1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/StringExtras.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Analysis/BlockFrequencyInfo.h" 19 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Bitcode/BitstreamWriter.h" 23 #include "llvm/Bitcode/LLVMBitCodes.h" 24 #include "llvm/Bitcode/ReaderWriter.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/InlineAsm.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/Operator.h" 36 #include "llvm/IR/UseListOrder.h" 37 #include "llvm/IR/ValueSymbolTable.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/Program.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Support/SHA1.h" 44 #include <cctype> 45 #include <map> 46 using namespace llvm; 47 48 /// These are manifest constants used by the bitcode writer. They do not need to 49 /// be kept in sync with the reader, but need to be consistent within this file. 50 enum { 51 // VALUE_SYMTAB_BLOCK abbrev id's. 52 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 53 VST_ENTRY_7_ABBREV, 54 VST_ENTRY_6_ABBREV, 55 VST_BBENTRY_6_ABBREV, 56 57 // CONSTANTS_BLOCK abbrev id's. 58 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 59 CONSTANTS_INTEGER_ABBREV, 60 CONSTANTS_CE_CAST_Abbrev, 61 CONSTANTS_NULL_Abbrev, 62 63 // FUNCTION_BLOCK abbrev id's. 64 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 65 FUNCTION_INST_BINOP_ABBREV, 66 FUNCTION_INST_BINOP_FLAGS_ABBREV, 67 FUNCTION_INST_CAST_ABBREV, 68 FUNCTION_INST_RET_VOID_ABBREV, 69 FUNCTION_INST_RET_VAL_ABBREV, 70 FUNCTION_INST_UNREACHABLE_ABBREV, 71 FUNCTION_INST_GEP_ABBREV, 72 }; 73 74 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 75 switch (Opcode) { 76 default: llvm_unreachable("Unknown cast instruction!"); 77 case Instruction::Trunc : return bitc::CAST_TRUNC; 78 case Instruction::ZExt : return bitc::CAST_ZEXT; 79 case Instruction::SExt : return bitc::CAST_SEXT; 80 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 81 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 82 case Instruction::UIToFP : return bitc::CAST_UITOFP; 83 case Instruction::SIToFP : return bitc::CAST_SITOFP; 84 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 85 case Instruction::FPExt : return bitc::CAST_FPEXT; 86 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 87 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 88 case Instruction::BitCast : return bitc::CAST_BITCAST; 89 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 90 } 91 } 92 93 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 94 switch (Opcode) { 95 default: llvm_unreachable("Unknown binary instruction!"); 96 case Instruction::Add: 97 case Instruction::FAdd: return bitc::BINOP_ADD; 98 case Instruction::Sub: 99 case Instruction::FSub: return bitc::BINOP_SUB; 100 case Instruction::Mul: 101 case Instruction::FMul: return bitc::BINOP_MUL; 102 case Instruction::UDiv: return bitc::BINOP_UDIV; 103 case Instruction::FDiv: 104 case Instruction::SDiv: return bitc::BINOP_SDIV; 105 case Instruction::URem: return bitc::BINOP_UREM; 106 case Instruction::FRem: 107 case Instruction::SRem: return bitc::BINOP_SREM; 108 case Instruction::Shl: return bitc::BINOP_SHL; 109 case Instruction::LShr: return bitc::BINOP_LSHR; 110 case Instruction::AShr: return bitc::BINOP_ASHR; 111 case Instruction::And: return bitc::BINOP_AND; 112 case Instruction::Or: return bitc::BINOP_OR; 113 case Instruction::Xor: return bitc::BINOP_XOR; 114 } 115 } 116 117 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 118 switch (Op) { 119 default: llvm_unreachable("Unknown RMW operation!"); 120 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 121 case AtomicRMWInst::Add: return bitc::RMW_ADD; 122 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 123 case AtomicRMWInst::And: return bitc::RMW_AND; 124 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 125 case AtomicRMWInst::Or: return bitc::RMW_OR; 126 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 127 case AtomicRMWInst::Max: return bitc::RMW_MAX; 128 case AtomicRMWInst::Min: return bitc::RMW_MIN; 129 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 130 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 131 } 132 } 133 134 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 135 switch (Ordering) { 136 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 137 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 138 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 139 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 140 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 141 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 142 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 143 } 144 llvm_unreachable("Invalid ordering"); 145 } 146 147 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 148 switch (SynchScope) { 149 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 150 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 151 } 152 llvm_unreachable("Invalid synch scope"); 153 } 154 155 static void WriteStringRecord(unsigned Code, StringRef Str, 156 unsigned AbbrevToUse, BitstreamWriter &Stream) { 157 SmallVector<unsigned, 64> Vals; 158 159 // Code: [strchar x N] 160 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 161 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 162 AbbrevToUse = 0; 163 Vals.push_back(Str[i]); 164 } 165 166 // Emit the finished record. 167 Stream.EmitRecord(Code, Vals, AbbrevToUse); 168 } 169 170 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 171 switch (Kind) { 172 case Attribute::Alignment: 173 return bitc::ATTR_KIND_ALIGNMENT; 174 case Attribute::AlwaysInline: 175 return bitc::ATTR_KIND_ALWAYS_INLINE; 176 case Attribute::ArgMemOnly: 177 return bitc::ATTR_KIND_ARGMEMONLY; 178 case Attribute::Builtin: 179 return bitc::ATTR_KIND_BUILTIN; 180 case Attribute::ByVal: 181 return bitc::ATTR_KIND_BY_VAL; 182 case Attribute::Convergent: 183 return bitc::ATTR_KIND_CONVERGENT; 184 case Attribute::InAlloca: 185 return bitc::ATTR_KIND_IN_ALLOCA; 186 case Attribute::Cold: 187 return bitc::ATTR_KIND_COLD; 188 case Attribute::InaccessibleMemOnly: 189 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 190 case Attribute::InaccessibleMemOrArgMemOnly: 191 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 192 case Attribute::InlineHint: 193 return bitc::ATTR_KIND_INLINE_HINT; 194 case Attribute::InReg: 195 return bitc::ATTR_KIND_IN_REG; 196 case Attribute::JumpTable: 197 return bitc::ATTR_KIND_JUMP_TABLE; 198 case Attribute::MinSize: 199 return bitc::ATTR_KIND_MIN_SIZE; 200 case Attribute::Naked: 201 return bitc::ATTR_KIND_NAKED; 202 case Attribute::Nest: 203 return bitc::ATTR_KIND_NEST; 204 case Attribute::NoAlias: 205 return bitc::ATTR_KIND_NO_ALIAS; 206 case Attribute::NoBuiltin: 207 return bitc::ATTR_KIND_NO_BUILTIN; 208 case Attribute::NoCapture: 209 return bitc::ATTR_KIND_NO_CAPTURE; 210 case Attribute::NoDuplicate: 211 return bitc::ATTR_KIND_NO_DUPLICATE; 212 case Attribute::NoImplicitFloat: 213 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 214 case Attribute::NoInline: 215 return bitc::ATTR_KIND_NO_INLINE; 216 case Attribute::NoRecurse: 217 return bitc::ATTR_KIND_NO_RECURSE; 218 case Attribute::NonLazyBind: 219 return bitc::ATTR_KIND_NON_LAZY_BIND; 220 case Attribute::NonNull: 221 return bitc::ATTR_KIND_NON_NULL; 222 case Attribute::Dereferenceable: 223 return bitc::ATTR_KIND_DEREFERENCEABLE; 224 case Attribute::DereferenceableOrNull: 225 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 226 case Attribute::NoRedZone: 227 return bitc::ATTR_KIND_NO_RED_ZONE; 228 case Attribute::NoReturn: 229 return bitc::ATTR_KIND_NO_RETURN; 230 case Attribute::NoUnwind: 231 return bitc::ATTR_KIND_NO_UNWIND; 232 case Attribute::OptimizeForSize: 233 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 234 case Attribute::OptimizeNone: 235 return bitc::ATTR_KIND_OPTIMIZE_NONE; 236 case Attribute::ReadNone: 237 return bitc::ATTR_KIND_READ_NONE; 238 case Attribute::ReadOnly: 239 return bitc::ATTR_KIND_READ_ONLY; 240 case Attribute::Returned: 241 return bitc::ATTR_KIND_RETURNED; 242 case Attribute::ReturnsTwice: 243 return bitc::ATTR_KIND_RETURNS_TWICE; 244 case Attribute::SExt: 245 return bitc::ATTR_KIND_S_EXT; 246 case Attribute::StackAlignment: 247 return bitc::ATTR_KIND_STACK_ALIGNMENT; 248 case Attribute::StackProtect: 249 return bitc::ATTR_KIND_STACK_PROTECT; 250 case Attribute::StackProtectReq: 251 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 252 case Attribute::StackProtectStrong: 253 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 254 case Attribute::SafeStack: 255 return bitc::ATTR_KIND_SAFESTACK; 256 case Attribute::StructRet: 257 return bitc::ATTR_KIND_STRUCT_RET; 258 case Attribute::SanitizeAddress: 259 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 260 case Attribute::SanitizeThread: 261 return bitc::ATTR_KIND_SANITIZE_THREAD; 262 case Attribute::SanitizeMemory: 263 return bitc::ATTR_KIND_SANITIZE_MEMORY; 264 case Attribute::SwiftError: 265 return bitc::ATTR_KIND_SWIFT_ERROR; 266 case Attribute::SwiftSelf: 267 return bitc::ATTR_KIND_SWIFT_SELF; 268 case Attribute::UWTable: 269 return bitc::ATTR_KIND_UW_TABLE; 270 case Attribute::ZExt: 271 return bitc::ATTR_KIND_Z_EXT; 272 case Attribute::EndAttrKinds: 273 llvm_unreachable("Can not encode end-attribute kinds marker."); 274 case Attribute::None: 275 llvm_unreachable("Can not encode none-attribute."); 276 } 277 278 llvm_unreachable("Trying to encode unknown attribute"); 279 } 280 281 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 282 BitstreamWriter &Stream) { 283 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 284 if (AttrGrps.empty()) return; 285 286 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 287 288 SmallVector<uint64_t, 64> Record; 289 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 290 AttributeSet AS = AttrGrps[i]; 291 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 292 AttributeSet A = AS.getSlotAttributes(i); 293 294 Record.push_back(VE.getAttributeGroupID(A)); 295 Record.push_back(AS.getSlotIndex(i)); 296 297 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 298 I != E; ++I) { 299 Attribute Attr = *I; 300 if (Attr.isEnumAttribute()) { 301 Record.push_back(0); 302 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 303 } else if (Attr.isIntAttribute()) { 304 Record.push_back(1); 305 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 306 Record.push_back(Attr.getValueAsInt()); 307 } else { 308 StringRef Kind = Attr.getKindAsString(); 309 StringRef Val = Attr.getValueAsString(); 310 311 Record.push_back(Val.empty() ? 3 : 4); 312 Record.append(Kind.begin(), Kind.end()); 313 Record.push_back(0); 314 if (!Val.empty()) { 315 Record.append(Val.begin(), Val.end()); 316 Record.push_back(0); 317 } 318 } 319 } 320 321 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 322 Record.clear(); 323 } 324 } 325 326 Stream.ExitBlock(); 327 } 328 329 static void WriteAttributeTable(const ValueEnumerator &VE, 330 BitstreamWriter &Stream) { 331 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 332 if (Attrs.empty()) return; 333 334 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 335 336 SmallVector<uint64_t, 64> Record; 337 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 338 const AttributeSet &A = Attrs[i]; 339 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 340 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 341 342 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 343 Record.clear(); 344 } 345 346 Stream.ExitBlock(); 347 } 348 349 /// WriteTypeTable - Write out the type table for a module. 350 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 351 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 352 353 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 354 SmallVector<uint64_t, 64> TypeVals; 355 356 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 357 358 // Abbrev for TYPE_CODE_POINTER. 359 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 360 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 362 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 363 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 364 365 // Abbrev for TYPE_CODE_FUNCTION. 366 Abbv = new BitCodeAbbrev(); 367 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 371 372 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 373 374 // Abbrev for TYPE_CODE_STRUCT_ANON. 375 Abbv = new BitCodeAbbrev(); 376 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 380 381 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 382 383 // Abbrev for TYPE_CODE_STRUCT_NAME. 384 Abbv = new BitCodeAbbrev(); 385 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 388 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 389 390 // Abbrev for TYPE_CODE_STRUCT_NAMED. 391 Abbv = new BitCodeAbbrev(); 392 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 396 397 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 398 399 // Abbrev for TYPE_CODE_ARRAY. 400 Abbv = new BitCodeAbbrev(); 401 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 402 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 404 405 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 406 407 // Emit an entry count so the reader can reserve space. 408 TypeVals.push_back(TypeList.size()); 409 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 410 TypeVals.clear(); 411 412 // Loop over all of the types, emitting each in turn. 413 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 414 Type *T = TypeList[i]; 415 int AbbrevToUse = 0; 416 unsigned Code = 0; 417 418 switch (T->getTypeID()) { 419 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 420 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 421 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 422 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 423 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 424 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 425 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 426 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 427 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 428 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 429 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 430 case Type::IntegerTyID: 431 // INTEGER: [width] 432 Code = bitc::TYPE_CODE_INTEGER; 433 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 434 break; 435 case Type::PointerTyID: { 436 PointerType *PTy = cast<PointerType>(T); 437 // POINTER: [pointee type, address space] 438 Code = bitc::TYPE_CODE_POINTER; 439 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 440 unsigned AddressSpace = PTy->getAddressSpace(); 441 TypeVals.push_back(AddressSpace); 442 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 443 break; 444 } 445 case Type::FunctionTyID: { 446 FunctionType *FT = cast<FunctionType>(T); 447 // FUNCTION: [isvararg, retty, paramty x N] 448 Code = bitc::TYPE_CODE_FUNCTION; 449 TypeVals.push_back(FT->isVarArg()); 450 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 451 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 452 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 453 AbbrevToUse = FunctionAbbrev; 454 break; 455 } 456 case Type::StructTyID: { 457 StructType *ST = cast<StructType>(T); 458 // STRUCT: [ispacked, eltty x N] 459 TypeVals.push_back(ST->isPacked()); 460 // Output all of the element types. 461 for (StructType::element_iterator I = ST->element_begin(), 462 E = ST->element_end(); I != E; ++I) 463 TypeVals.push_back(VE.getTypeID(*I)); 464 465 if (ST->isLiteral()) { 466 Code = bitc::TYPE_CODE_STRUCT_ANON; 467 AbbrevToUse = StructAnonAbbrev; 468 } else { 469 if (ST->isOpaque()) { 470 Code = bitc::TYPE_CODE_OPAQUE; 471 } else { 472 Code = bitc::TYPE_CODE_STRUCT_NAMED; 473 AbbrevToUse = StructNamedAbbrev; 474 } 475 476 // Emit the name if it is present. 477 if (!ST->getName().empty()) 478 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 479 StructNameAbbrev, Stream); 480 } 481 break; 482 } 483 case Type::ArrayTyID: { 484 ArrayType *AT = cast<ArrayType>(T); 485 // ARRAY: [numelts, eltty] 486 Code = bitc::TYPE_CODE_ARRAY; 487 TypeVals.push_back(AT->getNumElements()); 488 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 489 AbbrevToUse = ArrayAbbrev; 490 break; 491 } 492 case Type::VectorTyID: { 493 VectorType *VT = cast<VectorType>(T); 494 // VECTOR [numelts, eltty] 495 Code = bitc::TYPE_CODE_VECTOR; 496 TypeVals.push_back(VT->getNumElements()); 497 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 498 break; 499 } 500 } 501 502 // Emit the finished record. 503 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 504 TypeVals.clear(); 505 } 506 507 Stream.ExitBlock(); 508 } 509 510 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 511 switch (Linkage) { 512 case GlobalValue::ExternalLinkage: 513 return 0; 514 case GlobalValue::WeakAnyLinkage: 515 return 16; 516 case GlobalValue::AppendingLinkage: 517 return 2; 518 case GlobalValue::InternalLinkage: 519 return 3; 520 case GlobalValue::LinkOnceAnyLinkage: 521 return 18; 522 case GlobalValue::ExternalWeakLinkage: 523 return 7; 524 case GlobalValue::CommonLinkage: 525 return 8; 526 case GlobalValue::PrivateLinkage: 527 return 9; 528 case GlobalValue::WeakODRLinkage: 529 return 17; 530 case GlobalValue::LinkOnceODRLinkage: 531 return 19; 532 case GlobalValue::AvailableExternallyLinkage: 533 return 12; 534 } 535 llvm_unreachable("Invalid linkage"); 536 } 537 538 static unsigned getEncodedLinkage(const GlobalValue &GV) { 539 return getEncodedLinkage(GV.getLinkage()); 540 } 541 542 static unsigned getEncodedVisibility(const GlobalValue &GV) { 543 switch (GV.getVisibility()) { 544 case GlobalValue::DefaultVisibility: return 0; 545 case GlobalValue::HiddenVisibility: return 1; 546 case GlobalValue::ProtectedVisibility: return 2; 547 } 548 llvm_unreachable("Invalid visibility"); 549 } 550 551 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 552 switch (GV.getDLLStorageClass()) { 553 case GlobalValue::DefaultStorageClass: return 0; 554 case GlobalValue::DLLImportStorageClass: return 1; 555 case GlobalValue::DLLExportStorageClass: return 2; 556 } 557 llvm_unreachable("Invalid DLL storage class"); 558 } 559 560 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 561 switch (GV.getThreadLocalMode()) { 562 case GlobalVariable::NotThreadLocal: return 0; 563 case GlobalVariable::GeneralDynamicTLSModel: return 1; 564 case GlobalVariable::LocalDynamicTLSModel: return 2; 565 case GlobalVariable::InitialExecTLSModel: return 3; 566 case GlobalVariable::LocalExecTLSModel: return 4; 567 } 568 llvm_unreachable("Invalid TLS model"); 569 } 570 571 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 572 switch (C.getSelectionKind()) { 573 case Comdat::Any: 574 return bitc::COMDAT_SELECTION_KIND_ANY; 575 case Comdat::ExactMatch: 576 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 577 case Comdat::Largest: 578 return bitc::COMDAT_SELECTION_KIND_LARGEST; 579 case Comdat::NoDuplicates: 580 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 581 case Comdat::SameSize: 582 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 583 } 584 llvm_unreachable("Invalid selection kind"); 585 } 586 587 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 588 SmallVector<unsigned, 64> Vals; 589 for (const Comdat *C : VE.getComdats()) { 590 // COMDAT: [selection_kind, name] 591 Vals.push_back(getEncodedComdatSelectionKind(*C)); 592 size_t Size = C->getName().size(); 593 assert(isUInt<32>(Size)); 594 Vals.push_back(Size); 595 for (char Chr : C->getName()) 596 Vals.push_back((unsigned char)Chr); 597 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 598 Vals.clear(); 599 } 600 } 601 602 /// Write a record that will eventually hold the word offset of the 603 /// module-level VST. For now the offset is 0, which will be backpatched 604 /// after the real VST is written. Returns the bit offset to backpatch. 605 static uint64_t WriteValueSymbolTableForwardDecl(BitstreamWriter &Stream) { 606 // Write a placeholder value in for the offset of the real VST, 607 // which is written after the function blocks so that it can include 608 // the offset of each function. The placeholder offset will be 609 // updated when the real VST is written. 610 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 611 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 612 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 613 // hold the real VST offset. Must use fixed instead of VBR as we don't 614 // know how many VBR chunks to reserve ahead of time. 615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 616 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv); 617 618 // Emit the placeholder 619 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 620 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 621 622 // Compute and return the bit offset to the placeholder, which will be 623 // patched when the real VST is written. We can simply subtract the 32-bit 624 // fixed size from the current bit number to get the location to backpatch. 625 return Stream.GetCurrentBitNo() - 32; 626 } 627 628 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 629 630 /// Determine the encoding to use for the given string name and length. 631 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 632 bool isChar6 = true; 633 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 634 if (isChar6) 635 isChar6 = BitCodeAbbrevOp::isChar6(*C); 636 if ((unsigned char)*C & 128) 637 // don't bother scanning the rest. 638 return SE_Fixed8; 639 } 640 if (isChar6) 641 return SE_Char6; 642 else 643 return SE_Fixed7; 644 } 645 646 /// Emit top-level description of module, including target triple, inline asm, 647 /// descriptors for global variables, and function prototype info. 648 /// Returns the bit offset to backpatch with the location of the real VST. 649 static uint64_t WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 650 BitstreamWriter &Stream) { 651 // Emit various pieces of data attached to a module. 652 if (!M->getTargetTriple().empty()) 653 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 654 0/*TODO*/, Stream); 655 const std::string &DL = M->getDataLayoutStr(); 656 if (!DL.empty()) 657 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 658 if (!M->getModuleInlineAsm().empty()) 659 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 660 0/*TODO*/, Stream); 661 662 // Emit information about sections and GC, computing how many there are. Also 663 // compute the maximum alignment value. 664 std::map<std::string, unsigned> SectionMap; 665 std::map<std::string, unsigned> GCMap; 666 unsigned MaxAlignment = 0; 667 unsigned MaxGlobalType = 0; 668 for (const GlobalValue &GV : M->globals()) { 669 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 670 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 671 if (GV.hasSection()) { 672 // Give section names unique ID's. 673 unsigned &Entry = SectionMap[GV.getSection()]; 674 if (!Entry) { 675 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 676 0/*TODO*/, Stream); 677 Entry = SectionMap.size(); 678 } 679 } 680 } 681 for (const Function &F : *M) { 682 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 683 if (F.hasSection()) { 684 // Give section names unique ID's. 685 unsigned &Entry = SectionMap[F.getSection()]; 686 if (!Entry) { 687 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 688 0/*TODO*/, Stream); 689 Entry = SectionMap.size(); 690 } 691 } 692 if (F.hasGC()) { 693 // Same for GC names. 694 unsigned &Entry = GCMap[F.getGC()]; 695 if (!Entry) { 696 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 697 0/*TODO*/, Stream); 698 Entry = GCMap.size(); 699 } 700 } 701 } 702 703 // Emit abbrev for globals, now that we know # sections and max alignment. 704 unsigned SimpleGVarAbbrev = 0; 705 if (!M->global_empty()) { 706 // Add an abbrev for common globals with no visibility or thread localness. 707 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 708 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 710 Log2_32_Ceil(MaxGlobalType+1))); 711 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 712 //| explicitType << 1 713 //| constant 714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 715 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 716 if (MaxAlignment == 0) // Alignment. 717 Abbv->Add(BitCodeAbbrevOp(0)); 718 else { 719 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 721 Log2_32_Ceil(MaxEncAlignment+1))); 722 } 723 if (SectionMap.empty()) // Section. 724 Abbv->Add(BitCodeAbbrevOp(0)); 725 else 726 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 727 Log2_32_Ceil(SectionMap.size()+1))); 728 // Don't bother emitting vis + thread local. 729 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 730 } 731 732 // Emit the global variable information. 733 SmallVector<unsigned, 64> Vals; 734 for (const GlobalVariable &GV : M->globals()) { 735 unsigned AbbrevToUse = 0; 736 737 // GLOBALVAR: [type, isconst, initid, 738 // linkage, alignment, section, visibility, threadlocal, 739 // unnamed_addr, externally_initialized, dllstorageclass, 740 // comdat] 741 Vals.push_back(VE.getTypeID(GV.getValueType())); 742 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 743 Vals.push_back(GV.isDeclaration() ? 0 : 744 (VE.getValueID(GV.getInitializer()) + 1)); 745 Vals.push_back(getEncodedLinkage(GV)); 746 Vals.push_back(Log2_32(GV.getAlignment())+1); 747 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 748 if (GV.isThreadLocal() || 749 GV.getVisibility() != GlobalValue::DefaultVisibility || 750 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 751 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 752 GV.hasComdat()) { 753 Vals.push_back(getEncodedVisibility(GV)); 754 Vals.push_back(getEncodedThreadLocalMode(GV)); 755 Vals.push_back(GV.hasUnnamedAddr()); 756 Vals.push_back(GV.isExternallyInitialized()); 757 Vals.push_back(getEncodedDLLStorageClass(GV)); 758 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 759 } else { 760 AbbrevToUse = SimpleGVarAbbrev; 761 } 762 763 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 764 Vals.clear(); 765 } 766 767 // Emit the function proto information. 768 for (const Function &F : *M) { 769 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 770 // section, visibility, gc, unnamed_addr, prologuedata, 771 // dllstorageclass, comdat, prefixdata, personalityfn] 772 Vals.push_back(VE.getTypeID(F.getFunctionType())); 773 Vals.push_back(F.getCallingConv()); 774 Vals.push_back(F.isDeclaration()); 775 Vals.push_back(getEncodedLinkage(F)); 776 Vals.push_back(VE.getAttributeID(F.getAttributes())); 777 Vals.push_back(Log2_32(F.getAlignment())+1); 778 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 779 Vals.push_back(getEncodedVisibility(F)); 780 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 781 Vals.push_back(F.hasUnnamedAddr()); 782 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 783 : 0); 784 Vals.push_back(getEncodedDLLStorageClass(F)); 785 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 786 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 787 : 0); 788 Vals.push_back( 789 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 790 791 unsigned AbbrevToUse = 0; 792 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 793 Vals.clear(); 794 } 795 796 // Emit the alias information. 797 for (const GlobalAlias &A : M->aliases()) { 798 // ALIAS: [alias type, aliasee val#, linkage, visibility] 799 Vals.push_back(VE.getTypeID(A.getValueType())); 800 Vals.push_back(A.getType()->getAddressSpace()); 801 Vals.push_back(VE.getValueID(A.getAliasee())); 802 Vals.push_back(getEncodedLinkage(A)); 803 Vals.push_back(getEncodedVisibility(A)); 804 Vals.push_back(getEncodedDLLStorageClass(A)); 805 Vals.push_back(getEncodedThreadLocalMode(A)); 806 Vals.push_back(A.hasUnnamedAddr()); 807 unsigned AbbrevToUse = 0; 808 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 809 Vals.clear(); 810 } 811 812 // Emit the ifunc information. 813 for (const GlobalIFunc &I : M->ifuncs()) { 814 // IFUNC: [ifunc type, address space, resolver val#, linkage, visibility] 815 Vals.push_back(VE.getTypeID(I.getValueType())); 816 Vals.push_back(I.getType()->getAddressSpace()); 817 Vals.push_back(VE.getValueID(I.getResolver())); 818 Vals.push_back(getEncodedLinkage(I)); 819 Vals.push_back(getEncodedVisibility(I)); 820 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 821 Vals.clear(); 822 } 823 824 // Emit the module's source file name. 825 { 826 StringEncoding Bits = getStringEncoding(M->getSourceFileName().data(), 827 M->getSourceFileName().size()); 828 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 829 if (Bits == SE_Char6) 830 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 831 else if (Bits == SE_Fixed7) 832 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 833 834 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 835 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 836 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 838 Abbv->Add(AbbrevOpToUse); 839 unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv); 840 841 for (const auto P : M->getSourceFileName()) 842 Vals.push_back((unsigned char)P); 843 844 // Emit the finished record. 845 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 846 Vals.clear(); 847 } 848 849 // If we have a VST, write the VSTOFFSET record placeholder and return 850 // its offset. 851 if (M->getValueSymbolTable().empty()) 852 return 0; 853 return WriteValueSymbolTableForwardDecl(Stream); 854 } 855 856 static uint64_t GetOptimizationFlags(const Value *V) { 857 uint64_t Flags = 0; 858 859 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 860 if (OBO->hasNoSignedWrap()) 861 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 862 if (OBO->hasNoUnsignedWrap()) 863 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 864 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 865 if (PEO->isExact()) 866 Flags |= 1 << bitc::PEO_EXACT; 867 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 868 if (FPMO->hasUnsafeAlgebra()) 869 Flags |= FastMathFlags::UnsafeAlgebra; 870 if (FPMO->hasNoNaNs()) 871 Flags |= FastMathFlags::NoNaNs; 872 if (FPMO->hasNoInfs()) 873 Flags |= FastMathFlags::NoInfs; 874 if (FPMO->hasNoSignedZeros()) 875 Flags |= FastMathFlags::NoSignedZeros; 876 if (FPMO->hasAllowReciprocal()) 877 Flags |= FastMathFlags::AllowReciprocal; 878 } 879 880 return Flags; 881 } 882 883 static void writeValueAsMetadata(const ValueAsMetadata *MD, 884 const ValueEnumerator &VE, 885 BitstreamWriter &Stream, 886 SmallVectorImpl<uint64_t> &Record) { 887 // Mimic an MDNode with a value as one operand. 888 Value *V = MD->getValue(); 889 Record.push_back(VE.getTypeID(V->getType())); 890 Record.push_back(VE.getValueID(V)); 891 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 892 Record.clear(); 893 } 894 895 static void writeMDTuple(const MDTuple *N, const ValueEnumerator &VE, 896 BitstreamWriter &Stream, 897 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 898 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 899 Metadata *MD = N->getOperand(i); 900 assert(!(MD && isa<LocalAsMetadata>(MD)) && 901 "Unexpected function-local metadata"); 902 Record.push_back(VE.getMetadataOrNullID(MD)); 903 } 904 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 905 : bitc::METADATA_NODE, 906 Record, Abbrev); 907 Record.clear(); 908 } 909 910 static unsigned createDILocationAbbrev(BitstreamWriter &Stream) { 911 // Assume the column is usually under 128, and always output the inlined-at 912 // location (it's never more expensive than building an array size 1). 913 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 914 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 915 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 916 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 917 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 918 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 919 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 920 return Stream.EmitAbbrev(Abbv); 921 } 922 923 static void writeDILocation(const DILocation *N, const ValueEnumerator &VE, 924 BitstreamWriter &Stream, 925 SmallVectorImpl<uint64_t> &Record, 926 unsigned &Abbrev) { 927 if (!Abbrev) 928 Abbrev = createDILocationAbbrev(Stream); 929 930 Record.push_back(N->isDistinct()); 931 Record.push_back(N->getLine()); 932 Record.push_back(N->getColumn()); 933 Record.push_back(VE.getMetadataID(N->getScope())); 934 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 935 936 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 937 Record.clear(); 938 } 939 940 static unsigned createGenericDINodeAbbrev(BitstreamWriter &Stream) { 941 // Assume the column is usually under 128, and always output the inlined-at 942 // location (it's never more expensive than building an array size 1). 943 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 944 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 946 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 951 return Stream.EmitAbbrev(Abbv); 952 } 953 954 static void writeGenericDINode(const GenericDINode *N, 955 const ValueEnumerator &VE, 956 BitstreamWriter &Stream, 957 SmallVectorImpl<uint64_t> &Record, 958 unsigned &Abbrev) { 959 if (!Abbrev) 960 Abbrev = createGenericDINodeAbbrev(Stream); 961 962 Record.push_back(N->isDistinct()); 963 Record.push_back(N->getTag()); 964 Record.push_back(0); // Per-tag version field; unused for now. 965 966 for (auto &I : N->operands()) 967 Record.push_back(VE.getMetadataOrNullID(I)); 968 969 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 970 Record.clear(); 971 } 972 973 static uint64_t rotateSign(int64_t I) { 974 uint64_t U = I; 975 return I < 0 ? ~(U << 1) : U << 1; 976 } 977 978 static void writeDISubrange(const DISubrange *N, const ValueEnumerator &, 979 BitstreamWriter &Stream, 980 SmallVectorImpl<uint64_t> &Record, 981 unsigned Abbrev) { 982 Record.push_back(N->isDistinct()); 983 Record.push_back(N->getCount()); 984 Record.push_back(rotateSign(N->getLowerBound())); 985 986 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 987 Record.clear(); 988 } 989 990 static void writeDIEnumerator(const DIEnumerator *N, const ValueEnumerator &VE, 991 BitstreamWriter &Stream, 992 SmallVectorImpl<uint64_t> &Record, 993 unsigned Abbrev) { 994 Record.push_back(N->isDistinct()); 995 Record.push_back(rotateSign(N->getValue())); 996 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 997 998 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 999 Record.clear(); 1000 } 1001 1002 static void writeDIBasicType(const DIBasicType *N, const ValueEnumerator &VE, 1003 BitstreamWriter &Stream, 1004 SmallVectorImpl<uint64_t> &Record, 1005 unsigned Abbrev) { 1006 Record.push_back(N->isDistinct()); 1007 Record.push_back(N->getTag()); 1008 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1009 Record.push_back(N->getSizeInBits()); 1010 Record.push_back(N->getAlignInBits()); 1011 Record.push_back(N->getEncoding()); 1012 1013 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1014 Record.clear(); 1015 } 1016 1017 static void writeDIDerivedType(const DIDerivedType *N, 1018 const ValueEnumerator &VE, 1019 BitstreamWriter &Stream, 1020 SmallVectorImpl<uint64_t> &Record, 1021 unsigned Abbrev) { 1022 Record.push_back(N->isDistinct()); 1023 Record.push_back(N->getTag()); 1024 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1025 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1026 Record.push_back(N->getLine()); 1027 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1028 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1029 Record.push_back(N->getSizeInBits()); 1030 Record.push_back(N->getAlignInBits()); 1031 Record.push_back(N->getOffsetInBits()); 1032 Record.push_back(N->getFlags()); 1033 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1034 1035 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1036 Record.clear(); 1037 } 1038 1039 static void writeDICompositeType(const DICompositeType *N, 1040 const ValueEnumerator &VE, 1041 BitstreamWriter &Stream, 1042 SmallVectorImpl<uint64_t> &Record, 1043 unsigned Abbrev) { 1044 Record.push_back(N->isDistinct()); 1045 Record.push_back(N->getTag()); 1046 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1047 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1048 Record.push_back(N->getLine()); 1049 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1050 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1051 Record.push_back(N->getSizeInBits()); 1052 Record.push_back(N->getAlignInBits()); 1053 Record.push_back(N->getOffsetInBits()); 1054 Record.push_back(N->getFlags()); 1055 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1056 Record.push_back(N->getRuntimeLang()); 1057 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1058 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1059 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1060 1061 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1062 Record.clear(); 1063 } 1064 1065 static void writeDISubroutineType(const DISubroutineType *N, 1066 const ValueEnumerator &VE, 1067 BitstreamWriter &Stream, 1068 SmallVectorImpl<uint64_t> &Record, 1069 unsigned Abbrev) { 1070 Record.push_back(N->isDistinct()); 1071 Record.push_back(N->getFlags()); 1072 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1073 1074 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1075 Record.clear(); 1076 } 1077 1078 static void writeDIFile(const DIFile *N, const ValueEnumerator &VE, 1079 BitstreamWriter &Stream, 1080 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1081 Record.push_back(N->isDistinct()); 1082 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1083 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1084 1085 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1086 Record.clear(); 1087 } 1088 1089 static void writeDICompileUnit(const DICompileUnit *N, 1090 const ValueEnumerator &VE, 1091 BitstreamWriter &Stream, 1092 SmallVectorImpl<uint64_t> &Record, 1093 unsigned Abbrev) { 1094 assert(N->isDistinct() && "Expected distinct compile units"); 1095 Record.push_back(/* IsDistinct */ true); 1096 Record.push_back(N->getSourceLanguage()); 1097 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1098 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1099 Record.push_back(N->isOptimized()); 1100 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1101 Record.push_back(N->getRuntimeVersion()); 1102 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1103 Record.push_back(N->getEmissionKind()); 1104 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1105 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1106 Record.push_back(VE.getMetadataOrNullID(N->getSubprograms().get())); 1107 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1108 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1109 Record.push_back(N->getDWOId()); 1110 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1111 1112 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1113 Record.clear(); 1114 } 1115 1116 static void writeDISubprogram(const DISubprogram *N, const ValueEnumerator &VE, 1117 BitstreamWriter &Stream, 1118 SmallVectorImpl<uint64_t> &Record, 1119 unsigned Abbrev) { 1120 Record.push_back(N->isDistinct()); 1121 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1122 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1123 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1124 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1125 Record.push_back(N->getLine()); 1126 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1127 Record.push_back(N->isLocalToUnit()); 1128 Record.push_back(N->isDefinition()); 1129 Record.push_back(N->getScopeLine()); 1130 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1131 Record.push_back(N->getVirtuality()); 1132 Record.push_back(N->getVirtualIndex()); 1133 Record.push_back(N->getFlags()); 1134 Record.push_back(N->isOptimized()); 1135 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1136 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1137 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1138 1139 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1140 Record.clear(); 1141 } 1142 1143 static void writeDILexicalBlock(const DILexicalBlock *N, 1144 const ValueEnumerator &VE, 1145 BitstreamWriter &Stream, 1146 SmallVectorImpl<uint64_t> &Record, 1147 unsigned Abbrev) { 1148 Record.push_back(N->isDistinct()); 1149 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1150 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1151 Record.push_back(N->getLine()); 1152 Record.push_back(N->getColumn()); 1153 1154 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1155 Record.clear(); 1156 } 1157 1158 static void writeDILexicalBlockFile(const DILexicalBlockFile *N, 1159 const ValueEnumerator &VE, 1160 BitstreamWriter &Stream, 1161 SmallVectorImpl<uint64_t> &Record, 1162 unsigned Abbrev) { 1163 Record.push_back(N->isDistinct()); 1164 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1165 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1166 Record.push_back(N->getDiscriminator()); 1167 1168 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1169 Record.clear(); 1170 } 1171 1172 static void writeDINamespace(const DINamespace *N, const ValueEnumerator &VE, 1173 BitstreamWriter &Stream, 1174 SmallVectorImpl<uint64_t> &Record, 1175 unsigned Abbrev) { 1176 Record.push_back(N->isDistinct()); 1177 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1178 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1179 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1180 Record.push_back(N->getLine()); 1181 1182 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1183 Record.clear(); 1184 } 1185 1186 static void writeDIMacro(const DIMacro *N, const ValueEnumerator &VE, 1187 BitstreamWriter &Stream, 1188 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1189 Record.push_back(N->isDistinct()); 1190 Record.push_back(N->getMacinfoType()); 1191 Record.push_back(N->getLine()); 1192 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1193 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1194 1195 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1196 Record.clear(); 1197 } 1198 1199 static void writeDIMacroFile(const DIMacroFile *N, const ValueEnumerator &VE, 1200 BitstreamWriter &Stream, 1201 SmallVectorImpl<uint64_t> &Record, 1202 unsigned Abbrev) { 1203 Record.push_back(N->isDistinct()); 1204 Record.push_back(N->getMacinfoType()); 1205 Record.push_back(N->getLine()); 1206 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1207 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1208 1209 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1210 Record.clear(); 1211 } 1212 1213 static void writeDIModule(const DIModule *N, const ValueEnumerator &VE, 1214 BitstreamWriter &Stream, 1215 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1216 Record.push_back(N->isDistinct()); 1217 for (auto &I : N->operands()) 1218 Record.push_back(VE.getMetadataOrNullID(I)); 1219 1220 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1221 Record.clear(); 1222 } 1223 1224 static void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 1225 const ValueEnumerator &VE, 1226 BitstreamWriter &Stream, 1227 SmallVectorImpl<uint64_t> &Record, 1228 unsigned Abbrev) { 1229 Record.push_back(N->isDistinct()); 1230 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1231 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1232 1233 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1234 Record.clear(); 1235 } 1236 1237 static void writeDITemplateValueParameter(const DITemplateValueParameter *N, 1238 const ValueEnumerator &VE, 1239 BitstreamWriter &Stream, 1240 SmallVectorImpl<uint64_t> &Record, 1241 unsigned Abbrev) { 1242 Record.push_back(N->isDistinct()); 1243 Record.push_back(N->getTag()); 1244 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1245 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1246 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1247 1248 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1249 Record.clear(); 1250 } 1251 1252 static void writeDIGlobalVariable(const DIGlobalVariable *N, 1253 const ValueEnumerator &VE, 1254 BitstreamWriter &Stream, 1255 SmallVectorImpl<uint64_t> &Record, 1256 unsigned Abbrev) { 1257 Record.push_back(N->isDistinct()); 1258 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1259 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1260 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1261 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1262 Record.push_back(N->getLine()); 1263 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1264 Record.push_back(N->isLocalToUnit()); 1265 Record.push_back(N->isDefinition()); 1266 Record.push_back(VE.getMetadataOrNullID(N->getRawVariable())); 1267 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1268 1269 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1270 Record.clear(); 1271 } 1272 1273 static void writeDILocalVariable(const DILocalVariable *N, 1274 const ValueEnumerator &VE, 1275 BitstreamWriter &Stream, 1276 SmallVectorImpl<uint64_t> &Record, 1277 unsigned Abbrev) { 1278 Record.push_back(N->isDistinct()); 1279 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1280 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1281 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1282 Record.push_back(N->getLine()); 1283 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1284 Record.push_back(N->getArg()); 1285 Record.push_back(N->getFlags()); 1286 1287 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1288 Record.clear(); 1289 } 1290 1291 static void writeDIExpression(const DIExpression *N, const ValueEnumerator &, 1292 BitstreamWriter &Stream, 1293 SmallVectorImpl<uint64_t> &Record, 1294 unsigned Abbrev) { 1295 Record.reserve(N->getElements().size() + 1); 1296 1297 Record.push_back(N->isDistinct()); 1298 Record.append(N->elements_begin(), N->elements_end()); 1299 1300 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1301 Record.clear(); 1302 } 1303 1304 static void writeDIObjCProperty(const DIObjCProperty *N, 1305 const ValueEnumerator &VE, 1306 BitstreamWriter &Stream, 1307 SmallVectorImpl<uint64_t> &Record, 1308 unsigned Abbrev) { 1309 Record.push_back(N->isDistinct()); 1310 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1311 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1312 Record.push_back(N->getLine()); 1313 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1314 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1315 Record.push_back(N->getAttributes()); 1316 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1317 1318 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1319 Record.clear(); 1320 } 1321 1322 static void writeDIImportedEntity(const DIImportedEntity *N, 1323 const ValueEnumerator &VE, 1324 BitstreamWriter &Stream, 1325 SmallVectorImpl<uint64_t> &Record, 1326 unsigned Abbrev) { 1327 Record.push_back(N->isDistinct()); 1328 Record.push_back(N->getTag()); 1329 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1330 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1331 Record.push_back(N->getLine()); 1332 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1333 1334 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1335 Record.clear(); 1336 } 1337 1338 static unsigned createNamedMetadataAbbrev(BitstreamWriter &Stream) { 1339 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1340 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1343 return Stream.EmitAbbrev(Abbv); 1344 } 1345 1346 static void writeNamedMetadata(const Module &M, const ValueEnumerator &VE, 1347 BitstreamWriter &Stream, 1348 SmallVectorImpl<uint64_t> &Record) { 1349 if (M.named_metadata_empty()) 1350 return; 1351 1352 unsigned Abbrev = createNamedMetadataAbbrev(Stream); 1353 for (const NamedMDNode &NMD : M.named_metadata()) { 1354 // Write name. 1355 StringRef Str = NMD.getName(); 1356 Record.append(Str.bytes_begin(), Str.bytes_end()); 1357 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1358 Record.clear(); 1359 1360 // Write named metadata operands. 1361 for (const MDNode *N : NMD.operands()) 1362 Record.push_back(VE.getMetadataID(N)); 1363 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1364 Record.clear(); 1365 } 1366 } 1367 1368 static unsigned createMetadataStringsAbbrev(BitstreamWriter &Stream) { 1369 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1370 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1374 return Stream.EmitAbbrev(Abbv); 1375 } 1376 1377 /// Write out a record for MDString. 1378 /// 1379 /// All the metadata strings in a metadata block are emitted in a single 1380 /// record. The sizes and strings themselves are shoved into a blob. 1381 static void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 1382 BitstreamWriter &Stream, 1383 SmallVectorImpl<uint64_t> &Record) { 1384 if (Strings.empty()) 1385 return; 1386 1387 // Start the record with the number of strings. 1388 Record.push_back(bitc::METADATA_STRINGS); 1389 Record.push_back(Strings.size()); 1390 1391 // Emit the sizes of the strings in the blob. 1392 SmallString<256> Blob; 1393 { 1394 BitstreamWriter W(Blob); 1395 for (const Metadata *MD : Strings) 1396 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1397 W.FlushToWord(); 1398 } 1399 1400 // Add the offset to the strings to the record. 1401 Record.push_back(Blob.size()); 1402 1403 // Add the strings to the blob. 1404 for (const Metadata *MD : Strings) 1405 Blob.append(cast<MDString>(MD)->getString()); 1406 1407 // Emit the final record. 1408 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(Stream), Record, Blob); 1409 Record.clear(); 1410 } 1411 1412 static void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 1413 const ValueEnumerator &VE, 1414 BitstreamWriter &Stream, 1415 SmallVectorImpl<uint64_t> &Record) { 1416 if (MDs.empty()) 1417 return; 1418 1419 // Initialize MDNode abbreviations. 1420 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1421 #include "llvm/IR/Metadata.def" 1422 1423 for (const Metadata *MD : MDs) { 1424 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1425 assert(N->isResolved() && "Expected forward references to be resolved"); 1426 1427 switch (N->getMetadataID()) { 1428 default: 1429 llvm_unreachable("Invalid MDNode subclass"); 1430 #define HANDLE_MDNODE_LEAF(CLASS) \ 1431 case Metadata::CLASS##Kind: \ 1432 write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 1433 continue; 1434 #include "llvm/IR/Metadata.def" 1435 } 1436 } 1437 writeValueAsMetadata(cast<ValueAsMetadata>(MD), VE, Stream, Record); 1438 } 1439 } 1440 1441 static void writeModuleMetadata(const Module &M, 1442 const ValueEnumerator &VE, 1443 BitstreamWriter &Stream) { 1444 if (!VE.hasMDs() && M.named_metadata_empty()) 1445 return; 1446 1447 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1448 SmallVector<uint64_t, 64> Record; 1449 writeMetadataStrings(VE.getMDStrings(), Stream, Record); 1450 writeMetadataRecords(VE.getNonMDStrings(), VE, Stream, Record); 1451 writeNamedMetadata(M, VE, Stream, Record); 1452 Stream.ExitBlock(); 1453 } 1454 1455 static void writeFunctionMetadata(const Function &F, const ValueEnumerator &VE, 1456 BitstreamWriter &Stream) { 1457 if (!VE.hasMDs()) 1458 return; 1459 1460 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1461 SmallVector<uint64_t, 64> Record; 1462 writeMetadataStrings(VE.getMDStrings(), Stream, Record); 1463 writeMetadataRecords(VE.getNonMDStrings(), VE, Stream, Record); 1464 Stream.ExitBlock(); 1465 } 1466 1467 static void WriteMetadataAttachment(const Function &F, 1468 const ValueEnumerator &VE, 1469 BitstreamWriter &Stream) { 1470 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1471 1472 SmallVector<uint64_t, 64> Record; 1473 1474 // Write metadata attachments 1475 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1476 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1477 F.getAllMetadata(MDs); 1478 if (!MDs.empty()) { 1479 for (const auto &I : MDs) { 1480 Record.push_back(I.first); 1481 Record.push_back(VE.getMetadataID(I.second)); 1482 } 1483 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1484 Record.clear(); 1485 } 1486 1487 for (const BasicBlock &BB : F) 1488 for (const Instruction &I : BB) { 1489 MDs.clear(); 1490 I.getAllMetadataOtherThanDebugLoc(MDs); 1491 1492 // If no metadata, ignore instruction. 1493 if (MDs.empty()) continue; 1494 1495 Record.push_back(VE.getInstructionID(&I)); 1496 1497 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1498 Record.push_back(MDs[i].first); 1499 Record.push_back(VE.getMetadataID(MDs[i].second)); 1500 } 1501 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1502 Record.clear(); 1503 } 1504 1505 Stream.ExitBlock(); 1506 } 1507 1508 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 1509 SmallVector<uint64_t, 64> Record; 1510 1511 // Write metadata kinds 1512 // METADATA_KIND - [n x [id, name]] 1513 SmallVector<StringRef, 8> Names; 1514 M->getMDKindNames(Names); 1515 1516 if (Names.empty()) return; 1517 1518 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 1519 1520 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1521 Record.push_back(MDKindID); 1522 StringRef KName = Names[MDKindID]; 1523 Record.append(KName.begin(), KName.end()); 1524 1525 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1526 Record.clear(); 1527 } 1528 1529 Stream.ExitBlock(); 1530 } 1531 1532 static void WriteOperandBundleTags(const Module *M, BitstreamWriter &Stream) { 1533 // Write metadata kinds 1534 // 1535 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 1536 // 1537 // OPERAND_BUNDLE_TAG - [strchr x N] 1538 1539 SmallVector<StringRef, 8> Tags; 1540 M->getOperandBundleTags(Tags); 1541 1542 if (Tags.empty()) 1543 return; 1544 1545 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 1546 1547 SmallVector<uint64_t, 64> Record; 1548 1549 for (auto Tag : Tags) { 1550 Record.append(Tag.begin(), Tag.end()); 1551 1552 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 1553 Record.clear(); 1554 } 1555 1556 Stream.ExitBlock(); 1557 } 1558 1559 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1560 if ((int64_t)V >= 0) 1561 Vals.push_back(V << 1); 1562 else 1563 Vals.push_back((-V << 1) | 1); 1564 } 1565 1566 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1567 const ValueEnumerator &VE, 1568 BitstreamWriter &Stream, bool isGlobal) { 1569 if (FirstVal == LastVal) return; 1570 1571 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1572 1573 unsigned AggregateAbbrev = 0; 1574 unsigned String8Abbrev = 0; 1575 unsigned CString7Abbrev = 0; 1576 unsigned CString6Abbrev = 0; 1577 // If this is a constant pool for the module, emit module-specific abbrevs. 1578 if (isGlobal) { 1579 // Abbrev for CST_CODE_AGGREGATE. 1580 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1581 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1584 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1585 1586 // Abbrev for CST_CODE_STRING. 1587 Abbv = new BitCodeAbbrev(); 1588 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1591 String8Abbrev = Stream.EmitAbbrev(Abbv); 1592 // Abbrev for CST_CODE_CSTRING. 1593 Abbv = new BitCodeAbbrev(); 1594 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1597 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1598 // Abbrev for CST_CODE_CSTRING. 1599 Abbv = new BitCodeAbbrev(); 1600 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1603 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1604 } 1605 1606 SmallVector<uint64_t, 64> Record; 1607 1608 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1609 Type *LastTy = nullptr; 1610 for (unsigned i = FirstVal; i != LastVal; ++i) { 1611 const Value *V = Vals[i].first; 1612 // If we need to switch types, do so now. 1613 if (V->getType() != LastTy) { 1614 LastTy = V->getType(); 1615 Record.push_back(VE.getTypeID(LastTy)); 1616 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1617 CONSTANTS_SETTYPE_ABBREV); 1618 Record.clear(); 1619 } 1620 1621 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1622 Record.push_back(unsigned(IA->hasSideEffects()) | 1623 unsigned(IA->isAlignStack()) << 1 | 1624 unsigned(IA->getDialect()&1) << 2); 1625 1626 // Add the asm string. 1627 const std::string &AsmStr = IA->getAsmString(); 1628 Record.push_back(AsmStr.size()); 1629 Record.append(AsmStr.begin(), AsmStr.end()); 1630 1631 // Add the constraint string. 1632 const std::string &ConstraintStr = IA->getConstraintString(); 1633 Record.push_back(ConstraintStr.size()); 1634 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1635 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1636 Record.clear(); 1637 continue; 1638 } 1639 const Constant *C = cast<Constant>(V); 1640 unsigned Code = -1U; 1641 unsigned AbbrevToUse = 0; 1642 if (C->isNullValue()) { 1643 Code = bitc::CST_CODE_NULL; 1644 } else if (isa<UndefValue>(C)) { 1645 Code = bitc::CST_CODE_UNDEF; 1646 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1647 if (IV->getBitWidth() <= 64) { 1648 uint64_t V = IV->getSExtValue(); 1649 emitSignedInt64(Record, V); 1650 Code = bitc::CST_CODE_INTEGER; 1651 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1652 } else { // Wide integers, > 64 bits in size. 1653 // We have an arbitrary precision integer value to write whose 1654 // bit width is > 64. However, in canonical unsigned integer 1655 // format it is likely that the high bits are going to be zero. 1656 // So, we only write the number of active words. 1657 unsigned NWords = IV->getValue().getActiveWords(); 1658 const uint64_t *RawWords = IV->getValue().getRawData(); 1659 for (unsigned i = 0; i != NWords; ++i) { 1660 emitSignedInt64(Record, RawWords[i]); 1661 } 1662 Code = bitc::CST_CODE_WIDE_INTEGER; 1663 } 1664 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1665 Code = bitc::CST_CODE_FLOAT; 1666 Type *Ty = CFP->getType(); 1667 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1668 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1669 } else if (Ty->isX86_FP80Ty()) { 1670 // api needed to prevent premature destruction 1671 // bits are not in the same order as a normal i80 APInt, compensate. 1672 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1673 const uint64_t *p = api.getRawData(); 1674 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1675 Record.push_back(p[0] & 0xffffLL); 1676 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1677 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1678 const uint64_t *p = api.getRawData(); 1679 Record.push_back(p[0]); 1680 Record.push_back(p[1]); 1681 } else { 1682 assert (0 && "Unknown FP type!"); 1683 } 1684 } else if (isa<ConstantDataSequential>(C) && 1685 cast<ConstantDataSequential>(C)->isString()) { 1686 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1687 // Emit constant strings specially. 1688 unsigned NumElts = Str->getNumElements(); 1689 // If this is a null-terminated string, use the denser CSTRING encoding. 1690 if (Str->isCString()) { 1691 Code = bitc::CST_CODE_CSTRING; 1692 --NumElts; // Don't encode the null, which isn't allowed by char6. 1693 } else { 1694 Code = bitc::CST_CODE_STRING; 1695 AbbrevToUse = String8Abbrev; 1696 } 1697 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1698 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1699 for (unsigned i = 0; i != NumElts; ++i) { 1700 unsigned char V = Str->getElementAsInteger(i); 1701 Record.push_back(V); 1702 isCStr7 &= (V & 128) == 0; 1703 if (isCStrChar6) 1704 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1705 } 1706 1707 if (isCStrChar6) 1708 AbbrevToUse = CString6Abbrev; 1709 else if (isCStr7) 1710 AbbrevToUse = CString7Abbrev; 1711 } else if (const ConstantDataSequential *CDS = 1712 dyn_cast<ConstantDataSequential>(C)) { 1713 Code = bitc::CST_CODE_DATA; 1714 Type *EltTy = CDS->getType()->getElementType(); 1715 if (isa<IntegerType>(EltTy)) { 1716 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1717 Record.push_back(CDS->getElementAsInteger(i)); 1718 } else { 1719 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1720 Record.push_back( 1721 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 1722 } 1723 } else if (isa<ConstantAggregate>(C)) { 1724 Code = bitc::CST_CODE_AGGREGATE; 1725 for (const Value *Op : C->operands()) 1726 Record.push_back(VE.getValueID(Op)); 1727 AbbrevToUse = AggregateAbbrev; 1728 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1729 switch (CE->getOpcode()) { 1730 default: 1731 if (Instruction::isCast(CE->getOpcode())) { 1732 Code = bitc::CST_CODE_CE_CAST; 1733 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1734 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1735 Record.push_back(VE.getValueID(C->getOperand(0))); 1736 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1737 } else { 1738 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1739 Code = bitc::CST_CODE_CE_BINOP; 1740 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1741 Record.push_back(VE.getValueID(C->getOperand(0))); 1742 Record.push_back(VE.getValueID(C->getOperand(1))); 1743 uint64_t Flags = GetOptimizationFlags(CE); 1744 if (Flags != 0) 1745 Record.push_back(Flags); 1746 } 1747 break; 1748 case Instruction::GetElementPtr: { 1749 Code = bitc::CST_CODE_CE_GEP; 1750 const auto *GO = cast<GEPOperator>(C); 1751 if (GO->isInBounds()) 1752 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1753 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 1754 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1755 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1756 Record.push_back(VE.getValueID(C->getOperand(i))); 1757 } 1758 break; 1759 } 1760 case Instruction::Select: 1761 Code = bitc::CST_CODE_CE_SELECT; 1762 Record.push_back(VE.getValueID(C->getOperand(0))); 1763 Record.push_back(VE.getValueID(C->getOperand(1))); 1764 Record.push_back(VE.getValueID(C->getOperand(2))); 1765 break; 1766 case Instruction::ExtractElement: 1767 Code = bitc::CST_CODE_CE_EXTRACTELT; 1768 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1769 Record.push_back(VE.getValueID(C->getOperand(0))); 1770 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1771 Record.push_back(VE.getValueID(C->getOperand(1))); 1772 break; 1773 case Instruction::InsertElement: 1774 Code = bitc::CST_CODE_CE_INSERTELT; 1775 Record.push_back(VE.getValueID(C->getOperand(0))); 1776 Record.push_back(VE.getValueID(C->getOperand(1))); 1777 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1778 Record.push_back(VE.getValueID(C->getOperand(2))); 1779 break; 1780 case Instruction::ShuffleVector: 1781 // If the return type and argument types are the same, this is a 1782 // standard shufflevector instruction. If the types are different, 1783 // then the shuffle is widening or truncating the input vectors, and 1784 // the argument type must also be encoded. 1785 if (C->getType() == C->getOperand(0)->getType()) { 1786 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1787 } else { 1788 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1789 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1790 } 1791 Record.push_back(VE.getValueID(C->getOperand(0))); 1792 Record.push_back(VE.getValueID(C->getOperand(1))); 1793 Record.push_back(VE.getValueID(C->getOperand(2))); 1794 break; 1795 case Instruction::ICmp: 1796 case Instruction::FCmp: 1797 Code = bitc::CST_CODE_CE_CMP; 1798 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1799 Record.push_back(VE.getValueID(C->getOperand(0))); 1800 Record.push_back(VE.getValueID(C->getOperand(1))); 1801 Record.push_back(CE->getPredicate()); 1802 break; 1803 } 1804 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1805 Code = bitc::CST_CODE_BLOCKADDRESS; 1806 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1807 Record.push_back(VE.getValueID(BA->getFunction())); 1808 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1809 } else { 1810 #ifndef NDEBUG 1811 C->dump(); 1812 #endif 1813 llvm_unreachable("Unknown constant!"); 1814 } 1815 Stream.EmitRecord(Code, Record, AbbrevToUse); 1816 Record.clear(); 1817 } 1818 1819 Stream.ExitBlock(); 1820 } 1821 1822 static void WriteModuleConstants(const ValueEnumerator &VE, 1823 BitstreamWriter &Stream) { 1824 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1825 1826 // Find the first constant to emit, which is the first non-globalvalue value. 1827 // We know globalvalues have been emitted by WriteModuleInfo. 1828 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1829 if (!isa<GlobalValue>(Vals[i].first)) { 1830 WriteConstants(i, Vals.size(), VE, Stream, true); 1831 return; 1832 } 1833 } 1834 } 1835 1836 /// PushValueAndType - The file has to encode both the value and type id for 1837 /// many values, because we need to know what type to create for forward 1838 /// references. However, most operands are not forward references, so this type 1839 /// field is not needed. 1840 /// 1841 /// This function adds V's value ID to Vals. If the value ID is higher than the 1842 /// instruction ID, then it is a forward reference, and it also includes the 1843 /// type ID. The value ID that is written is encoded relative to the InstID. 1844 static bool PushValueAndType(const Value *V, unsigned InstID, 1845 SmallVectorImpl<unsigned> &Vals, 1846 ValueEnumerator &VE) { 1847 unsigned ValID = VE.getValueID(V); 1848 // Make encoding relative to the InstID. 1849 Vals.push_back(InstID - ValID); 1850 if (ValID >= InstID) { 1851 Vals.push_back(VE.getTypeID(V->getType())); 1852 return true; 1853 } 1854 return false; 1855 } 1856 1857 static void WriteOperandBundles(BitstreamWriter &Stream, ImmutableCallSite CS, 1858 unsigned InstID, ValueEnumerator &VE) { 1859 SmallVector<unsigned, 64> Record; 1860 LLVMContext &C = CS.getInstruction()->getContext(); 1861 1862 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 1863 const auto &Bundle = CS.getOperandBundleAt(i); 1864 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 1865 1866 for (auto &Input : Bundle.Inputs) 1867 PushValueAndType(Input, InstID, Record, VE); 1868 1869 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 1870 Record.clear(); 1871 } 1872 } 1873 1874 /// pushValue - Like PushValueAndType, but where the type of the value is 1875 /// omitted (perhaps it was already encoded in an earlier operand). 1876 static void pushValue(const Value *V, unsigned InstID, 1877 SmallVectorImpl<unsigned> &Vals, 1878 ValueEnumerator &VE) { 1879 unsigned ValID = VE.getValueID(V); 1880 Vals.push_back(InstID - ValID); 1881 } 1882 1883 static void pushValueSigned(const Value *V, unsigned InstID, 1884 SmallVectorImpl<uint64_t> &Vals, 1885 ValueEnumerator &VE) { 1886 unsigned ValID = VE.getValueID(V); 1887 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1888 emitSignedInt64(Vals, diff); 1889 } 1890 1891 /// WriteInstruction - Emit an instruction to the specified stream. 1892 static void WriteInstruction(const Instruction &I, unsigned InstID, 1893 ValueEnumerator &VE, BitstreamWriter &Stream, 1894 SmallVectorImpl<unsigned> &Vals) { 1895 unsigned Code = 0; 1896 unsigned AbbrevToUse = 0; 1897 VE.setInstructionID(&I); 1898 switch (I.getOpcode()) { 1899 default: 1900 if (Instruction::isCast(I.getOpcode())) { 1901 Code = bitc::FUNC_CODE_INST_CAST; 1902 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1903 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1904 Vals.push_back(VE.getTypeID(I.getType())); 1905 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1906 } else { 1907 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1908 Code = bitc::FUNC_CODE_INST_BINOP; 1909 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1910 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1911 pushValue(I.getOperand(1), InstID, Vals, VE); 1912 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1913 uint64_t Flags = GetOptimizationFlags(&I); 1914 if (Flags != 0) { 1915 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1916 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1917 Vals.push_back(Flags); 1918 } 1919 } 1920 break; 1921 1922 case Instruction::GetElementPtr: { 1923 Code = bitc::FUNC_CODE_INST_GEP; 1924 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 1925 auto &GEPInst = cast<GetElementPtrInst>(I); 1926 Vals.push_back(GEPInst.isInBounds()); 1927 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 1928 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1929 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1930 break; 1931 } 1932 case Instruction::ExtractValue: { 1933 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1934 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1935 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1936 Vals.append(EVI->idx_begin(), EVI->idx_end()); 1937 break; 1938 } 1939 case Instruction::InsertValue: { 1940 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1941 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1942 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1943 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1944 Vals.append(IVI->idx_begin(), IVI->idx_end()); 1945 break; 1946 } 1947 case Instruction::Select: 1948 Code = bitc::FUNC_CODE_INST_VSELECT; 1949 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1950 pushValue(I.getOperand(2), InstID, Vals, VE); 1951 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1952 break; 1953 case Instruction::ExtractElement: 1954 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1955 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1956 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1957 break; 1958 case Instruction::InsertElement: 1959 Code = bitc::FUNC_CODE_INST_INSERTELT; 1960 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1961 pushValue(I.getOperand(1), InstID, Vals, VE); 1962 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1963 break; 1964 case Instruction::ShuffleVector: 1965 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1966 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1967 pushValue(I.getOperand(1), InstID, Vals, VE); 1968 pushValue(I.getOperand(2), InstID, Vals, VE); 1969 break; 1970 case Instruction::ICmp: 1971 case Instruction::FCmp: { 1972 // compare returning Int1Ty or vector of Int1Ty 1973 Code = bitc::FUNC_CODE_INST_CMP2; 1974 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1975 pushValue(I.getOperand(1), InstID, Vals, VE); 1976 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1977 uint64_t Flags = GetOptimizationFlags(&I); 1978 if (Flags != 0) 1979 Vals.push_back(Flags); 1980 break; 1981 } 1982 1983 case Instruction::Ret: 1984 { 1985 Code = bitc::FUNC_CODE_INST_RET; 1986 unsigned NumOperands = I.getNumOperands(); 1987 if (NumOperands == 0) 1988 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1989 else if (NumOperands == 1) { 1990 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1991 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1992 } else { 1993 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1994 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1995 } 1996 } 1997 break; 1998 case Instruction::Br: 1999 { 2000 Code = bitc::FUNC_CODE_INST_BR; 2001 const BranchInst &II = cast<BranchInst>(I); 2002 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2003 if (II.isConditional()) { 2004 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2005 pushValue(II.getCondition(), InstID, Vals, VE); 2006 } 2007 } 2008 break; 2009 case Instruction::Switch: 2010 { 2011 Code = bitc::FUNC_CODE_INST_SWITCH; 2012 const SwitchInst &SI = cast<SwitchInst>(I); 2013 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2014 pushValue(SI.getCondition(), InstID, Vals, VE); 2015 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2016 for (SwitchInst::ConstCaseIt Case : SI.cases()) { 2017 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2018 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2019 } 2020 } 2021 break; 2022 case Instruction::IndirectBr: 2023 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2024 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2025 // Encode the address operand as relative, but not the basic blocks. 2026 pushValue(I.getOperand(0), InstID, Vals, VE); 2027 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2028 Vals.push_back(VE.getValueID(I.getOperand(i))); 2029 break; 2030 2031 case Instruction::Invoke: { 2032 const InvokeInst *II = cast<InvokeInst>(&I); 2033 const Value *Callee = II->getCalledValue(); 2034 FunctionType *FTy = II->getFunctionType(); 2035 2036 if (II->hasOperandBundles()) 2037 WriteOperandBundles(Stream, II, InstID, VE); 2038 2039 Code = bitc::FUNC_CODE_INST_INVOKE; 2040 2041 Vals.push_back(VE.getAttributeID(II->getAttributes())); 2042 Vals.push_back(II->getCallingConv() | 1 << 13); 2043 Vals.push_back(VE.getValueID(II->getNormalDest())); 2044 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2045 Vals.push_back(VE.getTypeID(FTy)); 2046 PushValueAndType(Callee, InstID, Vals, VE); 2047 2048 // Emit value #'s for the fixed parameters. 2049 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2050 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 2051 2052 // Emit type/value pairs for varargs params. 2053 if (FTy->isVarArg()) { 2054 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 2055 i != e; ++i) 2056 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 2057 } 2058 break; 2059 } 2060 case Instruction::Resume: 2061 Code = bitc::FUNC_CODE_INST_RESUME; 2062 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 2063 break; 2064 case Instruction::CleanupRet: { 2065 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2066 const auto &CRI = cast<CleanupReturnInst>(I); 2067 pushValue(CRI.getCleanupPad(), InstID, Vals, VE); 2068 if (CRI.hasUnwindDest()) 2069 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2070 break; 2071 } 2072 case Instruction::CatchRet: { 2073 Code = bitc::FUNC_CODE_INST_CATCHRET; 2074 const auto &CRI = cast<CatchReturnInst>(I); 2075 pushValue(CRI.getCatchPad(), InstID, Vals, VE); 2076 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2077 break; 2078 } 2079 case Instruction::CleanupPad: 2080 case Instruction::CatchPad: { 2081 const auto &FuncletPad = cast<FuncletPadInst>(I); 2082 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2083 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2084 pushValue(FuncletPad.getParentPad(), InstID, Vals, VE); 2085 2086 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2087 Vals.push_back(NumArgOperands); 2088 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2089 PushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals, VE); 2090 break; 2091 } 2092 case Instruction::CatchSwitch: { 2093 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2094 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2095 2096 pushValue(CatchSwitch.getParentPad(), InstID, Vals, VE); 2097 2098 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2099 Vals.push_back(NumHandlers); 2100 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2101 Vals.push_back(VE.getValueID(CatchPadBB)); 2102 2103 if (CatchSwitch.hasUnwindDest()) 2104 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2105 break; 2106 } 2107 case Instruction::Unreachable: 2108 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2109 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2110 break; 2111 2112 case Instruction::PHI: { 2113 const PHINode &PN = cast<PHINode>(I); 2114 Code = bitc::FUNC_CODE_INST_PHI; 2115 // With the newer instruction encoding, forward references could give 2116 // negative valued IDs. This is most common for PHIs, so we use 2117 // signed VBRs. 2118 SmallVector<uint64_t, 128> Vals64; 2119 Vals64.push_back(VE.getTypeID(PN.getType())); 2120 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2121 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 2122 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2123 } 2124 // Emit a Vals64 vector and exit. 2125 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2126 Vals64.clear(); 2127 return; 2128 } 2129 2130 case Instruction::LandingPad: { 2131 const LandingPadInst &LP = cast<LandingPadInst>(I); 2132 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2133 Vals.push_back(VE.getTypeID(LP.getType())); 2134 Vals.push_back(LP.isCleanup()); 2135 Vals.push_back(LP.getNumClauses()); 2136 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2137 if (LP.isCatch(I)) 2138 Vals.push_back(LandingPadInst::Catch); 2139 else 2140 Vals.push_back(LandingPadInst::Filter); 2141 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 2142 } 2143 break; 2144 } 2145 2146 case Instruction::Alloca: { 2147 Code = bitc::FUNC_CODE_INST_ALLOCA; 2148 const AllocaInst &AI = cast<AllocaInst>(I); 2149 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2150 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2151 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2152 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2153 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2154 "not enough bits for maximum alignment"); 2155 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2156 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2157 AlignRecord |= 1 << 6; 2158 AlignRecord |= AI.isSwiftError() << 7; 2159 Vals.push_back(AlignRecord); 2160 break; 2161 } 2162 2163 case Instruction::Load: 2164 if (cast<LoadInst>(I).isAtomic()) { 2165 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2166 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 2167 } else { 2168 Code = bitc::FUNC_CODE_INST_LOAD; 2169 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 2170 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2171 } 2172 Vals.push_back(VE.getTypeID(I.getType())); 2173 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2174 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2175 if (cast<LoadInst>(I).isAtomic()) { 2176 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2177 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2178 } 2179 break; 2180 case Instruction::Store: 2181 if (cast<StoreInst>(I).isAtomic()) 2182 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2183 else 2184 Code = bitc::FUNC_CODE_INST_STORE; 2185 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 2186 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // valty + val 2187 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2188 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2189 if (cast<StoreInst>(I).isAtomic()) { 2190 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2191 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2192 } 2193 break; 2194 case Instruction::AtomicCmpXchg: 2195 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2196 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 2197 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // cmp. 2198 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 2199 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2200 Vals.push_back(GetEncodedOrdering( 2201 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2202 Vals.push_back(GetEncodedSynchScope( 2203 cast<AtomicCmpXchgInst>(I).getSynchScope())); 2204 Vals.push_back(GetEncodedOrdering( 2205 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2206 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2207 break; 2208 case Instruction::AtomicRMW: 2209 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2210 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 2211 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 2212 Vals.push_back(GetEncodedRMWOperation( 2213 cast<AtomicRMWInst>(I).getOperation())); 2214 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2215 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2216 Vals.push_back(GetEncodedSynchScope( 2217 cast<AtomicRMWInst>(I).getSynchScope())); 2218 break; 2219 case Instruction::Fence: 2220 Code = bitc::FUNC_CODE_INST_FENCE; 2221 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2222 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2223 break; 2224 case Instruction::Call: { 2225 const CallInst &CI = cast<CallInst>(I); 2226 FunctionType *FTy = CI.getFunctionType(); 2227 2228 if (CI.hasOperandBundles()) 2229 WriteOperandBundles(Stream, &CI, InstID, VE); 2230 2231 Code = bitc::FUNC_CODE_INST_CALL; 2232 2233 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 2234 2235 unsigned Flags = GetOptimizationFlags(&I); 2236 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2237 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2238 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2239 1 << bitc::CALL_EXPLICIT_TYPE | 2240 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2241 unsigned(Flags != 0) << bitc::CALL_FMF); 2242 if (Flags != 0) 2243 Vals.push_back(Flags); 2244 2245 Vals.push_back(VE.getTypeID(FTy)); 2246 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 2247 2248 // Emit value #'s for the fixed parameters. 2249 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2250 // Check for labels (can happen with asm labels). 2251 if (FTy->getParamType(i)->isLabelTy()) 2252 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2253 else 2254 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 2255 } 2256 2257 // Emit type/value pairs for varargs params. 2258 if (FTy->isVarArg()) { 2259 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2260 i != e; ++i) 2261 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 2262 } 2263 break; 2264 } 2265 case Instruction::VAArg: 2266 Code = bitc::FUNC_CODE_INST_VAARG; 2267 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2268 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 2269 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2270 break; 2271 } 2272 2273 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2274 Vals.clear(); 2275 } 2276 2277 /// Emit names for globals/functions etc. The VSTOffsetPlaceholder, 2278 /// BitcodeStartBit and ModuleSummaryIndex are only passed for the module-level 2279 /// VST, where we are including a function bitcode index and need to 2280 /// backpatch the VST forward declaration record. 2281 static void WriteValueSymbolTable( 2282 const ValueSymbolTable &VST, const ValueEnumerator &VE, 2283 BitstreamWriter &Stream, uint64_t VSTOffsetPlaceholder = 0, 2284 uint64_t BitcodeStartBit = 0, 2285 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> * 2286 GlobalValueIndex = nullptr) { 2287 if (VST.empty()) { 2288 // WriteValueSymbolTableForwardDecl should have returned early as 2289 // well. Ensure this handling remains in sync by asserting that 2290 // the placeholder offset is not set. 2291 assert(VSTOffsetPlaceholder == 0); 2292 return; 2293 } 2294 2295 if (VSTOffsetPlaceholder > 0) { 2296 // Get the offset of the VST we are writing, and backpatch it into 2297 // the VST forward declaration record. 2298 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2299 // The BitcodeStartBit was the stream offset of the actual bitcode 2300 // (e.g. excluding any initial darwin header). 2301 VSTOffset -= BitcodeStartBit; 2302 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2303 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2304 } 2305 2306 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2307 2308 // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY 2309 // records, which are not used in the per-function VSTs. 2310 unsigned FnEntry8BitAbbrev; 2311 unsigned FnEntry7BitAbbrev; 2312 unsigned FnEntry6BitAbbrev; 2313 if (VSTOffsetPlaceholder > 0) { 2314 // 8-bit fixed-width VST_CODE_FNENTRY function strings. 2315 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2316 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2321 FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv); 2322 2323 // 7-bit fixed width VST_CODE_FNENTRY function strings. 2324 Abbv = new BitCodeAbbrev(); 2325 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2330 FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv); 2331 2332 // 6-bit char6 VST_CODE_FNENTRY function strings. 2333 Abbv = new BitCodeAbbrev(); 2334 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2339 FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv); 2340 } 2341 2342 // FIXME: Set up the abbrev, we know how many values there are! 2343 // FIXME: We know if the type names can use 7-bit ascii. 2344 SmallVector<unsigned, 64> NameVals; 2345 2346 for (const ValueName &Name : VST) { 2347 // Figure out the encoding to use for the name. 2348 StringEncoding Bits = 2349 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2350 2351 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2352 NameVals.push_back(VE.getValueID(Name.getValue())); 2353 2354 Function *F = dyn_cast<Function>(Name.getValue()); 2355 if (!F) { 2356 // If value is an alias, need to get the aliased base object to 2357 // see if it is a function. 2358 auto *GA = dyn_cast<GlobalAlias>(Name.getValue()); 2359 if (GA && GA->getBaseObject()) 2360 F = dyn_cast<Function>(GA->getBaseObject()); 2361 } 2362 2363 // VST_CODE_ENTRY: [valueid, namechar x N] 2364 // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N] 2365 // VST_CODE_BBENTRY: [bbid, namechar x N] 2366 unsigned Code; 2367 if (isa<BasicBlock>(Name.getValue())) { 2368 Code = bitc::VST_CODE_BBENTRY; 2369 if (Bits == SE_Char6) 2370 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2371 } else if (F && !F->isDeclaration()) { 2372 // Must be the module-level VST, where we pass in the Index and 2373 // have a VSTOffsetPlaceholder. The function-level VST should not 2374 // contain any Function symbols. 2375 assert(GlobalValueIndex); 2376 assert(VSTOffsetPlaceholder > 0); 2377 2378 // Save the word offset of the function (from the start of the 2379 // actual bitcode written to the stream). 2380 uint64_t BitcodeIndex = 2381 (*GlobalValueIndex)[F]->bitcodeIndex() - BitcodeStartBit; 2382 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2383 NameVals.push_back(BitcodeIndex / 32); 2384 2385 Code = bitc::VST_CODE_FNENTRY; 2386 AbbrevToUse = FnEntry8BitAbbrev; 2387 if (Bits == SE_Char6) 2388 AbbrevToUse = FnEntry6BitAbbrev; 2389 else if (Bits == SE_Fixed7) 2390 AbbrevToUse = FnEntry7BitAbbrev; 2391 } else { 2392 Code = bitc::VST_CODE_ENTRY; 2393 if (Bits == SE_Char6) 2394 AbbrevToUse = VST_ENTRY_6_ABBREV; 2395 else if (Bits == SE_Fixed7) 2396 AbbrevToUse = VST_ENTRY_7_ABBREV; 2397 } 2398 2399 for (const auto P : Name.getKey()) 2400 NameVals.push_back((unsigned char)P); 2401 2402 // Emit the finished record. 2403 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2404 NameVals.clear(); 2405 } 2406 Stream.ExitBlock(); 2407 } 2408 2409 /// Emit function names and summary offsets for the combined index 2410 /// used by ThinLTO. 2411 static void WriteCombinedValueSymbolTable( 2412 const ModuleSummaryIndex &Index, BitstreamWriter &Stream, 2413 std::map<GlobalValue::GUID, unsigned> &GUIDToValueIdMap, 2414 uint64_t VSTOffsetPlaceholder) { 2415 assert(VSTOffsetPlaceholder > 0 && "Expected non-zero VSTOffsetPlaceholder"); 2416 // Get the offset of the VST we are writing, and backpatch it into 2417 // the VST forward declaration record. 2418 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2419 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2420 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2421 2422 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2423 2424 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2425 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_GVDEFENTRY)); 2426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // sumoffset 2428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // guid 2429 unsigned DefEntryAbbrev = Stream.EmitAbbrev(Abbv); 2430 2431 Abbv = new BitCodeAbbrev(); 2432 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 2433 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 2435 unsigned EntryAbbrev = Stream.EmitAbbrev(Abbv); 2436 2437 SmallVector<uint64_t, 64> NameVals; 2438 2439 for (const auto &FII : Index) { 2440 GlobalValue::GUID FuncGUID = FII.first; 2441 const auto &VMI = GUIDToValueIdMap.find(FuncGUID); 2442 assert(VMI != GUIDToValueIdMap.end()); 2443 2444 for (const auto &FI : FII.second) { 2445 // VST_CODE_COMBINED_GVDEFENTRY: [valueid, sumoffset, guid] 2446 NameVals.push_back(VMI->second); 2447 NameVals.push_back(FI->bitcodeIndex()); 2448 NameVals.push_back(FuncGUID); 2449 2450 // Emit the finished record. 2451 Stream.EmitRecord(bitc::VST_CODE_COMBINED_GVDEFENTRY, NameVals, 2452 DefEntryAbbrev); 2453 NameVals.clear(); 2454 } 2455 GUIDToValueIdMap.erase(VMI); 2456 } 2457 for (const auto &GVI : GUIDToValueIdMap) { 2458 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 2459 NameVals.push_back(GVI.second); 2460 NameVals.push_back(GVI.first); 2461 2462 // Emit the finished record. 2463 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev); 2464 NameVals.clear(); 2465 } 2466 Stream.ExitBlock(); 2467 } 2468 2469 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 2470 BitstreamWriter &Stream) { 2471 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2472 unsigned Code; 2473 if (isa<BasicBlock>(Order.V)) 2474 Code = bitc::USELIST_CODE_BB; 2475 else 2476 Code = bitc::USELIST_CODE_DEFAULT; 2477 2478 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2479 Record.push_back(VE.getValueID(Order.V)); 2480 Stream.EmitRecord(Code, Record); 2481 } 2482 2483 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 2484 BitstreamWriter &Stream) { 2485 assert(VE.shouldPreserveUseListOrder() && 2486 "Expected to be preserving use-list order"); 2487 2488 auto hasMore = [&]() { 2489 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2490 }; 2491 if (!hasMore()) 2492 // Nothing to do. 2493 return; 2494 2495 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2496 while (hasMore()) { 2497 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 2498 VE.UseListOrders.pop_back(); 2499 } 2500 Stream.ExitBlock(); 2501 } 2502 2503 // Walk through the operands of a given User via worklist iteration and populate 2504 // the set of GlobalValue references encountered. Invoked either on an 2505 // Instruction or a GlobalVariable (which walks its initializer). 2506 static void findRefEdges(const User *CurUser, const ValueEnumerator &VE, 2507 DenseSet<unsigned> &RefEdges, 2508 SmallPtrSet<const User *, 8> &Visited) { 2509 SmallVector<const User *, 32> Worklist; 2510 Worklist.push_back(CurUser); 2511 2512 while (!Worklist.empty()) { 2513 const User *U = Worklist.pop_back_val(); 2514 2515 if (!Visited.insert(U).second) 2516 continue; 2517 2518 ImmutableCallSite CS(U); 2519 2520 for (const auto &OI : U->operands()) { 2521 const User *Operand = dyn_cast<User>(OI); 2522 if (!Operand) 2523 continue; 2524 if (isa<BlockAddress>(Operand)) 2525 continue; 2526 if (isa<GlobalValue>(Operand)) { 2527 // We have a reference to a global value. This should be added to 2528 // the reference set unless it is a callee. Callees are handled 2529 // specially by WriteFunction and are added to a separate list. 2530 if (!(CS && CS.isCallee(&OI))) 2531 RefEdges.insert(VE.getValueID(Operand)); 2532 continue; 2533 } 2534 Worklist.push_back(Operand); 2535 } 2536 } 2537 } 2538 2539 /// Emit a function body to the module stream. 2540 static void 2541 WriteFunction(const Function &F, const Module *M, ValueEnumerator &VE, 2542 BitstreamWriter &Stream, 2543 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> & 2544 GlobalValueIndex, 2545 bool EmitSummaryIndex) { 2546 // Save the bitcode index of the start of this function block for recording 2547 // in the VST. 2548 uint64_t BitcodeIndex = Stream.GetCurrentBitNo(); 2549 2550 bool HasProfileData = F.getEntryCount().hasValue(); 2551 std::unique_ptr<BlockFrequencyInfo> BFI; 2552 if (EmitSummaryIndex && HasProfileData) { 2553 Function &Func = const_cast<Function &>(F); 2554 LoopInfo LI{DominatorTree(Func)}; 2555 BranchProbabilityInfo BPI{Func, LI}; 2556 BFI = llvm::make_unique<BlockFrequencyInfo>(Func, BPI, LI); 2557 } 2558 2559 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2560 VE.incorporateFunction(F); 2561 2562 SmallVector<unsigned, 64> Vals; 2563 2564 // Emit the number of basic blocks, so the reader can create them ahead of 2565 // time. 2566 Vals.push_back(VE.getBasicBlocks().size()); 2567 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2568 Vals.clear(); 2569 2570 // If there are function-local constants, emit them now. 2571 unsigned CstStart, CstEnd; 2572 VE.getFunctionConstantRange(CstStart, CstEnd); 2573 WriteConstants(CstStart, CstEnd, VE, Stream, false); 2574 2575 // If there is function-local metadata, emit it now. 2576 writeFunctionMetadata(F, VE, Stream); 2577 2578 // Keep a running idea of what the instruction ID is. 2579 unsigned InstID = CstEnd; 2580 2581 bool NeedsMetadataAttachment = F.hasMetadata(); 2582 2583 DILocation *LastDL = nullptr; 2584 unsigned NumInsts = 0; 2585 // Map from callee ValueId to profile count. Used to accumulate profile 2586 // counts for all static calls to a given callee. 2587 DenseMap<unsigned, CalleeInfo> CallGraphEdges; 2588 DenseSet<unsigned> RefEdges; 2589 2590 SmallPtrSet<const User *, 8> Visited; 2591 // Finally, emit all the instructions, in order. 2592 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2593 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2594 I != E; ++I) { 2595 WriteInstruction(*I, InstID, VE, Stream, Vals); 2596 2597 if (!isa<DbgInfoIntrinsic>(I)) 2598 ++NumInsts; 2599 2600 if (!I->getType()->isVoidTy()) 2601 ++InstID; 2602 2603 if (EmitSummaryIndex) { 2604 if (auto CS = ImmutableCallSite(&*I)) { 2605 auto *CalledFunction = CS.getCalledFunction(); 2606 if (CalledFunction && CalledFunction->hasName() && 2607 !CalledFunction->isIntrinsic()) { 2608 auto ScaledCount = BFI ? BFI->getBlockProfileCount(&*BB) : None; 2609 unsigned CalleeId = VE.getValueID( 2610 M->getValueSymbolTable().lookup(CalledFunction->getName())); 2611 CallGraphEdges[CalleeId] += 2612 (ScaledCount ? ScaledCount.getValue() : 0); 2613 } 2614 } 2615 findRefEdges(&*I, VE, RefEdges, Visited); 2616 } 2617 2618 // If the instruction has metadata, write a metadata attachment later. 2619 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2620 2621 // If the instruction has a debug location, emit it. 2622 DILocation *DL = I->getDebugLoc(); 2623 if (!DL) 2624 continue; 2625 2626 if (DL == LastDL) { 2627 // Just repeat the same debug loc as last time. 2628 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2629 continue; 2630 } 2631 2632 Vals.push_back(DL->getLine()); 2633 Vals.push_back(DL->getColumn()); 2634 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2635 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2636 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2637 Vals.clear(); 2638 2639 LastDL = DL; 2640 } 2641 2642 std::unique_ptr<FunctionSummary> FuncSummary; 2643 if (EmitSummaryIndex) { 2644 FuncSummary = llvm::make_unique<FunctionSummary>(F.getLinkage(), NumInsts); 2645 FuncSummary->addCallGraphEdges(CallGraphEdges); 2646 FuncSummary->addRefEdges(RefEdges); 2647 } 2648 GlobalValueIndex[&F] = 2649 llvm::make_unique<GlobalValueInfo>(BitcodeIndex, std::move(FuncSummary)); 2650 2651 // Emit names for all the instructions etc. 2652 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 2653 2654 if (NeedsMetadataAttachment) 2655 WriteMetadataAttachment(F, VE, Stream); 2656 if (VE.shouldPreserveUseListOrder()) 2657 WriteUseListBlock(&F, VE, Stream); 2658 VE.purgeFunction(); 2659 Stream.ExitBlock(); 2660 } 2661 2662 // Emit blockinfo, which defines the standard abbreviations etc. 2663 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 2664 // We only want to emit block info records for blocks that have multiple 2665 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2666 // Other blocks can define their abbrevs inline. 2667 Stream.EnterBlockInfoBlock(2); 2668 2669 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 2670 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2671 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2672 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2674 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2675 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2676 Abbv) != VST_ENTRY_8_ABBREV) 2677 llvm_unreachable("Unexpected abbrev ordering!"); 2678 } 2679 2680 { // 7-bit fixed width VST_CODE_ENTRY strings. 2681 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2682 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2683 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2684 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2685 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2686 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2687 Abbv) != VST_ENTRY_7_ABBREV) 2688 llvm_unreachable("Unexpected abbrev ordering!"); 2689 } 2690 { // 6-bit char6 VST_CODE_ENTRY strings. 2691 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2692 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2693 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2694 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2695 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2696 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2697 Abbv) != VST_ENTRY_6_ABBREV) 2698 llvm_unreachable("Unexpected abbrev ordering!"); 2699 } 2700 { // 6-bit char6 VST_CODE_BBENTRY strings. 2701 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2702 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2703 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2704 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2705 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2706 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2707 Abbv) != VST_BBENTRY_6_ABBREV) 2708 llvm_unreachable("Unexpected abbrev ordering!"); 2709 } 2710 2711 2712 2713 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2714 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2715 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2716 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2717 VE.computeBitsRequiredForTypeIndicies())); 2718 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2719 Abbv) != CONSTANTS_SETTYPE_ABBREV) 2720 llvm_unreachable("Unexpected abbrev ordering!"); 2721 } 2722 2723 { // INTEGER abbrev for CONSTANTS_BLOCK. 2724 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2725 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2726 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2727 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2728 Abbv) != CONSTANTS_INTEGER_ABBREV) 2729 llvm_unreachable("Unexpected abbrev ordering!"); 2730 } 2731 2732 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2733 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2734 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2735 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2736 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2737 VE.computeBitsRequiredForTypeIndicies())); 2738 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2739 2740 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2741 Abbv) != CONSTANTS_CE_CAST_Abbrev) 2742 llvm_unreachable("Unexpected abbrev ordering!"); 2743 } 2744 { // NULL abbrev for CONSTANTS_BLOCK. 2745 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2746 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2747 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2748 Abbv) != CONSTANTS_NULL_Abbrev) 2749 llvm_unreachable("Unexpected abbrev ordering!"); 2750 } 2751 2752 // FIXME: This should only use space for first class types! 2753 2754 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2755 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2756 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2759 VE.computeBitsRequiredForTypeIndicies())); 2760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2761 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2762 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2763 Abbv) != FUNCTION_INST_LOAD_ABBREV) 2764 llvm_unreachable("Unexpected abbrev ordering!"); 2765 } 2766 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2767 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2768 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2771 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2772 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2773 Abbv) != FUNCTION_INST_BINOP_ABBREV) 2774 llvm_unreachable("Unexpected abbrev ordering!"); 2775 } 2776 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2777 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2778 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2780 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2783 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2784 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 2785 llvm_unreachable("Unexpected abbrev ordering!"); 2786 } 2787 { // INST_CAST abbrev for FUNCTION_BLOCK. 2788 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2789 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2792 VE.computeBitsRequiredForTypeIndicies())); 2793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2794 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2795 Abbv) != FUNCTION_INST_CAST_ABBREV) 2796 llvm_unreachable("Unexpected abbrev ordering!"); 2797 } 2798 2799 { // INST_RET abbrev for FUNCTION_BLOCK. 2800 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2801 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2802 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2803 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 2804 llvm_unreachable("Unexpected abbrev ordering!"); 2805 } 2806 { // INST_RET abbrev for FUNCTION_BLOCK. 2807 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2808 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2809 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2810 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2811 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 2812 llvm_unreachable("Unexpected abbrev ordering!"); 2813 } 2814 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2815 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2816 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2817 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2818 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 2819 llvm_unreachable("Unexpected abbrev ordering!"); 2820 } 2821 { 2822 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2823 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2825 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2826 Log2_32_Ceil(VE.getTypes().size() + 1))); 2827 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2829 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 2830 FUNCTION_INST_GEP_ABBREV) 2831 llvm_unreachable("Unexpected abbrev ordering!"); 2832 } 2833 2834 Stream.ExitBlock(); 2835 } 2836 2837 /// Write the module path strings, currently only used when generating 2838 /// a combined index file. 2839 static void WriteModStrings(const ModuleSummaryIndex &I, 2840 BitstreamWriter &Stream) { 2841 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 2842 2843 // TODO: See which abbrev sizes we actually need to emit 2844 2845 // 8-bit fixed-width MST_ENTRY strings. 2846 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2847 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2848 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2849 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2850 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2851 unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv); 2852 2853 // 7-bit fixed width MST_ENTRY strings. 2854 Abbv = new BitCodeAbbrev(); 2855 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2856 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2857 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2858 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2859 unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv); 2860 2861 // 6-bit char6 MST_ENTRY strings. 2862 Abbv = new BitCodeAbbrev(); 2863 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2864 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2865 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2866 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2867 unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv); 2868 2869 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 2870 Abbv = new BitCodeAbbrev(); 2871 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 2872 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2873 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2874 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2875 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2876 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2877 unsigned AbbrevHash = Stream.EmitAbbrev(Abbv); 2878 2879 SmallVector<unsigned, 64> Vals; 2880 for (const auto &MPSE : I.modulePaths()) { 2881 StringEncoding Bits = 2882 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 2883 unsigned AbbrevToUse = Abbrev8Bit; 2884 if (Bits == SE_Char6) 2885 AbbrevToUse = Abbrev6Bit; 2886 else if (Bits == SE_Fixed7) 2887 AbbrevToUse = Abbrev7Bit; 2888 2889 Vals.push_back(MPSE.getValue().first); 2890 2891 for (const auto P : MPSE.getKey()) 2892 Vals.push_back((unsigned char)P); 2893 2894 // Emit the finished record. 2895 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 2896 2897 Vals.clear(); 2898 // Emit an optional hash for the module now 2899 auto &Hash = MPSE.getValue().second; 2900 bool AllZero = true; // Detect if the hash is empty, and do not generate it 2901 for (auto Val : Hash) { 2902 if (Val) 2903 AllZero = false; 2904 Vals.push_back(Val); 2905 } 2906 if (!AllZero) { 2907 // Emit the hash record. 2908 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 2909 } 2910 2911 Vals.clear(); 2912 } 2913 Stream.ExitBlock(); 2914 } 2915 2916 // Helper to emit a single function summary record. 2917 static void WritePerModuleFunctionSummaryRecord( 2918 SmallVector<uint64_t, 64> &NameVals, FunctionSummary *FS, unsigned ValueID, 2919 unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 2920 BitstreamWriter &Stream, const Function &F) { 2921 assert(FS); 2922 NameVals.push_back(ValueID); 2923 NameVals.push_back(getEncodedLinkage(FS->linkage())); 2924 NameVals.push_back(FS->instCount()); 2925 NameVals.push_back(FS->refs().size()); 2926 2927 for (auto &RI : FS->refs()) 2928 NameVals.push_back(RI); 2929 2930 bool HasProfileData = F.getEntryCount().hasValue(); 2931 for (auto &ECI : FS->calls()) { 2932 NameVals.push_back(ECI.first); 2933 assert(ECI.second.CallsiteCount > 0 && "Expected at least one callsite"); 2934 NameVals.push_back(ECI.second.CallsiteCount); 2935 if (HasProfileData) 2936 NameVals.push_back(ECI.second.ProfileCount); 2937 } 2938 2939 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 2940 unsigned Code = 2941 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 2942 2943 // Emit the finished record. 2944 Stream.EmitRecord(Code, NameVals, FSAbbrev); 2945 NameVals.clear(); 2946 } 2947 2948 // Collect the global value references in the given variable's initializer, 2949 // and emit them in a summary record. 2950 static void WriteModuleLevelReferences(const GlobalVariable &V, 2951 const ValueEnumerator &VE, 2952 SmallVector<uint64_t, 64> &NameVals, 2953 unsigned FSModRefsAbbrev, 2954 BitstreamWriter &Stream) { 2955 // Only interested in recording variable defs in the summary. 2956 if (V.isDeclaration()) 2957 return; 2958 DenseSet<unsigned> RefEdges; 2959 SmallPtrSet<const User *, 8> Visited; 2960 findRefEdges(&V, VE, RefEdges, Visited); 2961 NameVals.push_back(VE.getValueID(&V)); 2962 NameVals.push_back(getEncodedLinkage(V.getLinkage())); 2963 for (auto RefId : RefEdges) { 2964 NameVals.push_back(RefId); 2965 } 2966 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 2967 FSModRefsAbbrev); 2968 NameVals.clear(); 2969 } 2970 2971 /// Emit the per-module summary section alongside the rest of 2972 /// the module's bitcode. 2973 static void WritePerModuleGlobalValueSummary( 2974 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> & 2975 GlobalValueIndex, 2976 const Module *M, const ValueEnumerator &VE, BitstreamWriter &Stream) { 2977 if (M->empty()) 2978 return; 2979 2980 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 2981 2982 // Abbrev for FS_PERMODULE. 2983 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2984 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 2985 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2986 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2987 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 2988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 2989 // numrefs x valueid, n x (valueid, callsitecount) 2990 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2991 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2992 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 2993 2994 // Abbrev for FS_PERMODULE_PROFILE. 2995 Abbv = new BitCodeAbbrev(); 2996 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 2997 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2998 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3001 // numrefs x valueid, n x (valueid, callsitecount, profilecount) 3002 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3003 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3004 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 3005 3006 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3007 Abbv = new BitCodeAbbrev(); 3008 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3009 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3010 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 3011 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3012 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3013 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 3014 3015 SmallVector<uint64_t, 64> NameVals; 3016 // Iterate over the list of functions instead of the GlobalValueIndex map to 3017 // ensure the ordering is stable. 3018 for (const Function &F : *M) { 3019 if (F.isDeclaration()) 3020 continue; 3021 // Skip anonymous functions. We will emit a function summary for 3022 // any aliases below. 3023 if (!F.hasName()) 3024 continue; 3025 3026 assert(GlobalValueIndex.count(&F) == 1); 3027 3028 WritePerModuleFunctionSummaryRecord( 3029 NameVals, cast<FunctionSummary>(GlobalValueIndex[&F]->summary()), 3030 VE.getValueID(M->getValueSymbolTable().lookup(F.getName())), 3031 FSCallsAbbrev, FSCallsProfileAbbrev, Stream, F); 3032 } 3033 3034 for (const GlobalAlias &A : M->aliases()) { 3035 if (!A.getBaseObject()) 3036 continue; 3037 const Function *F = dyn_cast<Function>(A.getBaseObject()); 3038 if (!F || F->isDeclaration()) 3039 continue; 3040 3041 assert(GlobalValueIndex.count(F) == 1); 3042 FunctionSummary *FS = cast<FunctionSummary>(GlobalValueIndex[F]->summary()); 3043 // Add the alias to the reference list of aliasee function. 3044 FS->addRefEdge( 3045 VE.getValueID(M->getValueSymbolTable().lookup(A.getName()))); 3046 WritePerModuleFunctionSummaryRecord( 3047 NameVals, FS, 3048 VE.getValueID(M->getValueSymbolTable().lookup(A.getName())), 3049 FSCallsAbbrev, FSCallsProfileAbbrev, Stream, *F); 3050 } 3051 3052 // Capture references from GlobalVariable initializers, which are outside 3053 // of a function scope. 3054 for (const GlobalVariable &G : M->globals()) 3055 WriteModuleLevelReferences(G, VE, NameVals, FSModRefsAbbrev, Stream); 3056 for (const GlobalAlias &A : M->aliases()) 3057 if (auto *GV = dyn_cast<GlobalVariable>(A.getBaseObject())) 3058 WriteModuleLevelReferences(*GV, VE, NameVals, FSModRefsAbbrev, Stream); 3059 3060 Stream.ExitBlock(); 3061 } 3062 3063 /// Emit the combined summary section into the combined index file. 3064 static void WriteCombinedGlobalValueSummary( 3065 const ModuleSummaryIndex &I, BitstreamWriter &Stream, 3066 std::map<GlobalValue::GUID, unsigned> &GUIDToValueIdMap, 3067 unsigned GlobalValueId) { 3068 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3069 3070 // Abbrev for FS_COMBINED. 3071 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3072 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 3075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3077 // numrefs x valueid, n x (valueid, callsitecount) 3078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3080 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 3081 3082 // Abbrev for FS_COMBINED_PROFILE. 3083 Abbv = new BitCodeAbbrev(); 3084 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3085 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3086 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 3087 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3088 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3089 // numrefs x valueid, n x (valueid, callsitecount, profilecount) 3090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3092 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 3093 3094 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3095 Abbv = new BitCodeAbbrev(); 3096 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3097 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3098 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 3099 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3101 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 3102 3103 SmallVector<uint64_t, 64> NameVals; 3104 for (const auto &FII : I) { 3105 for (auto &FI : FII.second) { 3106 GlobalValueSummary *S = FI->summary(); 3107 assert(S); 3108 3109 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3110 NameVals.push_back(I.getModuleId(VS->modulePath())); 3111 NameVals.push_back(getEncodedLinkage(VS->linkage())); 3112 for (auto &RI : VS->refs()) { 3113 const auto &VMI = GUIDToValueIdMap.find(RI); 3114 unsigned RefId; 3115 // If this GUID doesn't have an entry, assign one. 3116 if (VMI == GUIDToValueIdMap.end()) { 3117 GUIDToValueIdMap[RI] = ++GlobalValueId; 3118 RefId = GlobalValueId; 3119 } else { 3120 RefId = VMI->second; 3121 } 3122 NameVals.push_back(RefId); 3123 } 3124 3125 // Record the starting offset of this summary entry for use 3126 // in the VST entry. Add the current code size since the 3127 // reader will invoke readRecord after the abbrev id read. 3128 FI->setBitcodeIndex(Stream.GetCurrentBitNo() + 3129 Stream.GetAbbrevIDWidth()); 3130 3131 // Emit the finished record. 3132 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3133 FSModRefsAbbrev); 3134 NameVals.clear(); 3135 continue; 3136 } 3137 3138 auto *FS = cast<FunctionSummary>(S); 3139 NameVals.push_back(I.getModuleId(FS->modulePath())); 3140 NameVals.push_back(getEncodedLinkage(FS->linkage())); 3141 NameVals.push_back(FS->instCount()); 3142 NameVals.push_back(FS->refs().size()); 3143 3144 for (auto &RI : FS->refs()) { 3145 const auto &VMI = GUIDToValueIdMap.find(RI); 3146 unsigned RefId; 3147 // If this GUID doesn't have an entry, assign one. 3148 if (VMI == GUIDToValueIdMap.end()) { 3149 GUIDToValueIdMap[RI] = ++GlobalValueId; 3150 RefId = GlobalValueId; 3151 } else { 3152 RefId = VMI->second; 3153 } 3154 NameVals.push_back(RefId); 3155 } 3156 3157 bool HasProfileData = false; 3158 for (auto &EI : FS->calls()) { 3159 HasProfileData |= EI.second.ProfileCount != 0; 3160 if (HasProfileData) 3161 break; 3162 } 3163 3164 for (auto &EI : FS->calls()) { 3165 const auto &VMI = GUIDToValueIdMap.find(EI.first); 3166 // If this GUID doesn't have an entry, it doesn't have a function 3167 // summary and we don't need to record any calls to it. 3168 if (VMI == GUIDToValueIdMap.end()) 3169 continue; 3170 NameVals.push_back(VMI->second); 3171 assert(EI.second.CallsiteCount > 0 && "Expected at least one callsite"); 3172 NameVals.push_back(EI.second.CallsiteCount); 3173 if (HasProfileData) 3174 NameVals.push_back(EI.second.ProfileCount); 3175 } 3176 3177 // Record the starting offset of this summary entry for use 3178 // in the VST entry. Add the current code size since the 3179 // reader will invoke readRecord after the abbrev id read. 3180 FI->setBitcodeIndex(Stream.GetCurrentBitNo() + Stream.GetAbbrevIDWidth()); 3181 3182 unsigned FSAbbrev = 3183 (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3184 unsigned Code = 3185 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3186 3187 // Emit the finished record. 3188 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3189 NameVals.clear(); 3190 } 3191 } 3192 3193 Stream.ExitBlock(); 3194 } 3195 3196 // Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3197 // current llvm version, and a record for the epoch number. 3198 static void WriteIdentificationBlock(const Module *M, BitstreamWriter &Stream) { 3199 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3200 3201 // Write the "user readable" string identifying the bitcode producer 3202 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3203 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3205 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3206 auto StringAbbrev = Stream.EmitAbbrev(Abbv); 3207 WriteStringRecord(bitc::IDENTIFICATION_CODE_STRING, 3208 "LLVM" LLVM_VERSION_STRING, StringAbbrev, Stream); 3209 3210 // Write the epoch version 3211 Abbv = new BitCodeAbbrev(); 3212 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3214 auto EpochAbbrev = Stream.EmitAbbrev(Abbv); 3215 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3216 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3217 Stream.ExitBlock(); 3218 } 3219 3220 static void writeModuleHash(BitstreamWriter &Stream, 3221 SmallVectorImpl<char> &Buffer, 3222 size_t BlockStartPos) { 3223 // Emit the module's hash. 3224 // MODULE_CODE_HASH: [5*i32] 3225 SHA1 Hasher; 3226 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&Buffer[BlockStartPos], 3227 Buffer.size() - BlockStartPos)); 3228 auto Hash = Hasher.result(); 3229 SmallVector<uint64_t, 20> Vals; 3230 auto LShift = [&](unsigned char Val, unsigned Amount) 3231 -> uint64_t { return ((uint64_t)Val) << Amount; }; 3232 for (int Pos = 0; Pos < 20; Pos += 4) { 3233 uint32_t SubHash = LShift(Hash[Pos + 0], 24); 3234 SubHash |= LShift(Hash[Pos + 1], 16) | LShift(Hash[Pos + 2], 8) | 3235 (unsigned)(unsigned char)Hash[Pos + 3]; 3236 Vals.push_back(SubHash); 3237 } 3238 3239 // Emit the finished record. 3240 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3241 } 3242 3243 /// WriteModule - Emit the specified module to the bitstream. 3244 static void WriteModule(const Module *M, BitstreamWriter &Stream, 3245 bool ShouldPreserveUseListOrder, 3246 uint64_t BitcodeStartBit, bool EmitSummaryIndex, 3247 bool GenerateHash, SmallVectorImpl<char> &Buffer) { 3248 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3249 size_t BlockStartPos = Buffer.size(); 3250 3251 SmallVector<unsigned, 1> Vals; 3252 unsigned CurVersion = 1; 3253 Vals.push_back(CurVersion); 3254 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3255 3256 // Analyze the module, enumerating globals, functions, etc. 3257 ValueEnumerator VE(*M, ShouldPreserveUseListOrder); 3258 3259 // Emit blockinfo, which defines the standard abbreviations etc. 3260 WriteBlockInfo(VE, Stream); 3261 3262 // Emit information about attribute groups. 3263 WriteAttributeGroupTable(VE, Stream); 3264 3265 // Emit information about parameter attributes. 3266 WriteAttributeTable(VE, Stream); 3267 3268 // Emit information describing all of the types in the module. 3269 WriteTypeTable(VE, Stream); 3270 3271 writeComdats(VE, Stream); 3272 3273 // Emit top-level description of module, including target triple, inline asm, 3274 // descriptors for global variables, and function prototype info. 3275 uint64_t VSTOffsetPlaceholder = WriteModuleInfo(M, VE, Stream); 3276 3277 // Emit constants. 3278 WriteModuleConstants(VE, Stream); 3279 3280 // Emit metadata. 3281 writeModuleMetadata(*M, VE, Stream); 3282 3283 // Emit metadata. 3284 WriteModuleMetadataStore(M, Stream); 3285 3286 // Emit module-level use-lists. 3287 if (VE.shouldPreserveUseListOrder()) 3288 WriteUseListBlock(nullptr, VE, Stream); 3289 3290 WriteOperandBundleTags(M, Stream); 3291 3292 // Emit function bodies. 3293 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> GlobalValueIndex; 3294 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 3295 if (!F->isDeclaration()) 3296 WriteFunction(*F, M, VE, Stream, GlobalValueIndex, EmitSummaryIndex); 3297 3298 // Need to write after the above call to WriteFunction which populates 3299 // the summary information in the index. 3300 if (EmitSummaryIndex) 3301 WritePerModuleGlobalValueSummary(GlobalValueIndex, M, VE, Stream); 3302 3303 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream, 3304 VSTOffsetPlaceholder, BitcodeStartBit, 3305 &GlobalValueIndex); 3306 3307 if (GenerateHash) { 3308 writeModuleHash(Stream, Buffer, BlockStartPos); 3309 } 3310 3311 Stream.ExitBlock(); 3312 } 3313 3314 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 3315 /// header and trailer to make it compatible with the system archiver. To do 3316 /// this we emit the following header, and then emit a trailer that pads the 3317 /// file out to be a multiple of 16 bytes. 3318 /// 3319 /// struct bc_header { 3320 /// uint32_t Magic; // 0x0B17C0DE 3321 /// uint32_t Version; // Version, currently always 0. 3322 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3323 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3324 /// uint32_t CPUType; // CPU specifier. 3325 /// ... potentially more later ... 3326 /// }; 3327 3328 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3329 uint32_t &Position) { 3330 support::endian::write32le(&Buffer[Position], Value); 3331 Position += 4; 3332 } 3333 3334 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3335 const Triple &TT) { 3336 unsigned CPUType = ~0U; 3337 3338 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3339 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3340 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3341 // specific constants here because they are implicitly part of the Darwin ABI. 3342 enum { 3343 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3344 DARWIN_CPU_TYPE_X86 = 7, 3345 DARWIN_CPU_TYPE_ARM = 12, 3346 DARWIN_CPU_TYPE_POWERPC = 18 3347 }; 3348 3349 Triple::ArchType Arch = TT.getArch(); 3350 if (Arch == Triple::x86_64) 3351 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3352 else if (Arch == Triple::x86) 3353 CPUType = DARWIN_CPU_TYPE_X86; 3354 else if (Arch == Triple::ppc) 3355 CPUType = DARWIN_CPU_TYPE_POWERPC; 3356 else if (Arch == Triple::ppc64) 3357 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3358 else if (Arch == Triple::arm || Arch == Triple::thumb) 3359 CPUType = DARWIN_CPU_TYPE_ARM; 3360 3361 // Traditional Bitcode starts after header. 3362 assert(Buffer.size() >= BWH_HeaderSize && 3363 "Expected header size to be reserved"); 3364 unsigned BCOffset = BWH_HeaderSize; 3365 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3366 3367 // Write the magic and version. 3368 unsigned Position = 0; 3369 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 3370 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 3371 WriteInt32ToBuffer(BCOffset , Buffer, Position); 3372 WriteInt32ToBuffer(BCSize , Buffer, Position); 3373 WriteInt32ToBuffer(CPUType , Buffer, Position); 3374 3375 // If the file is not a multiple of 16 bytes, insert dummy padding. 3376 while (Buffer.size() & 15) 3377 Buffer.push_back(0); 3378 } 3379 3380 /// Helper to write the header common to all bitcode files. 3381 static void WriteBitcodeHeader(BitstreamWriter &Stream) { 3382 // Emit the file header. 3383 Stream.Emit((unsigned)'B', 8); 3384 Stream.Emit((unsigned)'C', 8); 3385 Stream.Emit(0x0, 4); 3386 Stream.Emit(0xC, 4); 3387 Stream.Emit(0xE, 4); 3388 Stream.Emit(0xD, 4); 3389 } 3390 3391 /// WriteBitcodeToFile - Write the specified module to the specified output 3392 /// stream. 3393 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3394 bool ShouldPreserveUseListOrder, 3395 bool EmitSummaryIndex, bool GenerateHash) { 3396 SmallVector<char, 0> Buffer; 3397 Buffer.reserve(256*1024); 3398 3399 // If this is darwin or another generic macho target, reserve space for the 3400 // header. 3401 Triple TT(M->getTargetTriple()); 3402 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3403 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3404 3405 // Emit the module into the buffer. 3406 { 3407 BitstreamWriter Stream(Buffer); 3408 // Save the start bit of the actual bitcode, in case there is space 3409 // saved at the start for the darwin header above. The reader stream 3410 // will start at the bitcode, and we need the offset of the VST 3411 // to line up. 3412 uint64_t BitcodeStartBit = Stream.GetCurrentBitNo(); 3413 3414 // Emit the file header. 3415 WriteBitcodeHeader(Stream); 3416 3417 WriteIdentificationBlock(M, Stream); 3418 3419 // Emit the module. 3420 WriteModule(M, Stream, ShouldPreserveUseListOrder, BitcodeStartBit, 3421 EmitSummaryIndex, GenerateHash, Buffer); 3422 } 3423 3424 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3425 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 3426 3427 // Write the generated bitstream to "Out". 3428 Out.write((char*)&Buffer.front(), Buffer.size()); 3429 } 3430 3431 // Write the specified module summary index to the given raw output stream, 3432 // where it will be written in a new bitcode block. This is used when 3433 // writing the combined index file for ThinLTO. 3434 void llvm::WriteIndexToFile(const ModuleSummaryIndex &Index, raw_ostream &Out) { 3435 SmallVector<char, 0> Buffer; 3436 Buffer.reserve(256 * 1024); 3437 3438 BitstreamWriter Stream(Buffer); 3439 3440 // Emit the bitcode header. 3441 WriteBitcodeHeader(Stream); 3442 3443 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3444 3445 SmallVector<unsigned, 1> Vals; 3446 unsigned CurVersion = 1; 3447 Vals.push_back(CurVersion); 3448 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3449 3450 // If we have a VST, write the VSTOFFSET record placeholder and record 3451 // its offset. 3452 uint64_t VSTOffsetPlaceholder = WriteValueSymbolTableForwardDecl(Stream); 3453 3454 // Write the module paths in the combined index. 3455 WriteModStrings(Index, Stream); 3456 3457 // Assign unique value ids to all functions in the index for use 3458 // in writing out the call graph edges. Save the mapping from GUID 3459 // to the new global value id to use when writing those edges, which 3460 // are currently saved in the index in terms of GUID. 3461 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 3462 unsigned GlobalValueId = 0; 3463 for (auto &II : Index) 3464 GUIDToValueIdMap[II.first] = ++GlobalValueId; 3465 3466 // Write the summary combined index records. 3467 WriteCombinedGlobalValueSummary(Index, Stream, GUIDToValueIdMap, 3468 GlobalValueId); 3469 3470 // Need a special VST writer for the combined index (we don't have a 3471 // real VST and real values when this is invoked). 3472 WriteCombinedValueSymbolTable(Index, Stream, GUIDToValueIdMap, 3473 VSTOffsetPlaceholder); 3474 3475 Stream.ExitBlock(); 3476 3477 Out.write((char *)&Buffer.front(), Buffer.size()); 3478 } 3479