1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by Chris Lattner and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/ParameterAttributes.h" 24 #include "llvm/TypeSymbolTable.h" 25 #include "llvm/ValueSymbolTable.h" 26 #include "llvm/Support/MathExtras.h" 27 using namespace llvm; 28 29 /// These are manifest constants used by the bitcode writer. They do not need to 30 /// be kept in sync with the reader, but need to be consistent within this file. 31 enum { 32 CurVersion = 0, 33 34 // VALUE_SYMTAB_BLOCK abbrev id's. 35 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 36 VST_ENTRY_7_ABBREV, 37 VST_ENTRY_6_ABBREV, 38 VST_BBENTRY_6_ABBREV, 39 40 // CONSTANTS_BLOCK abbrev id's. 41 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 CONSTANTS_INTEGER_ABBREV, 43 CONSTANTS_CE_CAST_Abbrev, 44 CONSTANTS_NULL_Abbrev, 45 46 // FUNCTION_BLOCK abbrev id's. 47 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 FUNCTION_INST_BINOP_ABBREV, 49 FUNCTION_INST_CAST_ABBREV, 50 FUNCTION_INST_RET_VOID_ABBREV, 51 FUNCTION_INST_RET_VAL_ABBREV, 52 FUNCTION_INST_UNREACHABLE_ABBREV 53 }; 54 55 56 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 57 switch (Opcode) { 58 default: assert(0 && "Unknown cast instruction!"); 59 case Instruction::Trunc : return bitc::CAST_TRUNC; 60 case Instruction::ZExt : return bitc::CAST_ZEXT; 61 case Instruction::SExt : return bitc::CAST_SEXT; 62 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 63 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 64 case Instruction::UIToFP : return bitc::CAST_UITOFP; 65 case Instruction::SIToFP : return bitc::CAST_SITOFP; 66 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 67 case Instruction::FPExt : return bitc::CAST_FPEXT; 68 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 69 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 70 case Instruction::BitCast : return bitc::CAST_BITCAST; 71 } 72 } 73 74 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 75 switch (Opcode) { 76 default: assert(0 && "Unknown binary instruction!"); 77 case Instruction::Add: return bitc::BINOP_ADD; 78 case Instruction::Sub: return bitc::BINOP_SUB; 79 case Instruction::Mul: return bitc::BINOP_MUL; 80 case Instruction::UDiv: return bitc::BINOP_UDIV; 81 case Instruction::FDiv: 82 case Instruction::SDiv: return bitc::BINOP_SDIV; 83 case Instruction::URem: return bitc::BINOP_UREM; 84 case Instruction::FRem: 85 case Instruction::SRem: return bitc::BINOP_SREM; 86 case Instruction::Shl: return bitc::BINOP_SHL; 87 case Instruction::LShr: return bitc::BINOP_LSHR; 88 case Instruction::AShr: return bitc::BINOP_ASHR; 89 case Instruction::And: return bitc::BINOP_AND; 90 case Instruction::Or: return bitc::BINOP_OR; 91 case Instruction::Xor: return bitc::BINOP_XOR; 92 } 93 } 94 95 96 97 static void WriteStringRecord(unsigned Code, const std::string &Str, 98 unsigned AbbrevToUse, BitstreamWriter &Stream) { 99 SmallVector<unsigned, 64> Vals; 100 101 // Code: [strchar x N] 102 for (unsigned i = 0, e = Str.size(); i != e; ++i) 103 Vals.push_back(Str[i]); 104 105 // Emit the finished record. 106 Stream.EmitRecord(Code, Vals, AbbrevToUse); 107 } 108 109 // Emit information about parameter attributes. 110 static void WriteParamAttrTable(const ValueEnumerator &VE, 111 BitstreamWriter &Stream) { 112 const std::vector<const ParamAttrsList*> &Attrs = VE.getParamAttrs(); 113 if (Attrs.empty()) return; 114 115 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 116 117 SmallVector<uint64_t, 64> Record; 118 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 119 const ParamAttrsList *A = Attrs[i]; 120 for (unsigned op = 0, e = A->size(); op != e; ++op) { 121 Record.push_back(A->getParamIndex(op)); 122 Record.push_back(A->getParamAttrsAtIndex(op)); 123 } 124 125 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 126 Record.clear(); 127 } 128 129 Stream.ExitBlock(); 130 } 131 132 /// WriteTypeTable - Write out the type table for a module. 133 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 134 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 135 136 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 137 SmallVector<uint64_t, 64> TypeVals; 138 139 // Abbrev for TYPE_CODE_POINTER. 140 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 141 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 143 Log2_32_Ceil(VE.getTypes().size()+1))); 144 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 145 146 // Abbrev for TYPE_CODE_FUNCTION. 147 Abbv = new BitCodeAbbrev(); 148 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 151 Log2_32_Ceil(VE.getParamAttrs().size()+1))); 152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 154 Log2_32_Ceil(VE.getTypes().size()+1))); 155 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 156 157 // Abbrev for TYPE_CODE_STRUCT. 158 Abbv = new BitCodeAbbrev(); 159 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 163 Log2_32_Ceil(VE.getTypes().size()+1))); 164 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 165 166 // Abbrev for TYPE_CODE_ARRAY. 167 Abbv = new BitCodeAbbrev(); 168 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 171 Log2_32_Ceil(VE.getTypes().size()+1))); 172 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 173 174 // Emit an entry count so the reader can reserve space. 175 TypeVals.push_back(TypeList.size()); 176 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 177 TypeVals.clear(); 178 179 // Loop over all of the types, emitting each in turn. 180 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 181 const Type *T = TypeList[i].first; 182 int AbbrevToUse = 0; 183 unsigned Code = 0; 184 185 switch (T->getTypeID()) { 186 case Type::PackedStructTyID: // FIXME: Delete Type::PackedStructTyID. 187 default: assert(0 && "Unknown type!"); 188 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 189 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 190 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 191 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 192 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 193 case Type::IntegerTyID: 194 // INTEGER: [width] 195 Code = bitc::TYPE_CODE_INTEGER; 196 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 197 break; 198 case Type::PointerTyID: 199 // POINTER: [pointee type] 200 Code = bitc::TYPE_CODE_POINTER; 201 TypeVals.push_back(VE.getTypeID(cast<PointerType>(T)->getElementType())); 202 AbbrevToUse = PtrAbbrev; 203 break; 204 205 case Type::FunctionTyID: { 206 const FunctionType *FT = cast<FunctionType>(T); 207 // FUNCTION: [isvararg, attrid, retty, paramty x N] 208 Code = bitc::TYPE_CODE_FUNCTION; 209 TypeVals.push_back(FT->isVarArg()); 210 TypeVals.push_back(VE.getParamAttrID(FT->getParamAttrs())); 211 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 212 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 213 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 214 AbbrevToUse = FunctionAbbrev; 215 break; 216 } 217 case Type::StructTyID: { 218 const StructType *ST = cast<StructType>(T); 219 // STRUCT: [ispacked, eltty x N] 220 Code = bitc::TYPE_CODE_STRUCT; 221 TypeVals.push_back(ST->isPacked()); 222 // Output all of the element types. 223 for (StructType::element_iterator I = ST->element_begin(), 224 E = ST->element_end(); I != E; ++I) 225 TypeVals.push_back(VE.getTypeID(*I)); 226 AbbrevToUse = StructAbbrev; 227 break; 228 } 229 case Type::ArrayTyID: { 230 const ArrayType *AT = cast<ArrayType>(T); 231 // ARRAY: [numelts, eltty] 232 Code = bitc::TYPE_CODE_ARRAY; 233 TypeVals.push_back(AT->getNumElements()); 234 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 235 AbbrevToUse = ArrayAbbrev; 236 break; 237 } 238 case Type::VectorTyID: { 239 const VectorType *VT = cast<VectorType>(T); 240 // VECTOR [numelts, eltty] 241 Code = bitc::TYPE_CODE_VECTOR; 242 TypeVals.push_back(VT->getNumElements()); 243 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 244 break; 245 } 246 } 247 248 // Emit the finished record. 249 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 250 TypeVals.clear(); 251 } 252 253 Stream.ExitBlock(); 254 } 255 256 static unsigned getEncodedLinkage(const GlobalValue *GV) { 257 switch (GV->getLinkage()) { 258 default: assert(0 && "Invalid linkage!"); 259 case GlobalValue::GhostLinkage: // Map ghost linkage onto external. 260 case GlobalValue::ExternalLinkage: return 0; 261 case GlobalValue::WeakLinkage: return 1; 262 case GlobalValue::AppendingLinkage: return 2; 263 case GlobalValue::InternalLinkage: return 3; 264 case GlobalValue::LinkOnceLinkage: return 4; 265 case GlobalValue::DLLImportLinkage: return 5; 266 case GlobalValue::DLLExportLinkage: return 6; 267 case GlobalValue::ExternalWeakLinkage: return 7; 268 } 269 } 270 271 static unsigned getEncodedVisibility(const GlobalValue *GV) { 272 switch (GV->getVisibility()) { 273 default: assert(0 && "Invalid visibility!"); 274 case GlobalValue::DefaultVisibility: return 0; 275 case GlobalValue::HiddenVisibility: return 1; 276 case GlobalValue::ProtectedVisibility: return 2; 277 } 278 } 279 280 // Emit top-level description of module, including target triple, inline asm, 281 // descriptors for global variables, and function prototype info. 282 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 283 BitstreamWriter &Stream) { 284 // Emit the list of dependent libraries for the Module. 285 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 286 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 287 288 // Emit various pieces of data attached to a module. 289 if (!M->getTargetTriple().empty()) 290 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 291 0/*TODO*/, Stream); 292 if (!M->getDataLayout().empty()) 293 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 294 0/*TODO*/, Stream); 295 if (!M->getModuleInlineAsm().empty()) 296 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 297 0/*TODO*/, Stream); 298 299 // Emit information about sections, computing how many there are. Also 300 // compute the maximum alignment value. 301 std::map<std::string, unsigned> SectionMap; 302 unsigned MaxAlignment = 0; 303 unsigned MaxGlobalType = 0; 304 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 305 GV != E; ++GV) { 306 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 307 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 308 309 if (!GV->hasSection()) continue; 310 // Give section names unique ID's. 311 unsigned &Entry = SectionMap[GV->getSection()]; 312 if (Entry != 0) continue; 313 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 314 0/*TODO*/, Stream); 315 Entry = SectionMap.size(); 316 } 317 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 318 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 319 if (!F->hasSection()) continue; 320 // Give section names unique ID's. 321 unsigned &Entry = SectionMap[F->getSection()]; 322 if (Entry != 0) continue; 323 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 324 0/*TODO*/, Stream); 325 Entry = SectionMap.size(); 326 } 327 328 // Emit abbrev for globals, now that we know # sections and max alignment. 329 unsigned SimpleGVarAbbrev = 0; 330 if (!M->global_empty()) { 331 // Add an abbrev for common globals with no visibility or thread localness. 332 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 333 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 335 Log2_32_Ceil(MaxGlobalType+1))); 336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Linkage. 339 if (MaxAlignment == 0) // Alignment. 340 Abbv->Add(BitCodeAbbrevOp(0)); 341 else { 342 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 344 Log2_32_Ceil(MaxEncAlignment+1))); 345 } 346 if (SectionMap.empty()) // Section. 347 Abbv->Add(BitCodeAbbrevOp(0)); 348 else 349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 350 Log2_32_Ceil(SectionMap.size()+1))); 351 // Don't bother emitting vis + thread local. 352 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 353 } 354 355 // Emit the global variable information. 356 SmallVector<unsigned, 64> Vals; 357 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 358 GV != E; ++GV) { 359 unsigned AbbrevToUse = 0; 360 361 // GLOBALVAR: [type, isconst, initid, 362 // linkage, alignment, section, visibility, threadlocal] 363 Vals.push_back(VE.getTypeID(GV->getType())); 364 Vals.push_back(GV->isConstant()); 365 Vals.push_back(GV->isDeclaration() ? 0 : 366 (VE.getValueID(GV->getInitializer()) + 1)); 367 Vals.push_back(getEncodedLinkage(GV)); 368 Vals.push_back(Log2_32(GV->getAlignment())+1); 369 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 370 if (GV->isThreadLocal() || 371 GV->getVisibility() != GlobalValue::DefaultVisibility) { 372 Vals.push_back(getEncodedVisibility(GV)); 373 Vals.push_back(GV->isThreadLocal()); 374 } else { 375 AbbrevToUse = SimpleGVarAbbrev; 376 } 377 378 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 379 Vals.clear(); 380 } 381 382 // Emit the function proto information. 383 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 384 // FUNCTION: [type, callingconv, isproto, linkage, alignment, section, 385 // visibility] 386 Vals.push_back(VE.getTypeID(F->getType())); 387 Vals.push_back(F->getCallingConv()); 388 Vals.push_back(F->isDeclaration()); 389 Vals.push_back(getEncodedLinkage(F)); 390 391 // Note: we emit the param attr ID number for the function type of this 392 // function. In the future, we intend for attrs to be properties of 393 // functions, instead of on the type. This is to support this future work. 394 Vals.push_back(VE.getParamAttrID(F->getFunctionType()->getParamAttrs())); 395 396 Vals.push_back(Log2_32(F->getAlignment())+1); 397 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 398 Vals.push_back(getEncodedVisibility(F)); 399 400 unsigned AbbrevToUse = 0; 401 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 402 Vals.clear(); 403 } 404 405 406 // Emit the alias information. 407 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 408 AI != E; ++AI) { 409 Vals.push_back(VE.getTypeID(AI->getType())); 410 Vals.push_back(VE.getValueID(AI->getAliasee())); 411 Vals.push_back(getEncodedLinkage(AI)); 412 unsigned AbbrevToUse = 0; 413 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 414 Vals.clear(); 415 } 416 } 417 418 419 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 420 const ValueEnumerator &VE, 421 BitstreamWriter &Stream, bool isGlobal) { 422 if (FirstVal == LastVal) return; 423 424 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 425 426 unsigned AggregateAbbrev = 0; 427 unsigned String8Abbrev = 0; 428 unsigned CString7Abbrev = 0; 429 unsigned CString6Abbrev = 0; 430 // If this is a constant pool for the module, emit module-specific abbrevs. 431 if (isGlobal) { 432 // Abbrev for CST_CODE_AGGREGATE. 433 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 434 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 437 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 438 439 // Abbrev for CST_CODE_STRING. 440 Abbv = new BitCodeAbbrev(); 441 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 443 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 444 String8Abbrev = Stream.EmitAbbrev(Abbv); 445 // Abbrev for CST_CODE_CSTRING. 446 Abbv = new BitCodeAbbrev(); 447 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 450 CString7Abbrev = Stream.EmitAbbrev(Abbv); 451 // Abbrev for CST_CODE_CSTRING. 452 Abbv = new BitCodeAbbrev(); 453 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 456 CString6Abbrev = Stream.EmitAbbrev(Abbv); 457 } 458 459 SmallVector<uint64_t, 64> Record; 460 461 const ValueEnumerator::ValueList &Vals = VE.getValues(); 462 const Type *LastTy = 0; 463 for (unsigned i = FirstVal; i != LastVal; ++i) { 464 const Value *V = Vals[i].first; 465 // If we need to switch types, do so now. 466 if (V->getType() != LastTy) { 467 LastTy = V->getType(); 468 Record.push_back(VE.getTypeID(LastTy)); 469 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 470 CONSTANTS_SETTYPE_ABBREV); 471 Record.clear(); 472 } 473 474 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 475 Record.push_back(unsigned(IA->hasSideEffects())); 476 477 // Add the asm string. 478 const std::string &AsmStr = IA->getAsmString(); 479 Record.push_back(AsmStr.size()); 480 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 481 Record.push_back(AsmStr[i]); 482 483 // Add the constraint string. 484 const std::string &ConstraintStr = IA->getConstraintString(); 485 Record.push_back(ConstraintStr.size()); 486 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 487 Record.push_back(ConstraintStr[i]); 488 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 489 Record.clear(); 490 continue; 491 } 492 const Constant *C = cast<Constant>(V); 493 unsigned Code = -1U; 494 unsigned AbbrevToUse = 0; 495 if (C->isNullValue()) { 496 Code = bitc::CST_CODE_NULL; 497 } else if (isa<UndefValue>(C)) { 498 Code = bitc::CST_CODE_UNDEF; 499 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 500 if (IV->getBitWidth() <= 64) { 501 int64_t V = IV->getSExtValue(); 502 if (V >= 0) 503 Record.push_back(V << 1); 504 else 505 Record.push_back((-V << 1) | 1); 506 Code = bitc::CST_CODE_INTEGER; 507 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 508 } else { // Wide integers, > 64 bits in size. 509 // We have an arbitrary precision integer value to write whose 510 // bit width is > 64. However, in canonical unsigned integer 511 // format it is likely that the high bits are going to be zero. 512 // So, we only write the number of active words. 513 unsigned NWords = IV->getValue().getActiveWords(); 514 const uint64_t *RawWords = IV->getValue().getRawData(); 515 for (unsigned i = 0; i != NWords; ++i) { 516 int64_t V = RawWords[i]; 517 if (V >= 0) 518 Record.push_back(V << 1); 519 else 520 Record.push_back((-V << 1) | 1); 521 } 522 Code = bitc::CST_CODE_WIDE_INTEGER; 523 } 524 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 525 Code = bitc::CST_CODE_FLOAT; 526 if (CFP->getType() == Type::FloatTy) { 527 Record.push_back(FloatToBits((float)CFP->getValue())); 528 } else { 529 assert (CFP->getType() == Type::DoubleTy && "Unknown FP type!"); 530 Record.push_back(DoubleToBits((double)CFP->getValue())); 531 } 532 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 533 // Emit constant strings specially. 534 unsigned NumOps = C->getNumOperands(); 535 // If this is a null-terminated string, use the denser CSTRING encoding. 536 if (C->getOperand(NumOps-1)->isNullValue()) { 537 Code = bitc::CST_CODE_CSTRING; 538 --NumOps; // Don't encode the null, which isn't allowed by char6. 539 } else { 540 Code = bitc::CST_CODE_STRING; 541 AbbrevToUse = String8Abbrev; 542 } 543 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 544 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 545 for (unsigned i = 0; i != NumOps; ++i) { 546 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue(); 547 Record.push_back(V); 548 isCStr7 &= (V & 128) == 0; 549 if (isCStrChar6) 550 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 551 } 552 553 if (isCStrChar6) 554 AbbrevToUse = CString6Abbrev; 555 else if (isCStr7) 556 AbbrevToUse = CString7Abbrev; 557 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 558 isa<ConstantVector>(V)) { 559 Code = bitc::CST_CODE_AGGREGATE; 560 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 561 Record.push_back(VE.getValueID(C->getOperand(i))); 562 AbbrevToUse = AggregateAbbrev; 563 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 564 switch (CE->getOpcode()) { 565 default: 566 if (Instruction::isCast(CE->getOpcode())) { 567 Code = bitc::CST_CODE_CE_CAST; 568 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 569 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 570 Record.push_back(VE.getValueID(C->getOperand(0))); 571 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 572 } else { 573 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 574 Code = bitc::CST_CODE_CE_BINOP; 575 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 576 Record.push_back(VE.getValueID(C->getOperand(0))); 577 Record.push_back(VE.getValueID(C->getOperand(1))); 578 } 579 break; 580 case Instruction::GetElementPtr: 581 Code = bitc::CST_CODE_CE_GEP; 582 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 583 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 584 Record.push_back(VE.getValueID(C->getOperand(i))); 585 } 586 break; 587 case Instruction::Select: 588 Code = bitc::CST_CODE_CE_SELECT; 589 Record.push_back(VE.getValueID(C->getOperand(0))); 590 Record.push_back(VE.getValueID(C->getOperand(1))); 591 Record.push_back(VE.getValueID(C->getOperand(2))); 592 break; 593 case Instruction::ExtractElement: 594 Code = bitc::CST_CODE_CE_EXTRACTELT; 595 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 596 Record.push_back(VE.getValueID(C->getOperand(0))); 597 Record.push_back(VE.getValueID(C->getOperand(1))); 598 break; 599 case Instruction::InsertElement: 600 Code = bitc::CST_CODE_CE_INSERTELT; 601 Record.push_back(VE.getValueID(C->getOperand(0))); 602 Record.push_back(VE.getValueID(C->getOperand(1))); 603 Record.push_back(VE.getValueID(C->getOperand(2))); 604 break; 605 case Instruction::ShuffleVector: 606 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 607 Record.push_back(VE.getValueID(C->getOperand(0))); 608 Record.push_back(VE.getValueID(C->getOperand(1))); 609 Record.push_back(VE.getValueID(C->getOperand(2))); 610 break; 611 case Instruction::ICmp: 612 case Instruction::FCmp: 613 Code = bitc::CST_CODE_CE_CMP; 614 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 615 Record.push_back(VE.getValueID(C->getOperand(0))); 616 Record.push_back(VE.getValueID(C->getOperand(1))); 617 Record.push_back(CE->getPredicate()); 618 break; 619 } 620 } else { 621 assert(0 && "Unknown constant!"); 622 } 623 Stream.EmitRecord(Code, Record, AbbrevToUse); 624 Record.clear(); 625 } 626 627 Stream.ExitBlock(); 628 } 629 630 static void WriteModuleConstants(const ValueEnumerator &VE, 631 BitstreamWriter &Stream) { 632 const ValueEnumerator::ValueList &Vals = VE.getValues(); 633 634 // Find the first constant to emit, which is the first non-globalvalue value. 635 // We know globalvalues have been emitted by WriteModuleInfo. 636 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 637 if (!isa<GlobalValue>(Vals[i].first)) { 638 WriteConstants(i, Vals.size(), VE, Stream, true); 639 return; 640 } 641 } 642 } 643 644 /// PushValueAndType - The file has to encode both the value and type id for 645 /// many values, because we need to know what type to create for forward 646 /// references. However, most operands are not forward references, so this type 647 /// field is not needed. 648 /// 649 /// This function adds V's value ID to Vals. If the value ID is higher than the 650 /// instruction ID, then it is a forward reference, and it also includes the 651 /// type ID. 652 static bool PushValueAndType(Value *V, unsigned InstID, 653 SmallVector<unsigned, 64> &Vals, 654 ValueEnumerator &VE) { 655 unsigned ValID = VE.getValueID(V); 656 Vals.push_back(ValID); 657 if (ValID >= InstID) { 658 Vals.push_back(VE.getTypeID(V->getType())); 659 return true; 660 } 661 return false; 662 } 663 664 /// WriteInstruction - Emit an instruction to the specified stream. 665 static void WriteInstruction(const Instruction &I, unsigned InstID, 666 ValueEnumerator &VE, BitstreamWriter &Stream, 667 SmallVector<unsigned, 64> &Vals) { 668 unsigned Code = 0; 669 unsigned AbbrevToUse = 0; 670 switch (I.getOpcode()) { 671 default: 672 if (Instruction::isCast(I.getOpcode())) { 673 Code = bitc::FUNC_CODE_INST_CAST; 674 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 675 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 676 Vals.push_back(VE.getTypeID(I.getType())); 677 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 678 } else { 679 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 680 Code = bitc::FUNC_CODE_INST_BINOP; 681 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 682 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 683 Vals.push_back(VE.getValueID(I.getOperand(1))); 684 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 685 } 686 break; 687 688 case Instruction::GetElementPtr: 689 Code = bitc::FUNC_CODE_INST_GEP; 690 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 691 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 692 break; 693 case Instruction::Select: 694 Code = bitc::FUNC_CODE_INST_SELECT; 695 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 696 Vals.push_back(VE.getValueID(I.getOperand(2))); 697 Vals.push_back(VE.getValueID(I.getOperand(0))); 698 break; 699 case Instruction::ExtractElement: 700 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 701 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 702 Vals.push_back(VE.getValueID(I.getOperand(1))); 703 break; 704 case Instruction::InsertElement: 705 Code = bitc::FUNC_CODE_INST_INSERTELT; 706 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 707 Vals.push_back(VE.getValueID(I.getOperand(1))); 708 Vals.push_back(VE.getValueID(I.getOperand(2))); 709 break; 710 case Instruction::ShuffleVector: 711 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 712 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 713 Vals.push_back(VE.getValueID(I.getOperand(1))); 714 Vals.push_back(VE.getValueID(I.getOperand(2))); 715 break; 716 case Instruction::ICmp: 717 case Instruction::FCmp: 718 Code = bitc::FUNC_CODE_INST_CMP; 719 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 720 Vals.push_back(VE.getValueID(I.getOperand(1))); 721 Vals.push_back(cast<CmpInst>(I).getPredicate()); 722 break; 723 724 case Instruction::Ret: 725 Code = bitc::FUNC_CODE_INST_RET; 726 if (!I.getNumOperands()) 727 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 728 else if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 729 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 730 break; 731 case Instruction::Br: 732 Code = bitc::FUNC_CODE_INST_BR; 733 Vals.push_back(VE.getValueID(I.getOperand(0))); 734 if (cast<BranchInst>(I).isConditional()) { 735 Vals.push_back(VE.getValueID(I.getOperand(1))); 736 Vals.push_back(VE.getValueID(I.getOperand(2))); 737 } 738 break; 739 case Instruction::Switch: 740 Code = bitc::FUNC_CODE_INST_SWITCH; 741 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 742 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 743 Vals.push_back(VE.getValueID(I.getOperand(i))); 744 break; 745 case Instruction::Invoke: { 746 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 747 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 748 Code = bitc::FUNC_CODE_INST_INVOKE; 749 750 // Note: we emit the param attr ID number for the function type of this 751 // function. In the future, we intend for attrs to be properties of 752 // functions, instead of on the type. This is to support this future work. 753 Vals.push_back(VE.getParamAttrID(FTy->getParamAttrs())); 754 755 Vals.push_back(cast<InvokeInst>(I).getCallingConv()); 756 Vals.push_back(VE.getValueID(I.getOperand(1))); // normal dest 757 Vals.push_back(VE.getValueID(I.getOperand(2))); // unwind dest 758 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee 759 760 // Emit value #'s for the fixed parameters. 761 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 762 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 763 764 // Emit type/value pairs for varargs params. 765 if (FTy->isVarArg()) { 766 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); 767 i != e; ++i) 768 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 769 } 770 break; 771 } 772 case Instruction::Unwind: 773 Code = bitc::FUNC_CODE_INST_UNWIND; 774 break; 775 case Instruction::Unreachable: 776 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 777 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 778 break; 779 780 case Instruction::PHI: 781 Code = bitc::FUNC_CODE_INST_PHI; 782 Vals.push_back(VE.getTypeID(I.getType())); 783 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 784 Vals.push_back(VE.getValueID(I.getOperand(i))); 785 break; 786 787 case Instruction::Malloc: 788 Code = bitc::FUNC_CODE_INST_MALLOC; 789 Vals.push_back(VE.getTypeID(I.getType())); 790 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 791 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); 792 break; 793 794 case Instruction::Free: 795 Code = bitc::FUNC_CODE_INST_FREE; 796 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 797 break; 798 799 case Instruction::Alloca: 800 Code = bitc::FUNC_CODE_INST_ALLOCA; 801 Vals.push_back(VE.getTypeID(I.getType())); 802 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 803 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 804 break; 805 806 case Instruction::Load: 807 Code = bitc::FUNC_CODE_INST_LOAD; 808 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 809 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 810 811 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 812 Vals.push_back(cast<LoadInst>(I).isVolatile()); 813 break; 814 case Instruction::Store: 815 Code = bitc::FUNC_CODE_INST_STORE; 816 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // val. 817 Vals.push_back(VE.getValueID(I.getOperand(1))); // ptr. 818 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 819 Vals.push_back(cast<StoreInst>(I).isVolatile()); 820 break; 821 case Instruction::Call: { 822 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 823 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 824 825 Code = bitc::FUNC_CODE_INST_CALL; 826 827 // Note: we emit the param attr ID number for the function type of this 828 // function. In the future, we intend for attrs to be properties of 829 // functions, instead of on the type. This is to support this future work. 830 Vals.push_back(VE.getParamAttrID(FTy->getParamAttrs())); 831 832 Vals.push_back((cast<CallInst>(I).getCallingConv() << 1) | 833 unsigned(cast<CallInst>(I).isTailCall())); 834 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // Callee 835 836 // Emit value #'s for the fixed parameters. 837 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 838 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 839 840 // Emit type/value pairs for varargs params. 841 if (FTy->isVarArg()) { 842 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 843 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 844 i != e; ++i) 845 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs 846 } 847 break; 848 } 849 case Instruction::VAArg: 850 Code = bitc::FUNC_CODE_INST_VAARG; 851 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 852 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 853 Vals.push_back(VE.getTypeID(I.getType())); // restype. 854 break; 855 } 856 857 Stream.EmitRecord(Code, Vals, AbbrevToUse); 858 Vals.clear(); 859 } 860 861 // Emit names for globals/functions etc. 862 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 863 const ValueEnumerator &VE, 864 BitstreamWriter &Stream) { 865 if (VST.empty()) return; 866 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 867 868 // FIXME: Set up the abbrev, we know how many values there are! 869 // FIXME: We know if the type names can use 7-bit ascii. 870 SmallVector<unsigned, 64> NameVals; 871 872 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 873 SI != SE; ++SI) { 874 875 const ValueName &Name = *SI; 876 877 // Figure out the encoding to use for the name. 878 bool is7Bit = true; 879 bool isChar6 = true; 880 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 881 C != E; ++C) { 882 if (isChar6) 883 isChar6 = BitCodeAbbrevOp::isChar6(*C); 884 if ((unsigned char)*C & 128) { 885 is7Bit = false; 886 break; // don't bother scanning the rest. 887 } 888 } 889 890 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 891 892 // VST_ENTRY: [valueid, namechar x N] 893 // VST_BBENTRY: [bbid, namechar x N] 894 unsigned Code; 895 if (isa<BasicBlock>(SI->getValue())) { 896 Code = bitc::VST_CODE_BBENTRY; 897 if (isChar6) 898 AbbrevToUse = VST_BBENTRY_6_ABBREV; 899 } else { 900 Code = bitc::VST_CODE_ENTRY; 901 if (isChar6) 902 AbbrevToUse = VST_ENTRY_6_ABBREV; 903 else if (is7Bit) 904 AbbrevToUse = VST_ENTRY_7_ABBREV; 905 } 906 907 NameVals.push_back(VE.getValueID(SI->getValue())); 908 for (const char *P = Name.getKeyData(), 909 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 910 NameVals.push_back((unsigned char)*P); 911 912 // Emit the finished record. 913 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 914 NameVals.clear(); 915 } 916 Stream.ExitBlock(); 917 } 918 919 /// WriteFunction - Emit a function body to the module stream. 920 static void WriteFunction(const Function &F, ValueEnumerator &VE, 921 BitstreamWriter &Stream) { 922 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 923 VE.incorporateFunction(F); 924 925 SmallVector<unsigned, 64> Vals; 926 927 // Emit the number of basic blocks, so the reader can create them ahead of 928 // time. 929 Vals.push_back(VE.getBasicBlocks().size()); 930 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 931 Vals.clear(); 932 933 // If there are function-local constants, emit them now. 934 unsigned CstStart, CstEnd; 935 VE.getFunctionConstantRange(CstStart, CstEnd); 936 WriteConstants(CstStart, CstEnd, VE, Stream, false); 937 938 // Keep a running idea of what the instruction ID is. 939 unsigned InstID = CstEnd; 940 941 // Finally, emit all the instructions, in order. 942 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 943 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 944 I != E; ++I) { 945 WriteInstruction(*I, InstID, VE, Stream, Vals); 946 if (I->getType() != Type::VoidTy) 947 ++InstID; 948 } 949 950 // Emit names for all the instructions etc. 951 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 952 953 VE.purgeFunction(); 954 Stream.ExitBlock(); 955 } 956 957 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 958 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 959 const ValueEnumerator &VE, 960 BitstreamWriter &Stream) { 961 if (TST.empty()) return; 962 963 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 964 965 // 7-bit fixed width VST_CODE_ENTRY strings. 966 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 967 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 969 Log2_32_Ceil(VE.getTypes().size()+1))); 970 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 972 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 973 974 SmallVector<unsigned, 64> NameVals; 975 976 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 977 TI != TE; ++TI) { 978 // TST_ENTRY: [typeid, namechar x N] 979 NameVals.push_back(VE.getTypeID(TI->second)); 980 981 const std::string &Str = TI->first; 982 bool is7Bit = true; 983 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 984 NameVals.push_back((unsigned char)Str[i]); 985 if (Str[i] & 128) 986 is7Bit = false; 987 } 988 989 // Emit the finished record. 990 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 991 NameVals.clear(); 992 } 993 994 Stream.ExitBlock(); 995 } 996 997 // Emit blockinfo, which defines the standard abbreviations etc. 998 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 999 // We only want to emit block info records for blocks that have multiple 1000 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1001 // blocks can defined their abbrevs inline. 1002 Stream.EnterBlockInfoBlock(2); 1003 1004 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1005 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1006 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1007 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1008 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1009 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1010 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1011 Abbv) != VST_ENTRY_8_ABBREV) 1012 assert(0 && "Unexpected abbrev ordering!"); 1013 } 1014 1015 { // 7-bit fixed width VST_ENTRY strings. 1016 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1017 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1018 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1019 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1020 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1021 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1022 Abbv) != VST_ENTRY_7_ABBREV) 1023 assert(0 && "Unexpected abbrev ordering!"); 1024 } 1025 { // 6-bit char6 VST_ENTRY strings. 1026 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1027 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1028 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1029 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1030 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1031 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1032 Abbv) != VST_ENTRY_6_ABBREV) 1033 assert(0 && "Unexpected abbrev ordering!"); 1034 } 1035 { // 6-bit char6 VST_BBENTRY strings. 1036 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1037 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1038 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1039 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1040 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1041 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1042 Abbv) != VST_BBENTRY_6_ABBREV) 1043 assert(0 && "Unexpected abbrev ordering!"); 1044 } 1045 1046 1047 1048 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1049 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1050 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1051 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1052 Log2_32_Ceil(VE.getTypes().size()+1))); 1053 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1054 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1055 assert(0 && "Unexpected abbrev ordering!"); 1056 } 1057 1058 { // INTEGER abbrev for CONSTANTS_BLOCK. 1059 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1060 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1062 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1063 Abbv) != CONSTANTS_INTEGER_ABBREV) 1064 assert(0 && "Unexpected abbrev ordering!"); 1065 } 1066 1067 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1068 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1069 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1072 Log2_32_Ceil(VE.getTypes().size()+1))); 1073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1074 1075 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1076 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1077 assert(0 && "Unexpected abbrev ordering!"); 1078 } 1079 { // NULL abbrev for CONSTANTS_BLOCK. 1080 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1081 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1082 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1083 Abbv) != CONSTANTS_NULL_Abbrev) 1084 assert(0 && "Unexpected abbrev ordering!"); 1085 } 1086 1087 // FIXME: This should only use space for first class types! 1088 1089 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1090 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1091 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1094 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1095 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1096 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1097 assert(0 && "Unexpected abbrev ordering!"); 1098 } 1099 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1100 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1101 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1103 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1104 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1105 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1106 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1107 assert(0 && "Unexpected abbrev ordering!"); 1108 } 1109 { // INST_CAST abbrev for FUNCTION_BLOCK. 1110 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1111 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1113 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1114 Log2_32_Ceil(VE.getTypes().size()+1))); 1115 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1116 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1117 Abbv) != FUNCTION_INST_CAST_ABBREV) 1118 assert(0 && "Unexpected abbrev ordering!"); 1119 } 1120 1121 { // INST_RET abbrev for FUNCTION_BLOCK. 1122 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1123 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1124 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1125 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1126 assert(0 && "Unexpected abbrev ordering!"); 1127 } 1128 { // INST_RET abbrev for FUNCTION_BLOCK. 1129 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1130 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1132 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1133 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1134 assert(0 && "Unexpected abbrev ordering!"); 1135 } 1136 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1137 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1138 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1139 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1140 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1141 assert(0 && "Unexpected abbrev ordering!"); 1142 } 1143 1144 Stream.ExitBlock(); 1145 } 1146 1147 1148 /// WriteModule - Emit the specified module to the bitstream. 1149 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1150 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1151 1152 // Emit the version number if it is non-zero. 1153 if (CurVersion) { 1154 SmallVector<unsigned, 1> Vals; 1155 Vals.push_back(CurVersion); 1156 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1157 } 1158 1159 // Analyze the module, enumerating globals, functions, etc. 1160 ValueEnumerator VE(M); 1161 1162 // Emit blockinfo, which defines the standard abbreviations etc. 1163 WriteBlockInfo(VE, Stream); 1164 1165 // Emit information about parameter attributes. 1166 WriteParamAttrTable(VE, Stream); 1167 1168 // Emit information describing all of the types in the module. 1169 WriteTypeTable(VE, Stream); 1170 1171 // Emit top-level description of module, including target triple, inline asm, 1172 // descriptors for global variables, and function prototype info. 1173 WriteModuleInfo(M, VE, Stream); 1174 1175 // Emit constants. 1176 WriteModuleConstants(VE, Stream); 1177 1178 // If we have any aggregate values in the value table, purge them - these can 1179 // only be used to initialize global variables. Doing so makes the value 1180 // namespace smaller for code in functions. 1181 int NumNonAggregates = VE.PurgeAggregateValues(); 1182 if (NumNonAggregates != -1) { 1183 SmallVector<unsigned, 1> Vals; 1184 Vals.push_back(NumNonAggregates); 1185 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals); 1186 } 1187 1188 // Emit function bodies. 1189 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1190 if (!I->isDeclaration()) 1191 WriteFunction(*I, VE, Stream); 1192 1193 // Emit the type symbol table information. 1194 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1195 1196 // Emit names for globals/functions etc. 1197 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1198 1199 Stream.ExitBlock(); 1200 } 1201 1202 1203 /// WriteBitcodeToFile - Write the specified module to the specified output 1204 /// stream. 1205 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { 1206 std::vector<unsigned char> Buffer; 1207 BitstreamWriter Stream(Buffer); 1208 1209 Buffer.reserve(256*1024); 1210 1211 // Emit the file header. 1212 Stream.Emit((unsigned)'B', 8); 1213 Stream.Emit((unsigned)'C', 8); 1214 Stream.Emit(0x0, 4); 1215 Stream.Emit(0xC, 4); 1216 Stream.Emit(0xE, 4); 1217 Stream.Emit(0xD, 4); 1218 1219 // Emit the module. 1220 WriteModule(M, Stream); 1221 1222 // Write the generated bitstream to "Out". 1223 Out.write((char*)&Buffer.front(), Buffer.size()); 1224 1225 // Make sure it hits disk now. 1226 Out.flush(); 1227 } 1228