1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Bitcode/BitcodeCommon.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/MC/TargetRegistry.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/TargetParser/Triple.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <optional> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 static cl::opt<unsigned> 87 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 88 cl::desc("Number of metadatas above which we emit an index " 89 "to enable lazy-loading")); 90 static cl::opt<uint32_t> FlushThreshold( 91 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 92 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 93 94 static cl::opt<bool> WriteRelBFToSummary( 95 "write-relbf-to-summary", cl::Hidden, cl::init(false), 96 cl::desc("Write relative block frequency to function summary ")); 97 98 namespace llvm { 99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 100 } 101 102 namespace { 103 104 /// These are manifest constants used by the bitcode writer. They do not need to 105 /// be kept in sync with the reader, but need to be consistent within this file. 106 enum { 107 // VALUE_SYMTAB_BLOCK abbrev id's. 108 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 109 VST_ENTRY_7_ABBREV, 110 VST_ENTRY_6_ABBREV, 111 VST_BBENTRY_6_ABBREV, 112 113 // CONSTANTS_BLOCK abbrev id's. 114 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 115 CONSTANTS_INTEGER_ABBREV, 116 CONSTANTS_CE_CAST_Abbrev, 117 CONSTANTS_NULL_Abbrev, 118 119 // FUNCTION_BLOCK abbrev id's. 120 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 121 FUNCTION_INST_UNOP_ABBREV, 122 FUNCTION_INST_UNOP_FLAGS_ABBREV, 123 FUNCTION_INST_BINOP_ABBREV, 124 FUNCTION_INST_BINOP_FLAGS_ABBREV, 125 FUNCTION_INST_CAST_ABBREV, 126 FUNCTION_INST_CAST_FLAGS_ABBREV, 127 FUNCTION_INST_RET_VOID_ABBREV, 128 FUNCTION_INST_RET_VAL_ABBREV, 129 FUNCTION_INST_UNREACHABLE_ABBREV, 130 FUNCTION_INST_GEP_ABBREV, 131 }; 132 133 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 134 /// file type. 135 class BitcodeWriterBase { 136 protected: 137 /// The stream created and owned by the client. 138 BitstreamWriter &Stream; 139 140 StringTableBuilder &StrtabBuilder; 141 142 public: 143 /// Constructs a BitcodeWriterBase object that writes to the provided 144 /// \p Stream. 145 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 146 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 147 148 protected: 149 void writeModuleVersion(); 150 }; 151 152 void BitcodeWriterBase::writeModuleVersion() { 153 // VERSION: [version#] 154 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 155 } 156 157 /// Base class to manage the module bitcode writing, currently subclassed for 158 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 159 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 160 protected: 161 /// The Module to write to bitcode. 162 const Module &M; 163 164 /// Enumerates ids for all values in the module. 165 ValueEnumerator VE; 166 167 /// Optional per-module index to write for ThinLTO. 168 const ModuleSummaryIndex *Index; 169 170 /// Map that holds the correspondence between GUIDs in the summary index, 171 /// that came from indirect call profiles, and a value id generated by this 172 /// class to use in the VST and summary block records. 173 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 174 175 /// Tracks the last value id recorded in the GUIDToValueMap. 176 unsigned GlobalValueId; 177 178 /// Saves the offset of the VSTOffset record that must eventually be 179 /// backpatched with the offset of the actual VST. 180 uint64_t VSTOffsetPlaceholder = 0; 181 182 public: 183 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 184 /// writing to the provided \p Buffer. 185 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 186 BitstreamWriter &Stream, 187 bool ShouldPreserveUseListOrder, 188 const ModuleSummaryIndex *Index) 189 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 190 VE(M, ShouldPreserveUseListOrder), Index(Index) { 191 // Assign ValueIds to any callee values in the index that came from 192 // indirect call profiles and were recorded as a GUID not a Value* 193 // (which would have been assigned an ID by the ValueEnumerator). 194 // The starting ValueId is just after the number of values in the 195 // ValueEnumerator, so that they can be emitted in the VST. 196 GlobalValueId = VE.getValues().size(); 197 if (!Index) 198 return; 199 for (const auto &GUIDSummaryLists : *Index) 200 // Examine all summaries for this GUID. 201 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 202 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 203 // For each call in the function summary, see if the call 204 // is to a GUID (which means it is for an indirect call, 205 // otherwise we would have a Value for it). If so, synthesize 206 // a value id. 207 for (auto &CallEdge : FS->calls()) 208 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 209 assignValueId(CallEdge.first.getGUID()); 210 } 211 212 protected: 213 void writePerModuleGlobalValueSummary(); 214 215 private: 216 void writePerModuleFunctionSummaryRecord( 217 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 218 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 219 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F); 220 void writeModuleLevelReferences(const GlobalVariable &V, 221 SmallVector<uint64_t, 64> &NameVals, 222 unsigned FSModRefsAbbrev, 223 unsigned FSModVTableRefsAbbrev); 224 225 void assignValueId(GlobalValue::GUID ValGUID) { 226 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 227 } 228 229 unsigned getValueId(GlobalValue::GUID ValGUID) { 230 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 231 // Expect that any GUID value had a value Id assigned by an 232 // earlier call to assignValueId. 233 assert(VMI != GUIDToValueIdMap.end() && 234 "GUID does not have assigned value Id"); 235 return VMI->second; 236 } 237 238 // Helper to get the valueId for the type of value recorded in VI. 239 unsigned getValueId(ValueInfo VI) { 240 if (!VI.haveGVs() || !VI.getValue()) 241 return getValueId(VI.getGUID()); 242 return VE.getValueID(VI.getValue()); 243 } 244 245 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 246 }; 247 248 /// Class to manage the bitcode writing for a module. 249 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 250 /// Pointer to the buffer allocated by caller for bitcode writing. 251 const SmallVectorImpl<char> &Buffer; 252 253 /// True if a module hash record should be written. 254 bool GenerateHash; 255 256 /// If non-null, when GenerateHash is true, the resulting hash is written 257 /// into ModHash. 258 ModuleHash *ModHash; 259 260 SHA1 Hasher; 261 262 /// The start bit of the identification block. 263 uint64_t BitcodeStartBit; 264 265 public: 266 /// Constructs a ModuleBitcodeWriter object for the given Module, 267 /// writing to the provided \p Buffer. 268 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 269 StringTableBuilder &StrtabBuilder, 270 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 271 const ModuleSummaryIndex *Index, bool GenerateHash, 272 ModuleHash *ModHash = nullptr) 273 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 274 ShouldPreserveUseListOrder, Index), 275 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 276 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 277 278 /// Emit the current module to the bitstream. 279 void write(); 280 281 private: 282 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 283 284 size_t addToStrtab(StringRef Str); 285 286 void writeAttributeGroupTable(); 287 void writeAttributeTable(); 288 void writeTypeTable(); 289 void writeComdats(); 290 void writeValueSymbolTableForwardDecl(); 291 void writeModuleInfo(); 292 void writeValueAsMetadata(const ValueAsMetadata *MD, 293 SmallVectorImpl<uint64_t> &Record); 294 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 295 unsigned Abbrev); 296 unsigned createDILocationAbbrev(); 297 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 298 unsigned &Abbrev); 299 unsigned createGenericDINodeAbbrev(); 300 void writeGenericDINode(const GenericDINode *N, 301 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 302 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 303 unsigned Abbrev); 304 void writeDIGenericSubrange(const DIGenericSubrange *N, 305 SmallVectorImpl<uint64_t> &Record, 306 unsigned Abbrev); 307 void writeDIEnumerator(const DIEnumerator *N, 308 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 309 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 310 unsigned Abbrev); 311 void writeDIStringType(const DIStringType *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDIDerivedType(const DIDerivedType *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDICompositeType(const DICompositeType *N, 316 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 317 void writeDISubroutineType(const DISubroutineType *N, 318 SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 321 unsigned Abbrev); 322 void writeDICompileUnit(const DICompileUnit *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDISubprogram(const DISubprogram *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDILexicalBlock(const DILexicalBlock *N, 327 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 328 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 329 SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDICommonBlock(const DICommonBlock *N, 332 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 333 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record); 340 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 341 unsigned Abbrev); 342 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 343 unsigned Abbrev); 344 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 345 SmallVectorImpl<uint64_t> &Record, 346 unsigned Abbrev); 347 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 348 SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 void writeDIGlobalVariable(const DIGlobalVariable *N, 351 SmallVectorImpl<uint64_t> &Record, 352 unsigned Abbrev); 353 void writeDILocalVariable(const DILocalVariable *N, 354 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 355 void writeDILabel(const DILabel *N, 356 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 357 void writeDIExpression(const DIExpression *N, 358 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 359 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 360 SmallVectorImpl<uint64_t> &Record, 361 unsigned Abbrev); 362 void writeDIObjCProperty(const DIObjCProperty *N, 363 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 364 void writeDIImportedEntity(const DIImportedEntity *N, 365 SmallVectorImpl<uint64_t> &Record, 366 unsigned Abbrev); 367 unsigned createNamedMetadataAbbrev(); 368 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 369 unsigned createMetadataStringsAbbrev(); 370 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 371 SmallVectorImpl<uint64_t> &Record); 372 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 373 SmallVectorImpl<uint64_t> &Record, 374 std::vector<unsigned> *MDAbbrevs = nullptr, 375 std::vector<uint64_t> *IndexPos = nullptr); 376 void writeModuleMetadata(); 377 void writeFunctionMetadata(const Function &F); 378 void writeFunctionMetadataAttachment(const Function &F); 379 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 380 const GlobalObject &GO); 381 void writeModuleMetadataKinds(); 382 void writeOperandBundleTags(); 383 void writeSyncScopeNames(); 384 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 385 void writeModuleConstants(); 386 bool pushValueAndType(const Value *V, unsigned InstID, 387 SmallVectorImpl<unsigned> &Vals); 388 void writeOperandBundles(const CallBase &CB, unsigned InstID); 389 void pushValue(const Value *V, unsigned InstID, 390 SmallVectorImpl<unsigned> &Vals); 391 void pushValueSigned(const Value *V, unsigned InstID, 392 SmallVectorImpl<uint64_t> &Vals); 393 void writeInstruction(const Instruction &I, unsigned InstID, 394 SmallVectorImpl<unsigned> &Vals); 395 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 396 void writeGlobalValueSymbolTable( 397 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 398 void writeUseList(UseListOrder &&Order); 399 void writeUseListBlock(const Function *F); 400 void 401 writeFunction(const Function &F, 402 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 403 void writeBlockInfo(); 404 void writeModuleHash(size_t BlockStartPos); 405 406 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 407 return unsigned(SSID); 408 } 409 410 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 411 }; 412 413 /// Class to manage the bitcode writing for a combined index. 414 class IndexBitcodeWriter : public BitcodeWriterBase { 415 /// The combined index to write to bitcode. 416 const ModuleSummaryIndex &Index; 417 418 /// When writing a subset of the index for distributed backends, client 419 /// provides a map of modules to the corresponding GUIDs/summaries to write. 420 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 421 422 /// Map that holds the correspondence between the GUID used in the combined 423 /// index and a value id generated by this class to use in references. 424 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 425 426 // The sorted stack id indices actually used in the summary entries being 427 // written, which will be a subset of those in the full index in the case of 428 // distributed indexes. 429 std::vector<unsigned> StackIdIndices; 430 431 /// Tracks the last value id recorded in the GUIDToValueMap. 432 unsigned GlobalValueId = 0; 433 434 /// Tracks the assignment of module paths in the module path string table to 435 /// an id assigned for use in summary references to the module path. 436 DenseMap<StringRef, uint64_t> ModuleIdMap; 437 438 public: 439 /// Constructs a IndexBitcodeWriter object for the given combined index, 440 /// writing to the provided \p Buffer. When writing a subset of the index 441 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 442 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 443 const ModuleSummaryIndex &Index, 444 const std::map<std::string, GVSummaryMapTy> 445 *ModuleToSummariesForIndex = nullptr) 446 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 447 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 448 // Assign unique value ids to all summaries to be written, for use 449 // in writing out the call graph edges. Save the mapping from GUID 450 // to the new global value id to use when writing those edges, which 451 // are currently saved in the index in terms of GUID. 452 forEachSummary([&](GVInfo I, bool IsAliasee) { 453 GUIDToValueIdMap[I.first] = ++GlobalValueId; 454 if (IsAliasee) 455 return; 456 auto *FS = dyn_cast<FunctionSummary>(I.second); 457 if (!FS) 458 return; 459 // Record all stack id indices actually used in the summary entries being 460 // written, so that we can compact them in the case of distributed ThinLTO 461 // indexes. 462 for (auto &CI : FS->callsites()) 463 for (auto Idx : CI.StackIdIndices) 464 StackIdIndices.push_back(Idx); 465 for (auto &AI : FS->allocs()) 466 for (auto &MIB : AI.MIBs) 467 for (auto Idx : MIB.StackIdIndices) 468 StackIdIndices.push_back(Idx); 469 }); 470 llvm::sort(StackIdIndices); 471 StackIdIndices.erase( 472 std::unique(StackIdIndices.begin(), StackIdIndices.end()), 473 StackIdIndices.end()); 474 } 475 476 /// The below iterator returns the GUID and associated summary. 477 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 478 479 /// Calls the callback for each value GUID and summary to be written to 480 /// bitcode. This hides the details of whether they are being pulled from the 481 /// entire index or just those in a provided ModuleToSummariesForIndex map. 482 template<typename Functor> 483 void forEachSummary(Functor Callback) { 484 if (ModuleToSummariesForIndex) { 485 for (auto &M : *ModuleToSummariesForIndex) 486 for (auto &Summary : M.second) { 487 Callback(Summary, false); 488 // Ensure aliasee is handled, e.g. for assigning a valueId, 489 // even if we are not importing the aliasee directly (the 490 // imported alias will contain a copy of aliasee). 491 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 492 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 493 } 494 } else { 495 for (auto &Summaries : Index) 496 for (auto &Summary : Summaries.second.SummaryList) 497 Callback({Summaries.first, Summary.get()}, false); 498 } 499 } 500 501 /// Calls the callback for each entry in the modulePaths StringMap that 502 /// should be written to the module path string table. This hides the details 503 /// of whether they are being pulled from the entire index or just those in a 504 /// provided ModuleToSummariesForIndex map. 505 template <typename Functor> void forEachModule(Functor Callback) { 506 if (ModuleToSummariesForIndex) { 507 for (const auto &M : *ModuleToSummariesForIndex) { 508 const auto &MPI = Index.modulePaths().find(M.first); 509 if (MPI == Index.modulePaths().end()) { 510 // This should only happen if the bitcode file was empty, in which 511 // case we shouldn't be importing (the ModuleToSummariesForIndex 512 // would only include the module we are writing and index for). 513 assert(ModuleToSummariesForIndex->size() == 1); 514 continue; 515 } 516 Callback(*MPI); 517 } 518 } else { 519 // Since StringMap iteration order isn't guaranteed, order by path string 520 // first. 521 // FIXME: Make this a vector of StringMapEntry instead to avoid the later 522 // map lookup. 523 std::vector<StringRef> ModulePaths; 524 for (auto &[ModPath, _] : Index.modulePaths()) 525 ModulePaths.push_back(ModPath); 526 llvm::sort(ModulePaths.begin(), ModulePaths.end()); 527 for (auto &ModPath : ModulePaths) 528 Callback(*Index.modulePaths().find(ModPath)); 529 } 530 } 531 532 /// Main entry point for writing a combined index to bitcode. 533 void write(); 534 535 private: 536 void writeModStrings(); 537 void writeCombinedGlobalValueSummary(); 538 539 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 540 auto VMI = GUIDToValueIdMap.find(ValGUID); 541 if (VMI == GUIDToValueIdMap.end()) 542 return std::nullopt; 543 return VMI->second; 544 } 545 546 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 547 }; 548 549 } // end anonymous namespace 550 551 static unsigned getEncodedCastOpcode(unsigned Opcode) { 552 switch (Opcode) { 553 default: llvm_unreachable("Unknown cast instruction!"); 554 case Instruction::Trunc : return bitc::CAST_TRUNC; 555 case Instruction::ZExt : return bitc::CAST_ZEXT; 556 case Instruction::SExt : return bitc::CAST_SEXT; 557 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 558 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 559 case Instruction::UIToFP : return bitc::CAST_UITOFP; 560 case Instruction::SIToFP : return bitc::CAST_SITOFP; 561 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 562 case Instruction::FPExt : return bitc::CAST_FPEXT; 563 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 564 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 565 case Instruction::BitCast : return bitc::CAST_BITCAST; 566 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 567 } 568 } 569 570 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 571 switch (Opcode) { 572 default: llvm_unreachable("Unknown binary instruction!"); 573 case Instruction::FNeg: return bitc::UNOP_FNEG; 574 } 575 } 576 577 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 578 switch (Opcode) { 579 default: llvm_unreachable("Unknown binary instruction!"); 580 case Instruction::Add: 581 case Instruction::FAdd: return bitc::BINOP_ADD; 582 case Instruction::Sub: 583 case Instruction::FSub: return bitc::BINOP_SUB; 584 case Instruction::Mul: 585 case Instruction::FMul: return bitc::BINOP_MUL; 586 case Instruction::UDiv: return bitc::BINOP_UDIV; 587 case Instruction::FDiv: 588 case Instruction::SDiv: return bitc::BINOP_SDIV; 589 case Instruction::URem: return bitc::BINOP_UREM; 590 case Instruction::FRem: 591 case Instruction::SRem: return bitc::BINOP_SREM; 592 case Instruction::Shl: return bitc::BINOP_SHL; 593 case Instruction::LShr: return bitc::BINOP_LSHR; 594 case Instruction::AShr: return bitc::BINOP_ASHR; 595 case Instruction::And: return bitc::BINOP_AND; 596 case Instruction::Or: return bitc::BINOP_OR; 597 case Instruction::Xor: return bitc::BINOP_XOR; 598 } 599 } 600 601 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 602 switch (Op) { 603 default: llvm_unreachable("Unknown RMW operation!"); 604 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 605 case AtomicRMWInst::Add: return bitc::RMW_ADD; 606 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 607 case AtomicRMWInst::And: return bitc::RMW_AND; 608 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 609 case AtomicRMWInst::Or: return bitc::RMW_OR; 610 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 611 case AtomicRMWInst::Max: return bitc::RMW_MAX; 612 case AtomicRMWInst::Min: return bitc::RMW_MIN; 613 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 614 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 615 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 616 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 617 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 618 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 619 case AtomicRMWInst::UIncWrap: 620 return bitc::RMW_UINC_WRAP; 621 case AtomicRMWInst::UDecWrap: 622 return bitc::RMW_UDEC_WRAP; 623 } 624 } 625 626 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 627 switch (Ordering) { 628 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 629 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 630 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 631 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 632 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 633 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 634 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 635 } 636 llvm_unreachable("Invalid ordering"); 637 } 638 639 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 640 StringRef Str, unsigned AbbrevToUse) { 641 SmallVector<unsigned, 64> Vals; 642 643 // Code: [strchar x N] 644 for (char C : Str) { 645 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 646 AbbrevToUse = 0; 647 Vals.push_back(C); 648 } 649 650 // Emit the finished record. 651 Stream.EmitRecord(Code, Vals, AbbrevToUse); 652 } 653 654 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 655 switch (Kind) { 656 case Attribute::Alignment: 657 return bitc::ATTR_KIND_ALIGNMENT; 658 case Attribute::AllocAlign: 659 return bitc::ATTR_KIND_ALLOC_ALIGN; 660 case Attribute::AllocSize: 661 return bitc::ATTR_KIND_ALLOC_SIZE; 662 case Attribute::AlwaysInline: 663 return bitc::ATTR_KIND_ALWAYS_INLINE; 664 case Attribute::Builtin: 665 return bitc::ATTR_KIND_BUILTIN; 666 case Attribute::ByVal: 667 return bitc::ATTR_KIND_BY_VAL; 668 case Attribute::Convergent: 669 return bitc::ATTR_KIND_CONVERGENT; 670 case Attribute::InAlloca: 671 return bitc::ATTR_KIND_IN_ALLOCA; 672 case Attribute::Cold: 673 return bitc::ATTR_KIND_COLD; 674 case Attribute::DisableSanitizerInstrumentation: 675 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 676 case Attribute::FnRetThunkExtern: 677 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 678 case Attribute::Hot: 679 return bitc::ATTR_KIND_HOT; 680 case Attribute::ElementType: 681 return bitc::ATTR_KIND_ELEMENTTYPE; 682 case Attribute::InlineHint: 683 return bitc::ATTR_KIND_INLINE_HINT; 684 case Attribute::InReg: 685 return bitc::ATTR_KIND_IN_REG; 686 case Attribute::JumpTable: 687 return bitc::ATTR_KIND_JUMP_TABLE; 688 case Attribute::MinSize: 689 return bitc::ATTR_KIND_MIN_SIZE; 690 case Attribute::AllocatedPointer: 691 return bitc::ATTR_KIND_ALLOCATED_POINTER; 692 case Attribute::AllocKind: 693 return bitc::ATTR_KIND_ALLOC_KIND; 694 case Attribute::Memory: 695 return bitc::ATTR_KIND_MEMORY; 696 case Attribute::NoFPClass: 697 return bitc::ATTR_KIND_NOFPCLASS; 698 case Attribute::Naked: 699 return bitc::ATTR_KIND_NAKED; 700 case Attribute::Nest: 701 return bitc::ATTR_KIND_NEST; 702 case Attribute::NoAlias: 703 return bitc::ATTR_KIND_NO_ALIAS; 704 case Attribute::NoBuiltin: 705 return bitc::ATTR_KIND_NO_BUILTIN; 706 case Attribute::NoCallback: 707 return bitc::ATTR_KIND_NO_CALLBACK; 708 case Attribute::NoCapture: 709 return bitc::ATTR_KIND_NO_CAPTURE; 710 case Attribute::NoDuplicate: 711 return bitc::ATTR_KIND_NO_DUPLICATE; 712 case Attribute::NoFree: 713 return bitc::ATTR_KIND_NOFREE; 714 case Attribute::NoImplicitFloat: 715 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 716 case Attribute::NoInline: 717 return bitc::ATTR_KIND_NO_INLINE; 718 case Attribute::NoRecurse: 719 return bitc::ATTR_KIND_NO_RECURSE; 720 case Attribute::NoMerge: 721 return bitc::ATTR_KIND_NO_MERGE; 722 case Attribute::NonLazyBind: 723 return bitc::ATTR_KIND_NON_LAZY_BIND; 724 case Attribute::NonNull: 725 return bitc::ATTR_KIND_NON_NULL; 726 case Attribute::Dereferenceable: 727 return bitc::ATTR_KIND_DEREFERENCEABLE; 728 case Attribute::DereferenceableOrNull: 729 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 730 case Attribute::NoRedZone: 731 return bitc::ATTR_KIND_NO_RED_ZONE; 732 case Attribute::NoReturn: 733 return bitc::ATTR_KIND_NO_RETURN; 734 case Attribute::NoSync: 735 return bitc::ATTR_KIND_NOSYNC; 736 case Attribute::NoCfCheck: 737 return bitc::ATTR_KIND_NOCF_CHECK; 738 case Attribute::NoProfile: 739 return bitc::ATTR_KIND_NO_PROFILE; 740 case Attribute::SkipProfile: 741 return bitc::ATTR_KIND_SKIP_PROFILE; 742 case Attribute::NoUnwind: 743 return bitc::ATTR_KIND_NO_UNWIND; 744 case Attribute::NoSanitizeBounds: 745 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 746 case Attribute::NoSanitizeCoverage: 747 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 748 case Attribute::NullPointerIsValid: 749 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 750 case Attribute::OptimizeForDebugging: 751 return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING; 752 case Attribute::OptForFuzzing: 753 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 754 case Attribute::OptimizeForSize: 755 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 756 case Attribute::OptimizeNone: 757 return bitc::ATTR_KIND_OPTIMIZE_NONE; 758 case Attribute::ReadNone: 759 return bitc::ATTR_KIND_READ_NONE; 760 case Attribute::ReadOnly: 761 return bitc::ATTR_KIND_READ_ONLY; 762 case Attribute::Returned: 763 return bitc::ATTR_KIND_RETURNED; 764 case Attribute::ReturnsTwice: 765 return bitc::ATTR_KIND_RETURNS_TWICE; 766 case Attribute::SExt: 767 return bitc::ATTR_KIND_S_EXT; 768 case Attribute::Speculatable: 769 return bitc::ATTR_KIND_SPECULATABLE; 770 case Attribute::StackAlignment: 771 return bitc::ATTR_KIND_STACK_ALIGNMENT; 772 case Attribute::StackProtect: 773 return bitc::ATTR_KIND_STACK_PROTECT; 774 case Attribute::StackProtectReq: 775 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 776 case Attribute::StackProtectStrong: 777 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 778 case Attribute::SafeStack: 779 return bitc::ATTR_KIND_SAFESTACK; 780 case Attribute::ShadowCallStack: 781 return bitc::ATTR_KIND_SHADOWCALLSTACK; 782 case Attribute::StrictFP: 783 return bitc::ATTR_KIND_STRICT_FP; 784 case Attribute::StructRet: 785 return bitc::ATTR_KIND_STRUCT_RET; 786 case Attribute::SanitizeAddress: 787 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 788 case Attribute::SanitizeHWAddress: 789 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 790 case Attribute::SanitizeThread: 791 return bitc::ATTR_KIND_SANITIZE_THREAD; 792 case Attribute::SanitizeMemory: 793 return bitc::ATTR_KIND_SANITIZE_MEMORY; 794 case Attribute::SpeculativeLoadHardening: 795 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 796 case Attribute::SwiftError: 797 return bitc::ATTR_KIND_SWIFT_ERROR; 798 case Attribute::SwiftSelf: 799 return bitc::ATTR_KIND_SWIFT_SELF; 800 case Attribute::SwiftAsync: 801 return bitc::ATTR_KIND_SWIFT_ASYNC; 802 case Attribute::UWTable: 803 return bitc::ATTR_KIND_UW_TABLE; 804 case Attribute::VScaleRange: 805 return bitc::ATTR_KIND_VSCALE_RANGE; 806 case Attribute::WillReturn: 807 return bitc::ATTR_KIND_WILLRETURN; 808 case Attribute::WriteOnly: 809 return bitc::ATTR_KIND_WRITEONLY; 810 case Attribute::ZExt: 811 return bitc::ATTR_KIND_Z_EXT; 812 case Attribute::ImmArg: 813 return bitc::ATTR_KIND_IMMARG; 814 case Attribute::SanitizeMemTag: 815 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 816 case Attribute::Preallocated: 817 return bitc::ATTR_KIND_PREALLOCATED; 818 case Attribute::NoUndef: 819 return bitc::ATTR_KIND_NOUNDEF; 820 case Attribute::ByRef: 821 return bitc::ATTR_KIND_BYREF; 822 case Attribute::MustProgress: 823 return bitc::ATTR_KIND_MUSTPROGRESS; 824 case Attribute::PresplitCoroutine: 825 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 826 case Attribute::Writable: 827 return bitc::ATTR_KIND_WRITABLE; 828 case Attribute::CoroDestroyOnlyWhenComplete: 829 return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE; 830 case Attribute::EndAttrKinds: 831 llvm_unreachable("Can not encode end-attribute kinds marker."); 832 case Attribute::None: 833 llvm_unreachable("Can not encode none-attribute."); 834 case Attribute::EmptyKey: 835 case Attribute::TombstoneKey: 836 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 837 } 838 839 llvm_unreachable("Trying to encode unknown attribute"); 840 } 841 842 void ModuleBitcodeWriter::writeAttributeGroupTable() { 843 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 844 VE.getAttributeGroups(); 845 if (AttrGrps.empty()) return; 846 847 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 848 849 SmallVector<uint64_t, 64> Record; 850 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 851 unsigned AttrListIndex = Pair.first; 852 AttributeSet AS = Pair.second; 853 Record.push_back(VE.getAttributeGroupID(Pair)); 854 Record.push_back(AttrListIndex); 855 856 for (Attribute Attr : AS) { 857 if (Attr.isEnumAttribute()) { 858 Record.push_back(0); 859 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 860 } else if (Attr.isIntAttribute()) { 861 Record.push_back(1); 862 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 863 Record.push_back(Attr.getValueAsInt()); 864 } else if (Attr.isStringAttribute()) { 865 StringRef Kind = Attr.getKindAsString(); 866 StringRef Val = Attr.getValueAsString(); 867 868 Record.push_back(Val.empty() ? 3 : 4); 869 Record.append(Kind.begin(), Kind.end()); 870 Record.push_back(0); 871 if (!Val.empty()) { 872 Record.append(Val.begin(), Val.end()); 873 Record.push_back(0); 874 } 875 } else { 876 assert(Attr.isTypeAttribute()); 877 Type *Ty = Attr.getValueAsType(); 878 Record.push_back(Ty ? 6 : 5); 879 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 880 if (Ty) 881 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 882 } 883 } 884 885 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 886 Record.clear(); 887 } 888 889 Stream.ExitBlock(); 890 } 891 892 void ModuleBitcodeWriter::writeAttributeTable() { 893 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 894 if (Attrs.empty()) return; 895 896 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 897 898 SmallVector<uint64_t, 64> Record; 899 for (const AttributeList &AL : Attrs) { 900 for (unsigned i : AL.indexes()) { 901 AttributeSet AS = AL.getAttributes(i); 902 if (AS.hasAttributes()) 903 Record.push_back(VE.getAttributeGroupID({i, AS})); 904 } 905 906 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 907 Record.clear(); 908 } 909 910 Stream.ExitBlock(); 911 } 912 913 /// WriteTypeTable - Write out the type table for a module. 914 void ModuleBitcodeWriter::writeTypeTable() { 915 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 916 917 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 918 SmallVector<uint64_t, 64> TypeVals; 919 920 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 921 922 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 923 auto Abbv = std::make_shared<BitCodeAbbrev>(); 924 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 925 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 926 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 927 928 // Abbrev for TYPE_CODE_FUNCTION. 929 Abbv = std::make_shared<BitCodeAbbrev>(); 930 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 932 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 934 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 935 936 // Abbrev for TYPE_CODE_STRUCT_ANON. 937 Abbv = std::make_shared<BitCodeAbbrev>(); 938 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 942 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 943 944 // Abbrev for TYPE_CODE_STRUCT_NAME. 945 Abbv = std::make_shared<BitCodeAbbrev>(); 946 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 949 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 950 951 // Abbrev for TYPE_CODE_STRUCT_NAMED. 952 Abbv = std::make_shared<BitCodeAbbrev>(); 953 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 957 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 958 959 // Abbrev for TYPE_CODE_ARRAY. 960 Abbv = std::make_shared<BitCodeAbbrev>(); 961 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 964 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 965 966 // Emit an entry count so the reader can reserve space. 967 TypeVals.push_back(TypeList.size()); 968 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 969 TypeVals.clear(); 970 971 // Loop over all of the types, emitting each in turn. 972 for (Type *T : TypeList) { 973 int AbbrevToUse = 0; 974 unsigned Code = 0; 975 976 switch (T->getTypeID()) { 977 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 978 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 979 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 980 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 981 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 982 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 983 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 984 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 985 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 986 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 987 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 988 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 989 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 990 case Type::IntegerTyID: 991 // INTEGER: [width] 992 Code = bitc::TYPE_CODE_INTEGER; 993 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 994 break; 995 case Type::PointerTyID: { 996 PointerType *PTy = cast<PointerType>(T); 997 unsigned AddressSpace = PTy->getAddressSpace(); 998 // OPAQUE_POINTER: [address space] 999 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 1000 TypeVals.push_back(AddressSpace); 1001 if (AddressSpace == 0) 1002 AbbrevToUse = OpaquePtrAbbrev; 1003 break; 1004 } 1005 case Type::FunctionTyID: { 1006 FunctionType *FT = cast<FunctionType>(T); 1007 // FUNCTION: [isvararg, retty, paramty x N] 1008 Code = bitc::TYPE_CODE_FUNCTION; 1009 TypeVals.push_back(FT->isVarArg()); 1010 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 1011 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 1012 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 1013 AbbrevToUse = FunctionAbbrev; 1014 break; 1015 } 1016 case Type::StructTyID: { 1017 StructType *ST = cast<StructType>(T); 1018 // STRUCT: [ispacked, eltty x N] 1019 TypeVals.push_back(ST->isPacked()); 1020 // Output all of the element types. 1021 for (Type *ET : ST->elements()) 1022 TypeVals.push_back(VE.getTypeID(ET)); 1023 1024 if (ST->isLiteral()) { 1025 Code = bitc::TYPE_CODE_STRUCT_ANON; 1026 AbbrevToUse = StructAnonAbbrev; 1027 } else { 1028 if (ST->isOpaque()) { 1029 Code = bitc::TYPE_CODE_OPAQUE; 1030 } else { 1031 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1032 AbbrevToUse = StructNamedAbbrev; 1033 } 1034 1035 // Emit the name if it is present. 1036 if (!ST->getName().empty()) 1037 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1038 StructNameAbbrev); 1039 } 1040 break; 1041 } 1042 case Type::ArrayTyID: { 1043 ArrayType *AT = cast<ArrayType>(T); 1044 // ARRAY: [numelts, eltty] 1045 Code = bitc::TYPE_CODE_ARRAY; 1046 TypeVals.push_back(AT->getNumElements()); 1047 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1048 AbbrevToUse = ArrayAbbrev; 1049 break; 1050 } 1051 case Type::FixedVectorTyID: 1052 case Type::ScalableVectorTyID: { 1053 VectorType *VT = cast<VectorType>(T); 1054 // VECTOR [numelts, eltty] or 1055 // [numelts, eltty, scalable] 1056 Code = bitc::TYPE_CODE_VECTOR; 1057 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1058 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1059 if (isa<ScalableVectorType>(VT)) 1060 TypeVals.push_back(true); 1061 break; 1062 } 1063 case Type::TargetExtTyID: { 1064 TargetExtType *TET = cast<TargetExtType>(T); 1065 Code = bitc::TYPE_CODE_TARGET_TYPE; 1066 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), 1067 StructNameAbbrev); 1068 TypeVals.push_back(TET->getNumTypeParameters()); 1069 for (Type *InnerTy : TET->type_params()) 1070 TypeVals.push_back(VE.getTypeID(InnerTy)); 1071 for (unsigned IntParam : TET->int_params()) 1072 TypeVals.push_back(IntParam); 1073 break; 1074 } 1075 case Type::TypedPointerTyID: 1076 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1077 } 1078 1079 // Emit the finished record. 1080 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1081 TypeVals.clear(); 1082 } 1083 1084 Stream.ExitBlock(); 1085 } 1086 1087 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1088 switch (Linkage) { 1089 case GlobalValue::ExternalLinkage: 1090 return 0; 1091 case GlobalValue::WeakAnyLinkage: 1092 return 16; 1093 case GlobalValue::AppendingLinkage: 1094 return 2; 1095 case GlobalValue::InternalLinkage: 1096 return 3; 1097 case GlobalValue::LinkOnceAnyLinkage: 1098 return 18; 1099 case GlobalValue::ExternalWeakLinkage: 1100 return 7; 1101 case GlobalValue::CommonLinkage: 1102 return 8; 1103 case GlobalValue::PrivateLinkage: 1104 return 9; 1105 case GlobalValue::WeakODRLinkage: 1106 return 17; 1107 case GlobalValue::LinkOnceODRLinkage: 1108 return 19; 1109 case GlobalValue::AvailableExternallyLinkage: 1110 return 12; 1111 } 1112 llvm_unreachable("Invalid linkage"); 1113 } 1114 1115 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1116 return getEncodedLinkage(GV.getLinkage()); 1117 } 1118 1119 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1120 uint64_t RawFlags = 0; 1121 RawFlags |= Flags.ReadNone; 1122 RawFlags |= (Flags.ReadOnly << 1); 1123 RawFlags |= (Flags.NoRecurse << 2); 1124 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1125 RawFlags |= (Flags.NoInline << 4); 1126 RawFlags |= (Flags.AlwaysInline << 5); 1127 RawFlags |= (Flags.NoUnwind << 6); 1128 RawFlags |= (Flags.MayThrow << 7); 1129 RawFlags |= (Flags.HasUnknownCall << 8); 1130 RawFlags |= (Flags.MustBeUnreachable << 9); 1131 return RawFlags; 1132 } 1133 1134 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1135 // in BitcodeReader.cpp. 1136 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1137 uint64_t RawFlags = 0; 1138 1139 RawFlags |= Flags.NotEligibleToImport; // bool 1140 RawFlags |= (Flags.Live << 1); 1141 RawFlags |= (Flags.DSOLocal << 2); 1142 RawFlags |= (Flags.CanAutoHide << 3); 1143 1144 // Linkage don't need to be remapped at that time for the summary. Any future 1145 // change to the getEncodedLinkage() function will need to be taken into 1146 // account here as well. 1147 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1148 1149 RawFlags |= (Flags.Visibility << 8); // 2 bits 1150 1151 return RawFlags; 1152 } 1153 1154 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1155 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1156 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1157 return RawFlags; 1158 } 1159 1160 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1161 switch (GV.getVisibility()) { 1162 case GlobalValue::DefaultVisibility: return 0; 1163 case GlobalValue::HiddenVisibility: return 1; 1164 case GlobalValue::ProtectedVisibility: return 2; 1165 } 1166 llvm_unreachable("Invalid visibility"); 1167 } 1168 1169 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1170 switch (GV.getDLLStorageClass()) { 1171 case GlobalValue::DefaultStorageClass: return 0; 1172 case GlobalValue::DLLImportStorageClass: return 1; 1173 case GlobalValue::DLLExportStorageClass: return 2; 1174 } 1175 llvm_unreachable("Invalid DLL storage class"); 1176 } 1177 1178 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1179 switch (GV.getThreadLocalMode()) { 1180 case GlobalVariable::NotThreadLocal: return 0; 1181 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1182 case GlobalVariable::LocalDynamicTLSModel: return 2; 1183 case GlobalVariable::InitialExecTLSModel: return 3; 1184 case GlobalVariable::LocalExecTLSModel: return 4; 1185 } 1186 llvm_unreachable("Invalid TLS model"); 1187 } 1188 1189 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1190 switch (C.getSelectionKind()) { 1191 case Comdat::Any: 1192 return bitc::COMDAT_SELECTION_KIND_ANY; 1193 case Comdat::ExactMatch: 1194 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1195 case Comdat::Largest: 1196 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1197 case Comdat::NoDeduplicate: 1198 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1199 case Comdat::SameSize: 1200 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1201 } 1202 llvm_unreachable("Invalid selection kind"); 1203 } 1204 1205 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1206 switch (GV.getUnnamedAddr()) { 1207 case GlobalValue::UnnamedAddr::None: return 0; 1208 case GlobalValue::UnnamedAddr::Local: return 2; 1209 case GlobalValue::UnnamedAddr::Global: return 1; 1210 } 1211 llvm_unreachable("Invalid unnamed_addr"); 1212 } 1213 1214 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1215 if (GenerateHash) 1216 Hasher.update(Str); 1217 return StrtabBuilder.add(Str); 1218 } 1219 1220 void ModuleBitcodeWriter::writeComdats() { 1221 SmallVector<unsigned, 64> Vals; 1222 for (const Comdat *C : VE.getComdats()) { 1223 // COMDAT: [strtab offset, strtab size, selection_kind] 1224 Vals.push_back(addToStrtab(C->getName())); 1225 Vals.push_back(C->getName().size()); 1226 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1227 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1228 Vals.clear(); 1229 } 1230 } 1231 1232 /// Write a record that will eventually hold the word offset of the 1233 /// module-level VST. For now the offset is 0, which will be backpatched 1234 /// after the real VST is written. Saves the bit offset to backpatch. 1235 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1236 // Write a placeholder value in for the offset of the real VST, 1237 // which is written after the function blocks so that it can include 1238 // the offset of each function. The placeholder offset will be 1239 // updated when the real VST is written. 1240 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1241 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1242 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1243 // hold the real VST offset. Must use fixed instead of VBR as we don't 1244 // know how many VBR chunks to reserve ahead of time. 1245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1246 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1247 1248 // Emit the placeholder 1249 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1250 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1251 1252 // Compute and save the bit offset to the placeholder, which will be 1253 // patched when the real VST is written. We can simply subtract the 32-bit 1254 // fixed size from the current bit number to get the location to backpatch. 1255 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1256 } 1257 1258 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1259 1260 /// Determine the encoding to use for the given string name and length. 1261 static StringEncoding getStringEncoding(StringRef Str) { 1262 bool isChar6 = true; 1263 for (char C : Str) { 1264 if (isChar6) 1265 isChar6 = BitCodeAbbrevOp::isChar6(C); 1266 if ((unsigned char)C & 128) 1267 // don't bother scanning the rest. 1268 return SE_Fixed8; 1269 } 1270 if (isChar6) 1271 return SE_Char6; 1272 return SE_Fixed7; 1273 } 1274 1275 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1276 "Sanitizer Metadata is too large for naive serialization."); 1277 static unsigned 1278 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1279 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1280 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1281 } 1282 1283 /// Emit top-level description of module, including target triple, inline asm, 1284 /// descriptors for global variables, and function prototype info. 1285 /// Returns the bit offset to backpatch with the location of the real VST. 1286 void ModuleBitcodeWriter::writeModuleInfo() { 1287 // Emit various pieces of data attached to a module. 1288 if (!M.getTargetTriple().empty()) 1289 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1290 0 /*TODO*/); 1291 const std::string &DL = M.getDataLayoutStr(); 1292 if (!DL.empty()) 1293 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1294 if (!M.getModuleInlineAsm().empty()) 1295 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1296 0 /*TODO*/); 1297 1298 // Emit information about sections and GC, computing how many there are. Also 1299 // compute the maximum alignment value. 1300 std::map<std::string, unsigned> SectionMap; 1301 std::map<std::string, unsigned> GCMap; 1302 MaybeAlign MaxAlignment; 1303 unsigned MaxGlobalType = 0; 1304 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1305 if (A) 1306 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1307 }; 1308 for (const GlobalVariable &GV : M.globals()) { 1309 UpdateMaxAlignment(GV.getAlign()); 1310 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1311 if (GV.hasSection()) { 1312 // Give section names unique ID's. 1313 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1314 if (!Entry) { 1315 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1316 0 /*TODO*/); 1317 Entry = SectionMap.size(); 1318 } 1319 } 1320 } 1321 for (const Function &F : M) { 1322 UpdateMaxAlignment(F.getAlign()); 1323 if (F.hasSection()) { 1324 // Give section names unique ID's. 1325 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1326 if (!Entry) { 1327 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1328 0 /*TODO*/); 1329 Entry = SectionMap.size(); 1330 } 1331 } 1332 if (F.hasGC()) { 1333 // Same for GC names. 1334 unsigned &Entry = GCMap[F.getGC()]; 1335 if (!Entry) { 1336 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1337 0 /*TODO*/); 1338 Entry = GCMap.size(); 1339 } 1340 } 1341 } 1342 1343 // Emit abbrev for globals, now that we know # sections and max alignment. 1344 unsigned SimpleGVarAbbrev = 0; 1345 if (!M.global_empty()) { 1346 // Add an abbrev for common globals with no visibility or thread localness. 1347 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1348 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1352 Log2_32_Ceil(MaxGlobalType+1))); 1353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1354 //| explicitType << 1 1355 //| constant 1356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1358 if (!MaxAlignment) // Alignment. 1359 Abbv->Add(BitCodeAbbrevOp(0)); 1360 else { 1361 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1363 Log2_32_Ceil(MaxEncAlignment+1))); 1364 } 1365 if (SectionMap.empty()) // Section. 1366 Abbv->Add(BitCodeAbbrevOp(0)); 1367 else 1368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1369 Log2_32_Ceil(SectionMap.size()+1))); 1370 // Don't bother emitting vis + thread local. 1371 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1372 } 1373 1374 SmallVector<unsigned, 64> Vals; 1375 // Emit the module's source file name. 1376 { 1377 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1378 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1379 if (Bits == SE_Char6) 1380 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1381 else if (Bits == SE_Fixed7) 1382 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1383 1384 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1385 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1386 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1388 Abbv->Add(AbbrevOpToUse); 1389 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1390 1391 for (const auto P : M.getSourceFileName()) 1392 Vals.push_back((unsigned char)P); 1393 1394 // Emit the finished record. 1395 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1396 Vals.clear(); 1397 } 1398 1399 // Emit the global variable information. 1400 for (const GlobalVariable &GV : M.globals()) { 1401 unsigned AbbrevToUse = 0; 1402 1403 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1404 // linkage, alignment, section, visibility, threadlocal, 1405 // unnamed_addr, externally_initialized, dllstorageclass, 1406 // comdat, attributes, DSO_Local, GlobalSanitizer, code_model] 1407 Vals.push_back(addToStrtab(GV.getName())); 1408 Vals.push_back(GV.getName().size()); 1409 Vals.push_back(VE.getTypeID(GV.getValueType())); 1410 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1411 Vals.push_back(GV.isDeclaration() ? 0 : 1412 (VE.getValueID(GV.getInitializer()) + 1)); 1413 Vals.push_back(getEncodedLinkage(GV)); 1414 Vals.push_back(getEncodedAlign(GV.getAlign())); 1415 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1416 : 0); 1417 if (GV.isThreadLocal() || 1418 GV.getVisibility() != GlobalValue::DefaultVisibility || 1419 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1420 GV.isExternallyInitialized() || 1421 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1422 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1423 GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) { 1424 Vals.push_back(getEncodedVisibility(GV)); 1425 Vals.push_back(getEncodedThreadLocalMode(GV)); 1426 Vals.push_back(getEncodedUnnamedAddr(GV)); 1427 Vals.push_back(GV.isExternallyInitialized()); 1428 Vals.push_back(getEncodedDLLStorageClass(GV)); 1429 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1430 1431 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1432 Vals.push_back(VE.getAttributeListID(AL)); 1433 1434 Vals.push_back(GV.isDSOLocal()); 1435 Vals.push_back(addToStrtab(GV.getPartition())); 1436 Vals.push_back(GV.getPartition().size()); 1437 1438 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1439 GV.getSanitizerMetadata()) 1440 : 0)); 1441 Vals.push_back(GV.getCodeModelRaw()); 1442 } else { 1443 AbbrevToUse = SimpleGVarAbbrev; 1444 } 1445 1446 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1447 Vals.clear(); 1448 } 1449 1450 // Emit the function proto information. 1451 for (const Function &F : M) { 1452 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1453 // linkage, paramattrs, alignment, section, visibility, gc, 1454 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1455 // prefixdata, personalityfn, DSO_Local, addrspace] 1456 Vals.push_back(addToStrtab(F.getName())); 1457 Vals.push_back(F.getName().size()); 1458 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1459 Vals.push_back(F.getCallingConv()); 1460 Vals.push_back(F.isDeclaration()); 1461 Vals.push_back(getEncodedLinkage(F)); 1462 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1463 Vals.push_back(getEncodedAlign(F.getAlign())); 1464 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1465 : 0); 1466 Vals.push_back(getEncodedVisibility(F)); 1467 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1468 Vals.push_back(getEncodedUnnamedAddr(F)); 1469 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1470 : 0); 1471 Vals.push_back(getEncodedDLLStorageClass(F)); 1472 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1473 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1474 : 0); 1475 Vals.push_back( 1476 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1477 1478 Vals.push_back(F.isDSOLocal()); 1479 Vals.push_back(F.getAddressSpace()); 1480 Vals.push_back(addToStrtab(F.getPartition())); 1481 Vals.push_back(F.getPartition().size()); 1482 1483 unsigned AbbrevToUse = 0; 1484 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1485 Vals.clear(); 1486 } 1487 1488 // Emit the alias information. 1489 for (const GlobalAlias &A : M.aliases()) { 1490 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1491 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1492 // DSO_Local] 1493 Vals.push_back(addToStrtab(A.getName())); 1494 Vals.push_back(A.getName().size()); 1495 Vals.push_back(VE.getTypeID(A.getValueType())); 1496 Vals.push_back(A.getType()->getAddressSpace()); 1497 Vals.push_back(VE.getValueID(A.getAliasee())); 1498 Vals.push_back(getEncodedLinkage(A)); 1499 Vals.push_back(getEncodedVisibility(A)); 1500 Vals.push_back(getEncodedDLLStorageClass(A)); 1501 Vals.push_back(getEncodedThreadLocalMode(A)); 1502 Vals.push_back(getEncodedUnnamedAddr(A)); 1503 Vals.push_back(A.isDSOLocal()); 1504 Vals.push_back(addToStrtab(A.getPartition())); 1505 Vals.push_back(A.getPartition().size()); 1506 1507 unsigned AbbrevToUse = 0; 1508 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1509 Vals.clear(); 1510 } 1511 1512 // Emit the ifunc information. 1513 for (const GlobalIFunc &I : M.ifuncs()) { 1514 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1515 // val#, linkage, visibility, DSO_Local] 1516 Vals.push_back(addToStrtab(I.getName())); 1517 Vals.push_back(I.getName().size()); 1518 Vals.push_back(VE.getTypeID(I.getValueType())); 1519 Vals.push_back(I.getType()->getAddressSpace()); 1520 Vals.push_back(VE.getValueID(I.getResolver())); 1521 Vals.push_back(getEncodedLinkage(I)); 1522 Vals.push_back(getEncodedVisibility(I)); 1523 Vals.push_back(I.isDSOLocal()); 1524 Vals.push_back(addToStrtab(I.getPartition())); 1525 Vals.push_back(I.getPartition().size()); 1526 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1527 Vals.clear(); 1528 } 1529 1530 writeValueSymbolTableForwardDecl(); 1531 } 1532 1533 static uint64_t getOptimizationFlags(const Value *V) { 1534 uint64_t Flags = 0; 1535 1536 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1537 if (OBO->hasNoSignedWrap()) 1538 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1539 if (OBO->hasNoUnsignedWrap()) 1540 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1541 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1542 if (PEO->isExact()) 1543 Flags |= 1 << bitc::PEO_EXACT; 1544 } else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) { 1545 if (PDI->isDisjoint()) 1546 Flags |= 1 << bitc::PDI_DISJOINT; 1547 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1548 if (FPMO->hasAllowReassoc()) 1549 Flags |= bitc::AllowReassoc; 1550 if (FPMO->hasNoNaNs()) 1551 Flags |= bitc::NoNaNs; 1552 if (FPMO->hasNoInfs()) 1553 Flags |= bitc::NoInfs; 1554 if (FPMO->hasNoSignedZeros()) 1555 Flags |= bitc::NoSignedZeros; 1556 if (FPMO->hasAllowReciprocal()) 1557 Flags |= bitc::AllowReciprocal; 1558 if (FPMO->hasAllowContract()) 1559 Flags |= bitc::AllowContract; 1560 if (FPMO->hasApproxFunc()) 1561 Flags |= bitc::ApproxFunc; 1562 } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) { 1563 if (NNI->hasNonNeg()) 1564 Flags |= 1 << bitc::PNNI_NON_NEG; 1565 } 1566 1567 return Flags; 1568 } 1569 1570 void ModuleBitcodeWriter::writeValueAsMetadata( 1571 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1572 // Mimic an MDNode with a value as one operand. 1573 Value *V = MD->getValue(); 1574 Record.push_back(VE.getTypeID(V->getType())); 1575 Record.push_back(VE.getValueID(V)); 1576 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1577 Record.clear(); 1578 } 1579 1580 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1581 SmallVectorImpl<uint64_t> &Record, 1582 unsigned Abbrev) { 1583 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1584 Metadata *MD = N->getOperand(i); 1585 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1586 "Unexpected function-local metadata"); 1587 Record.push_back(VE.getMetadataOrNullID(MD)); 1588 } 1589 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1590 : bitc::METADATA_NODE, 1591 Record, Abbrev); 1592 Record.clear(); 1593 } 1594 1595 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1596 // Assume the column is usually under 128, and always output the inlined-at 1597 // location (it's never more expensive than building an array size 1). 1598 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1599 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1603 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1604 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1605 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1606 return Stream.EmitAbbrev(std::move(Abbv)); 1607 } 1608 1609 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1610 SmallVectorImpl<uint64_t> &Record, 1611 unsigned &Abbrev) { 1612 if (!Abbrev) 1613 Abbrev = createDILocationAbbrev(); 1614 1615 Record.push_back(N->isDistinct()); 1616 Record.push_back(N->getLine()); 1617 Record.push_back(N->getColumn()); 1618 Record.push_back(VE.getMetadataID(N->getScope())); 1619 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1620 Record.push_back(N->isImplicitCode()); 1621 1622 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1623 Record.clear(); 1624 } 1625 1626 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1627 // Assume the column is usually under 128, and always output the inlined-at 1628 // location (it's never more expensive than building an array size 1). 1629 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1630 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1635 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1637 return Stream.EmitAbbrev(std::move(Abbv)); 1638 } 1639 1640 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1641 SmallVectorImpl<uint64_t> &Record, 1642 unsigned &Abbrev) { 1643 if (!Abbrev) 1644 Abbrev = createGenericDINodeAbbrev(); 1645 1646 Record.push_back(N->isDistinct()); 1647 Record.push_back(N->getTag()); 1648 Record.push_back(0); // Per-tag version field; unused for now. 1649 1650 for (auto &I : N->operands()) 1651 Record.push_back(VE.getMetadataOrNullID(I)); 1652 1653 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1654 Record.clear(); 1655 } 1656 1657 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1658 SmallVectorImpl<uint64_t> &Record, 1659 unsigned Abbrev) { 1660 const uint64_t Version = 2 << 1; 1661 Record.push_back((uint64_t)N->isDistinct() | Version); 1662 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1663 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1664 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1665 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1666 1667 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1668 Record.clear(); 1669 } 1670 1671 void ModuleBitcodeWriter::writeDIGenericSubrange( 1672 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1673 unsigned Abbrev) { 1674 Record.push_back((uint64_t)N->isDistinct()); 1675 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1676 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1677 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1678 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1679 1680 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1681 Record.clear(); 1682 } 1683 1684 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1685 if ((int64_t)V >= 0) 1686 Vals.push_back(V << 1); 1687 else 1688 Vals.push_back((-V << 1) | 1); 1689 } 1690 1691 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1692 // We have an arbitrary precision integer value to write whose 1693 // bit width is > 64. However, in canonical unsigned integer 1694 // format it is likely that the high bits are going to be zero. 1695 // So, we only write the number of active words. 1696 unsigned NumWords = A.getActiveWords(); 1697 const uint64_t *RawData = A.getRawData(); 1698 for (unsigned i = 0; i < NumWords; i++) 1699 emitSignedInt64(Vals, RawData[i]); 1700 } 1701 1702 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1703 SmallVectorImpl<uint64_t> &Record, 1704 unsigned Abbrev) { 1705 const uint64_t IsBigInt = 1 << 2; 1706 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1707 Record.push_back(N->getValue().getBitWidth()); 1708 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1709 emitWideAPInt(Record, N->getValue()); 1710 1711 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1712 Record.clear(); 1713 } 1714 1715 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1716 SmallVectorImpl<uint64_t> &Record, 1717 unsigned Abbrev) { 1718 Record.push_back(N->isDistinct()); 1719 Record.push_back(N->getTag()); 1720 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1721 Record.push_back(N->getSizeInBits()); 1722 Record.push_back(N->getAlignInBits()); 1723 Record.push_back(N->getEncoding()); 1724 Record.push_back(N->getFlags()); 1725 1726 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1727 Record.clear(); 1728 } 1729 1730 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1731 SmallVectorImpl<uint64_t> &Record, 1732 unsigned Abbrev) { 1733 Record.push_back(N->isDistinct()); 1734 Record.push_back(N->getTag()); 1735 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1736 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1737 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1738 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1739 Record.push_back(N->getSizeInBits()); 1740 Record.push_back(N->getAlignInBits()); 1741 Record.push_back(N->getEncoding()); 1742 1743 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1744 Record.clear(); 1745 } 1746 1747 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1748 SmallVectorImpl<uint64_t> &Record, 1749 unsigned Abbrev) { 1750 Record.push_back(N->isDistinct()); 1751 Record.push_back(N->getTag()); 1752 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1753 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1754 Record.push_back(N->getLine()); 1755 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1756 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1757 Record.push_back(N->getSizeInBits()); 1758 Record.push_back(N->getAlignInBits()); 1759 Record.push_back(N->getOffsetInBits()); 1760 Record.push_back(N->getFlags()); 1761 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1762 1763 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1764 // that there is no DWARF address space associated with DIDerivedType. 1765 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1766 Record.push_back(*DWARFAddressSpace + 1); 1767 else 1768 Record.push_back(0); 1769 1770 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1771 1772 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1773 Record.clear(); 1774 } 1775 1776 void ModuleBitcodeWriter::writeDICompositeType( 1777 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1778 unsigned Abbrev) { 1779 const unsigned IsNotUsedInOldTypeRef = 0x2; 1780 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1781 Record.push_back(N->getTag()); 1782 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1783 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1784 Record.push_back(N->getLine()); 1785 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1786 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1787 Record.push_back(N->getSizeInBits()); 1788 Record.push_back(N->getAlignInBits()); 1789 Record.push_back(N->getOffsetInBits()); 1790 Record.push_back(N->getFlags()); 1791 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1792 Record.push_back(N->getRuntimeLang()); 1793 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1794 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1795 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1796 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1797 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1798 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1799 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1800 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1801 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1802 1803 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1804 Record.clear(); 1805 } 1806 1807 void ModuleBitcodeWriter::writeDISubroutineType( 1808 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1809 unsigned Abbrev) { 1810 const unsigned HasNoOldTypeRefs = 0x2; 1811 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1812 Record.push_back(N->getFlags()); 1813 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1814 Record.push_back(N->getCC()); 1815 1816 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1817 Record.clear(); 1818 } 1819 1820 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1821 SmallVectorImpl<uint64_t> &Record, 1822 unsigned Abbrev) { 1823 Record.push_back(N->isDistinct()); 1824 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1825 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1826 if (N->getRawChecksum()) { 1827 Record.push_back(N->getRawChecksum()->Kind); 1828 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1829 } else { 1830 // Maintain backwards compatibility with the old internal representation of 1831 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1832 Record.push_back(0); 1833 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1834 } 1835 auto Source = N->getRawSource(); 1836 if (Source) 1837 Record.push_back(VE.getMetadataOrNullID(Source)); 1838 1839 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1840 Record.clear(); 1841 } 1842 1843 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1844 SmallVectorImpl<uint64_t> &Record, 1845 unsigned Abbrev) { 1846 assert(N->isDistinct() && "Expected distinct compile units"); 1847 Record.push_back(/* IsDistinct */ true); 1848 Record.push_back(N->getSourceLanguage()); 1849 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1850 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1851 Record.push_back(N->isOptimized()); 1852 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1853 Record.push_back(N->getRuntimeVersion()); 1854 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1855 Record.push_back(N->getEmissionKind()); 1856 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1857 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1858 Record.push_back(/* subprograms */ 0); 1859 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1860 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1861 Record.push_back(N->getDWOId()); 1862 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1863 Record.push_back(N->getSplitDebugInlining()); 1864 Record.push_back(N->getDebugInfoForProfiling()); 1865 Record.push_back((unsigned)N->getNameTableKind()); 1866 Record.push_back(N->getRangesBaseAddress()); 1867 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1868 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1869 1870 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1871 Record.clear(); 1872 } 1873 1874 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1875 SmallVectorImpl<uint64_t> &Record, 1876 unsigned Abbrev) { 1877 const uint64_t HasUnitFlag = 1 << 1; 1878 const uint64_t HasSPFlagsFlag = 1 << 2; 1879 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1880 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1881 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1882 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1883 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1884 Record.push_back(N->getLine()); 1885 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1886 Record.push_back(N->getScopeLine()); 1887 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1888 Record.push_back(N->getSPFlags()); 1889 Record.push_back(N->getVirtualIndex()); 1890 Record.push_back(N->getFlags()); 1891 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1892 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1893 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1894 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1895 Record.push_back(N->getThisAdjustment()); 1896 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1897 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1898 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 1899 1900 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1901 Record.clear(); 1902 } 1903 1904 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1905 SmallVectorImpl<uint64_t> &Record, 1906 unsigned Abbrev) { 1907 Record.push_back(N->isDistinct()); 1908 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1909 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1910 Record.push_back(N->getLine()); 1911 Record.push_back(N->getColumn()); 1912 1913 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1914 Record.clear(); 1915 } 1916 1917 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1918 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1919 unsigned Abbrev) { 1920 Record.push_back(N->isDistinct()); 1921 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1922 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1923 Record.push_back(N->getDiscriminator()); 1924 1925 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1926 Record.clear(); 1927 } 1928 1929 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1930 SmallVectorImpl<uint64_t> &Record, 1931 unsigned Abbrev) { 1932 Record.push_back(N->isDistinct()); 1933 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1934 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1935 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1936 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1937 Record.push_back(N->getLineNo()); 1938 1939 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1940 Record.clear(); 1941 } 1942 1943 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1944 SmallVectorImpl<uint64_t> &Record, 1945 unsigned Abbrev) { 1946 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1947 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1948 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1949 1950 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1951 Record.clear(); 1952 } 1953 1954 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1955 SmallVectorImpl<uint64_t> &Record, 1956 unsigned Abbrev) { 1957 Record.push_back(N->isDistinct()); 1958 Record.push_back(N->getMacinfoType()); 1959 Record.push_back(N->getLine()); 1960 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1961 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1962 1963 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1964 Record.clear(); 1965 } 1966 1967 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1968 SmallVectorImpl<uint64_t> &Record, 1969 unsigned Abbrev) { 1970 Record.push_back(N->isDistinct()); 1971 Record.push_back(N->getMacinfoType()); 1972 Record.push_back(N->getLine()); 1973 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1974 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1975 1976 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1977 Record.clear(); 1978 } 1979 1980 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1981 SmallVectorImpl<uint64_t> &Record) { 1982 Record.reserve(N->getArgs().size()); 1983 for (ValueAsMetadata *MD : N->getArgs()) 1984 Record.push_back(VE.getMetadataID(MD)); 1985 1986 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record); 1987 Record.clear(); 1988 } 1989 1990 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1991 SmallVectorImpl<uint64_t> &Record, 1992 unsigned Abbrev) { 1993 Record.push_back(N->isDistinct()); 1994 for (auto &I : N->operands()) 1995 Record.push_back(VE.getMetadataOrNullID(I)); 1996 Record.push_back(N->getLineNo()); 1997 Record.push_back(N->getIsDecl()); 1998 1999 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 2000 Record.clear(); 2001 } 2002 2003 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 2004 SmallVectorImpl<uint64_t> &Record, 2005 unsigned Abbrev) { 2006 // There are no arguments for this metadata type. 2007 Record.push_back(N->isDistinct()); 2008 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 2009 Record.clear(); 2010 } 2011 2012 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 2013 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 2014 unsigned Abbrev) { 2015 Record.push_back(N->isDistinct()); 2016 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2017 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2018 Record.push_back(N->isDefault()); 2019 2020 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 2021 Record.clear(); 2022 } 2023 2024 void ModuleBitcodeWriter::writeDITemplateValueParameter( 2025 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 2026 unsigned Abbrev) { 2027 Record.push_back(N->isDistinct()); 2028 Record.push_back(N->getTag()); 2029 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2030 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2031 Record.push_back(N->isDefault()); 2032 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 2033 2034 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 2035 Record.clear(); 2036 } 2037 2038 void ModuleBitcodeWriter::writeDIGlobalVariable( 2039 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 2040 unsigned Abbrev) { 2041 const uint64_t Version = 2 << 1; 2042 Record.push_back((uint64_t)N->isDistinct() | Version); 2043 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2044 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2045 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2046 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2047 Record.push_back(N->getLine()); 2048 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2049 Record.push_back(N->isLocalToUnit()); 2050 Record.push_back(N->isDefinition()); 2051 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2052 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2053 Record.push_back(N->getAlignInBits()); 2054 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2055 2056 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2057 Record.clear(); 2058 } 2059 2060 void ModuleBitcodeWriter::writeDILocalVariable( 2061 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2062 unsigned Abbrev) { 2063 // In order to support all possible bitcode formats in BitcodeReader we need 2064 // to distinguish the following cases: 2065 // 1) Record has no artificial tag (Record[1]), 2066 // has no obsolete inlinedAt field (Record[9]). 2067 // In this case Record size will be 8, HasAlignment flag is false. 2068 // 2) Record has artificial tag (Record[1]), 2069 // has no obsolete inlignedAt field (Record[9]). 2070 // In this case Record size will be 9, HasAlignment flag is false. 2071 // 3) Record has both artificial tag (Record[1]) and 2072 // obsolete inlignedAt field (Record[9]). 2073 // In this case Record size will be 10, HasAlignment flag is false. 2074 // 4) Record has neither artificial tag, nor inlignedAt field, but 2075 // HasAlignment flag is true and Record[8] contains alignment value. 2076 const uint64_t HasAlignmentFlag = 1 << 1; 2077 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2078 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2079 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2080 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2081 Record.push_back(N->getLine()); 2082 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2083 Record.push_back(N->getArg()); 2084 Record.push_back(N->getFlags()); 2085 Record.push_back(N->getAlignInBits()); 2086 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2087 2088 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2089 Record.clear(); 2090 } 2091 2092 void ModuleBitcodeWriter::writeDILabel( 2093 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2094 unsigned Abbrev) { 2095 Record.push_back((uint64_t)N->isDistinct()); 2096 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2097 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2098 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2099 Record.push_back(N->getLine()); 2100 2101 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2102 Record.clear(); 2103 } 2104 2105 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2106 SmallVectorImpl<uint64_t> &Record, 2107 unsigned Abbrev) { 2108 Record.reserve(N->getElements().size() + 1); 2109 const uint64_t Version = 3 << 1; 2110 Record.push_back((uint64_t)N->isDistinct() | Version); 2111 Record.append(N->elements_begin(), N->elements_end()); 2112 2113 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2114 Record.clear(); 2115 } 2116 2117 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2118 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2119 unsigned Abbrev) { 2120 Record.push_back(N->isDistinct()); 2121 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2122 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2123 2124 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2125 Record.clear(); 2126 } 2127 2128 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2129 SmallVectorImpl<uint64_t> &Record, 2130 unsigned Abbrev) { 2131 Record.push_back(N->isDistinct()); 2132 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2133 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2134 Record.push_back(N->getLine()); 2135 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2136 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2137 Record.push_back(N->getAttributes()); 2138 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2139 2140 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2141 Record.clear(); 2142 } 2143 2144 void ModuleBitcodeWriter::writeDIImportedEntity( 2145 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2146 unsigned Abbrev) { 2147 Record.push_back(N->isDistinct()); 2148 Record.push_back(N->getTag()); 2149 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2150 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2151 Record.push_back(N->getLine()); 2152 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2153 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2154 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2155 2156 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2157 Record.clear(); 2158 } 2159 2160 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2161 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2162 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2165 return Stream.EmitAbbrev(std::move(Abbv)); 2166 } 2167 2168 void ModuleBitcodeWriter::writeNamedMetadata( 2169 SmallVectorImpl<uint64_t> &Record) { 2170 if (M.named_metadata_empty()) 2171 return; 2172 2173 unsigned Abbrev = createNamedMetadataAbbrev(); 2174 for (const NamedMDNode &NMD : M.named_metadata()) { 2175 // Write name. 2176 StringRef Str = NMD.getName(); 2177 Record.append(Str.bytes_begin(), Str.bytes_end()); 2178 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2179 Record.clear(); 2180 2181 // Write named metadata operands. 2182 for (const MDNode *N : NMD.operands()) 2183 Record.push_back(VE.getMetadataID(N)); 2184 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2185 Record.clear(); 2186 } 2187 } 2188 2189 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2190 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2191 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2195 return Stream.EmitAbbrev(std::move(Abbv)); 2196 } 2197 2198 /// Write out a record for MDString. 2199 /// 2200 /// All the metadata strings in a metadata block are emitted in a single 2201 /// record. The sizes and strings themselves are shoved into a blob. 2202 void ModuleBitcodeWriter::writeMetadataStrings( 2203 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2204 if (Strings.empty()) 2205 return; 2206 2207 // Start the record with the number of strings. 2208 Record.push_back(bitc::METADATA_STRINGS); 2209 Record.push_back(Strings.size()); 2210 2211 // Emit the sizes of the strings in the blob. 2212 SmallString<256> Blob; 2213 { 2214 BitstreamWriter W(Blob); 2215 for (const Metadata *MD : Strings) 2216 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2217 W.FlushToWord(); 2218 } 2219 2220 // Add the offset to the strings to the record. 2221 Record.push_back(Blob.size()); 2222 2223 // Add the strings to the blob. 2224 for (const Metadata *MD : Strings) 2225 Blob.append(cast<MDString>(MD)->getString()); 2226 2227 // Emit the final record. 2228 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2229 Record.clear(); 2230 } 2231 2232 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2233 enum MetadataAbbrev : unsigned { 2234 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2235 #include "llvm/IR/Metadata.def" 2236 LastPlusOne 2237 }; 2238 2239 void ModuleBitcodeWriter::writeMetadataRecords( 2240 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2241 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2242 if (MDs.empty()) 2243 return; 2244 2245 // Initialize MDNode abbreviations. 2246 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2247 #include "llvm/IR/Metadata.def" 2248 2249 for (const Metadata *MD : MDs) { 2250 if (IndexPos) 2251 IndexPos->push_back(Stream.GetCurrentBitNo()); 2252 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2253 assert(N->isResolved() && "Expected forward references to be resolved"); 2254 2255 switch (N->getMetadataID()) { 2256 default: 2257 llvm_unreachable("Invalid MDNode subclass"); 2258 #define HANDLE_MDNODE_LEAF(CLASS) \ 2259 case Metadata::CLASS##Kind: \ 2260 if (MDAbbrevs) \ 2261 write##CLASS(cast<CLASS>(N), Record, \ 2262 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2263 else \ 2264 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2265 continue; 2266 #include "llvm/IR/Metadata.def" 2267 } 2268 } 2269 if (auto *AL = dyn_cast<DIArgList>(MD)) { 2270 writeDIArgList(AL, Record); 2271 continue; 2272 } 2273 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2274 } 2275 } 2276 2277 void ModuleBitcodeWriter::writeModuleMetadata() { 2278 if (!VE.hasMDs() && M.named_metadata_empty()) 2279 return; 2280 2281 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2282 SmallVector<uint64_t, 64> Record; 2283 2284 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2285 // block and load any metadata. 2286 std::vector<unsigned> MDAbbrevs; 2287 2288 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2289 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2290 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2291 createGenericDINodeAbbrev(); 2292 2293 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2294 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2297 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2298 2299 Abbv = std::make_shared<BitCodeAbbrev>(); 2300 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2303 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2304 2305 // Emit MDStrings together upfront. 2306 writeMetadataStrings(VE.getMDStrings(), Record); 2307 2308 // We only emit an index for the metadata record if we have more than a given 2309 // (naive) threshold of metadatas, otherwise it is not worth it. 2310 if (VE.getNonMDStrings().size() > IndexThreshold) { 2311 // Write a placeholder value in for the offset of the metadata index, 2312 // which is written after the records, so that it can include 2313 // the offset of each entry. The placeholder offset will be 2314 // updated after all records are emitted. 2315 uint64_t Vals[] = {0, 0}; 2316 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2317 } 2318 2319 // Compute and save the bit offset to the current position, which will be 2320 // patched when we emit the index later. We can simply subtract the 64-bit 2321 // fixed size from the current bit number to get the location to backpatch. 2322 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2323 2324 // This index will contain the bitpos for each individual record. 2325 std::vector<uint64_t> IndexPos; 2326 IndexPos.reserve(VE.getNonMDStrings().size()); 2327 2328 // Write all the records 2329 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2330 2331 if (VE.getNonMDStrings().size() > IndexThreshold) { 2332 // Now that we have emitted all the records we will emit the index. But 2333 // first 2334 // backpatch the forward reference so that the reader can skip the records 2335 // efficiently. 2336 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2337 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2338 2339 // Delta encode the index. 2340 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2341 for (auto &Elt : IndexPos) { 2342 auto EltDelta = Elt - PreviousValue; 2343 PreviousValue = Elt; 2344 Elt = EltDelta; 2345 } 2346 // Emit the index record. 2347 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2348 IndexPos.clear(); 2349 } 2350 2351 // Write the named metadata now. 2352 writeNamedMetadata(Record); 2353 2354 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2355 SmallVector<uint64_t, 4> Record; 2356 Record.push_back(VE.getValueID(&GO)); 2357 pushGlobalMetadataAttachment(Record, GO); 2358 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2359 }; 2360 for (const Function &F : M) 2361 if (F.isDeclaration() && F.hasMetadata()) 2362 AddDeclAttachedMetadata(F); 2363 // FIXME: Only store metadata for declarations here, and move data for global 2364 // variable definitions to a separate block (PR28134). 2365 for (const GlobalVariable &GV : M.globals()) 2366 if (GV.hasMetadata()) 2367 AddDeclAttachedMetadata(GV); 2368 2369 Stream.ExitBlock(); 2370 } 2371 2372 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2373 if (!VE.hasMDs()) 2374 return; 2375 2376 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2377 SmallVector<uint64_t, 64> Record; 2378 writeMetadataStrings(VE.getMDStrings(), Record); 2379 writeMetadataRecords(VE.getNonMDStrings(), Record); 2380 Stream.ExitBlock(); 2381 } 2382 2383 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2384 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2385 // [n x [id, mdnode]] 2386 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2387 GO.getAllMetadata(MDs); 2388 for (const auto &I : MDs) { 2389 Record.push_back(I.first); 2390 Record.push_back(VE.getMetadataID(I.second)); 2391 } 2392 } 2393 2394 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2395 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2396 2397 SmallVector<uint64_t, 64> Record; 2398 2399 if (F.hasMetadata()) { 2400 pushGlobalMetadataAttachment(Record, F); 2401 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2402 Record.clear(); 2403 } 2404 2405 // Write metadata attachments 2406 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2407 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2408 for (const BasicBlock &BB : F) 2409 for (const Instruction &I : BB) { 2410 MDs.clear(); 2411 I.getAllMetadataOtherThanDebugLoc(MDs); 2412 2413 // If no metadata, ignore instruction. 2414 if (MDs.empty()) continue; 2415 2416 Record.push_back(VE.getInstructionID(&I)); 2417 2418 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2419 Record.push_back(MDs[i].first); 2420 Record.push_back(VE.getMetadataID(MDs[i].second)); 2421 } 2422 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2423 Record.clear(); 2424 } 2425 2426 Stream.ExitBlock(); 2427 } 2428 2429 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2430 SmallVector<uint64_t, 64> Record; 2431 2432 // Write metadata kinds 2433 // METADATA_KIND - [n x [id, name]] 2434 SmallVector<StringRef, 8> Names; 2435 M.getMDKindNames(Names); 2436 2437 if (Names.empty()) return; 2438 2439 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2440 2441 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2442 Record.push_back(MDKindID); 2443 StringRef KName = Names[MDKindID]; 2444 Record.append(KName.begin(), KName.end()); 2445 2446 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2447 Record.clear(); 2448 } 2449 2450 Stream.ExitBlock(); 2451 } 2452 2453 void ModuleBitcodeWriter::writeOperandBundleTags() { 2454 // Write metadata kinds 2455 // 2456 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2457 // 2458 // OPERAND_BUNDLE_TAG - [strchr x N] 2459 2460 SmallVector<StringRef, 8> Tags; 2461 M.getOperandBundleTags(Tags); 2462 2463 if (Tags.empty()) 2464 return; 2465 2466 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2467 2468 SmallVector<uint64_t, 64> Record; 2469 2470 for (auto Tag : Tags) { 2471 Record.append(Tag.begin(), Tag.end()); 2472 2473 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2474 Record.clear(); 2475 } 2476 2477 Stream.ExitBlock(); 2478 } 2479 2480 void ModuleBitcodeWriter::writeSyncScopeNames() { 2481 SmallVector<StringRef, 8> SSNs; 2482 M.getContext().getSyncScopeNames(SSNs); 2483 if (SSNs.empty()) 2484 return; 2485 2486 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2487 2488 SmallVector<uint64_t, 64> Record; 2489 for (auto SSN : SSNs) { 2490 Record.append(SSN.begin(), SSN.end()); 2491 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2492 Record.clear(); 2493 } 2494 2495 Stream.ExitBlock(); 2496 } 2497 2498 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2499 bool isGlobal) { 2500 if (FirstVal == LastVal) return; 2501 2502 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2503 2504 unsigned AggregateAbbrev = 0; 2505 unsigned String8Abbrev = 0; 2506 unsigned CString7Abbrev = 0; 2507 unsigned CString6Abbrev = 0; 2508 // If this is a constant pool for the module, emit module-specific abbrevs. 2509 if (isGlobal) { 2510 // Abbrev for CST_CODE_AGGREGATE. 2511 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2512 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2515 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2516 2517 // Abbrev for CST_CODE_STRING. 2518 Abbv = std::make_shared<BitCodeAbbrev>(); 2519 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2522 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2523 // Abbrev for CST_CODE_CSTRING. 2524 Abbv = std::make_shared<BitCodeAbbrev>(); 2525 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2528 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2529 // Abbrev for CST_CODE_CSTRING. 2530 Abbv = std::make_shared<BitCodeAbbrev>(); 2531 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2533 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2534 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2535 } 2536 2537 SmallVector<uint64_t, 64> Record; 2538 2539 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2540 Type *LastTy = nullptr; 2541 for (unsigned i = FirstVal; i != LastVal; ++i) { 2542 const Value *V = Vals[i].first; 2543 // If we need to switch types, do so now. 2544 if (V->getType() != LastTy) { 2545 LastTy = V->getType(); 2546 Record.push_back(VE.getTypeID(LastTy)); 2547 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2548 CONSTANTS_SETTYPE_ABBREV); 2549 Record.clear(); 2550 } 2551 2552 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2553 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2554 Record.push_back( 2555 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2556 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2557 2558 // Add the asm string. 2559 const std::string &AsmStr = IA->getAsmString(); 2560 Record.push_back(AsmStr.size()); 2561 Record.append(AsmStr.begin(), AsmStr.end()); 2562 2563 // Add the constraint string. 2564 const std::string &ConstraintStr = IA->getConstraintString(); 2565 Record.push_back(ConstraintStr.size()); 2566 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2567 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2568 Record.clear(); 2569 continue; 2570 } 2571 const Constant *C = cast<Constant>(V); 2572 unsigned Code = -1U; 2573 unsigned AbbrevToUse = 0; 2574 if (C->isNullValue()) { 2575 Code = bitc::CST_CODE_NULL; 2576 } else if (isa<PoisonValue>(C)) { 2577 Code = bitc::CST_CODE_POISON; 2578 } else if (isa<UndefValue>(C)) { 2579 Code = bitc::CST_CODE_UNDEF; 2580 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2581 if (IV->getBitWidth() <= 64) { 2582 uint64_t V = IV->getSExtValue(); 2583 emitSignedInt64(Record, V); 2584 Code = bitc::CST_CODE_INTEGER; 2585 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2586 } else { // Wide integers, > 64 bits in size. 2587 emitWideAPInt(Record, IV->getValue()); 2588 Code = bitc::CST_CODE_WIDE_INTEGER; 2589 } 2590 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2591 Code = bitc::CST_CODE_FLOAT; 2592 Type *Ty = CFP->getType(); 2593 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2594 Ty->isDoubleTy()) { 2595 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2596 } else if (Ty->isX86_FP80Ty()) { 2597 // api needed to prevent premature destruction 2598 // bits are not in the same order as a normal i80 APInt, compensate. 2599 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2600 const uint64_t *p = api.getRawData(); 2601 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2602 Record.push_back(p[0] & 0xffffLL); 2603 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2604 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2605 const uint64_t *p = api.getRawData(); 2606 Record.push_back(p[0]); 2607 Record.push_back(p[1]); 2608 } else { 2609 assert(0 && "Unknown FP type!"); 2610 } 2611 } else if (isa<ConstantDataSequential>(C) && 2612 cast<ConstantDataSequential>(C)->isString()) { 2613 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2614 // Emit constant strings specially. 2615 unsigned NumElts = Str->getNumElements(); 2616 // If this is a null-terminated string, use the denser CSTRING encoding. 2617 if (Str->isCString()) { 2618 Code = bitc::CST_CODE_CSTRING; 2619 --NumElts; // Don't encode the null, which isn't allowed by char6. 2620 } else { 2621 Code = bitc::CST_CODE_STRING; 2622 AbbrevToUse = String8Abbrev; 2623 } 2624 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2625 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2626 for (unsigned i = 0; i != NumElts; ++i) { 2627 unsigned char V = Str->getElementAsInteger(i); 2628 Record.push_back(V); 2629 isCStr7 &= (V & 128) == 0; 2630 if (isCStrChar6) 2631 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2632 } 2633 2634 if (isCStrChar6) 2635 AbbrevToUse = CString6Abbrev; 2636 else if (isCStr7) 2637 AbbrevToUse = CString7Abbrev; 2638 } else if (const ConstantDataSequential *CDS = 2639 dyn_cast<ConstantDataSequential>(C)) { 2640 Code = bitc::CST_CODE_DATA; 2641 Type *EltTy = CDS->getElementType(); 2642 if (isa<IntegerType>(EltTy)) { 2643 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2644 Record.push_back(CDS->getElementAsInteger(i)); 2645 } else { 2646 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2647 Record.push_back( 2648 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2649 } 2650 } else if (isa<ConstantAggregate>(C)) { 2651 Code = bitc::CST_CODE_AGGREGATE; 2652 for (const Value *Op : C->operands()) 2653 Record.push_back(VE.getValueID(Op)); 2654 AbbrevToUse = AggregateAbbrev; 2655 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2656 switch (CE->getOpcode()) { 2657 default: 2658 if (Instruction::isCast(CE->getOpcode())) { 2659 Code = bitc::CST_CODE_CE_CAST; 2660 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2661 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2662 Record.push_back(VE.getValueID(C->getOperand(0))); 2663 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2664 } else { 2665 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2666 Code = bitc::CST_CODE_CE_BINOP; 2667 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2668 Record.push_back(VE.getValueID(C->getOperand(0))); 2669 Record.push_back(VE.getValueID(C->getOperand(1))); 2670 uint64_t Flags = getOptimizationFlags(CE); 2671 if (Flags != 0) 2672 Record.push_back(Flags); 2673 } 2674 break; 2675 case Instruction::FNeg: { 2676 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2677 Code = bitc::CST_CODE_CE_UNOP; 2678 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2679 Record.push_back(VE.getValueID(C->getOperand(0))); 2680 uint64_t Flags = getOptimizationFlags(CE); 2681 if (Flags != 0) 2682 Record.push_back(Flags); 2683 break; 2684 } 2685 case Instruction::GetElementPtr: { 2686 Code = bitc::CST_CODE_CE_GEP; 2687 const auto *GO = cast<GEPOperator>(C); 2688 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2689 if (std::optional<unsigned> Idx = GO->getInRangeIndex()) { 2690 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2691 Record.push_back((*Idx << 1) | GO->isInBounds()); 2692 } else if (GO->isInBounds()) 2693 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2694 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2695 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2696 Record.push_back(VE.getValueID(C->getOperand(i))); 2697 } 2698 break; 2699 } 2700 case Instruction::ExtractElement: 2701 Code = bitc::CST_CODE_CE_EXTRACTELT; 2702 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2703 Record.push_back(VE.getValueID(C->getOperand(0))); 2704 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2705 Record.push_back(VE.getValueID(C->getOperand(1))); 2706 break; 2707 case Instruction::InsertElement: 2708 Code = bitc::CST_CODE_CE_INSERTELT; 2709 Record.push_back(VE.getValueID(C->getOperand(0))); 2710 Record.push_back(VE.getValueID(C->getOperand(1))); 2711 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2712 Record.push_back(VE.getValueID(C->getOperand(2))); 2713 break; 2714 case Instruction::ShuffleVector: 2715 // If the return type and argument types are the same, this is a 2716 // standard shufflevector instruction. If the types are different, 2717 // then the shuffle is widening or truncating the input vectors, and 2718 // the argument type must also be encoded. 2719 if (C->getType() == C->getOperand(0)->getType()) { 2720 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2721 } else { 2722 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2723 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2724 } 2725 Record.push_back(VE.getValueID(C->getOperand(0))); 2726 Record.push_back(VE.getValueID(C->getOperand(1))); 2727 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2728 break; 2729 case Instruction::ICmp: 2730 case Instruction::FCmp: 2731 Code = bitc::CST_CODE_CE_CMP; 2732 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2733 Record.push_back(VE.getValueID(C->getOperand(0))); 2734 Record.push_back(VE.getValueID(C->getOperand(1))); 2735 Record.push_back(CE->getPredicate()); 2736 break; 2737 } 2738 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2739 Code = bitc::CST_CODE_BLOCKADDRESS; 2740 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2741 Record.push_back(VE.getValueID(BA->getFunction())); 2742 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2743 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2744 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2745 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2746 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2747 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2748 Code = bitc::CST_CODE_NO_CFI_VALUE; 2749 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2750 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2751 } else { 2752 #ifndef NDEBUG 2753 C->dump(); 2754 #endif 2755 llvm_unreachable("Unknown constant!"); 2756 } 2757 Stream.EmitRecord(Code, Record, AbbrevToUse); 2758 Record.clear(); 2759 } 2760 2761 Stream.ExitBlock(); 2762 } 2763 2764 void ModuleBitcodeWriter::writeModuleConstants() { 2765 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2766 2767 // Find the first constant to emit, which is the first non-globalvalue value. 2768 // We know globalvalues have been emitted by WriteModuleInfo. 2769 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2770 if (!isa<GlobalValue>(Vals[i].first)) { 2771 writeConstants(i, Vals.size(), true); 2772 return; 2773 } 2774 } 2775 } 2776 2777 /// pushValueAndType - The file has to encode both the value and type id for 2778 /// many values, because we need to know what type to create for forward 2779 /// references. However, most operands are not forward references, so this type 2780 /// field is not needed. 2781 /// 2782 /// This function adds V's value ID to Vals. If the value ID is higher than the 2783 /// instruction ID, then it is a forward reference, and it also includes the 2784 /// type ID. The value ID that is written is encoded relative to the InstID. 2785 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2786 SmallVectorImpl<unsigned> &Vals) { 2787 unsigned ValID = VE.getValueID(V); 2788 // Make encoding relative to the InstID. 2789 Vals.push_back(InstID - ValID); 2790 if (ValID >= InstID) { 2791 Vals.push_back(VE.getTypeID(V->getType())); 2792 return true; 2793 } 2794 return false; 2795 } 2796 2797 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2798 unsigned InstID) { 2799 SmallVector<unsigned, 64> Record; 2800 LLVMContext &C = CS.getContext(); 2801 2802 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2803 const auto &Bundle = CS.getOperandBundleAt(i); 2804 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2805 2806 for (auto &Input : Bundle.Inputs) 2807 pushValueAndType(Input, InstID, Record); 2808 2809 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2810 Record.clear(); 2811 } 2812 } 2813 2814 /// pushValue - Like pushValueAndType, but where the type of the value is 2815 /// omitted (perhaps it was already encoded in an earlier operand). 2816 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2817 SmallVectorImpl<unsigned> &Vals) { 2818 unsigned ValID = VE.getValueID(V); 2819 Vals.push_back(InstID - ValID); 2820 } 2821 2822 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2823 SmallVectorImpl<uint64_t> &Vals) { 2824 unsigned ValID = VE.getValueID(V); 2825 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2826 emitSignedInt64(Vals, diff); 2827 } 2828 2829 /// WriteInstruction - Emit an instruction to the specified stream. 2830 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2831 unsigned InstID, 2832 SmallVectorImpl<unsigned> &Vals) { 2833 unsigned Code = 0; 2834 unsigned AbbrevToUse = 0; 2835 VE.setInstructionID(&I); 2836 switch (I.getOpcode()) { 2837 default: 2838 if (Instruction::isCast(I.getOpcode())) { 2839 Code = bitc::FUNC_CODE_INST_CAST; 2840 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2841 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2842 Vals.push_back(VE.getTypeID(I.getType())); 2843 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2844 uint64_t Flags = getOptimizationFlags(&I); 2845 if (Flags != 0) { 2846 if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV) 2847 AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV; 2848 Vals.push_back(Flags); 2849 } 2850 } else { 2851 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2852 Code = bitc::FUNC_CODE_INST_BINOP; 2853 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2854 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2855 pushValue(I.getOperand(1), InstID, Vals); 2856 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2857 uint64_t Flags = getOptimizationFlags(&I); 2858 if (Flags != 0) { 2859 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2860 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2861 Vals.push_back(Flags); 2862 } 2863 } 2864 break; 2865 case Instruction::FNeg: { 2866 Code = bitc::FUNC_CODE_INST_UNOP; 2867 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2868 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2869 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2870 uint64_t Flags = getOptimizationFlags(&I); 2871 if (Flags != 0) { 2872 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2873 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2874 Vals.push_back(Flags); 2875 } 2876 break; 2877 } 2878 case Instruction::GetElementPtr: { 2879 Code = bitc::FUNC_CODE_INST_GEP; 2880 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2881 auto &GEPInst = cast<GetElementPtrInst>(I); 2882 Vals.push_back(GEPInst.isInBounds()); 2883 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2884 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2885 pushValueAndType(I.getOperand(i), InstID, Vals); 2886 break; 2887 } 2888 case Instruction::ExtractValue: { 2889 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2890 pushValueAndType(I.getOperand(0), InstID, Vals); 2891 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2892 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2893 break; 2894 } 2895 case Instruction::InsertValue: { 2896 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2897 pushValueAndType(I.getOperand(0), InstID, Vals); 2898 pushValueAndType(I.getOperand(1), InstID, Vals); 2899 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2900 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2901 break; 2902 } 2903 case Instruction::Select: { 2904 Code = bitc::FUNC_CODE_INST_VSELECT; 2905 pushValueAndType(I.getOperand(1), InstID, Vals); 2906 pushValue(I.getOperand(2), InstID, Vals); 2907 pushValueAndType(I.getOperand(0), InstID, Vals); 2908 uint64_t Flags = getOptimizationFlags(&I); 2909 if (Flags != 0) 2910 Vals.push_back(Flags); 2911 break; 2912 } 2913 case Instruction::ExtractElement: 2914 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2915 pushValueAndType(I.getOperand(0), InstID, Vals); 2916 pushValueAndType(I.getOperand(1), InstID, Vals); 2917 break; 2918 case Instruction::InsertElement: 2919 Code = bitc::FUNC_CODE_INST_INSERTELT; 2920 pushValueAndType(I.getOperand(0), InstID, Vals); 2921 pushValue(I.getOperand(1), InstID, Vals); 2922 pushValueAndType(I.getOperand(2), InstID, Vals); 2923 break; 2924 case Instruction::ShuffleVector: 2925 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2926 pushValueAndType(I.getOperand(0), InstID, Vals); 2927 pushValue(I.getOperand(1), InstID, Vals); 2928 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2929 Vals); 2930 break; 2931 case Instruction::ICmp: 2932 case Instruction::FCmp: { 2933 // compare returning Int1Ty or vector of Int1Ty 2934 Code = bitc::FUNC_CODE_INST_CMP2; 2935 pushValueAndType(I.getOperand(0), InstID, Vals); 2936 pushValue(I.getOperand(1), InstID, Vals); 2937 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2938 uint64_t Flags = getOptimizationFlags(&I); 2939 if (Flags != 0) 2940 Vals.push_back(Flags); 2941 break; 2942 } 2943 2944 case Instruction::Ret: 2945 { 2946 Code = bitc::FUNC_CODE_INST_RET; 2947 unsigned NumOperands = I.getNumOperands(); 2948 if (NumOperands == 0) 2949 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2950 else if (NumOperands == 1) { 2951 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2952 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2953 } else { 2954 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2955 pushValueAndType(I.getOperand(i), InstID, Vals); 2956 } 2957 } 2958 break; 2959 case Instruction::Br: 2960 { 2961 Code = bitc::FUNC_CODE_INST_BR; 2962 const BranchInst &II = cast<BranchInst>(I); 2963 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2964 if (II.isConditional()) { 2965 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2966 pushValue(II.getCondition(), InstID, Vals); 2967 } 2968 } 2969 break; 2970 case Instruction::Switch: 2971 { 2972 Code = bitc::FUNC_CODE_INST_SWITCH; 2973 const SwitchInst &SI = cast<SwitchInst>(I); 2974 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2975 pushValue(SI.getCondition(), InstID, Vals); 2976 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2977 for (auto Case : SI.cases()) { 2978 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2979 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2980 } 2981 } 2982 break; 2983 case Instruction::IndirectBr: 2984 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2985 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2986 // Encode the address operand as relative, but not the basic blocks. 2987 pushValue(I.getOperand(0), InstID, Vals); 2988 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2989 Vals.push_back(VE.getValueID(I.getOperand(i))); 2990 break; 2991 2992 case Instruction::Invoke: { 2993 const InvokeInst *II = cast<InvokeInst>(&I); 2994 const Value *Callee = II->getCalledOperand(); 2995 FunctionType *FTy = II->getFunctionType(); 2996 2997 if (II->hasOperandBundles()) 2998 writeOperandBundles(*II, InstID); 2999 3000 Code = bitc::FUNC_CODE_INST_INVOKE; 3001 3002 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 3003 Vals.push_back(II->getCallingConv() | 1 << 13); 3004 Vals.push_back(VE.getValueID(II->getNormalDest())); 3005 Vals.push_back(VE.getValueID(II->getUnwindDest())); 3006 Vals.push_back(VE.getTypeID(FTy)); 3007 pushValueAndType(Callee, InstID, Vals); 3008 3009 // Emit value #'s for the fixed parameters. 3010 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3011 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3012 3013 // Emit type/value pairs for varargs params. 3014 if (FTy->isVarArg()) { 3015 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 3016 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3017 } 3018 break; 3019 } 3020 case Instruction::Resume: 3021 Code = bitc::FUNC_CODE_INST_RESUME; 3022 pushValueAndType(I.getOperand(0), InstID, Vals); 3023 break; 3024 case Instruction::CleanupRet: { 3025 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 3026 const auto &CRI = cast<CleanupReturnInst>(I); 3027 pushValue(CRI.getCleanupPad(), InstID, Vals); 3028 if (CRI.hasUnwindDest()) 3029 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 3030 break; 3031 } 3032 case Instruction::CatchRet: { 3033 Code = bitc::FUNC_CODE_INST_CATCHRET; 3034 const auto &CRI = cast<CatchReturnInst>(I); 3035 pushValue(CRI.getCatchPad(), InstID, Vals); 3036 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 3037 break; 3038 } 3039 case Instruction::CleanupPad: 3040 case Instruction::CatchPad: { 3041 const auto &FuncletPad = cast<FuncletPadInst>(I); 3042 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 3043 : bitc::FUNC_CODE_INST_CLEANUPPAD; 3044 pushValue(FuncletPad.getParentPad(), InstID, Vals); 3045 3046 unsigned NumArgOperands = FuncletPad.arg_size(); 3047 Vals.push_back(NumArgOperands); 3048 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 3049 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 3050 break; 3051 } 3052 case Instruction::CatchSwitch: { 3053 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3054 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3055 3056 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3057 3058 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3059 Vals.push_back(NumHandlers); 3060 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3061 Vals.push_back(VE.getValueID(CatchPadBB)); 3062 3063 if (CatchSwitch.hasUnwindDest()) 3064 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3065 break; 3066 } 3067 case Instruction::CallBr: { 3068 const CallBrInst *CBI = cast<CallBrInst>(&I); 3069 const Value *Callee = CBI->getCalledOperand(); 3070 FunctionType *FTy = CBI->getFunctionType(); 3071 3072 if (CBI->hasOperandBundles()) 3073 writeOperandBundles(*CBI, InstID); 3074 3075 Code = bitc::FUNC_CODE_INST_CALLBR; 3076 3077 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3078 3079 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3080 1 << bitc::CALL_EXPLICIT_TYPE); 3081 3082 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3083 Vals.push_back(CBI->getNumIndirectDests()); 3084 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3085 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3086 3087 Vals.push_back(VE.getTypeID(FTy)); 3088 pushValueAndType(Callee, InstID, Vals); 3089 3090 // Emit value #'s for the fixed parameters. 3091 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3092 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3093 3094 // Emit type/value pairs for varargs params. 3095 if (FTy->isVarArg()) { 3096 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3097 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3098 } 3099 break; 3100 } 3101 case Instruction::Unreachable: 3102 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3103 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3104 break; 3105 3106 case Instruction::PHI: { 3107 const PHINode &PN = cast<PHINode>(I); 3108 Code = bitc::FUNC_CODE_INST_PHI; 3109 // With the newer instruction encoding, forward references could give 3110 // negative valued IDs. This is most common for PHIs, so we use 3111 // signed VBRs. 3112 SmallVector<uint64_t, 128> Vals64; 3113 Vals64.push_back(VE.getTypeID(PN.getType())); 3114 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3115 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3116 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3117 } 3118 3119 uint64_t Flags = getOptimizationFlags(&I); 3120 if (Flags != 0) 3121 Vals64.push_back(Flags); 3122 3123 // Emit a Vals64 vector and exit. 3124 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3125 Vals64.clear(); 3126 return; 3127 } 3128 3129 case Instruction::LandingPad: { 3130 const LandingPadInst &LP = cast<LandingPadInst>(I); 3131 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3132 Vals.push_back(VE.getTypeID(LP.getType())); 3133 Vals.push_back(LP.isCleanup()); 3134 Vals.push_back(LP.getNumClauses()); 3135 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3136 if (LP.isCatch(I)) 3137 Vals.push_back(LandingPadInst::Catch); 3138 else 3139 Vals.push_back(LandingPadInst::Filter); 3140 pushValueAndType(LP.getClause(I), InstID, Vals); 3141 } 3142 break; 3143 } 3144 3145 case Instruction::Alloca: { 3146 Code = bitc::FUNC_CODE_INST_ALLOCA; 3147 const AllocaInst &AI = cast<AllocaInst>(I); 3148 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3149 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3150 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3151 using APV = AllocaPackedValues; 3152 unsigned Record = 0; 3153 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3154 Bitfield::set<APV::AlignLower>( 3155 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3156 Bitfield::set<APV::AlignUpper>(Record, 3157 EncodedAlign >> APV::AlignLower::Bits); 3158 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3159 Bitfield::set<APV::ExplicitType>(Record, true); 3160 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3161 Vals.push_back(Record); 3162 3163 unsigned AS = AI.getAddressSpace(); 3164 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3165 Vals.push_back(AS); 3166 break; 3167 } 3168 3169 case Instruction::Load: 3170 if (cast<LoadInst>(I).isAtomic()) { 3171 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3172 pushValueAndType(I.getOperand(0), InstID, Vals); 3173 } else { 3174 Code = bitc::FUNC_CODE_INST_LOAD; 3175 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3176 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3177 } 3178 Vals.push_back(VE.getTypeID(I.getType())); 3179 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3180 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3181 if (cast<LoadInst>(I).isAtomic()) { 3182 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3183 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3184 } 3185 break; 3186 case Instruction::Store: 3187 if (cast<StoreInst>(I).isAtomic()) 3188 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3189 else 3190 Code = bitc::FUNC_CODE_INST_STORE; 3191 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3192 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3193 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3194 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3195 if (cast<StoreInst>(I).isAtomic()) { 3196 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3197 Vals.push_back( 3198 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3199 } 3200 break; 3201 case Instruction::AtomicCmpXchg: 3202 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3203 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3204 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3205 pushValue(I.getOperand(2), InstID, Vals); // newval. 3206 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3207 Vals.push_back( 3208 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3209 Vals.push_back( 3210 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3211 Vals.push_back( 3212 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3213 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3214 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3215 break; 3216 case Instruction::AtomicRMW: 3217 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3218 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3219 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3220 Vals.push_back( 3221 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3222 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3223 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3224 Vals.push_back( 3225 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3226 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3227 break; 3228 case Instruction::Fence: 3229 Code = bitc::FUNC_CODE_INST_FENCE; 3230 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3231 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3232 break; 3233 case Instruction::Call: { 3234 const CallInst &CI = cast<CallInst>(I); 3235 FunctionType *FTy = CI.getFunctionType(); 3236 3237 if (CI.hasOperandBundles()) 3238 writeOperandBundles(CI, InstID); 3239 3240 Code = bitc::FUNC_CODE_INST_CALL; 3241 3242 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3243 3244 unsigned Flags = getOptimizationFlags(&I); 3245 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3246 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3247 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3248 1 << bitc::CALL_EXPLICIT_TYPE | 3249 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3250 unsigned(Flags != 0) << bitc::CALL_FMF); 3251 if (Flags != 0) 3252 Vals.push_back(Flags); 3253 3254 Vals.push_back(VE.getTypeID(FTy)); 3255 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3256 3257 // Emit value #'s for the fixed parameters. 3258 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3259 // Check for labels (can happen with asm labels). 3260 if (FTy->getParamType(i)->isLabelTy()) 3261 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3262 else 3263 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3264 } 3265 3266 // Emit type/value pairs for varargs params. 3267 if (FTy->isVarArg()) { 3268 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3269 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3270 } 3271 break; 3272 } 3273 case Instruction::VAArg: 3274 Code = bitc::FUNC_CODE_INST_VAARG; 3275 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3276 pushValue(I.getOperand(0), InstID, Vals); // valist. 3277 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3278 break; 3279 case Instruction::Freeze: 3280 Code = bitc::FUNC_CODE_INST_FREEZE; 3281 pushValueAndType(I.getOperand(0), InstID, Vals); 3282 break; 3283 } 3284 3285 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3286 Vals.clear(); 3287 } 3288 3289 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3290 /// to allow clients to efficiently find the function body. 3291 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3292 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3293 // Get the offset of the VST we are writing, and backpatch it into 3294 // the VST forward declaration record. 3295 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3296 // The BitcodeStartBit was the stream offset of the identification block. 3297 VSTOffset -= bitcodeStartBit(); 3298 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3299 // Note that we add 1 here because the offset is relative to one word 3300 // before the start of the identification block, which was historically 3301 // always the start of the regular bitcode header. 3302 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3303 3304 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3305 3306 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3307 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3310 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3311 3312 for (const Function &F : M) { 3313 uint64_t Record[2]; 3314 3315 if (F.isDeclaration()) 3316 continue; 3317 3318 Record[0] = VE.getValueID(&F); 3319 3320 // Save the word offset of the function (from the start of the 3321 // actual bitcode written to the stream). 3322 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3323 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3324 // Note that we add 1 here because the offset is relative to one word 3325 // before the start of the identification block, which was historically 3326 // always the start of the regular bitcode header. 3327 Record[1] = BitcodeIndex / 32 + 1; 3328 3329 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3330 } 3331 3332 Stream.ExitBlock(); 3333 } 3334 3335 /// Emit names for arguments, instructions and basic blocks in a function. 3336 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3337 const ValueSymbolTable &VST) { 3338 if (VST.empty()) 3339 return; 3340 3341 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3342 3343 // FIXME: Set up the abbrev, we know how many values there are! 3344 // FIXME: We know if the type names can use 7-bit ascii. 3345 SmallVector<uint64_t, 64> NameVals; 3346 3347 for (const ValueName &Name : VST) { 3348 // Figure out the encoding to use for the name. 3349 StringEncoding Bits = getStringEncoding(Name.getKey()); 3350 3351 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3352 NameVals.push_back(VE.getValueID(Name.getValue())); 3353 3354 // VST_CODE_ENTRY: [valueid, namechar x N] 3355 // VST_CODE_BBENTRY: [bbid, namechar x N] 3356 unsigned Code; 3357 if (isa<BasicBlock>(Name.getValue())) { 3358 Code = bitc::VST_CODE_BBENTRY; 3359 if (Bits == SE_Char6) 3360 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3361 } else { 3362 Code = bitc::VST_CODE_ENTRY; 3363 if (Bits == SE_Char6) 3364 AbbrevToUse = VST_ENTRY_6_ABBREV; 3365 else if (Bits == SE_Fixed7) 3366 AbbrevToUse = VST_ENTRY_7_ABBREV; 3367 } 3368 3369 for (const auto P : Name.getKey()) 3370 NameVals.push_back((unsigned char)P); 3371 3372 // Emit the finished record. 3373 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3374 NameVals.clear(); 3375 } 3376 3377 Stream.ExitBlock(); 3378 } 3379 3380 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3381 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3382 unsigned Code; 3383 if (isa<BasicBlock>(Order.V)) 3384 Code = bitc::USELIST_CODE_BB; 3385 else 3386 Code = bitc::USELIST_CODE_DEFAULT; 3387 3388 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3389 Record.push_back(VE.getValueID(Order.V)); 3390 Stream.EmitRecord(Code, Record); 3391 } 3392 3393 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3394 assert(VE.shouldPreserveUseListOrder() && 3395 "Expected to be preserving use-list order"); 3396 3397 auto hasMore = [&]() { 3398 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3399 }; 3400 if (!hasMore()) 3401 // Nothing to do. 3402 return; 3403 3404 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3405 while (hasMore()) { 3406 writeUseList(std::move(VE.UseListOrders.back())); 3407 VE.UseListOrders.pop_back(); 3408 } 3409 Stream.ExitBlock(); 3410 } 3411 3412 /// Emit a function body to the module stream. 3413 void ModuleBitcodeWriter::writeFunction( 3414 const Function &F, 3415 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3416 // Save the bitcode index of the start of this function block for recording 3417 // in the VST. 3418 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3419 3420 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3421 VE.incorporateFunction(F); 3422 3423 SmallVector<unsigned, 64> Vals; 3424 3425 // Emit the number of basic blocks, so the reader can create them ahead of 3426 // time. 3427 Vals.push_back(VE.getBasicBlocks().size()); 3428 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3429 Vals.clear(); 3430 3431 // If there are function-local constants, emit them now. 3432 unsigned CstStart, CstEnd; 3433 VE.getFunctionConstantRange(CstStart, CstEnd); 3434 writeConstants(CstStart, CstEnd, false); 3435 3436 // If there is function-local metadata, emit it now. 3437 writeFunctionMetadata(F); 3438 3439 // Keep a running idea of what the instruction ID is. 3440 unsigned InstID = CstEnd; 3441 3442 bool NeedsMetadataAttachment = F.hasMetadata(); 3443 3444 DILocation *LastDL = nullptr; 3445 SmallSetVector<Function *, 4> BlockAddressUsers; 3446 3447 // Finally, emit all the instructions, in order. 3448 for (const BasicBlock &BB : F) { 3449 for (const Instruction &I : BB) { 3450 writeInstruction(I, InstID, Vals); 3451 3452 if (!I.getType()->isVoidTy()) 3453 ++InstID; 3454 3455 // If the instruction has metadata, write a metadata attachment later. 3456 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3457 3458 // If the instruction has a debug location, emit it. 3459 DILocation *DL = I.getDebugLoc(); 3460 if (!DL) 3461 continue; 3462 3463 if (DL == LastDL) { 3464 // Just repeat the same debug loc as last time. 3465 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3466 continue; 3467 } 3468 3469 Vals.push_back(DL->getLine()); 3470 Vals.push_back(DL->getColumn()); 3471 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3472 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3473 Vals.push_back(DL->isImplicitCode()); 3474 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3475 Vals.clear(); 3476 3477 LastDL = DL; 3478 } 3479 3480 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3481 SmallVector<Value *> Worklist{BA}; 3482 SmallPtrSet<Value *, 8> Visited{BA}; 3483 while (!Worklist.empty()) { 3484 Value *V = Worklist.pop_back_val(); 3485 for (User *U : V->users()) { 3486 if (auto *I = dyn_cast<Instruction>(U)) { 3487 Function *P = I->getFunction(); 3488 if (P != &F) 3489 BlockAddressUsers.insert(P); 3490 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3491 Visited.insert(U).second) 3492 Worklist.push_back(U); 3493 } 3494 } 3495 } 3496 } 3497 3498 if (!BlockAddressUsers.empty()) { 3499 Vals.resize(BlockAddressUsers.size()); 3500 for (auto I : llvm::enumerate(BlockAddressUsers)) 3501 Vals[I.index()] = VE.getValueID(I.value()); 3502 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3503 Vals.clear(); 3504 } 3505 3506 // Emit names for all the instructions etc. 3507 if (auto *Symtab = F.getValueSymbolTable()) 3508 writeFunctionLevelValueSymbolTable(*Symtab); 3509 3510 if (NeedsMetadataAttachment) 3511 writeFunctionMetadataAttachment(F); 3512 if (VE.shouldPreserveUseListOrder()) 3513 writeUseListBlock(&F); 3514 VE.purgeFunction(); 3515 Stream.ExitBlock(); 3516 } 3517 3518 // Emit blockinfo, which defines the standard abbreviations etc. 3519 void ModuleBitcodeWriter::writeBlockInfo() { 3520 // We only want to emit block info records for blocks that have multiple 3521 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3522 // Other blocks can define their abbrevs inline. 3523 Stream.EnterBlockInfoBlock(); 3524 3525 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3526 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3531 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3532 VST_ENTRY_8_ABBREV) 3533 llvm_unreachable("Unexpected abbrev ordering!"); 3534 } 3535 3536 { // 7-bit fixed width VST_CODE_ENTRY strings. 3537 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3538 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3539 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3540 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3541 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3542 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3543 VST_ENTRY_7_ABBREV) 3544 llvm_unreachable("Unexpected abbrev ordering!"); 3545 } 3546 { // 6-bit char6 VST_CODE_ENTRY strings. 3547 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3548 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3550 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3552 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3553 VST_ENTRY_6_ABBREV) 3554 llvm_unreachable("Unexpected abbrev ordering!"); 3555 } 3556 { // 6-bit char6 VST_CODE_BBENTRY strings. 3557 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3558 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3562 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3563 VST_BBENTRY_6_ABBREV) 3564 llvm_unreachable("Unexpected abbrev ordering!"); 3565 } 3566 3567 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3568 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3569 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3571 VE.computeBitsRequiredForTypeIndicies())); 3572 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3573 CONSTANTS_SETTYPE_ABBREV) 3574 llvm_unreachable("Unexpected abbrev ordering!"); 3575 } 3576 3577 { // INTEGER abbrev for CONSTANTS_BLOCK. 3578 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3579 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3581 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3582 CONSTANTS_INTEGER_ABBREV) 3583 llvm_unreachable("Unexpected abbrev ordering!"); 3584 } 3585 3586 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3587 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3588 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3591 VE.computeBitsRequiredForTypeIndicies())); 3592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3593 3594 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3595 CONSTANTS_CE_CAST_Abbrev) 3596 llvm_unreachable("Unexpected abbrev ordering!"); 3597 } 3598 { // NULL abbrev for CONSTANTS_BLOCK. 3599 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3600 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3601 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3602 CONSTANTS_NULL_Abbrev) 3603 llvm_unreachable("Unexpected abbrev ordering!"); 3604 } 3605 3606 // FIXME: This should only use space for first class types! 3607 3608 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3609 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3610 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3611 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3612 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3613 VE.computeBitsRequiredForTypeIndicies())); 3614 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3616 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3617 FUNCTION_INST_LOAD_ABBREV) 3618 llvm_unreachable("Unexpected abbrev ordering!"); 3619 } 3620 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3621 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3622 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3623 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3624 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3625 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3626 FUNCTION_INST_UNOP_ABBREV) 3627 llvm_unreachable("Unexpected abbrev ordering!"); 3628 } 3629 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3630 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3631 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3635 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3636 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3637 llvm_unreachable("Unexpected abbrev ordering!"); 3638 } 3639 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3640 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3641 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3642 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3643 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3644 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3645 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3646 FUNCTION_INST_BINOP_ABBREV) 3647 llvm_unreachable("Unexpected abbrev ordering!"); 3648 } 3649 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3650 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3651 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3652 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3653 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3654 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3655 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3656 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3657 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3658 llvm_unreachable("Unexpected abbrev ordering!"); 3659 } 3660 { // INST_CAST abbrev for FUNCTION_BLOCK. 3661 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3662 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3663 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3664 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3665 VE.computeBitsRequiredForTypeIndicies())); 3666 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3667 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3668 FUNCTION_INST_CAST_ABBREV) 3669 llvm_unreachable("Unexpected abbrev ordering!"); 3670 } 3671 { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK. 3672 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3673 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3674 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3675 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3676 VE.computeBitsRequiredForTypeIndicies())); 3677 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3678 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3679 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3680 FUNCTION_INST_CAST_FLAGS_ABBREV) 3681 llvm_unreachable("Unexpected abbrev ordering!"); 3682 } 3683 3684 { // INST_RET abbrev for FUNCTION_BLOCK. 3685 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3686 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3687 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3688 FUNCTION_INST_RET_VOID_ABBREV) 3689 llvm_unreachable("Unexpected abbrev ordering!"); 3690 } 3691 { // INST_RET abbrev for FUNCTION_BLOCK. 3692 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3693 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3694 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3695 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3696 FUNCTION_INST_RET_VAL_ABBREV) 3697 llvm_unreachable("Unexpected abbrev ordering!"); 3698 } 3699 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3700 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3701 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3702 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3703 FUNCTION_INST_UNREACHABLE_ABBREV) 3704 llvm_unreachable("Unexpected abbrev ordering!"); 3705 } 3706 { 3707 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3708 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3711 Log2_32_Ceil(VE.getTypes().size() + 1))); 3712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3714 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3715 FUNCTION_INST_GEP_ABBREV) 3716 llvm_unreachable("Unexpected abbrev ordering!"); 3717 } 3718 3719 Stream.ExitBlock(); 3720 } 3721 3722 /// Write the module path strings, currently only used when generating 3723 /// a combined index file. 3724 void IndexBitcodeWriter::writeModStrings() { 3725 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3726 3727 // TODO: See which abbrev sizes we actually need to emit 3728 3729 // 8-bit fixed-width MST_ENTRY strings. 3730 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3731 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3732 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3734 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3735 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3736 3737 // 7-bit fixed width MST_ENTRY strings. 3738 Abbv = std::make_shared<BitCodeAbbrev>(); 3739 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3740 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3741 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3742 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3743 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3744 3745 // 6-bit char6 MST_ENTRY strings. 3746 Abbv = std::make_shared<BitCodeAbbrev>(); 3747 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3748 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3749 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3751 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3752 3753 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3754 Abbv = std::make_shared<BitCodeAbbrev>(); 3755 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3756 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3761 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3762 3763 SmallVector<unsigned, 64> Vals; 3764 forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) { 3765 StringRef Key = MPSE.getKey(); 3766 const auto &Hash = MPSE.getValue(); 3767 StringEncoding Bits = getStringEncoding(Key); 3768 unsigned AbbrevToUse = Abbrev8Bit; 3769 if (Bits == SE_Char6) 3770 AbbrevToUse = Abbrev6Bit; 3771 else if (Bits == SE_Fixed7) 3772 AbbrevToUse = Abbrev7Bit; 3773 3774 auto ModuleId = ModuleIdMap.size(); 3775 ModuleIdMap[Key] = ModuleId; 3776 Vals.push_back(ModuleId); 3777 Vals.append(Key.begin(), Key.end()); 3778 3779 // Emit the finished record. 3780 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3781 3782 // Emit an optional hash for the module now 3783 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3784 Vals.assign(Hash.begin(), Hash.end()); 3785 // Emit the hash record. 3786 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3787 } 3788 3789 Vals.clear(); 3790 }); 3791 Stream.ExitBlock(); 3792 } 3793 3794 /// Write the function type metadata related records that need to appear before 3795 /// a function summary entry (whether per-module or combined). 3796 template <typename Fn> 3797 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3798 FunctionSummary *FS, 3799 Fn GetValueID) { 3800 if (!FS->type_tests().empty()) 3801 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3802 3803 SmallVector<uint64_t, 64> Record; 3804 3805 auto WriteVFuncIdVec = [&](uint64_t Ty, 3806 ArrayRef<FunctionSummary::VFuncId> VFs) { 3807 if (VFs.empty()) 3808 return; 3809 Record.clear(); 3810 for (auto &VF : VFs) { 3811 Record.push_back(VF.GUID); 3812 Record.push_back(VF.Offset); 3813 } 3814 Stream.EmitRecord(Ty, Record); 3815 }; 3816 3817 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3818 FS->type_test_assume_vcalls()); 3819 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3820 FS->type_checked_load_vcalls()); 3821 3822 auto WriteConstVCallVec = [&](uint64_t Ty, 3823 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3824 for (auto &VC : VCs) { 3825 Record.clear(); 3826 Record.push_back(VC.VFunc.GUID); 3827 Record.push_back(VC.VFunc.Offset); 3828 llvm::append_range(Record, VC.Args); 3829 Stream.EmitRecord(Ty, Record); 3830 } 3831 }; 3832 3833 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3834 FS->type_test_assume_const_vcalls()); 3835 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3836 FS->type_checked_load_const_vcalls()); 3837 3838 auto WriteRange = [&](ConstantRange Range) { 3839 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3840 assert(Range.getLower().getNumWords() == 1); 3841 assert(Range.getUpper().getNumWords() == 1); 3842 emitSignedInt64(Record, *Range.getLower().getRawData()); 3843 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3844 }; 3845 3846 if (!FS->paramAccesses().empty()) { 3847 Record.clear(); 3848 for (auto &Arg : FS->paramAccesses()) { 3849 size_t UndoSize = Record.size(); 3850 Record.push_back(Arg.ParamNo); 3851 WriteRange(Arg.Use); 3852 Record.push_back(Arg.Calls.size()); 3853 for (auto &Call : Arg.Calls) { 3854 Record.push_back(Call.ParamNo); 3855 std::optional<unsigned> ValueID = GetValueID(Call.Callee); 3856 if (!ValueID) { 3857 // If ValueID is unknown we can't drop just this call, we must drop 3858 // entire parameter. 3859 Record.resize(UndoSize); 3860 break; 3861 } 3862 Record.push_back(*ValueID); 3863 WriteRange(Call.Offsets); 3864 } 3865 } 3866 if (!Record.empty()) 3867 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3868 } 3869 } 3870 3871 /// Collect type IDs from type tests used by function. 3872 static void 3873 getReferencedTypeIds(FunctionSummary *FS, 3874 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3875 if (!FS->type_tests().empty()) 3876 for (auto &TT : FS->type_tests()) 3877 ReferencedTypeIds.insert(TT); 3878 3879 auto GetReferencedTypesFromVFuncIdVec = 3880 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3881 for (auto &VF : VFs) 3882 ReferencedTypeIds.insert(VF.GUID); 3883 }; 3884 3885 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3886 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3887 3888 auto GetReferencedTypesFromConstVCallVec = 3889 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3890 for (auto &VC : VCs) 3891 ReferencedTypeIds.insert(VC.VFunc.GUID); 3892 }; 3893 3894 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3895 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3896 } 3897 3898 static void writeWholeProgramDevirtResolutionByArg( 3899 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3900 const WholeProgramDevirtResolution::ByArg &ByArg) { 3901 NameVals.push_back(args.size()); 3902 llvm::append_range(NameVals, args); 3903 3904 NameVals.push_back(ByArg.TheKind); 3905 NameVals.push_back(ByArg.Info); 3906 NameVals.push_back(ByArg.Byte); 3907 NameVals.push_back(ByArg.Bit); 3908 } 3909 3910 static void writeWholeProgramDevirtResolution( 3911 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3912 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3913 NameVals.push_back(Id); 3914 3915 NameVals.push_back(Wpd.TheKind); 3916 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3917 NameVals.push_back(Wpd.SingleImplName.size()); 3918 3919 NameVals.push_back(Wpd.ResByArg.size()); 3920 for (auto &A : Wpd.ResByArg) 3921 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3922 } 3923 3924 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3925 StringTableBuilder &StrtabBuilder, 3926 const std::string &Id, 3927 const TypeIdSummary &Summary) { 3928 NameVals.push_back(StrtabBuilder.add(Id)); 3929 NameVals.push_back(Id.size()); 3930 3931 NameVals.push_back(Summary.TTRes.TheKind); 3932 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3933 NameVals.push_back(Summary.TTRes.AlignLog2); 3934 NameVals.push_back(Summary.TTRes.SizeM1); 3935 NameVals.push_back(Summary.TTRes.BitMask); 3936 NameVals.push_back(Summary.TTRes.InlineBits); 3937 3938 for (auto &W : Summary.WPDRes) 3939 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3940 W.second); 3941 } 3942 3943 static void writeTypeIdCompatibleVtableSummaryRecord( 3944 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3945 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3946 ValueEnumerator &VE) { 3947 NameVals.push_back(StrtabBuilder.add(Id)); 3948 NameVals.push_back(Id.size()); 3949 3950 for (auto &P : Summary) { 3951 NameVals.push_back(P.AddressPointOffset); 3952 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3953 } 3954 } 3955 3956 static void writeFunctionHeapProfileRecords( 3957 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, 3958 unsigned AllocAbbrev, bool PerModule, 3959 std::function<unsigned(const ValueInfo &VI)> GetValueID, 3960 std::function<unsigned(unsigned)> GetStackIndex) { 3961 SmallVector<uint64_t> Record; 3962 3963 for (auto &CI : FS->callsites()) { 3964 Record.clear(); 3965 // Per module callsite clones should always have a single entry of 3966 // value 0. 3967 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); 3968 Record.push_back(GetValueID(CI.Callee)); 3969 if (!PerModule) { 3970 Record.push_back(CI.StackIdIndices.size()); 3971 Record.push_back(CI.Clones.size()); 3972 } 3973 for (auto Id : CI.StackIdIndices) 3974 Record.push_back(GetStackIndex(Id)); 3975 if (!PerModule) { 3976 for (auto V : CI.Clones) 3977 Record.push_back(V); 3978 } 3979 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO 3980 : bitc::FS_COMBINED_CALLSITE_INFO, 3981 Record, CallsiteAbbrev); 3982 } 3983 3984 for (auto &AI : FS->allocs()) { 3985 Record.clear(); 3986 // Per module alloc versions should always have a single entry of 3987 // value 0. 3988 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); 3989 if (!PerModule) { 3990 Record.push_back(AI.MIBs.size()); 3991 Record.push_back(AI.Versions.size()); 3992 } 3993 for (auto &MIB : AI.MIBs) { 3994 Record.push_back((uint8_t)MIB.AllocType); 3995 Record.push_back(MIB.StackIdIndices.size()); 3996 for (auto Id : MIB.StackIdIndices) 3997 Record.push_back(GetStackIndex(Id)); 3998 } 3999 if (!PerModule) { 4000 for (auto V : AI.Versions) 4001 Record.push_back(V); 4002 } 4003 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO 4004 : bitc::FS_COMBINED_ALLOC_INFO, 4005 Record, AllocAbbrev); 4006 } 4007 } 4008 4009 // Helper to emit a single function summary record. 4010 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 4011 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 4012 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 4013 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F) { 4014 NameVals.push_back(ValueID); 4015 4016 FunctionSummary *FS = cast<FunctionSummary>(Summary); 4017 4018 writeFunctionTypeMetadataRecords( 4019 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> { 4020 return {VE.getValueID(VI.getValue())}; 4021 }); 4022 4023 writeFunctionHeapProfileRecords( 4024 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4025 /*PerModule*/ true, 4026 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, 4027 /*GetStackIndex*/ [&](unsigned I) { return I; }); 4028 4029 auto SpecialRefCnts = FS->specialRefCounts(); 4030 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4031 NameVals.push_back(FS->instCount()); 4032 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4033 NameVals.push_back(FS->refs().size()); 4034 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 4035 NameVals.push_back(SpecialRefCnts.second); // worefcnt 4036 4037 for (auto &RI : FS->refs()) 4038 NameVals.push_back(VE.getValueID(RI.getValue())); 4039 4040 bool HasProfileData = 4041 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 4042 for (auto &ECI : FS->calls()) { 4043 NameVals.push_back(getValueId(ECI.first)); 4044 if (HasProfileData) 4045 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 4046 else if (WriteRelBFToSummary) 4047 NameVals.push_back(ECI.second.RelBlockFreq); 4048 } 4049 4050 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4051 unsigned Code = 4052 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 4053 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 4054 : bitc::FS_PERMODULE)); 4055 4056 // Emit the finished record. 4057 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4058 NameVals.clear(); 4059 } 4060 4061 // Collect the global value references in the given variable's initializer, 4062 // and emit them in a summary record. 4063 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 4064 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 4065 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 4066 auto VI = Index->getValueInfo(V.getGUID()); 4067 if (!VI || VI.getSummaryList().empty()) { 4068 // Only declarations should not have a summary (a declaration might however 4069 // have a summary if the def was in module level asm). 4070 assert(V.isDeclaration()); 4071 return; 4072 } 4073 auto *Summary = VI.getSummaryList()[0].get(); 4074 NameVals.push_back(VE.getValueID(&V)); 4075 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 4076 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4077 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4078 4079 auto VTableFuncs = VS->vTableFuncs(); 4080 if (!VTableFuncs.empty()) 4081 NameVals.push_back(VS->refs().size()); 4082 4083 unsigned SizeBeforeRefs = NameVals.size(); 4084 for (auto &RI : VS->refs()) 4085 NameVals.push_back(VE.getValueID(RI.getValue())); 4086 // Sort the refs for determinism output, the vector returned by FS->refs() has 4087 // been initialized from a DenseSet. 4088 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 4089 4090 if (VTableFuncs.empty()) 4091 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 4092 FSModRefsAbbrev); 4093 else { 4094 // VTableFuncs pairs should already be sorted by offset. 4095 for (auto &P : VTableFuncs) { 4096 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 4097 NameVals.push_back(P.VTableOffset); 4098 } 4099 4100 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 4101 FSModVTableRefsAbbrev); 4102 } 4103 NameVals.clear(); 4104 } 4105 4106 /// Emit the per-module summary section alongside the rest of 4107 /// the module's bitcode. 4108 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 4109 // By default we compile with ThinLTO if the module has a summary, but the 4110 // client can request full LTO with a module flag. 4111 bool IsThinLTO = true; 4112 if (auto *MD = 4113 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 4114 IsThinLTO = MD->getZExtValue(); 4115 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 4116 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 4117 4); 4118 4119 Stream.EmitRecord( 4120 bitc::FS_VERSION, 4121 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4122 4123 // Write the index flags. 4124 uint64_t Flags = 0; 4125 // Bits 1-3 are set only in the combined index, skip them. 4126 if (Index->enableSplitLTOUnit()) 4127 Flags |= 0x8; 4128 if (Index->hasUnifiedLTO()) 4129 Flags |= 0x200; 4130 4131 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4132 4133 if (Index->begin() == Index->end()) { 4134 Stream.ExitBlock(); 4135 return; 4136 } 4137 4138 for (const auto &GVI : valueIds()) { 4139 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4140 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4141 } 4142 4143 if (!Index->stackIds().empty()) { 4144 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4145 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4146 // numids x stackid 4147 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4148 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4149 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4150 Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId); 4151 } 4152 4153 // Abbrev for FS_PERMODULE_PROFILE. 4154 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4155 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags 4158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4163 // numrefs x valueid, n x (valueid, hotness) 4164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4166 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4167 4168 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 4169 Abbv = std::make_shared<BitCodeAbbrev>(); 4170 if (WriteRelBFToSummary) 4171 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4172 else 4173 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 4174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4181 // numrefs x valueid, n x (valueid [, rel_block_freq]) 4182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4184 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4185 4186 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4187 Abbv = std::make_shared<BitCodeAbbrev>(); 4188 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4193 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4194 4195 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4196 Abbv = std::make_shared<BitCodeAbbrev>(); 4197 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4199 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4200 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4201 // numrefs x valueid, n x (valueid , offset) 4202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4204 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4205 4206 // Abbrev for FS_ALIAS. 4207 Abbv = std::make_shared<BitCodeAbbrev>(); 4208 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4212 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4213 4214 // Abbrev for FS_TYPE_ID_METADATA 4215 Abbv = std::make_shared<BitCodeAbbrev>(); 4216 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4217 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4218 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4219 // n x (valueid , offset) 4220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4222 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4223 4224 Abbv = std::make_shared<BitCodeAbbrev>(); 4225 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); 4226 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4227 // n x stackidindex 4228 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4230 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4231 4232 Abbv = std::make_shared<BitCodeAbbrev>(); 4233 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); 4234 // n x (alloc type, numstackids, numstackids x stackidindex) 4235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4237 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4238 4239 SmallVector<uint64_t, 64> NameVals; 4240 // Iterate over the list of functions instead of the Index to 4241 // ensure the ordering is stable. 4242 for (const Function &F : M) { 4243 // Summary emission does not support anonymous functions, they have to 4244 // renamed using the anonymous function renaming pass. 4245 if (!F.hasName()) 4246 report_fatal_error("Unexpected anonymous function when writing summary"); 4247 4248 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4249 if (!VI || VI.getSummaryList().empty()) { 4250 // Only declarations should not have a summary (a declaration might 4251 // however have a summary if the def was in module level asm). 4252 assert(F.isDeclaration()); 4253 continue; 4254 } 4255 auto *Summary = VI.getSummaryList()[0].get(); 4256 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4257 FSCallsAbbrev, FSCallsProfileAbbrev, 4258 CallsiteAbbrev, AllocAbbrev, F); 4259 } 4260 4261 // Capture references from GlobalVariable initializers, which are outside 4262 // of a function scope. 4263 for (const GlobalVariable &G : M.globals()) 4264 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4265 FSModVTableRefsAbbrev); 4266 4267 for (const GlobalAlias &A : M.aliases()) { 4268 auto *Aliasee = A.getAliaseeObject(); 4269 // Skip ifunc and nameless functions which don't have an entry in the 4270 // summary. 4271 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4272 continue; 4273 auto AliasId = VE.getValueID(&A); 4274 auto AliaseeId = VE.getValueID(Aliasee); 4275 NameVals.push_back(AliasId); 4276 auto *Summary = Index->getGlobalValueSummary(A); 4277 AliasSummary *AS = cast<AliasSummary>(Summary); 4278 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4279 NameVals.push_back(AliaseeId); 4280 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4281 NameVals.clear(); 4282 } 4283 4284 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4285 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4286 S.second, VE); 4287 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4288 TypeIdCompatibleVtableAbbrev); 4289 NameVals.clear(); 4290 } 4291 4292 if (Index->getBlockCount()) 4293 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4294 ArrayRef<uint64_t>{Index->getBlockCount()}); 4295 4296 Stream.ExitBlock(); 4297 } 4298 4299 /// Emit the combined summary section into the combined index file. 4300 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4301 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 4302 Stream.EmitRecord( 4303 bitc::FS_VERSION, 4304 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4305 4306 // Write the index flags. 4307 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4308 4309 for (const auto &GVI : valueIds()) { 4310 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4311 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4312 } 4313 4314 if (!StackIdIndices.empty()) { 4315 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4316 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4317 // numids x stackid 4318 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4319 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4320 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4321 // Write the stack ids used by this index, which will be a subset of those in 4322 // the full index in the case of distributed indexes. 4323 std::vector<uint64_t> StackIds; 4324 for (auto &I : StackIdIndices) 4325 StackIds.push_back(Index.getStackIdAtIndex(I)); 4326 Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId); 4327 } 4328 4329 // Abbrev for FS_COMBINED. 4330 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4331 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4341 // numrefs x valueid, n x (valueid) 4342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4344 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4345 4346 // Abbrev for FS_COMBINED_PROFILE. 4347 Abbv = std::make_shared<BitCodeAbbrev>(); 4348 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4358 // numrefs x valueid, n x (valueid, hotness) 4359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4361 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4362 4363 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4364 Abbv = std::make_shared<BitCodeAbbrev>(); 4365 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4371 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4372 4373 // Abbrev for FS_COMBINED_ALIAS. 4374 Abbv = std::make_shared<BitCodeAbbrev>(); 4375 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4380 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4381 4382 Abbv = std::make_shared<BitCodeAbbrev>(); 4383 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); 4384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices 4386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4387 // numstackindices x stackidindex, numver x version 4388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4390 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4391 4392 Abbv = std::make_shared<BitCodeAbbrev>(); 4393 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); 4394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4396 // nummib x (alloc type, numstackids, numstackids x stackidindex), 4397 // numver x version 4398 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4399 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4400 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4401 4402 // The aliases are emitted as a post-pass, and will point to the value 4403 // id of the aliasee. Save them in a vector for post-processing. 4404 SmallVector<AliasSummary *, 64> Aliases; 4405 4406 // Save the value id for each summary for alias emission. 4407 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4408 4409 SmallVector<uint64_t, 64> NameVals; 4410 4411 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4412 // with the type ids referenced by this index file. 4413 std::set<GlobalValue::GUID> ReferencedTypeIds; 4414 4415 // For local linkage, we also emit the original name separately 4416 // immediately after the record. 4417 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4418 // We don't need to emit the original name if we are writing the index for 4419 // distributed backends (in which case ModuleToSummariesForIndex is 4420 // non-null). The original name is only needed during the thin link, since 4421 // for SamplePGO the indirect call targets for local functions have 4422 // have the original name annotated in profile. 4423 // Continue to emit it when writing out the entire combined index, which is 4424 // used in testing the thin link via llvm-lto. 4425 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4426 return; 4427 NameVals.push_back(S.getOriginalName()); 4428 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4429 NameVals.clear(); 4430 }; 4431 4432 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4433 forEachSummary([&](GVInfo I, bool IsAliasee) { 4434 GlobalValueSummary *S = I.second; 4435 assert(S); 4436 DefOrUseGUIDs.insert(I.first); 4437 for (const ValueInfo &VI : S->refs()) 4438 DefOrUseGUIDs.insert(VI.getGUID()); 4439 4440 auto ValueId = getValueId(I.first); 4441 assert(ValueId); 4442 SummaryToValueIdMap[S] = *ValueId; 4443 4444 // If this is invoked for an aliasee, we want to record the above 4445 // mapping, but then not emit a summary entry (if the aliasee is 4446 // to be imported, we will invoke this separately with IsAliasee=false). 4447 if (IsAliasee) 4448 return; 4449 4450 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4451 // Will process aliases as a post-pass because the reader wants all 4452 // global to be loaded first. 4453 Aliases.push_back(AS); 4454 return; 4455 } 4456 4457 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4458 NameVals.push_back(*ValueId); 4459 assert(ModuleIdMap.count(VS->modulePath())); 4460 NameVals.push_back(ModuleIdMap[VS->modulePath()]); 4461 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4462 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4463 for (auto &RI : VS->refs()) { 4464 auto RefValueId = getValueId(RI.getGUID()); 4465 if (!RefValueId) 4466 continue; 4467 NameVals.push_back(*RefValueId); 4468 } 4469 4470 // Emit the finished record. 4471 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4472 FSModRefsAbbrev); 4473 NameVals.clear(); 4474 MaybeEmitOriginalName(*S); 4475 return; 4476 } 4477 4478 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { 4479 if (!VI) 4480 return std::nullopt; 4481 return getValueId(VI.getGUID()); 4482 }; 4483 4484 auto *FS = cast<FunctionSummary>(S); 4485 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4486 getReferencedTypeIds(FS, ReferencedTypeIds); 4487 4488 writeFunctionHeapProfileRecords( 4489 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4490 /*PerModule*/ false, 4491 /*GetValueId*/ [&](const ValueInfo &VI) -> unsigned { 4492 std::optional<unsigned> ValueID = GetValueId(VI); 4493 // This can happen in shared index files for distributed ThinLTO if 4494 // the callee function summary is not included. Record 0 which we 4495 // will have to deal with conservatively when doing any kind of 4496 // validation in the ThinLTO backends. 4497 if (!ValueID) 4498 return 0; 4499 return *ValueID; 4500 }, 4501 /*GetStackIndex*/ [&](unsigned I) { 4502 // Get the corresponding index into the list of StackIdIndices 4503 // actually being written for this combined index (which may be a 4504 // subset in the case of distributed indexes). 4505 auto Lower = llvm::lower_bound(StackIdIndices, I); 4506 return std::distance(StackIdIndices.begin(), Lower); 4507 }); 4508 4509 NameVals.push_back(*ValueId); 4510 assert(ModuleIdMap.count(FS->modulePath())); 4511 NameVals.push_back(ModuleIdMap[FS->modulePath()]); 4512 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4513 NameVals.push_back(FS->instCount()); 4514 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4515 NameVals.push_back(FS->entryCount()); 4516 4517 // Fill in below 4518 NameVals.push_back(0); // numrefs 4519 NameVals.push_back(0); // rorefcnt 4520 NameVals.push_back(0); // worefcnt 4521 4522 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4523 for (auto &RI : FS->refs()) { 4524 auto RefValueId = getValueId(RI.getGUID()); 4525 if (!RefValueId) 4526 continue; 4527 NameVals.push_back(*RefValueId); 4528 if (RI.isReadOnly()) 4529 RORefCnt++; 4530 else if (RI.isWriteOnly()) 4531 WORefCnt++; 4532 Count++; 4533 } 4534 NameVals[6] = Count; 4535 NameVals[7] = RORefCnt; 4536 NameVals[8] = WORefCnt; 4537 4538 bool HasProfileData = false; 4539 for (auto &EI : FS->calls()) { 4540 HasProfileData |= 4541 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4542 if (HasProfileData) 4543 break; 4544 } 4545 4546 for (auto &EI : FS->calls()) { 4547 // If this GUID doesn't have a value id, it doesn't have a function 4548 // summary and we don't need to record any calls to it. 4549 std::optional<unsigned> CallValueId = GetValueId(EI.first); 4550 if (!CallValueId) 4551 continue; 4552 NameVals.push_back(*CallValueId); 4553 if (HasProfileData) 4554 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4555 } 4556 4557 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4558 unsigned Code = 4559 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4560 4561 // Emit the finished record. 4562 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4563 NameVals.clear(); 4564 MaybeEmitOriginalName(*S); 4565 }); 4566 4567 for (auto *AS : Aliases) { 4568 auto AliasValueId = SummaryToValueIdMap[AS]; 4569 assert(AliasValueId); 4570 NameVals.push_back(AliasValueId); 4571 assert(ModuleIdMap.count(AS->modulePath())); 4572 NameVals.push_back(ModuleIdMap[AS->modulePath()]); 4573 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4574 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4575 assert(AliaseeValueId); 4576 NameVals.push_back(AliaseeValueId); 4577 4578 // Emit the finished record. 4579 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4580 NameVals.clear(); 4581 MaybeEmitOriginalName(*AS); 4582 4583 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4584 getReferencedTypeIds(FS, ReferencedTypeIds); 4585 } 4586 4587 if (!Index.cfiFunctionDefs().empty()) { 4588 for (auto &S : Index.cfiFunctionDefs()) { 4589 if (DefOrUseGUIDs.count( 4590 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4591 NameVals.push_back(StrtabBuilder.add(S)); 4592 NameVals.push_back(S.size()); 4593 } 4594 } 4595 if (!NameVals.empty()) { 4596 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4597 NameVals.clear(); 4598 } 4599 } 4600 4601 if (!Index.cfiFunctionDecls().empty()) { 4602 for (auto &S : Index.cfiFunctionDecls()) { 4603 if (DefOrUseGUIDs.count( 4604 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4605 NameVals.push_back(StrtabBuilder.add(S)); 4606 NameVals.push_back(S.size()); 4607 } 4608 } 4609 if (!NameVals.empty()) { 4610 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4611 NameVals.clear(); 4612 } 4613 } 4614 4615 // Walk the GUIDs that were referenced, and write the 4616 // corresponding type id records. 4617 for (auto &T : ReferencedTypeIds) { 4618 auto TidIter = Index.typeIds().equal_range(T); 4619 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4620 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4621 It->second.second); 4622 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4623 NameVals.clear(); 4624 } 4625 } 4626 4627 if (Index.getBlockCount()) 4628 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4629 ArrayRef<uint64_t>{Index.getBlockCount()}); 4630 4631 Stream.ExitBlock(); 4632 } 4633 4634 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4635 /// current llvm version, and a record for the epoch number. 4636 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4637 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4638 4639 // Write the "user readable" string identifying the bitcode producer 4640 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4641 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4642 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4643 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4644 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4645 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4646 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4647 4648 // Write the epoch version 4649 Abbv = std::make_shared<BitCodeAbbrev>(); 4650 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4651 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4652 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4653 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4654 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4655 Stream.ExitBlock(); 4656 } 4657 4658 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4659 // Emit the module's hash. 4660 // MODULE_CODE_HASH: [5*i32] 4661 if (GenerateHash) { 4662 uint32_t Vals[5]; 4663 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4664 Buffer.size() - BlockStartPos)); 4665 std::array<uint8_t, 20> Hash = Hasher.result(); 4666 for (int Pos = 0; Pos < 20; Pos += 4) { 4667 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4668 } 4669 4670 // Emit the finished record. 4671 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4672 4673 if (ModHash) 4674 // Save the written hash value. 4675 llvm::copy(Vals, std::begin(*ModHash)); 4676 } 4677 } 4678 4679 void ModuleBitcodeWriter::write() { 4680 writeIdentificationBlock(Stream); 4681 4682 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4683 size_t BlockStartPos = Buffer.size(); 4684 4685 writeModuleVersion(); 4686 4687 // Emit blockinfo, which defines the standard abbreviations etc. 4688 writeBlockInfo(); 4689 4690 // Emit information describing all of the types in the module. 4691 writeTypeTable(); 4692 4693 // Emit information about attribute groups. 4694 writeAttributeGroupTable(); 4695 4696 // Emit information about parameter attributes. 4697 writeAttributeTable(); 4698 4699 writeComdats(); 4700 4701 // Emit top-level description of module, including target triple, inline asm, 4702 // descriptors for global variables, and function prototype info. 4703 writeModuleInfo(); 4704 4705 // Emit constants. 4706 writeModuleConstants(); 4707 4708 // Emit metadata kind names. 4709 writeModuleMetadataKinds(); 4710 4711 // Emit metadata. 4712 writeModuleMetadata(); 4713 4714 // Emit module-level use-lists. 4715 if (VE.shouldPreserveUseListOrder()) 4716 writeUseListBlock(nullptr); 4717 4718 writeOperandBundleTags(); 4719 writeSyncScopeNames(); 4720 4721 // Emit function bodies. 4722 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4723 for (const Function &F : M) 4724 if (!F.isDeclaration()) 4725 writeFunction(F, FunctionToBitcodeIndex); 4726 4727 // Need to write after the above call to WriteFunction which populates 4728 // the summary information in the index. 4729 if (Index) 4730 writePerModuleGlobalValueSummary(); 4731 4732 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4733 4734 writeModuleHash(BlockStartPos); 4735 4736 Stream.ExitBlock(); 4737 } 4738 4739 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4740 uint32_t &Position) { 4741 support::endian::write32le(&Buffer[Position], Value); 4742 Position += 4; 4743 } 4744 4745 /// If generating a bc file on darwin, we have to emit a 4746 /// header and trailer to make it compatible with the system archiver. To do 4747 /// this we emit the following header, and then emit a trailer that pads the 4748 /// file out to be a multiple of 16 bytes. 4749 /// 4750 /// struct bc_header { 4751 /// uint32_t Magic; // 0x0B17C0DE 4752 /// uint32_t Version; // Version, currently always 0. 4753 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4754 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4755 /// uint32_t CPUType; // CPU specifier. 4756 /// ... potentially more later ... 4757 /// }; 4758 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4759 const Triple &TT) { 4760 unsigned CPUType = ~0U; 4761 4762 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4763 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4764 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4765 // specific constants here because they are implicitly part of the Darwin ABI. 4766 enum { 4767 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4768 DARWIN_CPU_TYPE_X86 = 7, 4769 DARWIN_CPU_TYPE_ARM = 12, 4770 DARWIN_CPU_TYPE_POWERPC = 18 4771 }; 4772 4773 Triple::ArchType Arch = TT.getArch(); 4774 if (Arch == Triple::x86_64) 4775 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4776 else if (Arch == Triple::x86) 4777 CPUType = DARWIN_CPU_TYPE_X86; 4778 else if (Arch == Triple::ppc) 4779 CPUType = DARWIN_CPU_TYPE_POWERPC; 4780 else if (Arch == Triple::ppc64) 4781 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4782 else if (Arch == Triple::arm || Arch == Triple::thumb) 4783 CPUType = DARWIN_CPU_TYPE_ARM; 4784 4785 // Traditional Bitcode starts after header. 4786 assert(Buffer.size() >= BWH_HeaderSize && 4787 "Expected header size to be reserved"); 4788 unsigned BCOffset = BWH_HeaderSize; 4789 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4790 4791 // Write the magic and version. 4792 unsigned Position = 0; 4793 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4794 writeInt32ToBuffer(0, Buffer, Position); // Version. 4795 writeInt32ToBuffer(BCOffset, Buffer, Position); 4796 writeInt32ToBuffer(BCSize, Buffer, Position); 4797 writeInt32ToBuffer(CPUType, Buffer, Position); 4798 4799 // If the file is not a multiple of 16 bytes, insert dummy padding. 4800 while (Buffer.size() & 15) 4801 Buffer.push_back(0); 4802 } 4803 4804 /// Helper to write the header common to all bitcode files. 4805 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4806 // Emit the file header. 4807 Stream.Emit((unsigned)'B', 8); 4808 Stream.Emit((unsigned)'C', 8); 4809 Stream.Emit(0x0, 4); 4810 Stream.Emit(0xC, 4); 4811 Stream.Emit(0xE, 4); 4812 Stream.Emit(0xD, 4); 4813 } 4814 4815 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4816 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4817 writeBitcodeHeader(*Stream); 4818 } 4819 4820 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4821 4822 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4823 Stream->EnterSubblock(Block, 3); 4824 4825 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4826 Abbv->Add(BitCodeAbbrevOp(Record)); 4827 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4828 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4829 4830 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4831 4832 Stream->ExitBlock(); 4833 } 4834 4835 void BitcodeWriter::writeSymtab() { 4836 assert(!WroteStrtab && !WroteSymtab); 4837 4838 // If any module has module-level inline asm, we will require a registered asm 4839 // parser for the target so that we can create an accurate symbol table for 4840 // the module. 4841 for (Module *M : Mods) { 4842 if (M->getModuleInlineAsm().empty()) 4843 continue; 4844 4845 std::string Err; 4846 const Triple TT(M->getTargetTriple()); 4847 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4848 if (!T || !T->hasMCAsmParser()) 4849 return; 4850 } 4851 4852 WroteSymtab = true; 4853 SmallVector<char, 0> Symtab; 4854 // The irsymtab::build function may be unable to create a symbol table if the 4855 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4856 // table is not required for correctness, but we still want to be able to 4857 // write malformed modules to bitcode files, so swallow the error. 4858 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4859 consumeError(std::move(E)); 4860 return; 4861 } 4862 4863 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4864 {Symtab.data(), Symtab.size()}); 4865 } 4866 4867 void BitcodeWriter::writeStrtab() { 4868 assert(!WroteStrtab); 4869 4870 std::vector<char> Strtab; 4871 StrtabBuilder.finalizeInOrder(); 4872 Strtab.resize(StrtabBuilder.getSize()); 4873 StrtabBuilder.write((uint8_t *)Strtab.data()); 4874 4875 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4876 {Strtab.data(), Strtab.size()}); 4877 4878 WroteStrtab = true; 4879 } 4880 4881 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4882 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4883 WroteStrtab = true; 4884 } 4885 4886 void BitcodeWriter::writeModule(const Module &M, 4887 bool ShouldPreserveUseListOrder, 4888 const ModuleSummaryIndex *Index, 4889 bool GenerateHash, ModuleHash *ModHash) { 4890 assert(!WroteStrtab); 4891 4892 // The Mods vector is used by irsymtab::build, which requires non-const 4893 // Modules in case it needs to materialize metadata. But the bitcode writer 4894 // requires that the module is materialized, so we can cast to non-const here, 4895 // after checking that it is in fact materialized. 4896 assert(M.isMaterialized()); 4897 Mods.push_back(const_cast<Module *>(&M)); 4898 4899 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4900 ShouldPreserveUseListOrder, Index, 4901 GenerateHash, ModHash); 4902 ModuleWriter.write(); 4903 } 4904 4905 void BitcodeWriter::writeIndex( 4906 const ModuleSummaryIndex *Index, 4907 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4908 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4909 ModuleToSummariesForIndex); 4910 IndexWriter.write(); 4911 } 4912 4913 /// Write the specified module to the specified output stream. 4914 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4915 bool ShouldPreserveUseListOrder, 4916 const ModuleSummaryIndex *Index, 4917 bool GenerateHash, ModuleHash *ModHash) { 4918 SmallVector<char, 0> Buffer; 4919 Buffer.reserve(256*1024); 4920 4921 // If this is darwin or another generic macho target, reserve space for the 4922 // header. 4923 Triple TT(M.getTargetTriple()); 4924 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4925 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4926 4927 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4928 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4929 ModHash); 4930 Writer.writeSymtab(); 4931 Writer.writeStrtab(); 4932 4933 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4934 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4935 4936 // Write the generated bitstream to "Out". 4937 if (!Buffer.empty()) 4938 Out.write((char *)&Buffer.front(), Buffer.size()); 4939 } 4940 4941 void IndexBitcodeWriter::write() { 4942 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4943 4944 writeModuleVersion(); 4945 4946 // Write the module paths in the combined index. 4947 writeModStrings(); 4948 4949 // Write the summary combined index records. 4950 writeCombinedGlobalValueSummary(); 4951 4952 Stream.ExitBlock(); 4953 } 4954 4955 // Write the specified module summary index to the given raw output stream, 4956 // where it will be written in a new bitcode block. This is used when 4957 // writing the combined index file for ThinLTO. When writing a subset of the 4958 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4959 void llvm::writeIndexToFile( 4960 const ModuleSummaryIndex &Index, raw_ostream &Out, 4961 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4962 SmallVector<char, 0> Buffer; 4963 Buffer.reserve(256 * 1024); 4964 4965 BitcodeWriter Writer(Buffer); 4966 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4967 Writer.writeStrtab(); 4968 4969 Out.write((char *)&Buffer.front(), Buffer.size()); 4970 } 4971 4972 namespace { 4973 4974 /// Class to manage the bitcode writing for a thin link bitcode file. 4975 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4976 /// ModHash is for use in ThinLTO incremental build, generated while writing 4977 /// the module bitcode file. 4978 const ModuleHash *ModHash; 4979 4980 public: 4981 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4982 BitstreamWriter &Stream, 4983 const ModuleSummaryIndex &Index, 4984 const ModuleHash &ModHash) 4985 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4986 /*ShouldPreserveUseListOrder=*/false, &Index), 4987 ModHash(&ModHash) {} 4988 4989 void write(); 4990 4991 private: 4992 void writeSimplifiedModuleInfo(); 4993 }; 4994 4995 } // end anonymous namespace 4996 4997 // This function writes a simpilified module info for thin link bitcode file. 4998 // It only contains the source file name along with the name(the offset and 4999 // size in strtab) and linkage for global values. For the global value info 5000 // entry, in order to keep linkage at offset 5, there are three zeros used 5001 // as padding. 5002 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 5003 SmallVector<unsigned, 64> Vals; 5004 // Emit the module's source file name. 5005 { 5006 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 5007 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 5008 if (Bits == SE_Char6) 5009 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 5010 else if (Bits == SE_Fixed7) 5011 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 5012 5013 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5014 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5015 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 5016 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 5017 Abbv->Add(AbbrevOpToUse); 5018 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5019 5020 for (const auto P : M.getSourceFileName()) 5021 Vals.push_back((unsigned char)P); 5022 5023 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 5024 Vals.clear(); 5025 } 5026 5027 // Emit the global variable information. 5028 for (const GlobalVariable &GV : M.globals()) { 5029 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 5030 Vals.push_back(StrtabBuilder.add(GV.getName())); 5031 Vals.push_back(GV.getName().size()); 5032 Vals.push_back(0); 5033 Vals.push_back(0); 5034 Vals.push_back(0); 5035 Vals.push_back(getEncodedLinkage(GV)); 5036 5037 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 5038 Vals.clear(); 5039 } 5040 5041 // Emit the function proto information. 5042 for (const Function &F : M) { 5043 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 5044 Vals.push_back(StrtabBuilder.add(F.getName())); 5045 Vals.push_back(F.getName().size()); 5046 Vals.push_back(0); 5047 Vals.push_back(0); 5048 Vals.push_back(0); 5049 Vals.push_back(getEncodedLinkage(F)); 5050 5051 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 5052 Vals.clear(); 5053 } 5054 5055 // Emit the alias information. 5056 for (const GlobalAlias &A : M.aliases()) { 5057 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 5058 Vals.push_back(StrtabBuilder.add(A.getName())); 5059 Vals.push_back(A.getName().size()); 5060 Vals.push_back(0); 5061 Vals.push_back(0); 5062 Vals.push_back(0); 5063 Vals.push_back(getEncodedLinkage(A)); 5064 5065 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 5066 Vals.clear(); 5067 } 5068 5069 // Emit the ifunc information. 5070 for (const GlobalIFunc &I : M.ifuncs()) { 5071 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 5072 Vals.push_back(StrtabBuilder.add(I.getName())); 5073 Vals.push_back(I.getName().size()); 5074 Vals.push_back(0); 5075 Vals.push_back(0); 5076 Vals.push_back(0); 5077 Vals.push_back(getEncodedLinkage(I)); 5078 5079 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 5080 Vals.clear(); 5081 } 5082 } 5083 5084 void ThinLinkBitcodeWriter::write() { 5085 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5086 5087 writeModuleVersion(); 5088 5089 writeSimplifiedModuleInfo(); 5090 5091 writePerModuleGlobalValueSummary(); 5092 5093 // Write module hash. 5094 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 5095 5096 Stream.ExitBlock(); 5097 } 5098 5099 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 5100 const ModuleSummaryIndex &Index, 5101 const ModuleHash &ModHash) { 5102 assert(!WroteStrtab); 5103 5104 // The Mods vector is used by irsymtab::build, which requires non-const 5105 // Modules in case it needs to materialize metadata. But the bitcode writer 5106 // requires that the module is materialized, so we can cast to non-const here, 5107 // after checking that it is in fact materialized. 5108 assert(M.isMaterialized()); 5109 Mods.push_back(const_cast<Module *>(&M)); 5110 5111 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 5112 ModHash); 5113 ThinLinkWriter.write(); 5114 } 5115 5116 // Write the specified thin link bitcode file to the given raw output stream, 5117 // where it will be written in a new bitcode block. This is used when 5118 // writing the per-module index file for ThinLTO. 5119 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 5120 const ModuleSummaryIndex &Index, 5121 const ModuleHash &ModHash) { 5122 SmallVector<char, 0> Buffer; 5123 Buffer.reserve(256 * 1024); 5124 5125 BitcodeWriter Writer(Buffer); 5126 Writer.writeThinLinkBitcode(M, Index, ModHash); 5127 Writer.writeSymtab(); 5128 Writer.writeStrtab(); 5129 5130 Out.write((char *)&Buffer.front(), Buffer.size()); 5131 } 5132 5133 static const char *getSectionNameForBitcode(const Triple &T) { 5134 switch (T.getObjectFormat()) { 5135 case Triple::MachO: 5136 return "__LLVM,__bitcode"; 5137 case Triple::COFF: 5138 case Triple::ELF: 5139 case Triple::Wasm: 5140 case Triple::UnknownObjectFormat: 5141 return ".llvmbc"; 5142 case Triple::GOFF: 5143 llvm_unreachable("GOFF is not yet implemented"); 5144 break; 5145 case Triple::SPIRV: 5146 llvm_unreachable("SPIRV is not yet implemented"); 5147 break; 5148 case Triple::XCOFF: 5149 llvm_unreachable("XCOFF is not yet implemented"); 5150 break; 5151 case Triple::DXContainer: 5152 llvm_unreachable("DXContainer is not yet implemented"); 5153 break; 5154 } 5155 llvm_unreachable("Unimplemented ObjectFormatType"); 5156 } 5157 5158 static const char *getSectionNameForCommandline(const Triple &T) { 5159 switch (T.getObjectFormat()) { 5160 case Triple::MachO: 5161 return "__LLVM,__cmdline"; 5162 case Triple::COFF: 5163 case Triple::ELF: 5164 case Triple::Wasm: 5165 case Triple::UnknownObjectFormat: 5166 return ".llvmcmd"; 5167 case Triple::GOFF: 5168 llvm_unreachable("GOFF is not yet implemented"); 5169 break; 5170 case Triple::SPIRV: 5171 llvm_unreachable("SPIRV is not yet implemented"); 5172 break; 5173 case Triple::XCOFF: 5174 llvm_unreachable("XCOFF is not yet implemented"); 5175 break; 5176 case Triple::DXContainer: 5177 llvm_unreachable("DXC is not yet implemented"); 5178 break; 5179 } 5180 llvm_unreachable("Unimplemented ObjectFormatType"); 5181 } 5182 5183 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 5184 bool EmbedBitcode, bool EmbedCmdline, 5185 const std::vector<uint8_t> &CmdArgs) { 5186 // Save llvm.compiler.used and remove it. 5187 SmallVector<Constant *, 2> UsedArray; 5188 SmallVector<GlobalValue *, 4> UsedGlobals; 5189 Type *UsedElementType = PointerType::getUnqual(M.getContext()); 5190 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 5191 for (auto *GV : UsedGlobals) { 5192 if (GV->getName() != "llvm.embedded.module" && 5193 GV->getName() != "llvm.cmdline") 5194 UsedArray.push_back( 5195 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5196 } 5197 if (Used) 5198 Used->eraseFromParent(); 5199 5200 // Embed the bitcode for the llvm module. 5201 std::string Data; 5202 ArrayRef<uint8_t> ModuleData; 5203 Triple T(M.getTargetTriple()); 5204 5205 if (EmbedBitcode) { 5206 if (Buf.getBufferSize() == 0 || 5207 !isBitcode((const unsigned char *)Buf.getBufferStart(), 5208 (const unsigned char *)Buf.getBufferEnd())) { 5209 // If the input is LLVM Assembly, bitcode is produced by serializing 5210 // the module. Use-lists order need to be preserved in this case. 5211 llvm::raw_string_ostream OS(Data); 5212 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 5213 ModuleData = 5214 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 5215 } else 5216 // If the input is LLVM bitcode, write the input byte stream directly. 5217 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5218 Buf.getBufferSize()); 5219 } 5220 llvm::Constant *ModuleConstant = 5221 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5222 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5223 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5224 ModuleConstant); 5225 GV->setSection(getSectionNameForBitcode(T)); 5226 // Set alignment to 1 to prevent padding between two contributions from input 5227 // sections after linking. 5228 GV->setAlignment(Align(1)); 5229 UsedArray.push_back( 5230 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5231 if (llvm::GlobalVariable *Old = 5232 M.getGlobalVariable("llvm.embedded.module", true)) { 5233 assert(Old->hasZeroLiveUses() && 5234 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5235 GV->takeName(Old); 5236 Old->eraseFromParent(); 5237 } else { 5238 GV->setName("llvm.embedded.module"); 5239 } 5240 5241 // Skip if only bitcode needs to be embedded. 5242 if (EmbedCmdline) { 5243 // Embed command-line options. 5244 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5245 CmdArgs.size()); 5246 llvm::Constant *CmdConstant = 5247 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5248 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5249 llvm::GlobalValue::PrivateLinkage, 5250 CmdConstant); 5251 GV->setSection(getSectionNameForCommandline(T)); 5252 GV->setAlignment(Align(1)); 5253 UsedArray.push_back( 5254 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5255 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5256 assert(Old->hasZeroLiveUses() && 5257 "llvm.cmdline can only be used once in llvm.compiler.used"); 5258 GV->takeName(Old); 5259 Old->eraseFromParent(); 5260 } else { 5261 GV->setName("llvm.cmdline"); 5262 } 5263 } 5264 5265 if (UsedArray.empty()) 5266 return; 5267 5268 // Recreate llvm.compiler.used. 5269 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5270 auto *NewUsed = new GlobalVariable( 5271 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5272 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5273 NewUsed->setSection("llvm.metadata"); 5274 } 5275