1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Bitcode/BitcodeCommon.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/ConstantRangeList.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/MC/TargetRegistry.h" 62 #include "llvm/Object/IRSymtab.h" 63 #include "llvm/ProfileData/MemProf.h" 64 #include "llvm/Support/AtomicOrdering.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Endian.h" 68 #include "llvm/Support/Error.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/SHA1.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/TargetParser/Triple.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <map> 80 #include <memory> 81 #include <optional> 82 #include <string> 83 #include <utility> 84 #include <vector> 85 86 using namespace llvm; 87 using namespace llvm::memprof; 88 89 static cl::opt<unsigned> 90 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 91 cl::desc("Number of metadatas above which we emit an index " 92 "to enable lazy-loading")); 93 static cl::opt<uint32_t> FlushThreshold( 94 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 95 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 96 97 static cl::opt<bool> WriteRelBFToSummary( 98 "write-relbf-to-summary", cl::Hidden, cl::init(false), 99 cl::desc("Write relative block frequency to function summary ")); 100 101 namespace llvm { 102 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 103 } 104 105 extern bool WriteNewDbgInfoFormatToBitcode; 106 extern llvm::cl::opt<bool> UseNewDbgInfoFormat; 107 108 namespace { 109 110 /// These are manifest constants used by the bitcode writer. They do not need to 111 /// be kept in sync with the reader, but need to be consistent within this file. 112 enum { 113 // VALUE_SYMTAB_BLOCK abbrev id's. 114 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 115 VST_ENTRY_7_ABBREV, 116 VST_ENTRY_6_ABBREV, 117 VST_BBENTRY_6_ABBREV, 118 119 // CONSTANTS_BLOCK abbrev id's. 120 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 121 CONSTANTS_INTEGER_ABBREV, 122 CONSTANTS_CE_CAST_Abbrev, 123 CONSTANTS_NULL_Abbrev, 124 125 // FUNCTION_BLOCK abbrev id's. 126 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 127 FUNCTION_INST_UNOP_ABBREV, 128 FUNCTION_INST_UNOP_FLAGS_ABBREV, 129 FUNCTION_INST_BINOP_ABBREV, 130 FUNCTION_INST_BINOP_FLAGS_ABBREV, 131 FUNCTION_INST_CAST_ABBREV, 132 FUNCTION_INST_CAST_FLAGS_ABBREV, 133 FUNCTION_INST_RET_VOID_ABBREV, 134 FUNCTION_INST_RET_VAL_ABBREV, 135 FUNCTION_INST_UNREACHABLE_ABBREV, 136 FUNCTION_INST_GEP_ABBREV, 137 FUNCTION_DEBUG_RECORD_VALUE_ABBREV, 138 }; 139 140 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 141 /// file type. 142 class BitcodeWriterBase { 143 protected: 144 /// The stream created and owned by the client. 145 BitstreamWriter &Stream; 146 147 StringTableBuilder &StrtabBuilder; 148 149 public: 150 /// Constructs a BitcodeWriterBase object that writes to the provided 151 /// \p Stream. 152 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 153 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 154 155 protected: 156 void writeModuleVersion(); 157 }; 158 159 void BitcodeWriterBase::writeModuleVersion() { 160 // VERSION: [version#] 161 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 162 } 163 164 /// Base class to manage the module bitcode writing, currently subclassed for 165 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 166 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 167 protected: 168 /// The Module to write to bitcode. 169 const Module &M; 170 171 /// Enumerates ids for all values in the module. 172 ValueEnumerator VE; 173 174 /// Optional per-module index to write for ThinLTO. 175 const ModuleSummaryIndex *Index; 176 177 /// Map that holds the correspondence between GUIDs in the summary index, 178 /// that came from indirect call profiles, and a value id generated by this 179 /// class to use in the VST and summary block records. 180 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 181 182 /// Tracks the last value id recorded in the GUIDToValueMap. 183 unsigned GlobalValueId; 184 185 /// Saves the offset of the VSTOffset record that must eventually be 186 /// backpatched with the offset of the actual VST. 187 uint64_t VSTOffsetPlaceholder = 0; 188 189 public: 190 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 191 /// writing to the provided \p Buffer. 192 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 193 BitstreamWriter &Stream, 194 bool ShouldPreserveUseListOrder, 195 const ModuleSummaryIndex *Index) 196 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 197 VE(M, ShouldPreserveUseListOrder), Index(Index) { 198 // Assign ValueIds to any callee values in the index that came from 199 // indirect call profiles and were recorded as a GUID not a Value* 200 // (which would have been assigned an ID by the ValueEnumerator). 201 // The starting ValueId is just after the number of values in the 202 // ValueEnumerator, so that they can be emitted in the VST. 203 GlobalValueId = VE.getValues().size(); 204 if (!Index) 205 return; 206 for (const auto &GUIDSummaryLists : *Index) 207 // Examine all summaries for this GUID. 208 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 209 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) { 210 // For each call in the function summary, see if the call 211 // is to a GUID (which means it is for an indirect call, 212 // otherwise we would have a Value for it). If so, synthesize 213 // a value id. 214 for (auto &CallEdge : FS->calls()) 215 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 216 assignValueId(CallEdge.first.getGUID()); 217 218 // For each referenced variables in the function summary, see if the 219 // variable is represented by a GUID (as opposed to a symbol to 220 // declarations or definitions in the module). If so, synthesize a 221 // value id. 222 for (auto &RefEdge : FS->refs()) 223 if (!RefEdge.haveGVs() || !RefEdge.getValue()) 224 assignValueId(RefEdge.getGUID()); 225 } 226 } 227 228 protected: 229 void writePerModuleGlobalValueSummary(); 230 231 private: 232 void writePerModuleFunctionSummaryRecord( 233 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 234 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 235 unsigned CallsiteAbbrev, unsigned AllocAbbrev, unsigned ContextIdAbbvId, 236 const Function &F, DenseMap<CallStackId, LinearCallStackId> &CallStackPos, 237 CallStackId &CallStackCount); 238 void writeModuleLevelReferences(const GlobalVariable &V, 239 SmallVector<uint64_t, 64> &NameVals, 240 unsigned FSModRefsAbbrev, 241 unsigned FSModVTableRefsAbbrev); 242 243 void assignValueId(GlobalValue::GUID ValGUID) { 244 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 245 } 246 247 unsigned getValueId(GlobalValue::GUID ValGUID) { 248 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 249 // Expect that any GUID value had a value Id assigned by an 250 // earlier call to assignValueId. 251 assert(VMI != GUIDToValueIdMap.end() && 252 "GUID does not have assigned value Id"); 253 return VMI->second; 254 } 255 256 // Helper to get the valueId for the type of value recorded in VI. 257 unsigned getValueId(ValueInfo VI) { 258 if (!VI.haveGVs() || !VI.getValue()) 259 return getValueId(VI.getGUID()); 260 return VE.getValueID(VI.getValue()); 261 } 262 263 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 264 }; 265 266 /// Class to manage the bitcode writing for a module. 267 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 268 /// True if a module hash record should be written. 269 bool GenerateHash; 270 271 /// If non-null, when GenerateHash is true, the resulting hash is written 272 /// into ModHash. 273 ModuleHash *ModHash; 274 275 SHA1 Hasher; 276 277 /// The start bit of the identification block. 278 uint64_t BitcodeStartBit; 279 280 public: 281 /// Constructs a ModuleBitcodeWriter object for the given Module, 282 /// writing to the provided \p Buffer. 283 ModuleBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 284 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 285 const ModuleSummaryIndex *Index, bool GenerateHash, 286 ModuleHash *ModHash = nullptr) 287 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 288 ShouldPreserveUseListOrder, Index), 289 GenerateHash(GenerateHash), ModHash(ModHash), 290 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 291 292 /// Emit the current module to the bitstream. 293 void write(); 294 295 private: 296 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 297 298 size_t addToStrtab(StringRef Str); 299 300 void writeAttributeGroupTable(); 301 void writeAttributeTable(); 302 void writeTypeTable(); 303 void writeComdats(); 304 void writeValueSymbolTableForwardDecl(); 305 void writeModuleInfo(); 306 void writeValueAsMetadata(const ValueAsMetadata *MD, 307 SmallVectorImpl<uint64_t> &Record); 308 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 unsigned createDILocationAbbrev(); 311 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 312 unsigned &Abbrev); 313 unsigned createGenericDINodeAbbrev(); 314 void writeGenericDINode(const GenericDINode *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 316 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 317 unsigned Abbrev); 318 void writeDIGenericSubrange(const DIGenericSubrange *N, 319 SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDIEnumerator(const DIEnumerator *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 324 unsigned Abbrev); 325 void writeDIStringType(const DIStringType *N, 326 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 327 void writeDIDerivedType(const DIDerivedType *N, 328 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 329 void writeDICompositeType(const DICompositeType *N, 330 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 331 void writeDISubroutineType(const DISubroutineType *N, 332 SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 335 unsigned Abbrev); 336 void writeDICompileUnit(const DICompileUnit *N, 337 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 338 void writeDISubprogram(const DISubprogram *N, 339 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 340 void writeDILexicalBlock(const DILexicalBlock *N, 341 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 342 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 343 SmallVectorImpl<uint64_t> &Record, 344 unsigned Abbrev); 345 void writeDICommonBlock(const DICommonBlock *N, 346 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 347 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 348 unsigned Abbrev); 349 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 350 unsigned Abbrev); 351 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 352 unsigned Abbrev); 353 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record); 354 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 355 unsigned Abbrev); 356 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 357 unsigned Abbrev); 358 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 359 SmallVectorImpl<uint64_t> &Record, 360 unsigned Abbrev); 361 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 362 SmallVectorImpl<uint64_t> &Record, 363 unsigned Abbrev); 364 void writeDIGlobalVariable(const DIGlobalVariable *N, 365 SmallVectorImpl<uint64_t> &Record, 366 unsigned Abbrev); 367 void writeDILocalVariable(const DILocalVariable *N, 368 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 369 void writeDILabel(const DILabel *N, 370 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 371 void writeDIExpression(const DIExpression *N, 372 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 373 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 374 SmallVectorImpl<uint64_t> &Record, 375 unsigned Abbrev); 376 void writeDIObjCProperty(const DIObjCProperty *N, 377 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 378 void writeDIImportedEntity(const DIImportedEntity *N, 379 SmallVectorImpl<uint64_t> &Record, 380 unsigned Abbrev); 381 unsigned createNamedMetadataAbbrev(); 382 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 383 unsigned createMetadataStringsAbbrev(); 384 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 385 SmallVectorImpl<uint64_t> &Record); 386 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 387 SmallVectorImpl<uint64_t> &Record, 388 std::vector<unsigned> *MDAbbrevs = nullptr, 389 std::vector<uint64_t> *IndexPos = nullptr); 390 void writeModuleMetadata(); 391 void writeFunctionMetadata(const Function &F); 392 void writeFunctionMetadataAttachment(const Function &F); 393 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 394 const GlobalObject &GO); 395 void writeModuleMetadataKinds(); 396 void writeOperandBundleTags(); 397 void writeSyncScopeNames(); 398 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 399 void writeModuleConstants(); 400 bool pushValueAndType(const Value *V, unsigned InstID, 401 SmallVectorImpl<unsigned> &Vals); 402 bool pushValueOrMetadata(const Value *V, unsigned InstID, 403 SmallVectorImpl<unsigned> &Vals); 404 void writeOperandBundles(const CallBase &CB, unsigned InstID); 405 void pushValue(const Value *V, unsigned InstID, 406 SmallVectorImpl<unsigned> &Vals); 407 void pushValueSigned(const Value *V, unsigned InstID, 408 SmallVectorImpl<uint64_t> &Vals); 409 void writeInstruction(const Instruction &I, unsigned InstID, 410 SmallVectorImpl<unsigned> &Vals); 411 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 412 void writeGlobalValueSymbolTable( 413 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 414 void writeUseList(UseListOrder &&Order); 415 void writeUseListBlock(const Function *F); 416 void 417 writeFunction(const Function &F, 418 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 419 void writeBlockInfo(); 420 void writeModuleHash(StringRef View); 421 422 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 423 return unsigned(SSID); 424 } 425 426 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 427 }; 428 429 /// Class to manage the bitcode writing for a combined index. 430 class IndexBitcodeWriter : public BitcodeWriterBase { 431 /// The combined index to write to bitcode. 432 const ModuleSummaryIndex &Index; 433 434 /// When writing combined summaries, provides the set of global value 435 /// summaries for which the value (function, function alias, etc) should be 436 /// imported as a declaration. 437 const GVSummaryPtrSet *DecSummaries = nullptr; 438 439 /// When writing a subset of the index for distributed backends, client 440 /// provides a map of modules to the corresponding GUIDs/summaries to write. 441 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex; 442 443 /// Map that holds the correspondence between the GUID used in the combined 444 /// index and a value id generated by this class to use in references. 445 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 446 447 // The stack ids used by this index, which will be a subset of those in 448 // the full index in the case of distributed indexes. 449 std::vector<uint64_t> StackIds; 450 451 // Keep a map of the stack id indices used by records being written for this 452 // index to the index of the corresponding stack id in the above StackIds 453 // vector. Ensures we write each referenced stack id once. 454 DenseMap<unsigned, unsigned> StackIdIndicesToIndex; 455 456 /// Tracks the last value id recorded in the GUIDToValueMap. 457 unsigned GlobalValueId = 0; 458 459 /// Tracks the assignment of module paths in the module path string table to 460 /// an id assigned for use in summary references to the module path. 461 DenseMap<StringRef, uint64_t> ModuleIdMap; 462 463 public: 464 /// Constructs a IndexBitcodeWriter object for the given combined index, 465 /// writing to the provided \p Buffer. When writing a subset of the index 466 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 467 /// If provided, \p DecSummaries specifies the set of summaries for which 468 /// the corresponding functions or aliased functions should be imported as a 469 /// declaration (but not definition) for each module. 470 IndexBitcodeWriter( 471 BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 472 const ModuleSummaryIndex &Index, 473 const GVSummaryPtrSet *DecSummaries = nullptr, 474 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex = nullptr) 475 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 476 DecSummaries(DecSummaries), 477 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 478 479 // See if the StackIdIndex was already added to the StackId map and 480 // vector. If not, record it. 481 auto RecordStackIdReference = [&](unsigned StackIdIndex) { 482 // If the StackIdIndex is not yet in the map, the below insert ensures 483 // that it will point to the new StackIds vector entry we push to just 484 // below. 485 auto Inserted = 486 StackIdIndicesToIndex.insert({StackIdIndex, StackIds.size()}); 487 if (Inserted.second) 488 StackIds.push_back(Index.getStackIdAtIndex(StackIdIndex)); 489 }; 490 491 // Assign unique value ids to all summaries to be written, for use 492 // in writing out the call graph edges. Save the mapping from GUID 493 // to the new global value id to use when writing those edges, which 494 // are currently saved in the index in terms of GUID. 495 forEachSummary([&](GVInfo I, bool IsAliasee) { 496 GUIDToValueIdMap[I.first] = ++GlobalValueId; 497 if (IsAliasee) 498 return; 499 auto *FS = dyn_cast<FunctionSummary>(I.second); 500 if (!FS) 501 return; 502 // Record all stack id indices actually used in the summary entries being 503 // written, so that we can compact them in the case of distributed ThinLTO 504 // indexes. 505 for (auto &CI : FS->callsites()) { 506 // If the stack id list is empty, this callsite info was synthesized for 507 // a missing tail call frame. Ensure that the callee's GUID gets a value 508 // id. Normally we only generate these for defined summaries, which in 509 // the case of distributed ThinLTO is only the functions already defined 510 // in the module or that we want to import. We don't bother to include 511 // all the callee symbols as they aren't normally needed in the backend. 512 // However, for the synthesized callsite infos we do need the callee 513 // GUID in the backend so that we can correlate the identified callee 514 // with this callsite info (which for non-tail calls is done by the 515 // ordering of the callsite infos and verified via stack ids). 516 if (CI.StackIdIndices.empty()) { 517 GUIDToValueIdMap[CI.Callee.getGUID()] = ++GlobalValueId; 518 continue; 519 } 520 for (auto Idx : CI.StackIdIndices) 521 RecordStackIdReference(Idx); 522 } 523 for (auto &AI : FS->allocs()) 524 for (auto &MIB : AI.MIBs) 525 for (auto Idx : MIB.StackIdIndices) 526 RecordStackIdReference(Idx); 527 }); 528 } 529 530 /// The below iterator returns the GUID and associated summary. 531 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 532 533 /// Calls the callback for each value GUID and summary to be written to 534 /// bitcode. This hides the details of whether they are being pulled from the 535 /// entire index or just those in a provided ModuleToSummariesForIndex map. 536 template<typename Functor> 537 void forEachSummary(Functor Callback) { 538 if (ModuleToSummariesForIndex) { 539 for (auto &M : *ModuleToSummariesForIndex) 540 for (auto &Summary : M.second) { 541 Callback(Summary, false); 542 // Ensure aliasee is handled, e.g. for assigning a valueId, 543 // even if we are not importing the aliasee directly (the 544 // imported alias will contain a copy of aliasee). 545 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 546 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 547 } 548 } else { 549 for (auto &Summaries : Index) 550 for (auto &Summary : Summaries.second.SummaryList) 551 Callback({Summaries.first, Summary.get()}, false); 552 } 553 } 554 555 /// Calls the callback for each entry in the modulePaths StringMap that 556 /// should be written to the module path string table. This hides the details 557 /// of whether they are being pulled from the entire index or just those in a 558 /// provided ModuleToSummariesForIndex map. 559 template <typename Functor> void forEachModule(Functor Callback) { 560 if (ModuleToSummariesForIndex) { 561 for (const auto &M : *ModuleToSummariesForIndex) { 562 const auto &MPI = Index.modulePaths().find(M.first); 563 if (MPI == Index.modulePaths().end()) { 564 // This should only happen if the bitcode file was empty, in which 565 // case we shouldn't be importing (the ModuleToSummariesForIndex 566 // would only include the module we are writing and index for). 567 assert(ModuleToSummariesForIndex->size() == 1); 568 continue; 569 } 570 Callback(*MPI); 571 } 572 } else { 573 // Since StringMap iteration order isn't guaranteed, order by path string 574 // first. 575 // FIXME: Make this a vector of StringMapEntry instead to avoid the later 576 // map lookup. 577 std::vector<StringRef> ModulePaths; 578 for (auto &[ModPath, _] : Index.modulePaths()) 579 ModulePaths.push_back(ModPath); 580 llvm::sort(ModulePaths.begin(), ModulePaths.end()); 581 for (auto &ModPath : ModulePaths) 582 Callback(*Index.modulePaths().find(ModPath)); 583 } 584 } 585 586 /// Main entry point for writing a combined index to bitcode. 587 void write(); 588 589 private: 590 void writeModStrings(); 591 void writeCombinedGlobalValueSummary(); 592 593 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 594 auto VMI = GUIDToValueIdMap.find(ValGUID); 595 if (VMI == GUIDToValueIdMap.end()) 596 return std::nullopt; 597 return VMI->second; 598 } 599 600 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 601 }; 602 603 } // end anonymous namespace 604 605 static unsigned getEncodedCastOpcode(unsigned Opcode) { 606 switch (Opcode) { 607 default: llvm_unreachable("Unknown cast instruction!"); 608 case Instruction::Trunc : return bitc::CAST_TRUNC; 609 case Instruction::ZExt : return bitc::CAST_ZEXT; 610 case Instruction::SExt : return bitc::CAST_SEXT; 611 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 612 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 613 case Instruction::UIToFP : return bitc::CAST_UITOFP; 614 case Instruction::SIToFP : return bitc::CAST_SITOFP; 615 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 616 case Instruction::FPExt : return bitc::CAST_FPEXT; 617 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 618 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 619 case Instruction::BitCast : return bitc::CAST_BITCAST; 620 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 621 } 622 } 623 624 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 625 switch (Opcode) { 626 default: llvm_unreachable("Unknown binary instruction!"); 627 case Instruction::FNeg: return bitc::UNOP_FNEG; 628 } 629 } 630 631 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 632 switch (Opcode) { 633 default: llvm_unreachable("Unknown binary instruction!"); 634 case Instruction::Add: 635 case Instruction::FAdd: return bitc::BINOP_ADD; 636 case Instruction::Sub: 637 case Instruction::FSub: return bitc::BINOP_SUB; 638 case Instruction::Mul: 639 case Instruction::FMul: return bitc::BINOP_MUL; 640 case Instruction::UDiv: return bitc::BINOP_UDIV; 641 case Instruction::FDiv: 642 case Instruction::SDiv: return bitc::BINOP_SDIV; 643 case Instruction::URem: return bitc::BINOP_UREM; 644 case Instruction::FRem: 645 case Instruction::SRem: return bitc::BINOP_SREM; 646 case Instruction::Shl: return bitc::BINOP_SHL; 647 case Instruction::LShr: return bitc::BINOP_LSHR; 648 case Instruction::AShr: return bitc::BINOP_ASHR; 649 case Instruction::And: return bitc::BINOP_AND; 650 case Instruction::Or: return bitc::BINOP_OR; 651 case Instruction::Xor: return bitc::BINOP_XOR; 652 } 653 } 654 655 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 656 switch (Op) { 657 default: llvm_unreachable("Unknown RMW operation!"); 658 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 659 case AtomicRMWInst::Add: return bitc::RMW_ADD; 660 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 661 case AtomicRMWInst::And: return bitc::RMW_AND; 662 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 663 case AtomicRMWInst::Or: return bitc::RMW_OR; 664 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 665 case AtomicRMWInst::Max: return bitc::RMW_MAX; 666 case AtomicRMWInst::Min: return bitc::RMW_MIN; 667 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 668 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 669 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 670 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 671 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 672 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 673 case AtomicRMWInst::UIncWrap: 674 return bitc::RMW_UINC_WRAP; 675 case AtomicRMWInst::UDecWrap: 676 return bitc::RMW_UDEC_WRAP; 677 case AtomicRMWInst::USubCond: 678 return bitc::RMW_USUB_COND; 679 case AtomicRMWInst::USubSat: 680 return bitc::RMW_USUB_SAT; 681 } 682 } 683 684 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 685 switch (Ordering) { 686 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 687 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 688 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 689 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 690 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 691 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 692 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 693 } 694 llvm_unreachable("Invalid ordering"); 695 } 696 697 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 698 StringRef Str, unsigned AbbrevToUse) { 699 SmallVector<unsigned, 64> Vals; 700 701 // Code: [strchar x N] 702 for (char C : Str) { 703 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 704 AbbrevToUse = 0; 705 Vals.push_back(C); 706 } 707 708 // Emit the finished record. 709 Stream.EmitRecord(Code, Vals, AbbrevToUse); 710 } 711 712 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 713 switch (Kind) { 714 case Attribute::Alignment: 715 return bitc::ATTR_KIND_ALIGNMENT; 716 case Attribute::AllocAlign: 717 return bitc::ATTR_KIND_ALLOC_ALIGN; 718 case Attribute::AllocSize: 719 return bitc::ATTR_KIND_ALLOC_SIZE; 720 case Attribute::AlwaysInline: 721 return bitc::ATTR_KIND_ALWAYS_INLINE; 722 case Attribute::Builtin: 723 return bitc::ATTR_KIND_BUILTIN; 724 case Attribute::ByVal: 725 return bitc::ATTR_KIND_BY_VAL; 726 case Attribute::Convergent: 727 return bitc::ATTR_KIND_CONVERGENT; 728 case Attribute::InAlloca: 729 return bitc::ATTR_KIND_IN_ALLOCA; 730 case Attribute::Cold: 731 return bitc::ATTR_KIND_COLD; 732 case Attribute::DisableSanitizerInstrumentation: 733 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 734 case Attribute::FnRetThunkExtern: 735 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 736 case Attribute::Hot: 737 return bitc::ATTR_KIND_HOT; 738 case Attribute::ElementType: 739 return bitc::ATTR_KIND_ELEMENTTYPE; 740 case Attribute::HybridPatchable: 741 return bitc::ATTR_KIND_HYBRID_PATCHABLE; 742 case Attribute::InlineHint: 743 return bitc::ATTR_KIND_INLINE_HINT; 744 case Attribute::InReg: 745 return bitc::ATTR_KIND_IN_REG; 746 case Attribute::JumpTable: 747 return bitc::ATTR_KIND_JUMP_TABLE; 748 case Attribute::MinSize: 749 return bitc::ATTR_KIND_MIN_SIZE; 750 case Attribute::AllocatedPointer: 751 return bitc::ATTR_KIND_ALLOCATED_POINTER; 752 case Attribute::AllocKind: 753 return bitc::ATTR_KIND_ALLOC_KIND; 754 case Attribute::Memory: 755 return bitc::ATTR_KIND_MEMORY; 756 case Attribute::NoFPClass: 757 return bitc::ATTR_KIND_NOFPCLASS; 758 case Attribute::Naked: 759 return bitc::ATTR_KIND_NAKED; 760 case Attribute::Nest: 761 return bitc::ATTR_KIND_NEST; 762 case Attribute::NoAlias: 763 return bitc::ATTR_KIND_NO_ALIAS; 764 case Attribute::NoBuiltin: 765 return bitc::ATTR_KIND_NO_BUILTIN; 766 case Attribute::NoCallback: 767 return bitc::ATTR_KIND_NO_CALLBACK; 768 case Attribute::NoCapture: 769 return bitc::ATTR_KIND_NO_CAPTURE; 770 case Attribute::NoDivergenceSource: 771 return bitc::ATTR_KIND_NO_DIVERGENCE_SOURCE; 772 case Attribute::NoDuplicate: 773 return bitc::ATTR_KIND_NO_DUPLICATE; 774 case Attribute::NoFree: 775 return bitc::ATTR_KIND_NOFREE; 776 case Attribute::NoImplicitFloat: 777 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 778 case Attribute::NoInline: 779 return bitc::ATTR_KIND_NO_INLINE; 780 case Attribute::NoRecurse: 781 return bitc::ATTR_KIND_NO_RECURSE; 782 case Attribute::NoMerge: 783 return bitc::ATTR_KIND_NO_MERGE; 784 case Attribute::NonLazyBind: 785 return bitc::ATTR_KIND_NON_LAZY_BIND; 786 case Attribute::NonNull: 787 return bitc::ATTR_KIND_NON_NULL; 788 case Attribute::Dereferenceable: 789 return bitc::ATTR_KIND_DEREFERENCEABLE; 790 case Attribute::DereferenceableOrNull: 791 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 792 case Attribute::NoRedZone: 793 return bitc::ATTR_KIND_NO_RED_ZONE; 794 case Attribute::NoReturn: 795 return bitc::ATTR_KIND_NO_RETURN; 796 case Attribute::NoSync: 797 return bitc::ATTR_KIND_NOSYNC; 798 case Attribute::NoCfCheck: 799 return bitc::ATTR_KIND_NOCF_CHECK; 800 case Attribute::NoProfile: 801 return bitc::ATTR_KIND_NO_PROFILE; 802 case Attribute::SkipProfile: 803 return bitc::ATTR_KIND_SKIP_PROFILE; 804 case Attribute::NoUnwind: 805 return bitc::ATTR_KIND_NO_UNWIND; 806 case Attribute::NoSanitizeBounds: 807 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 808 case Attribute::NoSanitizeCoverage: 809 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 810 case Attribute::NullPointerIsValid: 811 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 812 case Attribute::OptimizeForDebugging: 813 return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING; 814 case Attribute::OptForFuzzing: 815 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 816 case Attribute::OptimizeForSize: 817 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 818 case Attribute::OptimizeNone: 819 return bitc::ATTR_KIND_OPTIMIZE_NONE; 820 case Attribute::ReadNone: 821 return bitc::ATTR_KIND_READ_NONE; 822 case Attribute::ReadOnly: 823 return bitc::ATTR_KIND_READ_ONLY; 824 case Attribute::Returned: 825 return bitc::ATTR_KIND_RETURNED; 826 case Attribute::ReturnsTwice: 827 return bitc::ATTR_KIND_RETURNS_TWICE; 828 case Attribute::SExt: 829 return bitc::ATTR_KIND_S_EXT; 830 case Attribute::Speculatable: 831 return bitc::ATTR_KIND_SPECULATABLE; 832 case Attribute::StackAlignment: 833 return bitc::ATTR_KIND_STACK_ALIGNMENT; 834 case Attribute::StackProtect: 835 return bitc::ATTR_KIND_STACK_PROTECT; 836 case Attribute::StackProtectReq: 837 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 838 case Attribute::StackProtectStrong: 839 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 840 case Attribute::SafeStack: 841 return bitc::ATTR_KIND_SAFESTACK; 842 case Attribute::ShadowCallStack: 843 return bitc::ATTR_KIND_SHADOWCALLSTACK; 844 case Attribute::StrictFP: 845 return bitc::ATTR_KIND_STRICT_FP; 846 case Attribute::StructRet: 847 return bitc::ATTR_KIND_STRUCT_RET; 848 case Attribute::SanitizeAddress: 849 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 850 case Attribute::SanitizeHWAddress: 851 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 852 case Attribute::SanitizeThread: 853 return bitc::ATTR_KIND_SANITIZE_THREAD; 854 case Attribute::SanitizeType: 855 return bitc::ATTR_KIND_SANITIZE_TYPE; 856 case Attribute::SanitizeMemory: 857 return bitc::ATTR_KIND_SANITIZE_MEMORY; 858 case Attribute::SanitizeNumericalStability: 859 return bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY; 860 case Attribute::SanitizeRealtime: 861 return bitc::ATTR_KIND_SANITIZE_REALTIME; 862 case Attribute::SanitizeRealtimeBlocking: 863 return bitc::ATTR_KIND_SANITIZE_REALTIME_BLOCKING; 864 case Attribute::SpeculativeLoadHardening: 865 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 866 case Attribute::SwiftError: 867 return bitc::ATTR_KIND_SWIFT_ERROR; 868 case Attribute::SwiftSelf: 869 return bitc::ATTR_KIND_SWIFT_SELF; 870 case Attribute::SwiftAsync: 871 return bitc::ATTR_KIND_SWIFT_ASYNC; 872 case Attribute::UWTable: 873 return bitc::ATTR_KIND_UW_TABLE; 874 case Attribute::VScaleRange: 875 return bitc::ATTR_KIND_VSCALE_RANGE; 876 case Attribute::WillReturn: 877 return bitc::ATTR_KIND_WILLRETURN; 878 case Attribute::WriteOnly: 879 return bitc::ATTR_KIND_WRITEONLY; 880 case Attribute::ZExt: 881 return bitc::ATTR_KIND_Z_EXT; 882 case Attribute::ImmArg: 883 return bitc::ATTR_KIND_IMMARG; 884 case Attribute::SanitizeMemTag: 885 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 886 case Attribute::Preallocated: 887 return bitc::ATTR_KIND_PREALLOCATED; 888 case Attribute::NoUndef: 889 return bitc::ATTR_KIND_NOUNDEF; 890 case Attribute::ByRef: 891 return bitc::ATTR_KIND_BYREF; 892 case Attribute::MustProgress: 893 return bitc::ATTR_KIND_MUSTPROGRESS; 894 case Attribute::PresplitCoroutine: 895 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 896 case Attribute::Writable: 897 return bitc::ATTR_KIND_WRITABLE; 898 case Attribute::CoroDestroyOnlyWhenComplete: 899 return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE; 900 case Attribute::CoroElideSafe: 901 return bitc::ATTR_KIND_CORO_ELIDE_SAFE; 902 case Attribute::DeadOnUnwind: 903 return bitc::ATTR_KIND_DEAD_ON_UNWIND; 904 case Attribute::Range: 905 return bitc::ATTR_KIND_RANGE; 906 case Attribute::Initializes: 907 return bitc::ATTR_KIND_INITIALIZES; 908 case Attribute::NoExt: 909 return bitc::ATTR_KIND_NO_EXT; 910 case Attribute::EndAttrKinds: 911 llvm_unreachable("Can not encode end-attribute kinds marker."); 912 case Attribute::None: 913 llvm_unreachable("Can not encode none-attribute."); 914 case Attribute::EmptyKey: 915 case Attribute::TombstoneKey: 916 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 917 } 918 919 llvm_unreachable("Trying to encode unknown attribute"); 920 } 921 922 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 923 if ((int64_t)V >= 0) 924 Vals.push_back(V << 1); 925 else 926 Vals.push_back((-V << 1) | 1); 927 } 928 929 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 930 // We have an arbitrary precision integer value to write whose 931 // bit width is > 64. However, in canonical unsigned integer 932 // format it is likely that the high bits are going to be zero. 933 // So, we only write the number of active words. 934 unsigned NumWords = A.getActiveWords(); 935 const uint64_t *RawData = A.getRawData(); 936 for (unsigned i = 0; i < NumWords; i++) 937 emitSignedInt64(Vals, RawData[i]); 938 } 939 940 static void emitConstantRange(SmallVectorImpl<uint64_t> &Record, 941 const ConstantRange &CR, bool EmitBitWidth) { 942 unsigned BitWidth = CR.getBitWidth(); 943 if (EmitBitWidth) 944 Record.push_back(BitWidth); 945 if (BitWidth > 64) { 946 Record.push_back(CR.getLower().getActiveWords() | 947 (uint64_t(CR.getUpper().getActiveWords()) << 32)); 948 emitWideAPInt(Record, CR.getLower()); 949 emitWideAPInt(Record, CR.getUpper()); 950 } else { 951 emitSignedInt64(Record, CR.getLower().getSExtValue()); 952 emitSignedInt64(Record, CR.getUpper().getSExtValue()); 953 } 954 } 955 956 void ModuleBitcodeWriter::writeAttributeGroupTable() { 957 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 958 VE.getAttributeGroups(); 959 if (AttrGrps.empty()) return; 960 961 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 962 963 SmallVector<uint64_t, 64> Record; 964 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 965 unsigned AttrListIndex = Pair.first; 966 AttributeSet AS = Pair.second; 967 Record.push_back(VE.getAttributeGroupID(Pair)); 968 Record.push_back(AttrListIndex); 969 970 for (Attribute Attr : AS) { 971 if (Attr.isEnumAttribute()) { 972 Record.push_back(0); 973 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 974 } else if (Attr.isIntAttribute()) { 975 Record.push_back(1); 976 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 977 Record.push_back(Attr.getValueAsInt()); 978 } else if (Attr.isStringAttribute()) { 979 StringRef Kind = Attr.getKindAsString(); 980 StringRef Val = Attr.getValueAsString(); 981 982 Record.push_back(Val.empty() ? 3 : 4); 983 Record.append(Kind.begin(), Kind.end()); 984 Record.push_back(0); 985 if (!Val.empty()) { 986 Record.append(Val.begin(), Val.end()); 987 Record.push_back(0); 988 } 989 } else if (Attr.isTypeAttribute()) { 990 Type *Ty = Attr.getValueAsType(); 991 Record.push_back(Ty ? 6 : 5); 992 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 993 if (Ty) 994 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 995 } else if (Attr.isConstantRangeAttribute()) { 996 Record.push_back(7); 997 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 998 emitConstantRange(Record, Attr.getValueAsConstantRange(), 999 /*EmitBitWidth=*/true); 1000 } else { 1001 assert(Attr.isConstantRangeListAttribute()); 1002 Record.push_back(8); 1003 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 1004 ArrayRef<ConstantRange> Val = Attr.getValueAsConstantRangeList(); 1005 Record.push_back(Val.size()); 1006 Record.push_back(Val[0].getBitWidth()); 1007 for (auto &CR : Val) 1008 emitConstantRange(Record, CR, /*EmitBitWidth=*/false); 1009 } 1010 } 1011 1012 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 1013 Record.clear(); 1014 } 1015 1016 Stream.ExitBlock(); 1017 } 1018 1019 void ModuleBitcodeWriter::writeAttributeTable() { 1020 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 1021 if (Attrs.empty()) return; 1022 1023 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 1024 1025 SmallVector<uint64_t, 64> Record; 1026 for (const AttributeList &AL : Attrs) { 1027 for (unsigned i : AL.indexes()) { 1028 AttributeSet AS = AL.getAttributes(i); 1029 if (AS.hasAttributes()) 1030 Record.push_back(VE.getAttributeGroupID({i, AS})); 1031 } 1032 1033 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 1034 Record.clear(); 1035 } 1036 1037 Stream.ExitBlock(); 1038 } 1039 1040 /// WriteTypeTable - Write out the type table for a module. 1041 void ModuleBitcodeWriter::writeTypeTable() { 1042 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 1043 1044 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 1045 SmallVector<uint64_t, 64> TypeVals; 1046 1047 uint64_t NumBits = VE.computeBitsRequiredForTypeIndices(); 1048 1049 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 1050 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1051 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 1052 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 1053 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1054 1055 // Abbrev for TYPE_CODE_FUNCTION. 1056 Abbv = std::make_shared<BitCodeAbbrev>(); 1057 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 1058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 1059 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1061 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1062 1063 // Abbrev for TYPE_CODE_STRUCT_ANON. 1064 Abbv = std::make_shared<BitCodeAbbrev>(); 1065 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 1066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1068 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1069 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1070 1071 // Abbrev for TYPE_CODE_STRUCT_NAME. 1072 Abbv = std::make_shared<BitCodeAbbrev>(); 1073 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 1074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1076 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1077 1078 // Abbrev for TYPE_CODE_STRUCT_NAMED. 1079 Abbv = std::make_shared<BitCodeAbbrev>(); 1080 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 1081 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1082 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1083 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1084 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1085 1086 // Abbrev for TYPE_CODE_ARRAY. 1087 Abbv = std::make_shared<BitCodeAbbrev>(); 1088 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 1089 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 1090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1091 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1092 1093 // Emit an entry count so the reader can reserve space. 1094 TypeVals.push_back(TypeList.size()); 1095 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 1096 TypeVals.clear(); 1097 1098 // Loop over all of the types, emitting each in turn. 1099 for (Type *T : TypeList) { 1100 int AbbrevToUse = 0; 1101 unsigned Code = 0; 1102 1103 switch (T->getTypeID()) { 1104 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 1105 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 1106 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 1107 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 1108 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 1109 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 1110 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 1111 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 1112 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 1113 case Type::MetadataTyID: 1114 Code = bitc::TYPE_CODE_METADATA; 1115 break; 1116 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 1117 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 1118 case Type::IntegerTyID: 1119 // INTEGER: [width] 1120 Code = bitc::TYPE_CODE_INTEGER; 1121 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 1122 break; 1123 case Type::PointerTyID: { 1124 PointerType *PTy = cast<PointerType>(T); 1125 unsigned AddressSpace = PTy->getAddressSpace(); 1126 // OPAQUE_POINTER: [address space] 1127 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 1128 TypeVals.push_back(AddressSpace); 1129 if (AddressSpace == 0) 1130 AbbrevToUse = OpaquePtrAbbrev; 1131 break; 1132 } 1133 case Type::FunctionTyID: { 1134 FunctionType *FT = cast<FunctionType>(T); 1135 // FUNCTION: [isvararg, retty, paramty x N] 1136 Code = bitc::TYPE_CODE_FUNCTION; 1137 TypeVals.push_back(FT->isVarArg()); 1138 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 1139 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 1140 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 1141 AbbrevToUse = FunctionAbbrev; 1142 break; 1143 } 1144 case Type::StructTyID: { 1145 StructType *ST = cast<StructType>(T); 1146 // STRUCT: [ispacked, eltty x N] 1147 TypeVals.push_back(ST->isPacked()); 1148 // Output all of the element types. 1149 for (Type *ET : ST->elements()) 1150 TypeVals.push_back(VE.getTypeID(ET)); 1151 1152 if (ST->isLiteral()) { 1153 Code = bitc::TYPE_CODE_STRUCT_ANON; 1154 AbbrevToUse = StructAnonAbbrev; 1155 } else { 1156 if (ST->isOpaque()) { 1157 Code = bitc::TYPE_CODE_OPAQUE; 1158 } else { 1159 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1160 AbbrevToUse = StructNamedAbbrev; 1161 } 1162 1163 // Emit the name if it is present. 1164 if (!ST->getName().empty()) 1165 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1166 StructNameAbbrev); 1167 } 1168 break; 1169 } 1170 case Type::ArrayTyID: { 1171 ArrayType *AT = cast<ArrayType>(T); 1172 // ARRAY: [numelts, eltty] 1173 Code = bitc::TYPE_CODE_ARRAY; 1174 TypeVals.push_back(AT->getNumElements()); 1175 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1176 AbbrevToUse = ArrayAbbrev; 1177 break; 1178 } 1179 case Type::FixedVectorTyID: 1180 case Type::ScalableVectorTyID: { 1181 VectorType *VT = cast<VectorType>(T); 1182 // VECTOR [numelts, eltty] or 1183 // [numelts, eltty, scalable] 1184 Code = bitc::TYPE_CODE_VECTOR; 1185 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1186 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1187 if (isa<ScalableVectorType>(VT)) 1188 TypeVals.push_back(true); 1189 break; 1190 } 1191 case Type::TargetExtTyID: { 1192 TargetExtType *TET = cast<TargetExtType>(T); 1193 Code = bitc::TYPE_CODE_TARGET_TYPE; 1194 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), 1195 StructNameAbbrev); 1196 TypeVals.push_back(TET->getNumTypeParameters()); 1197 for (Type *InnerTy : TET->type_params()) 1198 TypeVals.push_back(VE.getTypeID(InnerTy)); 1199 for (unsigned IntParam : TET->int_params()) 1200 TypeVals.push_back(IntParam); 1201 break; 1202 } 1203 case Type::TypedPointerTyID: 1204 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1205 } 1206 1207 // Emit the finished record. 1208 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1209 TypeVals.clear(); 1210 } 1211 1212 Stream.ExitBlock(); 1213 } 1214 1215 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1216 switch (Linkage) { 1217 case GlobalValue::ExternalLinkage: 1218 return 0; 1219 case GlobalValue::WeakAnyLinkage: 1220 return 16; 1221 case GlobalValue::AppendingLinkage: 1222 return 2; 1223 case GlobalValue::InternalLinkage: 1224 return 3; 1225 case GlobalValue::LinkOnceAnyLinkage: 1226 return 18; 1227 case GlobalValue::ExternalWeakLinkage: 1228 return 7; 1229 case GlobalValue::CommonLinkage: 1230 return 8; 1231 case GlobalValue::PrivateLinkage: 1232 return 9; 1233 case GlobalValue::WeakODRLinkage: 1234 return 17; 1235 case GlobalValue::LinkOnceODRLinkage: 1236 return 19; 1237 case GlobalValue::AvailableExternallyLinkage: 1238 return 12; 1239 } 1240 llvm_unreachable("Invalid linkage"); 1241 } 1242 1243 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1244 return getEncodedLinkage(GV.getLinkage()); 1245 } 1246 1247 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1248 uint64_t RawFlags = 0; 1249 RawFlags |= Flags.ReadNone; 1250 RawFlags |= (Flags.ReadOnly << 1); 1251 RawFlags |= (Flags.NoRecurse << 2); 1252 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1253 RawFlags |= (Flags.NoInline << 4); 1254 RawFlags |= (Flags.AlwaysInline << 5); 1255 RawFlags |= (Flags.NoUnwind << 6); 1256 RawFlags |= (Flags.MayThrow << 7); 1257 RawFlags |= (Flags.HasUnknownCall << 8); 1258 RawFlags |= (Flags.MustBeUnreachable << 9); 1259 return RawFlags; 1260 } 1261 1262 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1263 // in BitcodeReader.cpp. 1264 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags, 1265 bool ImportAsDecl = false) { 1266 uint64_t RawFlags = 0; 1267 1268 RawFlags |= Flags.NotEligibleToImport; // bool 1269 RawFlags |= (Flags.Live << 1); 1270 RawFlags |= (Flags.DSOLocal << 2); 1271 RawFlags |= (Flags.CanAutoHide << 3); 1272 1273 // Linkage don't need to be remapped at that time for the summary. Any future 1274 // change to the getEncodedLinkage() function will need to be taken into 1275 // account here as well. 1276 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1277 1278 RawFlags |= (Flags.Visibility << 8); // 2 bits 1279 1280 unsigned ImportType = Flags.ImportType | ImportAsDecl; 1281 RawFlags |= (ImportType << 10); // 1 bit 1282 1283 return RawFlags; 1284 } 1285 1286 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1287 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1288 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1289 return RawFlags; 1290 } 1291 1292 static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo &CI) { 1293 uint64_t RawFlags = 0; 1294 1295 RawFlags |= CI.Hotness; // 3 bits 1296 RawFlags |= (CI.HasTailCall << 3); // 1 bit 1297 1298 return RawFlags; 1299 } 1300 1301 static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo &CI) { 1302 uint64_t RawFlags = 0; 1303 1304 RawFlags |= CI.RelBlockFreq; // CalleeInfo::RelBlockFreqBits bits 1305 RawFlags |= (CI.HasTailCall << CalleeInfo::RelBlockFreqBits); // 1 bit 1306 1307 return RawFlags; 1308 } 1309 1310 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1311 switch (GV.getVisibility()) { 1312 case GlobalValue::DefaultVisibility: return 0; 1313 case GlobalValue::HiddenVisibility: return 1; 1314 case GlobalValue::ProtectedVisibility: return 2; 1315 } 1316 llvm_unreachable("Invalid visibility"); 1317 } 1318 1319 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1320 switch (GV.getDLLStorageClass()) { 1321 case GlobalValue::DefaultStorageClass: return 0; 1322 case GlobalValue::DLLImportStorageClass: return 1; 1323 case GlobalValue::DLLExportStorageClass: return 2; 1324 } 1325 llvm_unreachable("Invalid DLL storage class"); 1326 } 1327 1328 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1329 switch (GV.getThreadLocalMode()) { 1330 case GlobalVariable::NotThreadLocal: return 0; 1331 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1332 case GlobalVariable::LocalDynamicTLSModel: return 2; 1333 case GlobalVariable::InitialExecTLSModel: return 3; 1334 case GlobalVariable::LocalExecTLSModel: return 4; 1335 } 1336 llvm_unreachable("Invalid TLS model"); 1337 } 1338 1339 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1340 switch (C.getSelectionKind()) { 1341 case Comdat::Any: 1342 return bitc::COMDAT_SELECTION_KIND_ANY; 1343 case Comdat::ExactMatch: 1344 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1345 case Comdat::Largest: 1346 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1347 case Comdat::NoDeduplicate: 1348 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1349 case Comdat::SameSize: 1350 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1351 } 1352 llvm_unreachable("Invalid selection kind"); 1353 } 1354 1355 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1356 switch (GV.getUnnamedAddr()) { 1357 case GlobalValue::UnnamedAddr::None: return 0; 1358 case GlobalValue::UnnamedAddr::Local: return 2; 1359 case GlobalValue::UnnamedAddr::Global: return 1; 1360 } 1361 llvm_unreachable("Invalid unnamed_addr"); 1362 } 1363 1364 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1365 if (GenerateHash) 1366 Hasher.update(Str); 1367 return StrtabBuilder.add(Str); 1368 } 1369 1370 void ModuleBitcodeWriter::writeComdats() { 1371 SmallVector<unsigned, 64> Vals; 1372 for (const Comdat *C : VE.getComdats()) { 1373 // COMDAT: [strtab offset, strtab size, selection_kind] 1374 Vals.push_back(addToStrtab(C->getName())); 1375 Vals.push_back(C->getName().size()); 1376 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1377 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1378 Vals.clear(); 1379 } 1380 } 1381 1382 /// Write a record that will eventually hold the word offset of the 1383 /// module-level VST. For now the offset is 0, which will be backpatched 1384 /// after the real VST is written. Saves the bit offset to backpatch. 1385 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1386 // Write a placeholder value in for the offset of the real VST, 1387 // which is written after the function blocks so that it can include 1388 // the offset of each function. The placeholder offset will be 1389 // updated when the real VST is written. 1390 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1391 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1392 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1393 // hold the real VST offset. Must use fixed instead of VBR as we don't 1394 // know how many VBR chunks to reserve ahead of time. 1395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1396 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1397 1398 // Emit the placeholder 1399 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1400 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1401 1402 // Compute and save the bit offset to the placeholder, which will be 1403 // patched when the real VST is written. We can simply subtract the 32-bit 1404 // fixed size from the current bit number to get the location to backpatch. 1405 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1406 } 1407 1408 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1409 1410 /// Determine the encoding to use for the given string name and length. 1411 static StringEncoding getStringEncoding(StringRef Str) { 1412 bool isChar6 = true; 1413 for (char C : Str) { 1414 if (isChar6) 1415 isChar6 = BitCodeAbbrevOp::isChar6(C); 1416 if ((unsigned char)C & 128) 1417 // don't bother scanning the rest. 1418 return SE_Fixed8; 1419 } 1420 if (isChar6) 1421 return SE_Char6; 1422 return SE_Fixed7; 1423 } 1424 1425 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1426 "Sanitizer Metadata is too large for naive serialization."); 1427 static unsigned 1428 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1429 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1430 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1431 } 1432 1433 /// Emit top-level description of module, including target triple, inline asm, 1434 /// descriptors for global variables, and function prototype info. 1435 /// Returns the bit offset to backpatch with the location of the real VST. 1436 void ModuleBitcodeWriter::writeModuleInfo() { 1437 // Emit various pieces of data attached to a module. 1438 if (!M.getTargetTriple().empty()) 1439 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1440 0 /*TODO*/); 1441 const std::string &DL = M.getDataLayoutStr(); 1442 if (!DL.empty()) 1443 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1444 if (!M.getModuleInlineAsm().empty()) 1445 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1446 0 /*TODO*/); 1447 1448 // Emit information about sections and GC, computing how many there are. Also 1449 // compute the maximum alignment value. 1450 std::map<std::string, unsigned> SectionMap; 1451 std::map<std::string, unsigned> GCMap; 1452 MaybeAlign MaxAlignment; 1453 unsigned MaxGlobalType = 0; 1454 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1455 if (A) 1456 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1457 }; 1458 for (const GlobalVariable &GV : M.globals()) { 1459 UpdateMaxAlignment(GV.getAlign()); 1460 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1461 if (GV.hasSection()) { 1462 // Give section names unique ID's. 1463 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1464 if (!Entry) { 1465 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1466 0 /*TODO*/); 1467 Entry = SectionMap.size(); 1468 } 1469 } 1470 } 1471 for (const Function &F : M) { 1472 UpdateMaxAlignment(F.getAlign()); 1473 if (F.hasSection()) { 1474 // Give section names unique ID's. 1475 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1476 if (!Entry) { 1477 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1478 0 /*TODO*/); 1479 Entry = SectionMap.size(); 1480 } 1481 } 1482 if (F.hasGC()) { 1483 // Same for GC names. 1484 unsigned &Entry = GCMap[F.getGC()]; 1485 if (!Entry) { 1486 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1487 0 /*TODO*/); 1488 Entry = GCMap.size(); 1489 } 1490 } 1491 } 1492 1493 // Emit abbrev for globals, now that we know # sections and max alignment. 1494 unsigned SimpleGVarAbbrev = 0; 1495 if (!M.global_empty()) { 1496 // Add an abbrev for common globals with no visibility or thread localness. 1497 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1498 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1499 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1502 Log2_32_Ceil(MaxGlobalType+1))); 1503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1504 //| explicitType << 1 1505 //| constant 1506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1507 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1508 if (!MaxAlignment) // Alignment. 1509 Abbv->Add(BitCodeAbbrevOp(0)); 1510 else { 1511 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1513 Log2_32_Ceil(MaxEncAlignment+1))); 1514 } 1515 if (SectionMap.empty()) // Section. 1516 Abbv->Add(BitCodeAbbrevOp(0)); 1517 else 1518 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1519 Log2_32_Ceil(SectionMap.size()+1))); 1520 // Don't bother emitting vis + thread local. 1521 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1522 } 1523 1524 SmallVector<unsigned, 64> Vals; 1525 // Emit the module's source file name. 1526 { 1527 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1528 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1529 if (Bits == SE_Char6) 1530 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1531 else if (Bits == SE_Fixed7) 1532 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1533 1534 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1535 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1536 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1537 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1538 Abbv->Add(AbbrevOpToUse); 1539 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1540 1541 for (const auto P : M.getSourceFileName()) 1542 Vals.push_back((unsigned char)P); 1543 1544 // Emit the finished record. 1545 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1546 Vals.clear(); 1547 } 1548 1549 // Emit the global variable information. 1550 for (const GlobalVariable &GV : M.globals()) { 1551 unsigned AbbrevToUse = 0; 1552 1553 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1554 // linkage, alignment, section, visibility, threadlocal, 1555 // unnamed_addr, externally_initialized, dllstorageclass, 1556 // comdat, attributes, DSO_Local, GlobalSanitizer, code_model] 1557 Vals.push_back(addToStrtab(GV.getName())); 1558 Vals.push_back(GV.getName().size()); 1559 Vals.push_back(VE.getTypeID(GV.getValueType())); 1560 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1561 Vals.push_back(GV.isDeclaration() ? 0 : 1562 (VE.getValueID(GV.getInitializer()) + 1)); 1563 Vals.push_back(getEncodedLinkage(GV)); 1564 Vals.push_back(getEncodedAlign(GV.getAlign())); 1565 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1566 : 0); 1567 if (GV.isThreadLocal() || 1568 GV.getVisibility() != GlobalValue::DefaultVisibility || 1569 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1570 GV.isExternallyInitialized() || 1571 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1572 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1573 GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) { 1574 Vals.push_back(getEncodedVisibility(GV)); 1575 Vals.push_back(getEncodedThreadLocalMode(GV)); 1576 Vals.push_back(getEncodedUnnamedAddr(GV)); 1577 Vals.push_back(GV.isExternallyInitialized()); 1578 Vals.push_back(getEncodedDLLStorageClass(GV)); 1579 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1580 1581 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1582 Vals.push_back(VE.getAttributeListID(AL)); 1583 1584 Vals.push_back(GV.isDSOLocal()); 1585 Vals.push_back(addToStrtab(GV.getPartition())); 1586 Vals.push_back(GV.getPartition().size()); 1587 1588 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1589 GV.getSanitizerMetadata()) 1590 : 0)); 1591 Vals.push_back(GV.getCodeModelRaw()); 1592 } else { 1593 AbbrevToUse = SimpleGVarAbbrev; 1594 } 1595 1596 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1597 Vals.clear(); 1598 } 1599 1600 // Emit the function proto information. 1601 for (const Function &F : M) { 1602 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1603 // linkage, paramattrs, alignment, section, visibility, gc, 1604 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1605 // prefixdata, personalityfn, DSO_Local, addrspace] 1606 Vals.push_back(addToStrtab(F.getName())); 1607 Vals.push_back(F.getName().size()); 1608 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1609 Vals.push_back(F.getCallingConv()); 1610 Vals.push_back(F.isDeclaration()); 1611 Vals.push_back(getEncodedLinkage(F)); 1612 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1613 Vals.push_back(getEncodedAlign(F.getAlign())); 1614 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1615 : 0); 1616 Vals.push_back(getEncodedVisibility(F)); 1617 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1618 Vals.push_back(getEncodedUnnamedAddr(F)); 1619 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1620 : 0); 1621 Vals.push_back(getEncodedDLLStorageClass(F)); 1622 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1623 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1624 : 0); 1625 Vals.push_back( 1626 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1627 1628 Vals.push_back(F.isDSOLocal()); 1629 Vals.push_back(F.getAddressSpace()); 1630 Vals.push_back(addToStrtab(F.getPartition())); 1631 Vals.push_back(F.getPartition().size()); 1632 1633 unsigned AbbrevToUse = 0; 1634 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1635 Vals.clear(); 1636 } 1637 1638 // Emit the alias information. 1639 for (const GlobalAlias &A : M.aliases()) { 1640 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1641 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1642 // DSO_Local] 1643 Vals.push_back(addToStrtab(A.getName())); 1644 Vals.push_back(A.getName().size()); 1645 Vals.push_back(VE.getTypeID(A.getValueType())); 1646 Vals.push_back(A.getType()->getAddressSpace()); 1647 Vals.push_back(VE.getValueID(A.getAliasee())); 1648 Vals.push_back(getEncodedLinkage(A)); 1649 Vals.push_back(getEncodedVisibility(A)); 1650 Vals.push_back(getEncodedDLLStorageClass(A)); 1651 Vals.push_back(getEncodedThreadLocalMode(A)); 1652 Vals.push_back(getEncodedUnnamedAddr(A)); 1653 Vals.push_back(A.isDSOLocal()); 1654 Vals.push_back(addToStrtab(A.getPartition())); 1655 Vals.push_back(A.getPartition().size()); 1656 1657 unsigned AbbrevToUse = 0; 1658 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1659 Vals.clear(); 1660 } 1661 1662 // Emit the ifunc information. 1663 for (const GlobalIFunc &I : M.ifuncs()) { 1664 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1665 // val#, linkage, visibility, DSO_Local] 1666 Vals.push_back(addToStrtab(I.getName())); 1667 Vals.push_back(I.getName().size()); 1668 Vals.push_back(VE.getTypeID(I.getValueType())); 1669 Vals.push_back(I.getType()->getAddressSpace()); 1670 Vals.push_back(VE.getValueID(I.getResolver())); 1671 Vals.push_back(getEncodedLinkage(I)); 1672 Vals.push_back(getEncodedVisibility(I)); 1673 Vals.push_back(I.isDSOLocal()); 1674 Vals.push_back(addToStrtab(I.getPartition())); 1675 Vals.push_back(I.getPartition().size()); 1676 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1677 Vals.clear(); 1678 } 1679 1680 writeValueSymbolTableForwardDecl(); 1681 } 1682 1683 static uint64_t getOptimizationFlags(const Value *V) { 1684 uint64_t Flags = 0; 1685 1686 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1687 if (OBO->hasNoSignedWrap()) 1688 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1689 if (OBO->hasNoUnsignedWrap()) 1690 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1691 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1692 if (PEO->isExact()) 1693 Flags |= 1 << bitc::PEO_EXACT; 1694 } else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) { 1695 if (PDI->isDisjoint()) 1696 Flags |= 1 << bitc::PDI_DISJOINT; 1697 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1698 if (FPMO->hasAllowReassoc()) 1699 Flags |= bitc::AllowReassoc; 1700 if (FPMO->hasNoNaNs()) 1701 Flags |= bitc::NoNaNs; 1702 if (FPMO->hasNoInfs()) 1703 Flags |= bitc::NoInfs; 1704 if (FPMO->hasNoSignedZeros()) 1705 Flags |= bitc::NoSignedZeros; 1706 if (FPMO->hasAllowReciprocal()) 1707 Flags |= bitc::AllowReciprocal; 1708 if (FPMO->hasAllowContract()) 1709 Flags |= bitc::AllowContract; 1710 if (FPMO->hasApproxFunc()) 1711 Flags |= bitc::ApproxFunc; 1712 } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) { 1713 if (NNI->hasNonNeg()) 1714 Flags |= 1 << bitc::PNNI_NON_NEG; 1715 } else if (const auto *TI = dyn_cast<TruncInst>(V)) { 1716 if (TI->hasNoSignedWrap()) 1717 Flags |= 1 << bitc::TIO_NO_SIGNED_WRAP; 1718 if (TI->hasNoUnsignedWrap()) 1719 Flags |= 1 << bitc::TIO_NO_UNSIGNED_WRAP; 1720 } else if (const auto *GEP = dyn_cast<GEPOperator>(V)) { 1721 if (GEP->isInBounds()) 1722 Flags |= 1 << bitc::GEP_INBOUNDS; 1723 if (GEP->hasNoUnsignedSignedWrap()) 1724 Flags |= 1 << bitc::GEP_NUSW; 1725 if (GEP->hasNoUnsignedWrap()) 1726 Flags |= 1 << bitc::GEP_NUW; 1727 } else if (const auto *ICmp = dyn_cast<ICmpInst>(V)) { 1728 if (ICmp->hasSameSign()) 1729 Flags |= 1 << bitc::ICMP_SAME_SIGN; 1730 } 1731 1732 return Flags; 1733 } 1734 1735 void ModuleBitcodeWriter::writeValueAsMetadata( 1736 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1737 // Mimic an MDNode with a value as one operand. 1738 Value *V = MD->getValue(); 1739 Record.push_back(VE.getTypeID(V->getType())); 1740 Record.push_back(VE.getValueID(V)); 1741 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1742 Record.clear(); 1743 } 1744 1745 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1746 SmallVectorImpl<uint64_t> &Record, 1747 unsigned Abbrev) { 1748 for (const MDOperand &MDO : N->operands()) { 1749 Metadata *MD = MDO; 1750 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1751 "Unexpected function-local metadata"); 1752 Record.push_back(VE.getMetadataOrNullID(MD)); 1753 } 1754 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1755 : bitc::METADATA_NODE, 1756 Record, Abbrev); 1757 Record.clear(); 1758 } 1759 1760 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1761 // Assume the column is usually under 128, and always output the inlined-at 1762 // location (it's never more expensive than building an array size 1). 1763 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1764 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1765 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1771 return Stream.EmitAbbrev(std::move(Abbv)); 1772 } 1773 1774 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1775 SmallVectorImpl<uint64_t> &Record, 1776 unsigned &Abbrev) { 1777 if (!Abbrev) 1778 Abbrev = createDILocationAbbrev(); 1779 1780 Record.push_back(N->isDistinct()); 1781 Record.push_back(N->getLine()); 1782 Record.push_back(N->getColumn()); 1783 Record.push_back(VE.getMetadataID(N->getScope())); 1784 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1785 Record.push_back(N->isImplicitCode()); 1786 1787 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1788 Record.clear(); 1789 } 1790 1791 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1792 // Assume the column is usually under 128, and always output the inlined-at 1793 // location (it's never more expensive than building an array size 1). 1794 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1795 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1802 return Stream.EmitAbbrev(std::move(Abbv)); 1803 } 1804 1805 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1806 SmallVectorImpl<uint64_t> &Record, 1807 unsigned &Abbrev) { 1808 if (!Abbrev) 1809 Abbrev = createGenericDINodeAbbrev(); 1810 1811 Record.push_back(N->isDistinct()); 1812 Record.push_back(N->getTag()); 1813 Record.push_back(0); // Per-tag version field; unused for now. 1814 1815 for (auto &I : N->operands()) 1816 Record.push_back(VE.getMetadataOrNullID(I)); 1817 1818 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1819 Record.clear(); 1820 } 1821 1822 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1823 SmallVectorImpl<uint64_t> &Record, 1824 unsigned Abbrev) { 1825 const uint64_t Version = 2 << 1; 1826 Record.push_back((uint64_t)N->isDistinct() | Version); 1827 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1828 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1829 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1830 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1831 1832 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1833 Record.clear(); 1834 } 1835 1836 void ModuleBitcodeWriter::writeDIGenericSubrange( 1837 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1838 unsigned Abbrev) { 1839 Record.push_back((uint64_t)N->isDistinct()); 1840 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1841 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1842 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1843 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1844 1845 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1846 Record.clear(); 1847 } 1848 1849 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1850 SmallVectorImpl<uint64_t> &Record, 1851 unsigned Abbrev) { 1852 const uint64_t IsBigInt = 1 << 2; 1853 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1854 Record.push_back(N->getValue().getBitWidth()); 1855 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1856 emitWideAPInt(Record, N->getValue()); 1857 1858 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1859 Record.clear(); 1860 } 1861 1862 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1863 SmallVectorImpl<uint64_t> &Record, 1864 unsigned Abbrev) { 1865 Record.push_back(N->isDistinct()); 1866 Record.push_back(N->getTag()); 1867 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1868 Record.push_back(N->getSizeInBits()); 1869 Record.push_back(N->getAlignInBits()); 1870 Record.push_back(N->getEncoding()); 1871 Record.push_back(N->getFlags()); 1872 Record.push_back(N->getNumExtraInhabitants()); 1873 1874 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1875 Record.clear(); 1876 } 1877 1878 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1879 SmallVectorImpl<uint64_t> &Record, 1880 unsigned Abbrev) { 1881 Record.push_back(N->isDistinct()); 1882 Record.push_back(N->getTag()); 1883 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1884 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1885 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1886 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1887 Record.push_back(N->getSizeInBits()); 1888 Record.push_back(N->getAlignInBits()); 1889 Record.push_back(N->getEncoding()); 1890 1891 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1892 Record.clear(); 1893 } 1894 1895 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1896 SmallVectorImpl<uint64_t> &Record, 1897 unsigned Abbrev) { 1898 Record.push_back(N->isDistinct()); 1899 Record.push_back(N->getTag()); 1900 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1901 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1902 Record.push_back(N->getLine()); 1903 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1904 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1905 Record.push_back(N->getSizeInBits()); 1906 Record.push_back(N->getAlignInBits()); 1907 Record.push_back(N->getOffsetInBits()); 1908 Record.push_back(N->getFlags()); 1909 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1910 1911 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1912 // that there is no DWARF address space associated with DIDerivedType. 1913 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1914 Record.push_back(*DWARFAddressSpace + 1); 1915 else 1916 Record.push_back(0); 1917 1918 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1919 1920 if (auto PtrAuthData = N->getPtrAuthData()) 1921 Record.push_back(PtrAuthData->RawData); 1922 else 1923 Record.push_back(0); 1924 1925 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1926 Record.clear(); 1927 } 1928 1929 void ModuleBitcodeWriter::writeDICompositeType( 1930 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1931 unsigned Abbrev) { 1932 const unsigned IsNotUsedInOldTypeRef = 0x2; 1933 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1934 Record.push_back(N->getTag()); 1935 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1936 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1937 Record.push_back(N->getLine()); 1938 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1939 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1940 Record.push_back(N->getSizeInBits()); 1941 Record.push_back(N->getAlignInBits()); 1942 Record.push_back(N->getOffsetInBits()); 1943 Record.push_back(N->getFlags()); 1944 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1945 Record.push_back(N->getRuntimeLang()); 1946 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1947 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1948 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1949 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1950 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1951 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1952 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1953 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1954 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1955 Record.push_back(N->getNumExtraInhabitants()); 1956 Record.push_back(VE.getMetadataOrNullID(N->getRawSpecification())); 1957 1958 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1959 Record.clear(); 1960 } 1961 1962 void ModuleBitcodeWriter::writeDISubroutineType( 1963 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1964 unsigned Abbrev) { 1965 const unsigned HasNoOldTypeRefs = 0x2; 1966 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1967 Record.push_back(N->getFlags()); 1968 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1969 Record.push_back(N->getCC()); 1970 1971 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1972 Record.clear(); 1973 } 1974 1975 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1976 SmallVectorImpl<uint64_t> &Record, 1977 unsigned Abbrev) { 1978 Record.push_back(N->isDistinct()); 1979 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1980 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1981 if (N->getRawChecksum()) { 1982 Record.push_back(N->getRawChecksum()->Kind); 1983 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1984 } else { 1985 // Maintain backwards compatibility with the old internal representation of 1986 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1987 Record.push_back(0); 1988 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1989 } 1990 auto Source = N->getRawSource(); 1991 if (Source) 1992 Record.push_back(VE.getMetadataOrNullID(Source)); 1993 1994 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1995 Record.clear(); 1996 } 1997 1998 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1999 SmallVectorImpl<uint64_t> &Record, 2000 unsigned Abbrev) { 2001 assert(N->isDistinct() && "Expected distinct compile units"); 2002 Record.push_back(/* IsDistinct */ true); 2003 Record.push_back(N->getSourceLanguage()); 2004 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2005 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 2006 Record.push_back(N->isOptimized()); 2007 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 2008 Record.push_back(N->getRuntimeVersion()); 2009 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 2010 Record.push_back(N->getEmissionKind()); 2011 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 2012 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 2013 Record.push_back(/* subprograms */ 0); 2014 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 2015 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 2016 Record.push_back(N->getDWOId()); 2017 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 2018 Record.push_back(N->getSplitDebugInlining()); 2019 Record.push_back(N->getDebugInfoForProfiling()); 2020 Record.push_back((unsigned)N->getNameTableKind()); 2021 Record.push_back(N->getRangesBaseAddress()); 2022 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 2023 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 2024 2025 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 2026 Record.clear(); 2027 } 2028 2029 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 2030 SmallVectorImpl<uint64_t> &Record, 2031 unsigned Abbrev) { 2032 const uint64_t HasUnitFlag = 1 << 1; 2033 const uint64_t HasSPFlagsFlag = 1 << 2; 2034 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 2035 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2036 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2037 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2038 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2039 Record.push_back(N->getLine()); 2040 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2041 Record.push_back(N->getScopeLine()); 2042 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 2043 Record.push_back(N->getSPFlags()); 2044 Record.push_back(N->getVirtualIndex()); 2045 Record.push_back(N->getFlags()); 2046 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 2047 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 2048 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 2049 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 2050 Record.push_back(N->getThisAdjustment()); 2051 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 2052 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2053 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 2054 2055 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 2056 Record.clear(); 2057 } 2058 2059 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 2060 SmallVectorImpl<uint64_t> &Record, 2061 unsigned Abbrev) { 2062 Record.push_back(N->isDistinct()); 2063 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2064 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2065 Record.push_back(N->getLine()); 2066 Record.push_back(N->getColumn()); 2067 2068 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 2069 Record.clear(); 2070 } 2071 2072 void ModuleBitcodeWriter::writeDILexicalBlockFile( 2073 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 2074 unsigned Abbrev) { 2075 Record.push_back(N->isDistinct()); 2076 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2077 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2078 Record.push_back(N->getDiscriminator()); 2079 2080 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 2081 Record.clear(); 2082 } 2083 2084 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 2085 SmallVectorImpl<uint64_t> &Record, 2086 unsigned Abbrev) { 2087 Record.push_back(N->isDistinct()); 2088 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2089 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 2090 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2091 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2092 Record.push_back(N->getLineNo()); 2093 2094 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 2095 Record.clear(); 2096 } 2097 2098 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 2099 SmallVectorImpl<uint64_t> &Record, 2100 unsigned Abbrev) { 2101 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 2102 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2103 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2104 2105 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 2106 Record.clear(); 2107 } 2108 2109 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 2110 SmallVectorImpl<uint64_t> &Record, 2111 unsigned Abbrev) { 2112 Record.push_back(N->isDistinct()); 2113 Record.push_back(N->getMacinfoType()); 2114 Record.push_back(N->getLine()); 2115 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2116 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 2117 2118 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 2119 Record.clear(); 2120 } 2121 2122 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 2123 SmallVectorImpl<uint64_t> &Record, 2124 unsigned Abbrev) { 2125 Record.push_back(N->isDistinct()); 2126 Record.push_back(N->getMacinfoType()); 2127 Record.push_back(N->getLine()); 2128 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2129 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2130 2131 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 2132 Record.clear(); 2133 } 2134 2135 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 2136 SmallVectorImpl<uint64_t> &Record) { 2137 Record.reserve(N->getArgs().size()); 2138 for (ValueAsMetadata *MD : N->getArgs()) 2139 Record.push_back(VE.getMetadataID(MD)); 2140 2141 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record); 2142 Record.clear(); 2143 } 2144 2145 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 2146 SmallVectorImpl<uint64_t> &Record, 2147 unsigned Abbrev) { 2148 Record.push_back(N->isDistinct()); 2149 for (auto &I : N->operands()) 2150 Record.push_back(VE.getMetadataOrNullID(I)); 2151 Record.push_back(N->getLineNo()); 2152 Record.push_back(N->getIsDecl()); 2153 2154 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 2155 Record.clear(); 2156 } 2157 2158 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 2159 SmallVectorImpl<uint64_t> &Record, 2160 unsigned Abbrev) { 2161 // There are no arguments for this metadata type. 2162 Record.push_back(N->isDistinct()); 2163 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 2164 Record.clear(); 2165 } 2166 2167 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 2168 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 2169 unsigned Abbrev) { 2170 Record.push_back(N->isDistinct()); 2171 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2172 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2173 Record.push_back(N->isDefault()); 2174 2175 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 2176 Record.clear(); 2177 } 2178 2179 void ModuleBitcodeWriter::writeDITemplateValueParameter( 2180 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 2181 unsigned Abbrev) { 2182 Record.push_back(N->isDistinct()); 2183 Record.push_back(N->getTag()); 2184 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2185 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2186 Record.push_back(N->isDefault()); 2187 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 2188 2189 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 2190 Record.clear(); 2191 } 2192 2193 void ModuleBitcodeWriter::writeDIGlobalVariable( 2194 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 2195 unsigned Abbrev) { 2196 const uint64_t Version = 2 << 1; 2197 Record.push_back((uint64_t)N->isDistinct() | Version); 2198 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2199 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2200 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2201 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2202 Record.push_back(N->getLine()); 2203 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2204 Record.push_back(N->isLocalToUnit()); 2205 Record.push_back(N->isDefinition()); 2206 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2207 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2208 Record.push_back(N->getAlignInBits()); 2209 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2210 2211 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2212 Record.clear(); 2213 } 2214 2215 void ModuleBitcodeWriter::writeDILocalVariable( 2216 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2217 unsigned Abbrev) { 2218 // In order to support all possible bitcode formats in BitcodeReader we need 2219 // to distinguish the following cases: 2220 // 1) Record has no artificial tag (Record[1]), 2221 // has no obsolete inlinedAt field (Record[9]). 2222 // In this case Record size will be 8, HasAlignment flag is false. 2223 // 2) Record has artificial tag (Record[1]), 2224 // has no obsolete inlignedAt field (Record[9]). 2225 // In this case Record size will be 9, HasAlignment flag is false. 2226 // 3) Record has both artificial tag (Record[1]) and 2227 // obsolete inlignedAt field (Record[9]). 2228 // In this case Record size will be 10, HasAlignment flag is false. 2229 // 4) Record has neither artificial tag, nor inlignedAt field, but 2230 // HasAlignment flag is true and Record[8] contains alignment value. 2231 const uint64_t HasAlignmentFlag = 1 << 1; 2232 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2233 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2234 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2235 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2236 Record.push_back(N->getLine()); 2237 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2238 Record.push_back(N->getArg()); 2239 Record.push_back(N->getFlags()); 2240 Record.push_back(N->getAlignInBits()); 2241 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2242 2243 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2244 Record.clear(); 2245 } 2246 2247 void ModuleBitcodeWriter::writeDILabel( 2248 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2249 unsigned Abbrev) { 2250 Record.push_back((uint64_t)N->isDistinct()); 2251 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2252 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2253 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2254 Record.push_back(N->getLine()); 2255 2256 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2257 Record.clear(); 2258 } 2259 2260 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2261 SmallVectorImpl<uint64_t> &Record, 2262 unsigned Abbrev) { 2263 Record.reserve(N->getElements().size() + 1); 2264 const uint64_t Version = 3 << 1; 2265 Record.push_back((uint64_t)N->isDistinct() | Version); 2266 Record.append(N->elements_begin(), N->elements_end()); 2267 2268 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2269 Record.clear(); 2270 } 2271 2272 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2273 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2274 unsigned Abbrev) { 2275 Record.push_back(N->isDistinct()); 2276 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2277 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2278 2279 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2280 Record.clear(); 2281 } 2282 2283 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2284 SmallVectorImpl<uint64_t> &Record, 2285 unsigned Abbrev) { 2286 Record.push_back(N->isDistinct()); 2287 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2288 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2289 Record.push_back(N->getLine()); 2290 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2291 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2292 Record.push_back(N->getAttributes()); 2293 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2294 2295 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2296 Record.clear(); 2297 } 2298 2299 void ModuleBitcodeWriter::writeDIImportedEntity( 2300 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2301 unsigned Abbrev) { 2302 Record.push_back(N->isDistinct()); 2303 Record.push_back(N->getTag()); 2304 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2305 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2306 Record.push_back(N->getLine()); 2307 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2308 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2309 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2310 2311 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2312 Record.clear(); 2313 } 2314 2315 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2316 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2317 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2320 return Stream.EmitAbbrev(std::move(Abbv)); 2321 } 2322 2323 void ModuleBitcodeWriter::writeNamedMetadata( 2324 SmallVectorImpl<uint64_t> &Record) { 2325 if (M.named_metadata_empty()) 2326 return; 2327 2328 unsigned Abbrev = createNamedMetadataAbbrev(); 2329 for (const NamedMDNode &NMD : M.named_metadata()) { 2330 // Write name. 2331 StringRef Str = NMD.getName(); 2332 Record.append(Str.bytes_begin(), Str.bytes_end()); 2333 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2334 Record.clear(); 2335 2336 // Write named metadata operands. 2337 for (const MDNode *N : NMD.operands()) 2338 Record.push_back(VE.getMetadataID(N)); 2339 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2340 Record.clear(); 2341 } 2342 } 2343 2344 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2345 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2346 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2350 return Stream.EmitAbbrev(std::move(Abbv)); 2351 } 2352 2353 /// Write out a record for MDString. 2354 /// 2355 /// All the metadata strings in a metadata block are emitted in a single 2356 /// record. The sizes and strings themselves are shoved into a blob. 2357 void ModuleBitcodeWriter::writeMetadataStrings( 2358 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2359 if (Strings.empty()) 2360 return; 2361 2362 // Start the record with the number of strings. 2363 Record.push_back(bitc::METADATA_STRINGS); 2364 Record.push_back(Strings.size()); 2365 2366 // Emit the sizes of the strings in the blob. 2367 SmallString<256> Blob; 2368 { 2369 BitstreamWriter W(Blob); 2370 for (const Metadata *MD : Strings) 2371 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2372 W.FlushToWord(); 2373 } 2374 2375 // Add the offset to the strings to the record. 2376 Record.push_back(Blob.size()); 2377 2378 // Add the strings to the blob. 2379 for (const Metadata *MD : Strings) 2380 Blob.append(cast<MDString>(MD)->getString()); 2381 2382 // Emit the final record. 2383 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2384 Record.clear(); 2385 } 2386 2387 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2388 enum MetadataAbbrev : unsigned { 2389 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2390 #include "llvm/IR/Metadata.def" 2391 LastPlusOne 2392 }; 2393 2394 void ModuleBitcodeWriter::writeMetadataRecords( 2395 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2396 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2397 if (MDs.empty()) 2398 return; 2399 2400 // Initialize MDNode abbreviations. 2401 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2402 #include "llvm/IR/Metadata.def" 2403 2404 for (const Metadata *MD : MDs) { 2405 if (IndexPos) 2406 IndexPos->push_back(Stream.GetCurrentBitNo()); 2407 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2408 assert(N->isResolved() && "Expected forward references to be resolved"); 2409 2410 switch (N->getMetadataID()) { 2411 default: 2412 llvm_unreachable("Invalid MDNode subclass"); 2413 #define HANDLE_MDNODE_LEAF(CLASS) \ 2414 case Metadata::CLASS##Kind: \ 2415 if (MDAbbrevs) \ 2416 write##CLASS(cast<CLASS>(N), Record, \ 2417 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2418 else \ 2419 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2420 continue; 2421 #include "llvm/IR/Metadata.def" 2422 } 2423 } 2424 if (auto *AL = dyn_cast<DIArgList>(MD)) { 2425 writeDIArgList(AL, Record); 2426 continue; 2427 } 2428 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2429 } 2430 } 2431 2432 void ModuleBitcodeWriter::writeModuleMetadata() { 2433 if (!VE.hasMDs() && M.named_metadata_empty()) 2434 return; 2435 2436 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2437 SmallVector<uint64_t, 64> Record; 2438 2439 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2440 // block and load any metadata. 2441 std::vector<unsigned> MDAbbrevs; 2442 2443 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2444 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2445 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2446 createGenericDINodeAbbrev(); 2447 2448 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2449 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2452 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2453 2454 Abbv = std::make_shared<BitCodeAbbrev>(); 2455 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2458 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2459 2460 // Emit MDStrings together upfront. 2461 writeMetadataStrings(VE.getMDStrings(), Record); 2462 2463 // We only emit an index for the metadata record if we have more than a given 2464 // (naive) threshold of metadatas, otherwise it is not worth it. 2465 if (VE.getNonMDStrings().size() > IndexThreshold) { 2466 // Write a placeholder value in for the offset of the metadata index, 2467 // which is written after the records, so that it can include 2468 // the offset of each entry. The placeholder offset will be 2469 // updated after all records are emitted. 2470 uint64_t Vals[] = {0, 0}; 2471 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2472 } 2473 2474 // Compute and save the bit offset to the current position, which will be 2475 // patched when we emit the index later. We can simply subtract the 64-bit 2476 // fixed size from the current bit number to get the location to backpatch. 2477 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2478 2479 // This index will contain the bitpos for each individual record. 2480 std::vector<uint64_t> IndexPos; 2481 IndexPos.reserve(VE.getNonMDStrings().size()); 2482 2483 // Write all the records 2484 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2485 2486 if (VE.getNonMDStrings().size() > IndexThreshold) { 2487 // Now that we have emitted all the records we will emit the index. But 2488 // first 2489 // backpatch the forward reference so that the reader can skip the records 2490 // efficiently. 2491 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2492 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2493 2494 // Delta encode the index. 2495 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2496 for (auto &Elt : IndexPos) { 2497 auto EltDelta = Elt - PreviousValue; 2498 PreviousValue = Elt; 2499 Elt = EltDelta; 2500 } 2501 // Emit the index record. 2502 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2503 IndexPos.clear(); 2504 } 2505 2506 // Write the named metadata now. 2507 writeNamedMetadata(Record); 2508 2509 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2510 SmallVector<uint64_t, 4> Record; 2511 Record.push_back(VE.getValueID(&GO)); 2512 pushGlobalMetadataAttachment(Record, GO); 2513 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2514 }; 2515 for (const Function &F : M) 2516 if (F.isDeclaration() && F.hasMetadata()) 2517 AddDeclAttachedMetadata(F); 2518 // FIXME: Only store metadata for declarations here, and move data for global 2519 // variable definitions to a separate block (PR28134). 2520 for (const GlobalVariable &GV : M.globals()) 2521 if (GV.hasMetadata()) 2522 AddDeclAttachedMetadata(GV); 2523 2524 Stream.ExitBlock(); 2525 } 2526 2527 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2528 if (!VE.hasMDs()) 2529 return; 2530 2531 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2532 SmallVector<uint64_t, 64> Record; 2533 writeMetadataStrings(VE.getMDStrings(), Record); 2534 writeMetadataRecords(VE.getNonMDStrings(), Record); 2535 Stream.ExitBlock(); 2536 } 2537 2538 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2539 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2540 // [n x [id, mdnode]] 2541 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2542 GO.getAllMetadata(MDs); 2543 for (const auto &I : MDs) { 2544 Record.push_back(I.first); 2545 Record.push_back(VE.getMetadataID(I.second)); 2546 } 2547 } 2548 2549 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2550 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2551 2552 SmallVector<uint64_t, 64> Record; 2553 2554 if (F.hasMetadata()) { 2555 pushGlobalMetadataAttachment(Record, F); 2556 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2557 Record.clear(); 2558 } 2559 2560 // Write metadata attachments 2561 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2562 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2563 for (const BasicBlock &BB : F) 2564 for (const Instruction &I : BB) { 2565 MDs.clear(); 2566 I.getAllMetadataOtherThanDebugLoc(MDs); 2567 2568 // If no metadata, ignore instruction. 2569 if (MDs.empty()) continue; 2570 2571 Record.push_back(VE.getInstructionID(&I)); 2572 2573 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2574 Record.push_back(MDs[i].first); 2575 Record.push_back(VE.getMetadataID(MDs[i].second)); 2576 } 2577 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2578 Record.clear(); 2579 } 2580 2581 Stream.ExitBlock(); 2582 } 2583 2584 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2585 SmallVector<uint64_t, 64> Record; 2586 2587 // Write metadata kinds 2588 // METADATA_KIND - [n x [id, name]] 2589 SmallVector<StringRef, 8> Names; 2590 M.getMDKindNames(Names); 2591 2592 if (Names.empty()) return; 2593 2594 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2595 2596 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2597 Record.push_back(MDKindID); 2598 StringRef KName = Names[MDKindID]; 2599 Record.append(KName.begin(), KName.end()); 2600 2601 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2602 Record.clear(); 2603 } 2604 2605 Stream.ExitBlock(); 2606 } 2607 2608 void ModuleBitcodeWriter::writeOperandBundleTags() { 2609 // Write metadata kinds 2610 // 2611 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2612 // 2613 // OPERAND_BUNDLE_TAG - [strchr x N] 2614 2615 SmallVector<StringRef, 8> Tags; 2616 M.getOperandBundleTags(Tags); 2617 2618 if (Tags.empty()) 2619 return; 2620 2621 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2622 2623 SmallVector<uint64_t, 64> Record; 2624 2625 for (auto Tag : Tags) { 2626 Record.append(Tag.begin(), Tag.end()); 2627 2628 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2629 Record.clear(); 2630 } 2631 2632 Stream.ExitBlock(); 2633 } 2634 2635 void ModuleBitcodeWriter::writeSyncScopeNames() { 2636 SmallVector<StringRef, 8> SSNs; 2637 M.getContext().getSyncScopeNames(SSNs); 2638 if (SSNs.empty()) 2639 return; 2640 2641 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2642 2643 SmallVector<uint64_t, 64> Record; 2644 for (auto SSN : SSNs) { 2645 Record.append(SSN.begin(), SSN.end()); 2646 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2647 Record.clear(); 2648 } 2649 2650 Stream.ExitBlock(); 2651 } 2652 2653 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2654 bool isGlobal) { 2655 if (FirstVal == LastVal) return; 2656 2657 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2658 2659 unsigned AggregateAbbrev = 0; 2660 unsigned String8Abbrev = 0; 2661 unsigned CString7Abbrev = 0; 2662 unsigned CString6Abbrev = 0; 2663 // If this is a constant pool for the module, emit module-specific abbrevs. 2664 if (isGlobal) { 2665 // Abbrev for CST_CODE_AGGREGATE. 2666 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2667 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2668 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2669 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2670 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2671 2672 // Abbrev for CST_CODE_STRING. 2673 Abbv = std::make_shared<BitCodeAbbrev>(); 2674 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2675 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2676 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2677 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2678 // Abbrev for CST_CODE_CSTRING. 2679 Abbv = std::make_shared<BitCodeAbbrev>(); 2680 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2681 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2682 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2683 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2684 // Abbrev for CST_CODE_CSTRING. 2685 Abbv = std::make_shared<BitCodeAbbrev>(); 2686 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2687 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2688 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2689 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2690 } 2691 2692 SmallVector<uint64_t, 64> Record; 2693 2694 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2695 Type *LastTy = nullptr; 2696 for (unsigned i = FirstVal; i != LastVal; ++i) { 2697 const Value *V = Vals[i].first; 2698 // If we need to switch types, do so now. 2699 if (V->getType() != LastTy) { 2700 LastTy = V->getType(); 2701 Record.push_back(VE.getTypeID(LastTy)); 2702 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2703 CONSTANTS_SETTYPE_ABBREV); 2704 Record.clear(); 2705 } 2706 2707 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2708 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2709 Record.push_back( 2710 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2711 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2712 2713 // Add the asm string. 2714 const std::string &AsmStr = IA->getAsmString(); 2715 Record.push_back(AsmStr.size()); 2716 Record.append(AsmStr.begin(), AsmStr.end()); 2717 2718 // Add the constraint string. 2719 const std::string &ConstraintStr = IA->getConstraintString(); 2720 Record.push_back(ConstraintStr.size()); 2721 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2722 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2723 Record.clear(); 2724 continue; 2725 } 2726 const Constant *C = cast<Constant>(V); 2727 unsigned Code = -1U; 2728 unsigned AbbrevToUse = 0; 2729 if (C->isNullValue()) { 2730 Code = bitc::CST_CODE_NULL; 2731 } else if (isa<PoisonValue>(C)) { 2732 Code = bitc::CST_CODE_POISON; 2733 } else if (isa<UndefValue>(C)) { 2734 Code = bitc::CST_CODE_UNDEF; 2735 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2736 if (IV->getBitWidth() <= 64) { 2737 uint64_t V = IV->getSExtValue(); 2738 emitSignedInt64(Record, V); 2739 Code = bitc::CST_CODE_INTEGER; 2740 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2741 } else { // Wide integers, > 64 bits in size. 2742 emitWideAPInt(Record, IV->getValue()); 2743 Code = bitc::CST_CODE_WIDE_INTEGER; 2744 } 2745 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2746 Code = bitc::CST_CODE_FLOAT; 2747 Type *Ty = CFP->getType()->getScalarType(); 2748 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2749 Ty->isDoubleTy()) { 2750 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2751 } else if (Ty->isX86_FP80Ty()) { 2752 // api needed to prevent premature destruction 2753 // bits are not in the same order as a normal i80 APInt, compensate. 2754 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2755 const uint64_t *p = api.getRawData(); 2756 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2757 Record.push_back(p[0] & 0xffffLL); 2758 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2759 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2760 const uint64_t *p = api.getRawData(); 2761 Record.push_back(p[0]); 2762 Record.push_back(p[1]); 2763 } else { 2764 assert(0 && "Unknown FP type!"); 2765 } 2766 } else if (isa<ConstantDataSequential>(C) && 2767 cast<ConstantDataSequential>(C)->isString()) { 2768 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2769 // Emit constant strings specially. 2770 unsigned NumElts = Str->getNumElements(); 2771 // If this is a null-terminated string, use the denser CSTRING encoding. 2772 if (Str->isCString()) { 2773 Code = bitc::CST_CODE_CSTRING; 2774 --NumElts; // Don't encode the null, which isn't allowed by char6. 2775 } else { 2776 Code = bitc::CST_CODE_STRING; 2777 AbbrevToUse = String8Abbrev; 2778 } 2779 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2780 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2781 for (unsigned i = 0; i != NumElts; ++i) { 2782 unsigned char V = Str->getElementAsInteger(i); 2783 Record.push_back(V); 2784 isCStr7 &= (V & 128) == 0; 2785 if (isCStrChar6) 2786 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2787 } 2788 2789 if (isCStrChar6) 2790 AbbrevToUse = CString6Abbrev; 2791 else if (isCStr7) 2792 AbbrevToUse = CString7Abbrev; 2793 } else if (const ConstantDataSequential *CDS = 2794 dyn_cast<ConstantDataSequential>(C)) { 2795 Code = bitc::CST_CODE_DATA; 2796 Type *EltTy = CDS->getElementType(); 2797 if (isa<IntegerType>(EltTy)) { 2798 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2799 Record.push_back(CDS->getElementAsInteger(i)); 2800 } else { 2801 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2802 Record.push_back( 2803 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2804 } 2805 } else if (isa<ConstantAggregate>(C)) { 2806 Code = bitc::CST_CODE_AGGREGATE; 2807 for (const Value *Op : C->operands()) 2808 Record.push_back(VE.getValueID(Op)); 2809 AbbrevToUse = AggregateAbbrev; 2810 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2811 switch (CE->getOpcode()) { 2812 default: 2813 if (Instruction::isCast(CE->getOpcode())) { 2814 Code = bitc::CST_CODE_CE_CAST; 2815 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2816 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2817 Record.push_back(VE.getValueID(C->getOperand(0))); 2818 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2819 } else { 2820 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2821 Code = bitc::CST_CODE_CE_BINOP; 2822 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2823 Record.push_back(VE.getValueID(C->getOperand(0))); 2824 Record.push_back(VE.getValueID(C->getOperand(1))); 2825 uint64_t Flags = getOptimizationFlags(CE); 2826 if (Flags != 0) 2827 Record.push_back(Flags); 2828 } 2829 break; 2830 case Instruction::FNeg: { 2831 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2832 Code = bitc::CST_CODE_CE_UNOP; 2833 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2834 Record.push_back(VE.getValueID(C->getOperand(0))); 2835 uint64_t Flags = getOptimizationFlags(CE); 2836 if (Flags != 0) 2837 Record.push_back(Flags); 2838 break; 2839 } 2840 case Instruction::GetElementPtr: { 2841 Code = bitc::CST_CODE_CE_GEP; 2842 const auto *GO = cast<GEPOperator>(C); 2843 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2844 Record.push_back(getOptimizationFlags(GO)); 2845 if (std::optional<ConstantRange> Range = GO->getInRange()) { 2846 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE; 2847 emitConstantRange(Record, *Range, /*EmitBitWidth=*/true); 2848 } 2849 for (const Value *Op : CE->operands()) { 2850 Record.push_back(VE.getTypeID(Op->getType())); 2851 Record.push_back(VE.getValueID(Op)); 2852 } 2853 break; 2854 } 2855 case Instruction::ExtractElement: 2856 Code = bitc::CST_CODE_CE_EXTRACTELT; 2857 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2858 Record.push_back(VE.getValueID(C->getOperand(0))); 2859 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2860 Record.push_back(VE.getValueID(C->getOperand(1))); 2861 break; 2862 case Instruction::InsertElement: 2863 Code = bitc::CST_CODE_CE_INSERTELT; 2864 Record.push_back(VE.getValueID(C->getOperand(0))); 2865 Record.push_back(VE.getValueID(C->getOperand(1))); 2866 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2867 Record.push_back(VE.getValueID(C->getOperand(2))); 2868 break; 2869 case Instruction::ShuffleVector: 2870 // If the return type and argument types are the same, this is a 2871 // standard shufflevector instruction. If the types are different, 2872 // then the shuffle is widening or truncating the input vectors, and 2873 // the argument type must also be encoded. 2874 if (C->getType() == C->getOperand(0)->getType()) { 2875 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2876 } else { 2877 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2878 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2879 } 2880 Record.push_back(VE.getValueID(C->getOperand(0))); 2881 Record.push_back(VE.getValueID(C->getOperand(1))); 2882 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2883 break; 2884 } 2885 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2886 Code = bitc::CST_CODE_BLOCKADDRESS; 2887 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2888 Record.push_back(VE.getValueID(BA->getFunction())); 2889 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2890 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2891 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2892 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2893 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2894 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2895 Code = bitc::CST_CODE_NO_CFI_VALUE; 2896 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2897 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2898 } else if (const auto *CPA = dyn_cast<ConstantPtrAuth>(C)) { 2899 Code = bitc::CST_CODE_PTRAUTH; 2900 Record.push_back(VE.getValueID(CPA->getPointer())); 2901 Record.push_back(VE.getValueID(CPA->getKey())); 2902 Record.push_back(VE.getValueID(CPA->getDiscriminator())); 2903 Record.push_back(VE.getValueID(CPA->getAddrDiscriminator())); 2904 } else { 2905 #ifndef NDEBUG 2906 C->dump(); 2907 #endif 2908 llvm_unreachable("Unknown constant!"); 2909 } 2910 Stream.EmitRecord(Code, Record, AbbrevToUse); 2911 Record.clear(); 2912 } 2913 2914 Stream.ExitBlock(); 2915 } 2916 2917 void ModuleBitcodeWriter::writeModuleConstants() { 2918 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2919 2920 // Find the first constant to emit, which is the first non-globalvalue value. 2921 // We know globalvalues have been emitted by WriteModuleInfo. 2922 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2923 if (!isa<GlobalValue>(Vals[i].first)) { 2924 writeConstants(i, Vals.size(), true); 2925 return; 2926 } 2927 } 2928 } 2929 2930 /// pushValueAndType - The file has to encode both the value and type id for 2931 /// many values, because we need to know what type to create for forward 2932 /// references. However, most operands are not forward references, so this type 2933 /// field is not needed. 2934 /// 2935 /// This function adds V's value ID to Vals. If the value ID is higher than the 2936 /// instruction ID, then it is a forward reference, and it also includes the 2937 /// type ID. The value ID that is written is encoded relative to the InstID. 2938 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2939 SmallVectorImpl<unsigned> &Vals) { 2940 unsigned ValID = VE.getValueID(V); 2941 // Make encoding relative to the InstID. 2942 Vals.push_back(InstID - ValID); 2943 if (ValID >= InstID) { 2944 Vals.push_back(VE.getTypeID(V->getType())); 2945 return true; 2946 } 2947 return false; 2948 } 2949 2950 bool ModuleBitcodeWriter::pushValueOrMetadata(const Value *V, unsigned InstID, 2951 SmallVectorImpl<unsigned> &Vals) { 2952 bool IsMetadata = V->getType()->isMetadataTy(); 2953 if (IsMetadata) { 2954 Vals.push_back(bitc::OB_METADATA); 2955 Metadata *MD = cast<MetadataAsValue>(V)->getMetadata(); 2956 unsigned ValID = VE.getMetadataID(MD); 2957 Vals.push_back(InstID - ValID); 2958 return false; 2959 } 2960 return pushValueAndType(V, InstID, Vals); 2961 } 2962 2963 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2964 unsigned InstID) { 2965 SmallVector<unsigned, 64> Record; 2966 LLVMContext &C = CS.getContext(); 2967 2968 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2969 const auto &Bundle = CS.getOperandBundleAt(i); 2970 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2971 2972 for (auto &Input : Bundle.Inputs) 2973 pushValueOrMetadata(Input, InstID, Record); 2974 2975 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2976 Record.clear(); 2977 } 2978 } 2979 2980 /// pushValue - Like pushValueAndType, but where the type of the value is 2981 /// omitted (perhaps it was already encoded in an earlier operand). 2982 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2983 SmallVectorImpl<unsigned> &Vals) { 2984 unsigned ValID = VE.getValueID(V); 2985 Vals.push_back(InstID - ValID); 2986 } 2987 2988 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2989 SmallVectorImpl<uint64_t> &Vals) { 2990 unsigned ValID = VE.getValueID(V); 2991 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2992 emitSignedInt64(Vals, diff); 2993 } 2994 2995 /// WriteInstruction - Emit an instruction to the specified stream. 2996 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2997 unsigned InstID, 2998 SmallVectorImpl<unsigned> &Vals) { 2999 unsigned Code = 0; 3000 unsigned AbbrevToUse = 0; 3001 VE.setInstructionID(&I); 3002 switch (I.getOpcode()) { 3003 default: 3004 if (Instruction::isCast(I.getOpcode())) { 3005 Code = bitc::FUNC_CODE_INST_CAST; 3006 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3007 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 3008 Vals.push_back(VE.getTypeID(I.getType())); 3009 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 3010 uint64_t Flags = getOptimizationFlags(&I); 3011 if (Flags != 0) { 3012 if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV) 3013 AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV; 3014 Vals.push_back(Flags); 3015 } 3016 } else { 3017 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 3018 Code = bitc::FUNC_CODE_INST_BINOP; 3019 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3020 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 3021 pushValue(I.getOperand(1), InstID, Vals); 3022 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 3023 uint64_t Flags = getOptimizationFlags(&I); 3024 if (Flags != 0) { 3025 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 3026 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 3027 Vals.push_back(Flags); 3028 } 3029 } 3030 break; 3031 case Instruction::FNeg: { 3032 Code = bitc::FUNC_CODE_INST_UNOP; 3033 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3034 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 3035 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 3036 uint64_t Flags = getOptimizationFlags(&I); 3037 if (Flags != 0) { 3038 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 3039 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 3040 Vals.push_back(Flags); 3041 } 3042 break; 3043 } 3044 case Instruction::GetElementPtr: { 3045 Code = bitc::FUNC_CODE_INST_GEP; 3046 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 3047 auto &GEPInst = cast<GetElementPtrInst>(I); 3048 Vals.push_back(getOptimizationFlags(&I)); 3049 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 3050 for (const Value *Op : I.operands()) 3051 pushValueAndType(Op, InstID, Vals); 3052 break; 3053 } 3054 case Instruction::ExtractValue: { 3055 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 3056 pushValueAndType(I.getOperand(0), InstID, Vals); 3057 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 3058 Vals.append(EVI->idx_begin(), EVI->idx_end()); 3059 break; 3060 } 3061 case Instruction::InsertValue: { 3062 Code = bitc::FUNC_CODE_INST_INSERTVAL; 3063 pushValueAndType(I.getOperand(0), InstID, Vals); 3064 pushValueAndType(I.getOperand(1), InstID, Vals); 3065 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 3066 Vals.append(IVI->idx_begin(), IVI->idx_end()); 3067 break; 3068 } 3069 case Instruction::Select: { 3070 Code = bitc::FUNC_CODE_INST_VSELECT; 3071 pushValueAndType(I.getOperand(1), InstID, Vals); 3072 pushValue(I.getOperand(2), InstID, Vals); 3073 pushValueAndType(I.getOperand(0), InstID, Vals); 3074 uint64_t Flags = getOptimizationFlags(&I); 3075 if (Flags != 0) 3076 Vals.push_back(Flags); 3077 break; 3078 } 3079 case Instruction::ExtractElement: 3080 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 3081 pushValueAndType(I.getOperand(0), InstID, Vals); 3082 pushValueAndType(I.getOperand(1), InstID, Vals); 3083 break; 3084 case Instruction::InsertElement: 3085 Code = bitc::FUNC_CODE_INST_INSERTELT; 3086 pushValueAndType(I.getOperand(0), InstID, Vals); 3087 pushValue(I.getOperand(1), InstID, Vals); 3088 pushValueAndType(I.getOperand(2), InstID, Vals); 3089 break; 3090 case Instruction::ShuffleVector: 3091 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 3092 pushValueAndType(I.getOperand(0), InstID, Vals); 3093 pushValue(I.getOperand(1), InstID, Vals); 3094 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 3095 Vals); 3096 break; 3097 case Instruction::ICmp: 3098 case Instruction::FCmp: { 3099 // compare returning Int1Ty or vector of Int1Ty 3100 Code = bitc::FUNC_CODE_INST_CMP2; 3101 pushValueAndType(I.getOperand(0), InstID, Vals); 3102 pushValue(I.getOperand(1), InstID, Vals); 3103 Vals.push_back(cast<CmpInst>(I).getPredicate()); 3104 uint64_t Flags = getOptimizationFlags(&I); 3105 if (Flags != 0) 3106 Vals.push_back(Flags); 3107 break; 3108 } 3109 3110 case Instruction::Ret: 3111 { 3112 Code = bitc::FUNC_CODE_INST_RET; 3113 unsigned NumOperands = I.getNumOperands(); 3114 if (NumOperands == 0) 3115 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 3116 else if (NumOperands == 1) { 3117 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3118 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 3119 } else { 3120 for (const Value *Op : I.operands()) 3121 pushValueAndType(Op, InstID, Vals); 3122 } 3123 } 3124 break; 3125 case Instruction::Br: 3126 { 3127 Code = bitc::FUNC_CODE_INST_BR; 3128 const BranchInst &II = cast<BranchInst>(I); 3129 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 3130 if (II.isConditional()) { 3131 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 3132 pushValue(II.getCondition(), InstID, Vals); 3133 } 3134 } 3135 break; 3136 case Instruction::Switch: 3137 { 3138 Code = bitc::FUNC_CODE_INST_SWITCH; 3139 const SwitchInst &SI = cast<SwitchInst>(I); 3140 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 3141 pushValue(SI.getCondition(), InstID, Vals); 3142 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 3143 for (auto Case : SI.cases()) { 3144 Vals.push_back(VE.getValueID(Case.getCaseValue())); 3145 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 3146 } 3147 } 3148 break; 3149 case Instruction::IndirectBr: 3150 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 3151 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3152 // Encode the address operand as relative, but not the basic blocks. 3153 pushValue(I.getOperand(0), InstID, Vals); 3154 for (const Value *Op : drop_begin(I.operands())) 3155 Vals.push_back(VE.getValueID(Op)); 3156 break; 3157 3158 case Instruction::Invoke: { 3159 const InvokeInst *II = cast<InvokeInst>(&I); 3160 const Value *Callee = II->getCalledOperand(); 3161 FunctionType *FTy = II->getFunctionType(); 3162 3163 if (II->hasOperandBundles()) 3164 writeOperandBundles(*II, InstID); 3165 3166 Code = bitc::FUNC_CODE_INST_INVOKE; 3167 3168 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 3169 Vals.push_back(II->getCallingConv() | 1 << 13); 3170 Vals.push_back(VE.getValueID(II->getNormalDest())); 3171 Vals.push_back(VE.getValueID(II->getUnwindDest())); 3172 Vals.push_back(VE.getTypeID(FTy)); 3173 pushValueAndType(Callee, InstID, Vals); 3174 3175 // Emit value #'s for the fixed parameters. 3176 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3177 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3178 3179 // Emit type/value pairs for varargs params. 3180 if (FTy->isVarArg()) { 3181 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 3182 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3183 } 3184 break; 3185 } 3186 case Instruction::Resume: 3187 Code = bitc::FUNC_CODE_INST_RESUME; 3188 pushValueAndType(I.getOperand(0), InstID, Vals); 3189 break; 3190 case Instruction::CleanupRet: { 3191 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 3192 const auto &CRI = cast<CleanupReturnInst>(I); 3193 pushValue(CRI.getCleanupPad(), InstID, Vals); 3194 if (CRI.hasUnwindDest()) 3195 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 3196 break; 3197 } 3198 case Instruction::CatchRet: { 3199 Code = bitc::FUNC_CODE_INST_CATCHRET; 3200 const auto &CRI = cast<CatchReturnInst>(I); 3201 pushValue(CRI.getCatchPad(), InstID, Vals); 3202 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 3203 break; 3204 } 3205 case Instruction::CleanupPad: 3206 case Instruction::CatchPad: { 3207 const auto &FuncletPad = cast<FuncletPadInst>(I); 3208 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 3209 : bitc::FUNC_CODE_INST_CLEANUPPAD; 3210 pushValue(FuncletPad.getParentPad(), InstID, Vals); 3211 3212 unsigned NumArgOperands = FuncletPad.arg_size(); 3213 Vals.push_back(NumArgOperands); 3214 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 3215 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 3216 break; 3217 } 3218 case Instruction::CatchSwitch: { 3219 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3220 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3221 3222 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3223 3224 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3225 Vals.push_back(NumHandlers); 3226 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3227 Vals.push_back(VE.getValueID(CatchPadBB)); 3228 3229 if (CatchSwitch.hasUnwindDest()) 3230 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3231 break; 3232 } 3233 case Instruction::CallBr: { 3234 const CallBrInst *CBI = cast<CallBrInst>(&I); 3235 const Value *Callee = CBI->getCalledOperand(); 3236 FunctionType *FTy = CBI->getFunctionType(); 3237 3238 if (CBI->hasOperandBundles()) 3239 writeOperandBundles(*CBI, InstID); 3240 3241 Code = bitc::FUNC_CODE_INST_CALLBR; 3242 3243 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3244 3245 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3246 1 << bitc::CALL_EXPLICIT_TYPE); 3247 3248 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3249 Vals.push_back(CBI->getNumIndirectDests()); 3250 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3251 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3252 3253 Vals.push_back(VE.getTypeID(FTy)); 3254 pushValueAndType(Callee, InstID, Vals); 3255 3256 // Emit value #'s for the fixed parameters. 3257 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3258 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3259 3260 // Emit type/value pairs for varargs params. 3261 if (FTy->isVarArg()) { 3262 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3263 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3264 } 3265 break; 3266 } 3267 case Instruction::Unreachable: 3268 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3269 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3270 break; 3271 3272 case Instruction::PHI: { 3273 const PHINode &PN = cast<PHINode>(I); 3274 Code = bitc::FUNC_CODE_INST_PHI; 3275 // With the newer instruction encoding, forward references could give 3276 // negative valued IDs. This is most common for PHIs, so we use 3277 // signed VBRs. 3278 SmallVector<uint64_t, 128> Vals64; 3279 Vals64.push_back(VE.getTypeID(PN.getType())); 3280 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3281 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3282 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3283 } 3284 3285 uint64_t Flags = getOptimizationFlags(&I); 3286 if (Flags != 0) 3287 Vals64.push_back(Flags); 3288 3289 // Emit a Vals64 vector and exit. 3290 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3291 Vals64.clear(); 3292 return; 3293 } 3294 3295 case Instruction::LandingPad: { 3296 const LandingPadInst &LP = cast<LandingPadInst>(I); 3297 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3298 Vals.push_back(VE.getTypeID(LP.getType())); 3299 Vals.push_back(LP.isCleanup()); 3300 Vals.push_back(LP.getNumClauses()); 3301 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3302 if (LP.isCatch(I)) 3303 Vals.push_back(LandingPadInst::Catch); 3304 else 3305 Vals.push_back(LandingPadInst::Filter); 3306 pushValueAndType(LP.getClause(I), InstID, Vals); 3307 } 3308 break; 3309 } 3310 3311 case Instruction::Alloca: { 3312 Code = bitc::FUNC_CODE_INST_ALLOCA; 3313 const AllocaInst &AI = cast<AllocaInst>(I); 3314 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3315 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3316 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3317 using APV = AllocaPackedValues; 3318 unsigned Record = 0; 3319 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3320 Bitfield::set<APV::AlignLower>( 3321 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3322 Bitfield::set<APV::AlignUpper>(Record, 3323 EncodedAlign >> APV::AlignLower::Bits); 3324 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3325 Bitfield::set<APV::ExplicitType>(Record, true); 3326 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3327 Vals.push_back(Record); 3328 3329 unsigned AS = AI.getAddressSpace(); 3330 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3331 Vals.push_back(AS); 3332 break; 3333 } 3334 3335 case Instruction::Load: 3336 if (cast<LoadInst>(I).isAtomic()) { 3337 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3338 pushValueAndType(I.getOperand(0), InstID, Vals); 3339 } else { 3340 Code = bitc::FUNC_CODE_INST_LOAD; 3341 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3342 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3343 } 3344 Vals.push_back(VE.getTypeID(I.getType())); 3345 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3346 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3347 if (cast<LoadInst>(I).isAtomic()) { 3348 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3349 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3350 } 3351 break; 3352 case Instruction::Store: 3353 if (cast<StoreInst>(I).isAtomic()) 3354 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3355 else 3356 Code = bitc::FUNC_CODE_INST_STORE; 3357 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3358 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3359 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3360 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3361 if (cast<StoreInst>(I).isAtomic()) { 3362 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3363 Vals.push_back( 3364 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3365 } 3366 break; 3367 case Instruction::AtomicCmpXchg: 3368 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3369 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3370 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3371 pushValue(I.getOperand(2), InstID, Vals); // newval. 3372 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3373 Vals.push_back( 3374 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3375 Vals.push_back( 3376 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3377 Vals.push_back( 3378 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3379 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3380 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3381 break; 3382 case Instruction::AtomicRMW: 3383 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3384 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3385 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3386 Vals.push_back( 3387 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3388 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3389 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3390 Vals.push_back( 3391 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3392 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3393 break; 3394 case Instruction::Fence: 3395 Code = bitc::FUNC_CODE_INST_FENCE; 3396 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3397 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3398 break; 3399 case Instruction::Call: { 3400 const CallInst &CI = cast<CallInst>(I); 3401 FunctionType *FTy = CI.getFunctionType(); 3402 3403 if (CI.hasOperandBundles()) 3404 writeOperandBundles(CI, InstID); 3405 3406 Code = bitc::FUNC_CODE_INST_CALL; 3407 3408 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3409 3410 unsigned Flags = getOptimizationFlags(&I); 3411 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3412 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3413 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3414 1 << bitc::CALL_EXPLICIT_TYPE | 3415 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3416 unsigned(Flags != 0) << bitc::CALL_FMF); 3417 if (Flags != 0) 3418 Vals.push_back(Flags); 3419 3420 Vals.push_back(VE.getTypeID(FTy)); 3421 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3422 3423 // Emit value #'s for the fixed parameters. 3424 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3425 // Check for labels (can happen with asm labels). 3426 if (FTy->getParamType(i)->isLabelTy()) 3427 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3428 else 3429 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3430 } 3431 3432 // Emit type/value pairs for varargs params. 3433 if (FTy->isVarArg()) { 3434 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3435 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3436 } 3437 break; 3438 } 3439 case Instruction::VAArg: 3440 Code = bitc::FUNC_CODE_INST_VAARG; 3441 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3442 pushValue(I.getOperand(0), InstID, Vals); // valist. 3443 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3444 break; 3445 case Instruction::Freeze: 3446 Code = bitc::FUNC_CODE_INST_FREEZE; 3447 pushValueAndType(I.getOperand(0), InstID, Vals); 3448 break; 3449 } 3450 3451 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3452 Vals.clear(); 3453 } 3454 3455 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3456 /// to allow clients to efficiently find the function body. 3457 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3458 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3459 // Get the offset of the VST we are writing, and backpatch it into 3460 // the VST forward declaration record. 3461 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3462 // The BitcodeStartBit was the stream offset of the identification block. 3463 VSTOffset -= bitcodeStartBit(); 3464 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3465 // Note that we add 1 here because the offset is relative to one word 3466 // before the start of the identification block, which was historically 3467 // always the start of the regular bitcode header. 3468 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3469 3470 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3471 3472 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3473 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3474 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3475 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3476 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3477 3478 for (const Function &F : M) { 3479 uint64_t Record[2]; 3480 3481 if (F.isDeclaration()) 3482 continue; 3483 3484 Record[0] = VE.getValueID(&F); 3485 3486 // Save the word offset of the function (from the start of the 3487 // actual bitcode written to the stream). 3488 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3489 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3490 // Note that we add 1 here because the offset is relative to one word 3491 // before the start of the identification block, which was historically 3492 // always the start of the regular bitcode header. 3493 Record[1] = BitcodeIndex / 32 + 1; 3494 3495 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3496 } 3497 3498 Stream.ExitBlock(); 3499 } 3500 3501 /// Emit names for arguments, instructions and basic blocks in a function. 3502 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3503 const ValueSymbolTable &VST) { 3504 if (VST.empty()) 3505 return; 3506 3507 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3508 3509 // FIXME: Set up the abbrev, we know how many values there are! 3510 // FIXME: We know if the type names can use 7-bit ascii. 3511 SmallVector<uint64_t, 64> NameVals; 3512 3513 for (const ValueName &Name : VST) { 3514 // Figure out the encoding to use for the name. 3515 StringEncoding Bits = getStringEncoding(Name.getKey()); 3516 3517 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3518 NameVals.push_back(VE.getValueID(Name.getValue())); 3519 3520 // VST_CODE_ENTRY: [valueid, namechar x N] 3521 // VST_CODE_BBENTRY: [bbid, namechar x N] 3522 unsigned Code; 3523 if (isa<BasicBlock>(Name.getValue())) { 3524 Code = bitc::VST_CODE_BBENTRY; 3525 if (Bits == SE_Char6) 3526 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3527 } else { 3528 Code = bitc::VST_CODE_ENTRY; 3529 if (Bits == SE_Char6) 3530 AbbrevToUse = VST_ENTRY_6_ABBREV; 3531 else if (Bits == SE_Fixed7) 3532 AbbrevToUse = VST_ENTRY_7_ABBREV; 3533 } 3534 3535 for (const auto P : Name.getKey()) 3536 NameVals.push_back((unsigned char)P); 3537 3538 // Emit the finished record. 3539 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3540 NameVals.clear(); 3541 } 3542 3543 Stream.ExitBlock(); 3544 } 3545 3546 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3547 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3548 unsigned Code; 3549 if (isa<BasicBlock>(Order.V)) 3550 Code = bitc::USELIST_CODE_BB; 3551 else 3552 Code = bitc::USELIST_CODE_DEFAULT; 3553 3554 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3555 Record.push_back(VE.getValueID(Order.V)); 3556 Stream.EmitRecord(Code, Record); 3557 } 3558 3559 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3560 assert(VE.shouldPreserveUseListOrder() && 3561 "Expected to be preserving use-list order"); 3562 3563 auto hasMore = [&]() { 3564 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3565 }; 3566 if (!hasMore()) 3567 // Nothing to do. 3568 return; 3569 3570 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3571 while (hasMore()) { 3572 writeUseList(std::move(VE.UseListOrders.back())); 3573 VE.UseListOrders.pop_back(); 3574 } 3575 Stream.ExitBlock(); 3576 } 3577 3578 /// Emit a function body to the module stream. 3579 void ModuleBitcodeWriter::writeFunction( 3580 const Function &F, 3581 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3582 // Save the bitcode index of the start of this function block for recording 3583 // in the VST. 3584 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3585 3586 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3587 VE.incorporateFunction(F); 3588 3589 SmallVector<unsigned, 64> Vals; 3590 3591 // Emit the number of basic blocks, so the reader can create them ahead of 3592 // time. 3593 Vals.push_back(VE.getBasicBlocks().size()); 3594 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3595 Vals.clear(); 3596 3597 // If there are function-local constants, emit them now. 3598 unsigned CstStart, CstEnd; 3599 VE.getFunctionConstantRange(CstStart, CstEnd); 3600 writeConstants(CstStart, CstEnd, false); 3601 3602 // If there is function-local metadata, emit it now. 3603 writeFunctionMetadata(F); 3604 3605 // Keep a running idea of what the instruction ID is. 3606 unsigned InstID = CstEnd; 3607 3608 bool NeedsMetadataAttachment = F.hasMetadata(); 3609 3610 DILocation *LastDL = nullptr; 3611 SmallSetVector<Function *, 4> BlockAddressUsers; 3612 3613 // Finally, emit all the instructions, in order. 3614 for (const BasicBlock &BB : F) { 3615 for (const Instruction &I : BB) { 3616 writeInstruction(I, InstID, Vals); 3617 3618 if (!I.getType()->isVoidTy()) 3619 ++InstID; 3620 3621 // If the instruction has metadata, write a metadata attachment later. 3622 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3623 3624 // If the instruction has a debug location, emit it. 3625 if (DILocation *DL = I.getDebugLoc()) { 3626 if (DL == LastDL) { 3627 // Just repeat the same debug loc as last time. 3628 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3629 } else { 3630 Vals.push_back(DL->getLine()); 3631 Vals.push_back(DL->getColumn()); 3632 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3633 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3634 Vals.push_back(DL->isImplicitCode()); 3635 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3636 Vals.clear(); 3637 LastDL = DL; 3638 } 3639 } 3640 3641 // If the instruction has DbgRecords attached to it, emit them. Note that 3642 // they come after the instruction so that it's easy to attach them again 3643 // when reading the bitcode, even though conceptually the debug locations 3644 // start "before" the instruction. 3645 if (I.hasDbgRecords() && WriteNewDbgInfoFormatToBitcode) { 3646 /// Try to push the value only (unwrapped), otherwise push the 3647 /// metadata wrapped value. Returns true if the value was pushed 3648 /// without the ValueAsMetadata wrapper. 3649 auto PushValueOrMetadata = [&Vals, InstID, 3650 this](Metadata *RawLocation) { 3651 assert(RawLocation && 3652 "RawLocation unexpectedly null in DbgVariableRecord"); 3653 if (ValueAsMetadata *VAM = dyn_cast<ValueAsMetadata>(RawLocation)) { 3654 SmallVector<unsigned, 2> ValAndType; 3655 // If the value is a fwd-ref the type is also pushed. We don't 3656 // want the type, so fwd-refs are kept wrapped (pushValueAndType 3657 // returns false if the value is pushed without type). 3658 if (!pushValueAndType(VAM->getValue(), InstID, ValAndType)) { 3659 Vals.push_back(ValAndType[0]); 3660 return true; 3661 } 3662 } 3663 // The metadata is a DIArgList, or ValueAsMetadata wrapping a 3664 // fwd-ref. Push the metadata ID. 3665 Vals.push_back(VE.getMetadataID(RawLocation)); 3666 return false; 3667 }; 3668 3669 // Write out non-instruction debug information attached to this 3670 // instruction. Write it after the instruction so that it's easy to 3671 // re-attach to the instruction reading the records in. 3672 for (DbgRecord &DR : I.DebugMarker->getDbgRecordRange()) { 3673 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 3674 Vals.push_back(VE.getMetadataID(&*DLR->getDebugLoc())); 3675 Vals.push_back(VE.getMetadataID(DLR->getLabel())); 3676 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_LABEL, Vals); 3677 Vals.clear(); 3678 continue; 3679 } 3680 3681 // First 3 fields are common to all kinds: 3682 // DILocation, DILocalVariable, DIExpression 3683 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) 3684 // ..., LocationMetadata 3685 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) 3686 // ..., Value 3687 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) 3688 // ..., LocationMetadata 3689 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) 3690 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata 3691 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 3692 Vals.push_back(VE.getMetadataID(&*DVR.getDebugLoc())); 3693 Vals.push_back(VE.getMetadataID(DVR.getVariable())); 3694 Vals.push_back(VE.getMetadataID(DVR.getExpression())); 3695 if (DVR.isDbgValue()) { 3696 if (PushValueOrMetadata(DVR.getRawLocation())) 3697 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE, Vals, 3698 FUNCTION_DEBUG_RECORD_VALUE_ABBREV); 3699 else 3700 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE, Vals); 3701 } else if (DVR.isDbgDeclare()) { 3702 Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); 3703 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_DECLARE, Vals); 3704 } else { 3705 assert(DVR.isDbgAssign() && "Unexpected DbgRecord kind"); 3706 Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); 3707 Vals.push_back(VE.getMetadataID(DVR.getAssignID())); 3708 Vals.push_back(VE.getMetadataID(DVR.getAddressExpression())); 3709 Vals.push_back(VE.getMetadataID(DVR.getRawAddress())); 3710 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN, Vals); 3711 } 3712 Vals.clear(); 3713 } 3714 } 3715 } 3716 3717 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3718 SmallVector<Value *> Worklist{BA}; 3719 SmallPtrSet<Value *, 8> Visited{BA}; 3720 while (!Worklist.empty()) { 3721 Value *V = Worklist.pop_back_val(); 3722 for (User *U : V->users()) { 3723 if (auto *I = dyn_cast<Instruction>(U)) { 3724 Function *P = I->getFunction(); 3725 if (P != &F) 3726 BlockAddressUsers.insert(P); 3727 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3728 Visited.insert(U).second) 3729 Worklist.push_back(U); 3730 } 3731 } 3732 } 3733 } 3734 3735 if (!BlockAddressUsers.empty()) { 3736 Vals.resize(BlockAddressUsers.size()); 3737 for (auto I : llvm::enumerate(BlockAddressUsers)) 3738 Vals[I.index()] = VE.getValueID(I.value()); 3739 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3740 Vals.clear(); 3741 } 3742 3743 // Emit names for all the instructions etc. 3744 if (auto *Symtab = F.getValueSymbolTable()) 3745 writeFunctionLevelValueSymbolTable(*Symtab); 3746 3747 if (NeedsMetadataAttachment) 3748 writeFunctionMetadataAttachment(F); 3749 if (VE.shouldPreserveUseListOrder()) 3750 writeUseListBlock(&F); 3751 VE.purgeFunction(); 3752 Stream.ExitBlock(); 3753 } 3754 3755 // Emit blockinfo, which defines the standard abbreviations etc. 3756 void ModuleBitcodeWriter::writeBlockInfo() { 3757 // We only want to emit block info records for blocks that have multiple 3758 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3759 // Other blocks can define their abbrevs inline. 3760 Stream.EnterBlockInfoBlock(); 3761 3762 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3763 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3764 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3765 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3768 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3769 VST_ENTRY_8_ABBREV) 3770 llvm_unreachable("Unexpected abbrev ordering!"); 3771 } 3772 3773 { // 7-bit fixed width VST_CODE_ENTRY strings. 3774 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3775 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3779 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3780 VST_ENTRY_7_ABBREV) 3781 llvm_unreachable("Unexpected abbrev ordering!"); 3782 } 3783 { // 6-bit char6 VST_CODE_ENTRY strings. 3784 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3785 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3787 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3789 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3790 VST_ENTRY_6_ABBREV) 3791 llvm_unreachable("Unexpected abbrev ordering!"); 3792 } 3793 { // 6-bit char6 VST_CODE_BBENTRY strings. 3794 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3795 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3799 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3800 VST_BBENTRY_6_ABBREV) 3801 llvm_unreachable("Unexpected abbrev ordering!"); 3802 } 3803 3804 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3805 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3806 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3808 VE.computeBitsRequiredForTypeIndices())); 3809 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3810 CONSTANTS_SETTYPE_ABBREV) 3811 llvm_unreachable("Unexpected abbrev ordering!"); 3812 } 3813 3814 { // INTEGER abbrev for CONSTANTS_BLOCK. 3815 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3816 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3818 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3819 CONSTANTS_INTEGER_ABBREV) 3820 llvm_unreachable("Unexpected abbrev ordering!"); 3821 } 3822 3823 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3824 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3825 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3826 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3827 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3828 VE.computeBitsRequiredForTypeIndices())); 3829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3830 3831 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3832 CONSTANTS_CE_CAST_Abbrev) 3833 llvm_unreachable("Unexpected abbrev ordering!"); 3834 } 3835 { // NULL abbrev for CONSTANTS_BLOCK. 3836 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3837 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3838 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3839 CONSTANTS_NULL_Abbrev) 3840 llvm_unreachable("Unexpected abbrev ordering!"); 3841 } 3842 3843 // FIXME: This should only use space for first class types! 3844 3845 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3846 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3847 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3848 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3849 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3850 VE.computeBitsRequiredForTypeIndices())); 3851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3852 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3853 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3854 FUNCTION_INST_LOAD_ABBREV) 3855 llvm_unreachable("Unexpected abbrev ordering!"); 3856 } 3857 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3858 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3859 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3862 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3863 FUNCTION_INST_UNOP_ABBREV) 3864 llvm_unreachable("Unexpected abbrev ordering!"); 3865 } 3866 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3867 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3868 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3869 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3870 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3871 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3872 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3873 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3874 llvm_unreachable("Unexpected abbrev ordering!"); 3875 } 3876 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3877 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3878 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3879 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3880 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3881 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3882 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3883 FUNCTION_INST_BINOP_ABBREV) 3884 llvm_unreachable("Unexpected abbrev ordering!"); 3885 } 3886 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3887 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3888 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3889 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3890 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3891 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3893 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3894 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3895 llvm_unreachable("Unexpected abbrev ordering!"); 3896 } 3897 { // INST_CAST abbrev for FUNCTION_BLOCK. 3898 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3899 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3902 VE.computeBitsRequiredForTypeIndices())); 3903 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3904 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3905 FUNCTION_INST_CAST_ABBREV) 3906 llvm_unreachable("Unexpected abbrev ordering!"); 3907 } 3908 { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK. 3909 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3910 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3911 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3912 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3913 VE.computeBitsRequiredForTypeIndices())); 3914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3915 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3916 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3917 FUNCTION_INST_CAST_FLAGS_ABBREV) 3918 llvm_unreachable("Unexpected abbrev ordering!"); 3919 } 3920 3921 { // INST_RET abbrev for FUNCTION_BLOCK. 3922 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3923 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3924 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3925 FUNCTION_INST_RET_VOID_ABBREV) 3926 llvm_unreachable("Unexpected abbrev ordering!"); 3927 } 3928 { // INST_RET abbrev for FUNCTION_BLOCK. 3929 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3930 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3932 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3933 FUNCTION_INST_RET_VAL_ABBREV) 3934 llvm_unreachable("Unexpected abbrev ordering!"); 3935 } 3936 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3937 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3938 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3939 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3940 FUNCTION_INST_UNREACHABLE_ABBREV) 3941 llvm_unreachable("Unexpected abbrev ordering!"); 3942 } 3943 { 3944 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3945 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3946 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3948 Log2_32_Ceil(VE.getTypes().size() + 1))); 3949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3951 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3952 FUNCTION_INST_GEP_ABBREV) 3953 llvm_unreachable("Unexpected abbrev ordering!"); 3954 } 3955 { 3956 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3957 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE)); 3958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // dbgloc 3959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // var 3960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // expr 3961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // val 3962 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3963 FUNCTION_DEBUG_RECORD_VALUE_ABBREV) 3964 llvm_unreachable("Unexpected abbrev ordering! 1"); 3965 } 3966 Stream.ExitBlock(); 3967 } 3968 3969 /// Write the module path strings, currently only used when generating 3970 /// a combined index file. 3971 void IndexBitcodeWriter::writeModStrings() { 3972 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3973 3974 // TODO: See which abbrev sizes we actually need to emit 3975 3976 // 8-bit fixed-width MST_ENTRY strings. 3977 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3978 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3979 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3980 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3981 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3982 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3983 3984 // 7-bit fixed width MST_ENTRY strings. 3985 Abbv = std::make_shared<BitCodeAbbrev>(); 3986 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3987 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3990 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3991 3992 // 6-bit char6 MST_ENTRY strings. 3993 Abbv = std::make_shared<BitCodeAbbrev>(); 3994 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3995 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3996 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3997 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3998 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3999 4000 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 4001 Abbv = std::make_shared<BitCodeAbbrev>(); 4002 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 4003 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4006 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4007 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4008 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 4009 4010 SmallVector<unsigned, 64> Vals; 4011 forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) { 4012 StringRef Key = MPSE.getKey(); 4013 const auto &Hash = MPSE.getValue(); 4014 StringEncoding Bits = getStringEncoding(Key); 4015 unsigned AbbrevToUse = Abbrev8Bit; 4016 if (Bits == SE_Char6) 4017 AbbrevToUse = Abbrev6Bit; 4018 else if (Bits == SE_Fixed7) 4019 AbbrevToUse = Abbrev7Bit; 4020 4021 auto ModuleId = ModuleIdMap.size(); 4022 ModuleIdMap[Key] = ModuleId; 4023 Vals.push_back(ModuleId); 4024 Vals.append(Key.begin(), Key.end()); 4025 4026 // Emit the finished record. 4027 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 4028 4029 // Emit an optional hash for the module now 4030 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 4031 Vals.assign(Hash.begin(), Hash.end()); 4032 // Emit the hash record. 4033 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 4034 } 4035 4036 Vals.clear(); 4037 }); 4038 Stream.ExitBlock(); 4039 } 4040 4041 /// Write the function type metadata related records that need to appear before 4042 /// a function summary entry (whether per-module or combined). 4043 template <typename Fn> 4044 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 4045 FunctionSummary *FS, 4046 Fn GetValueID) { 4047 if (!FS->type_tests().empty()) 4048 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 4049 4050 SmallVector<uint64_t, 64> Record; 4051 4052 auto WriteVFuncIdVec = [&](uint64_t Ty, 4053 ArrayRef<FunctionSummary::VFuncId> VFs) { 4054 if (VFs.empty()) 4055 return; 4056 Record.clear(); 4057 for (auto &VF : VFs) { 4058 Record.push_back(VF.GUID); 4059 Record.push_back(VF.Offset); 4060 } 4061 Stream.EmitRecord(Ty, Record); 4062 }; 4063 4064 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 4065 FS->type_test_assume_vcalls()); 4066 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 4067 FS->type_checked_load_vcalls()); 4068 4069 auto WriteConstVCallVec = [&](uint64_t Ty, 4070 ArrayRef<FunctionSummary::ConstVCall> VCs) { 4071 for (auto &VC : VCs) { 4072 Record.clear(); 4073 Record.push_back(VC.VFunc.GUID); 4074 Record.push_back(VC.VFunc.Offset); 4075 llvm::append_range(Record, VC.Args); 4076 Stream.EmitRecord(Ty, Record); 4077 } 4078 }; 4079 4080 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 4081 FS->type_test_assume_const_vcalls()); 4082 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 4083 FS->type_checked_load_const_vcalls()); 4084 4085 auto WriteRange = [&](ConstantRange Range) { 4086 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 4087 assert(Range.getLower().getNumWords() == 1); 4088 assert(Range.getUpper().getNumWords() == 1); 4089 emitSignedInt64(Record, *Range.getLower().getRawData()); 4090 emitSignedInt64(Record, *Range.getUpper().getRawData()); 4091 }; 4092 4093 if (!FS->paramAccesses().empty()) { 4094 Record.clear(); 4095 for (auto &Arg : FS->paramAccesses()) { 4096 size_t UndoSize = Record.size(); 4097 Record.push_back(Arg.ParamNo); 4098 WriteRange(Arg.Use); 4099 Record.push_back(Arg.Calls.size()); 4100 for (auto &Call : Arg.Calls) { 4101 Record.push_back(Call.ParamNo); 4102 std::optional<unsigned> ValueID = GetValueID(Call.Callee); 4103 if (!ValueID) { 4104 // If ValueID is unknown we can't drop just this call, we must drop 4105 // entire parameter. 4106 Record.resize(UndoSize); 4107 break; 4108 } 4109 Record.push_back(*ValueID); 4110 WriteRange(Call.Offsets); 4111 } 4112 } 4113 if (!Record.empty()) 4114 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 4115 } 4116 } 4117 4118 /// Collect type IDs from type tests used by function. 4119 static void 4120 getReferencedTypeIds(FunctionSummary *FS, 4121 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 4122 if (!FS->type_tests().empty()) 4123 for (auto &TT : FS->type_tests()) 4124 ReferencedTypeIds.insert(TT); 4125 4126 auto GetReferencedTypesFromVFuncIdVec = 4127 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 4128 for (auto &VF : VFs) 4129 ReferencedTypeIds.insert(VF.GUID); 4130 }; 4131 4132 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 4133 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 4134 4135 auto GetReferencedTypesFromConstVCallVec = 4136 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 4137 for (auto &VC : VCs) 4138 ReferencedTypeIds.insert(VC.VFunc.GUID); 4139 }; 4140 4141 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 4142 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 4143 } 4144 4145 static void writeWholeProgramDevirtResolutionByArg( 4146 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 4147 const WholeProgramDevirtResolution::ByArg &ByArg) { 4148 NameVals.push_back(args.size()); 4149 llvm::append_range(NameVals, args); 4150 4151 NameVals.push_back(ByArg.TheKind); 4152 NameVals.push_back(ByArg.Info); 4153 NameVals.push_back(ByArg.Byte); 4154 NameVals.push_back(ByArg.Bit); 4155 } 4156 4157 static void writeWholeProgramDevirtResolution( 4158 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 4159 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 4160 NameVals.push_back(Id); 4161 4162 NameVals.push_back(Wpd.TheKind); 4163 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 4164 NameVals.push_back(Wpd.SingleImplName.size()); 4165 4166 NameVals.push_back(Wpd.ResByArg.size()); 4167 for (auto &A : Wpd.ResByArg) 4168 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 4169 } 4170 4171 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 4172 StringTableBuilder &StrtabBuilder, 4173 StringRef Id, 4174 const TypeIdSummary &Summary) { 4175 NameVals.push_back(StrtabBuilder.add(Id)); 4176 NameVals.push_back(Id.size()); 4177 4178 NameVals.push_back(Summary.TTRes.TheKind); 4179 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 4180 NameVals.push_back(Summary.TTRes.AlignLog2); 4181 NameVals.push_back(Summary.TTRes.SizeM1); 4182 NameVals.push_back(Summary.TTRes.BitMask); 4183 NameVals.push_back(Summary.TTRes.InlineBits); 4184 4185 for (auto &W : Summary.WPDRes) 4186 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 4187 W.second); 4188 } 4189 4190 static void writeTypeIdCompatibleVtableSummaryRecord( 4191 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 4192 StringRef Id, const TypeIdCompatibleVtableInfo &Summary, 4193 ValueEnumerator &VE) { 4194 NameVals.push_back(StrtabBuilder.add(Id)); 4195 NameVals.push_back(Id.size()); 4196 4197 for (auto &P : Summary) { 4198 NameVals.push_back(P.AddressPointOffset); 4199 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 4200 } 4201 } 4202 4203 // Adds the allocation contexts to the CallStacks map. We simply use the 4204 // size at the time the context was added as the CallStackId. This works because 4205 // when we look up the call stacks later on we process the function summaries 4206 // and their allocation records in the same exact order. 4207 static void collectMemProfCallStacks( 4208 FunctionSummary *FS, std::function<LinearFrameId(unsigned)> GetStackIndex, 4209 MapVector<CallStackId, llvm::SmallVector<LinearFrameId>> &CallStacks) { 4210 // The interfaces in ProfileData/MemProf.h use a type alias for a stack frame 4211 // id offset into the index of the full stack frames. The ModuleSummaryIndex 4212 // currently uses unsigned. Make sure these stay in sync. 4213 static_assert(std::is_same_v<LinearFrameId, unsigned>); 4214 for (auto &AI : FS->allocs()) { 4215 for (auto &MIB : AI.MIBs) { 4216 SmallVector<unsigned> StackIdIndices; 4217 StackIdIndices.reserve(MIB.StackIdIndices.size()); 4218 for (auto Id : MIB.StackIdIndices) 4219 StackIdIndices.push_back(GetStackIndex(Id)); 4220 // The CallStackId is the size at the time this context was inserted. 4221 CallStacks.insert({CallStacks.size(), StackIdIndices}); 4222 } 4223 } 4224 } 4225 4226 // Build the radix tree from the accumulated CallStacks, write out the resulting 4227 // linearized radix tree array, and return the map of call stack positions into 4228 // this array for use when writing the allocation records. The returned map is 4229 // indexed by a CallStackId which in this case is implicitly determined by the 4230 // order of function summaries and their allocation infos being written. 4231 static DenseMap<CallStackId, LinearCallStackId> writeMemoryProfileRadixTree( 4232 MapVector<CallStackId, llvm::SmallVector<LinearFrameId>> &&CallStacks, 4233 BitstreamWriter &Stream, unsigned RadixAbbrev) { 4234 assert(!CallStacks.empty()); 4235 DenseMap<unsigned, FrameStat> FrameHistogram = 4236 computeFrameHistogram<LinearFrameId>(CallStacks); 4237 CallStackRadixTreeBuilder<LinearFrameId> Builder; 4238 // We don't need a MemProfFrameIndexes map as we have already converted the 4239 // full stack id hash to a linear offset into the StackIds array. 4240 Builder.build(std::move(CallStacks), /*MemProfFrameIndexes=*/nullptr, 4241 FrameHistogram); 4242 Stream.EmitRecord(bitc::FS_CONTEXT_RADIX_TREE_ARRAY, Builder.getRadixArray(), 4243 RadixAbbrev); 4244 return Builder.takeCallStackPos(); 4245 } 4246 4247 static void writeFunctionHeapProfileRecords( 4248 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, 4249 unsigned AllocAbbrev, unsigned ContextIdAbbvId, bool PerModule, 4250 std::function<unsigned(const ValueInfo &VI)> GetValueID, 4251 std::function<unsigned(unsigned)> GetStackIndex, 4252 bool WriteContextSizeInfoIndex, 4253 DenseMap<CallStackId, LinearCallStackId> &CallStackPos, 4254 CallStackId &CallStackCount) { 4255 SmallVector<uint64_t> Record; 4256 4257 for (auto &CI : FS->callsites()) { 4258 Record.clear(); 4259 // Per module callsite clones should always have a single entry of 4260 // value 0. 4261 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); 4262 Record.push_back(GetValueID(CI.Callee)); 4263 if (!PerModule) { 4264 Record.push_back(CI.StackIdIndices.size()); 4265 Record.push_back(CI.Clones.size()); 4266 } 4267 for (auto Id : CI.StackIdIndices) 4268 Record.push_back(GetStackIndex(Id)); 4269 if (!PerModule) { 4270 for (auto V : CI.Clones) 4271 Record.push_back(V); 4272 } 4273 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO 4274 : bitc::FS_COMBINED_CALLSITE_INFO, 4275 Record, CallsiteAbbrev); 4276 } 4277 4278 for (auto &AI : FS->allocs()) { 4279 Record.clear(); 4280 // Per module alloc versions should always have a single entry of 4281 // value 0. 4282 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); 4283 Record.push_back(AI.MIBs.size()); 4284 if (!PerModule) 4285 Record.push_back(AI.Versions.size()); 4286 for (auto &MIB : AI.MIBs) { 4287 Record.push_back((uint8_t)MIB.AllocType); 4288 // Record the index into the radix tree array for this context. 4289 assert(CallStackCount <= CallStackPos.size()); 4290 Record.push_back(CallStackPos[CallStackCount++]); 4291 } 4292 if (!PerModule) { 4293 for (auto V : AI.Versions) 4294 Record.push_back(V); 4295 } 4296 assert(AI.ContextSizeInfos.empty() || 4297 AI.ContextSizeInfos.size() == AI.MIBs.size()); 4298 // Optionally emit the context size information if it exists. 4299 if (WriteContextSizeInfoIndex && !AI.ContextSizeInfos.empty()) { 4300 // The abbreviation id for the context ids record should have been created 4301 // if we are emitting the per-module index, which is where we write this 4302 // info. 4303 assert(ContextIdAbbvId); 4304 SmallVector<uint32_t> ContextIds; 4305 // At least one context id per ContextSizeInfos entry (MIB), broken into 2 4306 // halves. 4307 ContextIds.reserve(AI.ContextSizeInfos.size() * 2); 4308 for (auto &Infos : AI.ContextSizeInfos) { 4309 Record.push_back(Infos.size()); 4310 for (auto [FullStackId, TotalSize] : Infos) { 4311 // The context ids are emitted separately as a fixed width array, 4312 // which is more efficient than a VBR given that these hashes are 4313 // typically close to 64-bits. The max fixed width entry is 32 bits so 4314 // it is split into 2. 4315 ContextIds.push_back(static_cast<uint32_t>(FullStackId >> 32)); 4316 ContextIds.push_back(static_cast<uint32_t>(FullStackId)); 4317 Record.push_back(TotalSize); 4318 } 4319 } 4320 // The context ids are expected by the reader to immediately precede the 4321 // associated alloc info record. 4322 Stream.EmitRecord(bitc::FS_ALLOC_CONTEXT_IDS, ContextIds, 4323 ContextIdAbbvId); 4324 } 4325 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO 4326 : bitc::FS_COMBINED_ALLOC_INFO, 4327 Record, AllocAbbrev); 4328 } 4329 } 4330 4331 // Helper to emit a single function summary record. 4332 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 4333 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 4334 unsigned ValueID, unsigned FSCallsRelBFAbbrev, 4335 unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev, 4336 unsigned AllocAbbrev, unsigned ContextIdAbbvId, const Function &F, 4337 DenseMap<CallStackId, LinearCallStackId> &CallStackPos, 4338 CallStackId &CallStackCount) { 4339 NameVals.push_back(ValueID); 4340 4341 FunctionSummary *FS = cast<FunctionSummary>(Summary); 4342 4343 writeFunctionTypeMetadataRecords( 4344 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> { 4345 return {VE.getValueID(VI.getValue())}; 4346 }); 4347 4348 writeFunctionHeapProfileRecords( 4349 Stream, FS, CallsiteAbbrev, AllocAbbrev, ContextIdAbbvId, 4350 /*PerModule*/ true, 4351 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, 4352 /*GetStackIndex*/ [&](unsigned I) { return I; }, 4353 /*WriteContextSizeInfoIndex*/ true, CallStackPos, CallStackCount); 4354 4355 auto SpecialRefCnts = FS->specialRefCounts(); 4356 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4357 NameVals.push_back(FS->instCount()); 4358 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4359 NameVals.push_back(FS->refs().size()); 4360 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 4361 NameVals.push_back(SpecialRefCnts.second); // worefcnt 4362 4363 for (auto &RI : FS->refs()) 4364 NameVals.push_back(getValueId(RI)); 4365 4366 const bool UseRelBFRecord = 4367 WriteRelBFToSummary && !F.hasProfileData() && 4368 ForceSummaryEdgesCold == FunctionSummary::FSHT_None; 4369 for (auto &ECI : FS->calls()) { 4370 NameVals.push_back(getValueId(ECI.first)); 4371 if (UseRelBFRecord) 4372 NameVals.push_back(getEncodedRelBFCallEdgeInfo(ECI.second)); 4373 else 4374 NameVals.push_back(getEncodedHotnessCallEdgeInfo(ECI.second)); 4375 } 4376 4377 unsigned FSAbbrev = 4378 (UseRelBFRecord ? FSCallsRelBFAbbrev : FSCallsProfileAbbrev); 4379 unsigned Code = 4380 (UseRelBFRecord ? bitc::FS_PERMODULE_RELBF : bitc::FS_PERMODULE_PROFILE); 4381 4382 // Emit the finished record. 4383 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4384 NameVals.clear(); 4385 } 4386 4387 // Collect the global value references in the given variable's initializer, 4388 // and emit them in a summary record. 4389 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 4390 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 4391 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 4392 auto VI = Index->getValueInfo(V.getGUID()); 4393 if (!VI || VI.getSummaryList().empty()) { 4394 // Only declarations should not have a summary (a declaration might however 4395 // have a summary if the def was in module level asm). 4396 assert(V.isDeclaration()); 4397 return; 4398 } 4399 auto *Summary = VI.getSummaryList()[0].get(); 4400 NameVals.push_back(VE.getValueID(&V)); 4401 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 4402 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4403 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4404 4405 auto VTableFuncs = VS->vTableFuncs(); 4406 if (!VTableFuncs.empty()) 4407 NameVals.push_back(VS->refs().size()); 4408 4409 unsigned SizeBeforeRefs = NameVals.size(); 4410 for (auto &RI : VS->refs()) 4411 NameVals.push_back(VE.getValueID(RI.getValue())); 4412 // Sort the refs for determinism output, the vector returned by FS->refs() has 4413 // been initialized from a DenseSet. 4414 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 4415 4416 if (VTableFuncs.empty()) 4417 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 4418 FSModRefsAbbrev); 4419 else { 4420 // VTableFuncs pairs should already be sorted by offset. 4421 for (auto &P : VTableFuncs) { 4422 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 4423 NameVals.push_back(P.VTableOffset); 4424 } 4425 4426 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 4427 FSModVTableRefsAbbrev); 4428 } 4429 NameVals.clear(); 4430 } 4431 4432 /// Emit the per-module summary section alongside the rest of 4433 /// the module's bitcode. 4434 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 4435 // By default we compile with ThinLTO if the module has a summary, but the 4436 // client can request full LTO with a module flag. 4437 bool IsThinLTO = true; 4438 if (auto *MD = 4439 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 4440 IsThinLTO = MD->getZExtValue(); 4441 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 4442 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 4443 4); 4444 4445 Stream.EmitRecord( 4446 bitc::FS_VERSION, 4447 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4448 4449 // Write the index flags. 4450 uint64_t Flags = 0; 4451 // Bits 1-3 are set only in the combined index, skip them. 4452 if (Index->enableSplitLTOUnit()) 4453 Flags |= 0x8; 4454 if (Index->hasUnifiedLTO()) 4455 Flags |= 0x200; 4456 4457 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4458 4459 if (Index->begin() == Index->end()) { 4460 Stream.ExitBlock(); 4461 return; 4462 } 4463 4464 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4465 Abbv->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID)); 4466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4467 // GUIDS often use up most of 64-bits, so encode as two Fixed 32. 4468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4470 unsigned ValueGuidAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4471 4472 for (const auto &GVI : valueIds()) { 4473 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4474 ArrayRef<uint32_t>{GVI.second, 4475 static_cast<uint32_t>(GVI.first >> 32), 4476 static_cast<uint32_t>(GVI.first)}, 4477 ValueGuidAbbrev); 4478 } 4479 4480 if (!Index->stackIds().empty()) { 4481 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4482 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4483 // numids x stackid 4484 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4485 // The stack ids are hashes that are close to 64 bits in size, so emitting 4486 // as a pair of 32-bit fixed-width values is more efficient than a VBR. 4487 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4488 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4489 SmallVector<uint32_t> Vals; 4490 Vals.reserve(Index->stackIds().size() * 2); 4491 for (auto Id : Index->stackIds()) { 4492 Vals.push_back(static_cast<uint32_t>(Id >> 32)); 4493 Vals.push_back(static_cast<uint32_t>(Id)); 4494 } 4495 Stream.EmitRecord(bitc::FS_STACK_IDS, Vals, StackIdAbbvId); 4496 } 4497 4498 // n x context id 4499 auto ContextIdAbbv = std::make_shared<BitCodeAbbrev>(); 4500 ContextIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_ALLOC_CONTEXT_IDS)); 4501 ContextIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4502 // The context ids are hashes that are close to 64 bits in size, so emitting 4503 // as a pair of 32-bit fixed-width values is more efficient than a VBR. 4504 ContextIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4505 unsigned ContextIdAbbvId = Stream.EmitAbbrev(std::move(ContextIdAbbv)); 4506 4507 // Abbrev for FS_PERMODULE_PROFILE. 4508 Abbv = std::make_shared<BitCodeAbbrev>(); 4509 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4510 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4511 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags 4512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4517 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4518 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4519 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4520 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4521 4522 // Abbrev for FS_PERMODULE_RELBF. 4523 Abbv = std::make_shared<BitCodeAbbrev>(); 4524 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4532 // numrefs x valueid, n x (valueid, rel_block_freq+tailcall]) 4533 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4534 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4535 unsigned FSCallsRelBFAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4536 4537 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4538 Abbv = std::make_shared<BitCodeAbbrev>(); 4539 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4540 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4541 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4542 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4543 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4544 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4545 4546 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4547 Abbv = std::make_shared<BitCodeAbbrev>(); 4548 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4550 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4552 // numrefs x valueid, n x (valueid , offset) 4553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4555 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4556 4557 // Abbrev for FS_ALIAS. 4558 Abbv = std::make_shared<BitCodeAbbrev>(); 4559 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4563 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4564 4565 // Abbrev for FS_TYPE_ID_METADATA 4566 Abbv = std::make_shared<BitCodeAbbrev>(); 4567 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4568 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4570 // n x (valueid , offset) 4571 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4573 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4574 4575 Abbv = std::make_shared<BitCodeAbbrev>(); 4576 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); 4577 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4578 // n x stackidindex 4579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4581 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4582 4583 Abbv = std::make_shared<BitCodeAbbrev>(); 4584 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); 4585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4586 // n x (alloc type, context radix tree index) 4587 // optional: nummib x (numcontext x total size) 4588 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4590 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4591 4592 Abbv = std::make_shared<BitCodeAbbrev>(); 4593 Abbv->Add(BitCodeAbbrevOp(bitc::FS_CONTEXT_RADIX_TREE_ARRAY)); 4594 // n x entry 4595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4597 unsigned RadixAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4598 4599 // First walk through all the functions and collect the allocation contexts in 4600 // their associated summaries, for use in constructing a radix tree of 4601 // contexts. Note that we need to do this in the same order as the functions 4602 // are processed further below since the call stack positions in the resulting 4603 // radix tree array are identified based on this order. 4604 MapVector<CallStackId, llvm::SmallVector<LinearFrameId>> CallStacks; 4605 for (const Function &F : M) { 4606 // Summary emission does not support anonymous functions, they have to be 4607 // renamed using the anonymous function renaming pass. 4608 if (!F.hasName()) 4609 report_fatal_error("Unexpected anonymous function when writing summary"); 4610 4611 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4612 if (!VI || VI.getSummaryList().empty()) { 4613 // Only declarations should not have a summary (a declaration might 4614 // however have a summary if the def was in module level asm). 4615 assert(F.isDeclaration()); 4616 continue; 4617 } 4618 auto *Summary = VI.getSummaryList()[0].get(); 4619 FunctionSummary *FS = cast<FunctionSummary>(Summary); 4620 collectMemProfCallStacks( 4621 FS, /*GetStackIndex*/ [](unsigned I) { return I; }, CallStacks); 4622 } 4623 // Finalize the radix tree, write it out, and get the map of positions in the 4624 // linearized tree array. 4625 DenseMap<CallStackId, LinearCallStackId> CallStackPos; 4626 if (!CallStacks.empty()) { 4627 CallStackPos = 4628 writeMemoryProfileRadixTree(std::move(CallStacks), Stream, RadixAbbrev); 4629 } 4630 4631 // Keep track of the current index into the CallStackPos map. 4632 CallStackId CallStackCount = 0; 4633 4634 SmallVector<uint64_t, 64> NameVals; 4635 // Iterate over the list of functions instead of the Index to 4636 // ensure the ordering is stable. 4637 for (const Function &F : M) { 4638 // Summary emission does not support anonymous functions, they have to 4639 // renamed using the anonymous function renaming pass. 4640 if (!F.hasName()) 4641 report_fatal_error("Unexpected anonymous function when writing summary"); 4642 4643 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4644 if (!VI || VI.getSummaryList().empty()) { 4645 // Only declarations should not have a summary (a declaration might 4646 // however have a summary if the def was in module level asm). 4647 assert(F.isDeclaration()); 4648 continue; 4649 } 4650 auto *Summary = VI.getSummaryList()[0].get(); 4651 writePerModuleFunctionSummaryRecord( 4652 NameVals, Summary, VE.getValueID(&F), FSCallsRelBFAbbrev, 4653 FSCallsProfileAbbrev, CallsiteAbbrev, AllocAbbrev, ContextIdAbbvId, F, 4654 CallStackPos, CallStackCount); 4655 } 4656 4657 // Capture references from GlobalVariable initializers, which are outside 4658 // of a function scope. 4659 for (const GlobalVariable &G : M.globals()) 4660 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4661 FSModVTableRefsAbbrev); 4662 4663 for (const GlobalAlias &A : M.aliases()) { 4664 auto *Aliasee = A.getAliaseeObject(); 4665 // Skip ifunc and nameless functions which don't have an entry in the 4666 // summary. 4667 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4668 continue; 4669 auto AliasId = VE.getValueID(&A); 4670 auto AliaseeId = VE.getValueID(Aliasee); 4671 NameVals.push_back(AliasId); 4672 auto *Summary = Index->getGlobalValueSummary(A); 4673 AliasSummary *AS = cast<AliasSummary>(Summary); 4674 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4675 NameVals.push_back(AliaseeId); 4676 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4677 NameVals.clear(); 4678 } 4679 4680 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4681 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4682 S.second, VE); 4683 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4684 TypeIdCompatibleVtableAbbrev); 4685 NameVals.clear(); 4686 } 4687 4688 if (Index->getBlockCount()) 4689 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4690 ArrayRef<uint64_t>{Index->getBlockCount()}); 4691 4692 Stream.ExitBlock(); 4693 } 4694 4695 /// Emit the combined summary section into the combined index file. 4696 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4697 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 4698 Stream.EmitRecord( 4699 bitc::FS_VERSION, 4700 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4701 4702 // Write the index flags. 4703 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4704 4705 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4706 Abbv->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID)); 4707 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4708 // GUIDS often use up most of 64-bits, so encode as two Fixed 32. 4709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4711 unsigned ValueGuidAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4712 4713 for (const auto &GVI : valueIds()) { 4714 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4715 ArrayRef<uint32_t>{GVI.second, 4716 static_cast<uint32_t>(GVI.first >> 32), 4717 static_cast<uint32_t>(GVI.first)}, 4718 ValueGuidAbbrev); 4719 } 4720 4721 // Write the stack ids used by this index, which will be a subset of those in 4722 // the full index in the case of distributed indexes. 4723 if (!StackIds.empty()) { 4724 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4725 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4726 // numids x stackid 4727 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4728 // The stack ids are hashes that are close to 64 bits in size, so emitting 4729 // as a pair of 32-bit fixed-width values is more efficient than a VBR. 4730 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4731 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4732 SmallVector<uint32_t> Vals; 4733 Vals.reserve(StackIds.size() * 2); 4734 for (auto Id : StackIds) { 4735 Vals.push_back(static_cast<uint32_t>(Id >> 32)); 4736 Vals.push_back(static_cast<uint32_t>(Id)); 4737 } 4738 Stream.EmitRecord(bitc::FS_STACK_IDS, Vals, StackIdAbbvId); 4739 } 4740 4741 // Abbrev for FS_COMBINED_PROFILE. 4742 Abbv = std::make_shared<BitCodeAbbrev>(); 4743 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4744 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4745 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4746 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4747 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4748 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4749 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4751 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4752 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4753 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4754 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4755 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4756 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4757 4758 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4759 Abbv = std::make_shared<BitCodeAbbrev>(); 4760 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4761 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4762 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4763 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4764 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4765 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4766 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4767 4768 // Abbrev for FS_COMBINED_ALIAS. 4769 Abbv = std::make_shared<BitCodeAbbrev>(); 4770 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4771 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4773 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4775 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4776 4777 Abbv = std::make_shared<BitCodeAbbrev>(); 4778 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); 4779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4780 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices 4781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4782 // numstackindices x stackidindex, numver x version 4783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4785 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4786 4787 Abbv = std::make_shared<BitCodeAbbrev>(); 4788 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); 4789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4791 // nummib x (alloc type, context radix tree index), 4792 // numver x version 4793 // optional: nummib x total size 4794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4796 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4797 4798 Abbv = std::make_shared<BitCodeAbbrev>(); 4799 Abbv->Add(BitCodeAbbrevOp(bitc::FS_CONTEXT_RADIX_TREE_ARRAY)); 4800 // n x entry 4801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4803 unsigned RadixAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4804 4805 auto shouldImportValueAsDecl = [&](GlobalValueSummary *GVS) -> bool { 4806 if (DecSummaries == nullptr) 4807 return false; 4808 return DecSummaries->count(GVS); 4809 }; 4810 4811 // The aliases are emitted as a post-pass, and will point to the value 4812 // id of the aliasee. Save them in a vector for post-processing. 4813 SmallVector<AliasSummary *, 64> Aliases; 4814 4815 // Save the value id for each summary for alias emission. 4816 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4817 4818 SmallVector<uint64_t, 64> NameVals; 4819 4820 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4821 // with the type ids referenced by this index file. 4822 std::set<GlobalValue::GUID> ReferencedTypeIds; 4823 4824 // For local linkage, we also emit the original name separately 4825 // immediately after the record. 4826 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4827 // We don't need to emit the original name if we are writing the index for 4828 // distributed backends (in which case ModuleToSummariesForIndex is 4829 // non-null). The original name is only needed during the thin link, since 4830 // for SamplePGO the indirect call targets for local functions have 4831 // have the original name annotated in profile. 4832 // Continue to emit it when writing out the entire combined index, which is 4833 // used in testing the thin link via llvm-lto. 4834 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4835 return; 4836 NameVals.push_back(S.getOriginalName()); 4837 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4838 NameVals.clear(); 4839 }; 4840 4841 // First walk through all the functions and collect the allocation contexts in 4842 // their associated summaries, for use in constructing a radix tree of 4843 // contexts. Note that we need to do this in the same order as the functions 4844 // are processed further below since the call stack positions in the resulting 4845 // radix tree array are identified based on this order. 4846 MapVector<CallStackId, llvm::SmallVector<LinearFrameId>> CallStacks; 4847 forEachSummary([&](GVInfo I, bool IsAliasee) { 4848 GlobalValueSummary *S = I.second; 4849 assert(S); 4850 auto *FS = dyn_cast<FunctionSummary>(S); 4851 if (!FS) 4852 return; 4853 collectMemProfCallStacks( 4854 FS, 4855 /*GetStackIndex*/ 4856 [&](unsigned I) { 4857 // Get the corresponding index into the list of StackIds actually 4858 // being written for this combined index (which may be a subset in 4859 // the case of distributed indexes). 4860 assert(StackIdIndicesToIndex.contains(I)); 4861 return StackIdIndicesToIndex[I]; 4862 }, 4863 CallStacks); 4864 }); 4865 // Finalize the radix tree, write it out, and get the map of positions in the 4866 // linearized tree array. 4867 DenseMap<CallStackId, LinearCallStackId> CallStackPos; 4868 if (!CallStacks.empty()) { 4869 CallStackPos = 4870 writeMemoryProfileRadixTree(std::move(CallStacks), Stream, RadixAbbrev); 4871 } 4872 4873 // Keep track of the current index into the CallStackPos map. 4874 CallStackId CallStackCount = 0; 4875 4876 DenseSet<GlobalValue::GUID> DefOrUseGUIDs; 4877 forEachSummary([&](GVInfo I, bool IsAliasee) { 4878 GlobalValueSummary *S = I.second; 4879 assert(S); 4880 DefOrUseGUIDs.insert(I.first); 4881 for (const ValueInfo &VI : S->refs()) 4882 DefOrUseGUIDs.insert(VI.getGUID()); 4883 4884 auto ValueId = getValueId(I.first); 4885 assert(ValueId); 4886 SummaryToValueIdMap[S] = *ValueId; 4887 4888 // If this is invoked for an aliasee, we want to record the above 4889 // mapping, but then not emit a summary entry (if the aliasee is 4890 // to be imported, we will invoke this separately with IsAliasee=false). 4891 if (IsAliasee) 4892 return; 4893 4894 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4895 // Will process aliases as a post-pass because the reader wants all 4896 // global to be loaded first. 4897 Aliases.push_back(AS); 4898 return; 4899 } 4900 4901 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4902 NameVals.push_back(*ValueId); 4903 assert(ModuleIdMap.count(VS->modulePath())); 4904 NameVals.push_back(ModuleIdMap[VS->modulePath()]); 4905 NameVals.push_back( 4906 getEncodedGVSummaryFlags(VS->flags(), shouldImportValueAsDecl(VS))); 4907 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4908 for (auto &RI : VS->refs()) { 4909 auto RefValueId = getValueId(RI.getGUID()); 4910 if (!RefValueId) 4911 continue; 4912 NameVals.push_back(*RefValueId); 4913 } 4914 4915 // Emit the finished record. 4916 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4917 FSModRefsAbbrev); 4918 NameVals.clear(); 4919 MaybeEmitOriginalName(*S); 4920 return; 4921 } 4922 4923 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { 4924 if (!VI) 4925 return std::nullopt; 4926 return getValueId(VI.getGUID()); 4927 }; 4928 4929 auto *FS = cast<FunctionSummary>(S); 4930 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4931 getReferencedTypeIds(FS, ReferencedTypeIds); 4932 4933 writeFunctionHeapProfileRecords( 4934 Stream, FS, CallsiteAbbrev, AllocAbbrev, /*ContextIdAbbvId*/ 0, 4935 /*PerModule*/ false, 4936 /*GetValueId*/ 4937 [&](const ValueInfo &VI) -> unsigned { 4938 std::optional<unsigned> ValueID = GetValueId(VI); 4939 // This can happen in shared index files for distributed ThinLTO if 4940 // the callee function summary is not included. Record 0 which we 4941 // will have to deal with conservatively when doing any kind of 4942 // validation in the ThinLTO backends. 4943 if (!ValueID) 4944 return 0; 4945 return *ValueID; 4946 }, 4947 /*GetStackIndex*/ 4948 [&](unsigned I) { 4949 // Get the corresponding index into the list of StackIds actually 4950 // being written for this combined index (which may be a subset in 4951 // the case of distributed indexes). 4952 assert(StackIdIndicesToIndex.contains(I)); 4953 return StackIdIndicesToIndex[I]; 4954 }, 4955 /*WriteContextSizeInfoIndex*/ false, CallStackPos, CallStackCount); 4956 4957 NameVals.push_back(*ValueId); 4958 assert(ModuleIdMap.count(FS->modulePath())); 4959 NameVals.push_back(ModuleIdMap[FS->modulePath()]); 4960 NameVals.push_back( 4961 getEncodedGVSummaryFlags(FS->flags(), shouldImportValueAsDecl(FS))); 4962 NameVals.push_back(FS->instCount()); 4963 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4964 // TODO: Stop writing entry count and bump bitcode version. 4965 NameVals.push_back(0 /* EntryCount */); 4966 4967 // Fill in below 4968 NameVals.push_back(0); // numrefs 4969 NameVals.push_back(0); // rorefcnt 4970 NameVals.push_back(0); // worefcnt 4971 4972 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4973 for (auto &RI : FS->refs()) { 4974 auto RefValueId = getValueId(RI.getGUID()); 4975 if (!RefValueId) 4976 continue; 4977 NameVals.push_back(*RefValueId); 4978 if (RI.isReadOnly()) 4979 RORefCnt++; 4980 else if (RI.isWriteOnly()) 4981 WORefCnt++; 4982 Count++; 4983 } 4984 NameVals[6] = Count; 4985 NameVals[7] = RORefCnt; 4986 NameVals[8] = WORefCnt; 4987 4988 for (auto &EI : FS->calls()) { 4989 // If this GUID doesn't have a value id, it doesn't have a function 4990 // summary and we don't need to record any calls to it. 4991 std::optional<unsigned> CallValueId = GetValueId(EI.first); 4992 if (!CallValueId) 4993 continue; 4994 NameVals.push_back(*CallValueId); 4995 NameVals.push_back(getEncodedHotnessCallEdgeInfo(EI.second)); 4996 } 4997 4998 // Emit the finished record. 4999 Stream.EmitRecord(bitc::FS_COMBINED_PROFILE, NameVals, 5000 FSCallsProfileAbbrev); 5001 NameVals.clear(); 5002 MaybeEmitOriginalName(*S); 5003 }); 5004 5005 for (auto *AS : Aliases) { 5006 auto AliasValueId = SummaryToValueIdMap[AS]; 5007 assert(AliasValueId); 5008 NameVals.push_back(AliasValueId); 5009 assert(ModuleIdMap.count(AS->modulePath())); 5010 NameVals.push_back(ModuleIdMap[AS->modulePath()]); 5011 NameVals.push_back( 5012 getEncodedGVSummaryFlags(AS->flags(), shouldImportValueAsDecl(AS))); 5013 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 5014 assert(AliaseeValueId); 5015 NameVals.push_back(AliaseeValueId); 5016 5017 // Emit the finished record. 5018 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 5019 NameVals.clear(); 5020 MaybeEmitOriginalName(*AS); 5021 5022 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 5023 getReferencedTypeIds(FS, ReferencedTypeIds); 5024 } 5025 5026 if (!Index.cfiFunctionDefs().empty()) { 5027 for (auto &S : Index.cfiFunctionDefs()) { 5028 if (DefOrUseGUIDs.contains( 5029 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 5030 NameVals.push_back(StrtabBuilder.add(S)); 5031 NameVals.push_back(S.size()); 5032 } 5033 } 5034 if (!NameVals.empty()) { 5035 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 5036 NameVals.clear(); 5037 } 5038 } 5039 5040 if (!Index.cfiFunctionDecls().empty()) { 5041 for (auto &S : Index.cfiFunctionDecls()) { 5042 if (DefOrUseGUIDs.contains( 5043 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 5044 NameVals.push_back(StrtabBuilder.add(S)); 5045 NameVals.push_back(S.size()); 5046 } 5047 } 5048 if (!NameVals.empty()) { 5049 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 5050 NameVals.clear(); 5051 } 5052 } 5053 5054 // Walk the GUIDs that were referenced, and write the 5055 // corresponding type id records. 5056 for (auto &T : ReferencedTypeIds) { 5057 auto TidIter = Index.typeIds().equal_range(T); 5058 for (const auto &[GUID, TypeIdPair] : make_range(TidIter)) { 5059 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, TypeIdPair.first, 5060 TypeIdPair.second); 5061 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 5062 NameVals.clear(); 5063 } 5064 } 5065 5066 if (Index.getBlockCount()) 5067 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 5068 ArrayRef<uint64_t>{Index.getBlockCount()}); 5069 5070 Stream.ExitBlock(); 5071 } 5072 5073 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 5074 /// current llvm version, and a record for the epoch number. 5075 static void writeIdentificationBlock(BitstreamWriter &Stream) { 5076 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 5077 5078 // Write the "user readable" string identifying the bitcode producer 5079 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5080 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 5081 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 5082 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 5083 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5084 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 5085 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 5086 5087 // Write the epoch version 5088 Abbv = std::make_shared<BitCodeAbbrev>(); 5089 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 5090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 5091 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5092 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 5093 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 5094 Stream.ExitBlock(); 5095 } 5096 5097 void ModuleBitcodeWriter::writeModuleHash(StringRef View) { 5098 // Emit the module's hash. 5099 // MODULE_CODE_HASH: [5*i32] 5100 if (GenerateHash) { 5101 uint32_t Vals[5]; 5102 Hasher.update(ArrayRef<uint8_t>( 5103 reinterpret_cast<const uint8_t *>(View.data()), View.size())); 5104 std::array<uint8_t, 20> Hash = Hasher.result(); 5105 for (int Pos = 0; Pos < 20; Pos += 4) { 5106 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 5107 } 5108 5109 // Emit the finished record. 5110 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 5111 5112 if (ModHash) 5113 // Save the written hash value. 5114 llvm::copy(Vals, std::begin(*ModHash)); 5115 } 5116 } 5117 5118 void ModuleBitcodeWriter::write() { 5119 writeIdentificationBlock(Stream); 5120 5121 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5122 // We will want to write the module hash at this point. Block any flushing so 5123 // we can have access to the whole underlying data later. 5124 Stream.markAndBlockFlushing(); 5125 5126 writeModuleVersion(); 5127 5128 // Emit blockinfo, which defines the standard abbreviations etc. 5129 writeBlockInfo(); 5130 5131 // Emit information describing all of the types in the module. 5132 writeTypeTable(); 5133 5134 // Emit information about attribute groups. 5135 writeAttributeGroupTable(); 5136 5137 // Emit information about parameter attributes. 5138 writeAttributeTable(); 5139 5140 writeComdats(); 5141 5142 // Emit top-level description of module, including target triple, inline asm, 5143 // descriptors for global variables, and function prototype info. 5144 writeModuleInfo(); 5145 5146 // Emit constants. 5147 writeModuleConstants(); 5148 5149 // Emit metadata kind names. 5150 writeModuleMetadataKinds(); 5151 5152 // Emit metadata. 5153 writeModuleMetadata(); 5154 5155 // Emit module-level use-lists. 5156 if (VE.shouldPreserveUseListOrder()) 5157 writeUseListBlock(nullptr); 5158 5159 writeOperandBundleTags(); 5160 writeSyncScopeNames(); 5161 5162 // Emit function bodies. 5163 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 5164 for (const Function &F : M) 5165 if (!F.isDeclaration()) 5166 writeFunction(F, FunctionToBitcodeIndex); 5167 5168 // Need to write after the above call to WriteFunction which populates 5169 // the summary information in the index. 5170 if (Index) 5171 writePerModuleGlobalValueSummary(); 5172 5173 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 5174 5175 writeModuleHash(Stream.getMarkedBufferAndResumeFlushing()); 5176 5177 Stream.ExitBlock(); 5178 } 5179 5180 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 5181 uint32_t &Position) { 5182 support::endian::write32le(&Buffer[Position], Value); 5183 Position += 4; 5184 } 5185 5186 /// If generating a bc file on darwin, we have to emit a 5187 /// header and trailer to make it compatible with the system archiver. To do 5188 /// this we emit the following header, and then emit a trailer that pads the 5189 /// file out to be a multiple of 16 bytes. 5190 /// 5191 /// struct bc_header { 5192 /// uint32_t Magic; // 0x0B17C0DE 5193 /// uint32_t Version; // Version, currently always 0. 5194 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 5195 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 5196 /// uint32_t CPUType; // CPU specifier. 5197 /// ... potentially more later ... 5198 /// }; 5199 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 5200 const Triple &TT) { 5201 unsigned CPUType = ~0U; 5202 5203 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 5204 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 5205 // number from /usr/include/mach/machine.h. It is ok to reproduce the 5206 // specific constants here because they are implicitly part of the Darwin ABI. 5207 enum { 5208 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 5209 DARWIN_CPU_TYPE_X86 = 7, 5210 DARWIN_CPU_TYPE_ARM = 12, 5211 DARWIN_CPU_TYPE_POWERPC = 18 5212 }; 5213 5214 Triple::ArchType Arch = TT.getArch(); 5215 if (Arch == Triple::x86_64) 5216 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 5217 else if (Arch == Triple::x86) 5218 CPUType = DARWIN_CPU_TYPE_X86; 5219 else if (Arch == Triple::ppc) 5220 CPUType = DARWIN_CPU_TYPE_POWERPC; 5221 else if (Arch == Triple::ppc64) 5222 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 5223 else if (Arch == Triple::arm || Arch == Triple::thumb) 5224 CPUType = DARWIN_CPU_TYPE_ARM; 5225 5226 // Traditional Bitcode starts after header. 5227 assert(Buffer.size() >= BWH_HeaderSize && 5228 "Expected header size to be reserved"); 5229 unsigned BCOffset = BWH_HeaderSize; 5230 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 5231 5232 // Write the magic and version. 5233 unsigned Position = 0; 5234 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 5235 writeInt32ToBuffer(0, Buffer, Position); // Version. 5236 writeInt32ToBuffer(BCOffset, Buffer, Position); 5237 writeInt32ToBuffer(BCSize, Buffer, Position); 5238 writeInt32ToBuffer(CPUType, Buffer, Position); 5239 5240 // If the file is not a multiple of 16 bytes, insert dummy padding. 5241 while (Buffer.size() & 15) 5242 Buffer.push_back(0); 5243 } 5244 5245 /// Helper to write the header common to all bitcode files. 5246 static void writeBitcodeHeader(BitstreamWriter &Stream) { 5247 // Emit the file header. 5248 Stream.Emit((unsigned)'B', 8); 5249 Stream.Emit((unsigned)'C', 8); 5250 Stream.Emit(0x0, 4); 5251 Stream.Emit(0xC, 4); 5252 Stream.Emit(0xE, 4); 5253 Stream.Emit(0xD, 4); 5254 } 5255 5256 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 5257 : Stream(new BitstreamWriter(Buffer)) { 5258 writeBitcodeHeader(*Stream); 5259 } 5260 5261 BitcodeWriter::BitcodeWriter(raw_ostream &FS) 5262 : Stream(new BitstreamWriter(FS, FlushThreshold)) { 5263 writeBitcodeHeader(*Stream); 5264 } 5265 5266 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 5267 5268 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 5269 Stream->EnterSubblock(Block, 3); 5270 5271 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5272 Abbv->Add(BitCodeAbbrevOp(Record)); 5273 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 5274 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 5275 5276 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 5277 5278 Stream->ExitBlock(); 5279 } 5280 5281 void BitcodeWriter::writeSymtab() { 5282 assert(!WroteStrtab && !WroteSymtab); 5283 5284 // If any module has module-level inline asm, we will require a registered asm 5285 // parser for the target so that we can create an accurate symbol table for 5286 // the module. 5287 for (Module *M : Mods) { 5288 if (M->getModuleInlineAsm().empty()) 5289 continue; 5290 5291 std::string Err; 5292 const Triple TT(M->getTargetTriple()); 5293 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 5294 if (!T || !T->hasMCAsmParser()) 5295 return; 5296 } 5297 5298 WroteSymtab = true; 5299 SmallVector<char, 0> Symtab; 5300 // The irsymtab::build function may be unable to create a symbol table if the 5301 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 5302 // table is not required for correctness, but we still want to be able to 5303 // write malformed modules to bitcode files, so swallow the error. 5304 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 5305 consumeError(std::move(E)); 5306 return; 5307 } 5308 5309 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 5310 {Symtab.data(), Symtab.size()}); 5311 } 5312 5313 void BitcodeWriter::writeStrtab() { 5314 assert(!WroteStrtab); 5315 5316 std::vector<char> Strtab; 5317 StrtabBuilder.finalizeInOrder(); 5318 Strtab.resize(StrtabBuilder.getSize()); 5319 StrtabBuilder.write((uint8_t *)Strtab.data()); 5320 5321 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 5322 {Strtab.data(), Strtab.size()}); 5323 5324 WroteStrtab = true; 5325 } 5326 5327 void BitcodeWriter::copyStrtab(StringRef Strtab) { 5328 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 5329 WroteStrtab = true; 5330 } 5331 5332 void BitcodeWriter::writeModule(const Module &M, 5333 bool ShouldPreserveUseListOrder, 5334 const ModuleSummaryIndex *Index, 5335 bool GenerateHash, ModuleHash *ModHash) { 5336 assert(!WroteStrtab); 5337 5338 // The Mods vector is used by irsymtab::build, which requires non-const 5339 // Modules in case it needs to materialize metadata. But the bitcode writer 5340 // requires that the module is materialized, so we can cast to non-const here, 5341 // after checking that it is in fact materialized. 5342 assert(M.isMaterialized()); 5343 Mods.push_back(const_cast<Module *>(&M)); 5344 5345 ModuleBitcodeWriter ModuleWriter(M, StrtabBuilder, *Stream, 5346 ShouldPreserveUseListOrder, Index, 5347 GenerateHash, ModHash); 5348 ModuleWriter.write(); 5349 } 5350 5351 void BitcodeWriter::writeIndex( 5352 const ModuleSummaryIndex *Index, 5353 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex, 5354 const GVSummaryPtrSet *DecSummaries) { 5355 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, DecSummaries, 5356 ModuleToSummariesForIndex); 5357 IndexWriter.write(); 5358 } 5359 5360 /// Write the specified module to the specified output stream. 5361 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 5362 bool ShouldPreserveUseListOrder, 5363 const ModuleSummaryIndex *Index, 5364 bool GenerateHash, ModuleHash *ModHash) { 5365 auto Write = [&](BitcodeWriter &Writer) { 5366 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 5367 ModHash); 5368 Writer.writeSymtab(); 5369 Writer.writeStrtab(); 5370 }; 5371 Triple TT(M.getTargetTriple()); 5372 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) { 5373 // If this is darwin or another generic macho target, reserve space for the 5374 // header. Note that the header is computed *after* the output is known, so 5375 // we currently explicitly use a buffer, write to it, and then subsequently 5376 // flush to Out. 5377 SmallVector<char, 0> Buffer; 5378 Buffer.reserve(256 * 1024); 5379 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 5380 BitcodeWriter Writer(Buffer); 5381 Write(Writer); 5382 emitDarwinBCHeaderAndTrailer(Buffer, TT); 5383 Out.write(Buffer.data(), Buffer.size()); 5384 } else { 5385 BitcodeWriter Writer(Out); 5386 Write(Writer); 5387 } 5388 } 5389 5390 void IndexBitcodeWriter::write() { 5391 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5392 5393 writeModuleVersion(); 5394 5395 // Write the module paths in the combined index. 5396 writeModStrings(); 5397 5398 // Write the summary combined index records. 5399 writeCombinedGlobalValueSummary(); 5400 5401 Stream.ExitBlock(); 5402 } 5403 5404 // Write the specified module summary index to the given raw output stream, 5405 // where it will be written in a new bitcode block. This is used when 5406 // writing the combined index file for ThinLTO. When writing a subset of the 5407 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 5408 void llvm::writeIndexToFile( 5409 const ModuleSummaryIndex &Index, raw_ostream &Out, 5410 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex, 5411 const GVSummaryPtrSet *DecSummaries) { 5412 SmallVector<char, 0> Buffer; 5413 Buffer.reserve(256 * 1024); 5414 5415 BitcodeWriter Writer(Buffer); 5416 Writer.writeIndex(&Index, ModuleToSummariesForIndex, DecSummaries); 5417 Writer.writeStrtab(); 5418 5419 Out.write((char *)&Buffer.front(), Buffer.size()); 5420 } 5421 5422 namespace { 5423 5424 /// Class to manage the bitcode writing for a thin link bitcode file. 5425 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 5426 /// ModHash is for use in ThinLTO incremental build, generated while writing 5427 /// the module bitcode file. 5428 const ModuleHash *ModHash; 5429 5430 public: 5431 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 5432 BitstreamWriter &Stream, 5433 const ModuleSummaryIndex &Index, 5434 const ModuleHash &ModHash) 5435 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 5436 /*ShouldPreserveUseListOrder=*/false, &Index), 5437 ModHash(&ModHash) {} 5438 5439 void write(); 5440 5441 private: 5442 void writeSimplifiedModuleInfo(); 5443 }; 5444 5445 } // end anonymous namespace 5446 5447 // This function writes a simpilified module info for thin link bitcode file. 5448 // It only contains the source file name along with the name(the offset and 5449 // size in strtab) and linkage for global values. For the global value info 5450 // entry, in order to keep linkage at offset 5, there are three zeros used 5451 // as padding. 5452 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 5453 SmallVector<unsigned, 64> Vals; 5454 // Emit the module's source file name. 5455 { 5456 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 5457 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 5458 if (Bits == SE_Char6) 5459 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 5460 else if (Bits == SE_Fixed7) 5461 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 5462 5463 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5464 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5465 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 5466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 5467 Abbv->Add(AbbrevOpToUse); 5468 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5469 5470 for (const auto P : M.getSourceFileName()) 5471 Vals.push_back((unsigned char)P); 5472 5473 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 5474 Vals.clear(); 5475 } 5476 5477 // Emit the global variable information. 5478 for (const GlobalVariable &GV : M.globals()) { 5479 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 5480 Vals.push_back(StrtabBuilder.add(GV.getName())); 5481 Vals.push_back(GV.getName().size()); 5482 Vals.push_back(0); 5483 Vals.push_back(0); 5484 Vals.push_back(0); 5485 Vals.push_back(getEncodedLinkage(GV)); 5486 5487 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 5488 Vals.clear(); 5489 } 5490 5491 // Emit the function proto information. 5492 for (const Function &F : M) { 5493 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 5494 Vals.push_back(StrtabBuilder.add(F.getName())); 5495 Vals.push_back(F.getName().size()); 5496 Vals.push_back(0); 5497 Vals.push_back(0); 5498 Vals.push_back(0); 5499 Vals.push_back(getEncodedLinkage(F)); 5500 5501 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 5502 Vals.clear(); 5503 } 5504 5505 // Emit the alias information. 5506 for (const GlobalAlias &A : M.aliases()) { 5507 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 5508 Vals.push_back(StrtabBuilder.add(A.getName())); 5509 Vals.push_back(A.getName().size()); 5510 Vals.push_back(0); 5511 Vals.push_back(0); 5512 Vals.push_back(0); 5513 Vals.push_back(getEncodedLinkage(A)); 5514 5515 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 5516 Vals.clear(); 5517 } 5518 5519 // Emit the ifunc information. 5520 for (const GlobalIFunc &I : M.ifuncs()) { 5521 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 5522 Vals.push_back(StrtabBuilder.add(I.getName())); 5523 Vals.push_back(I.getName().size()); 5524 Vals.push_back(0); 5525 Vals.push_back(0); 5526 Vals.push_back(0); 5527 Vals.push_back(getEncodedLinkage(I)); 5528 5529 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 5530 Vals.clear(); 5531 } 5532 } 5533 5534 void ThinLinkBitcodeWriter::write() { 5535 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5536 5537 writeModuleVersion(); 5538 5539 writeSimplifiedModuleInfo(); 5540 5541 writePerModuleGlobalValueSummary(); 5542 5543 // Write module hash. 5544 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 5545 5546 Stream.ExitBlock(); 5547 } 5548 5549 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 5550 const ModuleSummaryIndex &Index, 5551 const ModuleHash &ModHash) { 5552 assert(!WroteStrtab); 5553 5554 // The Mods vector is used by irsymtab::build, which requires non-const 5555 // Modules in case it needs to materialize metadata. But the bitcode writer 5556 // requires that the module is materialized, so we can cast to non-const here, 5557 // after checking that it is in fact materialized. 5558 assert(M.isMaterialized()); 5559 Mods.push_back(const_cast<Module *>(&M)); 5560 5561 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 5562 ModHash); 5563 ThinLinkWriter.write(); 5564 } 5565 5566 // Write the specified thin link bitcode file to the given raw output stream, 5567 // where it will be written in a new bitcode block. This is used when 5568 // writing the per-module index file for ThinLTO. 5569 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 5570 const ModuleSummaryIndex &Index, 5571 const ModuleHash &ModHash) { 5572 SmallVector<char, 0> Buffer; 5573 Buffer.reserve(256 * 1024); 5574 5575 BitcodeWriter Writer(Buffer); 5576 Writer.writeThinLinkBitcode(M, Index, ModHash); 5577 Writer.writeSymtab(); 5578 Writer.writeStrtab(); 5579 5580 Out.write((char *)&Buffer.front(), Buffer.size()); 5581 } 5582 5583 static const char *getSectionNameForBitcode(const Triple &T) { 5584 switch (T.getObjectFormat()) { 5585 case Triple::MachO: 5586 return "__LLVM,__bitcode"; 5587 case Triple::COFF: 5588 case Triple::ELF: 5589 case Triple::Wasm: 5590 case Triple::UnknownObjectFormat: 5591 return ".llvmbc"; 5592 case Triple::GOFF: 5593 llvm_unreachable("GOFF is not yet implemented"); 5594 break; 5595 case Triple::SPIRV: 5596 if (T.getVendor() == Triple::AMD) 5597 return ".llvmbc"; 5598 llvm_unreachable("SPIRV is not yet implemented"); 5599 break; 5600 case Triple::XCOFF: 5601 llvm_unreachable("XCOFF is not yet implemented"); 5602 break; 5603 case Triple::DXContainer: 5604 llvm_unreachable("DXContainer is not yet implemented"); 5605 break; 5606 } 5607 llvm_unreachable("Unimplemented ObjectFormatType"); 5608 } 5609 5610 static const char *getSectionNameForCommandline(const Triple &T) { 5611 switch (T.getObjectFormat()) { 5612 case Triple::MachO: 5613 return "__LLVM,__cmdline"; 5614 case Triple::COFF: 5615 case Triple::ELF: 5616 case Triple::Wasm: 5617 case Triple::UnknownObjectFormat: 5618 return ".llvmcmd"; 5619 case Triple::GOFF: 5620 llvm_unreachable("GOFF is not yet implemented"); 5621 break; 5622 case Triple::SPIRV: 5623 if (T.getVendor() == Triple::AMD) 5624 return ".llvmcmd"; 5625 llvm_unreachable("SPIRV is not yet implemented"); 5626 break; 5627 case Triple::XCOFF: 5628 llvm_unreachable("XCOFF is not yet implemented"); 5629 break; 5630 case Triple::DXContainer: 5631 llvm_unreachable("DXC is not yet implemented"); 5632 break; 5633 } 5634 llvm_unreachable("Unimplemented ObjectFormatType"); 5635 } 5636 5637 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 5638 bool EmbedBitcode, bool EmbedCmdline, 5639 const std::vector<uint8_t> &CmdArgs) { 5640 // Save llvm.compiler.used and remove it. 5641 SmallVector<Constant *, 2> UsedArray; 5642 SmallVector<GlobalValue *, 4> UsedGlobals; 5643 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 5644 Type *UsedElementType = Used ? Used->getValueType()->getArrayElementType() 5645 : PointerType::getUnqual(M.getContext()); 5646 for (auto *GV : UsedGlobals) { 5647 if (GV->getName() != "llvm.embedded.module" && 5648 GV->getName() != "llvm.cmdline") 5649 UsedArray.push_back( 5650 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5651 } 5652 if (Used) 5653 Used->eraseFromParent(); 5654 5655 // Embed the bitcode for the llvm module. 5656 std::string Data; 5657 ArrayRef<uint8_t> ModuleData; 5658 Triple T(M.getTargetTriple()); 5659 5660 if (EmbedBitcode) { 5661 if (Buf.getBufferSize() == 0 || 5662 !isBitcode((const unsigned char *)Buf.getBufferStart(), 5663 (const unsigned char *)Buf.getBufferEnd())) { 5664 // If the input is LLVM Assembly, bitcode is produced by serializing 5665 // the module. Use-lists order need to be preserved in this case. 5666 llvm::raw_string_ostream OS(Data); 5667 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 5668 ModuleData = 5669 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 5670 } else 5671 // If the input is LLVM bitcode, write the input byte stream directly. 5672 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5673 Buf.getBufferSize()); 5674 } 5675 llvm::Constant *ModuleConstant = 5676 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5677 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5678 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5679 ModuleConstant); 5680 GV->setSection(getSectionNameForBitcode(T)); 5681 // Set alignment to 1 to prevent padding between two contributions from input 5682 // sections after linking. 5683 GV->setAlignment(Align(1)); 5684 UsedArray.push_back( 5685 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5686 if (llvm::GlobalVariable *Old = 5687 M.getGlobalVariable("llvm.embedded.module", true)) { 5688 assert(Old->hasZeroLiveUses() && 5689 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5690 GV->takeName(Old); 5691 Old->eraseFromParent(); 5692 } else { 5693 GV->setName("llvm.embedded.module"); 5694 } 5695 5696 // Skip if only bitcode needs to be embedded. 5697 if (EmbedCmdline) { 5698 // Embed command-line options. 5699 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5700 CmdArgs.size()); 5701 llvm::Constant *CmdConstant = 5702 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5703 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5704 llvm::GlobalValue::PrivateLinkage, 5705 CmdConstant); 5706 GV->setSection(getSectionNameForCommandline(T)); 5707 GV->setAlignment(Align(1)); 5708 UsedArray.push_back( 5709 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5710 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5711 assert(Old->hasZeroLiveUses() && 5712 "llvm.cmdline can only be used once in llvm.compiler.used"); 5713 GV->takeName(Old); 5714 Old->eraseFromParent(); 5715 } else { 5716 GV->setName("llvm.cmdline"); 5717 } 5718 } 5719 5720 if (UsedArray.empty()) 5721 return; 5722 5723 // Recreate llvm.compiler.used. 5724 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5725 auto *NewUsed = new GlobalVariable( 5726 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5727 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5728 NewUsed->setSection("llvm.metadata"); 5729 } 5730