (GV.getThreadLocalMode()) { 527 case GlobalVariable::NotThreadLocal: return 0; 528 case GlobalVariable::GeneralDynamicTLSModel: return 1; 529 case GlobalVariable::LocalDynamicTLSModel: return 2; 530 case GlobalVariable::InitialExecTLSModel: return 3; 531 case GlobalVariable::LocalExecTLSModel: return 4; 532 } 533 llvm_unreachable("Invalid TLS model"); 534 } 535 536 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 537 switch (C.getSelectionKind()) { 538 case Comdat::Any: 539 return bitc::COMDAT_SELECTION_KIND_ANY; 540 case Comdat::ExactMatch: 541 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 542 case Comdat::Largest: 543 return bitc::COMDAT_SELECTION_KIND_LARGEST; 544 case Comdat::NoDuplicates: 545 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 546 case Comdat::SameSize: 547 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 548 } 549 llvm_unreachable("Invalid selection kind"); 550 } 551 552 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 553 SmallVector<uint16_t, 64> Vals; 554 for (const Comdat *C : VE.getComdats()) { 555 // COMDAT: [selection_kind, name] 556 Vals.push_back(getEncodedComdatSelectionKind(*C)); 557 size_t Size = C->getName().size(); 558 assert(isUInt<16>(Size)); 559 Vals.push_back(Size); 560 for (char Chr : C->getName()) 561 Vals.push_back((unsigned char)Chr); 562 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 563 Vals.clear(); 564 } 565 } 566 567 // Emit top-level description of module, including target triple, inline asm, 568 // descriptors for global variables, and function prototype info. 569 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 570 BitstreamWriter &Stream) { 571 // Emit various pieces of data attached to a module. 572 if (!M->getTargetTriple().empty()) 573 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 574 0/*TODO*/, Stream); 575 const std::string &DL = M->getDataLayoutStr(); 576 if (!DL.empty()) 577 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 578 if (!M->getModuleInlineAsm().empty()) 579 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 580 0/*TODO*/, Stream); 581 582 // Emit information about sections and GC, computing how many there are. Also 583 // compute the maximum alignment value. 584 std::map<std::string, unsigned> SectionMap; 585 std::map<std::string, unsigned> GCMap; 586 unsigned MaxAlignment = 0; 587 unsigned MaxGlobalType = 0; 588 for (const GlobalValue &GV : M->globals()) { 589 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 590 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType())); 591 if (GV.hasSection()) { 592 // Give section names unique ID's. 593 unsigned &Entry = SectionMap[GV.getSection()]; 594 if (!Entry) { 595 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 596 0/*TODO*/, Stream); 597 Entry = SectionMap.size(); 598 } 599 } 600 } 601 for (const Function &F : *M) { 602 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 603 if (F.hasSection()) { 604 // Give section names unique ID's. 605 unsigned &Entry = SectionMap[F.getSection()]; 606 if (!Entry) { 607 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 608 0/*TODO*/, Stream); 609 Entry = SectionMap.size(); 610 } 611 } 612 if (F.hasGC()) { 613 // Same for GC names. 614 unsigned &Entry = GCMap[F.getGC()]; 615 if (!Entry) { 616 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 617 0/*TODO*/, Stream); 618 Entry = GCMap.size(); 619 } 620 } 621 } 622 623 // Emit abbrev for globals, now that we know # sections and max alignment. 624 unsigned SimpleGVarAbbrev = 0; 625 if (!M->global_empty()) { 626 // Add an abbrev for common globals with no visibility or thread localness. 627 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 628 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 630 Log2_32_Ceil(MaxGlobalType+1))); 631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 634 if (MaxAlignment == 0) // Alignment. 635 Abbv->Add(BitCodeAbbrevOp(0)); 636 else { 637 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 639 Log2_32_Ceil(MaxEncAlignment+1))); 640 } 641 if (SectionMap.empty()) // Section. 642 Abbv->Add(BitCodeAbbrevOp(0)); 643 else 644 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 645 Log2_32_Ceil(SectionMap.size()+1))); 646 // Don't bother emitting vis + thread local. 647 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 648 } 649 650 // Emit the global variable information. 651 SmallVector<unsigned, 64> Vals; 652 for (const GlobalVariable &GV : M->globals()) { 653 unsigned AbbrevToUse = 0; 654 655 // GLOBALVAR: [type, isconst, initid, 656 // linkage, alignment, section, visibility, threadlocal, 657 // unnamed_addr, externally_initialized, dllstorageclass, 658 // comdat] 659 Vals.push_back(VE.getTypeID(GV.getType())); 660 Vals.push_back(GV.isConstant()); 661 Vals.push_back(GV.isDeclaration() ? 0 : 662 (VE.getValueID(GV.getInitializer()) + 1)); 663 Vals.push_back(getEncodedLinkage(GV)); 664 Vals.push_back(Log2_32(GV.getAlignment())+1); 665 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 666 if (GV.isThreadLocal() || 667 GV.getVisibility() != GlobalValue::DefaultVisibility || 668 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 669 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 670 GV.hasComdat()) { 671 Vals.push_back(getEncodedVisibility(GV)); 672 Vals.push_back(getEncodedThreadLocalMode(GV)); 673 Vals.push_back(GV.hasUnnamedAddr()); 674 Vals.push_back(GV.isExternallyInitialized()); 675 Vals.push_back(getEncodedDLLStorageClass(GV)); 676 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 677 } else { 678 AbbrevToUse = SimpleGVarAbbrev; 679 } 680 681 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 682 Vals.clear(); 683 } 684 685 // Emit the function proto information. 686 for (const Function &F : *M) { 687 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 688 // section, visibility, gc, unnamed_addr, prologuedata, 689 // dllstorageclass, comdat, prefixdata] 690 Vals.push_back(VE.getTypeID(F.getType())); 691 Vals.push_back(F.getCallingConv()); 692 Vals.push_back(F.isDeclaration()); 693 Vals.push_back(getEncodedLinkage(F)); 694 Vals.push_back(VE.getAttributeID(F.getAttributes())); 695 Vals.push_back(Log2_32(F.getAlignment())+1); 696 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 697 Vals.push_back(getEncodedVisibility(F)); 698 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 699 Vals.push_back(F.hasUnnamedAddr()); 700 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 701 : 0); 702 Vals.push_back(getEncodedDLLStorageClass(F)); 703 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 704 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 705 : 0); 706 707 unsigned AbbrevToUse = 0; 708 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 709 Vals.clear(); 710 } 711 712 // Emit the alias information. 713 for (const GlobalAlias &A : M->aliases()) { 714 // ALIAS: [alias type, aliasee val#, linkage, visibility] 715 Vals.push_back(VE.getTypeID(A.getType())); 716 Vals.push_back(VE.getValueID(A.getAliasee())); 717 Vals.push_back(getEncodedLinkage(A)); 718 Vals.push_back(getEncodedVisibility(A)); 719 Vals.push_back(getEncodedDLLStorageClass(A)); 720 Vals.push_back(getEncodedThreadLocalMode(A)); 721 Vals.push_back(A.hasUnnamedAddr()); 722 unsigned AbbrevToUse = 0; 723 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 724 Vals.clear(); 725 } 726 } 727 728 static uint64_t GetOptimizationFlags(const Value *V) { 729 uint64_t Flags = 0; 730 731 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 732 if (OBO->hasNoSignedWrap()) 733 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 734 if (OBO->hasNoUnsignedWrap()) 735 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 736 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 737 if (PEO->isExact()) 738 Flags |= 1 << bitc::PEO_EXACT; 739 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 740 if (FPMO->hasUnsafeAlgebra()) 741 Flags |= FastMathFlags::UnsafeAlgebra; 742 if (FPMO->hasNoNaNs()) 743 Flags |= FastMathFlags::NoNaNs; 744 if (FPMO->hasNoInfs()) 745 Flags |= FastMathFlags::NoInfs; 746 if (FPMO->hasNoSignedZeros()) 747 Flags |= FastMathFlags::NoSignedZeros; 748 if (FPMO->hasAllowReciprocal()) 749 Flags |= FastMathFlags::AllowReciprocal; 750 } 751 752 return Flags; 753 } 754 755 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 756 const ValueEnumerator &VE, 757 BitstreamWriter &Stream, 758 SmallVectorImpl<uint64_t> &Record) { 759 // Mimic an MDNode with a value as one operand. 760 Value *V = MD->getValue(); 761 Record.push_back(VE.getTypeID(V->getType())); 762 Record.push_back(VE.getValueID(V)); 763 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 764 Record.clear(); 765 } 766 767 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE, 768 BitstreamWriter &Stream, 769 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 770 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 771 Metadata *MD = N->getOperand(i); 772 assert(!(MD && isa<LocalAsMetadata>(MD)) && 773 "Unexpected function-local metadata"); 774 Record.push_back(VE.getMetadataOrNullID(MD)); 775 } 776 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 777 : bitc::METADATA_NODE, 778 Record, Abbrev); 779 Record.clear(); 780 } 781 782 static void WriteMDLocation(const MDLocation *N, const ValueEnumerator &VE, 783 BitstreamWriter &Stream, 784 SmallVectorImpl<uint64_t> &Record, 785 unsigned Abbrev) { 786 Record.push_back(N->isDistinct()); 787 Record.push_back(N->getLine()); 788 Record.push_back(N->getColumn()); 789 Record.push_back(VE.getMetadataID(N->getScope())); 790 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 791 792 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 793 Record.clear(); 794 } 795 796 static void WriteGenericDebugNode(const GenericDebugNode *N, 797 const ValueEnumerator &VE, 798 BitstreamWriter &Stream, 799 SmallVectorImpl<uint64_t> &Record, 800 unsigned Abbrev) { 801 Record.push_back(N->isDistinct()); 802 Record.push_back(N->getTag()); 803 Record.push_back(0); // Per-tag version field; unused for now. 804 805 for (auto &I : N->operands()) 806 Record.push_back(VE.getMetadataOrNullID(I)); 807 808 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 809 Record.clear(); 810 } 811 812 static uint64_t rotateSign(int64_t I) { 813 uint64_t U = I; 814 return I < 0 ? ~(U << 1) : U << 1; 815 } 816 817 static void WriteMDSubrange(const MDSubrange *N, const ValueEnumerator &, 818 BitstreamWriter &Stream, 819 SmallVectorImpl<uint64_t> &Record, 820 unsigned Abbrev) { 821 Record.push_back(N->isDistinct()); 822 Record.push_back(N->getCount()); 823 Record.push_back(rotateSign(N->getLo())); 824 825 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 826 Record.clear(); 827 } 828 829 static void WriteMDEnumerator(const MDEnumerator *N, const ValueEnumerator &VE, 830 BitstreamWriter &Stream, 831 SmallVectorImpl<uint64_t> &Record, 832 unsigned Abbrev) { 833 Record.push_back(N->isDistinct()); 834 Record.push_back(rotateSign(N->getValue())); 835 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 836 837 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 838 Record.clear(); 839 } 840 841 static void WriteMDBasicType(const MDBasicType *N, const ValueEnumerator &VE, 842 BitstreamWriter &Stream, 843 SmallVectorImpl<uint64_t> &Record, 844 unsigned Abbrev) { 845 Record.push_back(N->isDistinct()); 846 Record.push_back(N->getTag()); 847 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 848 Record.push_back(N->getSizeInBits()); 849 Record.push_back(N->getAlignInBits()); 850 Record.push_back(N->getEncoding()); 851 852 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 853 Record.clear(); 854 } 855 856 static void WriteMDDerivedType(const MDDerivedType *N, 857 const ValueEnumerator &VE, 858 BitstreamWriter &Stream, 859 SmallVectorImpl<uint64_t> &Record, 860 unsigned Abbrev) { 861 Record.push_back(N->isDistinct()); 862 Record.push_back(N->getTag()); 863 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 864 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 865 Record.push_back(N->getLine()); 866 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 867 Record.push_back(VE.getMetadataID(N->getBaseType())); 868 Record.push_back(N->getSizeInBits()); 869 Record.push_back(N->getAlignInBits()); 870 Record.push_back(N->getOffsetInBits()); 871 Record.push_back(N->getFlags()); 872 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 873 874 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 875 Record.clear(); 876 } 877 878 static void WriteMDCompositeType(const MDCompositeType *N, 879 const ValueEnumerator &VE, 880 BitstreamWriter &Stream, 881 SmallVectorImpl<uint64_t> &Record, 882 unsigned Abbrev) { 883 Record.push_back(N->isDistinct()); 884 Record.push_back(N->getTag()); 885 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 886 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 887 Record.push_back(N->getLine()); 888 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 889 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 890 Record.push_back(N->getSizeInBits()); 891 Record.push_back(N->getAlignInBits()); 892 Record.push_back(N->getOffsetInBits()); 893 Record.push_back(N->getFlags()); 894 Record.push_back(VE.getMetadataOrNullID(N->getElements())); 895 Record.push_back(N->getRuntimeLang()); 896 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 897 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 898 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 899 900 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 901 Record.clear(); 902 } 903 904 static void WriteMDSubroutineType(const MDSubroutineType *N, 905 const ValueEnumerator &VE, 906 BitstreamWriter &Stream, 907 SmallVectorImpl<uint64_t> &Record, 908 unsigned Abbrev) { 909 Record.push_back(N->isDistinct()); 910 Record.push_back(N->getFlags()); 911 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray())); 912 913 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 914 Record.clear(); 915 } 916 917 static void WriteMDFile(const MDFile *N, const ValueEnumerator &VE, 918 BitstreamWriter &Stream, 919 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 920 Record.push_back(N->isDistinct()); 921 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 922 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 923 924 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 925 Record.clear(); 926 } 927 928 static void WriteMDCompileUnit(const MDCompileUnit *N, 929 const ValueEnumerator &VE, 930 BitstreamWriter &Stream, 931 SmallVectorImpl<uint64_t> &Record, 932 unsigned Abbrev) { 933 Record.push_back(N->isDistinct()); 934 Record.push_back(N->getSourceLanguage()); 935 Record.push_back(VE.getMetadataID(N->getFile())); 936 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 937 Record.push_back(N->isOptimized()); 938 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 939 Record.push_back(N->getRuntimeVersion()); 940 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 941 Record.push_back(N->getEmissionKind()); 942 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes())); 943 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes())); 944 Record.push_back(VE.getMetadataOrNullID(N->getSubprograms())); 945 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables())); 946 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities())); 947 948 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 949 Record.clear(); 950 } 951 952 static void WriteMDSubprogram(const MDSubprogram *N, 953 const ValueEnumerator &VE, 954 BitstreamWriter &Stream, 955 SmallVectorImpl<uint64_t> &Record, 956 unsigned Abbrev) { 957 Record.push_back(N->isDistinct()); 958 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 959 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 960 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 961 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 962 Record.push_back(N->getLine()); 963 Record.push_back(VE.getMetadataOrNullID(N->getType())); 964 Record.push_back(N->isLocalToUnit()); 965 Record.push_back(N->isDefinition()); 966 Record.push_back(N->getScopeLine()); 967 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 968 Record.push_back(N->getVirtuality()); 969 Record.push_back(N->getVirtualIndex()); 970 Record.push_back(N->getFlags()); 971 Record.push_back(N->isOptimized()); 972 Record.push_back(VE.getMetadataOrNullID(N->getFunction())); 973 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 974 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 975 Record.push_back(VE.getMetadataOrNullID(N->getVariables())); 976 977 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 978 Record.clear(); 979 } 980 981 static void WriteMDLexicalBlock(const MDLexicalBlock *N, 982 const ValueEnumerator &VE, 983 BitstreamWriter &Stream, 984 SmallVectorImpl<uint64_t> &Record, 985 unsigned Abbrev) { 986 Record.push_back(N->isDistinct()); 987 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 988 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 989 Record.push_back(N->getLine()); 990 Record.push_back(N->getColumn()); 991 992 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 993 Record.clear(); 994 } 995 996 static void WriteMDLexicalBlockFile(const MDLexicalBlockFile *, 997 const ValueEnumerator &, BitstreamWriter &, 998 SmallVectorImpl<uint64_t> &, unsigned) { 999 llvm_unreachable("write not implemented"); 1000 } 1001 static void WriteMDNamespace(const MDNamespace *, const ValueEnumerator &, 1002 BitstreamWriter &, SmallVectorImpl<uint64_t> &, 1003 unsigned) { 1004 llvm_unreachable("write not implemented"); 1005 } 1006 static void WriteMDTemplateTypeParameter(const MDTemplateTypeParameter *, 1007 const ValueEnumerator &, 1008 BitstreamWriter &, 1009 SmallVectorImpl<uint64_t> &, 1010 unsigned) { 1011 llvm_unreachable("write not implemented"); 1012 } 1013 static void WriteMDTemplateValueParameter(const MDTemplateValueParameter *, 1014 const ValueEnumerator &, 1015 BitstreamWriter &, 1016 SmallVectorImpl<uint64_t> &, 1017 unsigned) { 1018 llvm_unreachable("write not implemented"); 1019 } 1020 static void WriteMDGlobalVariable(const MDGlobalVariable *, 1021 const ValueEnumerator &, BitstreamWriter &, 1022 SmallVectorImpl<uint64_t> &, unsigned) { 1023 llvm_unreachable("write not implemented"); 1024 } 1025 static void WriteMDLocalVariable(const MDLocalVariable *, 1026 const ValueEnumerator &, BitstreamWriter &, 1027 SmallVectorImpl<uint64_t> &, unsigned) { 1028 llvm_unreachable("write not implemented"); 1029 } 1030 static void WriteMDExpression(const MDExpression *, const ValueEnumerator &, 1031 BitstreamWriter &, SmallVectorImpl<uint64_t> &, 1032 unsigned) { 1033 llvm_unreachable("write not implemented"); 1034 } 1035 static void WriteMDObjCProperty(const MDObjCProperty *, const ValueEnumerator &, 1036 BitstreamWriter &, SmallVectorImpl<uint64_t> &, 1037 unsigned) { 1038 llvm_unreachable("write not implemented"); 1039 } 1040 static void WriteMDImportedEntity(const MDImportedEntity *, 1041 const ValueEnumerator &, BitstreamWriter &, 1042 SmallVectorImpl<uint64_t> &, unsigned) { 1043 llvm_unreachable("write not implemented"); 1044 } 1045 1046 static void WriteModuleMetadata(const Module *M, 1047 const ValueEnumerator &VE, 1048 BitstreamWriter &Stream) { 1049 const auto &MDs = VE.getMDs(); 1050 if (MDs.empty() && M->named_metadata_empty()) 1051 return; 1052 1053 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1054 1055 unsigned MDSAbbrev = 0; 1056 if (VE.hasMDString()) { 1057 // Abbrev for METADATA_STRING. 1058 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1059 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 1060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1062 MDSAbbrev = Stream.EmitAbbrev(Abbv); 1063 } 1064 1065 // Initialize MDNode abbreviations. 1066 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1067 #include "llvm/IR/Metadata.def" 1068 1069 if (VE.hasMDLocation()) { 1070 // Abbrev for METADATA_LOCATION. 1071 // 1072 // Assume the column is usually under 128, and always output the inlined-at 1073 // location (it's never more expensive than building an array size 1). 1074 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1075 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1080 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1081 MDLocationAbbrev = Stream.EmitAbbrev(Abbv); 1082 } 1083 1084 if (VE.hasGenericDebugNode()) { 1085 // Abbrev for METADATA_GENERIC_DEBUG. 1086 // 1087 // Assume the column is usually under 128, and always output the inlined-at 1088 // location (it's never more expensive than building an array size 1). 1089 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1090 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1094 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1095 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1096 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1097 GenericDebugNodeAbbrev = Stream.EmitAbbrev(Abbv); 1098 } 1099 1100 unsigned NameAbbrev = 0; 1101 if (!M->named_metadata_empty()) { 1102 // Abbrev for METADATA_NAME. 1103 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1104 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1105 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1106 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1107 NameAbbrev = Stream.EmitAbbrev(Abbv); 1108 } 1109 1110 SmallVector<uint64_t, 64> Record; 1111 for (const Metadata *MD : MDs) { 1112 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1113 switch (N->getMetadataID()) { 1114 default: 1115 llvm_unreachable("Invalid MDNode subclass"); 1116 #define HANDLE_MDNODE_LEAF(CLASS) \ 1117 case Metadata::CLASS##Kind: \ 1118 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 1119 continue; 1120 #include "llvm/IR/Metadata.def" 1121 } 1122 } 1123 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 1124 WriteValueAsMetadata(MDC, VE, Stream, Record); 1125 continue; 1126 } 1127 const MDString *MDS = cast<MDString>(MD); 1128 // Code: [strchar x N] 1129 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1130 1131 // Emit the finished record. 1132 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 1133 Record.clear(); 1134 } 1135 1136 // Write named metadata. 1137 for (const NamedMDNode &NMD : M->named_metadata()) { 1138 // Write name. 1139 StringRef Str = NMD.getName(); 1140 Record.append(Str.bytes_begin(), Str.bytes_end()); 1141 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 1142 Record.clear(); 1143 1144 // Write named metadata operands. 1145 for (const MDNode *N : NMD.operands()) 1146 Record.push_back(VE.getMetadataID(N)); 1147 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1148 Record.clear(); 1149 } 1150 1151 Stream.ExitBlock(); 1152 } 1153 1154 static void WriteFunctionLocalMetadata(const Function &F, 1155 const ValueEnumerator &VE, 1156 BitstreamWriter &Stream) { 1157 bool StartedMetadataBlock = false; 1158 SmallVector<uint64_t, 64> Record; 1159 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 1160 VE.getFunctionLocalMDs(); 1161 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1162 assert(MDs[i] && "Expected valid function-local metadata"); 1163 if (!StartedMetadataBlock) { 1164 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1165 StartedMetadataBlock = true; 1166 } 1167 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 1168 } 1169 1170 if (StartedMetadataBlock) 1171 Stream.ExitBlock(); 1172 } 1173 1174 static void WriteMetadataAttachment(const Function &F, 1175 const ValueEnumerator &VE, 1176 BitstreamWriter &Stream) { 1177 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1178 1179 SmallVector<uint64_t, 64> Record; 1180 1181 // Write metadata attachments 1182 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1183 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1184 1185 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1186 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1187 I != E; ++I) { 1188 MDs.clear(); 1189 I->getAllMetadataOtherThanDebugLoc(MDs); 1190 1191 // If no metadata, ignore instruction. 1192 if (MDs.empty()) continue; 1193 1194 Record.push_back(VE.getInstructionID(I)); 1195 1196 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1197 Record.push_back(MDs[i].first); 1198 Record.push_back(VE.getMetadataID(MDs[i].second)); 1199 } 1200 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1201 Record.clear(); 1202 } 1203 1204 Stream.ExitBlock(); 1205 } 1206 1207 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 1208 SmallVector<uint64_t, 64> Record; 1209 1210 // Write metadata kinds 1211 // METADATA_KIND - [n x [id, name]] 1212 SmallVector<StringRef, 8> Names; 1213 M->getMDKindNames(Names); 1214 1215 if (Names.empty()) return; 1216 1217 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1218 1219 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1220 Record.push_back(MDKindID); 1221 StringRef KName = Names[MDKindID]; 1222 Record.append(KName.begin(), KName.end()); 1223 1224 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1225 Record.clear(); 1226 } 1227 1228 Stream.ExitBlock(); 1229 } 1230 1231 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1232 if ((int64_t)V >= 0) 1233 Vals.push_back(V << 1); 1234 else 1235 Vals.push_back((-V << 1) | 1); 1236 } 1237 1238 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1239 const ValueEnumerator &VE, 1240 BitstreamWriter &Stream, bool isGlobal) { 1241 if (FirstVal == LastVal) return; 1242 1243 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1244 1245 unsigned AggregateAbbrev = 0; 1246 unsigned String8Abbrev = 0; 1247 unsigned CString7Abbrev = 0; 1248 unsigned CString6Abbrev = 0; 1249 // If this is a constant pool for the module, emit module-specific abbrevs. 1250 if (isGlobal) { 1251 // Abbrev for CST_CODE_AGGREGATE. 1252 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1253 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1254 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1255 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1256 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1257 1258 // Abbrev for CST_CODE_STRING. 1259 Abbv = new BitCodeAbbrev(); 1260 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1261 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1262 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1263 String8Abbrev = Stream.EmitAbbrev(Abbv); 1264 // Abbrev for CST_CODE_CSTRING. 1265 Abbv = new BitCodeAbbrev(); 1266 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1267 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1268 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1269 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1270 // Abbrev for CST_CODE_CSTRING. 1271 Abbv = new BitCodeAbbrev(); 1272 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1273 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1274 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1275 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1276 } 1277 1278 SmallVector<uint64_t, 64> Record; 1279 1280 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1281 Type *LastTy = nullptr; 1282 for (unsigned i = FirstVal; i != LastVal; ++i) { 1283 const Value *V = Vals[i].first; 1284 // If we need to switch types, do so now. 1285 if (V->getType() != LastTy) { 1286 LastTy = V->getType(); 1287 Record.push_back(VE.getTypeID(LastTy)); 1288 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1289 CONSTANTS_SETTYPE_ABBREV); 1290 Record.clear(); 1291 } 1292 1293 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1294 Record.push_back(unsigned(IA->hasSideEffects()) | 1295 unsigned(IA->isAlignStack()) << 1 | 1296 unsigned(IA->getDialect()&1) << 2); 1297 1298 // Add the asm string. 1299 const std::string &AsmStr = IA->getAsmString(); 1300 Record.push_back(AsmStr.size()); 1301 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 1302 Record.push_back(AsmStr[i]); 1303 1304 // Add the constraint string. 1305 const std::string &ConstraintStr = IA->getConstraintString(); 1306 Record.push_back(ConstraintStr.size()); 1307 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 1308 Record.push_back(ConstraintStr[i]); 1309 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1310 Record.clear(); 1311 continue; 1312 } 1313 const Constant *C = cast<Constant>(V); 1314 unsigned Code = -1U; 1315 unsigned AbbrevToUse = 0; 1316 if (C->isNullValue()) { 1317 Code = bitc::CST_CODE_NULL; 1318 } else if (isa<UndefValue>(C)) { 1319 Code = bitc::CST_CODE_UNDEF; 1320 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1321 if (IV->getBitWidth() <= 64) { 1322 uint64_t V = IV->getSExtValue(); 1323 emitSignedInt64(Record, V); 1324 Code = bitc::CST_CODE_INTEGER; 1325 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1326 } else { // Wide integers, > 64 bits in size. 1327 // We have an arbitrary precision integer value to write whose 1328 // bit width is > 64. However, in canonical unsigned integer 1329 // format it is likely that the high bits are going to be zero. 1330 // So, we only write the number of active words. 1331 unsigned NWords = IV->getValue().getActiveWords(); 1332 const uint64_t *RawWords = IV->getValue().getRawData(); 1333 for (unsigned i = 0; i != NWords; ++i) { 1334 emitSignedInt64(Record, RawWords[i]); 1335 } 1336 Code = bitc::CST_CODE_WIDE_INTEGER; 1337 } 1338 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1339 Code = bitc::CST_CODE_FLOAT; 1340 Type *Ty = CFP->getType(); 1341 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1342 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1343 } else if (Ty->isX86_FP80Ty()) { 1344 // api needed to prevent premature destruction 1345 // bits are not in the same order as a normal i80 APInt, compensate. 1346 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1347 const uint64_t *p = api.getRawData(); 1348 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1349 Record.push_back(p[0] & 0xffffLL); 1350 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1351 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1352 const uint64_t *p = api.getRawData(); 1353 Record.push_back(p[0]); 1354 Record.push_back(p[1]); 1355 } else { 1356 assert (0 && "Unknown FP type!"); 1357 } 1358 } else if (isa<ConstantDataSequential>(C) && 1359 cast<ConstantDataSequential>(C)->isString()) { 1360 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1361 // Emit constant strings specially. 1362 unsigned NumElts = Str->getNumElements(); 1363 // If this is a null-terminated string, use the denser CSTRING encoding. 1364 if (Str->isCString()) { 1365 Code = bitc::CST_CODE_CSTRING; 1366 --NumElts; // Don't encode the null, which isn't allowed by char6. 1367 } else { 1368 Code = bitc::CST_CODE_STRING; 1369 AbbrevToUse = String8Abbrev; 1370 } 1371 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1372 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1373 for (unsigned i = 0; i != NumElts; ++i) { 1374 unsigned char V = Str->getElementAsInteger(i); 1375 Record.push_back(V); 1376 isCStr7 &= (V & 128) == 0; 1377 if (isCStrChar6) 1378 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1379 } 1380 1381 if (isCStrChar6) 1382 AbbrevToUse = CString6Abbrev; 1383 else if (isCStr7) 1384 AbbrevToUse = CString7Abbrev; 1385 } else if (const ConstantDataSequential *CDS = 1386 dyn_cast<ConstantDataSequential>(C)) { 1387 Code = bitc::CST_CODE_DATA; 1388 Type *EltTy = CDS->getType()->getElementType(); 1389 if (isa<IntegerType>(EltTy)) { 1390 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1391 Record.push_back(CDS->getElementAsInteger(i)); 1392 } else if (EltTy->isFloatTy()) { 1393 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1394 union { float F; uint32_t I; }; 1395 F = CDS->getElementAsFloat(i); 1396 Record.push_back(I); 1397 } 1398 } else { 1399 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1400 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1401 union { double F; uint64_t I; }; 1402 F = CDS->getElementAsDouble(i); 1403 Record.push_back(I); 1404 } 1405 } 1406 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1407 isa<ConstantVector>(C)) { 1408 Code = bitc::CST_CODE_AGGREGATE; 1409 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1410 Record.push_back(VE.getValueID(C->getOperand(i))); 1411 AbbrevToUse = AggregateAbbrev; 1412 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1413 switch (CE->getOpcode()) { 1414 default: 1415 if (Instruction::isCast(CE->getOpcode())) { 1416 Code = bitc::CST_CODE_CE_CAST; 1417 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1418 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1419 Record.push_back(VE.getValueID(C->getOperand(0))); 1420 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1421 } else { 1422 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1423 Code = bitc::CST_CODE_CE_BINOP; 1424 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1425 Record.push_back(VE.getValueID(C->getOperand(0))); 1426 Record.push_back(VE.getValueID(C->getOperand(1))); 1427 uint64_t Flags = GetOptimizationFlags(CE); 1428 if (Flags != 0) 1429 Record.push_back(Flags); 1430 } 1431 break; 1432 case Instruction::GetElementPtr: 1433 Code = bitc::CST_CODE_CE_GEP; 1434 if (cast<GEPOperator>(C)->isInBounds()) 1435 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1436 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1437 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1438 Record.push_back(VE.getValueID(C->getOperand(i))); 1439 } 1440 break; 1441 case Instruction::Select: 1442 Code = bitc::CST_CODE_CE_SELECT; 1443 Record.push_back(VE.getValueID(C->getOperand(0))); 1444 Record.push_back(VE.getValueID(C->getOperand(1))); 1445 Record.push_back(VE.getValueID(C->getOperand(2))); 1446 break; 1447 case Instruction::ExtractElement: 1448 Code = bitc::CST_CODE_CE_EXTRACTELT; 1449 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1450 Record.push_back(VE.getValueID(C->getOperand(0))); 1451 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1452 Record.push_back(VE.getValueID(C->getOperand(1))); 1453 break; 1454 case Instruction::InsertElement: 1455 Code = bitc::CST_CODE_CE_INSERTELT; 1456 Record.push_back(VE.getValueID(C->getOperand(0))); 1457 Record.push_back(VE.getValueID(C->getOperand(1))); 1458 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1459 Record.push_back(VE.getValueID(C->getOperand(2))); 1460 break; 1461 case Instruction::ShuffleVector: 1462 // If the return type and argument types are the same, this is a 1463 // standard shufflevector instruction. If the types are different, 1464 // then the shuffle is widening or truncating the input vectors, and 1465 // the argument type must also be encoded. 1466 if (C->getType() == C->getOperand(0)->getType()) { 1467 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1468 } else { 1469 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1470 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1471 } 1472 Record.push_back(VE.getValueID(C->getOperand(0))); 1473 Record.push_back(VE.getValueID(C->getOperand(1))); 1474 Record.push_back(VE.getValueID(C->getOperand(2))); 1475 break; 1476 case Instruction::ICmp: 1477 case Instruction::FCmp: 1478 Code = bitc::CST_CODE_CE_CMP; 1479 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1480 Record.push_back(VE.getValueID(C->getOperand(0))); 1481 Record.push_back(VE.getValueID(C->getOperand(1))); 1482 Record.push_back(CE->getPredicate()); 1483 break; 1484 } 1485 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1486 Code = bitc::CST_CODE_BLOCKADDRESS; 1487 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1488 Record.push_back(VE.getValueID(BA->getFunction())); 1489 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1490 } else { 1491 #ifndef NDEBUG 1492 C->dump(); 1493 #endif 1494 llvm_unreachable("Unknown constant!"); 1495 } 1496 Stream.EmitRecord(Code, Record, AbbrevToUse); 1497 Record.clear(); 1498 } 1499 1500 Stream.ExitBlock(); 1501 } 1502 1503 static void WriteModuleConstants(const ValueEnumerator &VE, 1504 BitstreamWriter &Stream) { 1505 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1506 1507 // Find the first constant to emit, which is the first non-globalvalue value. 1508 // We know globalvalues have been emitted by WriteModuleInfo. 1509 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1510 if (!isa<GlobalValue>(Vals[i].first)) { 1511 WriteConstants(i, Vals.size(), VE, Stream, true); 1512 return; 1513 } 1514 } 1515 } 1516 1517 /// PushValueAndType - The file has to encode both the value and type id for 1518 /// many values, because we need to know what type to create for forward 1519 /// references. However, most operands are not forward references, so this type 1520 /// field is not needed. 1521 /// 1522 /// This function adds V's value ID to Vals. If the value ID is higher than the 1523 /// instruction ID, then it is a forward reference, and it also includes the 1524 /// type ID. The value ID that is written is encoded relative to the InstID. 1525 static bool PushValueAndType(const Value *V, unsigned InstID, 1526 SmallVectorImpl<unsigned> &Vals, 1527 ValueEnumerator &VE) { 1528 unsigned ValID = VE.getValueID(V); 1529 // Make encoding relative to the InstID. 1530 Vals.push_back(InstID - ValID); 1531 if (ValID >= InstID) { 1532 Vals.push_back(VE.getTypeID(V->getType())); 1533 return true; 1534 } 1535 return false; 1536 } 1537 1538 /// pushValue - Like PushValueAndType, but where the type of the value is 1539 /// omitted (perhaps it was already encoded in an earlier operand). 1540 static void pushValue(const Value *V, unsigned InstID, 1541 SmallVectorImpl<unsigned> &Vals, 1542 ValueEnumerator &VE) { 1543 unsigned ValID = VE.getValueID(V); 1544 Vals.push_back(InstID - ValID); 1545 } 1546 1547 static void pushValueSigned(const Value *V, unsigned InstID, 1548 SmallVectorImpl<uint64_t> &Vals, 1549 ValueEnumerator &VE) { 1550 unsigned ValID = VE.getValueID(V); 1551 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1552 emitSignedInt64(Vals, diff); 1553 } 1554 1555 /// WriteInstruction - Emit an instruction to the specified stream. 1556 static void WriteInstruction(const Instruction &I, unsigned InstID, 1557 ValueEnumerator &VE, BitstreamWriter &Stream, 1558 SmallVectorImpl<unsigned> &Vals) { 1559 unsigned Code = 0; 1560 unsigned AbbrevToUse = 0; 1561 VE.setInstructionID(&I); 1562 switch (I.getOpcode()) { 1563 default: 1564 if (Instruction::isCast(I.getOpcode())) { 1565 Code = bitc::FUNC_CODE_INST_CAST; 1566 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1567 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1568 Vals.push_back(VE.getTypeID(I.getType())); 1569 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1570 } else { 1571 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1572 Code = bitc::FUNC_CODE_INST_BINOP; 1573 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1574 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1575 pushValue(I.getOperand(1), InstID, Vals, VE); 1576 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1577 uint64_t Flags = GetOptimizationFlags(&I); 1578 if (Flags != 0) { 1579 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1580 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1581 Vals.push_back(Flags); 1582 } 1583 } 1584 break; 1585 1586 case Instruction::GetElementPtr: 1587 Code = bitc::FUNC_CODE_INST_GEP; 1588 if (cast<GEPOperator>(&I)->isInBounds()) 1589 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1590 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1591 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1592 break; 1593 case Instruction::ExtractValue: { 1594 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1595 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1596 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1597 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1598 Vals.push_back(*i); 1599 break; 1600 } 1601 case Instruction::InsertValue: { 1602 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1603 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1604 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1605 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1606 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1607 Vals.push_back(*i); 1608 break; 1609 } 1610 case Instruction::Select: 1611 Code = bitc::FUNC_CODE_INST_VSELECT; 1612 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1613 pushValue(I.getOperand(2), InstID, Vals, VE); 1614 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1615 break; 1616 case Instruction::ExtractElement: 1617 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1618 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1619 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1620 break; 1621 case Instruction::InsertElement: 1622 Code = bitc::FUNC_CODE_INST_INSERTELT; 1623 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1624 pushValue(I.getOperand(1), InstID, Vals, VE); 1625 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1626 break; 1627 case Instruction::ShuffleVector: 1628 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1629 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1630 pushValue(I.getOperand(1), InstID, Vals, VE); 1631 pushValue(I.getOperand(2), InstID, Vals, VE); 1632 break; 1633 case Instruction::ICmp: 1634 case Instruction::FCmp: 1635 // compare returning Int1Ty or vector of Int1Ty 1636 Code = bitc::FUNC_CODE_INST_CMP2; 1637 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1638 pushValue(I.getOperand(1), InstID, Vals, VE); 1639 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1640 break; 1641 1642 case Instruction::Ret: 1643 { 1644 Code = bitc::FUNC_CODE_INST_RET; 1645 unsigned NumOperands = I.getNumOperands(); 1646 if (NumOperands == 0) 1647 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1648 else if (NumOperands == 1) { 1649 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1650 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1651 } else { 1652 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1653 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1654 } 1655 } 1656 break; 1657 case Instruction::Br: 1658 { 1659 Code = bitc::FUNC_CODE_INST_BR; 1660 const BranchInst &II = cast<BranchInst>(I); 1661 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1662 if (II.isConditional()) { 1663 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1664 pushValue(II.getCondition(), InstID, Vals, VE); 1665 } 1666 } 1667 break; 1668 case Instruction::Switch: 1669 { 1670 Code = bitc::FUNC_CODE_INST_SWITCH; 1671 const SwitchInst &SI = cast<SwitchInst>(I); 1672 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1673 pushValue(SI.getCondition(), InstID, Vals, VE); 1674 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1675 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1676 i != e; ++i) { 1677 Vals.push_back(VE.getValueID(i.getCaseValue())); 1678 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1679 } 1680 } 1681 break; 1682 case Instruction::IndirectBr: 1683 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1684 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1685 // Encode the address operand as relative, but not the basic blocks. 1686 pushValue(I.getOperand(0), InstID, Vals, VE); 1687 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1688 Vals.push_back(VE.getValueID(I.getOperand(i))); 1689 break; 1690 1691 case Instruction::Invoke: { 1692 const InvokeInst *II = cast<InvokeInst>(&I); 1693 const Value *Callee(II->getCalledValue()); 1694 PointerType *PTy = cast<PointerType>(Callee->getType()); 1695 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1696 Code = bitc::FUNC_CODE_INST_INVOKE; 1697 1698 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1699 Vals.push_back(II->getCallingConv()); 1700 Vals.push_back(VE.getValueID(II->getNormalDest())); 1701 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1702 PushValueAndType(Callee, InstID, Vals, VE); 1703 1704 // Emit value #'s for the fixed parameters. 1705 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1706 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1707 1708 // Emit type/value pairs for varargs params. 1709 if (FTy->isVarArg()) { 1710 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1711 i != e; ++i) 1712 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1713 } 1714 break; 1715 } 1716 case Instruction::Resume: 1717 Code = bitc::FUNC_CODE_INST_RESUME; 1718 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1719 break; 1720 case Instruction::Unreachable: 1721 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1722 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1723 break; 1724 1725 case Instruction::PHI: { 1726 const PHINode &PN = cast<PHINode>(I); 1727 Code = bitc::FUNC_CODE_INST_PHI; 1728 // With the newer instruction encoding, forward references could give 1729 // negative valued IDs. This is most common for PHIs, so we use 1730 // signed VBRs. 1731 SmallVector<uint64_t, 128> Vals64; 1732 Vals64.push_back(VE.getTypeID(PN.getType())); 1733 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1734 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1735 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1736 } 1737 // Emit a Vals64 vector and exit. 1738 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1739 Vals64.clear(); 1740 return; 1741 } 1742 1743 case Instruction::LandingPad: { 1744 const LandingPadInst &LP = cast<LandingPadInst>(I); 1745 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1746 Vals.push_back(VE.getTypeID(LP.getType())); 1747 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1748 Vals.push_back(LP.isCleanup()); 1749 Vals.push_back(LP.getNumClauses()); 1750 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1751 if (LP.isCatch(I)) 1752 Vals.push_back(LandingPadInst::Catch); 1753 else 1754 Vals.push_back(LandingPadInst::Filter); 1755 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1756 } 1757 break; 1758 } 1759 1760 case Instruction::Alloca: { 1761 Code = bitc::FUNC_CODE_INST_ALLOCA; 1762 Vals.push_back(VE.getTypeID(I.getType())); 1763 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1764 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1765 const AllocaInst &AI = cast<AllocaInst>(I); 1766 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 1767 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 1768 "not enough bits for maximum alignment"); 1769 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 1770 AlignRecord |= AI.isUsedWithInAlloca() << 5; 1771 Vals.push_back(AlignRecord); 1772 break; 1773 } 1774 1775 case Instruction::Load: 1776 if (cast<LoadInst>(I).isAtomic()) { 1777 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1778 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1779 } else { 1780 Code = bitc::FUNC_CODE_INST_LOAD; 1781 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1782 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1783 } 1784 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1785 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1786 if (cast<LoadInst>(I).isAtomic()) { 1787 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1788 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1789 } 1790 break; 1791 case Instruction::Store: 1792 if (cast<StoreInst>(I).isAtomic()) 1793 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1794 else 1795 Code = bitc::FUNC_CODE_INST_STORE; 1796 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1797 pushValue(I.getOperand(0), InstID, Vals, VE); // val. 1798 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1799 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1800 if (cast<StoreInst>(I).isAtomic()) { 1801 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1802 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1803 } 1804 break; 1805 case Instruction::AtomicCmpXchg: 1806 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1807 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1808 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1809 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1810 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1811 Vals.push_back(GetEncodedOrdering( 1812 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1813 Vals.push_back(GetEncodedSynchScope( 1814 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1815 Vals.push_back(GetEncodedOrdering( 1816 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1817 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 1818 break; 1819 case Instruction::AtomicRMW: 1820 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1821 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1822 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1823 Vals.push_back(GetEncodedRMWOperation( 1824 cast<AtomicRMWInst>(I).getOperation())); 1825 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1826 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1827 Vals.push_back(GetEncodedSynchScope( 1828 cast<AtomicRMWInst>(I).getSynchScope())); 1829 break; 1830 case Instruction::Fence: 1831 Code = bitc::FUNC_CODE_INST_FENCE; 1832 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1833 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1834 break; 1835 case Instruction::Call: { 1836 const CallInst &CI = cast<CallInst>(I); 1837 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1838 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1839 1840 Code = bitc::FUNC_CODE_INST_CALL; 1841 1842 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1843 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1844 unsigned(CI.isMustTailCall()) << 14); 1845 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1846 1847 // Emit value #'s for the fixed parameters. 1848 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1849 // Check for labels (can happen with asm labels). 1850 if (FTy->getParamType(i)->isLabelTy()) 1851 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1852 else 1853 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1854 } 1855 1856 // Emit type/value pairs for varargs params. 1857 if (FTy->isVarArg()) { 1858 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1859 i != e; ++i) 1860 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1861 } 1862 break; 1863 } 1864 case Instruction::VAArg: 1865 Code = bitc::FUNC_CODE_INST_VAARG; 1866 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1867 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1868 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1869 break; 1870 } 1871 1872 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1873 Vals.clear(); 1874 } 1875 1876 // Emit names for globals/functions etc. 1877 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1878 const ValueEnumerator &VE, 1879 BitstreamWriter &Stream) { 1880 if (VST.empty()) return; 1881 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1882 1883 // FIXME: Set up the abbrev, we know how many values there are! 1884 // FIXME: We know if the type names can use 7-bit ascii. 1885 SmallVector<unsigned, 64> NameVals; 1886 1887 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1888 SI != SE; ++SI) { 1889 1890 const ValueName &Name = *SI; 1891 1892 // Figure out the encoding to use for the name. 1893 bool is7Bit = true; 1894 bool isChar6 = true; 1895 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1896 C != E; ++C) { 1897 if (isChar6) 1898 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1899 if ((unsigned char)*C & 128) { 1900 is7Bit = false; 1901 break; // don't bother scanning the rest. 1902 } 1903 } 1904 1905 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1906 1907 // VST_ENTRY: [valueid, namechar x N] 1908 // VST_BBENTRY: [bbid, namechar x N] 1909 unsigned Code; 1910 if (isa<BasicBlock>(SI->getValue())) { 1911 Code = bitc::VST_CODE_BBENTRY; 1912 if (isChar6) 1913 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1914 } else { 1915 Code = bitc::VST_CODE_ENTRY; 1916 if (isChar6) 1917 AbbrevToUse = VST_ENTRY_6_ABBREV; 1918 else if (is7Bit) 1919 AbbrevToUse = VST_ENTRY_7_ABBREV; 1920 } 1921 1922 NameVals.push_back(VE.getValueID(SI->getValue())); 1923 for (const char *P = Name.getKeyData(), 1924 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1925 NameVals.push_back((unsigned char)*P); 1926 1927 // Emit the finished record. 1928 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1929 NameVals.clear(); 1930 } 1931 Stream.ExitBlock(); 1932 } 1933 1934 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 1935 BitstreamWriter &Stream) { 1936 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 1937 unsigned Code; 1938 if (isa<BasicBlock>(Order.V)) 1939 Code = bitc::USELIST_CODE_BB; 1940 else 1941 Code = bitc::USELIST_CODE_DEFAULT; 1942 1943 SmallVector<uint64_t, 64> Record; 1944 for (unsigned I : Order.Shuffle) 1945 Record.push_back(I); 1946 Record.push_back(VE.getValueID(Order.V)); 1947 Stream.EmitRecord(Code, Record); 1948 } 1949 1950 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 1951 BitstreamWriter &Stream) { 1952 auto hasMore = [&]() { 1953 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 1954 }; 1955 if (!hasMore()) 1956 // Nothing to do. 1957 return; 1958 1959 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1960 while (hasMore()) { 1961 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 1962 VE.UseListOrders.pop_back(); 1963 } 1964 Stream.ExitBlock(); 1965 } 1966 1967 /// WriteFunction - Emit a function body to the module stream. 1968 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1969 BitstreamWriter &Stream) { 1970 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1971 VE.incorporateFunction(F); 1972 1973 SmallVector<unsigned, 64> Vals; 1974 1975 // Emit the number of basic blocks, so the reader can create them ahead of 1976 // time. 1977 Vals.push_back(VE.getBasicBlocks().size()); 1978 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1979 Vals.clear(); 1980 1981 // If there are function-local constants, emit them now. 1982 unsigned CstStart, CstEnd; 1983 VE.getFunctionConstantRange(CstStart, CstEnd); 1984 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1985 1986 // If there is function-local metadata, emit it now. 1987 WriteFunctionLocalMetadata(F, VE, Stream); 1988 1989 // Keep a running idea of what the instruction ID is. 1990 unsigned InstID = CstEnd; 1991 1992 bool NeedsMetadataAttachment = false; 1993 1994 DebugLoc LastDL; 1995 1996 // Finally, emit all the instructions, in order. 1997 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1998 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1999 I != E; ++I) { 2000 WriteInstruction(*I, InstID, VE, Stream, Vals); 2001 2002 if (!I->getType()->isVoidTy()) 2003 ++InstID; 2004 2005 // If the instruction has metadata, write a metadata attachment later. 2006 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2007 2008 // If the instruction has a debug location, emit it. 2009 DebugLoc DL = I->getDebugLoc(); 2010 if (DL.isUnknown()) { 2011 // nothing todo. 2012 } else if (DL == LastDL) { 2013 // Just repeat the same debug loc as last time. 2014 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2015 } else { 2016 MDNode *Scope, *IA; 2017 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 2018 assert(Scope && "Expected valid scope"); 2019 2020 Vals.push_back(DL.getLine()); 2021 Vals.push_back(DL.getCol()); 2022 Vals.push_back(VE.getMetadataOrNullID(Scope)); 2023 Vals.push_back(VE.getMetadataOrNullID(IA)); 2024 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2025 Vals.clear(); 2026 2027 LastDL = DL; 2028 } 2029 } 2030 2031 // Emit names for all the instructions etc. 2032 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 2033 2034 if (NeedsMetadataAttachment) 2035 WriteMetadataAttachment(F, VE, Stream); 2036 if (shouldPreserveBitcodeUseListOrder()) 2037 WriteUseListBlock(&F, VE, Stream); 2038 VE.purgeFunction(); 2039 Stream.ExitBlock(); 2040 } 2041 2042 // Emit blockinfo, which defines the standard abbreviations etc. 2043 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 2044 // We only want to emit block info records for blocks that have multiple 2045 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2046 // Other blocks can define their abbrevs inline. 2047 Stream.EnterBlockInfoBlock(2); 2048 2049 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 2050 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2051 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2055 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2056 Abbv) != VST_ENTRY_8_ABBREV) 2057 llvm_unreachable("Unexpected abbrev ordering!"); 2058 } 2059 2060 { // 7-bit fixed width VST_ENTRY strings. 2061 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2062 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2064 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2066 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2067 Abbv) != VST_ENTRY_7_ABBREV) 2068 llvm_unreachable("Unexpected abbrev ordering!"); 2069 } 2070 { // 6-bit char6 VST_ENTRY strings. 2071 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2072 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2076 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2077 Abbv) != VST_ENTRY_6_ABBREV) 2078 llvm_unreachable("Unexpected abbrev ordering!"); 2079 } 2080 { // 6-bit char6 VST_BBENTRY strings. 2081 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2082 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2083 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2085 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2086 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2087 Abbv) != VST_BBENTRY_6_ABBREV) 2088 llvm_unreachable("Unexpected abbrev ordering!"); 2089 } 2090 2091 2092 2093 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2094 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2095 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2096 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2097 Log2_32_Ceil(VE.getTypes().size()+1))); 2098 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2099 Abbv) != CONSTANTS_SETTYPE_ABBREV) 2100 llvm_unreachable("Unexpected abbrev ordering!"); 2101 } 2102 2103 { // INTEGER abbrev for CONSTANTS_BLOCK. 2104 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2105 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2106 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2107 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2108 Abbv) != CONSTANTS_INTEGER_ABBREV) 2109 llvm_unreachable("Unexpected abbrev ordering!"); 2110 } 2111 2112 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2113 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2114 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2115 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2116 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2117 Log2_32_Ceil(VE.getTypes().size()+1))); 2118 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2119 2120 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2121 Abbv) != CONSTANTS_CE_CAST_Abbrev) 2122 llvm_unreachable("Unexpected abbrev ordering!"); 2123 } 2124 { // NULL abbrev for CONSTANTS_BLOCK. 2125 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2126 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2127 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2128 Abbv) != CONSTANTS_NULL_Abbrev) 2129 llvm_unreachable("Unexpected abbrev ordering!"); 2130 } 2131 2132 // FIXME: This should only use space for first class types! 2133 2134 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2135 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2136 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2140 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2141 Abbv) != FUNCTION_INST_LOAD_ABBREV) 2142 llvm_unreachable("Unexpected abbrev ordering!"); 2143 } 2144 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2145 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2146 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2150 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2151 Abbv) != FUNCTION_INST_BINOP_ABBREV) 2152 llvm_unreachable("Unexpected abbrev ordering!"); 2153 } 2154 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2155 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2156 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2161 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2162 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 2163 llvm_unreachable("Unexpected abbrev ordering!"); 2164 } 2165 { // INST_CAST abbrev for FUNCTION_BLOCK. 2166 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2167 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2170 Log2_32_Ceil(VE.getTypes().size()+1))); 2171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2172 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2173 Abbv) != FUNCTION_INST_CAST_ABBREV) 2174 llvm_unreachable("Unexpected abbrev ordering!"); 2175 } 2176 2177 { // INST_RET abbrev for FUNCTION_BLOCK. 2178 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2179 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2180 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2181 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 2182 llvm_unreachable("Unexpected abbrev ordering!"); 2183 } 2184 { // INST_RET abbrev for FUNCTION_BLOCK. 2185 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2186 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2188 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2189 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 2190 llvm_unreachable("Unexpected abbrev ordering!"); 2191 } 2192 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2193 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2194 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2195 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2196 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 2197 llvm_unreachable("Unexpected abbrev ordering!"); 2198 } 2199 2200 Stream.ExitBlock(); 2201 } 2202 2203 /// WriteModule - Emit the specified module to the bitstream. 2204 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 2205 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 2206 2207 SmallVector<unsigned, 1> Vals; 2208 unsigned CurVersion = 1; 2209 Vals.push_back(CurVersion); 2210 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 2211 2212 // Analyze the module, enumerating globals, functions, etc. 2213 ValueEnumerator VE(*M); 2214 2215 // Emit blockinfo, which defines the standard abbreviations etc. 2216 WriteBlockInfo(VE, Stream); 2217 2218 // Emit information about attribute groups. 2219 WriteAttributeGroupTable(VE, Stream); 2220 2221 // Emit information about parameter attributes. 2222 WriteAttributeTable(VE, Stream); 2223 2224 // Emit information describing all of the types in the module. 2225 WriteTypeTable(VE, Stream); 2226 2227 writeComdats(VE, Stream); 2228 2229 // Emit top-level description of module, including target triple, inline asm, 2230 // descriptors for global variables, and function prototype info. 2231 WriteModuleInfo(M, VE, Stream); 2232 2233 // Emit constants. 2234 WriteModuleConstants(VE, Stream); 2235 2236 // Emit metadata. 2237 WriteModuleMetadata(M, VE, Stream); 2238 2239 // Emit metadata. 2240 WriteModuleMetadataStore(M, Stream); 2241 2242 // Emit names for globals/functions etc. 2243 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 2244 2245 // Emit module-level use-lists. 2246 if (shouldPreserveBitcodeUseListOrder()) 2247 WriteUseListBlock(nullptr, VE, Stream); 2248 2249 // Emit function bodies. 2250 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 2251 if (!F->isDeclaration()) 2252 WriteFunction(*F, VE, Stream); 2253 2254 Stream.ExitBlock(); 2255 } 2256 2257 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 2258 /// header and trailer to make it compatible with the system archiver. To do 2259 /// this we emit the following header, and then emit a trailer that pads the 2260 /// file out to be a multiple of 16 bytes. 2261 /// 2262 /// struct bc_header { 2263 /// uint32_t Magic; // 0x0B17C0DE 2264 /// uint32_t Version; // Version, currently always 0. 2265 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 2266 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 2267 /// uint32_t CPUType; // CPU specifier. 2268 /// ... potentially more later ... 2269 /// }; 2270 enum { 2271 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 2272 DarwinBCHeaderSize = 5*4 2273 }; 2274 2275 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 2276 uint32_t &Position) { 2277 Buffer[Position + 0] = (unsigned char) (Value >> 0); 2278 Buffer[Position + 1] = (unsigned char) (Value >> 8); 2279 Buffer[Position + 2] = (unsigned char) (Value >> 16); 2280 Buffer[Position + 3] = (unsigned char) (Value >> 24); 2281 Position += 4; 2282 } 2283 2284 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 2285 const Triple &TT) { 2286 unsigned CPUType = ~0U; 2287 2288 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 2289 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 2290 // number from /usr/include/mach/machine.h. It is ok to reproduce the 2291 // specific constants here because they are implicitly part of the Darwin ABI. 2292 enum { 2293 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 2294 DARWIN_CPU_TYPE_X86 = 7, 2295 DARWIN_CPU_TYPE_ARM = 12, 2296 DARWIN_CPU_TYPE_POWERPC = 18 2297 }; 2298 2299 Triple::ArchType Arch = TT.getArch(); 2300 if (Arch == Triple::x86_64) 2301 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 2302 else if (Arch == Triple::x86) 2303 CPUType = DARWIN_CPU_TYPE_X86; 2304 else if (Arch == Triple::ppc) 2305 CPUType = DARWIN_CPU_TYPE_POWERPC; 2306 else if (Arch == Triple::ppc64) 2307 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 2308 else if (Arch == Triple::arm || Arch == Triple::thumb) 2309 CPUType = DARWIN_CPU_TYPE_ARM; 2310 2311 // Traditional Bitcode starts after header. 2312 assert(Buffer.size() >= DarwinBCHeaderSize && 2313 "Expected header size to be reserved"); 2314 unsigned BCOffset = DarwinBCHeaderSize; 2315 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2316 2317 // Write the magic and version. 2318 unsigned Position = 0; 2319 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2320 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2321 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2322 WriteInt32ToBuffer(BCSize , Buffer, Position); 2323 WriteInt32ToBuffer(CPUType , Buffer, Position); 2324 2325 // If the file is not a multiple of 16 bytes, insert dummy padding. 2326 while (Buffer.size() & 15) 2327 Buffer.push_back(0); 2328 } 2329 2330 /// WriteBitcodeToFile - Write the specified module to the specified output 2331 /// stream. 2332 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 2333 SmallVector<char, 0> Buffer; 2334 Buffer.reserve(256*1024); 2335 2336 // If this is darwin or another generic macho target, reserve space for the 2337 // header. 2338 Triple TT(M->getTargetTriple()); 2339 if (TT.isOSDarwin()) 2340 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2341 2342 // Emit the module into the buffer. 2343 { 2344 BitstreamWriter Stream(Buffer); 2345 2346 // Emit the file header. 2347 Stream.Emit((unsigned)'B', 8); 2348 Stream.Emit((unsigned)'C', 8); 2349 Stream.Emit(0x0, 4); 2350 Stream.Emit(0xC, 4); 2351 Stream.Emit(0xE, 4); 2352 Stream.Emit(0xD, 4); 2353 2354 // Emit the module. 2355 WriteModule(M, Stream); 2356 } 2357 2358 if (TT.isOSDarwin()) 2359 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2360 2361 // Write the generated bitstream to "Out". 2362 Out.write((char*)&Buffer.front(), Buffer.size()); 2363 } 2364