1 //===--- Bitcode/Writer/Writer.cpp - Bitcode Writer -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by Chris Lattner and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Module.h" 21 #include "llvm/TypeSymbolTable.h" 22 #include "llvm/ValueSymbolTable.h" 23 #include "llvm/Support/MathExtras.h" 24 using namespace llvm; 25 26 static const unsigned CurVersion = 0; 27 28 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 29 switch (Opcode) { 30 default: assert(0 && "Unknown cast instruction!"); 31 case Instruction::Trunc : return bitc::CAST_TRUNC; 32 case Instruction::ZExt : return bitc::CAST_ZEXT; 33 case Instruction::SExt : return bitc::CAST_SEXT; 34 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 35 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 36 case Instruction::UIToFP : return bitc::CAST_UITOFP; 37 case Instruction::SIToFP : return bitc::CAST_SITOFP; 38 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 39 case Instruction::FPExt : return bitc::CAST_FPEXT; 40 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 41 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 42 case Instruction::BitCast : return bitc::CAST_BITCAST; 43 } 44 } 45 46 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 47 switch (Opcode) { 48 default: assert(0 && "Unknown binary instruction!"); 49 case Instruction::Add: return bitc::BINOP_ADD; 50 case Instruction::Sub: return bitc::BINOP_SUB; 51 case Instruction::Mul: return bitc::BINOP_MUL; 52 case Instruction::UDiv: return bitc::BINOP_UDIV; 53 case Instruction::FDiv: 54 case Instruction::SDiv: return bitc::BINOP_SDIV; 55 case Instruction::URem: return bitc::BINOP_UREM; 56 case Instruction::FRem: 57 case Instruction::SRem: return bitc::BINOP_SREM; 58 case Instruction::Shl: return bitc::BINOP_SHL; 59 case Instruction::LShr: return bitc::BINOP_LSHR; 60 case Instruction::AShr: return bitc::BINOP_ASHR; 61 case Instruction::And: return bitc::BINOP_AND; 62 case Instruction::Or: return bitc::BINOP_OR; 63 case Instruction::Xor: return bitc::BINOP_XOR; 64 } 65 } 66 67 68 69 static void WriteStringRecord(unsigned Code, const std::string &Str, 70 unsigned AbbrevToUse, BitstreamWriter &Stream) { 71 SmallVector<unsigned, 64> Vals; 72 73 // Code: [strlen, strchar x N] 74 Vals.push_back(Str.size()); 75 for (unsigned i = 0, e = Str.size(); i != e; ++i) 76 Vals.push_back(Str[i]); 77 78 // Emit the finished record. 79 Stream.EmitRecord(Code, Vals, AbbrevToUse); 80 } 81 82 83 /// WriteTypeTable - Write out the type table for a module. 84 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 85 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 86 87 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 88 SmallVector<uint64_t, 64> TypeVals; 89 90 // FIXME: Set up abbrevs now that we know the width of the type fields, etc. 91 92 // Emit an entry count so the reader can reserve space. 93 TypeVals.push_back(TypeList.size()); 94 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 95 TypeVals.clear(); 96 97 // Loop over all of the types, emitting each in turn. 98 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 99 const Type *T = TypeList[i].first; 100 int AbbrevToUse = 0; 101 unsigned Code = 0; 102 103 switch (T->getTypeID()) { 104 case Type::PackedStructTyID: // FIXME: Delete Type::PackedStructTyID. 105 default: assert(0 && "Unknown type!"); 106 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 107 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 108 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 109 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 110 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 111 case Type::IntegerTyID: 112 // INTEGER: [width] 113 Code = bitc::TYPE_CODE_INTEGER; 114 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 115 break; 116 case Type::PointerTyID: 117 // POINTER: [pointee type] 118 Code = bitc::TYPE_CODE_POINTER; 119 TypeVals.push_back(VE.getTypeID(cast<PointerType>(T)->getElementType())); 120 break; 121 122 case Type::FunctionTyID: { 123 const FunctionType *FT = cast<FunctionType>(T); 124 // FUNCTION: [isvararg, #pararms, paramty x N] 125 Code = bitc::TYPE_CODE_FUNCTION; 126 TypeVals.push_back(FT->isVarArg()); 127 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 128 // FIXME: PARAM ATTR ID! 129 TypeVals.push_back(FT->getNumParams()); 130 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 131 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 132 break; 133 } 134 case Type::StructTyID: { 135 const StructType *ST = cast<StructType>(T); 136 // STRUCT: [ispacked, #elts, eltty x N] 137 Code = bitc::TYPE_CODE_STRUCT; 138 TypeVals.push_back(ST->isPacked()); 139 TypeVals.push_back(ST->getNumElements()); 140 // Output all of the element types... 141 for (StructType::element_iterator I = ST->element_begin(), 142 E = ST->element_end(); I != E; ++I) 143 TypeVals.push_back(VE.getTypeID(*I)); 144 break; 145 } 146 case Type::ArrayTyID: { 147 const ArrayType *AT = cast<ArrayType>(T); 148 // ARRAY: [numelts, eltty] 149 Code = bitc::TYPE_CODE_ARRAY; 150 TypeVals.push_back(AT->getNumElements()); 151 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 152 break; 153 } 154 case Type::VectorTyID: { 155 const VectorType *VT = cast<VectorType>(T); 156 // VECTOR [numelts, eltty] 157 Code = bitc::TYPE_CODE_VECTOR; 158 TypeVals.push_back(VT->getNumElements()); 159 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 160 break; 161 } 162 } 163 164 // Emit the finished record. 165 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 166 TypeVals.clear(); 167 } 168 169 Stream.ExitBlock(); 170 } 171 172 static unsigned getEncodedLinkage(const GlobalValue *GV) { 173 switch (GV->getLinkage()) { 174 default: assert(0 && "Invalid linkage!"); 175 case GlobalValue::ExternalLinkage: return 0; 176 case GlobalValue::WeakLinkage: return 1; 177 case GlobalValue::AppendingLinkage: return 2; 178 case GlobalValue::InternalLinkage: return 3; 179 case GlobalValue::LinkOnceLinkage: return 4; 180 case GlobalValue::DLLImportLinkage: return 5; 181 case GlobalValue::DLLExportLinkage: return 6; 182 case GlobalValue::ExternalWeakLinkage: return 7; 183 } 184 } 185 186 static unsigned getEncodedVisibility(const GlobalValue *GV) { 187 switch (GV->getVisibility()) { 188 default: assert(0 && "Invalid visibility!"); 189 case GlobalValue::DefaultVisibility: return 0; 190 case GlobalValue::HiddenVisibility: return 1; 191 } 192 } 193 194 // Emit top-level description of module, including target triple, inline asm, 195 // descriptors for global variables, and function prototype info. 196 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 197 BitstreamWriter &Stream) { 198 // Emit the list of dependent libraries for the Module. 199 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 200 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 201 202 // Emit various pieces of data attached to a module. 203 if (!M->getTargetTriple().empty()) 204 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 205 0/*TODO*/, Stream); 206 if (!M->getDataLayout().empty()) 207 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 208 0/*TODO*/, Stream); 209 if (!M->getModuleInlineAsm().empty()) 210 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 211 0/*TODO*/, Stream); 212 213 // Emit information about sections, computing how many there are. Also 214 // compute the maximum alignment value. 215 std::map<std::string, unsigned> SectionMap; 216 unsigned MaxAlignment = 0; 217 unsigned MaxGlobalType = 0; 218 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 219 GV != E; ++GV) { 220 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 221 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 222 223 if (!GV->hasSection()) continue; 224 // Give section names unique ID's. 225 unsigned &Entry = SectionMap[GV->getSection()]; 226 if (Entry != 0) continue; 227 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 228 0/*TODO*/, Stream); 229 Entry = SectionMap.size(); 230 } 231 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 232 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 233 if (!F->hasSection()) continue; 234 // Give section names unique ID's. 235 unsigned &Entry = SectionMap[F->getSection()]; 236 if (Entry != 0) continue; 237 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 238 0/*TODO*/, Stream); 239 Entry = SectionMap.size(); 240 } 241 242 // Emit abbrev for globals, now that we know # sections and max alignment. 243 unsigned SimpleGVarAbbrev = 0; 244 if (!M->global_empty()) { 245 // Add an abbrev for common globals with no visibility or thread localness. 246 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 247 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::FixedWidth, 249 Log2_32_Ceil(MaxGlobalType+1))); 250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::FixedWidth, 1)); // Constant. 251 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 252 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::FixedWidth, 3)); // Linkage. 253 if (MaxAlignment == 0) // Alignment. 254 Abbv->Add(BitCodeAbbrevOp(0)); 255 else { 256 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 257 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::FixedWidth, 258 Log2_32_Ceil(MaxEncAlignment+1))); 259 } 260 if (SectionMap.empty()) // Section. 261 Abbv->Add(BitCodeAbbrevOp(0)); 262 else 263 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::FixedWidth, 264 Log2_32_Ceil(SectionMap.size()+1))); 265 // Don't bother emitting vis + thread local. 266 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 267 } 268 269 // Emit the global variable information. 270 SmallVector<unsigned, 64> Vals; 271 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 272 GV != E; ++GV) { 273 unsigned AbbrevToUse = 0; 274 275 // GLOBALVAR: [type, isconst, initid, 276 // linkage, alignment, section, visibility, threadlocal] 277 Vals.push_back(VE.getTypeID(GV->getType())); 278 Vals.push_back(GV->isConstant()); 279 Vals.push_back(GV->isDeclaration() ? 0 : 280 (VE.getValueID(GV->getInitializer()) + 1)); 281 Vals.push_back(getEncodedLinkage(GV)); 282 Vals.push_back(Log2_32(GV->getAlignment())+1); 283 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 284 if (GV->isThreadLocal() || 285 GV->getVisibility() != GlobalValue::DefaultVisibility) { 286 Vals.push_back(getEncodedVisibility(GV)); 287 Vals.push_back(GV->isThreadLocal()); 288 } else { 289 AbbrevToUse = SimpleGVarAbbrev; 290 } 291 292 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 293 Vals.clear(); 294 } 295 296 // Emit the function proto information. 297 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 298 // FUNCTION: [type, callingconv, isproto, linkage, alignment, section, 299 // visibility] 300 Vals.push_back(VE.getTypeID(F->getType())); 301 Vals.push_back(F->getCallingConv()); 302 Vals.push_back(F->isDeclaration()); 303 Vals.push_back(getEncodedLinkage(F)); 304 Vals.push_back(Log2_32(F->getAlignment())+1); 305 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 306 Vals.push_back(getEncodedVisibility(F)); 307 308 unsigned AbbrevToUse = 0; 309 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 310 Vals.clear(); 311 } 312 313 314 // Emit the alias information. 315 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 316 AI != E; ++AI) { 317 Vals.push_back(VE.getTypeID(AI->getType())); 318 Vals.push_back(VE.getValueID(AI->getAliasee())); 319 Vals.push_back(getEncodedLinkage(AI)); 320 unsigned AbbrevToUse = 0; 321 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 322 Vals.clear(); 323 } 324 } 325 326 327 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 328 const ValueEnumerator &VE, 329 BitstreamWriter &Stream) { 330 if (FirstVal == LastVal) return; 331 332 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 2); 333 334 // FIXME: Install and use abbrevs to reduce size. 335 336 SmallVector<uint64_t, 64> Record; 337 338 const ValueEnumerator::ValueList &Vals = VE.getValues(); 339 const Type *LastTy = 0; 340 for (unsigned i = FirstVal; i != LastVal; ++i) { 341 const Value *V = Vals[i].first; 342 // If we need to switch types, do so now. 343 if (V->getType() != LastTy) { 344 LastTy = V->getType(); 345 Record.push_back(VE.getTypeID(LastTy)); 346 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record); 347 Record.clear(); 348 } 349 350 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 351 assert(0 && IA && "FIXME: Inline asm writing unimp!"); 352 continue; 353 } 354 const Constant *C = cast<Constant>(V); 355 unsigned Code = -1U; 356 unsigned AbbrevToUse = 0; 357 if (C->isNullValue()) { 358 Code = bitc::CST_CODE_NULL; 359 } else if (isa<UndefValue>(C)) { 360 Code = bitc::CST_CODE_UNDEF; 361 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 362 if (IV->getBitWidth() <= 64) { 363 int64_t V = IV->getSExtValue(); 364 if (V >= 0) 365 Record.push_back(V << 1); 366 else 367 Record.push_back((-V << 1) | 1); 368 Code = bitc::CST_CODE_INTEGER; 369 } else { // Wide integers, > 64 bits in size. 370 // We have an arbitrary precision integer value to write whose 371 // bit width is > 64. However, in canonical unsigned integer 372 // format it is likely that the high bits are going to be zero. 373 // So, we only write the number of active words. 374 unsigned NWords = IV->getValue().getActiveWords(); 375 const uint64_t *RawWords = IV->getValue().getRawData(); 376 Record.push_back(NWords); 377 for (unsigned i = 0; i != NWords; ++i) { 378 int64_t V = RawWords[i]; 379 if (V >= 0) 380 Record.push_back(V << 1); 381 else 382 Record.push_back((-V << 1) | 1); 383 } 384 Code = bitc::CST_CODE_WIDE_INTEGER; 385 } 386 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 387 Code = bitc::CST_CODE_FLOAT; 388 if (CFP->getType() == Type::FloatTy) { 389 Record.push_back(FloatToBits((float)CFP->getValue())); 390 } else { 391 assert (CFP->getType() == Type::DoubleTy && "Unknown FP type!"); 392 Record.push_back(DoubleToBits((double)CFP->getValue())); 393 } 394 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 395 isa<ConstantVector>(V)) { 396 Code = bitc::CST_CODE_AGGREGATE; 397 Record.push_back(C->getNumOperands()); 398 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 399 Record.push_back(VE.getValueID(C->getOperand(i))); 400 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 401 switch (CE->getOpcode()) { 402 default: 403 if (Instruction::isCast(CE->getOpcode())) { 404 Code = bitc::CST_CODE_CE_CAST; 405 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 406 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 407 Record.push_back(VE.getValueID(C->getOperand(0))); 408 } else { 409 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 410 Code = bitc::CST_CODE_CE_BINOP; 411 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 412 Record.push_back(VE.getValueID(C->getOperand(0))); 413 Record.push_back(VE.getValueID(C->getOperand(1))); 414 } 415 break; 416 case Instruction::GetElementPtr: 417 Code = bitc::CST_CODE_CE_GEP; 418 Record.push_back(CE->getNumOperands()); 419 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 420 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 421 Record.push_back(VE.getValueID(C->getOperand(i))); 422 } 423 break; 424 case Instruction::Select: 425 Code = bitc::CST_CODE_CE_SELECT; 426 Record.push_back(VE.getValueID(C->getOperand(0))); 427 Record.push_back(VE.getValueID(C->getOperand(1))); 428 Record.push_back(VE.getValueID(C->getOperand(2))); 429 break; 430 case Instruction::ExtractElement: 431 Code = bitc::CST_CODE_CE_EXTRACTELT; 432 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 433 Record.push_back(VE.getValueID(C->getOperand(0))); 434 Record.push_back(VE.getValueID(C->getOperand(1))); 435 break; 436 case Instruction::InsertElement: 437 Code = bitc::CST_CODE_CE_INSERTELT; 438 Record.push_back(VE.getValueID(C->getOperand(0))); 439 Record.push_back(VE.getValueID(C->getOperand(1))); 440 Record.push_back(VE.getValueID(C->getOperand(2))); 441 break; 442 case Instruction::ShuffleVector: 443 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 444 Record.push_back(VE.getValueID(C->getOperand(0))); 445 Record.push_back(VE.getValueID(C->getOperand(1))); 446 Record.push_back(VE.getValueID(C->getOperand(2))); 447 break; 448 case Instruction::ICmp: 449 case Instruction::FCmp: 450 Code = bitc::CST_CODE_CE_CMP; 451 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 452 Record.push_back(VE.getValueID(C->getOperand(0))); 453 Record.push_back(VE.getValueID(C->getOperand(1))); 454 Record.push_back(CE->getPredicate()); 455 break; 456 } 457 } else { 458 assert(0 && "Unknown constant!"); 459 } 460 Stream.EmitRecord(Code, Record, AbbrevToUse); 461 Record.clear(); 462 } 463 464 Stream.ExitBlock(); 465 } 466 467 static void WriteModuleConstants(const ValueEnumerator &VE, 468 BitstreamWriter &Stream) { 469 const ValueEnumerator::ValueList &Vals = VE.getValues(); 470 471 // Find the first constant to emit, which is the first non-globalvalue value. 472 // We know globalvalues have been emitted by WriteModuleInfo. 473 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 474 if (!isa<GlobalValue>(Vals[i].first)) { 475 WriteConstants(i, Vals.size(), VE, Stream); 476 return; 477 } 478 } 479 } 480 481 482 static void WriteFunction(const Function &F, ValueEnumerator &VE, 483 BitstreamWriter &Stream) { 484 485 } 486 487 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 488 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 489 const ValueEnumerator &VE, 490 BitstreamWriter &Stream) { 491 if (TST.empty()) return; 492 493 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 494 495 // FIXME: Set up the abbrev, we know how many types there are! 496 // FIXME: We know if the type names can use 7-bit ascii. 497 498 SmallVector<unsigned, 64> NameVals; 499 500 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 501 TI != TE; ++TI) { 502 unsigned AbbrevToUse = 0; 503 504 // TST_ENTRY: [typeid, namelen, namechar x N] 505 NameVals.push_back(VE.getTypeID(TI->second)); 506 507 const std::string &Str = TI->first; 508 NameVals.push_back(Str.size()); 509 for (unsigned i = 0, e = Str.size(); i != e; ++i) 510 NameVals.push_back(Str[i]); 511 512 // Emit the finished record. 513 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, AbbrevToUse); 514 NameVals.clear(); 515 } 516 517 Stream.ExitBlock(); 518 } 519 520 // Emit names for globals/functions etc. 521 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 522 const ValueEnumerator &VE, 523 BitstreamWriter &Stream) { 524 if (VST.empty()) return; 525 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 3); 526 527 // FIXME: Set up the abbrev, we know how many values there are! 528 // FIXME: We know if the type names can use 7-bit ascii. 529 SmallVector<unsigned, 64> NameVals; 530 531 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 532 SI != SE; ++SI) { 533 unsigned AbbrevToUse = 0; 534 535 // VST_ENTRY: [valueid, namelen, namechar x N] 536 NameVals.push_back(VE.getValueID(SI->getValue())); 537 538 NameVals.push_back(SI->getKeyLength()); 539 for (const char *P = SI->getKeyData(), 540 *E = SI->getKeyData()+SI->getKeyLength(); P != E; ++P) 541 NameVals.push_back((unsigned char)*P); 542 543 // Emit the finished record. 544 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, AbbrevToUse); 545 NameVals.clear(); 546 } 547 Stream.ExitBlock(); 548 } 549 550 551 /// WriteModule - Emit the specified module to the bitstream. 552 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 553 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 554 555 // Emit the version number if it is non-zero. 556 if (CurVersion) { 557 SmallVector<unsigned, 1> Vals; 558 Vals.push_back(CurVersion); 559 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 560 } 561 562 // Analyze the module, enumerating globals, functions, etc. 563 ValueEnumerator VE(M); 564 565 // Emit information describing all of the types in the module. 566 WriteTypeTable(VE, Stream); 567 568 // Emit top-level description of module, including target triple, inline asm, 569 // descriptors for global variables, and function prototype info. 570 WriteModuleInfo(M, VE, Stream); 571 572 // Emit constants. 573 WriteModuleConstants(VE, Stream); 574 575 // If we have any aggregate values in the value table, purge them - these can 576 // only be used to initialize global variables. Doing so makes the value 577 // namespace smaller for code in functions. 578 int NumNonAggregates = VE.PurgeAggregateValues(); 579 if (NumNonAggregates != -1) { 580 SmallVector<unsigned, 1> Vals; 581 Vals.push_back(NumNonAggregates); 582 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals); 583 } 584 585 // Emit function bodies. 586 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 587 if (!I->isDeclaration()) 588 WriteFunction(*I, VE, Stream); 589 590 // Emit the type symbol table information. 591 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 592 593 // Emit names for globals/functions etc. 594 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 595 596 Stream.ExitBlock(); 597 } 598 599 /// WriteBitcodeToFile - Write the specified module to the specified output 600 /// stream. 601 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { 602 std::vector<unsigned char> Buffer; 603 BitstreamWriter Stream(Buffer); 604 605 Buffer.reserve(256*1024); 606 607 // Emit the file header. 608 Stream.Emit((unsigned)'B', 8); 609 Stream.Emit((unsigned)'C', 8); 610 Stream.Emit(0x0, 4); 611 Stream.Emit(0xC, 4); 612 Stream.Emit(0xE, 4); 613 Stream.Emit(0xD, 4); 614 615 // Emit the module. 616 WriteModule(M, Stream); 617 618 // Write the generated bitstream to "Out". 619 Out.write((char*)&Buffer.front(), Buffer.size()); 620 } 621