1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeCommon.h" 28 #include "llvm/Bitcode/BitcodeReader.h" 29 #include "llvm/Bitcode/LLVMBitCodes.h" 30 #include "llvm/Bitstream/BitCodes.h" 31 #include "llvm/Bitstream/BitstreamWriter.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/TargetRegistry.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 static cl::opt<unsigned> 86 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 87 cl::desc("Number of metadatas above which we emit an index " 88 "to enable lazy-loading")); 89 static cl::opt<uint32_t> FlushThreshold( 90 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 91 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 92 93 static cl::opt<bool> WriteRelBFToSummary( 94 "write-relbf-to-summary", cl::Hidden, cl::init(false), 95 cl::desc("Write relative block frequency to function summary ")); 96 97 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 98 99 namespace { 100 101 /// These are manifest constants used by the bitcode writer. They do not need to 102 /// be kept in sync with the reader, but need to be consistent within this file. 103 enum { 104 // VALUE_SYMTAB_BLOCK abbrev id's. 105 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 106 VST_ENTRY_7_ABBREV, 107 VST_ENTRY_6_ABBREV, 108 VST_BBENTRY_6_ABBREV, 109 110 // CONSTANTS_BLOCK abbrev id's. 111 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 112 CONSTANTS_INTEGER_ABBREV, 113 CONSTANTS_CE_CAST_Abbrev, 114 CONSTANTS_NULL_Abbrev, 115 116 // FUNCTION_BLOCK abbrev id's. 117 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 118 FUNCTION_INST_UNOP_ABBREV, 119 FUNCTION_INST_UNOP_FLAGS_ABBREV, 120 FUNCTION_INST_BINOP_ABBREV, 121 FUNCTION_INST_BINOP_FLAGS_ABBREV, 122 FUNCTION_INST_CAST_ABBREV, 123 FUNCTION_INST_RET_VOID_ABBREV, 124 FUNCTION_INST_RET_VAL_ABBREV, 125 FUNCTION_INST_UNREACHABLE_ABBREV, 126 FUNCTION_INST_GEP_ABBREV, 127 }; 128 129 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 130 /// file type. 131 class BitcodeWriterBase { 132 protected: 133 /// The stream created and owned by the client. 134 BitstreamWriter &Stream; 135 136 StringTableBuilder &StrtabBuilder; 137 138 public: 139 /// Constructs a BitcodeWriterBase object that writes to the provided 140 /// \p Stream. 141 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 142 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 143 144 protected: 145 void writeModuleVersion(); 146 }; 147 148 void BitcodeWriterBase::writeModuleVersion() { 149 // VERSION: [version#] 150 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 151 } 152 153 /// Base class to manage the module bitcode writing, currently subclassed for 154 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 155 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 156 protected: 157 /// The Module to write to bitcode. 158 const Module &M; 159 160 /// Enumerates ids for all values in the module. 161 ValueEnumerator VE; 162 163 /// Optional per-module index to write for ThinLTO. 164 const ModuleSummaryIndex *Index; 165 166 /// Map that holds the correspondence between GUIDs in the summary index, 167 /// that came from indirect call profiles, and a value id generated by this 168 /// class to use in the VST and summary block records. 169 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 170 171 /// Tracks the last value id recorded in the GUIDToValueMap. 172 unsigned GlobalValueId; 173 174 /// Saves the offset of the VSTOffset record that must eventually be 175 /// backpatched with the offset of the actual VST. 176 uint64_t VSTOffsetPlaceholder = 0; 177 178 public: 179 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 180 /// writing to the provided \p Buffer. 181 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 182 BitstreamWriter &Stream, 183 bool ShouldPreserveUseListOrder, 184 const ModuleSummaryIndex *Index) 185 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 186 VE(M, ShouldPreserveUseListOrder), Index(Index) { 187 // Assign ValueIds to any callee values in the index that came from 188 // indirect call profiles and were recorded as a GUID not a Value* 189 // (which would have been assigned an ID by the ValueEnumerator). 190 // The starting ValueId is just after the number of values in the 191 // ValueEnumerator, so that they can be emitted in the VST. 192 GlobalValueId = VE.getValues().size(); 193 if (!Index) 194 return; 195 for (const auto &GUIDSummaryLists : *Index) 196 // Examine all summaries for this GUID. 197 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 198 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 199 // For each call in the function summary, see if the call 200 // is to a GUID (which means it is for an indirect call, 201 // otherwise we would have a Value for it). If so, synthesize 202 // a value id. 203 for (auto &CallEdge : FS->calls()) 204 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 205 assignValueId(CallEdge.first.getGUID()); 206 } 207 208 protected: 209 void writePerModuleGlobalValueSummary(); 210 211 private: 212 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 213 GlobalValueSummary *Summary, 214 unsigned ValueID, 215 unsigned FSCallsAbbrev, 216 unsigned FSCallsProfileAbbrev, 217 const Function &F); 218 void writeModuleLevelReferences(const GlobalVariable &V, 219 SmallVector<uint64_t, 64> &NameVals, 220 unsigned FSModRefsAbbrev, 221 unsigned FSModVTableRefsAbbrev); 222 223 void assignValueId(GlobalValue::GUID ValGUID) { 224 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 225 } 226 227 unsigned getValueId(GlobalValue::GUID ValGUID) { 228 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 229 // Expect that any GUID value had a value Id assigned by an 230 // earlier call to assignValueId. 231 assert(VMI != GUIDToValueIdMap.end() && 232 "GUID does not have assigned value Id"); 233 return VMI->second; 234 } 235 236 // Helper to get the valueId for the type of value recorded in VI. 237 unsigned getValueId(ValueInfo VI) { 238 if (!VI.haveGVs() || !VI.getValue()) 239 return getValueId(VI.getGUID()); 240 return VE.getValueID(VI.getValue()); 241 } 242 243 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 244 }; 245 246 /// Class to manage the bitcode writing for a module. 247 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 248 /// Pointer to the buffer allocated by caller for bitcode writing. 249 const SmallVectorImpl<char> &Buffer; 250 251 /// True if a module hash record should be written. 252 bool GenerateHash; 253 254 /// If non-null, when GenerateHash is true, the resulting hash is written 255 /// into ModHash. 256 ModuleHash *ModHash; 257 258 SHA1 Hasher; 259 260 /// The start bit of the identification block. 261 uint64_t BitcodeStartBit; 262 263 public: 264 /// Constructs a ModuleBitcodeWriter object for the given Module, 265 /// writing to the provided \p Buffer. 266 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 267 StringTableBuilder &StrtabBuilder, 268 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 269 const ModuleSummaryIndex *Index, bool GenerateHash, 270 ModuleHash *ModHash = nullptr) 271 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 272 ShouldPreserveUseListOrder, Index), 273 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 274 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 275 276 /// Emit the current module to the bitstream. 277 void write(); 278 279 private: 280 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 281 282 size_t addToStrtab(StringRef Str); 283 284 void writeAttributeGroupTable(); 285 void writeAttributeTable(); 286 void writeTypeTable(); 287 void writeComdats(); 288 void writeValueSymbolTableForwardDecl(); 289 void writeModuleInfo(); 290 void writeValueAsMetadata(const ValueAsMetadata *MD, 291 SmallVectorImpl<uint64_t> &Record); 292 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 293 unsigned Abbrev); 294 unsigned createDILocationAbbrev(); 295 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 296 unsigned &Abbrev); 297 unsigned createGenericDINodeAbbrev(); 298 void writeGenericDINode(const GenericDINode *N, 299 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 300 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 301 unsigned Abbrev); 302 void writeDIGenericSubrange(const DIGenericSubrange *N, 303 SmallVectorImpl<uint64_t> &Record, 304 unsigned Abbrev); 305 void writeDIEnumerator(const DIEnumerator *N, 306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 307 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 308 unsigned Abbrev); 309 void writeDIStringType(const DIStringType *N, 310 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 311 void writeDIDerivedType(const DIDerivedType *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDICompositeType(const DICompositeType *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDISubroutineType(const DISubroutineType *N, 316 SmallVectorImpl<uint64_t> &Record, 317 unsigned Abbrev); 318 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDICompileUnit(const DICompileUnit *N, 321 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 322 void writeDISubprogram(const DISubprogram *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDILexicalBlock(const DILexicalBlock *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 327 SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDICommonBlock(const DICommonBlock *N, 330 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 331 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 332 unsigned Abbrev); 333 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 342 SmallVectorImpl<uint64_t> &Record, 343 unsigned Abbrev); 344 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 345 SmallVectorImpl<uint64_t> &Record, 346 unsigned Abbrev); 347 void writeDIGlobalVariable(const DIGlobalVariable *N, 348 SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 void writeDILocalVariable(const DILocalVariable *N, 351 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 352 void writeDILabel(const DILabel *N, 353 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 354 void writeDIExpression(const DIExpression *N, 355 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 356 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 357 SmallVectorImpl<uint64_t> &Record, 358 unsigned Abbrev); 359 void writeDIObjCProperty(const DIObjCProperty *N, 360 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 361 void writeDIImportedEntity(const DIImportedEntity *N, 362 SmallVectorImpl<uint64_t> &Record, 363 unsigned Abbrev); 364 unsigned createNamedMetadataAbbrev(); 365 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 366 unsigned createMetadataStringsAbbrev(); 367 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 368 SmallVectorImpl<uint64_t> &Record); 369 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 370 SmallVectorImpl<uint64_t> &Record, 371 std::vector<unsigned> *MDAbbrevs = nullptr, 372 std::vector<uint64_t> *IndexPos = nullptr); 373 void writeModuleMetadata(); 374 void writeFunctionMetadata(const Function &F); 375 void writeFunctionMetadataAttachment(const Function &F); 376 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 377 const GlobalObject &GO); 378 void writeModuleMetadataKinds(); 379 void writeOperandBundleTags(); 380 void writeSyncScopeNames(); 381 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 382 void writeModuleConstants(); 383 bool pushValueAndType(const Value *V, unsigned InstID, 384 SmallVectorImpl<unsigned> &Vals); 385 void writeOperandBundles(const CallBase &CB, unsigned InstID); 386 void pushValue(const Value *V, unsigned InstID, 387 SmallVectorImpl<unsigned> &Vals); 388 void pushValueSigned(const Value *V, unsigned InstID, 389 SmallVectorImpl<uint64_t> &Vals); 390 void writeInstruction(const Instruction &I, unsigned InstID, 391 SmallVectorImpl<unsigned> &Vals); 392 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 393 void writeGlobalValueSymbolTable( 394 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 395 void writeUseList(UseListOrder &&Order); 396 void writeUseListBlock(const Function *F); 397 void 398 writeFunction(const Function &F, 399 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 400 void writeBlockInfo(); 401 void writeModuleHash(size_t BlockStartPos); 402 403 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 404 return unsigned(SSID); 405 } 406 407 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 408 }; 409 410 /// Class to manage the bitcode writing for a combined index. 411 class IndexBitcodeWriter : public BitcodeWriterBase { 412 /// The combined index to write to bitcode. 413 const ModuleSummaryIndex &Index; 414 415 /// When writing a subset of the index for distributed backends, client 416 /// provides a map of modules to the corresponding GUIDs/summaries to write. 417 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 418 419 /// Map that holds the correspondence between the GUID used in the combined 420 /// index and a value id generated by this class to use in references. 421 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 422 423 /// Tracks the last value id recorded in the GUIDToValueMap. 424 unsigned GlobalValueId = 0; 425 426 public: 427 /// Constructs a IndexBitcodeWriter object for the given combined index, 428 /// writing to the provided \p Buffer. When writing a subset of the index 429 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 430 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 431 const ModuleSummaryIndex &Index, 432 const std::map<std::string, GVSummaryMapTy> 433 *ModuleToSummariesForIndex = nullptr) 434 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 435 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 436 // Assign unique value ids to all summaries to be written, for use 437 // in writing out the call graph edges. Save the mapping from GUID 438 // to the new global value id to use when writing those edges, which 439 // are currently saved in the index in terms of GUID. 440 forEachSummary([&](GVInfo I, bool) { 441 GUIDToValueIdMap[I.first] = ++GlobalValueId; 442 }); 443 } 444 445 /// The below iterator returns the GUID and associated summary. 446 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 447 448 /// Calls the callback for each value GUID and summary to be written to 449 /// bitcode. This hides the details of whether they are being pulled from the 450 /// entire index or just those in a provided ModuleToSummariesForIndex map. 451 template<typename Functor> 452 void forEachSummary(Functor Callback) { 453 if (ModuleToSummariesForIndex) { 454 for (auto &M : *ModuleToSummariesForIndex) 455 for (auto &Summary : M.second) { 456 Callback(Summary, false); 457 // Ensure aliasee is handled, e.g. for assigning a valueId, 458 // even if we are not importing the aliasee directly (the 459 // imported alias will contain a copy of aliasee). 460 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 461 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 462 } 463 } else { 464 for (auto &Summaries : Index) 465 for (auto &Summary : Summaries.second.SummaryList) 466 Callback({Summaries.first, Summary.get()}, false); 467 } 468 } 469 470 /// Calls the callback for each entry in the modulePaths StringMap that 471 /// should be written to the module path string table. This hides the details 472 /// of whether they are being pulled from the entire index or just those in a 473 /// provided ModuleToSummariesForIndex map. 474 template <typename Functor> void forEachModule(Functor Callback) { 475 if (ModuleToSummariesForIndex) { 476 for (const auto &M : *ModuleToSummariesForIndex) { 477 const auto &MPI = Index.modulePaths().find(M.first); 478 if (MPI == Index.modulePaths().end()) { 479 // This should only happen if the bitcode file was empty, in which 480 // case we shouldn't be importing (the ModuleToSummariesForIndex 481 // would only include the module we are writing and index for). 482 assert(ModuleToSummariesForIndex->size() == 1); 483 continue; 484 } 485 Callback(*MPI); 486 } 487 } else { 488 for (const auto &MPSE : Index.modulePaths()) 489 Callback(MPSE); 490 } 491 } 492 493 /// Main entry point for writing a combined index to bitcode. 494 void write(); 495 496 private: 497 void writeModStrings(); 498 void writeCombinedGlobalValueSummary(); 499 500 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 501 auto VMI = GUIDToValueIdMap.find(ValGUID); 502 if (VMI == GUIDToValueIdMap.end()) 503 return None; 504 return VMI->second; 505 } 506 507 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 508 }; 509 510 } // end anonymous namespace 511 512 static unsigned getEncodedCastOpcode(unsigned Opcode) { 513 switch (Opcode) { 514 default: llvm_unreachable("Unknown cast instruction!"); 515 case Instruction::Trunc : return bitc::CAST_TRUNC; 516 case Instruction::ZExt : return bitc::CAST_ZEXT; 517 case Instruction::SExt : return bitc::CAST_SEXT; 518 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 519 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 520 case Instruction::UIToFP : return bitc::CAST_UITOFP; 521 case Instruction::SIToFP : return bitc::CAST_SITOFP; 522 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 523 case Instruction::FPExt : return bitc::CAST_FPEXT; 524 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 525 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 526 case Instruction::BitCast : return bitc::CAST_BITCAST; 527 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 528 } 529 } 530 531 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 532 switch (Opcode) { 533 default: llvm_unreachable("Unknown binary instruction!"); 534 case Instruction::FNeg: return bitc::UNOP_FNEG; 535 } 536 } 537 538 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 539 switch (Opcode) { 540 default: llvm_unreachable("Unknown binary instruction!"); 541 case Instruction::Add: 542 case Instruction::FAdd: return bitc::BINOP_ADD; 543 case Instruction::Sub: 544 case Instruction::FSub: return bitc::BINOP_SUB; 545 case Instruction::Mul: 546 case Instruction::FMul: return bitc::BINOP_MUL; 547 case Instruction::UDiv: return bitc::BINOP_UDIV; 548 case Instruction::FDiv: 549 case Instruction::SDiv: return bitc::BINOP_SDIV; 550 case Instruction::URem: return bitc::BINOP_UREM; 551 case Instruction::FRem: 552 case Instruction::SRem: return bitc::BINOP_SREM; 553 case Instruction::Shl: return bitc::BINOP_SHL; 554 case Instruction::LShr: return bitc::BINOP_LSHR; 555 case Instruction::AShr: return bitc::BINOP_ASHR; 556 case Instruction::And: return bitc::BINOP_AND; 557 case Instruction::Or: return bitc::BINOP_OR; 558 case Instruction::Xor: return bitc::BINOP_XOR; 559 } 560 } 561 562 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 563 switch (Op) { 564 default: llvm_unreachable("Unknown RMW operation!"); 565 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 566 case AtomicRMWInst::Add: return bitc::RMW_ADD; 567 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 568 case AtomicRMWInst::And: return bitc::RMW_AND; 569 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 570 case AtomicRMWInst::Or: return bitc::RMW_OR; 571 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 572 case AtomicRMWInst::Max: return bitc::RMW_MAX; 573 case AtomicRMWInst::Min: return bitc::RMW_MIN; 574 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 575 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 576 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 577 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 578 } 579 } 580 581 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 582 switch (Ordering) { 583 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 584 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 585 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 586 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 587 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 588 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 589 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 590 } 591 llvm_unreachable("Invalid ordering"); 592 } 593 594 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 595 StringRef Str, unsigned AbbrevToUse) { 596 SmallVector<unsigned, 64> Vals; 597 598 // Code: [strchar x N] 599 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 600 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 601 AbbrevToUse = 0; 602 Vals.push_back(Str[i]); 603 } 604 605 // Emit the finished record. 606 Stream.EmitRecord(Code, Vals, AbbrevToUse); 607 } 608 609 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 610 switch (Kind) { 611 case Attribute::Alignment: 612 return bitc::ATTR_KIND_ALIGNMENT; 613 case Attribute::AllocSize: 614 return bitc::ATTR_KIND_ALLOC_SIZE; 615 case Attribute::AlwaysInline: 616 return bitc::ATTR_KIND_ALWAYS_INLINE; 617 case Attribute::ArgMemOnly: 618 return bitc::ATTR_KIND_ARGMEMONLY; 619 case Attribute::Builtin: 620 return bitc::ATTR_KIND_BUILTIN; 621 case Attribute::ByVal: 622 return bitc::ATTR_KIND_BY_VAL; 623 case Attribute::Convergent: 624 return bitc::ATTR_KIND_CONVERGENT; 625 case Attribute::InAlloca: 626 return bitc::ATTR_KIND_IN_ALLOCA; 627 case Attribute::Cold: 628 return bitc::ATTR_KIND_COLD; 629 case Attribute::DisableSanitizerInstrumentation: 630 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 631 case Attribute::Hot: 632 return bitc::ATTR_KIND_HOT; 633 case Attribute::ElementType: 634 return bitc::ATTR_KIND_ELEMENTTYPE; 635 case Attribute::InaccessibleMemOnly: 636 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 637 case Attribute::InaccessibleMemOrArgMemOnly: 638 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 639 case Attribute::InlineHint: 640 return bitc::ATTR_KIND_INLINE_HINT; 641 case Attribute::InReg: 642 return bitc::ATTR_KIND_IN_REG; 643 case Attribute::JumpTable: 644 return bitc::ATTR_KIND_JUMP_TABLE; 645 case Attribute::MinSize: 646 return bitc::ATTR_KIND_MIN_SIZE; 647 case Attribute::Naked: 648 return bitc::ATTR_KIND_NAKED; 649 case Attribute::Nest: 650 return bitc::ATTR_KIND_NEST; 651 case Attribute::NoAlias: 652 return bitc::ATTR_KIND_NO_ALIAS; 653 case Attribute::NoBuiltin: 654 return bitc::ATTR_KIND_NO_BUILTIN; 655 case Attribute::NoCallback: 656 return bitc::ATTR_KIND_NO_CALLBACK; 657 case Attribute::NoCapture: 658 return bitc::ATTR_KIND_NO_CAPTURE; 659 case Attribute::NoDuplicate: 660 return bitc::ATTR_KIND_NO_DUPLICATE; 661 case Attribute::NoFree: 662 return bitc::ATTR_KIND_NOFREE; 663 case Attribute::NoImplicitFloat: 664 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 665 case Attribute::NoInline: 666 return bitc::ATTR_KIND_NO_INLINE; 667 case Attribute::NoRecurse: 668 return bitc::ATTR_KIND_NO_RECURSE; 669 case Attribute::NoMerge: 670 return bitc::ATTR_KIND_NO_MERGE; 671 case Attribute::NonLazyBind: 672 return bitc::ATTR_KIND_NON_LAZY_BIND; 673 case Attribute::NonNull: 674 return bitc::ATTR_KIND_NON_NULL; 675 case Attribute::Dereferenceable: 676 return bitc::ATTR_KIND_DEREFERENCEABLE; 677 case Attribute::DereferenceableOrNull: 678 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 679 case Attribute::NoRedZone: 680 return bitc::ATTR_KIND_NO_RED_ZONE; 681 case Attribute::NoReturn: 682 return bitc::ATTR_KIND_NO_RETURN; 683 case Attribute::NoSync: 684 return bitc::ATTR_KIND_NOSYNC; 685 case Attribute::NoCfCheck: 686 return bitc::ATTR_KIND_NOCF_CHECK; 687 case Attribute::NoProfile: 688 return bitc::ATTR_KIND_NO_PROFILE; 689 case Attribute::NoUnwind: 690 return bitc::ATTR_KIND_NO_UNWIND; 691 case Attribute::NoSanitizeCoverage: 692 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 693 case Attribute::NullPointerIsValid: 694 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 695 case Attribute::OptForFuzzing: 696 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 697 case Attribute::OptimizeForSize: 698 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 699 case Attribute::OptimizeNone: 700 return bitc::ATTR_KIND_OPTIMIZE_NONE; 701 case Attribute::ReadNone: 702 return bitc::ATTR_KIND_READ_NONE; 703 case Attribute::ReadOnly: 704 return bitc::ATTR_KIND_READ_ONLY; 705 case Attribute::Returned: 706 return bitc::ATTR_KIND_RETURNED; 707 case Attribute::ReturnsTwice: 708 return bitc::ATTR_KIND_RETURNS_TWICE; 709 case Attribute::SExt: 710 return bitc::ATTR_KIND_S_EXT; 711 case Attribute::Speculatable: 712 return bitc::ATTR_KIND_SPECULATABLE; 713 case Attribute::StackAlignment: 714 return bitc::ATTR_KIND_STACK_ALIGNMENT; 715 case Attribute::StackProtect: 716 return bitc::ATTR_KIND_STACK_PROTECT; 717 case Attribute::StackProtectReq: 718 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 719 case Attribute::StackProtectStrong: 720 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 721 case Attribute::SafeStack: 722 return bitc::ATTR_KIND_SAFESTACK; 723 case Attribute::ShadowCallStack: 724 return bitc::ATTR_KIND_SHADOWCALLSTACK; 725 case Attribute::StrictFP: 726 return bitc::ATTR_KIND_STRICT_FP; 727 case Attribute::StructRet: 728 return bitc::ATTR_KIND_STRUCT_RET; 729 case Attribute::SanitizeAddress: 730 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 731 case Attribute::SanitizeHWAddress: 732 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 733 case Attribute::SanitizeThread: 734 return bitc::ATTR_KIND_SANITIZE_THREAD; 735 case Attribute::SanitizeMemory: 736 return bitc::ATTR_KIND_SANITIZE_MEMORY; 737 case Attribute::SpeculativeLoadHardening: 738 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 739 case Attribute::SwiftError: 740 return bitc::ATTR_KIND_SWIFT_ERROR; 741 case Attribute::SwiftSelf: 742 return bitc::ATTR_KIND_SWIFT_SELF; 743 case Attribute::SwiftAsync: 744 return bitc::ATTR_KIND_SWIFT_ASYNC; 745 case Attribute::UWTable: 746 return bitc::ATTR_KIND_UW_TABLE; 747 case Attribute::VScaleRange: 748 return bitc::ATTR_KIND_VSCALE_RANGE; 749 case Attribute::WillReturn: 750 return bitc::ATTR_KIND_WILLRETURN; 751 case Attribute::WriteOnly: 752 return bitc::ATTR_KIND_WRITEONLY; 753 case Attribute::ZExt: 754 return bitc::ATTR_KIND_Z_EXT; 755 case Attribute::ImmArg: 756 return bitc::ATTR_KIND_IMMARG; 757 case Attribute::SanitizeMemTag: 758 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 759 case Attribute::Preallocated: 760 return bitc::ATTR_KIND_PREALLOCATED; 761 case Attribute::NoUndef: 762 return bitc::ATTR_KIND_NOUNDEF; 763 case Attribute::ByRef: 764 return bitc::ATTR_KIND_BYREF; 765 case Attribute::MustProgress: 766 return bitc::ATTR_KIND_MUSTPROGRESS; 767 case Attribute::EndAttrKinds: 768 llvm_unreachable("Can not encode end-attribute kinds marker."); 769 case Attribute::None: 770 llvm_unreachable("Can not encode none-attribute."); 771 case Attribute::EmptyKey: 772 case Attribute::TombstoneKey: 773 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 774 } 775 776 llvm_unreachable("Trying to encode unknown attribute"); 777 } 778 779 void ModuleBitcodeWriter::writeAttributeGroupTable() { 780 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 781 VE.getAttributeGroups(); 782 if (AttrGrps.empty()) return; 783 784 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 785 786 SmallVector<uint64_t, 64> Record; 787 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 788 unsigned AttrListIndex = Pair.first; 789 AttributeSet AS = Pair.second; 790 Record.push_back(VE.getAttributeGroupID(Pair)); 791 Record.push_back(AttrListIndex); 792 793 for (Attribute Attr : AS) { 794 if (Attr.isEnumAttribute()) { 795 Record.push_back(0); 796 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 797 } else if (Attr.isIntAttribute()) { 798 Record.push_back(1); 799 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 800 Record.push_back(Attr.getValueAsInt()); 801 } else if (Attr.isStringAttribute()) { 802 StringRef Kind = Attr.getKindAsString(); 803 StringRef Val = Attr.getValueAsString(); 804 805 Record.push_back(Val.empty() ? 3 : 4); 806 Record.append(Kind.begin(), Kind.end()); 807 Record.push_back(0); 808 if (!Val.empty()) { 809 Record.append(Val.begin(), Val.end()); 810 Record.push_back(0); 811 } 812 } else { 813 assert(Attr.isTypeAttribute()); 814 Type *Ty = Attr.getValueAsType(); 815 Record.push_back(Ty ? 6 : 5); 816 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 817 if (Ty) 818 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 819 } 820 } 821 822 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 823 Record.clear(); 824 } 825 826 Stream.ExitBlock(); 827 } 828 829 void ModuleBitcodeWriter::writeAttributeTable() { 830 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 831 if (Attrs.empty()) return; 832 833 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 834 835 SmallVector<uint64_t, 64> Record; 836 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 837 AttributeList AL = Attrs[i]; 838 for (unsigned i : AL.indexes()) { 839 AttributeSet AS = AL.getAttributes(i); 840 if (AS.hasAttributes()) 841 Record.push_back(VE.getAttributeGroupID({i, AS})); 842 } 843 844 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 845 Record.clear(); 846 } 847 848 Stream.ExitBlock(); 849 } 850 851 /// WriteTypeTable - Write out the type table for a module. 852 void ModuleBitcodeWriter::writeTypeTable() { 853 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 854 855 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 856 SmallVector<uint64_t, 64> TypeVals; 857 858 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 859 860 // Abbrev for TYPE_CODE_POINTER. 861 auto Abbv = std::make_shared<BitCodeAbbrev>(); 862 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 864 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 865 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 866 867 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 868 Abbv = std::make_shared<BitCodeAbbrev>(); 869 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 870 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 871 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 872 873 // Abbrev for TYPE_CODE_FUNCTION. 874 Abbv = std::make_shared<BitCodeAbbrev>(); 875 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 876 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 877 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 878 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 879 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 880 881 // Abbrev for TYPE_CODE_STRUCT_ANON. 882 Abbv = std::make_shared<BitCodeAbbrev>(); 883 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 885 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 886 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 887 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 888 889 // Abbrev for TYPE_CODE_STRUCT_NAME. 890 Abbv = std::make_shared<BitCodeAbbrev>(); 891 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 893 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 894 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 895 896 // Abbrev for TYPE_CODE_STRUCT_NAMED. 897 Abbv = std::make_shared<BitCodeAbbrev>(); 898 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 899 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 902 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 903 904 // Abbrev for TYPE_CODE_ARRAY. 905 Abbv = std::make_shared<BitCodeAbbrev>(); 906 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 907 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 908 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 909 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 910 911 // Emit an entry count so the reader can reserve space. 912 TypeVals.push_back(TypeList.size()); 913 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 914 TypeVals.clear(); 915 916 // Loop over all of the types, emitting each in turn. 917 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 918 Type *T = TypeList[i]; 919 int AbbrevToUse = 0; 920 unsigned Code = 0; 921 922 switch (T->getTypeID()) { 923 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 924 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 925 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 926 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 927 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 928 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 929 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 930 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 931 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 932 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 933 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 934 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 935 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 936 case Type::IntegerTyID: 937 // INTEGER: [width] 938 Code = bitc::TYPE_CODE_INTEGER; 939 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 940 break; 941 case Type::PointerTyID: { 942 PointerType *PTy = cast<PointerType>(T); 943 unsigned AddressSpace = PTy->getAddressSpace(); 944 if (PTy->isOpaque()) { 945 // OPAQUE_POINTER: [address space] 946 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 947 TypeVals.push_back(AddressSpace); 948 if (AddressSpace == 0) 949 AbbrevToUse = OpaquePtrAbbrev; 950 } else { 951 // POINTER: [pointee type, address space] 952 Code = bitc::TYPE_CODE_POINTER; 953 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 954 TypeVals.push_back(AddressSpace); 955 if (AddressSpace == 0) 956 AbbrevToUse = PtrAbbrev; 957 } 958 break; 959 } 960 case Type::FunctionTyID: { 961 FunctionType *FT = cast<FunctionType>(T); 962 // FUNCTION: [isvararg, retty, paramty x N] 963 Code = bitc::TYPE_CODE_FUNCTION; 964 TypeVals.push_back(FT->isVarArg()); 965 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 966 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 967 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 968 AbbrevToUse = FunctionAbbrev; 969 break; 970 } 971 case Type::StructTyID: { 972 StructType *ST = cast<StructType>(T); 973 // STRUCT: [ispacked, eltty x N] 974 TypeVals.push_back(ST->isPacked()); 975 // Output all of the element types. 976 for (StructType::element_iterator I = ST->element_begin(), 977 E = ST->element_end(); I != E; ++I) 978 TypeVals.push_back(VE.getTypeID(*I)); 979 980 if (ST->isLiteral()) { 981 Code = bitc::TYPE_CODE_STRUCT_ANON; 982 AbbrevToUse = StructAnonAbbrev; 983 } else { 984 if (ST->isOpaque()) { 985 Code = bitc::TYPE_CODE_OPAQUE; 986 } else { 987 Code = bitc::TYPE_CODE_STRUCT_NAMED; 988 AbbrevToUse = StructNamedAbbrev; 989 } 990 991 // Emit the name if it is present. 992 if (!ST->getName().empty()) 993 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 994 StructNameAbbrev); 995 } 996 break; 997 } 998 case Type::ArrayTyID: { 999 ArrayType *AT = cast<ArrayType>(T); 1000 // ARRAY: [numelts, eltty] 1001 Code = bitc::TYPE_CODE_ARRAY; 1002 TypeVals.push_back(AT->getNumElements()); 1003 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1004 AbbrevToUse = ArrayAbbrev; 1005 break; 1006 } 1007 case Type::FixedVectorTyID: 1008 case Type::ScalableVectorTyID: { 1009 VectorType *VT = cast<VectorType>(T); 1010 // VECTOR [numelts, eltty] or 1011 // [numelts, eltty, scalable] 1012 Code = bitc::TYPE_CODE_VECTOR; 1013 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1014 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1015 if (isa<ScalableVectorType>(VT)) 1016 TypeVals.push_back(true); 1017 break; 1018 } 1019 } 1020 1021 // Emit the finished record. 1022 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1023 TypeVals.clear(); 1024 } 1025 1026 Stream.ExitBlock(); 1027 } 1028 1029 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1030 switch (Linkage) { 1031 case GlobalValue::ExternalLinkage: 1032 return 0; 1033 case GlobalValue::WeakAnyLinkage: 1034 return 16; 1035 case GlobalValue::AppendingLinkage: 1036 return 2; 1037 case GlobalValue::InternalLinkage: 1038 return 3; 1039 case GlobalValue::LinkOnceAnyLinkage: 1040 return 18; 1041 case GlobalValue::ExternalWeakLinkage: 1042 return 7; 1043 case GlobalValue::CommonLinkage: 1044 return 8; 1045 case GlobalValue::PrivateLinkage: 1046 return 9; 1047 case GlobalValue::WeakODRLinkage: 1048 return 17; 1049 case GlobalValue::LinkOnceODRLinkage: 1050 return 19; 1051 case GlobalValue::AvailableExternallyLinkage: 1052 return 12; 1053 } 1054 llvm_unreachable("Invalid linkage"); 1055 } 1056 1057 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1058 return getEncodedLinkage(GV.getLinkage()); 1059 } 1060 1061 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1062 uint64_t RawFlags = 0; 1063 RawFlags |= Flags.ReadNone; 1064 RawFlags |= (Flags.ReadOnly << 1); 1065 RawFlags |= (Flags.NoRecurse << 2); 1066 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1067 RawFlags |= (Flags.NoInline << 4); 1068 RawFlags |= (Flags.AlwaysInline << 5); 1069 RawFlags |= (Flags.NoUnwind << 6); 1070 RawFlags |= (Flags.MayThrow << 7); 1071 RawFlags |= (Flags.HasUnknownCall << 8); 1072 return RawFlags; 1073 } 1074 1075 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1076 // in BitcodeReader.cpp. 1077 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1078 uint64_t RawFlags = 0; 1079 1080 RawFlags |= Flags.NotEligibleToImport; // bool 1081 RawFlags |= (Flags.Live << 1); 1082 RawFlags |= (Flags.DSOLocal << 2); 1083 RawFlags |= (Flags.CanAutoHide << 3); 1084 1085 // Linkage don't need to be remapped at that time for the summary. Any future 1086 // change to the getEncodedLinkage() function will need to be taken into 1087 // account here as well. 1088 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1089 1090 RawFlags |= (Flags.Visibility << 8); // 2 bits 1091 1092 return RawFlags; 1093 } 1094 1095 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1096 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1097 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1098 return RawFlags; 1099 } 1100 1101 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1102 switch (GV.getVisibility()) { 1103 case GlobalValue::DefaultVisibility: return 0; 1104 case GlobalValue::HiddenVisibility: return 1; 1105 case GlobalValue::ProtectedVisibility: return 2; 1106 } 1107 llvm_unreachable("Invalid visibility"); 1108 } 1109 1110 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1111 switch (GV.getDLLStorageClass()) { 1112 case GlobalValue::DefaultStorageClass: return 0; 1113 case GlobalValue::DLLImportStorageClass: return 1; 1114 case GlobalValue::DLLExportStorageClass: return 2; 1115 } 1116 llvm_unreachable("Invalid DLL storage class"); 1117 } 1118 1119 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1120 switch (GV.getThreadLocalMode()) { 1121 case GlobalVariable::NotThreadLocal: return 0; 1122 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1123 case GlobalVariable::LocalDynamicTLSModel: return 2; 1124 case GlobalVariable::InitialExecTLSModel: return 3; 1125 case GlobalVariable::LocalExecTLSModel: return 4; 1126 } 1127 llvm_unreachable("Invalid TLS model"); 1128 } 1129 1130 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1131 switch (C.getSelectionKind()) { 1132 case Comdat::Any: 1133 return bitc::COMDAT_SELECTION_KIND_ANY; 1134 case Comdat::ExactMatch: 1135 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1136 case Comdat::Largest: 1137 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1138 case Comdat::NoDeduplicate: 1139 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1140 case Comdat::SameSize: 1141 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1142 } 1143 llvm_unreachable("Invalid selection kind"); 1144 } 1145 1146 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1147 switch (GV.getUnnamedAddr()) { 1148 case GlobalValue::UnnamedAddr::None: return 0; 1149 case GlobalValue::UnnamedAddr::Local: return 2; 1150 case GlobalValue::UnnamedAddr::Global: return 1; 1151 } 1152 llvm_unreachable("Invalid unnamed_addr"); 1153 } 1154 1155 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1156 if (GenerateHash) 1157 Hasher.update(Str); 1158 return StrtabBuilder.add(Str); 1159 } 1160 1161 void ModuleBitcodeWriter::writeComdats() { 1162 SmallVector<unsigned, 64> Vals; 1163 for (const Comdat *C : VE.getComdats()) { 1164 // COMDAT: [strtab offset, strtab size, selection_kind] 1165 Vals.push_back(addToStrtab(C->getName())); 1166 Vals.push_back(C->getName().size()); 1167 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1168 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1169 Vals.clear(); 1170 } 1171 } 1172 1173 /// Write a record that will eventually hold the word offset of the 1174 /// module-level VST. For now the offset is 0, which will be backpatched 1175 /// after the real VST is written. Saves the bit offset to backpatch. 1176 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1177 // Write a placeholder value in for the offset of the real VST, 1178 // which is written after the function blocks so that it can include 1179 // the offset of each function. The placeholder offset will be 1180 // updated when the real VST is written. 1181 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1182 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1183 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1184 // hold the real VST offset. Must use fixed instead of VBR as we don't 1185 // know how many VBR chunks to reserve ahead of time. 1186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1187 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1188 1189 // Emit the placeholder 1190 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1191 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1192 1193 // Compute and save the bit offset to the placeholder, which will be 1194 // patched when the real VST is written. We can simply subtract the 32-bit 1195 // fixed size from the current bit number to get the location to backpatch. 1196 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1197 } 1198 1199 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1200 1201 /// Determine the encoding to use for the given string name and length. 1202 static StringEncoding getStringEncoding(StringRef Str) { 1203 bool isChar6 = true; 1204 for (char C : Str) { 1205 if (isChar6) 1206 isChar6 = BitCodeAbbrevOp::isChar6(C); 1207 if ((unsigned char)C & 128) 1208 // don't bother scanning the rest. 1209 return SE_Fixed8; 1210 } 1211 if (isChar6) 1212 return SE_Char6; 1213 return SE_Fixed7; 1214 } 1215 1216 /// Emit top-level description of module, including target triple, inline asm, 1217 /// descriptors for global variables, and function prototype info. 1218 /// Returns the bit offset to backpatch with the location of the real VST. 1219 void ModuleBitcodeWriter::writeModuleInfo() { 1220 // Emit various pieces of data attached to a module. 1221 if (!M.getTargetTriple().empty()) 1222 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1223 0 /*TODO*/); 1224 const std::string &DL = M.getDataLayoutStr(); 1225 if (!DL.empty()) 1226 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1227 if (!M.getModuleInlineAsm().empty()) 1228 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1229 0 /*TODO*/); 1230 1231 // Emit information about sections and GC, computing how many there are. Also 1232 // compute the maximum alignment value. 1233 std::map<std::string, unsigned> SectionMap; 1234 std::map<std::string, unsigned> GCMap; 1235 MaybeAlign MaxAlignment; 1236 unsigned MaxGlobalType = 0; 1237 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1238 if (A) 1239 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1240 }; 1241 for (const GlobalVariable &GV : M.globals()) { 1242 UpdateMaxAlignment(GV.getAlign()); 1243 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1244 if (GV.hasSection()) { 1245 // Give section names unique ID's. 1246 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1247 if (!Entry) { 1248 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1249 0 /*TODO*/); 1250 Entry = SectionMap.size(); 1251 } 1252 } 1253 } 1254 for (const Function &F : M) { 1255 UpdateMaxAlignment(F.getAlign()); 1256 if (F.hasSection()) { 1257 // Give section names unique ID's. 1258 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1259 if (!Entry) { 1260 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1261 0 /*TODO*/); 1262 Entry = SectionMap.size(); 1263 } 1264 } 1265 if (F.hasGC()) { 1266 // Same for GC names. 1267 unsigned &Entry = GCMap[F.getGC()]; 1268 if (!Entry) { 1269 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1270 0 /*TODO*/); 1271 Entry = GCMap.size(); 1272 } 1273 } 1274 } 1275 1276 // Emit abbrev for globals, now that we know # sections and max alignment. 1277 unsigned SimpleGVarAbbrev = 0; 1278 if (!M.global_empty()) { 1279 // Add an abbrev for common globals with no visibility or thread localness. 1280 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1281 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1283 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1284 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1285 Log2_32_Ceil(MaxGlobalType+1))); 1286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1287 //| explicitType << 1 1288 //| constant 1289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1291 if (!MaxAlignment) // Alignment. 1292 Abbv->Add(BitCodeAbbrevOp(0)); 1293 else { 1294 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1296 Log2_32_Ceil(MaxEncAlignment+1))); 1297 } 1298 if (SectionMap.empty()) // Section. 1299 Abbv->Add(BitCodeAbbrevOp(0)); 1300 else 1301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1302 Log2_32_Ceil(SectionMap.size()+1))); 1303 // Don't bother emitting vis + thread local. 1304 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1305 } 1306 1307 SmallVector<unsigned, 64> Vals; 1308 // Emit the module's source file name. 1309 { 1310 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1311 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1312 if (Bits == SE_Char6) 1313 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1314 else if (Bits == SE_Fixed7) 1315 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1316 1317 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1318 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1319 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1321 Abbv->Add(AbbrevOpToUse); 1322 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1323 1324 for (const auto P : M.getSourceFileName()) 1325 Vals.push_back((unsigned char)P); 1326 1327 // Emit the finished record. 1328 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1329 Vals.clear(); 1330 } 1331 1332 // Emit the global variable information. 1333 for (const GlobalVariable &GV : M.globals()) { 1334 unsigned AbbrevToUse = 0; 1335 1336 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1337 // linkage, alignment, section, visibility, threadlocal, 1338 // unnamed_addr, externally_initialized, dllstorageclass, 1339 // comdat, attributes, DSO_Local] 1340 Vals.push_back(addToStrtab(GV.getName())); 1341 Vals.push_back(GV.getName().size()); 1342 Vals.push_back(VE.getTypeID(GV.getValueType())); 1343 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1344 Vals.push_back(GV.isDeclaration() ? 0 : 1345 (VE.getValueID(GV.getInitializer()) + 1)); 1346 Vals.push_back(getEncodedLinkage(GV)); 1347 Vals.push_back(getEncodedAlign(GV.getAlign())); 1348 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1349 : 0); 1350 if (GV.isThreadLocal() || 1351 GV.getVisibility() != GlobalValue::DefaultVisibility || 1352 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1353 GV.isExternallyInitialized() || 1354 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1355 GV.hasComdat() || 1356 GV.hasAttributes() || 1357 GV.isDSOLocal() || 1358 GV.hasPartition()) { 1359 Vals.push_back(getEncodedVisibility(GV)); 1360 Vals.push_back(getEncodedThreadLocalMode(GV)); 1361 Vals.push_back(getEncodedUnnamedAddr(GV)); 1362 Vals.push_back(GV.isExternallyInitialized()); 1363 Vals.push_back(getEncodedDLLStorageClass(GV)); 1364 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1365 1366 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1367 Vals.push_back(VE.getAttributeListID(AL)); 1368 1369 Vals.push_back(GV.isDSOLocal()); 1370 Vals.push_back(addToStrtab(GV.getPartition())); 1371 Vals.push_back(GV.getPartition().size()); 1372 } else { 1373 AbbrevToUse = SimpleGVarAbbrev; 1374 } 1375 1376 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1377 Vals.clear(); 1378 } 1379 1380 // Emit the function proto information. 1381 for (const Function &F : M) { 1382 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1383 // linkage, paramattrs, alignment, section, visibility, gc, 1384 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1385 // prefixdata, personalityfn, DSO_Local, addrspace] 1386 Vals.push_back(addToStrtab(F.getName())); 1387 Vals.push_back(F.getName().size()); 1388 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1389 Vals.push_back(F.getCallingConv()); 1390 Vals.push_back(F.isDeclaration()); 1391 Vals.push_back(getEncodedLinkage(F)); 1392 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1393 Vals.push_back(getEncodedAlign(F.getAlign())); 1394 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1395 : 0); 1396 Vals.push_back(getEncodedVisibility(F)); 1397 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1398 Vals.push_back(getEncodedUnnamedAddr(F)); 1399 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1400 : 0); 1401 Vals.push_back(getEncodedDLLStorageClass(F)); 1402 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1403 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1404 : 0); 1405 Vals.push_back( 1406 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1407 1408 Vals.push_back(F.isDSOLocal()); 1409 Vals.push_back(F.getAddressSpace()); 1410 Vals.push_back(addToStrtab(F.getPartition())); 1411 Vals.push_back(F.getPartition().size()); 1412 1413 unsigned AbbrevToUse = 0; 1414 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1415 Vals.clear(); 1416 } 1417 1418 // Emit the alias information. 1419 for (const GlobalAlias &A : M.aliases()) { 1420 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1421 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1422 // DSO_Local] 1423 Vals.push_back(addToStrtab(A.getName())); 1424 Vals.push_back(A.getName().size()); 1425 Vals.push_back(VE.getTypeID(A.getValueType())); 1426 Vals.push_back(A.getType()->getAddressSpace()); 1427 Vals.push_back(VE.getValueID(A.getAliasee())); 1428 Vals.push_back(getEncodedLinkage(A)); 1429 Vals.push_back(getEncodedVisibility(A)); 1430 Vals.push_back(getEncodedDLLStorageClass(A)); 1431 Vals.push_back(getEncodedThreadLocalMode(A)); 1432 Vals.push_back(getEncodedUnnamedAddr(A)); 1433 Vals.push_back(A.isDSOLocal()); 1434 Vals.push_back(addToStrtab(A.getPartition())); 1435 Vals.push_back(A.getPartition().size()); 1436 1437 unsigned AbbrevToUse = 0; 1438 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1439 Vals.clear(); 1440 } 1441 1442 // Emit the ifunc information. 1443 for (const GlobalIFunc &I : M.ifuncs()) { 1444 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1445 // val#, linkage, visibility, DSO_Local] 1446 Vals.push_back(addToStrtab(I.getName())); 1447 Vals.push_back(I.getName().size()); 1448 Vals.push_back(VE.getTypeID(I.getValueType())); 1449 Vals.push_back(I.getType()->getAddressSpace()); 1450 Vals.push_back(VE.getValueID(I.getResolver())); 1451 Vals.push_back(getEncodedLinkage(I)); 1452 Vals.push_back(getEncodedVisibility(I)); 1453 Vals.push_back(I.isDSOLocal()); 1454 Vals.push_back(addToStrtab(I.getPartition())); 1455 Vals.push_back(I.getPartition().size()); 1456 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1457 Vals.clear(); 1458 } 1459 1460 writeValueSymbolTableForwardDecl(); 1461 } 1462 1463 static uint64_t getOptimizationFlags(const Value *V) { 1464 uint64_t Flags = 0; 1465 1466 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1467 if (OBO->hasNoSignedWrap()) 1468 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1469 if (OBO->hasNoUnsignedWrap()) 1470 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1471 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1472 if (PEO->isExact()) 1473 Flags |= 1 << bitc::PEO_EXACT; 1474 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1475 if (FPMO->hasAllowReassoc()) 1476 Flags |= bitc::AllowReassoc; 1477 if (FPMO->hasNoNaNs()) 1478 Flags |= bitc::NoNaNs; 1479 if (FPMO->hasNoInfs()) 1480 Flags |= bitc::NoInfs; 1481 if (FPMO->hasNoSignedZeros()) 1482 Flags |= bitc::NoSignedZeros; 1483 if (FPMO->hasAllowReciprocal()) 1484 Flags |= bitc::AllowReciprocal; 1485 if (FPMO->hasAllowContract()) 1486 Flags |= bitc::AllowContract; 1487 if (FPMO->hasApproxFunc()) 1488 Flags |= bitc::ApproxFunc; 1489 } 1490 1491 return Flags; 1492 } 1493 1494 void ModuleBitcodeWriter::writeValueAsMetadata( 1495 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1496 // Mimic an MDNode with a value as one operand. 1497 Value *V = MD->getValue(); 1498 Record.push_back(VE.getTypeID(V->getType())); 1499 Record.push_back(VE.getValueID(V)); 1500 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1501 Record.clear(); 1502 } 1503 1504 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1505 SmallVectorImpl<uint64_t> &Record, 1506 unsigned Abbrev) { 1507 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1508 Metadata *MD = N->getOperand(i); 1509 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1510 "Unexpected function-local metadata"); 1511 Record.push_back(VE.getMetadataOrNullID(MD)); 1512 } 1513 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1514 : bitc::METADATA_NODE, 1515 Record, Abbrev); 1516 Record.clear(); 1517 } 1518 1519 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1520 // Assume the column is usually under 128, and always output the inlined-at 1521 // location (it's never more expensive than building an array size 1). 1522 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1523 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1530 return Stream.EmitAbbrev(std::move(Abbv)); 1531 } 1532 1533 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1534 SmallVectorImpl<uint64_t> &Record, 1535 unsigned &Abbrev) { 1536 if (!Abbrev) 1537 Abbrev = createDILocationAbbrev(); 1538 1539 Record.push_back(N->isDistinct()); 1540 Record.push_back(N->getLine()); 1541 Record.push_back(N->getColumn()); 1542 Record.push_back(VE.getMetadataID(N->getScope())); 1543 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1544 Record.push_back(N->isImplicitCode()); 1545 1546 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1547 Record.clear(); 1548 } 1549 1550 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1551 // Assume the column is usually under 128, and always output the inlined-at 1552 // location (it's never more expensive than building an array size 1). 1553 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1554 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1561 return Stream.EmitAbbrev(std::move(Abbv)); 1562 } 1563 1564 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1565 SmallVectorImpl<uint64_t> &Record, 1566 unsigned &Abbrev) { 1567 if (!Abbrev) 1568 Abbrev = createGenericDINodeAbbrev(); 1569 1570 Record.push_back(N->isDistinct()); 1571 Record.push_back(N->getTag()); 1572 Record.push_back(0); // Per-tag version field; unused for now. 1573 1574 for (auto &I : N->operands()) 1575 Record.push_back(VE.getMetadataOrNullID(I)); 1576 1577 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1578 Record.clear(); 1579 } 1580 1581 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1582 SmallVectorImpl<uint64_t> &Record, 1583 unsigned Abbrev) { 1584 const uint64_t Version = 2 << 1; 1585 Record.push_back((uint64_t)N->isDistinct() | Version); 1586 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1587 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1588 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1589 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1590 1591 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1592 Record.clear(); 1593 } 1594 1595 void ModuleBitcodeWriter::writeDIGenericSubrange( 1596 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1597 unsigned Abbrev) { 1598 Record.push_back((uint64_t)N->isDistinct()); 1599 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1600 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1601 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1602 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1603 1604 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1605 Record.clear(); 1606 } 1607 1608 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1609 if ((int64_t)V >= 0) 1610 Vals.push_back(V << 1); 1611 else 1612 Vals.push_back((-V << 1) | 1); 1613 } 1614 1615 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1616 // We have an arbitrary precision integer value to write whose 1617 // bit width is > 64. However, in canonical unsigned integer 1618 // format it is likely that the high bits are going to be zero. 1619 // So, we only write the number of active words. 1620 unsigned NumWords = A.getActiveWords(); 1621 const uint64_t *RawData = A.getRawData(); 1622 for (unsigned i = 0; i < NumWords; i++) 1623 emitSignedInt64(Vals, RawData[i]); 1624 } 1625 1626 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1627 SmallVectorImpl<uint64_t> &Record, 1628 unsigned Abbrev) { 1629 const uint64_t IsBigInt = 1 << 2; 1630 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1631 Record.push_back(N->getValue().getBitWidth()); 1632 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1633 emitWideAPInt(Record, N->getValue()); 1634 1635 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1636 Record.clear(); 1637 } 1638 1639 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1640 SmallVectorImpl<uint64_t> &Record, 1641 unsigned Abbrev) { 1642 Record.push_back(N->isDistinct()); 1643 Record.push_back(N->getTag()); 1644 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1645 Record.push_back(N->getSizeInBits()); 1646 Record.push_back(N->getAlignInBits()); 1647 Record.push_back(N->getEncoding()); 1648 Record.push_back(N->getFlags()); 1649 1650 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1651 Record.clear(); 1652 } 1653 1654 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1655 SmallVectorImpl<uint64_t> &Record, 1656 unsigned Abbrev) { 1657 Record.push_back(N->isDistinct()); 1658 Record.push_back(N->getTag()); 1659 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1660 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1661 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1662 Record.push_back(N->getSizeInBits()); 1663 Record.push_back(N->getAlignInBits()); 1664 Record.push_back(N->getEncoding()); 1665 1666 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1667 Record.clear(); 1668 } 1669 1670 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1671 SmallVectorImpl<uint64_t> &Record, 1672 unsigned Abbrev) { 1673 Record.push_back(N->isDistinct()); 1674 Record.push_back(N->getTag()); 1675 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1676 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1677 Record.push_back(N->getLine()); 1678 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1679 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1680 Record.push_back(N->getSizeInBits()); 1681 Record.push_back(N->getAlignInBits()); 1682 Record.push_back(N->getOffsetInBits()); 1683 Record.push_back(N->getFlags()); 1684 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1685 1686 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1687 // that there is no DWARF address space associated with DIDerivedType. 1688 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1689 Record.push_back(*DWARFAddressSpace + 1); 1690 else 1691 Record.push_back(0); 1692 1693 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1694 1695 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1696 Record.clear(); 1697 } 1698 1699 void ModuleBitcodeWriter::writeDICompositeType( 1700 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1701 unsigned Abbrev) { 1702 const unsigned IsNotUsedInOldTypeRef = 0x2; 1703 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1704 Record.push_back(N->getTag()); 1705 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1706 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1707 Record.push_back(N->getLine()); 1708 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1709 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1710 Record.push_back(N->getSizeInBits()); 1711 Record.push_back(N->getAlignInBits()); 1712 Record.push_back(N->getOffsetInBits()); 1713 Record.push_back(N->getFlags()); 1714 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1715 Record.push_back(N->getRuntimeLang()); 1716 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1717 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1718 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1719 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1720 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1721 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1722 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1723 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1724 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1725 1726 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1727 Record.clear(); 1728 } 1729 1730 void ModuleBitcodeWriter::writeDISubroutineType( 1731 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1732 unsigned Abbrev) { 1733 const unsigned HasNoOldTypeRefs = 0x2; 1734 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1735 Record.push_back(N->getFlags()); 1736 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1737 Record.push_back(N->getCC()); 1738 1739 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1740 Record.clear(); 1741 } 1742 1743 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1744 SmallVectorImpl<uint64_t> &Record, 1745 unsigned Abbrev) { 1746 Record.push_back(N->isDistinct()); 1747 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1748 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1749 if (N->getRawChecksum()) { 1750 Record.push_back(N->getRawChecksum()->Kind); 1751 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1752 } else { 1753 // Maintain backwards compatibility with the old internal representation of 1754 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1755 Record.push_back(0); 1756 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1757 } 1758 auto Source = N->getRawSource(); 1759 if (Source) 1760 Record.push_back(VE.getMetadataOrNullID(*Source)); 1761 1762 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1763 Record.clear(); 1764 } 1765 1766 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1767 SmallVectorImpl<uint64_t> &Record, 1768 unsigned Abbrev) { 1769 assert(N->isDistinct() && "Expected distinct compile units"); 1770 Record.push_back(/* IsDistinct */ true); 1771 Record.push_back(N->getSourceLanguage()); 1772 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1773 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1774 Record.push_back(N->isOptimized()); 1775 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1776 Record.push_back(N->getRuntimeVersion()); 1777 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1778 Record.push_back(N->getEmissionKind()); 1779 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1780 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1781 Record.push_back(/* subprograms */ 0); 1782 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1783 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1784 Record.push_back(N->getDWOId()); 1785 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1786 Record.push_back(N->getSplitDebugInlining()); 1787 Record.push_back(N->getDebugInfoForProfiling()); 1788 Record.push_back((unsigned)N->getNameTableKind()); 1789 Record.push_back(N->getRangesBaseAddress()); 1790 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1791 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1792 1793 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1794 Record.clear(); 1795 } 1796 1797 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1798 SmallVectorImpl<uint64_t> &Record, 1799 unsigned Abbrev) { 1800 const uint64_t HasUnitFlag = 1 << 1; 1801 const uint64_t HasSPFlagsFlag = 1 << 2; 1802 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1803 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1804 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1805 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1806 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1807 Record.push_back(N->getLine()); 1808 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1809 Record.push_back(N->getScopeLine()); 1810 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1811 Record.push_back(N->getSPFlags()); 1812 Record.push_back(N->getVirtualIndex()); 1813 Record.push_back(N->getFlags()); 1814 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1815 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1816 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1817 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1818 Record.push_back(N->getThisAdjustment()); 1819 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1820 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1821 1822 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1823 Record.clear(); 1824 } 1825 1826 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1827 SmallVectorImpl<uint64_t> &Record, 1828 unsigned Abbrev) { 1829 Record.push_back(N->isDistinct()); 1830 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1831 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1832 Record.push_back(N->getLine()); 1833 Record.push_back(N->getColumn()); 1834 1835 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1836 Record.clear(); 1837 } 1838 1839 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1840 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1841 unsigned Abbrev) { 1842 Record.push_back(N->isDistinct()); 1843 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1844 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1845 Record.push_back(N->getDiscriminator()); 1846 1847 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1848 Record.clear(); 1849 } 1850 1851 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1852 SmallVectorImpl<uint64_t> &Record, 1853 unsigned Abbrev) { 1854 Record.push_back(N->isDistinct()); 1855 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1856 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1857 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1858 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1859 Record.push_back(N->getLineNo()); 1860 1861 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1862 Record.clear(); 1863 } 1864 1865 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1866 SmallVectorImpl<uint64_t> &Record, 1867 unsigned Abbrev) { 1868 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1869 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1870 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1871 1872 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1873 Record.clear(); 1874 } 1875 1876 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1877 SmallVectorImpl<uint64_t> &Record, 1878 unsigned Abbrev) { 1879 Record.push_back(N->isDistinct()); 1880 Record.push_back(N->getMacinfoType()); 1881 Record.push_back(N->getLine()); 1882 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1883 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1884 1885 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1886 Record.clear(); 1887 } 1888 1889 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1890 SmallVectorImpl<uint64_t> &Record, 1891 unsigned Abbrev) { 1892 Record.push_back(N->isDistinct()); 1893 Record.push_back(N->getMacinfoType()); 1894 Record.push_back(N->getLine()); 1895 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1896 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1897 1898 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1899 Record.clear(); 1900 } 1901 1902 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1903 SmallVectorImpl<uint64_t> &Record, 1904 unsigned Abbrev) { 1905 Record.reserve(N->getArgs().size()); 1906 for (ValueAsMetadata *MD : N->getArgs()) 1907 Record.push_back(VE.getMetadataID(MD)); 1908 1909 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1910 Record.clear(); 1911 } 1912 1913 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1914 SmallVectorImpl<uint64_t> &Record, 1915 unsigned Abbrev) { 1916 Record.push_back(N->isDistinct()); 1917 for (auto &I : N->operands()) 1918 Record.push_back(VE.getMetadataOrNullID(I)); 1919 Record.push_back(N->getLineNo()); 1920 Record.push_back(N->getIsDecl()); 1921 1922 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1923 Record.clear(); 1924 } 1925 1926 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1927 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1928 unsigned Abbrev) { 1929 Record.push_back(N->isDistinct()); 1930 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1931 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1932 Record.push_back(N->isDefault()); 1933 1934 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1935 Record.clear(); 1936 } 1937 1938 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1939 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1940 unsigned Abbrev) { 1941 Record.push_back(N->isDistinct()); 1942 Record.push_back(N->getTag()); 1943 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1944 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1945 Record.push_back(N->isDefault()); 1946 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1947 1948 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1949 Record.clear(); 1950 } 1951 1952 void ModuleBitcodeWriter::writeDIGlobalVariable( 1953 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1954 unsigned Abbrev) { 1955 const uint64_t Version = 2 << 1; 1956 Record.push_back((uint64_t)N->isDistinct() | Version); 1957 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1958 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1959 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1960 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1961 Record.push_back(N->getLine()); 1962 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1963 Record.push_back(N->isLocalToUnit()); 1964 Record.push_back(N->isDefinition()); 1965 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1966 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1967 Record.push_back(N->getAlignInBits()); 1968 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1969 1970 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1971 Record.clear(); 1972 } 1973 1974 void ModuleBitcodeWriter::writeDILocalVariable( 1975 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1976 unsigned Abbrev) { 1977 // In order to support all possible bitcode formats in BitcodeReader we need 1978 // to distinguish the following cases: 1979 // 1) Record has no artificial tag (Record[1]), 1980 // has no obsolete inlinedAt field (Record[9]). 1981 // In this case Record size will be 8, HasAlignment flag is false. 1982 // 2) Record has artificial tag (Record[1]), 1983 // has no obsolete inlignedAt field (Record[9]). 1984 // In this case Record size will be 9, HasAlignment flag is false. 1985 // 3) Record has both artificial tag (Record[1]) and 1986 // obsolete inlignedAt field (Record[9]). 1987 // In this case Record size will be 10, HasAlignment flag is false. 1988 // 4) Record has neither artificial tag, nor inlignedAt field, but 1989 // HasAlignment flag is true and Record[8] contains alignment value. 1990 const uint64_t HasAlignmentFlag = 1 << 1; 1991 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1992 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1993 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1994 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1995 Record.push_back(N->getLine()); 1996 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1997 Record.push_back(N->getArg()); 1998 Record.push_back(N->getFlags()); 1999 Record.push_back(N->getAlignInBits()); 2000 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2001 2002 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2003 Record.clear(); 2004 } 2005 2006 void ModuleBitcodeWriter::writeDILabel( 2007 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2008 unsigned Abbrev) { 2009 Record.push_back((uint64_t)N->isDistinct()); 2010 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2011 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2012 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2013 Record.push_back(N->getLine()); 2014 2015 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2016 Record.clear(); 2017 } 2018 2019 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2020 SmallVectorImpl<uint64_t> &Record, 2021 unsigned Abbrev) { 2022 Record.reserve(N->getElements().size() + 1); 2023 const uint64_t Version = 3 << 1; 2024 Record.push_back((uint64_t)N->isDistinct() | Version); 2025 Record.append(N->elements_begin(), N->elements_end()); 2026 2027 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2028 Record.clear(); 2029 } 2030 2031 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2032 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2033 unsigned Abbrev) { 2034 Record.push_back(N->isDistinct()); 2035 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2036 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2037 2038 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2039 Record.clear(); 2040 } 2041 2042 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2043 SmallVectorImpl<uint64_t> &Record, 2044 unsigned Abbrev) { 2045 Record.push_back(N->isDistinct()); 2046 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2047 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2048 Record.push_back(N->getLine()); 2049 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2050 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2051 Record.push_back(N->getAttributes()); 2052 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2053 2054 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2055 Record.clear(); 2056 } 2057 2058 void ModuleBitcodeWriter::writeDIImportedEntity( 2059 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2060 unsigned Abbrev) { 2061 Record.push_back(N->isDistinct()); 2062 Record.push_back(N->getTag()); 2063 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2064 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2065 Record.push_back(N->getLine()); 2066 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2067 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2068 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2069 2070 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2071 Record.clear(); 2072 } 2073 2074 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2075 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2076 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2079 return Stream.EmitAbbrev(std::move(Abbv)); 2080 } 2081 2082 void ModuleBitcodeWriter::writeNamedMetadata( 2083 SmallVectorImpl<uint64_t> &Record) { 2084 if (M.named_metadata_empty()) 2085 return; 2086 2087 unsigned Abbrev = createNamedMetadataAbbrev(); 2088 for (const NamedMDNode &NMD : M.named_metadata()) { 2089 // Write name. 2090 StringRef Str = NMD.getName(); 2091 Record.append(Str.bytes_begin(), Str.bytes_end()); 2092 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2093 Record.clear(); 2094 2095 // Write named metadata operands. 2096 for (const MDNode *N : NMD.operands()) 2097 Record.push_back(VE.getMetadataID(N)); 2098 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2099 Record.clear(); 2100 } 2101 } 2102 2103 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2104 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2105 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2106 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2107 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2108 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2109 return Stream.EmitAbbrev(std::move(Abbv)); 2110 } 2111 2112 /// Write out a record for MDString. 2113 /// 2114 /// All the metadata strings in a metadata block are emitted in a single 2115 /// record. The sizes and strings themselves are shoved into a blob. 2116 void ModuleBitcodeWriter::writeMetadataStrings( 2117 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2118 if (Strings.empty()) 2119 return; 2120 2121 // Start the record with the number of strings. 2122 Record.push_back(bitc::METADATA_STRINGS); 2123 Record.push_back(Strings.size()); 2124 2125 // Emit the sizes of the strings in the blob. 2126 SmallString<256> Blob; 2127 { 2128 BitstreamWriter W(Blob); 2129 for (const Metadata *MD : Strings) 2130 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2131 W.FlushToWord(); 2132 } 2133 2134 // Add the offset to the strings to the record. 2135 Record.push_back(Blob.size()); 2136 2137 // Add the strings to the blob. 2138 for (const Metadata *MD : Strings) 2139 Blob.append(cast<MDString>(MD)->getString()); 2140 2141 // Emit the final record. 2142 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2143 Record.clear(); 2144 } 2145 2146 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2147 enum MetadataAbbrev : unsigned { 2148 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2149 #include "llvm/IR/Metadata.def" 2150 LastPlusOne 2151 }; 2152 2153 void ModuleBitcodeWriter::writeMetadataRecords( 2154 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2155 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2156 if (MDs.empty()) 2157 return; 2158 2159 // Initialize MDNode abbreviations. 2160 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2161 #include "llvm/IR/Metadata.def" 2162 2163 for (const Metadata *MD : MDs) { 2164 if (IndexPos) 2165 IndexPos->push_back(Stream.GetCurrentBitNo()); 2166 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2167 assert(N->isResolved() && "Expected forward references to be resolved"); 2168 2169 switch (N->getMetadataID()) { 2170 default: 2171 llvm_unreachable("Invalid MDNode subclass"); 2172 #define HANDLE_MDNODE_LEAF(CLASS) \ 2173 case Metadata::CLASS##Kind: \ 2174 if (MDAbbrevs) \ 2175 write##CLASS(cast<CLASS>(N), Record, \ 2176 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2177 else \ 2178 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2179 continue; 2180 #include "llvm/IR/Metadata.def" 2181 } 2182 } 2183 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2184 } 2185 } 2186 2187 void ModuleBitcodeWriter::writeModuleMetadata() { 2188 if (!VE.hasMDs() && M.named_metadata_empty()) 2189 return; 2190 2191 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2192 SmallVector<uint64_t, 64> Record; 2193 2194 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2195 // block and load any metadata. 2196 std::vector<unsigned> MDAbbrevs; 2197 2198 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2199 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2200 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2201 createGenericDINodeAbbrev(); 2202 2203 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2204 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2205 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2206 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2207 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2208 2209 Abbv = std::make_shared<BitCodeAbbrev>(); 2210 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2213 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2214 2215 // Emit MDStrings together upfront. 2216 writeMetadataStrings(VE.getMDStrings(), Record); 2217 2218 // We only emit an index for the metadata record if we have more than a given 2219 // (naive) threshold of metadatas, otherwise it is not worth it. 2220 if (VE.getNonMDStrings().size() > IndexThreshold) { 2221 // Write a placeholder value in for the offset of the metadata index, 2222 // which is written after the records, so that it can include 2223 // the offset of each entry. The placeholder offset will be 2224 // updated after all records are emitted. 2225 uint64_t Vals[] = {0, 0}; 2226 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2227 } 2228 2229 // Compute and save the bit offset to the current position, which will be 2230 // patched when we emit the index later. We can simply subtract the 64-bit 2231 // fixed size from the current bit number to get the location to backpatch. 2232 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2233 2234 // This index will contain the bitpos for each individual record. 2235 std::vector<uint64_t> IndexPos; 2236 IndexPos.reserve(VE.getNonMDStrings().size()); 2237 2238 // Write all the records 2239 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2240 2241 if (VE.getNonMDStrings().size() > IndexThreshold) { 2242 // Now that we have emitted all the records we will emit the index. But 2243 // first 2244 // backpatch the forward reference so that the reader can skip the records 2245 // efficiently. 2246 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2247 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2248 2249 // Delta encode the index. 2250 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2251 for (auto &Elt : IndexPos) { 2252 auto EltDelta = Elt - PreviousValue; 2253 PreviousValue = Elt; 2254 Elt = EltDelta; 2255 } 2256 // Emit the index record. 2257 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2258 IndexPos.clear(); 2259 } 2260 2261 // Write the named metadata now. 2262 writeNamedMetadata(Record); 2263 2264 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2265 SmallVector<uint64_t, 4> Record; 2266 Record.push_back(VE.getValueID(&GO)); 2267 pushGlobalMetadataAttachment(Record, GO); 2268 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2269 }; 2270 for (const Function &F : M) 2271 if (F.isDeclaration() && F.hasMetadata()) 2272 AddDeclAttachedMetadata(F); 2273 // FIXME: Only store metadata for declarations here, and move data for global 2274 // variable definitions to a separate block (PR28134). 2275 for (const GlobalVariable &GV : M.globals()) 2276 if (GV.hasMetadata()) 2277 AddDeclAttachedMetadata(GV); 2278 2279 Stream.ExitBlock(); 2280 } 2281 2282 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2283 if (!VE.hasMDs()) 2284 return; 2285 2286 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2287 SmallVector<uint64_t, 64> Record; 2288 writeMetadataStrings(VE.getMDStrings(), Record); 2289 writeMetadataRecords(VE.getNonMDStrings(), Record); 2290 Stream.ExitBlock(); 2291 } 2292 2293 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2294 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2295 // [n x [id, mdnode]] 2296 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2297 GO.getAllMetadata(MDs); 2298 for (const auto &I : MDs) { 2299 Record.push_back(I.first); 2300 Record.push_back(VE.getMetadataID(I.second)); 2301 } 2302 } 2303 2304 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2305 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2306 2307 SmallVector<uint64_t, 64> Record; 2308 2309 if (F.hasMetadata()) { 2310 pushGlobalMetadataAttachment(Record, F); 2311 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2312 Record.clear(); 2313 } 2314 2315 // Write metadata attachments 2316 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2317 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2318 for (const BasicBlock &BB : F) 2319 for (const Instruction &I : BB) { 2320 MDs.clear(); 2321 I.getAllMetadataOtherThanDebugLoc(MDs); 2322 2323 // If no metadata, ignore instruction. 2324 if (MDs.empty()) continue; 2325 2326 Record.push_back(VE.getInstructionID(&I)); 2327 2328 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2329 Record.push_back(MDs[i].first); 2330 Record.push_back(VE.getMetadataID(MDs[i].second)); 2331 } 2332 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2333 Record.clear(); 2334 } 2335 2336 Stream.ExitBlock(); 2337 } 2338 2339 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2340 SmallVector<uint64_t, 64> Record; 2341 2342 // Write metadata kinds 2343 // METADATA_KIND - [n x [id, name]] 2344 SmallVector<StringRef, 8> Names; 2345 M.getMDKindNames(Names); 2346 2347 if (Names.empty()) return; 2348 2349 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2350 2351 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2352 Record.push_back(MDKindID); 2353 StringRef KName = Names[MDKindID]; 2354 Record.append(KName.begin(), KName.end()); 2355 2356 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2357 Record.clear(); 2358 } 2359 2360 Stream.ExitBlock(); 2361 } 2362 2363 void ModuleBitcodeWriter::writeOperandBundleTags() { 2364 // Write metadata kinds 2365 // 2366 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2367 // 2368 // OPERAND_BUNDLE_TAG - [strchr x N] 2369 2370 SmallVector<StringRef, 8> Tags; 2371 M.getOperandBundleTags(Tags); 2372 2373 if (Tags.empty()) 2374 return; 2375 2376 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2377 2378 SmallVector<uint64_t, 64> Record; 2379 2380 for (auto Tag : Tags) { 2381 Record.append(Tag.begin(), Tag.end()); 2382 2383 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2384 Record.clear(); 2385 } 2386 2387 Stream.ExitBlock(); 2388 } 2389 2390 void ModuleBitcodeWriter::writeSyncScopeNames() { 2391 SmallVector<StringRef, 8> SSNs; 2392 M.getContext().getSyncScopeNames(SSNs); 2393 if (SSNs.empty()) 2394 return; 2395 2396 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2397 2398 SmallVector<uint64_t, 64> Record; 2399 for (auto SSN : SSNs) { 2400 Record.append(SSN.begin(), SSN.end()); 2401 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2402 Record.clear(); 2403 } 2404 2405 Stream.ExitBlock(); 2406 } 2407 2408 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2409 bool isGlobal) { 2410 if (FirstVal == LastVal) return; 2411 2412 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2413 2414 unsigned AggregateAbbrev = 0; 2415 unsigned String8Abbrev = 0; 2416 unsigned CString7Abbrev = 0; 2417 unsigned CString6Abbrev = 0; 2418 // If this is a constant pool for the module, emit module-specific abbrevs. 2419 if (isGlobal) { 2420 // Abbrev for CST_CODE_AGGREGATE. 2421 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2422 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2423 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2424 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2425 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2426 2427 // Abbrev for CST_CODE_STRING. 2428 Abbv = std::make_shared<BitCodeAbbrev>(); 2429 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2432 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2433 // Abbrev for CST_CODE_CSTRING. 2434 Abbv = std::make_shared<BitCodeAbbrev>(); 2435 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2438 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2439 // Abbrev for CST_CODE_CSTRING. 2440 Abbv = std::make_shared<BitCodeAbbrev>(); 2441 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2443 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2444 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2445 } 2446 2447 SmallVector<uint64_t, 64> Record; 2448 2449 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2450 Type *LastTy = nullptr; 2451 for (unsigned i = FirstVal; i != LastVal; ++i) { 2452 const Value *V = Vals[i].first; 2453 // If we need to switch types, do so now. 2454 if (V->getType() != LastTy) { 2455 LastTy = V->getType(); 2456 Record.push_back(VE.getTypeID(LastTy)); 2457 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2458 CONSTANTS_SETTYPE_ABBREV); 2459 Record.clear(); 2460 } 2461 2462 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2463 Record.push_back( 2464 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2465 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2466 2467 // Add the asm string. 2468 const std::string &AsmStr = IA->getAsmString(); 2469 Record.push_back(AsmStr.size()); 2470 Record.append(AsmStr.begin(), AsmStr.end()); 2471 2472 // Add the constraint string. 2473 const std::string &ConstraintStr = IA->getConstraintString(); 2474 Record.push_back(ConstraintStr.size()); 2475 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2476 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2477 Record.clear(); 2478 continue; 2479 } 2480 const Constant *C = cast<Constant>(V); 2481 unsigned Code = -1U; 2482 unsigned AbbrevToUse = 0; 2483 if (C->isNullValue()) { 2484 Code = bitc::CST_CODE_NULL; 2485 } else if (isa<PoisonValue>(C)) { 2486 Code = bitc::CST_CODE_POISON; 2487 } else if (isa<UndefValue>(C)) { 2488 Code = bitc::CST_CODE_UNDEF; 2489 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2490 if (IV->getBitWidth() <= 64) { 2491 uint64_t V = IV->getSExtValue(); 2492 emitSignedInt64(Record, V); 2493 Code = bitc::CST_CODE_INTEGER; 2494 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2495 } else { // Wide integers, > 64 bits in size. 2496 emitWideAPInt(Record, IV->getValue()); 2497 Code = bitc::CST_CODE_WIDE_INTEGER; 2498 } 2499 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2500 Code = bitc::CST_CODE_FLOAT; 2501 Type *Ty = CFP->getType(); 2502 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2503 Ty->isDoubleTy()) { 2504 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2505 } else if (Ty->isX86_FP80Ty()) { 2506 // api needed to prevent premature destruction 2507 // bits are not in the same order as a normal i80 APInt, compensate. 2508 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2509 const uint64_t *p = api.getRawData(); 2510 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2511 Record.push_back(p[0] & 0xffffLL); 2512 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2513 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2514 const uint64_t *p = api.getRawData(); 2515 Record.push_back(p[0]); 2516 Record.push_back(p[1]); 2517 } else { 2518 assert(0 && "Unknown FP type!"); 2519 } 2520 } else if (isa<ConstantDataSequential>(C) && 2521 cast<ConstantDataSequential>(C)->isString()) { 2522 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2523 // Emit constant strings specially. 2524 unsigned NumElts = Str->getNumElements(); 2525 // If this is a null-terminated string, use the denser CSTRING encoding. 2526 if (Str->isCString()) { 2527 Code = bitc::CST_CODE_CSTRING; 2528 --NumElts; // Don't encode the null, which isn't allowed by char6. 2529 } else { 2530 Code = bitc::CST_CODE_STRING; 2531 AbbrevToUse = String8Abbrev; 2532 } 2533 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2534 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2535 for (unsigned i = 0; i != NumElts; ++i) { 2536 unsigned char V = Str->getElementAsInteger(i); 2537 Record.push_back(V); 2538 isCStr7 &= (V & 128) == 0; 2539 if (isCStrChar6) 2540 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2541 } 2542 2543 if (isCStrChar6) 2544 AbbrevToUse = CString6Abbrev; 2545 else if (isCStr7) 2546 AbbrevToUse = CString7Abbrev; 2547 } else if (const ConstantDataSequential *CDS = 2548 dyn_cast<ConstantDataSequential>(C)) { 2549 Code = bitc::CST_CODE_DATA; 2550 Type *EltTy = CDS->getElementType(); 2551 if (isa<IntegerType>(EltTy)) { 2552 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2553 Record.push_back(CDS->getElementAsInteger(i)); 2554 } else { 2555 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2556 Record.push_back( 2557 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2558 } 2559 } else if (isa<ConstantAggregate>(C)) { 2560 Code = bitc::CST_CODE_AGGREGATE; 2561 for (const Value *Op : C->operands()) 2562 Record.push_back(VE.getValueID(Op)); 2563 AbbrevToUse = AggregateAbbrev; 2564 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2565 switch (CE->getOpcode()) { 2566 default: 2567 if (Instruction::isCast(CE->getOpcode())) { 2568 Code = bitc::CST_CODE_CE_CAST; 2569 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2570 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2571 Record.push_back(VE.getValueID(C->getOperand(0))); 2572 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2573 } else { 2574 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2575 Code = bitc::CST_CODE_CE_BINOP; 2576 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2577 Record.push_back(VE.getValueID(C->getOperand(0))); 2578 Record.push_back(VE.getValueID(C->getOperand(1))); 2579 uint64_t Flags = getOptimizationFlags(CE); 2580 if (Flags != 0) 2581 Record.push_back(Flags); 2582 } 2583 break; 2584 case Instruction::FNeg: { 2585 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2586 Code = bitc::CST_CODE_CE_UNOP; 2587 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2588 Record.push_back(VE.getValueID(C->getOperand(0))); 2589 uint64_t Flags = getOptimizationFlags(CE); 2590 if (Flags != 0) 2591 Record.push_back(Flags); 2592 break; 2593 } 2594 case Instruction::GetElementPtr: { 2595 Code = bitc::CST_CODE_CE_GEP; 2596 const auto *GO = cast<GEPOperator>(C); 2597 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2598 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2599 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2600 Record.push_back((*Idx << 1) | GO->isInBounds()); 2601 } else if (GO->isInBounds()) 2602 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2603 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2604 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2605 Record.push_back(VE.getValueID(C->getOperand(i))); 2606 } 2607 break; 2608 } 2609 case Instruction::Select: 2610 Code = bitc::CST_CODE_CE_SELECT; 2611 Record.push_back(VE.getValueID(C->getOperand(0))); 2612 Record.push_back(VE.getValueID(C->getOperand(1))); 2613 Record.push_back(VE.getValueID(C->getOperand(2))); 2614 break; 2615 case Instruction::ExtractElement: 2616 Code = bitc::CST_CODE_CE_EXTRACTELT; 2617 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2618 Record.push_back(VE.getValueID(C->getOperand(0))); 2619 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2620 Record.push_back(VE.getValueID(C->getOperand(1))); 2621 break; 2622 case Instruction::InsertElement: 2623 Code = bitc::CST_CODE_CE_INSERTELT; 2624 Record.push_back(VE.getValueID(C->getOperand(0))); 2625 Record.push_back(VE.getValueID(C->getOperand(1))); 2626 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2627 Record.push_back(VE.getValueID(C->getOperand(2))); 2628 break; 2629 case Instruction::ShuffleVector: 2630 // If the return type and argument types are the same, this is a 2631 // standard shufflevector instruction. If the types are different, 2632 // then the shuffle is widening or truncating the input vectors, and 2633 // the argument type must also be encoded. 2634 if (C->getType() == C->getOperand(0)->getType()) { 2635 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2636 } else { 2637 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2638 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2639 } 2640 Record.push_back(VE.getValueID(C->getOperand(0))); 2641 Record.push_back(VE.getValueID(C->getOperand(1))); 2642 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2643 break; 2644 case Instruction::ICmp: 2645 case Instruction::FCmp: 2646 Code = bitc::CST_CODE_CE_CMP; 2647 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2648 Record.push_back(VE.getValueID(C->getOperand(0))); 2649 Record.push_back(VE.getValueID(C->getOperand(1))); 2650 Record.push_back(CE->getPredicate()); 2651 break; 2652 } 2653 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2654 Code = bitc::CST_CODE_BLOCKADDRESS; 2655 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2656 Record.push_back(VE.getValueID(BA->getFunction())); 2657 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2658 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2659 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2660 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2661 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2662 } else { 2663 #ifndef NDEBUG 2664 C->dump(); 2665 #endif 2666 llvm_unreachable("Unknown constant!"); 2667 } 2668 Stream.EmitRecord(Code, Record, AbbrevToUse); 2669 Record.clear(); 2670 } 2671 2672 Stream.ExitBlock(); 2673 } 2674 2675 void ModuleBitcodeWriter::writeModuleConstants() { 2676 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2677 2678 // Find the first constant to emit, which is the first non-globalvalue value. 2679 // We know globalvalues have been emitted by WriteModuleInfo. 2680 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2681 if (!isa<GlobalValue>(Vals[i].first)) { 2682 writeConstants(i, Vals.size(), true); 2683 return; 2684 } 2685 } 2686 } 2687 2688 /// pushValueAndType - The file has to encode both the value and type id for 2689 /// many values, because we need to know what type to create for forward 2690 /// references. However, most operands are not forward references, so this type 2691 /// field is not needed. 2692 /// 2693 /// This function adds V's value ID to Vals. If the value ID is higher than the 2694 /// instruction ID, then it is a forward reference, and it also includes the 2695 /// type ID. The value ID that is written is encoded relative to the InstID. 2696 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2697 SmallVectorImpl<unsigned> &Vals) { 2698 unsigned ValID = VE.getValueID(V); 2699 // Make encoding relative to the InstID. 2700 Vals.push_back(InstID - ValID); 2701 if (ValID >= InstID) { 2702 Vals.push_back(VE.getTypeID(V->getType())); 2703 return true; 2704 } 2705 return false; 2706 } 2707 2708 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2709 unsigned InstID) { 2710 SmallVector<unsigned, 64> Record; 2711 LLVMContext &C = CS.getContext(); 2712 2713 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2714 const auto &Bundle = CS.getOperandBundleAt(i); 2715 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2716 2717 for (auto &Input : Bundle.Inputs) 2718 pushValueAndType(Input, InstID, Record); 2719 2720 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2721 Record.clear(); 2722 } 2723 } 2724 2725 /// pushValue - Like pushValueAndType, but where the type of the value is 2726 /// omitted (perhaps it was already encoded in an earlier operand). 2727 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2728 SmallVectorImpl<unsigned> &Vals) { 2729 unsigned ValID = VE.getValueID(V); 2730 Vals.push_back(InstID - ValID); 2731 } 2732 2733 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2734 SmallVectorImpl<uint64_t> &Vals) { 2735 unsigned ValID = VE.getValueID(V); 2736 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2737 emitSignedInt64(Vals, diff); 2738 } 2739 2740 /// WriteInstruction - Emit an instruction to the specified stream. 2741 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2742 unsigned InstID, 2743 SmallVectorImpl<unsigned> &Vals) { 2744 unsigned Code = 0; 2745 unsigned AbbrevToUse = 0; 2746 VE.setInstructionID(&I); 2747 switch (I.getOpcode()) { 2748 default: 2749 if (Instruction::isCast(I.getOpcode())) { 2750 Code = bitc::FUNC_CODE_INST_CAST; 2751 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2752 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2753 Vals.push_back(VE.getTypeID(I.getType())); 2754 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2755 } else { 2756 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2757 Code = bitc::FUNC_CODE_INST_BINOP; 2758 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2759 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2760 pushValue(I.getOperand(1), InstID, Vals); 2761 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2762 uint64_t Flags = getOptimizationFlags(&I); 2763 if (Flags != 0) { 2764 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2765 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2766 Vals.push_back(Flags); 2767 } 2768 } 2769 break; 2770 case Instruction::FNeg: { 2771 Code = bitc::FUNC_CODE_INST_UNOP; 2772 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2773 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2774 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2775 uint64_t Flags = getOptimizationFlags(&I); 2776 if (Flags != 0) { 2777 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2778 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2779 Vals.push_back(Flags); 2780 } 2781 break; 2782 } 2783 case Instruction::GetElementPtr: { 2784 Code = bitc::FUNC_CODE_INST_GEP; 2785 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2786 auto &GEPInst = cast<GetElementPtrInst>(I); 2787 Vals.push_back(GEPInst.isInBounds()); 2788 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2789 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2790 pushValueAndType(I.getOperand(i), InstID, Vals); 2791 break; 2792 } 2793 case Instruction::ExtractValue: { 2794 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2795 pushValueAndType(I.getOperand(0), InstID, Vals); 2796 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2797 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2798 break; 2799 } 2800 case Instruction::InsertValue: { 2801 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2802 pushValueAndType(I.getOperand(0), InstID, Vals); 2803 pushValueAndType(I.getOperand(1), InstID, Vals); 2804 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2805 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2806 break; 2807 } 2808 case Instruction::Select: { 2809 Code = bitc::FUNC_CODE_INST_VSELECT; 2810 pushValueAndType(I.getOperand(1), InstID, Vals); 2811 pushValue(I.getOperand(2), InstID, Vals); 2812 pushValueAndType(I.getOperand(0), InstID, Vals); 2813 uint64_t Flags = getOptimizationFlags(&I); 2814 if (Flags != 0) 2815 Vals.push_back(Flags); 2816 break; 2817 } 2818 case Instruction::ExtractElement: 2819 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2820 pushValueAndType(I.getOperand(0), InstID, Vals); 2821 pushValueAndType(I.getOperand(1), InstID, Vals); 2822 break; 2823 case Instruction::InsertElement: 2824 Code = bitc::FUNC_CODE_INST_INSERTELT; 2825 pushValueAndType(I.getOperand(0), InstID, Vals); 2826 pushValue(I.getOperand(1), InstID, Vals); 2827 pushValueAndType(I.getOperand(2), InstID, Vals); 2828 break; 2829 case Instruction::ShuffleVector: 2830 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2831 pushValueAndType(I.getOperand(0), InstID, Vals); 2832 pushValue(I.getOperand(1), InstID, Vals); 2833 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2834 Vals); 2835 break; 2836 case Instruction::ICmp: 2837 case Instruction::FCmp: { 2838 // compare returning Int1Ty or vector of Int1Ty 2839 Code = bitc::FUNC_CODE_INST_CMP2; 2840 pushValueAndType(I.getOperand(0), InstID, Vals); 2841 pushValue(I.getOperand(1), InstID, Vals); 2842 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2843 uint64_t Flags = getOptimizationFlags(&I); 2844 if (Flags != 0) 2845 Vals.push_back(Flags); 2846 break; 2847 } 2848 2849 case Instruction::Ret: 2850 { 2851 Code = bitc::FUNC_CODE_INST_RET; 2852 unsigned NumOperands = I.getNumOperands(); 2853 if (NumOperands == 0) 2854 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2855 else if (NumOperands == 1) { 2856 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2857 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2858 } else { 2859 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2860 pushValueAndType(I.getOperand(i), InstID, Vals); 2861 } 2862 } 2863 break; 2864 case Instruction::Br: 2865 { 2866 Code = bitc::FUNC_CODE_INST_BR; 2867 const BranchInst &II = cast<BranchInst>(I); 2868 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2869 if (II.isConditional()) { 2870 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2871 pushValue(II.getCondition(), InstID, Vals); 2872 } 2873 } 2874 break; 2875 case Instruction::Switch: 2876 { 2877 Code = bitc::FUNC_CODE_INST_SWITCH; 2878 const SwitchInst &SI = cast<SwitchInst>(I); 2879 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2880 pushValue(SI.getCondition(), InstID, Vals); 2881 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2882 for (auto Case : SI.cases()) { 2883 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2884 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2885 } 2886 } 2887 break; 2888 case Instruction::IndirectBr: 2889 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2890 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2891 // Encode the address operand as relative, but not the basic blocks. 2892 pushValue(I.getOperand(0), InstID, Vals); 2893 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2894 Vals.push_back(VE.getValueID(I.getOperand(i))); 2895 break; 2896 2897 case Instruction::Invoke: { 2898 const InvokeInst *II = cast<InvokeInst>(&I); 2899 const Value *Callee = II->getCalledOperand(); 2900 FunctionType *FTy = II->getFunctionType(); 2901 2902 if (II->hasOperandBundles()) 2903 writeOperandBundles(*II, InstID); 2904 2905 Code = bitc::FUNC_CODE_INST_INVOKE; 2906 2907 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2908 Vals.push_back(II->getCallingConv() | 1 << 13); 2909 Vals.push_back(VE.getValueID(II->getNormalDest())); 2910 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2911 Vals.push_back(VE.getTypeID(FTy)); 2912 pushValueAndType(Callee, InstID, Vals); 2913 2914 // Emit value #'s for the fixed parameters. 2915 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2916 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2917 2918 // Emit type/value pairs for varargs params. 2919 if (FTy->isVarArg()) { 2920 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2921 i != e; ++i) 2922 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2923 } 2924 break; 2925 } 2926 case Instruction::Resume: 2927 Code = bitc::FUNC_CODE_INST_RESUME; 2928 pushValueAndType(I.getOperand(0), InstID, Vals); 2929 break; 2930 case Instruction::CleanupRet: { 2931 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2932 const auto &CRI = cast<CleanupReturnInst>(I); 2933 pushValue(CRI.getCleanupPad(), InstID, Vals); 2934 if (CRI.hasUnwindDest()) 2935 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2936 break; 2937 } 2938 case Instruction::CatchRet: { 2939 Code = bitc::FUNC_CODE_INST_CATCHRET; 2940 const auto &CRI = cast<CatchReturnInst>(I); 2941 pushValue(CRI.getCatchPad(), InstID, Vals); 2942 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2943 break; 2944 } 2945 case Instruction::CleanupPad: 2946 case Instruction::CatchPad: { 2947 const auto &FuncletPad = cast<FuncletPadInst>(I); 2948 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2949 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2950 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2951 2952 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2953 Vals.push_back(NumArgOperands); 2954 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2955 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2956 break; 2957 } 2958 case Instruction::CatchSwitch: { 2959 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2960 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2961 2962 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2963 2964 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2965 Vals.push_back(NumHandlers); 2966 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2967 Vals.push_back(VE.getValueID(CatchPadBB)); 2968 2969 if (CatchSwitch.hasUnwindDest()) 2970 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2971 break; 2972 } 2973 case Instruction::CallBr: { 2974 const CallBrInst *CBI = cast<CallBrInst>(&I); 2975 const Value *Callee = CBI->getCalledOperand(); 2976 FunctionType *FTy = CBI->getFunctionType(); 2977 2978 if (CBI->hasOperandBundles()) 2979 writeOperandBundles(*CBI, InstID); 2980 2981 Code = bitc::FUNC_CODE_INST_CALLBR; 2982 2983 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2984 2985 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2986 1 << bitc::CALL_EXPLICIT_TYPE); 2987 2988 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2989 Vals.push_back(CBI->getNumIndirectDests()); 2990 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2991 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2992 2993 Vals.push_back(VE.getTypeID(FTy)); 2994 pushValueAndType(Callee, InstID, Vals); 2995 2996 // Emit value #'s for the fixed parameters. 2997 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2998 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2999 3000 // Emit type/value pairs for varargs params. 3001 if (FTy->isVarArg()) { 3002 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 3003 i != e; ++i) 3004 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3005 } 3006 break; 3007 } 3008 case Instruction::Unreachable: 3009 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3010 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3011 break; 3012 3013 case Instruction::PHI: { 3014 const PHINode &PN = cast<PHINode>(I); 3015 Code = bitc::FUNC_CODE_INST_PHI; 3016 // With the newer instruction encoding, forward references could give 3017 // negative valued IDs. This is most common for PHIs, so we use 3018 // signed VBRs. 3019 SmallVector<uint64_t, 128> Vals64; 3020 Vals64.push_back(VE.getTypeID(PN.getType())); 3021 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3022 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3023 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3024 } 3025 3026 uint64_t Flags = getOptimizationFlags(&I); 3027 if (Flags != 0) 3028 Vals64.push_back(Flags); 3029 3030 // Emit a Vals64 vector and exit. 3031 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3032 Vals64.clear(); 3033 return; 3034 } 3035 3036 case Instruction::LandingPad: { 3037 const LandingPadInst &LP = cast<LandingPadInst>(I); 3038 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3039 Vals.push_back(VE.getTypeID(LP.getType())); 3040 Vals.push_back(LP.isCleanup()); 3041 Vals.push_back(LP.getNumClauses()); 3042 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3043 if (LP.isCatch(I)) 3044 Vals.push_back(LandingPadInst::Catch); 3045 else 3046 Vals.push_back(LandingPadInst::Filter); 3047 pushValueAndType(LP.getClause(I), InstID, Vals); 3048 } 3049 break; 3050 } 3051 3052 case Instruction::Alloca: { 3053 Code = bitc::FUNC_CODE_INST_ALLOCA; 3054 const AllocaInst &AI = cast<AllocaInst>(I); 3055 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3056 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3057 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3058 using APV = AllocaPackedValues; 3059 unsigned Record = 0; 3060 Bitfield::set<APV::Align>(Record, getEncodedAlign(AI.getAlign())); 3061 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3062 Bitfield::set<APV::ExplicitType>(Record, true); 3063 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3064 Vals.push_back(Record); 3065 break; 3066 } 3067 3068 case Instruction::Load: 3069 if (cast<LoadInst>(I).isAtomic()) { 3070 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3071 pushValueAndType(I.getOperand(0), InstID, Vals); 3072 } else { 3073 Code = bitc::FUNC_CODE_INST_LOAD; 3074 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3075 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3076 } 3077 Vals.push_back(VE.getTypeID(I.getType())); 3078 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3079 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3080 if (cast<LoadInst>(I).isAtomic()) { 3081 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3082 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3083 } 3084 break; 3085 case Instruction::Store: 3086 if (cast<StoreInst>(I).isAtomic()) 3087 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3088 else 3089 Code = bitc::FUNC_CODE_INST_STORE; 3090 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3091 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3092 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3093 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3094 if (cast<StoreInst>(I).isAtomic()) { 3095 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3096 Vals.push_back( 3097 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3098 } 3099 break; 3100 case Instruction::AtomicCmpXchg: 3101 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3102 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3103 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3104 pushValue(I.getOperand(2), InstID, Vals); // newval. 3105 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3106 Vals.push_back( 3107 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3108 Vals.push_back( 3109 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3110 Vals.push_back( 3111 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3112 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3113 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3114 break; 3115 case Instruction::AtomicRMW: 3116 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3117 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3118 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3119 Vals.push_back( 3120 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3121 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3122 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3123 Vals.push_back( 3124 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3125 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3126 break; 3127 case Instruction::Fence: 3128 Code = bitc::FUNC_CODE_INST_FENCE; 3129 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3130 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3131 break; 3132 case Instruction::Call: { 3133 const CallInst &CI = cast<CallInst>(I); 3134 FunctionType *FTy = CI.getFunctionType(); 3135 3136 if (CI.hasOperandBundles()) 3137 writeOperandBundles(CI, InstID); 3138 3139 Code = bitc::FUNC_CODE_INST_CALL; 3140 3141 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3142 3143 unsigned Flags = getOptimizationFlags(&I); 3144 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3145 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3146 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3147 1 << bitc::CALL_EXPLICIT_TYPE | 3148 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3149 unsigned(Flags != 0) << bitc::CALL_FMF); 3150 if (Flags != 0) 3151 Vals.push_back(Flags); 3152 3153 Vals.push_back(VE.getTypeID(FTy)); 3154 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3155 3156 // Emit value #'s for the fixed parameters. 3157 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3158 // Check for labels (can happen with asm labels). 3159 if (FTy->getParamType(i)->isLabelTy()) 3160 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3161 else 3162 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3163 } 3164 3165 // Emit type/value pairs for varargs params. 3166 if (FTy->isVarArg()) { 3167 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3168 i != e; ++i) 3169 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3170 } 3171 break; 3172 } 3173 case Instruction::VAArg: 3174 Code = bitc::FUNC_CODE_INST_VAARG; 3175 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3176 pushValue(I.getOperand(0), InstID, Vals); // valist. 3177 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3178 break; 3179 case Instruction::Freeze: 3180 Code = bitc::FUNC_CODE_INST_FREEZE; 3181 pushValueAndType(I.getOperand(0), InstID, Vals); 3182 break; 3183 } 3184 3185 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3186 Vals.clear(); 3187 } 3188 3189 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3190 /// to allow clients to efficiently find the function body. 3191 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3192 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3193 // Get the offset of the VST we are writing, and backpatch it into 3194 // the VST forward declaration record. 3195 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3196 // The BitcodeStartBit was the stream offset of the identification block. 3197 VSTOffset -= bitcodeStartBit(); 3198 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3199 // Note that we add 1 here because the offset is relative to one word 3200 // before the start of the identification block, which was historically 3201 // always the start of the regular bitcode header. 3202 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3203 3204 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3205 3206 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3207 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3208 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3210 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3211 3212 for (const Function &F : M) { 3213 uint64_t Record[2]; 3214 3215 if (F.isDeclaration()) 3216 continue; 3217 3218 Record[0] = VE.getValueID(&F); 3219 3220 // Save the word offset of the function (from the start of the 3221 // actual bitcode written to the stream). 3222 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3223 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3224 // Note that we add 1 here because the offset is relative to one word 3225 // before the start of the identification block, which was historically 3226 // always the start of the regular bitcode header. 3227 Record[1] = BitcodeIndex / 32 + 1; 3228 3229 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3230 } 3231 3232 Stream.ExitBlock(); 3233 } 3234 3235 /// Emit names for arguments, instructions and basic blocks in a function. 3236 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3237 const ValueSymbolTable &VST) { 3238 if (VST.empty()) 3239 return; 3240 3241 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3242 3243 // FIXME: Set up the abbrev, we know how many values there are! 3244 // FIXME: We know if the type names can use 7-bit ascii. 3245 SmallVector<uint64_t, 64> NameVals; 3246 3247 for (const ValueName &Name : VST) { 3248 // Figure out the encoding to use for the name. 3249 StringEncoding Bits = getStringEncoding(Name.getKey()); 3250 3251 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3252 NameVals.push_back(VE.getValueID(Name.getValue())); 3253 3254 // VST_CODE_ENTRY: [valueid, namechar x N] 3255 // VST_CODE_BBENTRY: [bbid, namechar x N] 3256 unsigned Code; 3257 if (isa<BasicBlock>(Name.getValue())) { 3258 Code = bitc::VST_CODE_BBENTRY; 3259 if (Bits == SE_Char6) 3260 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3261 } else { 3262 Code = bitc::VST_CODE_ENTRY; 3263 if (Bits == SE_Char6) 3264 AbbrevToUse = VST_ENTRY_6_ABBREV; 3265 else if (Bits == SE_Fixed7) 3266 AbbrevToUse = VST_ENTRY_7_ABBREV; 3267 } 3268 3269 for (const auto P : Name.getKey()) 3270 NameVals.push_back((unsigned char)P); 3271 3272 // Emit the finished record. 3273 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3274 NameVals.clear(); 3275 } 3276 3277 Stream.ExitBlock(); 3278 } 3279 3280 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3281 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3282 unsigned Code; 3283 if (isa<BasicBlock>(Order.V)) 3284 Code = bitc::USELIST_CODE_BB; 3285 else 3286 Code = bitc::USELIST_CODE_DEFAULT; 3287 3288 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3289 Record.push_back(VE.getValueID(Order.V)); 3290 Stream.EmitRecord(Code, Record); 3291 } 3292 3293 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3294 assert(VE.shouldPreserveUseListOrder() && 3295 "Expected to be preserving use-list order"); 3296 3297 auto hasMore = [&]() { 3298 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3299 }; 3300 if (!hasMore()) 3301 // Nothing to do. 3302 return; 3303 3304 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3305 while (hasMore()) { 3306 writeUseList(std::move(VE.UseListOrders.back())); 3307 VE.UseListOrders.pop_back(); 3308 } 3309 Stream.ExitBlock(); 3310 } 3311 3312 /// Emit a function body to the module stream. 3313 void ModuleBitcodeWriter::writeFunction( 3314 const Function &F, 3315 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3316 // Save the bitcode index of the start of this function block for recording 3317 // in the VST. 3318 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3319 3320 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3321 VE.incorporateFunction(F); 3322 3323 SmallVector<unsigned, 64> Vals; 3324 3325 // Emit the number of basic blocks, so the reader can create them ahead of 3326 // time. 3327 Vals.push_back(VE.getBasicBlocks().size()); 3328 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3329 Vals.clear(); 3330 3331 // If there are function-local constants, emit them now. 3332 unsigned CstStart, CstEnd; 3333 VE.getFunctionConstantRange(CstStart, CstEnd); 3334 writeConstants(CstStart, CstEnd, false); 3335 3336 // If there is function-local metadata, emit it now. 3337 writeFunctionMetadata(F); 3338 3339 // Keep a running idea of what the instruction ID is. 3340 unsigned InstID = CstEnd; 3341 3342 bool NeedsMetadataAttachment = F.hasMetadata(); 3343 3344 DILocation *LastDL = nullptr; 3345 // Finally, emit all the instructions, in order. 3346 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3347 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3348 I != E; ++I) { 3349 writeInstruction(*I, InstID, Vals); 3350 3351 if (!I->getType()->isVoidTy()) 3352 ++InstID; 3353 3354 // If the instruction has metadata, write a metadata attachment later. 3355 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3356 3357 // If the instruction has a debug location, emit it. 3358 DILocation *DL = I->getDebugLoc(); 3359 if (!DL) 3360 continue; 3361 3362 if (DL == LastDL) { 3363 // Just repeat the same debug loc as last time. 3364 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3365 continue; 3366 } 3367 3368 Vals.push_back(DL->getLine()); 3369 Vals.push_back(DL->getColumn()); 3370 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3371 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3372 Vals.push_back(DL->isImplicitCode()); 3373 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3374 Vals.clear(); 3375 3376 LastDL = DL; 3377 } 3378 3379 // Emit names for all the instructions etc. 3380 if (auto *Symtab = F.getValueSymbolTable()) 3381 writeFunctionLevelValueSymbolTable(*Symtab); 3382 3383 if (NeedsMetadataAttachment) 3384 writeFunctionMetadataAttachment(F); 3385 if (VE.shouldPreserveUseListOrder()) 3386 writeUseListBlock(&F); 3387 VE.purgeFunction(); 3388 Stream.ExitBlock(); 3389 } 3390 3391 // Emit blockinfo, which defines the standard abbreviations etc. 3392 void ModuleBitcodeWriter::writeBlockInfo() { 3393 // We only want to emit block info records for blocks that have multiple 3394 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3395 // Other blocks can define their abbrevs inline. 3396 Stream.EnterBlockInfoBlock(); 3397 3398 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3399 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3400 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3401 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3402 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3404 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3405 VST_ENTRY_8_ABBREV) 3406 llvm_unreachable("Unexpected abbrev ordering!"); 3407 } 3408 3409 { // 7-bit fixed width VST_CODE_ENTRY strings. 3410 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3411 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3412 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3413 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3415 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3416 VST_ENTRY_7_ABBREV) 3417 llvm_unreachable("Unexpected abbrev ordering!"); 3418 } 3419 { // 6-bit char6 VST_CODE_ENTRY strings. 3420 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3421 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3423 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3424 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3425 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3426 VST_ENTRY_6_ABBREV) 3427 llvm_unreachable("Unexpected abbrev ordering!"); 3428 } 3429 { // 6-bit char6 VST_CODE_BBENTRY strings. 3430 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3431 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3432 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3433 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3435 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3436 VST_BBENTRY_6_ABBREV) 3437 llvm_unreachable("Unexpected abbrev ordering!"); 3438 } 3439 3440 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3441 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3442 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3443 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3444 VE.computeBitsRequiredForTypeIndicies())); 3445 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3446 CONSTANTS_SETTYPE_ABBREV) 3447 llvm_unreachable("Unexpected abbrev ordering!"); 3448 } 3449 3450 { // INTEGER abbrev for CONSTANTS_BLOCK. 3451 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3452 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3454 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3455 CONSTANTS_INTEGER_ABBREV) 3456 llvm_unreachable("Unexpected abbrev ordering!"); 3457 } 3458 3459 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3460 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3461 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3464 VE.computeBitsRequiredForTypeIndicies())); 3465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3466 3467 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3468 CONSTANTS_CE_CAST_Abbrev) 3469 llvm_unreachable("Unexpected abbrev ordering!"); 3470 } 3471 { // NULL abbrev for CONSTANTS_BLOCK. 3472 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3473 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3474 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3475 CONSTANTS_NULL_Abbrev) 3476 llvm_unreachable("Unexpected abbrev ordering!"); 3477 } 3478 3479 // FIXME: This should only use space for first class types! 3480 3481 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3482 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3483 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3484 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3485 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3486 VE.computeBitsRequiredForTypeIndicies())); 3487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3489 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3490 FUNCTION_INST_LOAD_ABBREV) 3491 llvm_unreachable("Unexpected abbrev ordering!"); 3492 } 3493 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3494 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3495 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3497 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3498 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3499 FUNCTION_INST_UNOP_ABBREV) 3500 llvm_unreachable("Unexpected abbrev ordering!"); 3501 } 3502 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3503 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3504 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3505 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3507 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3508 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3509 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3510 llvm_unreachable("Unexpected abbrev ordering!"); 3511 } 3512 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3513 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3514 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3517 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3518 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3519 FUNCTION_INST_BINOP_ABBREV) 3520 llvm_unreachable("Unexpected abbrev ordering!"); 3521 } 3522 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3523 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3524 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3529 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3530 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3531 llvm_unreachable("Unexpected abbrev ordering!"); 3532 } 3533 { // INST_CAST abbrev for FUNCTION_BLOCK. 3534 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3535 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3537 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3538 VE.computeBitsRequiredForTypeIndicies())); 3539 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3540 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3541 FUNCTION_INST_CAST_ABBREV) 3542 llvm_unreachable("Unexpected abbrev ordering!"); 3543 } 3544 3545 { // INST_RET abbrev for FUNCTION_BLOCK. 3546 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3547 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3548 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3549 FUNCTION_INST_RET_VOID_ABBREV) 3550 llvm_unreachable("Unexpected abbrev ordering!"); 3551 } 3552 { // INST_RET abbrev for FUNCTION_BLOCK. 3553 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3554 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3556 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3557 FUNCTION_INST_RET_VAL_ABBREV) 3558 llvm_unreachable("Unexpected abbrev ordering!"); 3559 } 3560 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3561 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3562 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3563 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3564 FUNCTION_INST_UNREACHABLE_ABBREV) 3565 llvm_unreachable("Unexpected abbrev ordering!"); 3566 } 3567 { 3568 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3569 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3571 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3572 Log2_32_Ceil(VE.getTypes().size() + 1))); 3573 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3574 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3575 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3576 FUNCTION_INST_GEP_ABBREV) 3577 llvm_unreachable("Unexpected abbrev ordering!"); 3578 } 3579 3580 Stream.ExitBlock(); 3581 } 3582 3583 /// Write the module path strings, currently only used when generating 3584 /// a combined index file. 3585 void IndexBitcodeWriter::writeModStrings() { 3586 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3587 3588 // TODO: See which abbrev sizes we actually need to emit 3589 3590 // 8-bit fixed-width MST_ENTRY strings. 3591 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3592 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3596 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3597 3598 // 7-bit fixed width MST_ENTRY strings. 3599 Abbv = std::make_shared<BitCodeAbbrev>(); 3600 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3603 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3604 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3605 3606 // 6-bit char6 MST_ENTRY strings. 3607 Abbv = std::make_shared<BitCodeAbbrev>(); 3608 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3610 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3611 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3612 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3613 3614 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3615 Abbv = std::make_shared<BitCodeAbbrev>(); 3616 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3618 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3619 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3620 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3621 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3622 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3623 3624 SmallVector<unsigned, 64> Vals; 3625 forEachModule( 3626 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3627 StringRef Key = MPSE.getKey(); 3628 const auto &Value = MPSE.getValue(); 3629 StringEncoding Bits = getStringEncoding(Key); 3630 unsigned AbbrevToUse = Abbrev8Bit; 3631 if (Bits == SE_Char6) 3632 AbbrevToUse = Abbrev6Bit; 3633 else if (Bits == SE_Fixed7) 3634 AbbrevToUse = Abbrev7Bit; 3635 3636 Vals.push_back(Value.first); 3637 Vals.append(Key.begin(), Key.end()); 3638 3639 // Emit the finished record. 3640 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3641 3642 // Emit an optional hash for the module now 3643 const auto &Hash = Value.second; 3644 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3645 Vals.assign(Hash.begin(), Hash.end()); 3646 // Emit the hash record. 3647 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3648 } 3649 3650 Vals.clear(); 3651 }); 3652 Stream.ExitBlock(); 3653 } 3654 3655 /// Write the function type metadata related records that need to appear before 3656 /// a function summary entry (whether per-module or combined). 3657 template <typename Fn> 3658 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3659 FunctionSummary *FS, 3660 Fn GetValueID) { 3661 if (!FS->type_tests().empty()) 3662 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3663 3664 SmallVector<uint64_t, 64> Record; 3665 3666 auto WriteVFuncIdVec = [&](uint64_t Ty, 3667 ArrayRef<FunctionSummary::VFuncId> VFs) { 3668 if (VFs.empty()) 3669 return; 3670 Record.clear(); 3671 for (auto &VF : VFs) { 3672 Record.push_back(VF.GUID); 3673 Record.push_back(VF.Offset); 3674 } 3675 Stream.EmitRecord(Ty, Record); 3676 }; 3677 3678 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3679 FS->type_test_assume_vcalls()); 3680 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3681 FS->type_checked_load_vcalls()); 3682 3683 auto WriteConstVCallVec = [&](uint64_t Ty, 3684 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3685 for (auto &VC : VCs) { 3686 Record.clear(); 3687 Record.push_back(VC.VFunc.GUID); 3688 Record.push_back(VC.VFunc.Offset); 3689 llvm::append_range(Record, VC.Args); 3690 Stream.EmitRecord(Ty, Record); 3691 } 3692 }; 3693 3694 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3695 FS->type_test_assume_const_vcalls()); 3696 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3697 FS->type_checked_load_const_vcalls()); 3698 3699 auto WriteRange = [&](ConstantRange Range) { 3700 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3701 assert(Range.getLower().getNumWords() == 1); 3702 assert(Range.getUpper().getNumWords() == 1); 3703 emitSignedInt64(Record, *Range.getLower().getRawData()); 3704 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3705 }; 3706 3707 if (!FS->paramAccesses().empty()) { 3708 Record.clear(); 3709 for (auto &Arg : FS->paramAccesses()) { 3710 size_t UndoSize = Record.size(); 3711 Record.push_back(Arg.ParamNo); 3712 WriteRange(Arg.Use); 3713 Record.push_back(Arg.Calls.size()); 3714 for (auto &Call : Arg.Calls) { 3715 Record.push_back(Call.ParamNo); 3716 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3717 if (!ValueID) { 3718 // If ValueID is unknown we can't drop just this call, we must drop 3719 // entire parameter. 3720 Record.resize(UndoSize); 3721 break; 3722 } 3723 Record.push_back(*ValueID); 3724 WriteRange(Call.Offsets); 3725 } 3726 } 3727 if (!Record.empty()) 3728 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3729 } 3730 } 3731 3732 /// Collect type IDs from type tests used by function. 3733 static void 3734 getReferencedTypeIds(FunctionSummary *FS, 3735 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3736 if (!FS->type_tests().empty()) 3737 for (auto &TT : FS->type_tests()) 3738 ReferencedTypeIds.insert(TT); 3739 3740 auto GetReferencedTypesFromVFuncIdVec = 3741 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3742 for (auto &VF : VFs) 3743 ReferencedTypeIds.insert(VF.GUID); 3744 }; 3745 3746 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3747 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3748 3749 auto GetReferencedTypesFromConstVCallVec = 3750 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3751 for (auto &VC : VCs) 3752 ReferencedTypeIds.insert(VC.VFunc.GUID); 3753 }; 3754 3755 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3756 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3757 } 3758 3759 static void writeWholeProgramDevirtResolutionByArg( 3760 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3761 const WholeProgramDevirtResolution::ByArg &ByArg) { 3762 NameVals.push_back(args.size()); 3763 llvm::append_range(NameVals, args); 3764 3765 NameVals.push_back(ByArg.TheKind); 3766 NameVals.push_back(ByArg.Info); 3767 NameVals.push_back(ByArg.Byte); 3768 NameVals.push_back(ByArg.Bit); 3769 } 3770 3771 static void writeWholeProgramDevirtResolution( 3772 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3773 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3774 NameVals.push_back(Id); 3775 3776 NameVals.push_back(Wpd.TheKind); 3777 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3778 NameVals.push_back(Wpd.SingleImplName.size()); 3779 3780 NameVals.push_back(Wpd.ResByArg.size()); 3781 for (auto &A : Wpd.ResByArg) 3782 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3783 } 3784 3785 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3786 StringTableBuilder &StrtabBuilder, 3787 const std::string &Id, 3788 const TypeIdSummary &Summary) { 3789 NameVals.push_back(StrtabBuilder.add(Id)); 3790 NameVals.push_back(Id.size()); 3791 3792 NameVals.push_back(Summary.TTRes.TheKind); 3793 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3794 NameVals.push_back(Summary.TTRes.AlignLog2); 3795 NameVals.push_back(Summary.TTRes.SizeM1); 3796 NameVals.push_back(Summary.TTRes.BitMask); 3797 NameVals.push_back(Summary.TTRes.InlineBits); 3798 3799 for (auto &W : Summary.WPDRes) 3800 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3801 W.second); 3802 } 3803 3804 static void writeTypeIdCompatibleVtableSummaryRecord( 3805 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3806 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3807 ValueEnumerator &VE) { 3808 NameVals.push_back(StrtabBuilder.add(Id)); 3809 NameVals.push_back(Id.size()); 3810 3811 for (auto &P : Summary) { 3812 NameVals.push_back(P.AddressPointOffset); 3813 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3814 } 3815 } 3816 3817 // Helper to emit a single function summary record. 3818 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3819 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3820 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3821 const Function &F) { 3822 NameVals.push_back(ValueID); 3823 3824 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3825 3826 writeFunctionTypeMetadataRecords( 3827 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3828 return {VE.getValueID(VI.getValue())}; 3829 }); 3830 3831 auto SpecialRefCnts = FS->specialRefCounts(); 3832 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3833 NameVals.push_back(FS->instCount()); 3834 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3835 NameVals.push_back(FS->refs().size()); 3836 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3837 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3838 3839 for (auto &RI : FS->refs()) 3840 NameVals.push_back(VE.getValueID(RI.getValue())); 3841 3842 bool HasProfileData = 3843 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3844 for (auto &ECI : FS->calls()) { 3845 NameVals.push_back(getValueId(ECI.first)); 3846 if (HasProfileData) 3847 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3848 else if (WriteRelBFToSummary) 3849 NameVals.push_back(ECI.second.RelBlockFreq); 3850 } 3851 3852 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3853 unsigned Code = 3854 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3855 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3856 : bitc::FS_PERMODULE)); 3857 3858 // Emit the finished record. 3859 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3860 NameVals.clear(); 3861 } 3862 3863 // Collect the global value references in the given variable's initializer, 3864 // and emit them in a summary record. 3865 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3866 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3867 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3868 auto VI = Index->getValueInfo(V.getGUID()); 3869 if (!VI || VI.getSummaryList().empty()) { 3870 // Only declarations should not have a summary (a declaration might however 3871 // have a summary if the def was in module level asm). 3872 assert(V.isDeclaration()); 3873 return; 3874 } 3875 auto *Summary = VI.getSummaryList()[0].get(); 3876 NameVals.push_back(VE.getValueID(&V)); 3877 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3878 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3879 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3880 3881 auto VTableFuncs = VS->vTableFuncs(); 3882 if (!VTableFuncs.empty()) 3883 NameVals.push_back(VS->refs().size()); 3884 3885 unsigned SizeBeforeRefs = NameVals.size(); 3886 for (auto &RI : VS->refs()) 3887 NameVals.push_back(VE.getValueID(RI.getValue())); 3888 // Sort the refs for determinism output, the vector returned by FS->refs() has 3889 // been initialized from a DenseSet. 3890 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 3891 3892 if (VTableFuncs.empty()) 3893 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3894 FSModRefsAbbrev); 3895 else { 3896 // VTableFuncs pairs should already be sorted by offset. 3897 for (auto &P : VTableFuncs) { 3898 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3899 NameVals.push_back(P.VTableOffset); 3900 } 3901 3902 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3903 FSModVTableRefsAbbrev); 3904 } 3905 NameVals.clear(); 3906 } 3907 3908 /// Emit the per-module summary section alongside the rest of 3909 /// the module's bitcode. 3910 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3911 // By default we compile with ThinLTO if the module has a summary, but the 3912 // client can request full LTO with a module flag. 3913 bool IsThinLTO = true; 3914 if (auto *MD = 3915 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3916 IsThinLTO = MD->getZExtValue(); 3917 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3918 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3919 4); 3920 3921 Stream.EmitRecord( 3922 bitc::FS_VERSION, 3923 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3924 3925 // Write the index flags. 3926 uint64_t Flags = 0; 3927 // Bits 1-3 are set only in the combined index, skip them. 3928 if (Index->enableSplitLTOUnit()) 3929 Flags |= 0x8; 3930 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3931 3932 if (Index->begin() == Index->end()) { 3933 Stream.ExitBlock(); 3934 return; 3935 } 3936 3937 for (const auto &GVI : valueIds()) { 3938 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3939 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3940 } 3941 3942 // Abbrev for FS_PERMODULE_PROFILE. 3943 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3944 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3946 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3952 // numrefs x valueid, n x (valueid, hotness) 3953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3955 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3956 3957 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3958 Abbv = std::make_shared<BitCodeAbbrev>(); 3959 if (WriteRelBFToSummary) 3960 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3961 else 3962 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3970 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3973 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3974 3975 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3976 Abbv = std::make_shared<BitCodeAbbrev>(); 3977 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3978 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3979 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3980 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3981 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3982 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3983 3984 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3985 Abbv = std::make_shared<BitCodeAbbrev>(); 3986 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3987 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3990 // numrefs x valueid, n x (valueid , offset) 3991 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3992 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3993 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3994 3995 // Abbrev for FS_ALIAS. 3996 Abbv = std::make_shared<BitCodeAbbrev>(); 3997 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3998 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4001 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4002 4003 // Abbrev for FS_TYPE_ID_METADATA 4004 Abbv = std::make_shared<BitCodeAbbrev>(); 4005 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4006 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4007 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4008 // n x (valueid , offset) 4009 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4010 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4011 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4012 4013 SmallVector<uint64_t, 64> NameVals; 4014 // Iterate over the list of functions instead of the Index to 4015 // ensure the ordering is stable. 4016 for (const Function &F : M) { 4017 // Summary emission does not support anonymous functions, they have to 4018 // renamed using the anonymous function renaming pass. 4019 if (!F.hasName()) 4020 report_fatal_error("Unexpected anonymous function when writing summary"); 4021 4022 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4023 if (!VI || VI.getSummaryList().empty()) { 4024 // Only declarations should not have a summary (a declaration might 4025 // however have a summary if the def was in module level asm). 4026 assert(F.isDeclaration()); 4027 continue; 4028 } 4029 auto *Summary = VI.getSummaryList()[0].get(); 4030 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4031 FSCallsAbbrev, FSCallsProfileAbbrev, F); 4032 } 4033 4034 // Capture references from GlobalVariable initializers, which are outside 4035 // of a function scope. 4036 for (const GlobalVariable &G : M.globals()) 4037 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4038 FSModVTableRefsAbbrev); 4039 4040 for (const GlobalAlias &A : M.aliases()) { 4041 auto *Aliasee = A.getBaseObject(); 4042 if (!Aliasee->hasName()) 4043 // Nameless function don't have an entry in the summary, skip it. 4044 continue; 4045 auto AliasId = VE.getValueID(&A); 4046 auto AliaseeId = VE.getValueID(Aliasee); 4047 NameVals.push_back(AliasId); 4048 auto *Summary = Index->getGlobalValueSummary(A); 4049 AliasSummary *AS = cast<AliasSummary>(Summary); 4050 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4051 NameVals.push_back(AliaseeId); 4052 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4053 NameVals.clear(); 4054 } 4055 4056 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4057 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4058 S.second, VE); 4059 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4060 TypeIdCompatibleVtableAbbrev); 4061 NameVals.clear(); 4062 } 4063 4064 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4065 ArrayRef<uint64_t>{Index->getBlockCount()}); 4066 4067 Stream.ExitBlock(); 4068 } 4069 4070 /// Emit the combined summary section into the combined index file. 4071 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4072 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 4073 Stream.EmitRecord( 4074 bitc::FS_VERSION, 4075 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4076 4077 // Write the index flags. 4078 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4079 4080 for (const auto &GVI : valueIds()) { 4081 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4082 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4083 } 4084 4085 // Abbrev for FS_COMBINED. 4086 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4087 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4088 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4089 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4094 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4095 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4096 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4097 // numrefs x valueid, n x (valueid) 4098 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4099 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4100 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4101 4102 // Abbrev for FS_COMBINED_PROFILE. 4103 Abbv = std::make_shared<BitCodeAbbrev>(); 4104 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4105 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4106 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4107 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4108 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4109 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4110 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4113 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4114 // numrefs x valueid, n x (valueid, hotness) 4115 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4116 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4117 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4118 4119 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4120 Abbv = std::make_shared<BitCodeAbbrev>(); 4121 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4122 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4123 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4124 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4125 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4126 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4127 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4128 4129 // Abbrev for FS_COMBINED_ALIAS. 4130 Abbv = std::make_shared<BitCodeAbbrev>(); 4131 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4132 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4133 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4134 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4135 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4136 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4137 4138 // The aliases are emitted as a post-pass, and will point to the value 4139 // id of the aliasee. Save them in a vector for post-processing. 4140 SmallVector<AliasSummary *, 64> Aliases; 4141 4142 // Save the value id for each summary for alias emission. 4143 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4144 4145 SmallVector<uint64_t, 64> NameVals; 4146 4147 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4148 // with the type ids referenced by this index file. 4149 std::set<GlobalValue::GUID> ReferencedTypeIds; 4150 4151 // For local linkage, we also emit the original name separately 4152 // immediately after the record. 4153 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4154 // We don't need to emit the original name if we are writing the index for 4155 // distributed backends (in which case ModuleToSummariesForIndex is 4156 // non-null). The original name is only needed during the thin link, since 4157 // for SamplePGO the indirect call targets for local functions have 4158 // have the original name annotated in profile. 4159 // Continue to emit it when writing out the entire combined index, which is 4160 // used in testing the thin link via llvm-lto. 4161 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4162 return; 4163 NameVals.push_back(S.getOriginalName()); 4164 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4165 NameVals.clear(); 4166 }; 4167 4168 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4169 forEachSummary([&](GVInfo I, bool IsAliasee) { 4170 GlobalValueSummary *S = I.second; 4171 assert(S); 4172 DefOrUseGUIDs.insert(I.first); 4173 for (const ValueInfo &VI : S->refs()) 4174 DefOrUseGUIDs.insert(VI.getGUID()); 4175 4176 auto ValueId = getValueId(I.first); 4177 assert(ValueId); 4178 SummaryToValueIdMap[S] = *ValueId; 4179 4180 // If this is invoked for an aliasee, we want to record the above 4181 // mapping, but then not emit a summary entry (if the aliasee is 4182 // to be imported, we will invoke this separately with IsAliasee=false). 4183 if (IsAliasee) 4184 return; 4185 4186 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4187 // Will process aliases as a post-pass because the reader wants all 4188 // global to be loaded first. 4189 Aliases.push_back(AS); 4190 return; 4191 } 4192 4193 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4194 NameVals.push_back(*ValueId); 4195 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4196 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4197 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4198 for (auto &RI : VS->refs()) { 4199 auto RefValueId = getValueId(RI.getGUID()); 4200 if (!RefValueId) 4201 continue; 4202 NameVals.push_back(*RefValueId); 4203 } 4204 4205 // Emit the finished record. 4206 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4207 FSModRefsAbbrev); 4208 NameVals.clear(); 4209 MaybeEmitOriginalName(*S); 4210 return; 4211 } 4212 4213 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4214 return getValueId(VI.getGUID()); 4215 }; 4216 4217 auto *FS = cast<FunctionSummary>(S); 4218 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4219 getReferencedTypeIds(FS, ReferencedTypeIds); 4220 4221 NameVals.push_back(*ValueId); 4222 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4223 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4224 NameVals.push_back(FS->instCount()); 4225 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4226 NameVals.push_back(FS->entryCount()); 4227 4228 // Fill in below 4229 NameVals.push_back(0); // numrefs 4230 NameVals.push_back(0); // rorefcnt 4231 NameVals.push_back(0); // worefcnt 4232 4233 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4234 for (auto &RI : FS->refs()) { 4235 auto RefValueId = getValueId(RI.getGUID()); 4236 if (!RefValueId) 4237 continue; 4238 NameVals.push_back(*RefValueId); 4239 if (RI.isReadOnly()) 4240 RORefCnt++; 4241 else if (RI.isWriteOnly()) 4242 WORefCnt++; 4243 Count++; 4244 } 4245 NameVals[6] = Count; 4246 NameVals[7] = RORefCnt; 4247 NameVals[8] = WORefCnt; 4248 4249 bool HasProfileData = false; 4250 for (auto &EI : FS->calls()) { 4251 HasProfileData |= 4252 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4253 if (HasProfileData) 4254 break; 4255 } 4256 4257 for (auto &EI : FS->calls()) { 4258 // If this GUID doesn't have a value id, it doesn't have a function 4259 // summary and we don't need to record any calls to it. 4260 Optional<unsigned> CallValueId = GetValueId(EI.first); 4261 if (!CallValueId) 4262 continue; 4263 NameVals.push_back(*CallValueId); 4264 if (HasProfileData) 4265 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4266 } 4267 4268 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4269 unsigned Code = 4270 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4271 4272 // Emit the finished record. 4273 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4274 NameVals.clear(); 4275 MaybeEmitOriginalName(*S); 4276 }); 4277 4278 for (auto *AS : Aliases) { 4279 auto AliasValueId = SummaryToValueIdMap[AS]; 4280 assert(AliasValueId); 4281 NameVals.push_back(AliasValueId); 4282 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4283 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4284 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4285 assert(AliaseeValueId); 4286 NameVals.push_back(AliaseeValueId); 4287 4288 // Emit the finished record. 4289 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4290 NameVals.clear(); 4291 MaybeEmitOriginalName(*AS); 4292 4293 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4294 getReferencedTypeIds(FS, ReferencedTypeIds); 4295 } 4296 4297 if (!Index.cfiFunctionDefs().empty()) { 4298 for (auto &S : Index.cfiFunctionDefs()) { 4299 if (DefOrUseGUIDs.count( 4300 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4301 NameVals.push_back(StrtabBuilder.add(S)); 4302 NameVals.push_back(S.size()); 4303 } 4304 } 4305 if (!NameVals.empty()) { 4306 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4307 NameVals.clear(); 4308 } 4309 } 4310 4311 if (!Index.cfiFunctionDecls().empty()) { 4312 for (auto &S : Index.cfiFunctionDecls()) { 4313 if (DefOrUseGUIDs.count( 4314 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4315 NameVals.push_back(StrtabBuilder.add(S)); 4316 NameVals.push_back(S.size()); 4317 } 4318 } 4319 if (!NameVals.empty()) { 4320 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4321 NameVals.clear(); 4322 } 4323 } 4324 4325 // Walk the GUIDs that were referenced, and write the 4326 // corresponding type id records. 4327 for (auto &T : ReferencedTypeIds) { 4328 auto TidIter = Index.typeIds().equal_range(T); 4329 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4330 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4331 It->second.second); 4332 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4333 NameVals.clear(); 4334 } 4335 } 4336 4337 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4338 ArrayRef<uint64_t>{Index.getBlockCount()}); 4339 4340 Stream.ExitBlock(); 4341 } 4342 4343 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4344 /// current llvm version, and a record for the epoch number. 4345 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4346 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4347 4348 // Write the "user readable" string identifying the bitcode producer 4349 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4350 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4353 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4354 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4355 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4356 4357 // Write the epoch version 4358 Abbv = std::make_shared<BitCodeAbbrev>(); 4359 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4361 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4362 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4363 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4364 Stream.ExitBlock(); 4365 } 4366 4367 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4368 // Emit the module's hash. 4369 // MODULE_CODE_HASH: [5*i32] 4370 if (GenerateHash) { 4371 uint32_t Vals[5]; 4372 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4373 Buffer.size() - BlockStartPos)); 4374 StringRef Hash = Hasher.result(); 4375 for (int Pos = 0; Pos < 20; Pos += 4) { 4376 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4377 } 4378 4379 // Emit the finished record. 4380 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4381 4382 if (ModHash) 4383 // Save the written hash value. 4384 llvm::copy(Vals, std::begin(*ModHash)); 4385 } 4386 } 4387 4388 void ModuleBitcodeWriter::write() { 4389 writeIdentificationBlock(Stream); 4390 4391 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4392 size_t BlockStartPos = Buffer.size(); 4393 4394 writeModuleVersion(); 4395 4396 // Emit blockinfo, which defines the standard abbreviations etc. 4397 writeBlockInfo(); 4398 4399 // Emit information describing all of the types in the module. 4400 writeTypeTable(); 4401 4402 // Emit information about attribute groups. 4403 writeAttributeGroupTable(); 4404 4405 // Emit information about parameter attributes. 4406 writeAttributeTable(); 4407 4408 writeComdats(); 4409 4410 // Emit top-level description of module, including target triple, inline asm, 4411 // descriptors for global variables, and function prototype info. 4412 writeModuleInfo(); 4413 4414 // Emit constants. 4415 writeModuleConstants(); 4416 4417 // Emit metadata kind names. 4418 writeModuleMetadataKinds(); 4419 4420 // Emit metadata. 4421 writeModuleMetadata(); 4422 4423 // Emit module-level use-lists. 4424 if (VE.shouldPreserveUseListOrder()) 4425 writeUseListBlock(nullptr); 4426 4427 writeOperandBundleTags(); 4428 writeSyncScopeNames(); 4429 4430 // Emit function bodies. 4431 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4432 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4433 if (!F->isDeclaration()) 4434 writeFunction(*F, FunctionToBitcodeIndex); 4435 4436 // Need to write after the above call to WriteFunction which populates 4437 // the summary information in the index. 4438 if (Index) 4439 writePerModuleGlobalValueSummary(); 4440 4441 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4442 4443 writeModuleHash(BlockStartPos); 4444 4445 Stream.ExitBlock(); 4446 } 4447 4448 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4449 uint32_t &Position) { 4450 support::endian::write32le(&Buffer[Position], Value); 4451 Position += 4; 4452 } 4453 4454 /// If generating a bc file on darwin, we have to emit a 4455 /// header and trailer to make it compatible with the system archiver. To do 4456 /// this we emit the following header, and then emit a trailer that pads the 4457 /// file out to be a multiple of 16 bytes. 4458 /// 4459 /// struct bc_header { 4460 /// uint32_t Magic; // 0x0B17C0DE 4461 /// uint32_t Version; // Version, currently always 0. 4462 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4463 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4464 /// uint32_t CPUType; // CPU specifier. 4465 /// ... potentially more later ... 4466 /// }; 4467 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4468 const Triple &TT) { 4469 unsigned CPUType = ~0U; 4470 4471 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4472 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4473 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4474 // specific constants here because they are implicitly part of the Darwin ABI. 4475 enum { 4476 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4477 DARWIN_CPU_TYPE_X86 = 7, 4478 DARWIN_CPU_TYPE_ARM = 12, 4479 DARWIN_CPU_TYPE_POWERPC = 18 4480 }; 4481 4482 Triple::ArchType Arch = TT.getArch(); 4483 if (Arch == Triple::x86_64) 4484 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4485 else if (Arch == Triple::x86) 4486 CPUType = DARWIN_CPU_TYPE_X86; 4487 else if (Arch == Triple::ppc) 4488 CPUType = DARWIN_CPU_TYPE_POWERPC; 4489 else if (Arch == Triple::ppc64) 4490 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4491 else if (Arch == Triple::arm || Arch == Triple::thumb) 4492 CPUType = DARWIN_CPU_TYPE_ARM; 4493 4494 // Traditional Bitcode starts after header. 4495 assert(Buffer.size() >= BWH_HeaderSize && 4496 "Expected header size to be reserved"); 4497 unsigned BCOffset = BWH_HeaderSize; 4498 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4499 4500 // Write the magic and version. 4501 unsigned Position = 0; 4502 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4503 writeInt32ToBuffer(0, Buffer, Position); // Version. 4504 writeInt32ToBuffer(BCOffset, Buffer, Position); 4505 writeInt32ToBuffer(BCSize, Buffer, Position); 4506 writeInt32ToBuffer(CPUType, Buffer, Position); 4507 4508 // If the file is not a multiple of 16 bytes, insert dummy padding. 4509 while (Buffer.size() & 15) 4510 Buffer.push_back(0); 4511 } 4512 4513 /// Helper to write the header common to all bitcode files. 4514 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4515 // Emit the file header. 4516 Stream.Emit((unsigned)'B', 8); 4517 Stream.Emit((unsigned)'C', 8); 4518 Stream.Emit(0x0, 4); 4519 Stream.Emit(0xC, 4); 4520 Stream.Emit(0xE, 4); 4521 Stream.Emit(0xD, 4); 4522 } 4523 4524 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4525 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4526 writeBitcodeHeader(*Stream); 4527 } 4528 4529 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4530 4531 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4532 Stream->EnterSubblock(Block, 3); 4533 4534 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4535 Abbv->Add(BitCodeAbbrevOp(Record)); 4536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4537 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4538 4539 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4540 4541 Stream->ExitBlock(); 4542 } 4543 4544 void BitcodeWriter::writeSymtab() { 4545 assert(!WroteStrtab && !WroteSymtab); 4546 4547 // If any module has module-level inline asm, we will require a registered asm 4548 // parser for the target so that we can create an accurate symbol table for 4549 // the module. 4550 for (Module *M : Mods) { 4551 if (M->getModuleInlineAsm().empty()) 4552 continue; 4553 4554 std::string Err; 4555 const Triple TT(M->getTargetTriple()); 4556 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4557 if (!T || !T->hasMCAsmParser()) 4558 return; 4559 } 4560 4561 WroteSymtab = true; 4562 SmallVector<char, 0> Symtab; 4563 // The irsymtab::build function may be unable to create a symbol table if the 4564 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4565 // table is not required for correctness, but we still want to be able to 4566 // write malformed modules to bitcode files, so swallow the error. 4567 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4568 consumeError(std::move(E)); 4569 return; 4570 } 4571 4572 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4573 {Symtab.data(), Symtab.size()}); 4574 } 4575 4576 void BitcodeWriter::writeStrtab() { 4577 assert(!WroteStrtab); 4578 4579 std::vector<char> Strtab; 4580 StrtabBuilder.finalizeInOrder(); 4581 Strtab.resize(StrtabBuilder.getSize()); 4582 StrtabBuilder.write((uint8_t *)Strtab.data()); 4583 4584 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4585 {Strtab.data(), Strtab.size()}); 4586 4587 WroteStrtab = true; 4588 } 4589 4590 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4591 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4592 WroteStrtab = true; 4593 } 4594 4595 void BitcodeWriter::writeModule(const Module &M, 4596 bool ShouldPreserveUseListOrder, 4597 const ModuleSummaryIndex *Index, 4598 bool GenerateHash, ModuleHash *ModHash) { 4599 assert(!WroteStrtab); 4600 4601 // The Mods vector is used by irsymtab::build, which requires non-const 4602 // Modules in case it needs to materialize metadata. But the bitcode writer 4603 // requires that the module is materialized, so we can cast to non-const here, 4604 // after checking that it is in fact materialized. 4605 assert(M.isMaterialized()); 4606 Mods.push_back(const_cast<Module *>(&M)); 4607 4608 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4609 ShouldPreserveUseListOrder, Index, 4610 GenerateHash, ModHash); 4611 ModuleWriter.write(); 4612 } 4613 4614 void BitcodeWriter::writeIndex( 4615 const ModuleSummaryIndex *Index, 4616 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4617 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4618 ModuleToSummariesForIndex); 4619 IndexWriter.write(); 4620 } 4621 4622 /// Write the specified module to the specified output stream. 4623 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4624 bool ShouldPreserveUseListOrder, 4625 const ModuleSummaryIndex *Index, 4626 bool GenerateHash, ModuleHash *ModHash) { 4627 SmallVector<char, 0> Buffer; 4628 Buffer.reserve(256*1024); 4629 4630 // If this is darwin or another generic macho target, reserve space for the 4631 // header. 4632 Triple TT(M.getTargetTriple()); 4633 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4634 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4635 4636 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4637 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4638 ModHash); 4639 Writer.writeSymtab(); 4640 Writer.writeStrtab(); 4641 4642 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4643 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4644 4645 // Write the generated bitstream to "Out". 4646 if (!Buffer.empty()) 4647 Out.write((char *)&Buffer.front(), Buffer.size()); 4648 } 4649 4650 void IndexBitcodeWriter::write() { 4651 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4652 4653 writeModuleVersion(); 4654 4655 // Write the module paths in the combined index. 4656 writeModStrings(); 4657 4658 // Write the summary combined index records. 4659 writeCombinedGlobalValueSummary(); 4660 4661 Stream.ExitBlock(); 4662 } 4663 4664 // Write the specified module summary index to the given raw output stream, 4665 // where it will be written in a new bitcode block. This is used when 4666 // writing the combined index file for ThinLTO. When writing a subset of the 4667 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4668 void llvm::WriteIndexToFile( 4669 const ModuleSummaryIndex &Index, raw_ostream &Out, 4670 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4671 SmallVector<char, 0> Buffer; 4672 Buffer.reserve(256 * 1024); 4673 4674 BitcodeWriter Writer(Buffer); 4675 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4676 Writer.writeStrtab(); 4677 4678 Out.write((char *)&Buffer.front(), Buffer.size()); 4679 } 4680 4681 namespace { 4682 4683 /// Class to manage the bitcode writing for a thin link bitcode file. 4684 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4685 /// ModHash is for use in ThinLTO incremental build, generated while writing 4686 /// the module bitcode file. 4687 const ModuleHash *ModHash; 4688 4689 public: 4690 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4691 BitstreamWriter &Stream, 4692 const ModuleSummaryIndex &Index, 4693 const ModuleHash &ModHash) 4694 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4695 /*ShouldPreserveUseListOrder=*/false, &Index), 4696 ModHash(&ModHash) {} 4697 4698 void write(); 4699 4700 private: 4701 void writeSimplifiedModuleInfo(); 4702 }; 4703 4704 } // end anonymous namespace 4705 4706 // This function writes a simpilified module info for thin link bitcode file. 4707 // It only contains the source file name along with the name(the offset and 4708 // size in strtab) and linkage for global values. For the global value info 4709 // entry, in order to keep linkage at offset 5, there are three zeros used 4710 // as padding. 4711 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4712 SmallVector<unsigned, 64> Vals; 4713 // Emit the module's source file name. 4714 { 4715 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4716 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4717 if (Bits == SE_Char6) 4718 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4719 else if (Bits == SE_Fixed7) 4720 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4721 4722 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4723 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4724 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4725 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4726 Abbv->Add(AbbrevOpToUse); 4727 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4728 4729 for (const auto P : M.getSourceFileName()) 4730 Vals.push_back((unsigned char)P); 4731 4732 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4733 Vals.clear(); 4734 } 4735 4736 // Emit the global variable information. 4737 for (const GlobalVariable &GV : M.globals()) { 4738 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4739 Vals.push_back(StrtabBuilder.add(GV.getName())); 4740 Vals.push_back(GV.getName().size()); 4741 Vals.push_back(0); 4742 Vals.push_back(0); 4743 Vals.push_back(0); 4744 Vals.push_back(getEncodedLinkage(GV)); 4745 4746 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4747 Vals.clear(); 4748 } 4749 4750 // Emit the function proto information. 4751 for (const Function &F : M) { 4752 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4753 Vals.push_back(StrtabBuilder.add(F.getName())); 4754 Vals.push_back(F.getName().size()); 4755 Vals.push_back(0); 4756 Vals.push_back(0); 4757 Vals.push_back(0); 4758 Vals.push_back(getEncodedLinkage(F)); 4759 4760 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4761 Vals.clear(); 4762 } 4763 4764 // Emit the alias information. 4765 for (const GlobalAlias &A : M.aliases()) { 4766 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4767 Vals.push_back(StrtabBuilder.add(A.getName())); 4768 Vals.push_back(A.getName().size()); 4769 Vals.push_back(0); 4770 Vals.push_back(0); 4771 Vals.push_back(0); 4772 Vals.push_back(getEncodedLinkage(A)); 4773 4774 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4775 Vals.clear(); 4776 } 4777 4778 // Emit the ifunc information. 4779 for (const GlobalIFunc &I : M.ifuncs()) { 4780 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4781 Vals.push_back(StrtabBuilder.add(I.getName())); 4782 Vals.push_back(I.getName().size()); 4783 Vals.push_back(0); 4784 Vals.push_back(0); 4785 Vals.push_back(0); 4786 Vals.push_back(getEncodedLinkage(I)); 4787 4788 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4789 Vals.clear(); 4790 } 4791 } 4792 4793 void ThinLinkBitcodeWriter::write() { 4794 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4795 4796 writeModuleVersion(); 4797 4798 writeSimplifiedModuleInfo(); 4799 4800 writePerModuleGlobalValueSummary(); 4801 4802 // Write module hash. 4803 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4804 4805 Stream.ExitBlock(); 4806 } 4807 4808 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4809 const ModuleSummaryIndex &Index, 4810 const ModuleHash &ModHash) { 4811 assert(!WroteStrtab); 4812 4813 // The Mods vector is used by irsymtab::build, which requires non-const 4814 // Modules in case it needs to materialize metadata. But the bitcode writer 4815 // requires that the module is materialized, so we can cast to non-const here, 4816 // after checking that it is in fact materialized. 4817 assert(M.isMaterialized()); 4818 Mods.push_back(const_cast<Module *>(&M)); 4819 4820 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4821 ModHash); 4822 ThinLinkWriter.write(); 4823 } 4824 4825 // Write the specified thin link bitcode file to the given raw output stream, 4826 // where it will be written in a new bitcode block. This is used when 4827 // writing the per-module index file for ThinLTO. 4828 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4829 const ModuleSummaryIndex &Index, 4830 const ModuleHash &ModHash) { 4831 SmallVector<char, 0> Buffer; 4832 Buffer.reserve(256 * 1024); 4833 4834 BitcodeWriter Writer(Buffer); 4835 Writer.writeThinLinkBitcode(M, Index, ModHash); 4836 Writer.writeSymtab(); 4837 Writer.writeStrtab(); 4838 4839 Out.write((char *)&Buffer.front(), Buffer.size()); 4840 } 4841 4842 static const char *getSectionNameForBitcode(const Triple &T) { 4843 switch (T.getObjectFormat()) { 4844 case Triple::MachO: 4845 return "__LLVM,__bitcode"; 4846 case Triple::COFF: 4847 case Triple::ELF: 4848 case Triple::Wasm: 4849 case Triple::UnknownObjectFormat: 4850 return ".llvmbc"; 4851 case Triple::GOFF: 4852 llvm_unreachable("GOFF is not yet implemented"); 4853 break; 4854 case Triple::XCOFF: 4855 llvm_unreachable("XCOFF is not yet implemented"); 4856 break; 4857 } 4858 llvm_unreachable("Unimplemented ObjectFormatType"); 4859 } 4860 4861 static const char *getSectionNameForCommandline(const Triple &T) { 4862 switch (T.getObjectFormat()) { 4863 case Triple::MachO: 4864 return "__LLVM,__cmdline"; 4865 case Triple::COFF: 4866 case Triple::ELF: 4867 case Triple::Wasm: 4868 case Triple::UnknownObjectFormat: 4869 return ".llvmcmd"; 4870 case Triple::GOFF: 4871 llvm_unreachable("GOFF is not yet implemented"); 4872 break; 4873 case Triple::XCOFF: 4874 llvm_unreachable("XCOFF is not yet implemented"); 4875 break; 4876 } 4877 llvm_unreachable("Unimplemented ObjectFormatType"); 4878 } 4879 4880 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4881 bool EmbedBitcode, bool EmbedCmdline, 4882 const std::vector<uint8_t> &CmdArgs) { 4883 // Save llvm.compiler.used and remove it. 4884 SmallVector<Constant *, 2> UsedArray; 4885 SmallVector<GlobalValue *, 4> UsedGlobals; 4886 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4887 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4888 for (auto *GV : UsedGlobals) { 4889 if (GV->getName() != "llvm.embedded.module" && 4890 GV->getName() != "llvm.cmdline") 4891 UsedArray.push_back( 4892 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4893 } 4894 if (Used) 4895 Used->eraseFromParent(); 4896 4897 // Embed the bitcode for the llvm module. 4898 std::string Data; 4899 ArrayRef<uint8_t> ModuleData; 4900 Triple T(M.getTargetTriple()); 4901 4902 if (EmbedBitcode) { 4903 if (Buf.getBufferSize() == 0 || 4904 !isBitcode((const unsigned char *)Buf.getBufferStart(), 4905 (const unsigned char *)Buf.getBufferEnd())) { 4906 // If the input is LLVM Assembly, bitcode is produced by serializing 4907 // the module. Use-lists order need to be preserved in this case. 4908 llvm::raw_string_ostream OS(Data); 4909 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4910 ModuleData = 4911 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4912 } else 4913 // If the input is LLVM bitcode, write the input byte stream directly. 4914 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4915 Buf.getBufferSize()); 4916 } 4917 llvm::Constant *ModuleConstant = 4918 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4919 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4920 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4921 ModuleConstant); 4922 GV->setSection(getSectionNameForBitcode(T)); 4923 // Set alignment to 1 to prevent padding between two contributions from input 4924 // sections after linking. 4925 GV->setAlignment(Align(1)); 4926 UsedArray.push_back( 4927 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4928 if (llvm::GlobalVariable *Old = 4929 M.getGlobalVariable("llvm.embedded.module", true)) { 4930 assert(Old->hasOneUse() && 4931 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4932 GV->takeName(Old); 4933 Old->eraseFromParent(); 4934 } else { 4935 GV->setName("llvm.embedded.module"); 4936 } 4937 4938 // Skip if only bitcode needs to be embedded. 4939 if (EmbedCmdline) { 4940 // Embed command-line options. 4941 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 4942 CmdArgs.size()); 4943 llvm::Constant *CmdConstant = 4944 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4945 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4946 llvm::GlobalValue::PrivateLinkage, 4947 CmdConstant); 4948 GV->setSection(getSectionNameForCommandline(T)); 4949 GV->setAlignment(Align(1)); 4950 UsedArray.push_back( 4951 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4952 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4953 assert(Old->hasOneUse() && 4954 "llvm.cmdline can only be used once in llvm.compiler.used"); 4955 GV->takeName(Old); 4956 Old->eraseFromParent(); 4957 } else { 4958 GV->setName("llvm.cmdline"); 4959 } 4960 } 4961 4962 if (UsedArray.empty()) 4963 return; 4964 4965 // Recreate llvm.compiler.used. 4966 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4967 auto *NewUsed = new GlobalVariable( 4968 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4969 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4970 NewUsed->setSection("llvm.metadata"); 4971 } 4972