1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/ValueSymbolTable.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/Program.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <cctype> 32 #include <map> 33 using namespace llvm; 34 35 static cl::opt<bool> 36 EnablePreserveUseListOrdering("enable-bc-uselist-preserve", 37 cl::desc("Turn on experimental support for " 38 "use-list order preservation."), 39 cl::init(false), cl::Hidden); 40 41 /// These are manifest constants used by the bitcode writer. They do not need to 42 /// be kept in sync with the reader, but need to be consistent within this file. 43 enum { 44 // VALUE_SYMTAB_BLOCK abbrev id's. 45 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 46 VST_ENTRY_7_ABBREV, 47 VST_ENTRY_6_ABBREV, 48 VST_BBENTRY_6_ABBREV, 49 50 // CONSTANTS_BLOCK abbrev id's. 51 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 CONSTANTS_INTEGER_ABBREV, 53 CONSTANTS_CE_CAST_Abbrev, 54 CONSTANTS_NULL_Abbrev, 55 56 // FUNCTION_BLOCK abbrev id's. 57 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 58 FUNCTION_INST_BINOP_ABBREV, 59 FUNCTION_INST_BINOP_FLAGS_ABBREV, 60 FUNCTION_INST_CAST_ABBREV, 61 FUNCTION_INST_RET_VOID_ABBREV, 62 FUNCTION_INST_RET_VAL_ABBREV, 63 FUNCTION_INST_UNREACHABLE_ABBREV 64 }; 65 66 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 67 switch (Opcode) { 68 default: llvm_unreachable("Unknown cast instruction!"); 69 case Instruction::Trunc : return bitc::CAST_TRUNC; 70 case Instruction::ZExt : return bitc::CAST_ZEXT; 71 case Instruction::SExt : return bitc::CAST_SEXT; 72 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 73 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 74 case Instruction::UIToFP : return bitc::CAST_UITOFP; 75 case Instruction::SIToFP : return bitc::CAST_SITOFP; 76 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 77 case Instruction::FPExt : return bitc::CAST_FPEXT; 78 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 79 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 80 case Instruction::BitCast : return bitc::CAST_BITCAST; 81 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 82 } 83 } 84 85 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 86 switch (Opcode) { 87 default: llvm_unreachable("Unknown binary instruction!"); 88 case Instruction::Add: 89 case Instruction::FAdd: return bitc::BINOP_ADD; 90 case Instruction::Sub: 91 case Instruction::FSub: return bitc::BINOP_SUB; 92 case Instruction::Mul: 93 case Instruction::FMul: return bitc::BINOP_MUL; 94 case Instruction::UDiv: return bitc::BINOP_UDIV; 95 case Instruction::FDiv: 96 case Instruction::SDiv: return bitc::BINOP_SDIV; 97 case Instruction::URem: return bitc::BINOP_UREM; 98 case Instruction::FRem: 99 case Instruction::SRem: return bitc::BINOP_SREM; 100 case Instruction::Shl: return bitc::BINOP_SHL; 101 case Instruction::LShr: return bitc::BINOP_LSHR; 102 case Instruction::AShr: return bitc::BINOP_ASHR; 103 case Instruction::And: return bitc::BINOP_AND; 104 case Instruction::Or: return bitc::BINOP_OR; 105 case Instruction::Xor: return bitc::BINOP_XOR; 106 } 107 } 108 109 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 110 switch (Op) { 111 default: llvm_unreachable("Unknown RMW operation!"); 112 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 113 case AtomicRMWInst::Add: return bitc::RMW_ADD; 114 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 115 case AtomicRMWInst::And: return bitc::RMW_AND; 116 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 117 case AtomicRMWInst::Or: return bitc::RMW_OR; 118 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 119 case AtomicRMWInst::Max: return bitc::RMW_MAX; 120 case AtomicRMWInst::Min: return bitc::RMW_MIN; 121 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 122 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 123 } 124 } 125 126 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 127 switch (Ordering) { 128 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 129 case Unordered: return bitc::ORDERING_UNORDERED; 130 case Monotonic: return bitc::ORDERING_MONOTONIC; 131 case Acquire: return bitc::ORDERING_ACQUIRE; 132 case Release: return bitc::ORDERING_RELEASE; 133 case AcquireRelease: return bitc::ORDERING_ACQREL; 134 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 135 } 136 llvm_unreachable("Invalid ordering"); 137 } 138 139 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 140 switch (SynchScope) { 141 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 142 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 143 } 144 llvm_unreachable("Invalid synch scope"); 145 } 146 147 static void WriteStringRecord(unsigned Code, StringRef Str, 148 unsigned AbbrevToUse, BitstreamWriter &Stream) { 149 SmallVector<unsigned, 64> Vals; 150 151 // Code: [strchar x N] 152 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 153 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 154 AbbrevToUse = 0; 155 Vals.push_back(Str[i]); 156 } 157 158 // Emit the finished record. 159 Stream.EmitRecord(Code, Vals, AbbrevToUse); 160 } 161 162 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 163 switch (Kind) { 164 case Attribute::Alignment: 165 return bitc::ATTR_KIND_ALIGNMENT; 166 case Attribute::AlwaysInline: 167 return bitc::ATTR_KIND_ALWAYS_INLINE; 168 case Attribute::Builtin: 169 return bitc::ATTR_KIND_BUILTIN; 170 case Attribute::ByVal: 171 return bitc::ATTR_KIND_BY_VAL; 172 case Attribute::InAlloca: 173 return bitc::ATTR_KIND_IN_ALLOCA; 174 case Attribute::Cold: 175 return bitc::ATTR_KIND_COLD; 176 case Attribute::InlineHint: 177 return bitc::ATTR_KIND_INLINE_HINT; 178 case Attribute::InReg: 179 return bitc::ATTR_KIND_IN_REG; 180 case Attribute::MinSize: 181 return bitc::ATTR_KIND_MIN_SIZE; 182 case Attribute::Naked: 183 return bitc::ATTR_KIND_NAKED; 184 case Attribute::Nest: 185 return bitc::ATTR_KIND_NEST; 186 case Attribute::NoAlias: 187 return bitc::ATTR_KIND_NO_ALIAS; 188 case Attribute::NoBuiltin: 189 return bitc::ATTR_KIND_NO_BUILTIN; 190 case Attribute::NoCapture: 191 return bitc::ATTR_KIND_NO_CAPTURE; 192 case Attribute::NoDuplicate: 193 return bitc::ATTR_KIND_NO_DUPLICATE; 194 case Attribute::NoImplicitFloat: 195 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 196 case Attribute::NoInline: 197 return bitc::ATTR_KIND_NO_INLINE; 198 case Attribute::NonLazyBind: 199 return bitc::ATTR_KIND_NON_LAZY_BIND; 200 case Attribute::NoRedZone: 201 return bitc::ATTR_KIND_NO_RED_ZONE; 202 case Attribute::NoReturn: 203 return bitc::ATTR_KIND_NO_RETURN; 204 case Attribute::NoUnwind: 205 return bitc::ATTR_KIND_NO_UNWIND; 206 case Attribute::OptimizeForSize: 207 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 208 case Attribute::OptimizeNone: 209 return bitc::ATTR_KIND_OPTIMIZE_NONE; 210 case Attribute::ReadNone: 211 return bitc::ATTR_KIND_READ_NONE; 212 case Attribute::ReadOnly: 213 return bitc::ATTR_KIND_READ_ONLY; 214 case Attribute::Returned: 215 return bitc::ATTR_KIND_RETURNED; 216 case Attribute::ReturnsTwice: 217 return bitc::ATTR_KIND_RETURNS_TWICE; 218 case Attribute::SExt: 219 return bitc::ATTR_KIND_S_EXT; 220 case Attribute::StackAlignment: 221 return bitc::ATTR_KIND_STACK_ALIGNMENT; 222 case Attribute::StackProtect: 223 return bitc::ATTR_KIND_STACK_PROTECT; 224 case Attribute::StackProtectReq: 225 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 226 case Attribute::StackProtectStrong: 227 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 228 case Attribute::StructRet: 229 return bitc::ATTR_KIND_STRUCT_RET; 230 case Attribute::SanitizeAddress: 231 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 232 case Attribute::SanitizeThread: 233 return bitc::ATTR_KIND_SANITIZE_THREAD; 234 case Attribute::SanitizeMemory: 235 return bitc::ATTR_KIND_SANITIZE_MEMORY; 236 case Attribute::UWTable: 237 return bitc::ATTR_KIND_UW_TABLE; 238 case Attribute::ZExt: 239 return bitc::ATTR_KIND_Z_EXT; 240 case Attribute::EndAttrKinds: 241 llvm_unreachable("Can not encode end-attribute kinds marker."); 242 case Attribute::None: 243 llvm_unreachable("Can not encode none-attribute."); 244 } 245 246 llvm_unreachable("Trying to encode unknown attribute"); 247 } 248 249 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 250 BitstreamWriter &Stream) { 251 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 252 if (AttrGrps.empty()) return; 253 254 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 255 256 SmallVector<uint64_t, 64> Record; 257 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 258 AttributeSet AS = AttrGrps[i]; 259 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 260 AttributeSet A = AS.getSlotAttributes(i); 261 262 Record.push_back(VE.getAttributeGroupID(A)); 263 Record.push_back(AS.getSlotIndex(i)); 264 265 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 266 I != E; ++I) { 267 Attribute Attr = *I; 268 if (Attr.isEnumAttribute()) { 269 Record.push_back(0); 270 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 271 } else if (Attr.isAlignAttribute()) { 272 Record.push_back(1); 273 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 274 Record.push_back(Attr.getValueAsInt()); 275 } else { 276 StringRef Kind = Attr.getKindAsString(); 277 StringRef Val = Attr.getValueAsString(); 278 279 Record.push_back(Val.empty() ? 3 : 4); 280 Record.append(Kind.begin(), Kind.end()); 281 Record.push_back(0); 282 if (!Val.empty()) { 283 Record.append(Val.begin(), Val.end()); 284 Record.push_back(0); 285 } 286 } 287 } 288 289 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 290 Record.clear(); 291 } 292 } 293 294 Stream.ExitBlock(); 295 } 296 297 static void WriteAttributeTable(const ValueEnumerator &VE, 298 BitstreamWriter &Stream) { 299 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 300 if (Attrs.empty()) return; 301 302 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 303 304 SmallVector<uint64_t, 64> Record; 305 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 306 const AttributeSet &A = Attrs[i]; 307 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 308 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 309 310 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 311 Record.clear(); 312 } 313 314 Stream.ExitBlock(); 315 } 316 317 /// WriteTypeTable - Write out the type table for a module. 318 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 319 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 320 321 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 322 SmallVector<uint64_t, 64> TypeVals; 323 324 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 325 326 // Abbrev for TYPE_CODE_POINTER. 327 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 328 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 330 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 331 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 332 333 // Abbrev for TYPE_CODE_FUNCTION. 334 Abbv = new BitCodeAbbrev(); 335 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 339 340 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 341 342 // Abbrev for TYPE_CODE_STRUCT_ANON. 343 Abbv = new BitCodeAbbrev(); 344 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 348 349 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 350 351 // Abbrev for TYPE_CODE_STRUCT_NAME. 352 Abbv = new BitCodeAbbrev(); 353 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 356 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 357 358 // Abbrev for TYPE_CODE_STRUCT_NAMED. 359 Abbv = new BitCodeAbbrev(); 360 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 364 365 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 366 367 // Abbrev for TYPE_CODE_ARRAY. 368 Abbv = new BitCodeAbbrev(); 369 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 372 373 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 374 375 // Emit an entry count so the reader can reserve space. 376 TypeVals.push_back(TypeList.size()); 377 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 378 TypeVals.clear(); 379 380 // Loop over all of the types, emitting each in turn. 381 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 382 Type *T = TypeList[i]; 383 int AbbrevToUse = 0; 384 unsigned Code = 0; 385 386 switch (T->getTypeID()) { 387 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 388 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 389 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 390 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 391 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 392 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 393 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 394 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 395 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 396 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 397 case Type::IntegerTyID: 398 // INTEGER: [width] 399 Code = bitc::TYPE_CODE_INTEGER; 400 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 401 break; 402 case Type::PointerTyID: { 403 PointerType *PTy = cast<PointerType>(T); 404 // POINTER: [pointee type, address space] 405 Code = bitc::TYPE_CODE_POINTER; 406 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 407 unsigned AddressSpace = PTy->getAddressSpace(); 408 TypeVals.push_back(AddressSpace); 409 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 410 break; 411 } 412 case Type::FunctionTyID: { 413 FunctionType *FT = cast<FunctionType>(T); 414 // FUNCTION: [isvararg, retty, paramty x N] 415 Code = bitc::TYPE_CODE_FUNCTION; 416 TypeVals.push_back(FT->isVarArg()); 417 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 418 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 419 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 420 AbbrevToUse = FunctionAbbrev; 421 break; 422 } 423 case Type::StructTyID: { 424 StructType *ST = cast<StructType>(T); 425 // STRUCT: [ispacked, eltty x N] 426 TypeVals.push_back(ST->isPacked()); 427 // Output all of the element types. 428 for (StructType::element_iterator I = ST->element_begin(), 429 E = ST->element_end(); I != E; ++I) 430 TypeVals.push_back(VE.getTypeID(*I)); 431 432 if (ST->isLiteral()) { 433 Code = bitc::TYPE_CODE_STRUCT_ANON; 434 AbbrevToUse = StructAnonAbbrev; 435 } else { 436 if (ST->isOpaque()) { 437 Code = bitc::TYPE_CODE_OPAQUE; 438 } else { 439 Code = bitc::TYPE_CODE_STRUCT_NAMED; 440 AbbrevToUse = StructNamedAbbrev; 441 } 442 443 // Emit the name if it is present. 444 if (!ST->getName().empty()) 445 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 446 StructNameAbbrev, Stream); 447 } 448 break; 449 } 450 case Type::ArrayTyID: { 451 ArrayType *AT = cast<ArrayType>(T); 452 // ARRAY: [numelts, eltty] 453 Code = bitc::TYPE_CODE_ARRAY; 454 TypeVals.push_back(AT->getNumElements()); 455 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 456 AbbrevToUse = ArrayAbbrev; 457 break; 458 } 459 case Type::VectorTyID: { 460 VectorType *VT = cast<VectorType>(T); 461 // VECTOR [numelts, eltty] 462 Code = bitc::TYPE_CODE_VECTOR; 463 TypeVals.push_back(VT->getNumElements()); 464 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 465 break; 466 } 467 } 468 469 // Emit the finished record. 470 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 471 TypeVals.clear(); 472 } 473 474 Stream.ExitBlock(); 475 } 476 477 static unsigned getEncodedLinkage(const GlobalValue *GV) { 478 switch (GV->getLinkage()) { 479 case GlobalValue::ExternalLinkage: return 0; 480 case GlobalValue::WeakAnyLinkage: return 1; 481 case GlobalValue::AppendingLinkage: return 2; 482 case GlobalValue::InternalLinkage: return 3; 483 case GlobalValue::LinkOnceAnyLinkage: return 4; 484 case GlobalValue::DLLImportLinkage: return 5; 485 case GlobalValue::DLLExportLinkage: return 6; 486 case GlobalValue::ExternalWeakLinkage: return 7; 487 case GlobalValue::CommonLinkage: return 8; 488 case GlobalValue::PrivateLinkage: return 9; 489 case GlobalValue::WeakODRLinkage: return 10; 490 case GlobalValue::LinkOnceODRLinkage: return 11; 491 case GlobalValue::AvailableExternallyLinkage: return 12; 492 case GlobalValue::LinkerPrivateLinkage: return 13; 493 case GlobalValue::LinkerPrivateWeakLinkage: return 14; 494 } 495 llvm_unreachable("Invalid linkage"); 496 } 497 498 static unsigned getEncodedVisibility(const GlobalValue *GV) { 499 switch (GV->getVisibility()) { 500 case GlobalValue::DefaultVisibility: return 0; 501 case GlobalValue::HiddenVisibility: return 1; 502 case GlobalValue::ProtectedVisibility: return 2; 503 } 504 llvm_unreachable("Invalid visibility"); 505 } 506 507 static unsigned getEncodedThreadLocalMode(const GlobalVariable *GV) { 508 switch (GV->getThreadLocalMode()) { 509 case GlobalVariable::NotThreadLocal: return 0; 510 case GlobalVariable::GeneralDynamicTLSModel: return 1; 511 case GlobalVariable::LocalDynamicTLSModel: return 2; 512 case GlobalVariable::InitialExecTLSModel: return 3; 513 case GlobalVariable::LocalExecTLSModel: return 4; 514 } 515 llvm_unreachable("Invalid TLS model"); 516 } 517 518 // Emit top-level description of module, including target triple, inline asm, 519 // descriptors for global variables, and function prototype info. 520 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 521 BitstreamWriter &Stream) { 522 // Emit various pieces of data attached to a module. 523 if (!M->getTargetTriple().empty()) 524 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 525 0/*TODO*/, Stream); 526 if (!M->getDataLayout().empty()) 527 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 528 0/*TODO*/, Stream); 529 if (!M->getModuleInlineAsm().empty()) 530 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 531 0/*TODO*/, Stream); 532 533 // Emit information about sections and GC, computing how many there are. Also 534 // compute the maximum alignment value. 535 std::map<std::string, unsigned> SectionMap; 536 std::map<std::string, unsigned> GCMap; 537 unsigned MaxAlignment = 0; 538 unsigned MaxGlobalType = 0; 539 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 540 GV != E; ++GV) { 541 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 542 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 543 if (GV->hasSection()) { 544 // Give section names unique ID's. 545 unsigned &Entry = SectionMap[GV->getSection()]; 546 if (!Entry) { 547 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 548 0/*TODO*/, Stream); 549 Entry = SectionMap.size(); 550 } 551 } 552 } 553 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 554 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 555 if (F->hasSection()) { 556 // Give section names unique ID's. 557 unsigned &Entry = SectionMap[F->getSection()]; 558 if (!Entry) { 559 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 560 0/*TODO*/, Stream); 561 Entry = SectionMap.size(); 562 } 563 } 564 if (F->hasGC()) { 565 // Same for GC names. 566 unsigned &Entry = GCMap[F->getGC()]; 567 if (!Entry) { 568 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 569 0/*TODO*/, Stream); 570 Entry = GCMap.size(); 571 } 572 } 573 } 574 575 // Emit abbrev for globals, now that we know # sections and max alignment. 576 unsigned SimpleGVarAbbrev = 0; 577 if (!M->global_empty()) { 578 // Add an abbrev for common globals with no visibility or thread localness. 579 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 580 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 582 Log2_32_Ceil(MaxGlobalType+1))); 583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 586 if (MaxAlignment == 0) // Alignment. 587 Abbv->Add(BitCodeAbbrevOp(0)); 588 else { 589 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 591 Log2_32_Ceil(MaxEncAlignment+1))); 592 } 593 if (SectionMap.empty()) // Section. 594 Abbv->Add(BitCodeAbbrevOp(0)); 595 else 596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 597 Log2_32_Ceil(SectionMap.size()+1))); 598 // Don't bother emitting vis + thread local. 599 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 600 } 601 602 // Emit the global variable information. 603 SmallVector<unsigned, 64> Vals; 604 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 605 GV != E; ++GV) { 606 unsigned AbbrevToUse = 0; 607 608 // GLOBALVAR: [type, isconst, initid, 609 // linkage, alignment, section, visibility, threadlocal, 610 // unnamed_addr, externally_initialized] 611 Vals.push_back(VE.getTypeID(GV->getType())); 612 Vals.push_back(GV->isConstant()); 613 Vals.push_back(GV->isDeclaration() ? 0 : 614 (VE.getValueID(GV->getInitializer()) + 1)); 615 Vals.push_back(getEncodedLinkage(GV)); 616 Vals.push_back(Log2_32(GV->getAlignment())+1); 617 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 618 if (GV->isThreadLocal() || 619 GV->getVisibility() != GlobalValue::DefaultVisibility || 620 GV->hasUnnamedAddr() || GV->isExternallyInitialized()) { 621 Vals.push_back(getEncodedVisibility(GV)); 622 Vals.push_back(getEncodedThreadLocalMode(GV)); 623 Vals.push_back(GV->hasUnnamedAddr()); 624 Vals.push_back(GV->isExternallyInitialized()); 625 } else { 626 AbbrevToUse = SimpleGVarAbbrev; 627 } 628 629 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 630 Vals.clear(); 631 } 632 633 // Emit the function proto information. 634 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 635 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 636 // section, visibility, gc, unnamed_addr, prefix] 637 Vals.push_back(VE.getTypeID(F->getType())); 638 Vals.push_back(F->getCallingConv()); 639 Vals.push_back(F->isDeclaration()); 640 Vals.push_back(getEncodedLinkage(F)); 641 Vals.push_back(VE.getAttributeID(F->getAttributes())); 642 Vals.push_back(Log2_32(F->getAlignment())+1); 643 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 644 Vals.push_back(getEncodedVisibility(F)); 645 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 646 Vals.push_back(F->hasUnnamedAddr()); 647 Vals.push_back(F->hasPrefixData() ? (VE.getValueID(F->getPrefixData()) + 1) 648 : 0); 649 650 unsigned AbbrevToUse = 0; 651 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 652 Vals.clear(); 653 } 654 655 // Emit the alias information. 656 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 657 AI != E; ++AI) { 658 // ALIAS: [alias type, aliasee val#, linkage, visibility] 659 Vals.push_back(VE.getTypeID(AI->getType())); 660 Vals.push_back(VE.getValueID(AI->getAliasee())); 661 Vals.push_back(getEncodedLinkage(AI)); 662 Vals.push_back(getEncodedVisibility(AI)); 663 unsigned AbbrevToUse = 0; 664 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 665 Vals.clear(); 666 } 667 } 668 669 static uint64_t GetOptimizationFlags(const Value *V) { 670 uint64_t Flags = 0; 671 672 if (const OverflowingBinaryOperator *OBO = 673 dyn_cast<OverflowingBinaryOperator>(V)) { 674 if (OBO->hasNoSignedWrap()) 675 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 676 if (OBO->hasNoUnsignedWrap()) 677 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 678 } else if (const PossiblyExactOperator *PEO = 679 dyn_cast<PossiblyExactOperator>(V)) { 680 if (PEO->isExact()) 681 Flags |= 1 << bitc::PEO_EXACT; 682 } else if (const FPMathOperator *FPMO = 683 dyn_cast<const FPMathOperator>(V)) { 684 if (FPMO->hasUnsafeAlgebra()) 685 Flags |= FastMathFlags::UnsafeAlgebra; 686 if (FPMO->hasNoNaNs()) 687 Flags |= FastMathFlags::NoNaNs; 688 if (FPMO->hasNoInfs()) 689 Flags |= FastMathFlags::NoInfs; 690 if (FPMO->hasNoSignedZeros()) 691 Flags |= FastMathFlags::NoSignedZeros; 692 if (FPMO->hasAllowReciprocal()) 693 Flags |= FastMathFlags::AllowReciprocal; 694 } 695 696 return Flags; 697 } 698 699 static void WriteMDNode(const MDNode *N, 700 const ValueEnumerator &VE, 701 BitstreamWriter &Stream, 702 SmallVectorImpl<uint64_t> &Record) { 703 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 704 if (N->getOperand(i)) { 705 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 706 Record.push_back(VE.getValueID(N->getOperand(i))); 707 } else { 708 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 709 Record.push_back(0); 710 } 711 } 712 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE : 713 bitc::METADATA_NODE; 714 Stream.EmitRecord(MDCode, Record, 0); 715 Record.clear(); 716 } 717 718 static void WriteModuleMetadata(const Module *M, 719 const ValueEnumerator &VE, 720 BitstreamWriter &Stream) { 721 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 722 bool StartedMetadataBlock = false; 723 unsigned MDSAbbrev = 0; 724 SmallVector<uint64_t, 64> Record; 725 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 726 727 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 728 if (!N->isFunctionLocal() || !N->getFunction()) { 729 if (!StartedMetadataBlock) { 730 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 731 StartedMetadataBlock = true; 732 } 733 WriteMDNode(N, VE, Stream, Record); 734 } 735 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 736 if (!StartedMetadataBlock) { 737 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 738 739 // Abbrev for METADATA_STRING. 740 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 741 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 742 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 743 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 744 MDSAbbrev = Stream.EmitAbbrev(Abbv); 745 StartedMetadataBlock = true; 746 } 747 748 // Code: [strchar x N] 749 Record.append(MDS->begin(), MDS->end()); 750 751 // Emit the finished record. 752 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 753 Record.clear(); 754 } 755 } 756 757 // Write named metadata. 758 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 759 E = M->named_metadata_end(); I != E; ++I) { 760 const NamedMDNode *NMD = I; 761 if (!StartedMetadataBlock) { 762 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 763 StartedMetadataBlock = true; 764 } 765 766 // Write name. 767 StringRef Str = NMD->getName(); 768 for (unsigned i = 0, e = Str.size(); i != e; ++i) 769 Record.push_back(Str[i]); 770 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 771 Record.clear(); 772 773 // Write named metadata operands. 774 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 775 Record.push_back(VE.getValueID(NMD->getOperand(i))); 776 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 777 Record.clear(); 778 } 779 780 if (StartedMetadataBlock) 781 Stream.ExitBlock(); 782 } 783 784 static void WriteFunctionLocalMetadata(const Function &F, 785 const ValueEnumerator &VE, 786 BitstreamWriter &Stream) { 787 bool StartedMetadataBlock = false; 788 SmallVector<uint64_t, 64> Record; 789 const SmallVectorImpl<const MDNode *> &Vals = VE.getFunctionLocalMDValues(); 790 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 791 if (const MDNode *N = Vals[i]) 792 if (N->isFunctionLocal() && N->getFunction() == &F) { 793 if (!StartedMetadataBlock) { 794 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 795 StartedMetadataBlock = true; 796 } 797 WriteMDNode(N, VE, Stream, Record); 798 } 799 800 if (StartedMetadataBlock) 801 Stream.ExitBlock(); 802 } 803 804 static void WriteMetadataAttachment(const Function &F, 805 const ValueEnumerator &VE, 806 BitstreamWriter &Stream) { 807 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 808 809 SmallVector<uint64_t, 64> Record; 810 811 // Write metadata attachments 812 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 813 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 814 815 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 816 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 817 I != E; ++I) { 818 MDs.clear(); 819 I->getAllMetadataOtherThanDebugLoc(MDs); 820 821 // If no metadata, ignore instruction. 822 if (MDs.empty()) continue; 823 824 Record.push_back(VE.getInstructionID(I)); 825 826 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 827 Record.push_back(MDs[i].first); 828 Record.push_back(VE.getValueID(MDs[i].second)); 829 } 830 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 831 Record.clear(); 832 } 833 834 Stream.ExitBlock(); 835 } 836 837 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 838 SmallVector<uint64_t, 64> Record; 839 840 // Write metadata kinds 841 // METADATA_KIND - [n x [id, name]] 842 SmallVector<StringRef, 8> Names; 843 M->getMDKindNames(Names); 844 845 if (Names.empty()) return; 846 847 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 848 849 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 850 Record.push_back(MDKindID); 851 StringRef KName = Names[MDKindID]; 852 Record.append(KName.begin(), KName.end()); 853 854 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 855 Record.clear(); 856 } 857 858 Stream.ExitBlock(); 859 } 860 861 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 862 if ((int64_t)V >= 0) 863 Vals.push_back(V << 1); 864 else 865 Vals.push_back((-V << 1) | 1); 866 } 867 868 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 869 const ValueEnumerator &VE, 870 BitstreamWriter &Stream, bool isGlobal) { 871 if (FirstVal == LastVal) return; 872 873 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 874 875 unsigned AggregateAbbrev = 0; 876 unsigned String8Abbrev = 0; 877 unsigned CString7Abbrev = 0; 878 unsigned CString6Abbrev = 0; 879 // If this is a constant pool for the module, emit module-specific abbrevs. 880 if (isGlobal) { 881 // Abbrev for CST_CODE_AGGREGATE. 882 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 883 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 885 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 886 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 887 888 // Abbrev for CST_CODE_STRING. 889 Abbv = new BitCodeAbbrev(); 890 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 891 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 893 String8Abbrev = Stream.EmitAbbrev(Abbv); 894 // Abbrev for CST_CODE_CSTRING. 895 Abbv = new BitCodeAbbrev(); 896 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 897 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 898 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 899 CString7Abbrev = Stream.EmitAbbrev(Abbv); 900 // Abbrev for CST_CODE_CSTRING. 901 Abbv = new BitCodeAbbrev(); 902 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 903 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 904 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 905 CString6Abbrev = Stream.EmitAbbrev(Abbv); 906 } 907 908 SmallVector<uint64_t, 64> Record; 909 910 const ValueEnumerator::ValueList &Vals = VE.getValues(); 911 Type *LastTy = 0; 912 for (unsigned i = FirstVal; i != LastVal; ++i) { 913 const Value *V = Vals[i].first; 914 // If we need to switch types, do so now. 915 if (V->getType() != LastTy) { 916 LastTy = V->getType(); 917 Record.push_back(VE.getTypeID(LastTy)); 918 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 919 CONSTANTS_SETTYPE_ABBREV); 920 Record.clear(); 921 } 922 923 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 924 Record.push_back(unsigned(IA->hasSideEffects()) | 925 unsigned(IA->isAlignStack()) << 1 | 926 unsigned(IA->getDialect()&1) << 2); 927 928 // Add the asm string. 929 const std::string &AsmStr = IA->getAsmString(); 930 Record.push_back(AsmStr.size()); 931 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 932 Record.push_back(AsmStr[i]); 933 934 // Add the constraint string. 935 const std::string &ConstraintStr = IA->getConstraintString(); 936 Record.push_back(ConstraintStr.size()); 937 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 938 Record.push_back(ConstraintStr[i]); 939 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 940 Record.clear(); 941 continue; 942 } 943 const Constant *C = cast<Constant>(V); 944 unsigned Code = -1U; 945 unsigned AbbrevToUse = 0; 946 if (C->isNullValue()) { 947 Code = bitc::CST_CODE_NULL; 948 } else if (isa<UndefValue>(C)) { 949 Code = bitc::CST_CODE_UNDEF; 950 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 951 if (IV->getBitWidth() <= 64) { 952 uint64_t V = IV->getSExtValue(); 953 emitSignedInt64(Record, V); 954 Code = bitc::CST_CODE_INTEGER; 955 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 956 } else { // Wide integers, > 64 bits in size. 957 // We have an arbitrary precision integer value to write whose 958 // bit width is > 64. However, in canonical unsigned integer 959 // format it is likely that the high bits are going to be zero. 960 // So, we only write the number of active words. 961 unsigned NWords = IV->getValue().getActiveWords(); 962 const uint64_t *RawWords = IV->getValue().getRawData(); 963 for (unsigned i = 0; i != NWords; ++i) { 964 emitSignedInt64(Record, RawWords[i]); 965 } 966 Code = bitc::CST_CODE_WIDE_INTEGER; 967 } 968 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 969 Code = bitc::CST_CODE_FLOAT; 970 Type *Ty = CFP->getType(); 971 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 972 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 973 } else if (Ty->isX86_FP80Ty()) { 974 // api needed to prevent premature destruction 975 // bits are not in the same order as a normal i80 APInt, compensate. 976 APInt api = CFP->getValueAPF().bitcastToAPInt(); 977 const uint64_t *p = api.getRawData(); 978 Record.push_back((p[1] << 48) | (p[0] >> 16)); 979 Record.push_back(p[0] & 0xffffLL); 980 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 981 APInt api = CFP->getValueAPF().bitcastToAPInt(); 982 const uint64_t *p = api.getRawData(); 983 Record.push_back(p[0]); 984 Record.push_back(p[1]); 985 } else { 986 assert (0 && "Unknown FP type!"); 987 } 988 } else if (isa<ConstantDataSequential>(C) && 989 cast<ConstantDataSequential>(C)->isString()) { 990 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 991 // Emit constant strings specially. 992 unsigned NumElts = Str->getNumElements(); 993 // If this is a null-terminated string, use the denser CSTRING encoding. 994 if (Str->isCString()) { 995 Code = bitc::CST_CODE_CSTRING; 996 --NumElts; // Don't encode the null, which isn't allowed by char6. 997 } else { 998 Code = bitc::CST_CODE_STRING; 999 AbbrevToUse = String8Abbrev; 1000 } 1001 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1002 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1003 for (unsigned i = 0; i != NumElts; ++i) { 1004 unsigned char V = Str->getElementAsInteger(i); 1005 Record.push_back(V); 1006 isCStr7 &= (V & 128) == 0; 1007 if (isCStrChar6) 1008 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1009 } 1010 1011 if (isCStrChar6) 1012 AbbrevToUse = CString6Abbrev; 1013 else if (isCStr7) 1014 AbbrevToUse = CString7Abbrev; 1015 } else if (const ConstantDataSequential *CDS = 1016 dyn_cast<ConstantDataSequential>(C)) { 1017 Code = bitc::CST_CODE_DATA; 1018 Type *EltTy = CDS->getType()->getElementType(); 1019 if (isa<IntegerType>(EltTy)) { 1020 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1021 Record.push_back(CDS->getElementAsInteger(i)); 1022 } else if (EltTy->isFloatTy()) { 1023 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1024 union { float F; uint32_t I; }; 1025 F = CDS->getElementAsFloat(i); 1026 Record.push_back(I); 1027 } 1028 } else { 1029 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1030 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1031 union { double F; uint64_t I; }; 1032 F = CDS->getElementAsDouble(i); 1033 Record.push_back(I); 1034 } 1035 } 1036 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1037 isa<ConstantVector>(C)) { 1038 Code = bitc::CST_CODE_AGGREGATE; 1039 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1040 Record.push_back(VE.getValueID(C->getOperand(i))); 1041 AbbrevToUse = AggregateAbbrev; 1042 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1043 switch (CE->getOpcode()) { 1044 default: 1045 if (Instruction::isCast(CE->getOpcode())) { 1046 Code = bitc::CST_CODE_CE_CAST; 1047 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1048 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1049 Record.push_back(VE.getValueID(C->getOperand(0))); 1050 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1051 } else { 1052 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1053 Code = bitc::CST_CODE_CE_BINOP; 1054 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1055 Record.push_back(VE.getValueID(C->getOperand(0))); 1056 Record.push_back(VE.getValueID(C->getOperand(1))); 1057 uint64_t Flags = GetOptimizationFlags(CE); 1058 if (Flags != 0) 1059 Record.push_back(Flags); 1060 } 1061 break; 1062 case Instruction::GetElementPtr: 1063 Code = bitc::CST_CODE_CE_GEP; 1064 if (cast<GEPOperator>(C)->isInBounds()) 1065 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1066 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1067 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1068 Record.push_back(VE.getValueID(C->getOperand(i))); 1069 } 1070 break; 1071 case Instruction::Select: 1072 Code = bitc::CST_CODE_CE_SELECT; 1073 Record.push_back(VE.getValueID(C->getOperand(0))); 1074 Record.push_back(VE.getValueID(C->getOperand(1))); 1075 Record.push_back(VE.getValueID(C->getOperand(2))); 1076 break; 1077 case Instruction::ExtractElement: 1078 Code = bitc::CST_CODE_CE_EXTRACTELT; 1079 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1080 Record.push_back(VE.getValueID(C->getOperand(0))); 1081 Record.push_back(VE.getValueID(C->getOperand(1))); 1082 break; 1083 case Instruction::InsertElement: 1084 Code = bitc::CST_CODE_CE_INSERTELT; 1085 Record.push_back(VE.getValueID(C->getOperand(0))); 1086 Record.push_back(VE.getValueID(C->getOperand(1))); 1087 Record.push_back(VE.getValueID(C->getOperand(2))); 1088 break; 1089 case Instruction::ShuffleVector: 1090 // If the return type and argument types are the same, this is a 1091 // standard shufflevector instruction. If the types are different, 1092 // then the shuffle is widening or truncating the input vectors, and 1093 // the argument type must also be encoded. 1094 if (C->getType() == C->getOperand(0)->getType()) { 1095 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1096 } else { 1097 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1098 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1099 } 1100 Record.push_back(VE.getValueID(C->getOperand(0))); 1101 Record.push_back(VE.getValueID(C->getOperand(1))); 1102 Record.push_back(VE.getValueID(C->getOperand(2))); 1103 break; 1104 case Instruction::ICmp: 1105 case Instruction::FCmp: 1106 Code = bitc::CST_CODE_CE_CMP; 1107 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1108 Record.push_back(VE.getValueID(C->getOperand(0))); 1109 Record.push_back(VE.getValueID(C->getOperand(1))); 1110 Record.push_back(CE->getPredicate()); 1111 break; 1112 } 1113 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1114 Code = bitc::CST_CODE_BLOCKADDRESS; 1115 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1116 Record.push_back(VE.getValueID(BA->getFunction())); 1117 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1118 } else { 1119 #ifndef NDEBUG 1120 C->dump(); 1121 #endif 1122 llvm_unreachable("Unknown constant!"); 1123 } 1124 Stream.EmitRecord(Code, Record, AbbrevToUse); 1125 Record.clear(); 1126 } 1127 1128 Stream.ExitBlock(); 1129 } 1130 1131 static void WriteModuleConstants(const ValueEnumerator &VE, 1132 BitstreamWriter &Stream) { 1133 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1134 1135 // Find the first constant to emit, which is the first non-globalvalue value. 1136 // We know globalvalues have been emitted by WriteModuleInfo. 1137 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1138 if (!isa<GlobalValue>(Vals[i].first)) { 1139 WriteConstants(i, Vals.size(), VE, Stream, true); 1140 return; 1141 } 1142 } 1143 } 1144 1145 /// PushValueAndType - The file has to encode both the value and type id for 1146 /// many values, because we need to know what type to create for forward 1147 /// references. However, most operands are not forward references, so this type 1148 /// field is not needed. 1149 /// 1150 /// This function adds V's value ID to Vals. If the value ID is higher than the 1151 /// instruction ID, then it is a forward reference, and it also includes the 1152 /// type ID. The value ID that is written is encoded relative to the InstID. 1153 static bool PushValueAndType(const Value *V, unsigned InstID, 1154 SmallVectorImpl<unsigned> &Vals, 1155 ValueEnumerator &VE) { 1156 unsigned ValID = VE.getValueID(V); 1157 // Make encoding relative to the InstID. 1158 Vals.push_back(InstID - ValID); 1159 if (ValID >= InstID) { 1160 Vals.push_back(VE.getTypeID(V->getType())); 1161 return true; 1162 } 1163 return false; 1164 } 1165 1166 /// pushValue - Like PushValueAndType, but where the type of the value is 1167 /// omitted (perhaps it was already encoded in an earlier operand). 1168 static void pushValue(const Value *V, unsigned InstID, 1169 SmallVectorImpl<unsigned> &Vals, 1170 ValueEnumerator &VE) { 1171 unsigned ValID = VE.getValueID(V); 1172 Vals.push_back(InstID - ValID); 1173 } 1174 1175 static void pushValueSigned(const Value *V, unsigned InstID, 1176 SmallVectorImpl<uint64_t> &Vals, 1177 ValueEnumerator &VE) { 1178 unsigned ValID = VE.getValueID(V); 1179 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1180 emitSignedInt64(Vals, diff); 1181 } 1182 1183 /// WriteInstruction - Emit an instruction to the specified stream. 1184 static void WriteInstruction(const Instruction &I, unsigned InstID, 1185 ValueEnumerator &VE, BitstreamWriter &Stream, 1186 SmallVectorImpl<unsigned> &Vals) { 1187 unsigned Code = 0; 1188 unsigned AbbrevToUse = 0; 1189 VE.setInstructionID(&I); 1190 switch (I.getOpcode()) { 1191 default: 1192 if (Instruction::isCast(I.getOpcode())) { 1193 Code = bitc::FUNC_CODE_INST_CAST; 1194 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1195 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1196 Vals.push_back(VE.getTypeID(I.getType())); 1197 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1198 } else { 1199 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1200 Code = bitc::FUNC_CODE_INST_BINOP; 1201 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1202 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1203 pushValue(I.getOperand(1), InstID, Vals, VE); 1204 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1205 uint64_t Flags = GetOptimizationFlags(&I); 1206 if (Flags != 0) { 1207 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1208 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1209 Vals.push_back(Flags); 1210 } 1211 } 1212 break; 1213 1214 case Instruction::GetElementPtr: 1215 Code = bitc::FUNC_CODE_INST_GEP; 1216 if (cast<GEPOperator>(&I)->isInBounds()) 1217 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1218 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1219 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1220 break; 1221 case Instruction::ExtractValue: { 1222 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1223 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1224 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1225 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1226 Vals.push_back(*i); 1227 break; 1228 } 1229 case Instruction::InsertValue: { 1230 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1231 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1232 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1233 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1234 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1235 Vals.push_back(*i); 1236 break; 1237 } 1238 case Instruction::Select: 1239 Code = bitc::FUNC_CODE_INST_VSELECT; 1240 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1241 pushValue(I.getOperand(2), InstID, Vals, VE); 1242 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1243 break; 1244 case Instruction::ExtractElement: 1245 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1246 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1247 pushValue(I.getOperand(1), InstID, Vals, VE); 1248 break; 1249 case Instruction::InsertElement: 1250 Code = bitc::FUNC_CODE_INST_INSERTELT; 1251 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1252 pushValue(I.getOperand(1), InstID, Vals, VE); 1253 pushValue(I.getOperand(2), InstID, Vals, VE); 1254 break; 1255 case Instruction::ShuffleVector: 1256 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1257 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1258 pushValue(I.getOperand(1), InstID, Vals, VE); 1259 pushValue(I.getOperand(2), InstID, Vals, VE); 1260 break; 1261 case Instruction::ICmp: 1262 case Instruction::FCmp: 1263 // compare returning Int1Ty or vector of Int1Ty 1264 Code = bitc::FUNC_CODE_INST_CMP2; 1265 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1266 pushValue(I.getOperand(1), InstID, Vals, VE); 1267 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1268 break; 1269 1270 case Instruction::Ret: 1271 { 1272 Code = bitc::FUNC_CODE_INST_RET; 1273 unsigned NumOperands = I.getNumOperands(); 1274 if (NumOperands == 0) 1275 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1276 else if (NumOperands == 1) { 1277 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1278 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1279 } else { 1280 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1281 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1282 } 1283 } 1284 break; 1285 case Instruction::Br: 1286 { 1287 Code = bitc::FUNC_CODE_INST_BR; 1288 const BranchInst &II = cast<BranchInst>(I); 1289 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1290 if (II.isConditional()) { 1291 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1292 pushValue(II.getCondition(), InstID, Vals, VE); 1293 } 1294 } 1295 break; 1296 case Instruction::Switch: 1297 { 1298 Code = bitc::FUNC_CODE_INST_SWITCH; 1299 const SwitchInst &SI = cast<SwitchInst>(I); 1300 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1301 pushValue(SI.getCondition(), InstID, Vals, VE); 1302 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1303 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1304 i != e; ++i) { 1305 Vals.push_back(VE.getValueID(i.getCaseValue())); 1306 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1307 } 1308 } 1309 break; 1310 case Instruction::IndirectBr: 1311 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1312 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1313 // Encode the address operand as relative, but not the basic blocks. 1314 pushValue(I.getOperand(0), InstID, Vals, VE); 1315 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1316 Vals.push_back(VE.getValueID(I.getOperand(i))); 1317 break; 1318 1319 case Instruction::Invoke: { 1320 const InvokeInst *II = cast<InvokeInst>(&I); 1321 const Value *Callee(II->getCalledValue()); 1322 PointerType *PTy = cast<PointerType>(Callee->getType()); 1323 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1324 Code = bitc::FUNC_CODE_INST_INVOKE; 1325 1326 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1327 Vals.push_back(II->getCallingConv()); 1328 Vals.push_back(VE.getValueID(II->getNormalDest())); 1329 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1330 PushValueAndType(Callee, InstID, Vals, VE); 1331 1332 // Emit value #'s for the fixed parameters. 1333 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1334 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1335 1336 // Emit type/value pairs for varargs params. 1337 if (FTy->isVarArg()) { 1338 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1339 i != e; ++i) 1340 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1341 } 1342 break; 1343 } 1344 case Instruction::Resume: 1345 Code = bitc::FUNC_CODE_INST_RESUME; 1346 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1347 break; 1348 case Instruction::Unreachable: 1349 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1350 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1351 break; 1352 1353 case Instruction::PHI: { 1354 const PHINode &PN = cast<PHINode>(I); 1355 Code = bitc::FUNC_CODE_INST_PHI; 1356 // With the newer instruction encoding, forward references could give 1357 // negative valued IDs. This is most common for PHIs, so we use 1358 // signed VBRs. 1359 SmallVector<uint64_t, 128> Vals64; 1360 Vals64.push_back(VE.getTypeID(PN.getType())); 1361 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1362 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1363 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1364 } 1365 // Emit a Vals64 vector and exit. 1366 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1367 Vals64.clear(); 1368 return; 1369 } 1370 1371 case Instruction::LandingPad: { 1372 const LandingPadInst &LP = cast<LandingPadInst>(I); 1373 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1374 Vals.push_back(VE.getTypeID(LP.getType())); 1375 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1376 Vals.push_back(LP.isCleanup()); 1377 Vals.push_back(LP.getNumClauses()); 1378 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1379 if (LP.isCatch(I)) 1380 Vals.push_back(LandingPadInst::Catch); 1381 else 1382 Vals.push_back(LandingPadInst::Filter); 1383 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1384 } 1385 break; 1386 } 1387 1388 case Instruction::Alloca: 1389 Code = bitc::FUNC_CODE_INST_ALLOCA; 1390 Vals.push_back(VE.getTypeID(I.getType())); 1391 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1392 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1393 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1394 break; 1395 1396 case Instruction::Load: 1397 if (cast<LoadInst>(I).isAtomic()) { 1398 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1399 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1400 } else { 1401 Code = bitc::FUNC_CODE_INST_LOAD; 1402 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1403 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1404 } 1405 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1406 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1407 if (cast<LoadInst>(I).isAtomic()) { 1408 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1409 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1410 } 1411 break; 1412 case Instruction::Store: 1413 if (cast<StoreInst>(I).isAtomic()) 1414 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1415 else 1416 Code = bitc::FUNC_CODE_INST_STORE; 1417 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1418 pushValue(I.getOperand(0), InstID, Vals, VE); // val. 1419 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1420 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1421 if (cast<StoreInst>(I).isAtomic()) { 1422 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1423 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1424 } 1425 break; 1426 case Instruction::AtomicCmpXchg: 1427 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1428 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1429 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1430 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1431 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1432 Vals.push_back(GetEncodedOrdering( 1433 cast<AtomicCmpXchgInst>(I).getOrdering())); 1434 Vals.push_back(GetEncodedSynchScope( 1435 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1436 break; 1437 case Instruction::AtomicRMW: 1438 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1439 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1440 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1441 Vals.push_back(GetEncodedRMWOperation( 1442 cast<AtomicRMWInst>(I).getOperation())); 1443 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1444 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1445 Vals.push_back(GetEncodedSynchScope( 1446 cast<AtomicRMWInst>(I).getSynchScope())); 1447 break; 1448 case Instruction::Fence: 1449 Code = bitc::FUNC_CODE_INST_FENCE; 1450 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1451 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1452 break; 1453 case Instruction::Call: { 1454 const CallInst &CI = cast<CallInst>(I); 1455 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1456 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1457 1458 Code = bitc::FUNC_CODE_INST_CALL; 1459 1460 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1461 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall())); 1462 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1463 1464 // Emit value #'s for the fixed parameters. 1465 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1466 // Check for labels (can happen with asm labels). 1467 if (FTy->getParamType(i)->isLabelTy()) 1468 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1469 else 1470 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1471 } 1472 1473 // Emit type/value pairs for varargs params. 1474 if (FTy->isVarArg()) { 1475 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1476 i != e; ++i) 1477 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1478 } 1479 break; 1480 } 1481 case Instruction::VAArg: 1482 Code = bitc::FUNC_CODE_INST_VAARG; 1483 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1484 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1485 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1486 break; 1487 } 1488 1489 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1490 Vals.clear(); 1491 } 1492 1493 // Emit names for globals/functions etc. 1494 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1495 const ValueEnumerator &VE, 1496 BitstreamWriter &Stream) { 1497 if (VST.empty()) return; 1498 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1499 1500 // FIXME: Set up the abbrev, we know how many values there are! 1501 // FIXME: We know if the type names can use 7-bit ascii. 1502 SmallVector<unsigned, 64> NameVals; 1503 1504 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1505 SI != SE; ++SI) { 1506 1507 const ValueName &Name = *SI; 1508 1509 // Figure out the encoding to use for the name. 1510 bool is7Bit = true; 1511 bool isChar6 = true; 1512 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1513 C != E; ++C) { 1514 if (isChar6) 1515 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1516 if ((unsigned char)*C & 128) { 1517 is7Bit = false; 1518 break; // don't bother scanning the rest. 1519 } 1520 } 1521 1522 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1523 1524 // VST_ENTRY: [valueid, namechar x N] 1525 // VST_BBENTRY: [bbid, namechar x N] 1526 unsigned Code; 1527 if (isa<BasicBlock>(SI->getValue())) { 1528 Code = bitc::VST_CODE_BBENTRY; 1529 if (isChar6) 1530 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1531 } else { 1532 Code = bitc::VST_CODE_ENTRY; 1533 if (isChar6) 1534 AbbrevToUse = VST_ENTRY_6_ABBREV; 1535 else if (is7Bit) 1536 AbbrevToUse = VST_ENTRY_7_ABBREV; 1537 } 1538 1539 NameVals.push_back(VE.getValueID(SI->getValue())); 1540 for (const char *P = Name.getKeyData(), 1541 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1542 NameVals.push_back((unsigned char)*P); 1543 1544 // Emit the finished record. 1545 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1546 NameVals.clear(); 1547 } 1548 Stream.ExitBlock(); 1549 } 1550 1551 /// WriteFunction - Emit a function body to the module stream. 1552 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1553 BitstreamWriter &Stream) { 1554 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1555 VE.incorporateFunction(F); 1556 1557 SmallVector<unsigned, 64> Vals; 1558 1559 // Emit the number of basic blocks, so the reader can create them ahead of 1560 // time. 1561 Vals.push_back(VE.getBasicBlocks().size()); 1562 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1563 Vals.clear(); 1564 1565 // If there are function-local constants, emit them now. 1566 unsigned CstStart, CstEnd; 1567 VE.getFunctionConstantRange(CstStart, CstEnd); 1568 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1569 1570 // If there is function-local metadata, emit it now. 1571 WriteFunctionLocalMetadata(F, VE, Stream); 1572 1573 // Keep a running idea of what the instruction ID is. 1574 unsigned InstID = CstEnd; 1575 1576 bool NeedsMetadataAttachment = false; 1577 1578 DebugLoc LastDL; 1579 1580 // Finally, emit all the instructions, in order. 1581 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1582 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1583 I != E; ++I) { 1584 WriteInstruction(*I, InstID, VE, Stream, Vals); 1585 1586 if (!I->getType()->isVoidTy()) 1587 ++InstID; 1588 1589 // If the instruction has metadata, write a metadata attachment later. 1590 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1591 1592 // If the instruction has a debug location, emit it. 1593 DebugLoc DL = I->getDebugLoc(); 1594 if (DL.isUnknown()) { 1595 // nothing todo. 1596 } else if (DL == LastDL) { 1597 // Just repeat the same debug loc as last time. 1598 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1599 } else { 1600 MDNode *Scope, *IA; 1601 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1602 1603 Vals.push_back(DL.getLine()); 1604 Vals.push_back(DL.getCol()); 1605 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); 1606 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); 1607 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1608 Vals.clear(); 1609 1610 LastDL = DL; 1611 } 1612 } 1613 1614 // Emit names for all the instructions etc. 1615 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1616 1617 if (NeedsMetadataAttachment) 1618 WriteMetadataAttachment(F, VE, Stream); 1619 VE.purgeFunction(); 1620 Stream.ExitBlock(); 1621 } 1622 1623 // Emit blockinfo, which defines the standard abbreviations etc. 1624 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1625 // We only want to emit block info records for blocks that have multiple 1626 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 1627 // Other blocks can define their abbrevs inline. 1628 Stream.EnterBlockInfoBlock(2); 1629 1630 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1631 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1635 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1636 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1637 Abbv) != VST_ENTRY_8_ABBREV) 1638 llvm_unreachable("Unexpected abbrev ordering!"); 1639 } 1640 1641 { // 7-bit fixed width VST_ENTRY strings. 1642 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1643 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1644 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1645 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1646 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1647 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1648 Abbv) != VST_ENTRY_7_ABBREV) 1649 llvm_unreachable("Unexpected abbrev ordering!"); 1650 } 1651 { // 6-bit char6 VST_ENTRY strings. 1652 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1653 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1654 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1655 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1656 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1657 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1658 Abbv) != VST_ENTRY_6_ABBREV) 1659 llvm_unreachable("Unexpected abbrev ordering!"); 1660 } 1661 { // 6-bit char6 VST_BBENTRY strings. 1662 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1663 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1664 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1665 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1666 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1667 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1668 Abbv) != VST_BBENTRY_6_ABBREV) 1669 llvm_unreachable("Unexpected abbrev ordering!"); 1670 } 1671 1672 1673 1674 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1675 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1676 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1677 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1678 Log2_32_Ceil(VE.getTypes().size()+1))); 1679 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1680 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1681 llvm_unreachable("Unexpected abbrev ordering!"); 1682 } 1683 1684 { // INTEGER abbrev for CONSTANTS_BLOCK. 1685 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1686 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1687 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1688 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1689 Abbv) != CONSTANTS_INTEGER_ABBREV) 1690 llvm_unreachable("Unexpected abbrev ordering!"); 1691 } 1692 1693 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1694 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1695 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1696 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1697 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1698 Log2_32_Ceil(VE.getTypes().size()+1))); 1699 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1700 1701 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1702 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1703 llvm_unreachable("Unexpected abbrev ordering!"); 1704 } 1705 { // NULL abbrev for CONSTANTS_BLOCK. 1706 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1707 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1708 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1709 Abbv) != CONSTANTS_NULL_Abbrev) 1710 llvm_unreachable("Unexpected abbrev ordering!"); 1711 } 1712 1713 // FIXME: This should only use space for first class types! 1714 1715 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1716 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1717 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1718 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1719 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1721 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1722 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1723 llvm_unreachable("Unexpected abbrev ordering!"); 1724 } 1725 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1726 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1727 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1728 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1729 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1731 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1732 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1733 llvm_unreachable("Unexpected abbrev ordering!"); 1734 } 1735 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1736 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1737 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1738 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1739 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1740 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1741 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1742 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1743 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1744 llvm_unreachable("Unexpected abbrev ordering!"); 1745 } 1746 { // INST_CAST abbrev for FUNCTION_BLOCK. 1747 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1748 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1749 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1751 Log2_32_Ceil(VE.getTypes().size()+1))); 1752 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1753 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1754 Abbv) != FUNCTION_INST_CAST_ABBREV) 1755 llvm_unreachable("Unexpected abbrev ordering!"); 1756 } 1757 1758 { // INST_RET abbrev for FUNCTION_BLOCK. 1759 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1760 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1761 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1762 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1763 llvm_unreachable("Unexpected abbrev ordering!"); 1764 } 1765 { // INST_RET abbrev for FUNCTION_BLOCK. 1766 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1767 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1769 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1770 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1771 llvm_unreachable("Unexpected abbrev ordering!"); 1772 } 1773 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1774 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1775 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1776 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1777 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1778 llvm_unreachable("Unexpected abbrev ordering!"); 1779 } 1780 1781 Stream.ExitBlock(); 1782 } 1783 1784 // Sort the Users based on the order in which the reader parses the bitcode 1785 // file. 1786 static bool bitcodereader_order(const User *lhs, const User *rhs) { 1787 // TODO: Implement. 1788 return true; 1789 } 1790 1791 static void WriteUseList(const Value *V, const ValueEnumerator &VE, 1792 BitstreamWriter &Stream) { 1793 1794 // One or zero uses can't get out of order. 1795 if (V->use_empty() || V->hasNUses(1)) 1796 return; 1797 1798 // Make a copy of the in-memory use-list for sorting. 1799 unsigned UseListSize = std::distance(V->use_begin(), V->use_end()); 1800 SmallVector<const User*, 8> UseList; 1801 UseList.reserve(UseListSize); 1802 for (Value::const_use_iterator I = V->use_begin(), E = V->use_end(); 1803 I != E; ++I) { 1804 const User *U = *I; 1805 UseList.push_back(U); 1806 } 1807 1808 // Sort the copy based on the order read by the BitcodeReader. 1809 std::sort(UseList.begin(), UseList.end(), bitcodereader_order); 1810 1811 // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the 1812 // sorted list (i.e., the expected BitcodeReader in-memory use-list). 1813 1814 // TODO: Emit the USELIST_CODE_ENTRYs. 1815 } 1816 1817 static void WriteFunctionUseList(const Function *F, ValueEnumerator &VE, 1818 BitstreamWriter &Stream) { 1819 VE.incorporateFunction(*F); 1820 1821 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); 1822 AI != AE; ++AI) 1823 WriteUseList(AI, VE, Stream); 1824 for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE; 1825 ++BB) { 1826 WriteUseList(BB, VE, Stream); 1827 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE; 1828 ++II) { 1829 WriteUseList(II, VE, Stream); 1830 for (User::const_op_iterator OI = II->op_begin(), E = II->op_end(); 1831 OI != E; ++OI) { 1832 if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || 1833 isa<InlineAsm>(*OI)) 1834 WriteUseList(*OI, VE, Stream); 1835 } 1836 } 1837 } 1838 VE.purgeFunction(); 1839 } 1840 1841 // Emit use-lists. 1842 static void WriteModuleUseLists(const Module *M, ValueEnumerator &VE, 1843 BitstreamWriter &Stream) { 1844 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1845 1846 // XXX: this modifies the module, but in a way that should never change the 1847 // behavior of any pass or codegen in LLVM. The problem is that GVs may 1848 // contain entries in the use_list that do not exist in the Module and are 1849 // not stored in the .bc file. 1850 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); 1851 I != E; ++I) 1852 I->removeDeadConstantUsers(); 1853 1854 // Write the global variables. 1855 for (Module::const_global_iterator GI = M->global_begin(), 1856 GE = M->global_end(); GI != GE; ++GI) { 1857 WriteUseList(GI, VE, Stream); 1858 1859 // Write the global variable initializers. 1860 if (GI->hasInitializer()) 1861 WriteUseList(GI->getInitializer(), VE, Stream); 1862 } 1863 1864 // Write the functions. 1865 for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 1866 WriteUseList(FI, VE, Stream); 1867 if (!FI->isDeclaration()) 1868 WriteFunctionUseList(FI, VE, Stream); 1869 if (FI->hasPrefixData()) 1870 WriteUseList(FI->getPrefixData(), VE, Stream); 1871 } 1872 1873 // Write the aliases. 1874 for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end(); 1875 AI != AE; ++AI) { 1876 WriteUseList(AI, VE, Stream); 1877 WriteUseList(AI->getAliasee(), VE, Stream); 1878 } 1879 1880 Stream.ExitBlock(); 1881 } 1882 1883 /// WriteModule - Emit the specified module to the bitstream. 1884 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1885 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1886 1887 SmallVector<unsigned, 1> Vals; 1888 unsigned CurVersion = 1; 1889 Vals.push_back(CurVersion); 1890 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1891 1892 // Analyze the module, enumerating globals, functions, etc. 1893 ValueEnumerator VE(M); 1894 1895 // Emit blockinfo, which defines the standard abbreviations etc. 1896 WriteBlockInfo(VE, Stream); 1897 1898 // Emit information about attribute groups. 1899 WriteAttributeGroupTable(VE, Stream); 1900 1901 // Emit information about parameter attributes. 1902 WriteAttributeTable(VE, Stream); 1903 1904 // Emit information describing all of the types in the module. 1905 WriteTypeTable(VE, Stream); 1906 1907 // Emit top-level description of module, including target triple, inline asm, 1908 // descriptors for global variables, and function prototype info. 1909 WriteModuleInfo(M, VE, Stream); 1910 1911 // Emit constants. 1912 WriteModuleConstants(VE, Stream); 1913 1914 // Emit metadata. 1915 WriteModuleMetadata(M, VE, Stream); 1916 1917 // Emit metadata. 1918 WriteModuleMetadataStore(M, Stream); 1919 1920 // Emit names for globals/functions etc. 1921 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1922 1923 // Emit use-lists. 1924 if (EnablePreserveUseListOrdering) 1925 WriteModuleUseLists(M, VE, Stream); 1926 1927 // Emit function bodies. 1928 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1929 if (!F->isDeclaration()) 1930 WriteFunction(*F, VE, Stream); 1931 1932 Stream.ExitBlock(); 1933 } 1934 1935 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1936 /// header and trailer to make it compatible with the system archiver. To do 1937 /// this we emit the following header, and then emit a trailer that pads the 1938 /// file out to be a multiple of 16 bytes. 1939 /// 1940 /// struct bc_header { 1941 /// uint32_t Magic; // 0x0B17C0DE 1942 /// uint32_t Version; // Version, currently always 0. 1943 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1944 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1945 /// uint32_t CPUType; // CPU specifier. 1946 /// ... potentially more later ... 1947 /// }; 1948 enum { 1949 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1950 DarwinBCHeaderSize = 5*4 1951 }; 1952 1953 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 1954 uint32_t &Position) { 1955 Buffer[Position + 0] = (unsigned char) (Value >> 0); 1956 Buffer[Position + 1] = (unsigned char) (Value >> 8); 1957 Buffer[Position + 2] = (unsigned char) (Value >> 16); 1958 Buffer[Position + 3] = (unsigned char) (Value >> 24); 1959 Position += 4; 1960 } 1961 1962 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 1963 const Triple &TT) { 1964 unsigned CPUType = ~0U; 1965 1966 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1967 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1968 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1969 // specific constants here because they are implicitly part of the Darwin ABI. 1970 enum { 1971 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1972 DARWIN_CPU_TYPE_X86 = 7, 1973 DARWIN_CPU_TYPE_ARM = 12, 1974 DARWIN_CPU_TYPE_POWERPC = 18 1975 }; 1976 1977 Triple::ArchType Arch = TT.getArch(); 1978 if (Arch == Triple::x86_64) 1979 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1980 else if (Arch == Triple::x86) 1981 CPUType = DARWIN_CPU_TYPE_X86; 1982 else if (Arch == Triple::ppc) 1983 CPUType = DARWIN_CPU_TYPE_POWERPC; 1984 else if (Arch == Triple::ppc64) 1985 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1986 else if (Arch == Triple::arm || Arch == Triple::thumb) 1987 CPUType = DARWIN_CPU_TYPE_ARM; 1988 1989 // Traditional Bitcode starts after header. 1990 assert(Buffer.size() >= DarwinBCHeaderSize && 1991 "Expected header size to be reserved"); 1992 unsigned BCOffset = DarwinBCHeaderSize; 1993 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 1994 1995 // Write the magic and version. 1996 unsigned Position = 0; 1997 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 1998 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 1999 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2000 WriteInt32ToBuffer(BCSize , Buffer, Position); 2001 WriteInt32ToBuffer(CPUType , Buffer, Position); 2002 2003 // If the file is not a multiple of 16 bytes, insert dummy padding. 2004 while (Buffer.size() & 15) 2005 Buffer.push_back(0); 2006 } 2007 2008 /// WriteBitcodeToFile - Write the specified module to the specified output 2009 /// stream. 2010 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 2011 SmallVector<char, 0> Buffer; 2012 Buffer.reserve(256*1024); 2013 2014 // If this is darwin or another generic macho target, reserve space for the 2015 // header. 2016 Triple TT(M->getTargetTriple()); 2017 if (TT.isOSDarwin()) 2018 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2019 2020 // Emit the module into the buffer. 2021 { 2022 BitstreamWriter Stream(Buffer); 2023 2024 // Emit the file header. 2025 Stream.Emit((unsigned)'B', 8); 2026 Stream.Emit((unsigned)'C', 8); 2027 Stream.Emit(0x0, 4); 2028 Stream.Emit(0xC, 4); 2029 Stream.Emit(0xE, 4); 2030 Stream.Emit(0xD, 4); 2031 2032 // Emit the module. 2033 WriteModule(M, Stream); 2034 } 2035 2036 if (TT.isOSDarwin()) 2037 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2038 2039 // Write the generated bitstream to "Out". 2040 Out.write((char*)&Buffer.front(), Buffer.size()); 2041 } 2042