1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeCommon.h" 28 #include "llvm/Bitcode/BitcodeReader.h" 29 #include "llvm/Bitcode/LLVMBitCodes.h" 30 #include "llvm/Bitstream/BitCodes.h" 31 #include "llvm/Bitstream/BitstreamWriter.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/TargetRegistry.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 static cl::opt<unsigned> 86 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 87 cl::desc("Number of metadatas above which we emit an index " 88 "to enable lazy-loading")); 89 static cl::opt<uint32_t> FlushThreshold( 90 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 91 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 92 93 static cl::opt<bool> WriteRelBFToSummary( 94 "write-relbf-to-summary", cl::Hidden, cl::init(false), 95 cl::desc("Write relative block frequency to function summary ")); 96 97 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 98 99 namespace { 100 101 /// These are manifest constants used by the bitcode writer. They do not need to 102 /// be kept in sync with the reader, but need to be consistent within this file. 103 enum { 104 // VALUE_SYMTAB_BLOCK abbrev id's. 105 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 106 VST_ENTRY_7_ABBREV, 107 VST_ENTRY_6_ABBREV, 108 VST_BBENTRY_6_ABBREV, 109 110 // CONSTANTS_BLOCK abbrev id's. 111 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 112 CONSTANTS_INTEGER_ABBREV, 113 CONSTANTS_CE_CAST_Abbrev, 114 CONSTANTS_NULL_Abbrev, 115 116 // FUNCTION_BLOCK abbrev id's. 117 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 118 FUNCTION_INST_UNOP_ABBREV, 119 FUNCTION_INST_UNOP_FLAGS_ABBREV, 120 FUNCTION_INST_BINOP_ABBREV, 121 FUNCTION_INST_BINOP_FLAGS_ABBREV, 122 FUNCTION_INST_CAST_ABBREV, 123 FUNCTION_INST_RET_VOID_ABBREV, 124 FUNCTION_INST_RET_VAL_ABBREV, 125 FUNCTION_INST_UNREACHABLE_ABBREV, 126 FUNCTION_INST_GEP_ABBREV, 127 }; 128 129 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 130 /// file type. 131 class BitcodeWriterBase { 132 protected: 133 /// The stream created and owned by the client. 134 BitstreamWriter &Stream; 135 136 StringTableBuilder &StrtabBuilder; 137 138 public: 139 /// Constructs a BitcodeWriterBase object that writes to the provided 140 /// \p Stream. 141 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 142 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 143 144 protected: 145 void writeModuleVersion(); 146 }; 147 148 void BitcodeWriterBase::writeModuleVersion() { 149 // VERSION: [version#] 150 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 151 } 152 153 /// Base class to manage the module bitcode writing, currently subclassed for 154 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 155 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 156 protected: 157 /// The Module to write to bitcode. 158 const Module &M; 159 160 /// Enumerates ids for all values in the module. 161 ValueEnumerator VE; 162 163 /// Optional per-module index to write for ThinLTO. 164 const ModuleSummaryIndex *Index; 165 166 /// Map that holds the correspondence between GUIDs in the summary index, 167 /// that came from indirect call profiles, and a value id generated by this 168 /// class to use in the VST and summary block records. 169 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 170 171 /// Tracks the last value id recorded in the GUIDToValueMap. 172 unsigned GlobalValueId; 173 174 /// Saves the offset of the VSTOffset record that must eventually be 175 /// backpatched with the offset of the actual VST. 176 uint64_t VSTOffsetPlaceholder = 0; 177 178 public: 179 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 180 /// writing to the provided \p Buffer. 181 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 182 BitstreamWriter &Stream, 183 bool ShouldPreserveUseListOrder, 184 const ModuleSummaryIndex *Index) 185 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 186 VE(M, ShouldPreserveUseListOrder), Index(Index) { 187 // Assign ValueIds to any callee values in the index that came from 188 // indirect call profiles and were recorded as a GUID not a Value* 189 // (which would have been assigned an ID by the ValueEnumerator). 190 // The starting ValueId is just after the number of values in the 191 // ValueEnumerator, so that they can be emitted in the VST. 192 GlobalValueId = VE.getValues().size(); 193 if (!Index) 194 return; 195 for (const auto &GUIDSummaryLists : *Index) 196 // Examine all summaries for this GUID. 197 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 198 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 199 // For each call in the function summary, see if the call 200 // is to a GUID (which means it is for an indirect call, 201 // otherwise we would have a Value for it). If so, synthesize 202 // a value id. 203 for (auto &CallEdge : FS->calls()) 204 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 205 assignValueId(CallEdge.first.getGUID()); 206 } 207 208 protected: 209 void writePerModuleGlobalValueSummary(); 210 211 private: 212 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 213 GlobalValueSummary *Summary, 214 unsigned ValueID, 215 unsigned FSCallsAbbrev, 216 unsigned FSCallsProfileAbbrev, 217 const Function &F); 218 void writeModuleLevelReferences(const GlobalVariable &V, 219 SmallVector<uint64_t, 64> &NameVals, 220 unsigned FSModRefsAbbrev, 221 unsigned FSModVTableRefsAbbrev); 222 223 void assignValueId(GlobalValue::GUID ValGUID) { 224 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 225 } 226 227 unsigned getValueId(GlobalValue::GUID ValGUID) { 228 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 229 // Expect that any GUID value had a value Id assigned by an 230 // earlier call to assignValueId. 231 assert(VMI != GUIDToValueIdMap.end() && 232 "GUID does not have assigned value Id"); 233 return VMI->second; 234 } 235 236 // Helper to get the valueId for the type of value recorded in VI. 237 unsigned getValueId(ValueInfo VI) { 238 if (!VI.haveGVs() || !VI.getValue()) 239 return getValueId(VI.getGUID()); 240 return VE.getValueID(VI.getValue()); 241 } 242 243 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 244 }; 245 246 /// Class to manage the bitcode writing for a module. 247 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 248 /// Pointer to the buffer allocated by caller for bitcode writing. 249 const SmallVectorImpl<char> &Buffer; 250 251 /// True if a module hash record should be written. 252 bool GenerateHash; 253 254 /// If non-null, when GenerateHash is true, the resulting hash is written 255 /// into ModHash. 256 ModuleHash *ModHash; 257 258 SHA1 Hasher; 259 260 /// The start bit of the identification block. 261 uint64_t BitcodeStartBit; 262 263 public: 264 /// Constructs a ModuleBitcodeWriter object for the given Module, 265 /// writing to the provided \p Buffer. 266 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 267 StringTableBuilder &StrtabBuilder, 268 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 269 const ModuleSummaryIndex *Index, bool GenerateHash, 270 ModuleHash *ModHash = nullptr) 271 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 272 ShouldPreserveUseListOrder, Index), 273 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 274 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 275 276 /// Emit the current module to the bitstream. 277 void write(); 278 279 private: 280 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 281 282 size_t addToStrtab(StringRef Str); 283 284 void writeAttributeGroupTable(); 285 void writeAttributeTable(); 286 void writeTypeTable(); 287 void writeComdats(); 288 void writeValueSymbolTableForwardDecl(); 289 void writeModuleInfo(); 290 void writeValueAsMetadata(const ValueAsMetadata *MD, 291 SmallVectorImpl<uint64_t> &Record); 292 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 293 unsigned Abbrev); 294 unsigned createDILocationAbbrev(); 295 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 296 unsigned &Abbrev); 297 unsigned createGenericDINodeAbbrev(); 298 void writeGenericDINode(const GenericDINode *N, 299 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 300 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 301 unsigned Abbrev); 302 void writeDIGenericSubrange(const DIGenericSubrange *N, 303 SmallVectorImpl<uint64_t> &Record, 304 unsigned Abbrev); 305 void writeDIEnumerator(const DIEnumerator *N, 306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 307 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 308 unsigned Abbrev); 309 void writeDIStringType(const DIStringType *N, 310 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 311 void writeDIDerivedType(const DIDerivedType *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDICompositeType(const DICompositeType *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDISubroutineType(const DISubroutineType *N, 316 SmallVectorImpl<uint64_t> &Record, 317 unsigned Abbrev); 318 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDICompileUnit(const DICompileUnit *N, 321 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 322 void writeDISubprogram(const DISubprogram *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDILexicalBlock(const DILexicalBlock *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 327 SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDICommonBlock(const DICommonBlock *N, 330 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 331 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 332 unsigned Abbrev); 333 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 342 SmallVectorImpl<uint64_t> &Record, 343 unsigned Abbrev); 344 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 345 SmallVectorImpl<uint64_t> &Record, 346 unsigned Abbrev); 347 void writeDIGlobalVariable(const DIGlobalVariable *N, 348 SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 void writeDILocalVariable(const DILocalVariable *N, 351 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 352 void writeDILabel(const DILabel *N, 353 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 354 void writeDIExpression(const DIExpression *N, 355 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 356 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 357 SmallVectorImpl<uint64_t> &Record, 358 unsigned Abbrev); 359 void writeDIObjCProperty(const DIObjCProperty *N, 360 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 361 void writeDIImportedEntity(const DIImportedEntity *N, 362 SmallVectorImpl<uint64_t> &Record, 363 unsigned Abbrev); 364 unsigned createNamedMetadataAbbrev(); 365 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 366 unsigned createMetadataStringsAbbrev(); 367 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 368 SmallVectorImpl<uint64_t> &Record); 369 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 370 SmallVectorImpl<uint64_t> &Record, 371 std::vector<unsigned> *MDAbbrevs = nullptr, 372 std::vector<uint64_t> *IndexPos = nullptr); 373 void writeModuleMetadata(); 374 void writeFunctionMetadata(const Function &F); 375 void writeFunctionMetadataAttachment(const Function &F); 376 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 377 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 378 const GlobalObject &GO); 379 void writeModuleMetadataKinds(); 380 void writeOperandBundleTags(); 381 void writeSyncScopeNames(); 382 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 383 void writeModuleConstants(); 384 bool pushValueAndType(const Value *V, unsigned InstID, 385 SmallVectorImpl<unsigned> &Vals); 386 void writeOperandBundles(const CallBase &CB, unsigned InstID); 387 void pushValue(const Value *V, unsigned InstID, 388 SmallVectorImpl<unsigned> &Vals); 389 void pushValueSigned(const Value *V, unsigned InstID, 390 SmallVectorImpl<uint64_t> &Vals); 391 void writeInstruction(const Instruction &I, unsigned InstID, 392 SmallVectorImpl<unsigned> &Vals); 393 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 394 void writeGlobalValueSymbolTable( 395 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 396 void writeUseList(UseListOrder &&Order); 397 void writeUseListBlock(const Function *F); 398 void 399 writeFunction(const Function &F, 400 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 401 void writeBlockInfo(); 402 void writeModuleHash(size_t BlockStartPos); 403 404 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 405 return unsigned(SSID); 406 } 407 408 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 409 }; 410 411 /// Class to manage the bitcode writing for a combined index. 412 class IndexBitcodeWriter : public BitcodeWriterBase { 413 /// The combined index to write to bitcode. 414 const ModuleSummaryIndex &Index; 415 416 /// When writing a subset of the index for distributed backends, client 417 /// provides a map of modules to the corresponding GUIDs/summaries to write. 418 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 419 420 /// Map that holds the correspondence between the GUID used in the combined 421 /// index and a value id generated by this class to use in references. 422 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 423 424 /// Tracks the last value id recorded in the GUIDToValueMap. 425 unsigned GlobalValueId = 0; 426 427 public: 428 /// Constructs a IndexBitcodeWriter object for the given combined index, 429 /// writing to the provided \p Buffer. When writing a subset of the index 430 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 431 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 432 const ModuleSummaryIndex &Index, 433 const std::map<std::string, GVSummaryMapTy> 434 *ModuleToSummariesForIndex = nullptr) 435 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 436 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 437 // Assign unique value ids to all summaries to be written, for use 438 // in writing out the call graph edges. Save the mapping from GUID 439 // to the new global value id to use when writing those edges, which 440 // are currently saved in the index in terms of GUID. 441 forEachSummary([&](GVInfo I, bool) { 442 GUIDToValueIdMap[I.first] = ++GlobalValueId; 443 }); 444 } 445 446 /// The below iterator returns the GUID and associated summary. 447 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 448 449 /// Calls the callback for each value GUID and summary to be written to 450 /// bitcode. This hides the details of whether they are being pulled from the 451 /// entire index or just those in a provided ModuleToSummariesForIndex map. 452 template<typename Functor> 453 void forEachSummary(Functor Callback) { 454 if (ModuleToSummariesForIndex) { 455 for (auto &M : *ModuleToSummariesForIndex) 456 for (auto &Summary : M.second) { 457 Callback(Summary, false); 458 // Ensure aliasee is handled, e.g. for assigning a valueId, 459 // even if we are not importing the aliasee directly (the 460 // imported alias will contain a copy of aliasee). 461 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 462 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 463 } 464 } else { 465 for (auto &Summaries : Index) 466 for (auto &Summary : Summaries.second.SummaryList) 467 Callback({Summaries.first, Summary.get()}, false); 468 } 469 } 470 471 /// Calls the callback for each entry in the modulePaths StringMap that 472 /// should be written to the module path string table. This hides the details 473 /// of whether they are being pulled from the entire index or just those in a 474 /// provided ModuleToSummariesForIndex map. 475 template <typename Functor> void forEachModule(Functor Callback) { 476 if (ModuleToSummariesForIndex) { 477 for (const auto &M : *ModuleToSummariesForIndex) { 478 const auto &MPI = Index.modulePaths().find(M.first); 479 if (MPI == Index.modulePaths().end()) { 480 // This should only happen if the bitcode file was empty, in which 481 // case we shouldn't be importing (the ModuleToSummariesForIndex 482 // would only include the module we are writing and index for). 483 assert(ModuleToSummariesForIndex->size() == 1); 484 continue; 485 } 486 Callback(*MPI); 487 } 488 } else { 489 for (const auto &MPSE : Index.modulePaths()) 490 Callback(MPSE); 491 } 492 } 493 494 /// Main entry point for writing a combined index to bitcode. 495 void write(); 496 497 private: 498 void writeModStrings(); 499 void writeCombinedGlobalValueSummary(); 500 501 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 502 auto VMI = GUIDToValueIdMap.find(ValGUID); 503 if (VMI == GUIDToValueIdMap.end()) 504 return None; 505 return VMI->second; 506 } 507 508 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 509 }; 510 511 } // end anonymous namespace 512 513 static unsigned getEncodedCastOpcode(unsigned Opcode) { 514 switch (Opcode) { 515 default: llvm_unreachable("Unknown cast instruction!"); 516 case Instruction::Trunc : return bitc::CAST_TRUNC; 517 case Instruction::ZExt : return bitc::CAST_ZEXT; 518 case Instruction::SExt : return bitc::CAST_SEXT; 519 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 520 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 521 case Instruction::UIToFP : return bitc::CAST_UITOFP; 522 case Instruction::SIToFP : return bitc::CAST_SITOFP; 523 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 524 case Instruction::FPExt : return bitc::CAST_FPEXT; 525 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 526 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 527 case Instruction::BitCast : return bitc::CAST_BITCAST; 528 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 529 } 530 } 531 532 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 533 switch (Opcode) { 534 default: llvm_unreachable("Unknown binary instruction!"); 535 case Instruction::FNeg: return bitc::UNOP_FNEG; 536 } 537 } 538 539 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 540 switch (Opcode) { 541 default: llvm_unreachable("Unknown binary instruction!"); 542 case Instruction::Add: 543 case Instruction::FAdd: return bitc::BINOP_ADD; 544 case Instruction::Sub: 545 case Instruction::FSub: return bitc::BINOP_SUB; 546 case Instruction::Mul: 547 case Instruction::FMul: return bitc::BINOP_MUL; 548 case Instruction::UDiv: return bitc::BINOP_UDIV; 549 case Instruction::FDiv: 550 case Instruction::SDiv: return bitc::BINOP_SDIV; 551 case Instruction::URem: return bitc::BINOP_UREM; 552 case Instruction::FRem: 553 case Instruction::SRem: return bitc::BINOP_SREM; 554 case Instruction::Shl: return bitc::BINOP_SHL; 555 case Instruction::LShr: return bitc::BINOP_LSHR; 556 case Instruction::AShr: return bitc::BINOP_ASHR; 557 case Instruction::And: return bitc::BINOP_AND; 558 case Instruction::Or: return bitc::BINOP_OR; 559 case Instruction::Xor: return bitc::BINOP_XOR; 560 } 561 } 562 563 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 564 switch (Op) { 565 default: llvm_unreachable("Unknown RMW operation!"); 566 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 567 case AtomicRMWInst::Add: return bitc::RMW_ADD; 568 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 569 case AtomicRMWInst::And: return bitc::RMW_AND; 570 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 571 case AtomicRMWInst::Or: return bitc::RMW_OR; 572 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 573 case AtomicRMWInst::Max: return bitc::RMW_MAX; 574 case AtomicRMWInst::Min: return bitc::RMW_MIN; 575 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 576 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 577 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 578 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 579 } 580 } 581 582 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 583 switch (Ordering) { 584 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 585 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 586 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 587 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 588 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 589 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 590 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 591 } 592 llvm_unreachable("Invalid ordering"); 593 } 594 595 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 596 StringRef Str, unsigned AbbrevToUse) { 597 SmallVector<unsigned, 64> Vals; 598 599 // Code: [strchar x N] 600 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 601 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 602 AbbrevToUse = 0; 603 Vals.push_back(Str[i]); 604 } 605 606 // Emit the finished record. 607 Stream.EmitRecord(Code, Vals, AbbrevToUse); 608 } 609 610 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 611 switch (Kind) { 612 case Attribute::Alignment: 613 return bitc::ATTR_KIND_ALIGNMENT; 614 case Attribute::AllocSize: 615 return bitc::ATTR_KIND_ALLOC_SIZE; 616 case Attribute::AlwaysInline: 617 return bitc::ATTR_KIND_ALWAYS_INLINE; 618 case Attribute::ArgMemOnly: 619 return bitc::ATTR_KIND_ARGMEMONLY; 620 case Attribute::Builtin: 621 return bitc::ATTR_KIND_BUILTIN; 622 case Attribute::ByVal: 623 return bitc::ATTR_KIND_BY_VAL; 624 case Attribute::Convergent: 625 return bitc::ATTR_KIND_CONVERGENT; 626 case Attribute::InAlloca: 627 return bitc::ATTR_KIND_IN_ALLOCA; 628 case Attribute::Cold: 629 return bitc::ATTR_KIND_COLD; 630 case Attribute::Hot: 631 return bitc::ATTR_KIND_HOT; 632 case Attribute::ElementType: 633 return bitc::ATTR_KIND_ELEMENTTYPE; 634 case Attribute::InaccessibleMemOnly: 635 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 636 case Attribute::InaccessibleMemOrArgMemOnly: 637 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 638 case Attribute::InlineHint: 639 return bitc::ATTR_KIND_INLINE_HINT; 640 case Attribute::InReg: 641 return bitc::ATTR_KIND_IN_REG; 642 case Attribute::JumpTable: 643 return bitc::ATTR_KIND_JUMP_TABLE; 644 case Attribute::MinSize: 645 return bitc::ATTR_KIND_MIN_SIZE; 646 case Attribute::Naked: 647 return bitc::ATTR_KIND_NAKED; 648 case Attribute::Nest: 649 return bitc::ATTR_KIND_NEST; 650 case Attribute::NoAlias: 651 return bitc::ATTR_KIND_NO_ALIAS; 652 case Attribute::NoBuiltin: 653 return bitc::ATTR_KIND_NO_BUILTIN; 654 case Attribute::NoCallback: 655 return bitc::ATTR_KIND_NO_CALLBACK; 656 case Attribute::NoCapture: 657 return bitc::ATTR_KIND_NO_CAPTURE; 658 case Attribute::NoDuplicate: 659 return bitc::ATTR_KIND_NO_DUPLICATE; 660 case Attribute::NoFree: 661 return bitc::ATTR_KIND_NOFREE; 662 case Attribute::NoImplicitFloat: 663 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 664 case Attribute::NoInline: 665 return bitc::ATTR_KIND_NO_INLINE; 666 case Attribute::NoRecurse: 667 return bitc::ATTR_KIND_NO_RECURSE; 668 case Attribute::NoMerge: 669 return bitc::ATTR_KIND_NO_MERGE; 670 case Attribute::NonLazyBind: 671 return bitc::ATTR_KIND_NON_LAZY_BIND; 672 case Attribute::NonNull: 673 return bitc::ATTR_KIND_NON_NULL; 674 case Attribute::Dereferenceable: 675 return bitc::ATTR_KIND_DEREFERENCEABLE; 676 case Attribute::DereferenceableOrNull: 677 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 678 case Attribute::NoRedZone: 679 return bitc::ATTR_KIND_NO_RED_ZONE; 680 case Attribute::NoReturn: 681 return bitc::ATTR_KIND_NO_RETURN; 682 case Attribute::NoSync: 683 return bitc::ATTR_KIND_NOSYNC; 684 case Attribute::NoCfCheck: 685 return bitc::ATTR_KIND_NOCF_CHECK; 686 case Attribute::NoProfile: 687 return bitc::ATTR_KIND_NO_PROFILE; 688 case Attribute::NoUnwind: 689 return bitc::ATTR_KIND_NO_UNWIND; 690 case Attribute::NoSanitizeCoverage: 691 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 692 case Attribute::NullPointerIsValid: 693 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 694 case Attribute::OptForFuzzing: 695 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 696 case Attribute::OptimizeForSize: 697 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 698 case Attribute::OptimizeNone: 699 return bitc::ATTR_KIND_OPTIMIZE_NONE; 700 case Attribute::ReadNone: 701 return bitc::ATTR_KIND_READ_NONE; 702 case Attribute::ReadOnly: 703 return bitc::ATTR_KIND_READ_ONLY; 704 case Attribute::Returned: 705 return bitc::ATTR_KIND_RETURNED; 706 case Attribute::ReturnsTwice: 707 return bitc::ATTR_KIND_RETURNS_TWICE; 708 case Attribute::SExt: 709 return bitc::ATTR_KIND_S_EXT; 710 case Attribute::Speculatable: 711 return bitc::ATTR_KIND_SPECULATABLE; 712 case Attribute::StackAlignment: 713 return bitc::ATTR_KIND_STACK_ALIGNMENT; 714 case Attribute::StackProtect: 715 return bitc::ATTR_KIND_STACK_PROTECT; 716 case Attribute::StackProtectReq: 717 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 718 case Attribute::StackProtectStrong: 719 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 720 case Attribute::SafeStack: 721 return bitc::ATTR_KIND_SAFESTACK; 722 case Attribute::ShadowCallStack: 723 return bitc::ATTR_KIND_SHADOWCALLSTACK; 724 case Attribute::StrictFP: 725 return bitc::ATTR_KIND_STRICT_FP; 726 case Attribute::StructRet: 727 return bitc::ATTR_KIND_STRUCT_RET; 728 case Attribute::SanitizeAddress: 729 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 730 case Attribute::SanitizeHWAddress: 731 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 732 case Attribute::SanitizeThread: 733 return bitc::ATTR_KIND_SANITIZE_THREAD; 734 case Attribute::SanitizeMemory: 735 return bitc::ATTR_KIND_SANITIZE_MEMORY; 736 case Attribute::SpeculativeLoadHardening: 737 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 738 case Attribute::SwiftError: 739 return bitc::ATTR_KIND_SWIFT_ERROR; 740 case Attribute::SwiftSelf: 741 return bitc::ATTR_KIND_SWIFT_SELF; 742 case Attribute::SwiftAsync: 743 return bitc::ATTR_KIND_SWIFT_ASYNC; 744 case Attribute::UWTable: 745 return bitc::ATTR_KIND_UW_TABLE; 746 case Attribute::VScaleRange: 747 return bitc::ATTR_KIND_VSCALE_RANGE; 748 case Attribute::WillReturn: 749 return bitc::ATTR_KIND_WILLRETURN; 750 case Attribute::WriteOnly: 751 return bitc::ATTR_KIND_WRITEONLY; 752 case Attribute::ZExt: 753 return bitc::ATTR_KIND_Z_EXT; 754 case Attribute::ImmArg: 755 return bitc::ATTR_KIND_IMMARG; 756 case Attribute::SanitizeMemTag: 757 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 758 case Attribute::Preallocated: 759 return bitc::ATTR_KIND_PREALLOCATED; 760 case Attribute::NoUndef: 761 return bitc::ATTR_KIND_NOUNDEF; 762 case Attribute::ByRef: 763 return bitc::ATTR_KIND_BYREF; 764 case Attribute::MustProgress: 765 return bitc::ATTR_KIND_MUSTPROGRESS; 766 case Attribute::EndAttrKinds: 767 llvm_unreachable("Can not encode end-attribute kinds marker."); 768 case Attribute::None: 769 llvm_unreachable("Can not encode none-attribute."); 770 case Attribute::EmptyKey: 771 case Attribute::TombstoneKey: 772 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 773 } 774 775 llvm_unreachable("Trying to encode unknown attribute"); 776 } 777 778 void ModuleBitcodeWriter::writeAttributeGroupTable() { 779 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 780 VE.getAttributeGroups(); 781 if (AttrGrps.empty()) return; 782 783 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 784 785 SmallVector<uint64_t, 64> Record; 786 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 787 unsigned AttrListIndex = Pair.first; 788 AttributeSet AS = Pair.second; 789 Record.push_back(VE.getAttributeGroupID(Pair)); 790 Record.push_back(AttrListIndex); 791 792 for (Attribute Attr : AS) { 793 if (Attr.isEnumAttribute()) { 794 Record.push_back(0); 795 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 796 } else if (Attr.isIntAttribute()) { 797 Record.push_back(1); 798 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 799 Record.push_back(Attr.getValueAsInt()); 800 } else if (Attr.isStringAttribute()) { 801 StringRef Kind = Attr.getKindAsString(); 802 StringRef Val = Attr.getValueAsString(); 803 804 Record.push_back(Val.empty() ? 3 : 4); 805 Record.append(Kind.begin(), Kind.end()); 806 Record.push_back(0); 807 if (!Val.empty()) { 808 Record.append(Val.begin(), Val.end()); 809 Record.push_back(0); 810 } 811 } else { 812 assert(Attr.isTypeAttribute()); 813 Type *Ty = Attr.getValueAsType(); 814 Record.push_back(Ty ? 6 : 5); 815 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 816 if (Ty) 817 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 818 } 819 } 820 821 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 822 Record.clear(); 823 } 824 825 Stream.ExitBlock(); 826 } 827 828 void ModuleBitcodeWriter::writeAttributeTable() { 829 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 830 if (Attrs.empty()) return; 831 832 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 833 834 SmallVector<uint64_t, 64> Record; 835 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 836 AttributeList AL = Attrs[i]; 837 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 838 AttributeSet AS = AL.getAttributes(i); 839 if (AS.hasAttributes()) 840 Record.push_back(VE.getAttributeGroupID({i, AS})); 841 } 842 843 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 844 Record.clear(); 845 } 846 847 Stream.ExitBlock(); 848 } 849 850 /// WriteTypeTable - Write out the type table for a module. 851 void ModuleBitcodeWriter::writeTypeTable() { 852 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 853 854 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 855 SmallVector<uint64_t, 64> TypeVals; 856 857 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 858 859 // Abbrev for TYPE_CODE_POINTER. 860 auto Abbv = std::make_shared<BitCodeAbbrev>(); 861 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 862 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 863 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 864 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 865 866 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 867 Abbv = std::make_shared<BitCodeAbbrev>(); 868 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 869 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 870 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 871 872 // Abbrev for TYPE_CODE_FUNCTION. 873 Abbv = std::make_shared<BitCodeAbbrev>(); 874 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 875 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 876 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 877 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 878 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 879 880 // Abbrev for TYPE_CODE_STRUCT_ANON. 881 Abbv = std::make_shared<BitCodeAbbrev>(); 882 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 883 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 885 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 886 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 887 888 // Abbrev for TYPE_CODE_STRUCT_NAME. 889 Abbv = std::make_shared<BitCodeAbbrev>(); 890 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 891 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 893 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 894 895 // Abbrev for TYPE_CODE_STRUCT_NAMED. 896 Abbv = std::make_shared<BitCodeAbbrev>(); 897 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 898 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 899 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 901 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 902 903 // Abbrev for TYPE_CODE_ARRAY. 904 Abbv = std::make_shared<BitCodeAbbrev>(); 905 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 906 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 907 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 908 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 909 910 // Emit an entry count so the reader can reserve space. 911 TypeVals.push_back(TypeList.size()); 912 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 913 TypeVals.clear(); 914 915 // Loop over all of the types, emitting each in turn. 916 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 917 Type *T = TypeList[i]; 918 int AbbrevToUse = 0; 919 unsigned Code = 0; 920 921 switch (T->getTypeID()) { 922 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 923 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 924 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 925 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 926 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 927 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 928 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 929 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 930 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 931 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 932 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 933 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 934 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 935 case Type::IntegerTyID: 936 // INTEGER: [width] 937 Code = bitc::TYPE_CODE_INTEGER; 938 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 939 break; 940 case Type::PointerTyID: { 941 PointerType *PTy = cast<PointerType>(T); 942 unsigned AddressSpace = PTy->getAddressSpace(); 943 if (PTy->isOpaque()) { 944 // OPAQUE_POINTER: [address space] 945 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 946 TypeVals.push_back(AddressSpace); 947 if (AddressSpace == 0) 948 AbbrevToUse = OpaquePtrAbbrev; 949 } else { 950 // POINTER: [pointee type, address space] 951 Code = bitc::TYPE_CODE_POINTER; 952 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 953 TypeVals.push_back(AddressSpace); 954 if (AddressSpace == 0) 955 AbbrevToUse = PtrAbbrev; 956 } 957 break; 958 } 959 case Type::FunctionTyID: { 960 FunctionType *FT = cast<FunctionType>(T); 961 // FUNCTION: [isvararg, retty, paramty x N] 962 Code = bitc::TYPE_CODE_FUNCTION; 963 TypeVals.push_back(FT->isVarArg()); 964 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 965 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 966 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 967 AbbrevToUse = FunctionAbbrev; 968 break; 969 } 970 case Type::StructTyID: { 971 StructType *ST = cast<StructType>(T); 972 // STRUCT: [ispacked, eltty x N] 973 TypeVals.push_back(ST->isPacked()); 974 // Output all of the element types. 975 for (StructType::element_iterator I = ST->element_begin(), 976 E = ST->element_end(); I != E; ++I) 977 TypeVals.push_back(VE.getTypeID(*I)); 978 979 if (ST->isLiteral()) { 980 Code = bitc::TYPE_CODE_STRUCT_ANON; 981 AbbrevToUse = StructAnonAbbrev; 982 } else { 983 if (ST->isOpaque()) { 984 Code = bitc::TYPE_CODE_OPAQUE; 985 } else { 986 Code = bitc::TYPE_CODE_STRUCT_NAMED; 987 AbbrevToUse = StructNamedAbbrev; 988 } 989 990 // Emit the name if it is present. 991 if (!ST->getName().empty()) 992 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 993 StructNameAbbrev); 994 } 995 break; 996 } 997 case Type::ArrayTyID: { 998 ArrayType *AT = cast<ArrayType>(T); 999 // ARRAY: [numelts, eltty] 1000 Code = bitc::TYPE_CODE_ARRAY; 1001 TypeVals.push_back(AT->getNumElements()); 1002 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1003 AbbrevToUse = ArrayAbbrev; 1004 break; 1005 } 1006 case Type::FixedVectorTyID: 1007 case Type::ScalableVectorTyID: { 1008 VectorType *VT = cast<VectorType>(T); 1009 // VECTOR [numelts, eltty] or 1010 // [numelts, eltty, scalable] 1011 Code = bitc::TYPE_CODE_VECTOR; 1012 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1013 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1014 if (isa<ScalableVectorType>(VT)) 1015 TypeVals.push_back(true); 1016 break; 1017 } 1018 } 1019 1020 // Emit the finished record. 1021 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1022 TypeVals.clear(); 1023 } 1024 1025 Stream.ExitBlock(); 1026 } 1027 1028 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1029 switch (Linkage) { 1030 case GlobalValue::ExternalLinkage: 1031 return 0; 1032 case GlobalValue::WeakAnyLinkage: 1033 return 16; 1034 case GlobalValue::AppendingLinkage: 1035 return 2; 1036 case GlobalValue::InternalLinkage: 1037 return 3; 1038 case GlobalValue::LinkOnceAnyLinkage: 1039 return 18; 1040 case GlobalValue::ExternalWeakLinkage: 1041 return 7; 1042 case GlobalValue::CommonLinkage: 1043 return 8; 1044 case GlobalValue::PrivateLinkage: 1045 return 9; 1046 case GlobalValue::WeakODRLinkage: 1047 return 17; 1048 case GlobalValue::LinkOnceODRLinkage: 1049 return 19; 1050 case GlobalValue::AvailableExternallyLinkage: 1051 return 12; 1052 } 1053 llvm_unreachable("Invalid linkage"); 1054 } 1055 1056 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1057 return getEncodedLinkage(GV.getLinkage()); 1058 } 1059 1060 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1061 uint64_t RawFlags = 0; 1062 RawFlags |= Flags.ReadNone; 1063 RawFlags |= (Flags.ReadOnly << 1); 1064 RawFlags |= (Flags.NoRecurse << 2); 1065 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1066 RawFlags |= (Flags.NoInline << 4); 1067 RawFlags |= (Flags.AlwaysInline << 5); 1068 return RawFlags; 1069 } 1070 1071 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1072 // in BitcodeReader.cpp. 1073 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1074 uint64_t RawFlags = 0; 1075 1076 RawFlags |= Flags.NotEligibleToImport; // bool 1077 RawFlags |= (Flags.Live << 1); 1078 RawFlags |= (Flags.DSOLocal << 2); 1079 RawFlags |= (Flags.CanAutoHide << 3); 1080 1081 // Linkage don't need to be remapped at that time for the summary. Any future 1082 // change to the getEncodedLinkage() function will need to be taken into 1083 // account here as well. 1084 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1085 1086 RawFlags |= (Flags.Visibility << 8); // 2 bits 1087 1088 return RawFlags; 1089 } 1090 1091 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1092 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1093 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1094 return RawFlags; 1095 } 1096 1097 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1098 switch (GV.getVisibility()) { 1099 case GlobalValue::DefaultVisibility: return 0; 1100 case GlobalValue::HiddenVisibility: return 1; 1101 case GlobalValue::ProtectedVisibility: return 2; 1102 } 1103 llvm_unreachable("Invalid visibility"); 1104 } 1105 1106 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1107 switch (GV.getDLLStorageClass()) { 1108 case GlobalValue::DefaultStorageClass: return 0; 1109 case GlobalValue::DLLImportStorageClass: return 1; 1110 case GlobalValue::DLLExportStorageClass: return 2; 1111 } 1112 llvm_unreachable("Invalid DLL storage class"); 1113 } 1114 1115 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1116 switch (GV.getThreadLocalMode()) { 1117 case GlobalVariable::NotThreadLocal: return 0; 1118 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1119 case GlobalVariable::LocalDynamicTLSModel: return 2; 1120 case GlobalVariable::InitialExecTLSModel: return 3; 1121 case GlobalVariable::LocalExecTLSModel: return 4; 1122 } 1123 llvm_unreachable("Invalid TLS model"); 1124 } 1125 1126 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1127 switch (C.getSelectionKind()) { 1128 case Comdat::Any: 1129 return bitc::COMDAT_SELECTION_KIND_ANY; 1130 case Comdat::ExactMatch: 1131 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1132 case Comdat::Largest: 1133 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1134 case Comdat::NoDeduplicate: 1135 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1136 case Comdat::SameSize: 1137 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1138 } 1139 llvm_unreachable("Invalid selection kind"); 1140 } 1141 1142 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1143 switch (GV.getUnnamedAddr()) { 1144 case GlobalValue::UnnamedAddr::None: return 0; 1145 case GlobalValue::UnnamedAddr::Local: return 2; 1146 case GlobalValue::UnnamedAddr::Global: return 1; 1147 } 1148 llvm_unreachable("Invalid unnamed_addr"); 1149 } 1150 1151 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1152 if (GenerateHash) 1153 Hasher.update(Str); 1154 return StrtabBuilder.add(Str); 1155 } 1156 1157 void ModuleBitcodeWriter::writeComdats() { 1158 SmallVector<unsigned, 64> Vals; 1159 for (const Comdat *C : VE.getComdats()) { 1160 // COMDAT: [strtab offset, strtab size, selection_kind] 1161 Vals.push_back(addToStrtab(C->getName())); 1162 Vals.push_back(C->getName().size()); 1163 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1164 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1165 Vals.clear(); 1166 } 1167 } 1168 1169 /// Write a record that will eventually hold the word offset of the 1170 /// module-level VST. For now the offset is 0, which will be backpatched 1171 /// after the real VST is written. Saves the bit offset to backpatch. 1172 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1173 // Write a placeholder value in for the offset of the real VST, 1174 // which is written after the function blocks so that it can include 1175 // the offset of each function. The placeholder offset will be 1176 // updated when the real VST is written. 1177 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1178 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1179 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1180 // hold the real VST offset. Must use fixed instead of VBR as we don't 1181 // know how many VBR chunks to reserve ahead of time. 1182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1183 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1184 1185 // Emit the placeholder 1186 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1187 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1188 1189 // Compute and save the bit offset to the placeholder, which will be 1190 // patched when the real VST is written. We can simply subtract the 32-bit 1191 // fixed size from the current bit number to get the location to backpatch. 1192 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1193 } 1194 1195 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1196 1197 /// Determine the encoding to use for the given string name and length. 1198 static StringEncoding getStringEncoding(StringRef Str) { 1199 bool isChar6 = true; 1200 for (char C : Str) { 1201 if (isChar6) 1202 isChar6 = BitCodeAbbrevOp::isChar6(C); 1203 if ((unsigned char)C & 128) 1204 // don't bother scanning the rest. 1205 return SE_Fixed8; 1206 } 1207 if (isChar6) 1208 return SE_Char6; 1209 return SE_Fixed7; 1210 } 1211 1212 /// Emit top-level description of module, including target triple, inline asm, 1213 /// descriptors for global variables, and function prototype info. 1214 /// Returns the bit offset to backpatch with the location of the real VST. 1215 void ModuleBitcodeWriter::writeModuleInfo() { 1216 // Emit various pieces of data attached to a module. 1217 if (!M.getTargetTriple().empty()) 1218 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1219 0 /*TODO*/); 1220 const std::string &DL = M.getDataLayoutStr(); 1221 if (!DL.empty()) 1222 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1223 if (!M.getModuleInlineAsm().empty()) 1224 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1225 0 /*TODO*/); 1226 1227 // Emit information about sections and GC, computing how many there are. Also 1228 // compute the maximum alignment value. 1229 std::map<std::string, unsigned> SectionMap; 1230 std::map<std::string, unsigned> GCMap; 1231 MaybeAlign MaxAlignment; 1232 unsigned MaxGlobalType = 0; 1233 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1234 if (A) 1235 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1236 }; 1237 for (const GlobalVariable &GV : M.globals()) { 1238 UpdateMaxAlignment(GV.getAlign()); 1239 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1240 if (GV.hasSection()) { 1241 // Give section names unique ID's. 1242 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1243 if (!Entry) { 1244 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1245 0 /*TODO*/); 1246 Entry = SectionMap.size(); 1247 } 1248 } 1249 } 1250 for (const Function &F : M) { 1251 UpdateMaxAlignment(F.getAlign()); 1252 if (F.hasSection()) { 1253 // Give section names unique ID's. 1254 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1255 if (!Entry) { 1256 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1257 0 /*TODO*/); 1258 Entry = SectionMap.size(); 1259 } 1260 } 1261 if (F.hasGC()) { 1262 // Same for GC names. 1263 unsigned &Entry = GCMap[F.getGC()]; 1264 if (!Entry) { 1265 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1266 0 /*TODO*/); 1267 Entry = GCMap.size(); 1268 } 1269 } 1270 } 1271 1272 // Emit abbrev for globals, now that we know # sections and max alignment. 1273 unsigned SimpleGVarAbbrev = 0; 1274 if (!M.global_empty()) { 1275 // Add an abbrev for common globals with no visibility or thread localness. 1276 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1277 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1279 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1281 Log2_32_Ceil(MaxGlobalType+1))); 1282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1283 //| explicitType << 1 1284 //| constant 1285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1287 if (!MaxAlignment) // Alignment. 1288 Abbv->Add(BitCodeAbbrevOp(0)); 1289 else { 1290 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1291 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1292 Log2_32_Ceil(MaxEncAlignment+1))); 1293 } 1294 if (SectionMap.empty()) // Section. 1295 Abbv->Add(BitCodeAbbrevOp(0)); 1296 else 1297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1298 Log2_32_Ceil(SectionMap.size()+1))); 1299 // Don't bother emitting vis + thread local. 1300 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1301 } 1302 1303 SmallVector<unsigned, 64> Vals; 1304 // Emit the module's source file name. 1305 { 1306 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1307 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1308 if (Bits == SE_Char6) 1309 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1310 else if (Bits == SE_Fixed7) 1311 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1312 1313 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1314 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1315 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1317 Abbv->Add(AbbrevOpToUse); 1318 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1319 1320 for (const auto P : M.getSourceFileName()) 1321 Vals.push_back((unsigned char)P); 1322 1323 // Emit the finished record. 1324 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1325 Vals.clear(); 1326 } 1327 1328 // Emit the global variable information. 1329 for (const GlobalVariable &GV : M.globals()) { 1330 unsigned AbbrevToUse = 0; 1331 1332 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1333 // linkage, alignment, section, visibility, threadlocal, 1334 // unnamed_addr, externally_initialized, dllstorageclass, 1335 // comdat, attributes, DSO_Local] 1336 Vals.push_back(addToStrtab(GV.getName())); 1337 Vals.push_back(GV.getName().size()); 1338 Vals.push_back(VE.getTypeID(GV.getValueType())); 1339 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1340 Vals.push_back(GV.isDeclaration() ? 0 : 1341 (VE.getValueID(GV.getInitializer()) + 1)); 1342 Vals.push_back(getEncodedLinkage(GV)); 1343 Vals.push_back(getEncodedAlign(GV.getAlign())); 1344 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1345 : 0); 1346 if (GV.isThreadLocal() || 1347 GV.getVisibility() != GlobalValue::DefaultVisibility || 1348 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1349 GV.isExternallyInitialized() || 1350 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1351 GV.hasComdat() || 1352 GV.hasAttributes() || 1353 GV.isDSOLocal() || 1354 GV.hasPartition()) { 1355 Vals.push_back(getEncodedVisibility(GV)); 1356 Vals.push_back(getEncodedThreadLocalMode(GV)); 1357 Vals.push_back(getEncodedUnnamedAddr(GV)); 1358 Vals.push_back(GV.isExternallyInitialized()); 1359 Vals.push_back(getEncodedDLLStorageClass(GV)); 1360 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1361 1362 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1363 Vals.push_back(VE.getAttributeListID(AL)); 1364 1365 Vals.push_back(GV.isDSOLocal()); 1366 Vals.push_back(addToStrtab(GV.getPartition())); 1367 Vals.push_back(GV.getPartition().size()); 1368 } else { 1369 AbbrevToUse = SimpleGVarAbbrev; 1370 } 1371 1372 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1373 Vals.clear(); 1374 } 1375 1376 // Emit the function proto information. 1377 for (const Function &F : M) { 1378 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1379 // linkage, paramattrs, alignment, section, visibility, gc, 1380 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1381 // prefixdata, personalityfn, DSO_Local, addrspace] 1382 Vals.push_back(addToStrtab(F.getName())); 1383 Vals.push_back(F.getName().size()); 1384 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1385 Vals.push_back(F.getCallingConv()); 1386 Vals.push_back(F.isDeclaration()); 1387 Vals.push_back(getEncodedLinkage(F)); 1388 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1389 Vals.push_back(getEncodedAlign(F.getAlign())); 1390 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1391 : 0); 1392 Vals.push_back(getEncodedVisibility(F)); 1393 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1394 Vals.push_back(getEncodedUnnamedAddr(F)); 1395 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1396 : 0); 1397 Vals.push_back(getEncodedDLLStorageClass(F)); 1398 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1399 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1400 : 0); 1401 Vals.push_back( 1402 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1403 1404 Vals.push_back(F.isDSOLocal()); 1405 Vals.push_back(F.getAddressSpace()); 1406 Vals.push_back(addToStrtab(F.getPartition())); 1407 Vals.push_back(F.getPartition().size()); 1408 1409 unsigned AbbrevToUse = 0; 1410 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1411 Vals.clear(); 1412 } 1413 1414 // Emit the alias information. 1415 for (const GlobalAlias &A : M.aliases()) { 1416 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1417 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1418 // DSO_Local] 1419 Vals.push_back(addToStrtab(A.getName())); 1420 Vals.push_back(A.getName().size()); 1421 Vals.push_back(VE.getTypeID(A.getValueType())); 1422 Vals.push_back(A.getType()->getAddressSpace()); 1423 Vals.push_back(VE.getValueID(A.getAliasee())); 1424 Vals.push_back(getEncodedLinkage(A)); 1425 Vals.push_back(getEncodedVisibility(A)); 1426 Vals.push_back(getEncodedDLLStorageClass(A)); 1427 Vals.push_back(getEncodedThreadLocalMode(A)); 1428 Vals.push_back(getEncodedUnnamedAddr(A)); 1429 Vals.push_back(A.isDSOLocal()); 1430 Vals.push_back(addToStrtab(A.getPartition())); 1431 Vals.push_back(A.getPartition().size()); 1432 1433 unsigned AbbrevToUse = 0; 1434 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1435 Vals.clear(); 1436 } 1437 1438 // Emit the ifunc information. 1439 for (const GlobalIFunc &I : M.ifuncs()) { 1440 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1441 // val#, linkage, visibility, DSO_Local] 1442 Vals.push_back(addToStrtab(I.getName())); 1443 Vals.push_back(I.getName().size()); 1444 Vals.push_back(VE.getTypeID(I.getValueType())); 1445 Vals.push_back(I.getType()->getAddressSpace()); 1446 Vals.push_back(VE.getValueID(I.getResolver())); 1447 Vals.push_back(getEncodedLinkage(I)); 1448 Vals.push_back(getEncodedVisibility(I)); 1449 Vals.push_back(I.isDSOLocal()); 1450 Vals.push_back(addToStrtab(I.getPartition())); 1451 Vals.push_back(I.getPartition().size()); 1452 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1453 Vals.clear(); 1454 } 1455 1456 writeValueSymbolTableForwardDecl(); 1457 } 1458 1459 static uint64_t getOptimizationFlags(const Value *V) { 1460 uint64_t Flags = 0; 1461 1462 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1463 if (OBO->hasNoSignedWrap()) 1464 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1465 if (OBO->hasNoUnsignedWrap()) 1466 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1467 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1468 if (PEO->isExact()) 1469 Flags |= 1 << bitc::PEO_EXACT; 1470 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1471 if (FPMO->hasAllowReassoc()) 1472 Flags |= bitc::AllowReassoc; 1473 if (FPMO->hasNoNaNs()) 1474 Flags |= bitc::NoNaNs; 1475 if (FPMO->hasNoInfs()) 1476 Flags |= bitc::NoInfs; 1477 if (FPMO->hasNoSignedZeros()) 1478 Flags |= bitc::NoSignedZeros; 1479 if (FPMO->hasAllowReciprocal()) 1480 Flags |= bitc::AllowReciprocal; 1481 if (FPMO->hasAllowContract()) 1482 Flags |= bitc::AllowContract; 1483 if (FPMO->hasApproxFunc()) 1484 Flags |= bitc::ApproxFunc; 1485 } 1486 1487 return Flags; 1488 } 1489 1490 void ModuleBitcodeWriter::writeValueAsMetadata( 1491 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1492 // Mimic an MDNode with a value as one operand. 1493 Value *V = MD->getValue(); 1494 Record.push_back(VE.getTypeID(V->getType())); 1495 Record.push_back(VE.getValueID(V)); 1496 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1497 Record.clear(); 1498 } 1499 1500 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1501 SmallVectorImpl<uint64_t> &Record, 1502 unsigned Abbrev) { 1503 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1504 Metadata *MD = N->getOperand(i); 1505 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1506 "Unexpected function-local metadata"); 1507 Record.push_back(VE.getMetadataOrNullID(MD)); 1508 } 1509 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1510 : bitc::METADATA_NODE, 1511 Record, Abbrev); 1512 Record.clear(); 1513 } 1514 1515 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1516 // Assume the column is usually under 128, and always output the inlined-at 1517 // location (it's never more expensive than building an array size 1). 1518 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1519 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1526 return Stream.EmitAbbrev(std::move(Abbv)); 1527 } 1528 1529 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1530 SmallVectorImpl<uint64_t> &Record, 1531 unsigned &Abbrev) { 1532 if (!Abbrev) 1533 Abbrev = createDILocationAbbrev(); 1534 1535 Record.push_back(N->isDistinct()); 1536 Record.push_back(N->getLine()); 1537 Record.push_back(N->getColumn()); 1538 Record.push_back(VE.getMetadataID(N->getScope())); 1539 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1540 Record.push_back(N->isImplicitCode()); 1541 1542 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1543 Record.clear(); 1544 } 1545 1546 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1547 // Assume the column is usually under 128, and always output the inlined-at 1548 // location (it's never more expensive than building an array size 1). 1549 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1550 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1557 return Stream.EmitAbbrev(std::move(Abbv)); 1558 } 1559 1560 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1561 SmallVectorImpl<uint64_t> &Record, 1562 unsigned &Abbrev) { 1563 if (!Abbrev) 1564 Abbrev = createGenericDINodeAbbrev(); 1565 1566 Record.push_back(N->isDistinct()); 1567 Record.push_back(N->getTag()); 1568 Record.push_back(0); // Per-tag version field; unused for now. 1569 1570 for (auto &I : N->operands()) 1571 Record.push_back(VE.getMetadataOrNullID(I)); 1572 1573 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1574 Record.clear(); 1575 } 1576 1577 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1578 SmallVectorImpl<uint64_t> &Record, 1579 unsigned Abbrev) { 1580 const uint64_t Version = 2 << 1; 1581 Record.push_back((uint64_t)N->isDistinct() | Version); 1582 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1583 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1584 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1585 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1586 1587 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1588 Record.clear(); 1589 } 1590 1591 void ModuleBitcodeWriter::writeDIGenericSubrange( 1592 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1593 unsigned Abbrev) { 1594 Record.push_back((uint64_t)N->isDistinct()); 1595 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1596 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1597 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1598 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1599 1600 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1601 Record.clear(); 1602 } 1603 1604 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1605 if ((int64_t)V >= 0) 1606 Vals.push_back(V << 1); 1607 else 1608 Vals.push_back((-V << 1) | 1); 1609 } 1610 1611 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1612 // We have an arbitrary precision integer value to write whose 1613 // bit width is > 64. However, in canonical unsigned integer 1614 // format it is likely that the high bits are going to be zero. 1615 // So, we only write the number of active words. 1616 unsigned NumWords = A.getActiveWords(); 1617 const uint64_t *RawData = A.getRawData(); 1618 for (unsigned i = 0; i < NumWords; i++) 1619 emitSignedInt64(Vals, RawData[i]); 1620 } 1621 1622 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1623 SmallVectorImpl<uint64_t> &Record, 1624 unsigned Abbrev) { 1625 const uint64_t IsBigInt = 1 << 2; 1626 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1627 Record.push_back(N->getValue().getBitWidth()); 1628 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1629 emitWideAPInt(Record, N->getValue()); 1630 1631 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1632 Record.clear(); 1633 } 1634 1635 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1636 SmallVectorImpl<uint64_t> &Record, 1637 unsigned Abbrev) { 1638 Record.push_back(N->isDistinct()); 1639 Record.push_back(N->getTag()); 1640 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1641 Record.push_back(N->getSizeInBits()); 1642 Record.push_back(N->getAlignInBits()); 1643 Record.push_back(N->getEncoding()); 1644 Record.push_back(N->getFlags()); 1645 1646 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1647 Record.clear(); 1648 } 1649 1650 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1651 SmallVectorImpl<uint64_t> &Record, 1652 unsigned Abbrev) { 1653 Record.push_back(N->isDistinct()); 1654 Record.push_back(N->getTag()); 1655 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1656 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1657 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1658 Record.push_back(N->getSizeInBits()); 1659 Record.push_back(N->getAlignInBits()); 1660 Record.push_back(N->getEncoding()); 1661 1662 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1663 Record.clear(); 1664 } 1665 1666 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1667 SmallVectorImpl<uint64_t> &Record, 1668 unsigned Abbrev) { 1669 Record.push_back(N->isDistinct()); 1670 Record.push_back(N->getTag()); 1671 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1672 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1673 Record.push_back(N->getLine()); 1674 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1675 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1676 Record.push_back(N->getSizeInBits()); 1677 Record.push_back(N->getAlignInBits()); 1678 Record.push_back(N->getOffsetInBits()); 1679 Record.push_back(N->getFlags()); 1680 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1681 1682 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1683 // that there is no DWARF address space associated with DIDerivedType. 1684 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1685 Record.push_back(*DWARFAddressSpace + 1); 1686 else 1687 Record.push_back(0); 1688 1689 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1690 Record.clear(); 1691 } 1692 1693 void ModuleBitcodeWriter::writeDICompositeType( 1694 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1695 unsigned Abbrev) { 1696 const unsigned IsNotUsedInOldTypeRef = 0x2; 1697 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1698 Record.push_back(N->getTag()); 1699 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1700 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1701 Record.push_back(N->getLine()); 1702 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1703 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1704 Record.push_back(N->getSizeInBits()); 1705 Record.push_back(N->getAlignInBits()); 1706 Record.push_back(N->getOffsetInBits()); 1707 Record.push_back(N->getFlags()); 1708 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1709 Record.push_back(N->getRuntimeLang()); 1710 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1711 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1712 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1713 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1714 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1715 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1716 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1717 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1718 1719 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1720 Record.clear(); 1721 } 1722 1723 void ModuleBitcodeWriter::writeDISubroutineType( 1724 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1725 unsigned Abbrev) { 1726 const unsigned HasNoOldTypeRefs = 0x2; 1727 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1728 Record.push_back(N->getFlags()); 1729 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1730 Record.push_back(N->getCC()); 1731 1732 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1733 Record.clear(); 1734 } 1735 1736 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1737 SmallVectorImpl<uint64_t> &Record, 1738 unsigned Abbrev) { 1739 Record.push_back(N->isDistinct()); 1740 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1741 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1742 if (N->getRawChecksum()) { 1743 Record.push_back(N->getRawChecksum()->Kind); 1744 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1745 } else { 1746 // Maintain backwards compatibility with the old internal representation of 1747 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1748 Record.push_back(0); 1749 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1750 } 1751 auto Source = N->getRawSource(); 1752 if (Source) 1753 Record.push_back(VE.getMetadataOrNullID(*Source)); 1754 1755 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1756 Record.clear(); 1757 } 1758 1759 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1760 SmallVectorImpl<uint64_t> &Record, 1761 unsigned Abbrev) { 1762 assert(N->isDistinct() && "Expected distinct compile units"); 1763 Record.push_back(/* IsDistinct */ true); 1764 Record.push_back(N->getSourceLanguage()); 1765 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1766 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1767 Record.push_back(N->isOptimized()); 1768 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1769 Record.push_back(N->getRuntimeVersion()); 1770 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1771 Record.push_back(N->getEmissionKind()); 1772 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1773 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1774 Record.push_back(/* subprograms */ 0); 1775 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1776 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1777 Record.push_back(N->getDWOId()); 1778 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1779 Record.push_back(N->getSplitDebugInlining()); 1780 Record.push_back(N->getDebugInfoForProfiling()); 1781 Record.push_back((unsigned)N->getNameTableKind()); 1782 Record.push_back(N->getRangesBaseAddress()); 1783 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1784 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1785 1786 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1787 Record.clear(); 1788 } 1789 1790 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1791 SmallVectorImpl<uint64_t> &Record, 1792 unsigned Abbrev) { 1793 const uint64_t HasUnitFlag = 1 << 1; 1794 const uint64_t HasSPFlagsFlag = 1 << 2; 1795 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1796 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1797 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1798 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1799 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1800 Record.push_back(N->getLine()); 1801 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1802 Record.push_back(N->getScopeLine()); 1803 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1804 Record.push_back(N->getSPFlags()); 1805 Record.push_back(N->getVirtualIndex()); 1806 Record.push_back(N->getFlags()); 1807 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1808 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1809 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1810 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1811 Record.push_back(N->getThisAdjustment()); 1812 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1813 1814 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1815 Record.clear(); 1816 } 1817 1818 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1819 SmallVectorImpl<uint64_t> &Record, 1820 unsigned Abbrev) { 1821 Record.push_back(N->isDistinct()); 1822 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1823 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1824 Record.push_back(N->getLine()); 1825 Record.push_back(N->getColumn()); 1826 1827 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1828 Record.clear(); 1829 } 1830 1831 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1832 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1833 unsigned Abbrev) { 1834 Record.push_back(N->isDistinct()); 1835 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1836 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1837 Record.push_back(N->getDiscriminator()); 1838 1839 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1840 Record.clear(); 1841 } 1842 1843 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1844 SmallVectorImpl<uint64_t> &Record, 1845 unsigned Abbrev) { 1846 Record.push_back(N->isDistinct()); 1847 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1848 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1849 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1850 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1851 Record.push_back(N->getLineNo()); 1852 1853 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1854 Record.clear(); 1855 } 1856 1857 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1858 SmallVectorImpl<uint64_t> &Record, 1859 unsigned Abbrev) { 1860 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1861 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1862 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1863 1864 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1865 Record.clear(); 1866 } 1867 1868 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1869 SmallVectorImpl<uint64_t> &Record, 1870 unsigned Abbrev) { 1871 Record.push_back(N->isDistinct()); 1872 Record.push_back(N->getMacinfoType()); 1873 Record.push_back(N->getLine()); 1874 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1875 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1876 1877 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1878 Record.clear(); 1879 } 1880 1881 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1882 SmallVectorImpl<uint64_t> &Record, 1883 unsigned Abbrev) { 1884 Record.push_back(N->isDistinct()); 1885 Record.push_back(N->getMacinfoType()); 1886 Record.push_back(N->getLine()); 1887 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1888 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1889 1890 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1891 Record.clear(); 1892 } 1893 1894 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1895 SmallVectorImpl<uint64_t> &Record, 1896 unsigned Abbrev) { 1897 Record.reserve(N->getArgs().size()); 1898 for (ValueAsMetadata *MD : N->getArgs()) 1899 Record.push_back(VE.getMetadataID(MD)); 1900 1901 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1902 Record.clear(); 1903 } 1904 1905 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1906 SmallVectorImpl<uint64_t> &Record, 1907 unsigned Abbrev) { 1908 Record.push_back(N->isDistinct()); 1909 for (auto &I : N->operands()) 1910 Record.push_back(VE.getMetadataOrNullID(I)); 1911 Record.push_back(N->getLineNo()); 1912 Record.push_back(N->getIsDecl()); 1913 1914 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1915 Record.clear(); 1916 } 1917 1918 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1919 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1920 unsigned Abbrev) { 1921 Record.push_back(N->isDistinct()); 1922 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1923 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1924 Record.push_back(N->isDefault()); 1925 1926 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1927 Record.clear(); 1928 } 1929 1930 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1931 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1932 unsigned Abbrev) { 1933 Record.push_back(N->isDistinct()); 1934 Record.push_back(N->getTag()); 1935 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1936 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1937 Record.push_back(N->isDefault()); 1938 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1939 1940 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1941 Record.clear(); 1942 } 1943 1944 void ModuleBitcodeWriter::writeDIGlobalVariable( 1945 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1946 unsigned Abbrev) { 1947 const uint64_t Version = 2 << 1; 1948 Record.push_back((uint64_t)N->isDistinct() | Version); 1949 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1950 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1951 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1952 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1953 Record.push_back(N->getLine()); 1954 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1955 Record.push_back(N->isLocalToUnit()); 1956 Record.push_back(N->isDefinition()); 1957 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1958 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1959 Record.push_back(N->getAlignInBits()); 1960 1961 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1962 Record.clear(); 1963 } 1964 1965 void ModuleBitcodeWriter::writeDILocalVariable( 1966 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1967 unsigned Abbrev) { 1968 // In order to support all possible bitcode formats in BitcodeReader we need 1969 // to distinguish the following cases: 1970 // 1) Record has no artificial tag (Record[1]), 1971 // has no obsolete inlinedAt field (Record[9]). 1972 // In this case Record size will be 8, HasAlignment flag is false. 1973 // 2) Record has artificial tag (Record[1]), 1974 // has no obsolete inlignedAt field (Record[9]). 1975 // In this case Record size will be 9, HasAlignment flag is false. 1976 // 3) Record has both artificial tag (Record[1]) and 1977 // obsolete inlignedAt field (Record[9]). 1978 // In this case Record size will be 10, HasAlignment flag is false. 1979 // 4) Record has neither artificial tag, nor inlignedAt field, but 1980 // HasAlignment flag is true and Record[8] contains alignment value. 1981 const uint64_t HasAlignmentFlag = 1 << 1; 1982 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1983 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1984 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1985 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1986 Record.push_back(N->getLine()); 1987 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1988 Record.push_back(N->getArg()); 1989 Record.push_back(N->getFlags()); 1990 Record.push_back(N->getAlignInBits()); 1991 1992 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1993 Record.clear(); 1994 } 1995 1996 void ModuleBitcodeWriter::writeDILabel( 1997 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1998 unsigned Abbrev) { 1999 Record.push_back((uint64_t)N->isDistinct()); 2000 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2001 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2002 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2003 Record.push_back(N->getLine()); 2004 2005 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2006 Record.clear(); 2007 } 2008 2009 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2010 SmallVectorImpl<uint64_t> &Record, 2011 unsigned Abbrev) { 2012 Record.reserve(N->getElements().size() + 1); 2013 const uint64_t Version = 3 << 1; 2014 Record.push_back((uint64_t)N->isDistinct() | Version); 2015 Record.append(N->elements_begin(), N->elements_end()); 2016 2017 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2018 Record.clear(); 2019 } 2020 2021 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2022 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2023 unsigned Abbrev) { 2024 Record.push_back(N->isDistinct()); 2025 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2026 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2027 2028 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2029 Record.clear(); 2030 } 2031 2032 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2033 SmallVectorImpl<uint64_t> &Record, 2034 unsigned Abbrev) { 2035 Record.push_back(N->isDistinct()); 2036 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2037 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2038 Record.push_back(N->getLine()); 2039 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2040 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2041 Record.push_back(N->getAttributes()); 2042 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2043 2044 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2045 Record.clear(); 2046 } 2047 2048 void ModuleBitcodeWriter::writeDIImportedEntity( 2049 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2050 unsigned Abbrev) { 2051 Record.push_back(N->isDistinct()); 2052 Record.push_back(N->getTag()); 2053 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2054 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2055 Record.push_back(N->getLine()); 2056 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2057 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2058 2059 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2060 Record.clear(); 2061 } 2062 2063 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2064 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2065 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2068 return Stream.EmitAbbrev(std::move(Abbv)); 2069 } 2070 2071 void ModuleBitcodeWriter::writeNamedMetadata( 2072 SmallVectorImpl<uint64_t> &Record) { 2073 if (M.named_metadata_empty()) 2074 return; 2075 2076 unsigned Abbrev = createNamedMetadataAbbrev(); 2077 for (const NamedMDNode &NMD : M.named_metadata()) { 2078 // Write name. 2079 StringRef Str = NMD.getName(); 2080 Record.append(Str.bytes_begin(), Str.bytes_end()); 2081 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2082 Record.clear(); 2083 2084 // Write named metadata operands. 2085 for (const MDNode *N : NMD.operands()) 2086 Record.push_back(VE.getMetadataID(N)); 2087 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2088 Record.clear(); 2089 } 2090 } 2091 2092 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2093 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2094 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2095 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2096 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2097 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2098 return Stream.EmitAbbrev(std::move(Abbv)); 2099 } 2100 2101 /// Write out a record for MDString. 2102 /// 2103 /// All the metadata strings in a metadata block are emitted in a single 2104 /// record. The sizes and strings themselves are shoved into a blob. 2105 void ModuleBitcodeWriter::writeMetadataStrings( 2106 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2107 if (Strings.empty()) 2108 return; 2109 2110 // Start the record with the number of strings. 2111 Record.push_back(bitc::METADATA_STRINGS); 2112 Record.push_back(Strings.size()); 2113 2114 // Emit the sizes of the strings in the blob. 2115 SmallString<256> Blob; 2116 { 2117 BitstreamWriter W(Blob); 2118 for (const Metadata *MD : Strings) 2119 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2120 W.FlushToWord(); 2121 } 2122 2123 // Add the offset to the strings to the record. 2124 Record.push_back(Blob.size()); 2125 2126 // Add the strings to the blob. 2127 for (const Metadata *MD : Strings) 2128 Blob.append(cast<MDString>(MD)->getString()); 2129 2130 // Emit the final record. 2131 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2132 Record.clear(); 2133 } 2134 2135 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2136 enum MetadataAbbrev : unsigned { 2137 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2138 #include "llvm/IR/Metadata.def" 2139 LastPlusOne 2140 }; 2141 2142 void ModuleBitcodeWriter::writeMetadataRecords( 2143 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2144 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2145 if (MDs.empty()) 2146 return; 2147 2148 // Initialize MDNode abbreviations. 2149 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2150 #include "llvm/IR/Metadata.def" 2151 2152 for (const Metadata *MD : MDs) { 2153 if (IndexPos) 2154 IndexPos->push_back(Stream.GetCurrentBitNo()); 2155 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2156 assert(N->isResolved() && "Expected forward references to be resolved"); 2157 2158 switch (N->getMetadataID()) { 2159 default: 2160 llvm_unreachable("Invalid MDNode subclass"); 2161 #define HANDLE_MDNODE_LEAF(CLASS) \ 2162 case Metadata::CLASS##Kind: \ 2163 if (MDAbbrevs) \ 2164 write##CLASS(cast<CLASS>(N), Record, \ 2165 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2166 else \ 2167 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2168 continue; 2169 #include "llvm/IR/Metadata.def" 2170 } 2171 } 2172 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2173 } 2174 } 2175 2176 void ModuleBitcodeWriter::writeModuleMetadata() { 2177 if (!VE.hasMDs() && M.named_metadata_empty()) 2178 return; 2179 2180 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2181 SmallVector<uint64_t, 64> Record; 2182 2183 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2184 // block and load any metadata. 2185 std::vector<unsigned> MDAbbrevs; 2186 2187 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2188 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2189 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2190 createGenericDINodeAbbrev(); 2191 2192 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2193 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2196 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2197 2198 Abbv = std::make_shared<BitCodeAbbrev>(); 2199 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2200 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2202 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2203 2204 // Emit MDStrings together upfront. 2205 writeMetadataStrings(VE.getMDStrings(), Record); 2206 2207 // We only emit an index for the metadata record if we have more than a given 2208 // (naive) threshold of metadatas, otherwise it is not worth it. 2209 if (VE.getNonMDStrings().size() > IndexThreshold) { 2210 // Write a placeholder value in for the offset of the metadata index, 2211 // which is written after the records, so that it can include 2212 // the offset of each entry. The placeholder offset will be 2213 // updated after all records are emitted. 2214 uint64_t Vals[] = {0, 0}; 2215 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2216 } 2217 2218 // Compute and save the bit offset to the current position, which will be 2219 // patched when we emit the index later. We can simply subtract the 64-bit 2220 // fixed size from the current bit number to get the location to backpatch. 2221 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2222 2223 // This index will contain the bitpos for each individual record. 2224 std::vector<uint64_t> IndexPos; 2225 IndexPos.reserve(VE.getNonMDStrings().size()); 2226 2227 // Write all the records 2228 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2229 2230 if (VE.getNonMDStrings().size() > IndexThreshold) { 2231 // Now that we have emitted all the records we will emit the index. But 2232 // first 2233 // backpatch the forward reference so that the reader can skip the records 2234 // efficiently. 2235 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2236 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2237 2238 // Delta encode the index. 2239 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2240 for (auto &Elt : IndexPos) { 2241 auto EltDelta = Elt - PreviousValue; 2242 PreviousValue = Elt; 2243 Elt = EltDelta; 2244 } 2245 // Emit the index record. 2246 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2247 IndexPos.clear(); 2248 } 2249 2250 // Write the named metadata now. 2251 writeNamedMetadata(Record); 2252 2253 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2254 SmallVector<uint64_t, 4> Record; 2255 Record.push_back(VE.getValueID(&GO)); 2256 pushGlobalMetadataAttachment(Record, GO); 2257 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2258 }; 2259 for (const Function &F : M) 2260 if (F.isDeclaration() && F.hasMetadata()) 2261 AddDeclAttachedMetadata(F); 2262 // FIXME: Only store metadata for declarations here, and move data for global 2263 // variable definitions to a separate block (PR28134). 2264 for (const GlobalVariable &GV : M.globals()) 2265 if (GV.hasMetadata()) 2266 AddDeclAttachedMetadata(GV); 2267 2268 Stream.ExitBlock(); 2269 } 2270 2271 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2272 if (!VE.hasMDs()) 2273 return; 2274 2275 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2276 SmallVector<uint64_t, 64> Record; 2277 writeMetadataStrings(VE.getMDStrings(), Record); 2278 writeMetadataRecords(VE.getNonMDStrings(), Record); 2279 Stream.ExitBlock(); 2280 } 2281 2282 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2283 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2284 // [n x [id, mdnode]] 2285 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2286 GO.getAllMetadata(MDs); 2287 for (const auto &I : MDs) { 2288 Record.push_back(I.first); 2289 Record.push_back(VE.getMetadataID(I.second)); 2290 } 2291 } 2292 2293 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2294 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2295 2296 SmallVector<uint64_t, 64> Record; 2297 2298 if (F.hasMetadata()) { 2299 pushGlobalMetadataAttachment(Record, F); 2300 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2301 Record.clear(); 2302 } 2303 2304 // Write metadata attachments 2305 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2306 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2307 for (const BasicBlock &BB : F) 2308 for (const Instruction &I : BB) { 2309 MDs.clear(); 2310 I.getAllMetadataOtherThanDebugLoc(MDs); 2311 2312 // If no metadata, ignore instruction. 2313 if (MDs.empty()) continue; 2314 2315 Record.push_back(VE.getInstructionID(&I)); 2316 2317 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2318 Record.push_back(MDs[i].first); 2319 Record.push_back(VE.getMetadataID(MDs[i].second)); 2320 } 2321 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2322 Record.clear(); 2323 } 2324 2325 Stream.ExitBlock(); 2326 } 2327 2328 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2329 SmallVector<uint64_t, 64> Record; 2330 2331 // Write metadata kinds 2332 // METADATA_KIND - [n x [id, name]] 2333 SmallVector<StringRef, 8> Names; 2334 M.getMDKindNames(Names); 2335 2336 if (Names.empty()) return; 2337 2338 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2339 2340 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2341 Record.push_back(MDKindID); 2342 StringRef KName = Names[MDKindID]; 2343 Record.append(KName.begin(), KName.end()); 2344 2345 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2346 Record.clear(); 2347 } 2348 2349 Stream.ExitBlock(); 2350 } 2351 2352 void ModuleBitcodeWriter::writeOperandBundleTags() { 2353 // Write metadata kinds 2354 // 2355 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2356 // 2357 // OPERAND_BUNDLE_TAG - [strchr x N] 2358 2359 SmallVector<StringRef, 8> Tags; 2360 M.getOperandBundleTags(Tags); 2361 2362 if (Tags.empty()) 2363 return; 2364 2365 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2366 2367 SmallVector<uint64_t, 64> Record; 2368 2369 for (auto Tag : Tags) { 2370 Record.append(Tag.begin(), Tag.end()); 2371 2372 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2373 Record.clear(); 2374 } 2375 2376 Stream.ExitBlock(); 2377 } 2378 2379 void ModuleBitcodeWriter::writeSyncScopeNames() { 2380 SmallVector<StringRef, 8> SSNs; 2381 M.getContext().getSyncScopeNames(SSNs); 2382 if (SSNs.empty()) 2383 return; 2384 2385 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2386 2387 SmallVector<uint64_t, 64> Record; 2388 for (auto SSN : SSNs) { 2389 Record.append(SSN.begin(), SSN.end()); 2390 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2391 Record.clear(); 2392 } 2393 2394 Stream.ExitBlock(); 2395 } 2396 2397 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2398 bool isGlobal) { 2399 if (FirstVal == LastVal) return; 2400 2401 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2402 2403 unsigned AggregateAbbrev = 0; 2404 unsigned String8Abbrev = 0; 2405 unsigned CString7Abbrev = 0; 2406 unsigned CString6Abbrev = 0; 2407 // If this is a constant pool for the module, emit module-specific abbrevs. 2408 if (isGlobal) { 2409 // Abbrev for CST_CODE_AGGREGATE. 2410 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2411 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2412 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2413 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2414 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2415 2416 // Abbrev for CST_CODE_STRING. 2417 Abbv = std::make_shared<BitCodeAbbrev>(); 2418 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2420 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2421 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2422 // Abbrev for CST_CODE_CSTRING. 2423 Abbv = std::make_shared<BitCodeAbbrev>(); 2424 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2425 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2427 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2428 // Abbrev for CST_CODE_CSTRING. 2429 Abbv = std::make_shared<BitCodeAbbrev>(); 2430 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2432 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2433 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2434 } 2435 2436 SmallVector<uint64_t, 64> Record; 2437 2438 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2439 Type *LastTy = nullptr; 2440 for (unsigned i = FirstVal; i != LastVal; ++i) { 2441 const Value *V = Vals[i].first; 2442 // If we need to switch types, do so now. 2443 if (V->getType() != LastTy) { 2444 LastTy = V->getType(); 2445 Record.push_back(VE.getTypeID(LastTy)); 2446 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2447 CONSTANTS_SETTYPE_ABBREV); 2448 Record.clear(); 2449 } 2450 2451 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2452 Record.push_back( 2453 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2454 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2455 2456 // Add the asm string. 2457 const std::string &AsmStr = IA->getAsmString(); 2458 Record.push_back(AsmStr.size()); 2459 Record.append(AsmStr.begin(), AsmStr.end()); 2460 2461 // Add the constraint string. 2462 const std::string &ConstraintStr = IA->getConstraintString(); 2463 Record.push_back(ConstraintStr.size()); 2464 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2465 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2466 Record.clear(); 2467 continue; 2468 } 2469 const Constant *C = cast<Constant>(V); 2470 unsigned Code = -1U; 2471 unsigned AbbrevToUse = 0; 2472 if (C->isNullValue()) { 2473 Code = bitc::CST_CODE_NULL; 2474 } else if (isa<PoisonValue>(C)) { 2475 Code = bitc::CST_CODE_POISON; 2476 } else if (isa<UndefValue>(C)) { 2477 Code = bitc::CST_CODE_UNDEF; 2478 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2479 if (IV->getBitWidth() <= 64) { 2480 uint64_t V = IV->getSExtValue(); 2481 emitSignedInt64(Record, V); 2482 Code = bitc::CST_CODE_INTEGER; 2483 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2484 } else { // Wide integers, > 64 bits in size. 2485 emitWideAPInt(Record, IV->getValue()); 2486 Code = bitc::CST_CODE_WIDE_INTEGER; 2487 } 2488 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2489 Code = bitc::CST_CODE_FLOAT; 2490 Type *Ty = CFP->getType(); 2491 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2492 Ty->isDoubleTy()) { 2493 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2494 } else if (Ty->isX86_FP80Ty()) { 2495 // api needed to prevent premature destruction 2496 // bits are not in the same order as a normal i80 APInt, compensate. 2497 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2498 const uint64_t *p = api.getRawData(); 2499 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2500 Record.push_back(p[0] & 0xffffLL); 2501 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2502 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2503 const uint64_t *p = api.getRawData(); 2504 Record.push_back(p[0]); 2505 Record.push_back(p[1]); 2506 } else { 2507 assert(0 && "Unknown FP type!"); 2508 } 2509 } else if (isa<ConstantDataSequential>(C) && 2510 cast<ConstantDataSequential>(C)->isString()) { 2511 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2512 // Emit constant strings specially. 2513 unsigned NumElts = Str->getNumElements(); 2514 // If this is a null-terminated string, use the denser CSTRING encoding. 2515 if (Str->isCString()) { 2516 Code = bitc::CST_CODE_CSTRING; 2517 --NumElts; // Don't encode the null, which isn't allowed by char6. 2518 } else { 2519 Code = bitc::CST_CODE_STRING; 2520 AbbrevToUse = String8Abbrev; 2521 } 2522 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2523 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2524 for (unsigned i = 0; i != NumElts; ++i) { 2525 unsigned char V = Str->getElementAsInteger(i); 2526 Record.push_back(V); 2527 isCStr7 &= (V & 128) == 0; 2528 if (isCStrChar6) 2529 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2530 } 2531 2532 if (isCStrChar6) 2533 AbbrevToUse = CString6Abbrev; 2534 else if (isCStr7) 2535 AbbrevToUse = CString7Abbrev; 2536 } else if (const ConstantDataSequential *CDS = 2537 dyn_cast<ConstantDataSequential>(C)) { 2538 Code = bitc::CST_CODE_DATA; 2539 Type *EltTy = CDS->getElementType(); 2540 if (isa<IntegerType>(EltTy)) { 2541 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2542 Record.push_back(CDS->getElementAsInteger(i)); 2543 } else { 2544 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2545 Record.push_back( 2546 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2547 } 2548 } else if (isa<ConstantAggregate>(C)) { 2549 Code = bitc::CST_CODE_AGGREGATE; 2550 for (const Value *Op : C->operands()) 2551 Record.push_back(VE.getValueID(Op)); 2552 AbbrevToUse = AggregateAbbrev; 2553 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2554 switch (CE->getOpcode()) { 2555 default: 2556 if (Instruction::isCast(CE->getOpcode())) { 2557 Code = bitc::CST_CODE_CE_CAST; 2558 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2559 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2560 Record.push_back(VE.getValueID(C->getOperand(0))); 2561 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2562 } else { 2563 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2564 Code = bitc::CST_CODE_CE_BINOP; 2565 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2566 Record.push_back(VE.getValueID(C->getOperand(0))); 2567 Record.push_back(VE.getValueID(C->getOperand(1))); 2568 uint64_t Flags = getOptimizationFlags(CE); 2569 if (Flags != 0) 2570 Record.push_back(Flags); 2571 } 2572 break; 2573 case Instruction::FNeg: { 2574 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2575 Code = bitc::CST_CODE_CE_UNOP; 2576 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2577 Record.push_back(VE.getValueID(C->getOperand(0))); 2578 uint64_t Flags = getOptimizationFlags(CE); 2579 if (Flags != 0) 2580 Record.push_back(Flags); 2581 break; 2582 } 2583 case Instruction::GetElementPtr: { 2584 Code = bitc::CST_CODE_CE_GEP; 2585 const auto *GO = cast<GEPOperator>(C); 2586 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2587 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2588 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2589 Record.push_back((*Idx << 1) | GO->isInBounds()); 2590 } else if (GO->isInBounds()) 2591 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2592 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2593 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2594 Record.push_back(VE.getValueID(C->getOperand(i))); 2595 } 2596 break; 2597 } 2598 case Instruction::Select: 2599 Code = bitc::CST_CODE_CE_SELECT; 2600 Record.push_back(VE.getValueID(C->getOperand(0))); 2601 Record.push_back(VE.getValueID(C->getOperand(1))); 2602 Record.push_back(VE.getValueID(C->getOperand(2))); 2603 break; 2604 case Instruction::ExtractElement: 2605 Code = bitc::CST_CODE_CE_EXTRACTELT; 2606 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2607 Record.push_back(VE.getValueID(C->getOperand(0))); 2608 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2609 Record.push_back(VE.getValueID(C->getOperand(1))); 2610 break; 2611 case Instruction::InsertElement: 2612 Code = bitc::CST_CODE_CE_INSERTELT; 2613 Record.push_back(VE.getValueID(C->getOperand(0))); 2614 Record.push_back(VE.getValueID(C->getOperand(1))); 2615 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2616 Record.push_back(VE.getValueID(C->getOperand(2))); 2617 break; 2618 case Instruction::ShuffleVector: 2619 // If the return type and argument types are the same, this is a 2620 // standard shufflevector instruction. If the types are different, 2621 // then the shuffle is widening or truncating the input vectors, and 2622 // the argument type must also be encoded. 2623 if (C->getType() == C->getOperand(0)->getType()) { 2624 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2625 } else { 2626 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2627 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2628 } 2629 Record.push_back(VE.getValueID(C->getOperand(0))); 2630 Record.push_back(VE.getValueID(C->getOperand(1))); 2631 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2632 break; 2633 case Instruction::ICmp: 2634 case Instruction::FCmp: 2635 Code = bitc::CST_CODE_CE_CMP; 2636 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2637 Record.push_back(VE.getValueID(C->getOperand(0))); 2638 Record.push_back(VE.getValueID(C->getOperand(1))); 2639 Record.push_back(CE->getPredicate()); 2640 break; 2641 } 2642 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2643 Code = bitc::CST_CODE_BLOCKADDRESS; 2644 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2645 Record.push_back(VE.getValueID(BA->getFunction())); 2646 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2647 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2648 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2649 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2650 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2651 } else { 2652 #ifndef NDEBUG 2653 C->dump(); 2654 #endif 2655 llvm_unreachable("Unknown constant!"); 2656 } 2657 Stream.EmitRecord(Code, Record, AbbrevToUse); 2658 Record.clear(); 2659 } 2660 2661 Stream.ExitBlock(); 2662 } 2663 2664 void ModuleBitcodeWriter::writeModuleConstants() { 2665 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2666 2667 // Find the first constant to emit, which is the first non-globalvalue value. 2668 // We know globalvalues have been emitted by WriteModuleInfo. 2669 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2670 if (!isa<GlobalValue>(Vals[i].first)) { 2671 writeConstants(i, Vals.size(), true); 2672 return; 2673 } 2674 } 2675 } 2676 2677 /// pushValueAndType - The file has to encode both the value and type id for 2678 /// many values, because we need to know what type to create for forward 2679 /// references. However, most operands are not forward references, so this type 2680 /// field is not needed. 2681 /// 2682 /// This function adds V's value ID to Vals. If the value ID is higher than the 2683 /// instruction ID, then it is a forward reference, and it also includes the 2684 /// type ID. The value ID that is written is encoded relative to the InstID. 2685 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2686 SmallVectorImpl<unsigned> &Vals) { 2687 unsigned ValID = VE.getValueID(V); 2688 // Make encoding relative to the InstID. 2689 Vals.push_back(InstID - ValID); 2690 if (ValID >= InstID) { 2691 Vals.push_back(VE.getTypeID(V->getType())); 2692 return true; 2693 } 2694 return false; 2695 } 2696 2697 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2698 unsigned InstID) { 2699 SmallVector<unsigned, 64> Record; 2700 LLVMContext &C = CS.getContext(); 2701 2702 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2703 const auto &Bundle = CS.getOperandBundleAt(i); 2704 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2705 2706 for (auto &Input : Bundle.Inputs) 2707 pushValueAndType(Input, InstID, Record); 2708 2709 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2710 Record.clear(); 2711 } 2712 } 2713 2714 /// pushValue - Like pushValueAndType, but where the type of the value is 2715 /// omitted (perhaps it was already encoded in an earlier operand). 2716 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2717 SmallVectorImpl<unsigned> &Vals) { 2718 unsigned ValID = VE.getValueID(V); 2719 Vals.push_back(InstID - ValID); 2720 } 2721 2722 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2723 SmallVectorImpl<uint64_t> &Vals) { 2724 unsigned ValID = VE.getValueID(V); 2725 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2726 emitSignedInt64(Vals, diff); 2727 } 2728 2729 /// WriteInstruction - Emit an instruction to the specified stream. 2730 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2731 unsigned InstID, 2732 SmallVectorImpl<unsigned> &Vals) { 2733 unsigned Code = 0; 2734 unsigned AbbrevToUse = 0; 2735 VE.setInstructionID(&I); 2736 switch (I.getOpcode()) { 2737 default: 2738 if (Instruction::isCast(I.getOpcode())) { 2739 Code = bitc::FUNC_CODE_INST_CAST; 2740 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2741 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2742 Vals.push_back(VE.getTypeID(I.getType())); 2743 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2744 } else { 2745 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2746 Code = bitc::FUNC_CODE_INST_BINOP; 2747 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2748 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2749 pushValue(I.getOperand(1), InstID, Vals); 2750 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2751 uint64_t Flags = getOptimizationFlags(&I); 2752 if (Flags != 0) { 2753 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2754 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2755 Vals.push_back(Flags); 2756 } 2757 } 2758 break; 2759 case Instruction::FNeg: { 2760 Code = bitc::FUNC_CODE_INST_UNOP; 2761 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2762 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2763 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2764 uint64_t Flags = getOptimizationFlags(&I); 2765 if (Flags != 0) { 2766 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2767 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2768 Vals.push_back(Flags); 2769 } 2770 break; 2771 } 2772 case Instruction::GetElementPtr: { 2773 Code = bitc::FUNC_CODE_INST_GEP; 2774 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2775 auto &GEPInst = cast<GetElementPtrInst>(I); 2776 Vals.push_back(GEPInst.isInBounds()); 2777 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2778 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2779 pushValueAndType(I.getOperand(i), InstID, Vals); 2780 break; 2781 } 2782 case Instruction::ExtractValue: { 2783 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2784 pushValueAndType(I.getOperand(0), InstID, Vals); 2785 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2786 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2787 break; 2788 } 2789 case Instruction::InsertValue: { 2790 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2791 pushValueAndType(I.getOperand(0), InstID, Vals); 2792 pushValueAndType(I.getOperand(1), InstID, Vals); 2793 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2794 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2795 break; 2796 } 2797 case Instruction::Select: { 2798 Code = bitc::FUNC_CODE_INST_VSELECT; 2799 pushValueAndType(I.getOperand(1), InstID, Vals); 2800 pushValue(I.getOperand(2), InstID, Vals); 2801 pushValueAndType(I.getOperand(0), InstID, Vals); 2802 uint64_t Flags = getOptimizationFlags(&I); 2803 if (Flags != 0) 2804 Vals.push_back(Flags); 2805 break; 2806 } 2807 case Instruction::ExtractElement: 2808 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2809 pushValueAndType(I.getOperand(0), InstID, Vals); 2810 pushValueAndType(I.getOperand(1), InstID, Vals); 2811 break; 2812 case Instruction::InsertElement: 2813 Code = bitc::FUNC_CODE_INST_INSERTELT; 2814 pushValueAndType(I.getOperand(0), InstID, Vals); 2815 pushValue(I.getOperand(1), InstID, Vals); 2816 pushValueAndType(I.getOperand(2), InstID, Vals); 2817 break; 2818 case Instruction::ShuffleVector: 2819 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2820 pushValueAndType(I.getOperand(0), InstID, Vals); 2821 pushValue(I.getOperand(1), InstID, Vals); 2822 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2823 Vals); 2824 break; 2825 case Instruction::ICmp: 2826 case Instruction::FCmp: { 2827 // compare returning Int1Ty or vector of Int1Ty 2828 Code = bitc::FUNC_CODE_INST_CMP2; 2829 pushValueAndType(I.getOperand(0), InstID, Vals); 2830 pushValue(I.getOperand(1), InstID, Vals); 2831 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2832 uint64_t Flags = getOptimizationFlags(&I); 2833 if (Flags != 0) 2834 Vals.push_back(Flags); 2835 break; 2836 } 2837 2838 case Instruction::Ret: 2839 { 2840 Code = bitc::FUNC_CODE_INST_RET; 2841 unsigned NumOperands = I.getNumOperands(); 2842 if (NumOperands == 0) 2843 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2844 else if (NumOperands == 1) { 2845 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2846 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2847 } else { 2848 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2849 pushValueAndType(I.getOperand(i), InstID, Vals); 2850 } 2851 } 2852 break; 2853 case Instruction::Br: 2854 { 2855 Code = bitc::FUNC_CODE_INST_BR; 2856 const BranchInst &II = cast<BranchInst>(I); 2857 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2858 if (II.isConditional()) { 2859 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2860 pushValue(II.getCondition(), InstID, Vals); 2861 } 2862 } 2863 break; 2864 case Instruction::Switch: 2865 { 2866 Code = bitc::FUNC_CODE_INST_SWITCH; 2867 const SwitchInst &SI = cast<SwitchInst>(I); 2868 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2869 pushValue(SI.getCondition(), InstID, Vals); 2870 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2871 for (auto Case : SI.cases()) { 2872 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2873 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2874 } 2875 } 2876 break; 2877 case Instruction::IndirectBr: 2878 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2879 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2880 // Encode the address operand as relative, but not the basic blocks. 2881 pushValue(I.getOperand(0), InstID, Vals); 2882 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2883 Vals.push_back(VE.getValueID(I.getOperand(i))); 2884 break; 2885 2886 case Instruction::Invoke: { 2887 const InvokeInst *II = cast<InvokeInst>(&I); 2888 const Value *Callee = II->getCalledOperand(); 2889 FunctionType *FTy = II->getFunctionType(); 2890 2891 if (II->hasOperandBundles()) 2892 writeOperandBundles(*II, InstID); 2893 2894 Code = bitc::FUNC_CODE_INST_INVOKE; 2895 2896 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2897 Vals.push_back(II->getCallingConv() | 1 << 13); 2898 Vals.push_back(VE.getValueID(II->getNormalDest())); 2899 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2900 Vals.push_back(VE.getTypeID(FTy)); 2901 pushValueAndType(Callee, InstID, Vals); 2902 2903 // Emit value #'s for the fixed parameters. 2904 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2905 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2906 2907 // Emit type/value pairs for varargs params. 2908 if (FTy->isVarArg()) { 2909 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2910 i != e; ++i) 2911 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2912 } 2913 break; 2914 } 2915 case Instruction::Resume: 2916 Code = bitc::FUNC_CODE_INST_RESUME; 2917 pushValueAndType(I.getOperand(0), InstID, Vals); 2918 break; 2919 case Instruction::CleanupRet: { 2920 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2921 const auto &CRI = cast<CleanupReturnInst>(I); 2922 pushValue(CRI.getCleanupPad(), InstID, Vals); 2923 if (CRI.hasUnwindDest()) 2924 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2925 break; 2926 } 2927 case Instruction::CatchRet: { 2928 Code = bitc::FUNC_CODE_INST_CATCHRET; 2929 const auto &CRI = cast<CatchReturnInst>(I); 2930 pushValue(CRI.getCatchPad(), InstID, Vals); 2931 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2932 break; 2933 } 2934 case Instruction::CleanupPad: 2935 case Instruction::CatchPad: { 2936 const auto &FuncletPad = cast<FuncletPadInst>(I); 2937 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2938 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2939 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2940 2941 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2942 Vals.push_back(NumArgOperands); 2943 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2944 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2945 break; 2946 } 2947 case Instruction::CatchSwitch: { 2948 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2949 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2950 2951 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2952 2953 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2954 Vals.push_back(NumHandlers); 2955 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2956 Vals.push_back(VE.getValueID(CatchPadBB)); 2957 2958 if (CatchSwitch.hasUnwindDest()) 2959 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2960 break; 2961 } 2962 case Instruction::CallBr: { 2963 const CallBrInst *CBI = cast<CallBrInst>(&I); 2964 const Value *Callee = CBI->getCalledOperand(); 2965 FunctionType *FTy = CBI->getFunctionType(); 2966 2967 if (CBI->hasOperandBundles()) 2968 writeOperandBundles(*CBI, InstID); 2969 2970 Code = bitc::FUNC_CODE_INST_CALLBR; 2971 2972 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2973 2974 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2975 1 << bitc::CALL_EXPLICIT_TYPE); 2976 2977 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2978 Vals.push_back(CBI->getNumIndirectDests()); 2979 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2980 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2981 2982 Vals.push_back(VE.getTypeID(FTy)); 2983 pushValueAndType(Callee, InstID, Vals); 2984 2985 // Emit value #'s for the fixed parameters. 2986 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2987 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2988 2989 // Emit type/value pairs for varargs params. 2990 if (FTy->isVarArg()) { 2991 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2992 i != e; ++i) 2993 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2994 } 2995 break; 2996 } 2997 case Instruction::Unreachable: 2998 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2999 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3000 break; 3001 3002 case Instruction::PHI: { 3003 const PHINode &PN = cast<PHINode>(I); 3004 Code = bitc::FUNC_CODE_INST_PHI; 3005 // With the newer instruction encoding, forward references could give 3006 // negative valued IDs. This is most common for PHIs, so we use 3007 // signed VBRs. 3008 SmallVector<uint64_t, 128> Vals64; 3009 Vals64.push_back(VE.getTypeID(PN.getType())); 3010 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3011 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3012 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3013 } 3014 3015 uint64_t Flags = getOptimizationFlags(&I); 3016 if (Flags != 0) 3017 Vals64.push_back(Flags); 3018 3019 // Emit a Vals64 vector and exit. 3020 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3021 Vals64.clear(); 3022 return; 3023 } 3024 3025 case Instruction::LandingPad: { 3026 const LandingPadInst &LP = cast<LandingPadInst>(I); 3027 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3028 Vals.push_back(VE.getTypeID(LP.getType())); 3029 Vals.push_back(LP.isCleanup()); 3030 Vals.push_back(LP.getNumClauses()); 3031 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3032 if (LP.isCatch(I)) 3033 Vals.push_back(LandingPadInst::Catch); 3034 else 3035 Vals.push_back(LandingPadInst::Filter); 3036 pushValueAndType(LP.getClause(I), InstID, Vals); 3037 } 3038 break; 3039 } 3040 3041 case Instruction::Alloca: { 3042 Code = bitc::FUNC_CODE_INST_ALLOCA; 3043 const AllocaInst &AI = cast<AllocaInst>(I); 3044 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3045 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3046 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3047 using APV = AllocaPackedValues; 3048 unsigned Record = 0; 3049 Bitfield::set<APV::Align>(Record, getEncodedAlign(AI.getAlign())); 3050 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3051 Bitfield::set<APV::ExplicitType>(Record, true); 3052 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3053 Vals.push_back(Record); 3054 break; 3055 } 3056 3057 case Instruction::Load: 3058 if (cast<LoadInst>(I).isAtomic()) { 3059 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3060 pushValueAndType(I.getOperand(0), InstID, Vals); 3061 } else { 3062 Code = bitc::FUNC_CODE_INST_LOAD; 3063 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3064 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3065 } 3066 Vals.push_back(VE.getTypeID(I.getType())); 3067 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3068 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3069 if (cast<LoadInst>(I).isAtomic()) { 3070 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3071 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3072 } 3073 break; 3074 case Instruction::Store: 3075 if (cast<StoreInst>(I).isAtomic()) 3076 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3077 else 3078 Code = bitc::FUNC_CODE_INST_STORE; 3079 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3080 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3081 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3082 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3083 if (cast<StoreInst>(I).isAtomic()) { 3084 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3085 Vals.push_back( 3086 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3087 } 3088 break; 3089 case Instruction::AtomicCmpXchg: 3090 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3091 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3092 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3093 pushValue(I.getOperand(2), InstID, Vals); // newval. 3094 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3095 Vals.push_back( 3096 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3097 Vals.push_back( 3098 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3099 Vals.push_back( 3100 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3101 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3102 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3103 break; 3104 case Instruction::AtomicRMW: 3105 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3106 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3107 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3108 Vals.push_back( 3109 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3110 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3111 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3112 Vals.push_back( 3113 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3114 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3115 break; 3116 case Instruction::Fence: 3117 Code = bitc::FUNC_CODE_INST_FENCE; 3118 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3119 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3120 break; 3121 case Instruction::Call: { 3122 const CallInst &CI = cast<CallInst>(I); 3123 FunctionType *FTy = CI.getFunctionType(); 3124 3125 if (CI.hasOperandBundles()) 3126 writeOperandBundles(CI, InstID); 3127 3128 Code = bitc::FUNC_CODE_INST_CALL; 3129 3130 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3131 3132 unsigned Flags = getOptimizationFlags(&I); 3133 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3134 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3135 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3136 1 << bitc::CALL_EXPLICIT_TYPE | 3137 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3138 unsigned(Flags != 0) << bitc::CALL_FMF); 3139 if (Flags != 0) 3140 Vals.push_back(Flags); 3141 3142 Vals.push_back(VE.getTypeID(FTy)); 3143 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3144 3145 // Emit value #'s for the fixed parameters. 3146 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3147 // Check for labels (can happen with asm labels). 3148 if (FTy->getParamType(i)->isLabelTy()) 3149 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3150 else 3151 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3152 } 3153 3154 // Emit type/value pairs for varargs params. 3155 if (FTy->isVarArg()) { 3156 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3157 i != e; ++i) 3158 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3159 } 3160 break; 3161 } 3162 case Instruction::VAArg: 3163 Code = bitc::FUNC_CODE_INST_VAARG; 3164 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3165 pushValue(I.getOperand(0), InstID, Vals); // valist. 3166 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3167 break; 3168 case Instruction::Freeze: 3169 Code = bitc::FUNC_CODE_INST_FREEZE; 3170 pushValueAndType(I.getOperand(0), InstID, Vals); 3171 break; 3172 } 3173 3174 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3175 Vals.clear(); 3176 } 3177 3178 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3179 /// to allow clients to efficiently find the function body. 3180 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3181 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3182 // Get the offset of the VST we are writing, and backpatch it into 3183 // the VST forward declaration record. 3184 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3185 // The BitcodeStartBit was the stream offset of the identification block. 3186 VSTOffset -= bitcodeStartBit(); 3187 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3188 // Note that we add 1 here because the offset is relative to one word 3189 // before the start of the identification block, which was historically 3190 // always the start of the regular bitcode header. 3191 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3192 3193 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3194 3195 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3196 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3199 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3200 3201 for (const Function &F : M) { 3202 uint64_t Record[2]; 3203 3204 if (F.isDeclaration()) 3205 continue; 3206 3207 Record[0] = VE.getValueID(&F); 3208 3209 // Save the word offset of the function (from the start of the 3210 // actual bitcode written to the stream). 3211 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3212 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3213 // Note that we add 1 here because the offset is relative to one word 3214 // before the start of the identification block, which was historically 3215 // always the start of the regular bitcode header. 3216 Record[1] = BitcodeIndex / 32 + 1; 3217 3218 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3219 } 3220 3221 Stream.ExitBlock(); 3222 } 3223 3224 /// Emit names for arguments, instructions and basic blocks in a function. 3225 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3226 const ValueSymbolTable &VST) { 3227 if (VST.empty()) 3228 return; 3229 3230 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3231 3232 // FIXME: Set up the abbrev, we know how many values there are! 3233 // FIXME: We know if the type names can use 7-bit ascii. 3234 SmallVector<uint64_t, 64> NameVals; 3235 3236 for (const ValueName &Name : VST) { 3237 // Figure out the encoding to use for the name. 3238 StringEncoding Bits = getStringEncoding(Name.getKey()); 3239 3240 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3241 NameVals.push_back(VE.getValueID(Name.getValue())); 3242 3243 // VST_CODE_ENTRY: [valueid, namechar x N] 3244 // VST_CODE_BBENTRY: [bbid, namechar x N] 3245 unsigned Code; 3246 if (isa<BasicBlock>(Name.getValue())) { 3247 Code = bitc::VST_CODE_BBENTRY; 3248 if (Bits == SE_Char6) 3249 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3250 } else { 3251 Code = bitc::VST_CODE_ENTRY; 3252 if (Bits == SE_Char6) 3253 AbbrevToUse = VST_ENTRY_6_ABBREV; 3254 else if (Bits == SE_Fixed7) 3255 AbbrevToUse = VST_ENTRY_7_ABBREV; 3256 } 3257 3258 for (const auto P : Name.getKey()) 3259 NameVals.push_back((unsigned char)P); 3260 3261 // Emit the finished record. 3262 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3263 NameVals.clear(); 3264 } 3265 3266 Stream.ExitBlock(); 3267 } 3268 3269 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3270 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3271 unsigned Code; 3272 if (isa<BasicBlock>(Order.V)) 3273 Code = bitc::USELIST_CODE_BB; 3274 else 3275 Code = bitc::USELIST_CODE_DEFAULT; 3276 3277 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3278 Record.push_back(VE.getValueID(Order.V)); 3279 Stream.EmitRecord(Code, Record); 3280 } 3281 3282 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3283 assert(VE.shouldPreserveUseListOrder() && 3284 "Expected to be preserving use-list order"); 3285 3286 auto hasMore = [&]() { 3287 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3288 }; 3289 if (!hasMore()) 3290 // Nothing to do. 3291 return; 3292 3293 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3294 while (hasMore()) { 3295 writeUseList(std::move(VE.UseListOrders.back())); 3296 VE.UseListOrders.pop_back(); 3297 } 3298 Stream.ExitBlock(); 3299 } 3300 3301 /// Emit a function body to the module stream. 3302 void ModuleBitcodeWriter::writeFunction( 3303 const Function &F, 3304 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3305 // Save the bitcode index of the start of this function block for recording 3306 // in the VST. 3307 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3308 3309 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3310 VE.incorporateFunction(F); 3311 3312 SmallVector<unsigned, 64> Vals; 3313 3314 // Emit the number of basic blocks, so the reader can create them ahead of 3315 // time. 3316 Vals.push_back(VE.getBasicBlocks().size()); 3317 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3318 Vals.clear(); 3319 3320 // If there are function-local constants, emit them now. 3321 unsigned CstStart, CstEnd; 3322 VE.getFunctionConstantRange(CstStart, CstEnd); 3323 writeConstants(CstStart, CstEnd, false); 3324 3325 // If there is function-local metadata, emit it now. 3326 writeFunctionMetadata(F); 3327 3328 // Keep a running idea of what the instruction ID is. 3329 unsigned InstID = CstEnd; 3330 3331 bool NeedsMetadataAttachment = F.hasMetadata(); 3332 3333 DILocation *LastDL = nullptr; 3334 // Finally, emit all the instructions, in order. 3335 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3336 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3337 I != E; ++I) { 3338 writeInstruction(*I, InstID, Vals); 3339 3340 if (!I->getType()->isVoidTy()) 3341 ++InstID; 3342 3343 // If the instruction has metadata, write a metadata attachment later. 3344 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3345 3346 // If the instruction has a debug location, emit it. 3347 DILocation *DL = I->getDebugLoc(); 3348 if (!DL) 3349 continue; 3350 3351 if (DL == LastDL) { 3352 // Just repeat the same debug loc as last time. 3353 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3354 continue; 3355 } 3356 3357 Vals.push_back(DL->getLine()); 3358 Vals.push_back(DL->getColumn()); 3359 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3360 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3361 Vals.push_back(DL->isImplicitCode()); 3362 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3363 Vals.clear(); 3364 3365 LastDL = DL; 3366 } 3367 3368 // Emit names for all the instructions etc. 3369 if (auto *Symtab = F.getValueSymbolTable()) 3370 writeFunctionLevelValueSymbolTable(*Symtab); 3371 3372 if (NeedsMetadataAttachment) 3373 writeFunctionMetadataAttachment(F); 3374 if (VE.shouldPreserveUseListOrder()) 3375 writeUseListBlock(&F); 3376 VE.purgeFunction(); 3377 Stream.ExitBlock(); 3378 } 3379 3380 // Emit blockinfo, which defines the standard abbreviations etc. 3381 void ModuleBitcodeWriter::writeBlockInfo() { 3382 // We only want to emit block info records for blocks that have multiple 3383 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3384 // Other blocks can define their abbrevs inline. 3385 Stream.EnterBlockInfoBlock(); 3386 3387 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3388 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3393 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3394 VST_ENTRY_8_ABBREV) 3395 llvm_unreachable("Unexpected abbrev ordering!"); 3396 } 3397 3398 { // 7-bit fixed width VST_CODE_ENTRY strings. 3399 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3400 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3401 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3402 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3404 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3405 VST_ENTRY_7_ABBREV) 3406 llvm_unreachable("Unexpected abbrev ordering!"); 3407 } 3408 { // 6-bit char6 VST_CODE_ENTRY strings. 3409 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3410 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3411 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3412 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3413 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3414 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3415 VST_ENTRY_6_ABBREV) 3416 llvm_unreachable("Unexpected abbrev ordering!"); 3417 } 3418 { // 6-bit char6 VST_CODE_BBENTRY strings. 3419 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3420 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3421 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3423 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3424 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3425 VST_BBENTRY_6_ABBREV) 3426 llvm_unreachable("Unexpected abbrev ordering!"); 3427 } 3428 3429 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3430 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3431 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3432 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3433 VE.computeBitsRequiredForTypeIndicies())); 3434 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3435 CONSTANTS_SETTYPE_ABBREV) 3436 llvm_unreachable("Unexpected abbrev ordering!"); 3437 } 3438 3439 { // INTEGER abbrev for CONSTANTS_BLOCK. 3440 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3441 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3443 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3444 CONSTANTS_INTEGER_ABBREV) 3445 llvm_unreachable("Unexpected abbrev ordering!"); 3446 } 3447 3448 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3449 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3450 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3453 VE.computeBitsRequiredForTypeIndicies())); 3454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3455 3456 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3457 CONSTANTS_CE_CAST_Abbrev) 3458 llvm_unreachable("Unexpected abbrev ordering!"); 3459 } 3460 { // NULL abbrev for CONSTANTS_BLOCK. 3461 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3462 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3463 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3464 CONSTANTS_NULL_Abbrev) 3465 llvm_unreachable("Unexpected abbrev ordering!"); 3466 } 3467 3468 // FIXME: This should only use space for first class types! 3469 3470 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3471 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3472 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3474 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3475 VE.computeBitsRequiredForTypeIndicies())); 3476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3478 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3479 FUNCTION_INST_LOAD_ABBREV) 3480 llvm_unreachable("Unexpected abbrev ordering!"); 3481 } 3482 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3483 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3484 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3485 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3487 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3488 FUNCTION_INST_UNOP_ABBREV) 3489 llvm_unreachable("Unexpected abbrev ordering!"); 3490 } 3491 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3492 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3493 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3494 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3497 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3498 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3499 llvm_unreachable("Unexpected abbrev ordering!"); 3500 } 3501 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3502 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3503 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3504 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3505 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3507 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3508 FUNCTION_INST_BINOP_ABBREV) 3509 llvm_unreachable("Unexpected abbrev ordering!"); 3510 } 3511 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3512 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3513 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3517 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3518 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3519 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3520 llvm_unreachable("Unexpected abbrev ordering!"); 3521 } 3522 { // INST_CAST abbrev for FUNCTION_BLOCK. 3523 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3524 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3527 VE.computeBitsRequiredForTypeIndicies())); 3528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3529 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3530 FUNCTION_INST_CAST_ABBREV) 3531 llvm_unreachable("Unexpected abbrev ordering!"); 3532 } 3533 3534 { // INST_RET abbrev for FUNCTION_BLOCK. 3535 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3536 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3537 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3538 FUNCTION_INST_RET_VOID_ABBREV) 3539 llvm_unreachable("Unexpected abbrev ordering!"); 3540 } 3541 { // INST_RET abbrev for FUNCTION_BLOCK. 3542 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3543 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3544 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3545 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3546 FUNCTION_INST_RET_VAL_ABBREV) 3547 llvm_unreachable("Unexpected abbrev ordering!"); 3548 } 3549 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3550 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3551 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3552 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3553 FUNCTION_INST_UNREACHABLE_ABBREV) 3554 llvm_unreachable("Unexpected abbrev ordering!"); 3555 } 3556 { 3557 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3558 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3561 Log2_32_Ceil(VE.getTypes().size() + 1))); 3562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3564 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3565 FUNCTION_INST_GEP_ABBREV) 3566 llvm_unreachable("Unexpected abbrev ordering!"); 3567 } 3568 3569 Stream.ExitBlock(); 3570 } 3571 3572 /// Write the module path strings, currently only used when generating 3573 /// a combined index file. 3574 void IndexBitcodeWriter::writeModStrings() { 3575 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3576 3577 // TODO: See which abbrev sizes we actually need to emit 3578 3579 // 8-bit fixed-width MST_ENTRY strings. 3580 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3581 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3585 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3586 3587 // 7-bit fixed width MST_ENTRY strings. 3588 Abbv = std::make_shared<BitCodeAbbrev>(); 3589 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3593 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3594 3595 // 6-bit char6 MST_ENTRY strings. 3596 Abbv = std::make_shared<BitCodeAbbrev>(); 3597 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3599 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3601 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3602 3603 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3604 Abbv = std::make_shared<BitCodeAbbrev>(); 3605 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3608 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3610 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3611 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3612 3613 SmallVector<unsigned, 64> Vals; 3614 forEachModule( 3615 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3616 StringRef Key = MPSE.getKey(); 3617 const auto &Value = MPSE.getValue(); 3618 StringEncoding Bits = getStringEncoding(Key); 3619 unsigned AbbrevToUse = Abbrev8Bit; 3620 if (Bits == SE_Char6) 3621 AbbrevToUse = Abbrev6Bit; 3622 else if (Bits == SE_Fixed7) 3623 AbbrevToUse = Abbrev7Bit; 3624 3625 Vals.push_back(Value.first); 3626 Vals.append(Key.begin(), Key.end()); 3627 3628 // Emit the finished record. 3629 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3630 3631 // Emit an optional hash for the module now 3632 const auto &Hash = Value.second; 3633 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3634 Vals.assign(Hash.begin(), Hash.end()); 3635 // Emit the hash record. 3636 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3637 } 3638 3639 Vals.clear(); 3640 }); 3641 Stream.ExitBlock(); 3642 } 3643 3644 /// Write the function type metadata related records that need to appear before 3645 /// a function summary entry (whether per-module or combined). 3646 template <typename Fn> 3647 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3648 FunctionSummary *FS, 3649 Fn GetValueID) { 3650 if (!FS->type_tests().empty()) 3651 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3652 3653 SmallVector<uint64_t, 64> Record; 3654 3655 auto WriteVFuncIdVec = [&](uint64_t Ty, 3656 ArrayRef<FunctionSummary::VFuncId> VFs) { 3657 if (VFs.empty()) 3658 return; 3659 Record.clear(); 3660 for (auto &VF : VFs) { 3661 Record.push_back(VF.GUID); 3662 Record.push_back(VF.Offset); 3663 } 3664 Stream.EmitRecord(Ty, Record); 3665 }; 3666 3667 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3668 FS->type_test_assume_vcalls()); 3669 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3670 FS->type_checked_load_vcalls()); 3671 3672 auto WriteConstVCallVec = [&](uint64_t Ty, 3673 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3674 for (auto &VC : VCs) { 3675 Record.clear(); 3676 Record.push_back(VC.VFunc.GUID); 3677 Record.push_back(VC.VFunc.Offset); 3678 llvm::append_range(Record, VC.Args); 3679 Stream.EmitRecord(Ty, Record); 3680 } 3681 }; 3682 3683 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3684 FS->type_test_assume_const_vcalls()); 3685 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3686 FS->type_checked_load_const_vcalls()); 3687 3688 auto WriteRange = [&](ConstantRange Range) { 3689 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3690 assert(Range.getLower().getNumWords() == 1); 3691 assert(Range.getUpper().getNumWords() == 1); 3692 emitSignedInt64(Record, *Range.getLower().getRawData()); 3693 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3694 }; 3695 3696 if (!FS->paramAccesses().empty()) { 3697 Record.clear(); 3698 for (auto &Arg : FS->paramAccesses()) { 3699 size_t UndoSize = Record.size(); 3700 Record.push_back(Arg.ParamNo); 3701 WriteRange(Arg.Use); 3702 Record.push_back(Arg.Calls.size()); 3703 for (auto &Call : Arg.Calls) { 3704 Record.push_back(Call.ParamNo); 3705 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3706 if (!ValueID) { 3707 // If ValueID is unknown we can't drop just this call, we must drop 3708 // entire parameter. 3709 Record.resize(UndoSize); 3710 break; 3711 } 3712 Record.push_back(*ValueID); 3713 WriteRange(Call.Offsets); 3714 } 3715 } 3716 if (!Record.empty()) 3717 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3718 } 3719 } 3720 3721 /// Collect type IDs from type tests used by function. 3722 static void 3723 getReferencedTypeIds(FunctionSummary *FS, 3724 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3725 if (!FS->type_tests().empty()) 3726 for (auto &TT : FS->type_tests()) 3727 ReferencedTypeIds.insert(TT); 3728 3729 auto GetReferencedTypesFromVFuncIdVec = 3730 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3731 for (auto &VF : VFs) 3732 ReferencedTypeIds.insert(VF.GUID); 3733 }; 3734 3735 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3736 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3737 3738 auto GetReferencedTypesFromConstVCallVec = 3739 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3740 for (auto &VC : VCs) 3741 ReferencedTypeIds.insert(VC.VFunc.GUID); 3742 }; 3743 3744 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3745 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3746 } 3747 3748 static void writeWholeProgramDevirtResolutionByArg( 3749 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3750 const WholeProgramDevirtResolution::ByArg &ByArg) { 3751 NameVals.push_back(args.size()); 3752 llvm::append_range(NameVals, args); 3753 3754 NameVals.push_back(ByArg.TheKind); 3755 NameVals.push_back(ByArg.Info); 3756 NameVals.push_back(ByArg.Byte); 3757 NameVals.push_back(ByArg.Bit); 3758 } 3759 3760 static void writeWholeProgramDevirtResolution( 3761 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3762 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3763 NameVals.push_back(Id); 3764 3765 NameVals.push_back(Wpd.TheKind); 3766 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3767 NameVals.push_back(Wpd.SingleImplName.size()); 3768 3769 NameVals.push_back(Wpd.ResByArg.size()); 3770 for (auto &A : Wpd.ResByArg) 3771 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3772 } 3773 3774 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3775 StringTableBuilder &StrtabBuilder, 3776 const std::string &Id, 3777 const TypeIdSummary &Summary) { 3778 NameVals.push_back(StrtabBuilder.add(Id)); 3779 NameVals.push_back(Id.size()); 3780 3781 NameVals.push_back(Summary.TTRes.TheKind); 3782 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3783 NameVals.push_back(Summary.TTRes.AlignLog2); 3784 NameVals.push_back(Summary.TTRes.SizeM1); 3785 NameVals.push_back(Summary.TTRes.BitMask); 3786 NameVals.push_back(Summary.TTRes.InlineBits); 3787 3788 for (auto &W : Summary.WPDRes) 3789 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3790 W.second); 3791 } 3792 3793 static void writeTypeIdCompatibleVtableSummaryRecord( 3794 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3795 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3796 ValueEnumerator &VE) { 3797 NameVals.push_back(StrtabBuilder.add(Id)); 3798 NameVals.push_back(Id.size()); 3799 3800 for (auto &P : Summary) { 3801 NameVals.push_back(P.AddressPointOffset); 3802 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3803 } 3804 } 3805 3806 // Helper to emit a single function summary record. 3807 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3808 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3809 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3810 const Function &F) { 3811 NameVals.push_back(ValueID); 3812 3813 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3814 3815 writeFunctionTypeMetadataRecords( 3816 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3817 return {VE.getValueID(VI.getValue())}; 3818 }); 3819 3820 auto SpecialRefCnts = FS->specialRefCounts(); 3821 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3822 NameVals.push_back(FS->instCount()); 3823 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3824 NameVals.push_back(FS->refs().size()); 3825 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3826 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3827 3828 for (auto &RI : FS->refs()) 3829 NameVals.push_back(VE.getValueID(RI.getValue())); 3830 3831 bool HasProfileData = 3832 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3833 for (auto &ECI : FS->calls()) { 3834 NameVals.push_back(getValueId(ECI.first)); 3835 if (HasProfileData) 3836 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3837 else if (WriteRelBFToSummary) 3838 NameVals.push_back(ECI.second.RelBlockFreq); 3839 } 3840 3841 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3842 unsigned Code = 3843 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3844 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3845 : bitc::FS_PERMODULE)); 3846 3847 // Emit the finished record. 3848 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3849 NameVals.clear(); 3850 } 3851 3852 // Collect the global value references in the given variable's initializer, 3853 // and emit them in a summary record. 3854 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3855 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3856 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3857 auto VI = Index->getValueInfo(V.getGUID()); 3858 if (!VI || VI.getSummaryList().empty()) { 3859 // Only declarations should not have a summary (a declaration might however 3860 // have a summary if the def was in module level asm). 3861 assert(V.isDeclaration()); 3862 return; 3863 } 3864 auto *Summary = VI.getSummaryList()[0].get(); 3865 NameVals.push_back(VE.getValueID(&V)); 3866 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3867 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3868 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3869 3870 auto VTableFuncs = VS->vTableFuncs(); 3871 if (!VTableFuncs.empty()) 3872 NameVals.push_back(VS->refs().size()); 3873 3874 unsigned SizeBeforeRefs = NameVals.size(); 3875 for (auto &RI : VS->refs()) 3876 NameVals.push_back(VE.getValueID(RI.getValue())); 3877 // Sort the refs for determinism output, the vector returned by FS->refs() has 3878 // been initialized from a DenseSet. 3879 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 3880 3881 if (VTableFuncs.empty()) 3882 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3883 FSModRefsAbbrev); 3884 else { 3885 // VTableFuncs pairs should already be sorted by offset. 3886 for (auto &P : VTableFuncs) { 3887 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3888 NameVals.push_back(P.VTableOffset); 3889 } 3890 3891 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3892 FSModVTableRefsAbbrev); 3893 } 3894 NameVals.clear(); 3895 } 3896 3897 /// Emit the per-module summary section alongside the rest of 3898 /// the module's bitcode. 3899 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3900 // By default we compile with ThinLTO if the module has a summary, but the 3901 // client can request full LTO with a module flag. 3902 bool IsThinLTO = true; 3903 if (auto *MD = 3904 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3905 IsThinLTO = MD->getZExtValue(); 3906 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3907 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3908 4); 3909 3910 Stream.EmitRecord( 3911 bitc::FS_VERSION, 3912 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3913 3914 // Write the index flags. 3915 uint64_t Flags = 0; 3916 // Bits 1-3 are set only in the combined index, skip them. 3917 if (Index->enableSplitLTOUnit()) 3918 Flags |= 0x8; 3919 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3920 3921 if (Index->begin() == Index->end()) { 3922 Stream.ExitBlock(); 3923 return; 3924 } 3925 3926 for (const auto &GVI : valueIds()) { 3927 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3928 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3929 } 3930 3931 // Abbrev for FS_PERMODULE_PROFILE. 3932 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3933 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3934 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3935 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3941 // numrefs x valueid, n x (valueid, hotness) 3942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3944 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3945 3946 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3947 Abbv = std::make_shared<BitCodeAbbrev>(); 3948 if (WriteRelBFToSummary) 3949 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3950 else 3951 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3959 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3962 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3963 3964 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3965 Abbv = std::make_shared<BitCodeAbbrev>(); 3966 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3970 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3971 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3972 3973 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3974 Abbv = std::make_shared<BitCodeAbbrev>(); 3975 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3976 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3977 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3978 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3979 // numrefs x valueid, n x (valueid , offset) 3980 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3981 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3982 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3983 3984 // Abbrev for FS_ALIAS. 3985 Abbv = std::make_shared<BitCodeAbbrev>(); 3986 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3987 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3990 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3991 3992 // Abbrev for FS_TYPE_ID_METADATA 3993 Abbv = std::make_shared<BitCodeAbbrev>(); 3994 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 3995 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 3996 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 3997 // n x (valueid , offset) 3998 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4000 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4001 4002 SmallVector<uint64_t, 64> NameVals; 4003 // Iterate over the list of functions instead of the Index to 4004 // ensure the ordering is stable. 4005 for (const Function &F : M) { 4006 // Summary emission does not support anonymous functions, they have to 4007 // renamed using the anonymous function renaming pass. 4008 if (!F.hasName()) 4009 report_fatal_error("Unexpected anonymous function when writing summary"); 4010 4011 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4012 if (!VI || VI.getSummaryList().empty()) { 4013 // Only declarations should not have a summary (a declaration might 4014 // however have a summary if the def was in module level asm). 4015 assert(F.isDeclaration()); 4016 continue; 4017 } 4018 auto *Summary = VI.getSummaryList()[0].get(); 4019 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4020 FSCallsAbbrev, FSCallsProfileAbbrev, F); 4021 } 4022 4023 // Capture references from GlobalVariable initializers, which are outside 4024 // of a function scope. 4025 for (const GlobalVariable &G : M.globals()) 4026 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4027 FSModVTableRefsAbbrev); 4028 4029 for (const GlobalAlias &A : M.aliases()) { 4030 auto *Aliasee = A.getBaseObject(); 4031 if (!Aliasee->hasName()) 4032 // Nameless function don't have an entry in the summary, skip it. 4033 continue; 4034 auto AliasId = VE.getValueID(&A); 4035 auto AliaseeId = VE.getValueID(Aliasee); 4036 NameVals.push_back(AliasId); 4037 auto *Summary = Index->getGlobalValueSummary(A); 4038 AliasSummary *AS = cast<AliasSummary>(Summary); 4039 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4040 NameVals.push_back(AliaseeId); 4041 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4042 NameVals.clear(); 4043 } 4044 4045 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4046 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4047 S.second, VE); 4048 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4049 TypeIdCompatibleVtableAbbrev); 4050 NameVals.clear(); 4051 } 4052 4053 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4054 ArrayRef<uint64_t>{Index->getBlockCount()}); 4055 4056 Stream.ExitBlock(); 4057 } 4058 4059 /// Emit the combined summary section into the combined index file. 4060 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4061 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 4062 Stream.EmitRecord( 4063 bitc::FS_VERSION, 4064 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4065 4066 // Write the index flags. 4067 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4068 4069 for (const auto &GVI : valueIds()) { 4070 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4071 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4072 } 4073 4074 // Abbrev for FS_COMBINED. 4075 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4076 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4080 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4081 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4082 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4083 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4085 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4086 // numrefs x valueid, n x (valueid) 4087 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4088 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4089 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4090 4091 // Abbrev for FS_COMBINED_PROFILE. 4092 Abbv = std::make_shared<BitCodeAbbrev>(); 4093 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4094 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4095 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4096 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4097 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4098 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4099 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4103 // numrefs x valueid, n x (valueid, hotness) 4104 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4105 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4106 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4107 4108 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4109 Abbv = std::make_shared<BitCodeAbbrev>(); 4110 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4113 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4114 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4115 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4116 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4117 4118 // Abbrev for FS_COMBINED_ALIAS. 4119 Abbv = std::make_shared<BitCodeAbbrev>(); 4120 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4121 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4122 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4123 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4124 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4125 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4126 4127 // The aliases are emitted as a post-pass, and will point to the value 4128 // id of the aliasee. Save them in a vector for post-processing. 4129 SmallVector<AliasSummary *, 64> Aliases; 4130 4131 // Save the value id for each summary for alias emission. 4132 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4133 4134 SmallVector<uint64_t, 64> NameVals; 4135 4136 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4137 // with the type ids referenced by this index file. 4138 std::set<GlobalValue::GUID> ReferencedTypeIds; 4139 4140 // For local linkage, we also emit the original name separately 4141 // immediately after the record. 4142 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4143 if (!GlobalValue::isLocalLinkage(S.linkage())) 4144 return; 4145 NameVals.push_back(S.getOriginalName()); 4146 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4147 NameVals.clear(); 4148 }; 4149 4150 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4151 forEachSummary([&](GVInfo I, bool IsAliasee) { 4152 GlobalValueSummary *S = I.second; 4153 assert(S); 4154 DefOrUseGUIDs.insert(I.first); 4155 for (const ValueInfo &VI : S->refs()) 4156 DefOrUseGUIDs.insert(VI.getGUID()); 4157 4158 auto ValueId = getValueId(I.first); 4159 assert(ValueId); 4160 SummaryToValueIdMap[S] = *ValueId; 4161 4162 // If this is invoked for an aliasee, we want to record the above 4163 // mapping, but then not emit a summary entry (if the aliasee is 4164 // to be imported, we will invoke this separately with IsAliasee=false). 4165 if (IsAliasee) 4166 return; 4167 4168 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4169 // Will process aliases as a post-pass because the reader wants all 4170 // global to be loaded first. 4171 Aliases.push_back(AS); 4172 return; 4173 } 4174 4175 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4176 NameVals.push_back(*ValueId); 4177 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4178 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4179 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4180 for (auto &RI : VS->refs()) { 4181 auto RefValueId = getValueId(RI.getGUID()); 4182 if (!RefValueId) 4183 continue; 4184 NameVals.push_back(*RefValueId); 4185 } 4186 4187 // Emit the finished record. 4188 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4189 FSModRefsAbbrev); 4190 NameVals.clear(); 4191 MaybeEmitOriginalName(*S); 4192 return; 4193 } 4194 4195 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4196 GlobalValue::GUID GUID = VI.getGUID(); 4197 Optional<unsigned> CallValueId = getValueId(GUID); 4198 if (CallValueId) 4199 return CallValueId; 4200 // For SamplePGO, the indirect call targets for local functions will 4201 // have its original name annotated in profile. We try to find the 4202 // corresponding PGOFuncName as the GUID. 4203 GUID = Index.getGUIDFromOriginalID(GUID); 4204 if (!GUID) 4205 return None; 4206 CallValueId = getValueId(GUID); 4207 if (!CallValueId) 4208 return None; 4209 // The mapping from OriginalId to GUID may return a GUID 4210 // that corresponds to a static variable. Filter it out here. 4211 // This can happen when 4212 // 1) There is a call to a library function which does not have 4213 // a CallValidId; 4214 // 2) There is a static variable with the OriginalGUID identical 4215 // to the GUID of the library function in 1); 4216 // When this happens, the logic for SamplePGO kicks in and 4217 // the static variable in 2) will be found, which needs to be 4218 // filtered out. 4219 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 4220 if (GVSum && GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4221 return None; 4222 return CallValueId; 4223 }; 4224 4225 auto *FS = cast<FunctionSummary>(S); 4226 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4227 getReferencedTypeIds(FS, ReferencedTypeIds); 4228 4229 NameVals.push_back(*ValueId); 4230 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4231 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4232 NameVals.push_back(FS->instCount()); 4233 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4234 NameVals.push_back(FS->entryCount()); 4235 4236 // Fill in below 4237 NameVals.push_back(0); // numrefs 4238 NameVals.push_back(0); // rorefcnt 4239 NameVals.push_back(0); // worefcnt 4240 4241 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4242 for (auto &RI : FS->refs()) { 4243 auto RefValueId = getValueId(RI.getGUID()); 4244 if (!RefValueId) 4245 continue; 4246 NameVals.push_back(*RefValueId); 4247 if (RI.isReadOnly()) 4248 RORefCnt++; 4249 else if (RI.isWriteOnly()) 4250 WORefCnt++; 4251 Count++; 4252 } 4253 NameVals[6] = Count; 4254 NameVals[7] = RORefCnt; 4255 NameVals[8] = WORefCnt; 4256 4257 bool HasProfileData = false; 4258 for (auto &EI : FS->calls()) { 4259 HasProfileData |= 4260 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4261 if (HasProfileData) 4262 break; 4263 } 4264 4265 for (auto &EI : FS->calls()) { 4266 // If this GUID doesn't have a value id, it doesn't have a function 4267 // summary and we don't need to record any calls to it. 4268 Optional<unsigned> CallValueId = GetValueId(EI.first); 4269 if (!CallValueId) 4270 continue; 4271 NameVals.push_back(*CallValueId); 4272 if (HasProfileData) 4273 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4274 } 4275 4276 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4277 unsigned Code = 4278 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4279 4280 // Emit the finished record. 4281 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4282 NameVals.clear(); 4283 MaybeEmitOriginalName(*S); 4284 }); 4285 4286 for (auto *AS : Aliases) { 4287 auto AliasValueId = SummaryToValueIdMap[AS]; 4288 assert(AliasValueId); 4289 NameVals.push_back(AliasValueId); 4290 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4291 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4292 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4293 assert(AliaseeValueId); 4294 NameVals.push_back(AliaseeValueId); 4295 4296 // Emit the finished record. 4297 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4298 NameVals.clear(); 4299 MaybeEmitOriginalName(*AS); 4300 4301 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4302 getReferencedTypeIds(FS, ReferencedTypeIds); 4303 } 4304 4305 if (!Index.cfiFunctionDefs().empty()) { 4306 for (auto &S : Index.cfiFunctionDefs()) { 4307 if (DefOrUseGUIDs.count( 4308 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4309 NameVals.push_back(StrtabBuilder.add(S)); 4310 NameVals.push_back(S.size()); 4311 } 4312 } 4313 if (!NameVals.empty()) { 4314 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4315 NameVals.clear(); 4316 } 4317 } 4318 4319 if (!Index.cfiFunctionDecls().empty()) { 4320 for (auto &S : Index.cfiFunctionDecls()) { 4321 if (DefOrUseGUIDs.count( 4322 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4323 NameVals.push_back(StrtabBuilder.add(S)); 4324 NameVals.push_back(S.size()); 4325 } 4326 } 4327 if (!NameVals.empty()) { 4328 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4329 NameVals.clear(); 4330 } 4331 } 4332 4333 // Walk the GUIDs that were referenced, and write the 4334 // corresponding type id records. 4335 for (auto &T : ReferencedTypeIds) { 4336 auto TidIter = Index.typeIds().equal_range(T); 4337 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4338 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4339 It->second.second); 4340 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4341 NameVals.clear(); 4342 } 4343 } 4344 4345 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4346 ArrayRef<uint64_t>{Index.getBlockCount()}); 4347 4348 Stream.ExitBlock(); 4349 } 4350 4351 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4352 /// current llvm version, and a record for the epoch number. 4353 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4354 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4355 4356 // Write the "user readable" string identifying the bitcode producer 4357 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4358 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4361 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4362 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4363 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4364 4365 // Write the epoch version 4366 Abbv = std::make_shared<BitCodeAbbrev>(); 4367 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4369 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4370 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4371 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4372 Stream.ExitBlock(); 4373 } 4374 4375 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4376 // Emit the module's hash. 4377 // MODULE_CODE_HASH: [5*i32] 4378 if (GenerateHash) { 4379 uint32_t Vals[5]; 4380 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4381 Buffer.size() - BlockStartPos)); 4382 StringRef Hash = Hasher.result(); 4383 for (int Pos = 0; Pos < 20; Pos += 4) { 4384 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4385 } 4386 4387 // Emit the finished record. 4388 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4389 4390 if (ModHash) 4391 // Save the written hash value. 4392 llvm::copy(Vals, std::begin(*ModHash)); 4393 } 4394 } 4395 4396 void ModuleBitcodeWriter::write() { 4397 writeIdentificationBlock(Stream); 4398 4399 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4400 size_t BlockStartPos = Buffer.size(); 4401 4402 writeModuleVersion(); 4403 4404 // Emit blockinfo, which defines the standard abbreviations etc. 4405 writeBlockInfo(); 4406 4407 // Emit information describing all of the types in the module. 4408 writeTypeTable(); 4409 4410 // Emit information about attribute groups. 4411 writeAttributeGroupTable(); 4412 4413 // Emit information about parameter attributes. 4414 writeAttributeTable(); 4415 4416 writeComdats(); 4417 4418 // Emit top-level description of module, including target triple, inline asm, 4419 // descriptors for global variables, and function prototype info. 4420 writeModuleInfo(); 4421 4422 // Emit constants. 4423 writeModuleConstants(); 4424 4425 // Emit metadata kind names. 4426 writeModuleMetadataKinds(); 4427 4428 // Emit metadata. 4429 writeModuleMetadata(); 4430 4431 // Emit module-level use-lists. 4432 if (VE.shouldPreserveUseListOrder()) 4433 writeUseListBlock(nullptr); 4434 4435 writeOperandBundleTags(); 4436 writeSyncScopeNames(); 4437 4438 // Emit function bodies. 4439 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4440 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4441 if (!F->isDeclaration()) 4442 writeFunction(*F, FunctionToBitcodeIndex); 4443 4444 // Need to write after the above call to WriteFunction which populates 4445 // the summary information in the index. 4446 if (Index) 4447 writePerModuleGlobalValueSummary(); 4448 4449 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4450 4451 writeModuleHash(BlockStartPos); 4452 4453 Stream.ExitBlock(); 4454 } 4455 4456 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4457 uint32_t &Position) { 4458 support::endian::write32le(&Buffer[Position], Value); 4459 Position += 4; 4460 } 4461 4462 /// If generating a bc file on darwin, we have to emit a 4463 /// header and trailer to make it compatible with the system archiver. To do 4464 /// this we emit the following header, and then emit a trailer that pads the 4465 /// file out to be a multiple of 16 bytes. 4466 /// 4467 /// struct bc_header { 4468 /// uint32_t Magic; // 0x0B17C0DE 4469 /// uint32_t Version; // Version, currently always 0. 4470 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4471 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4472 /// uint32_t CPUType; // CPU specifier. 4473 /// ... potentially more later ... 4474 /// }; 4475 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4476 const Triple &TT) { 4477 unsigned CPUType = ~0U; 4478 4479 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4480 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4481 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4482 // specific constants here because they are implicitly part of the Darwin ABI. 4483 enum { 4484 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4485 DARWIN_CPU_TYPE_X86 = 7, 4486 DARWIN_CPU_TYPE_ARM = 12, 4487 DARWIN_CPU_TYPE_POWERPC = 18 4488 }; 4489 4490 Triple::ArchType Arch = TT.getArch(); 4491 if (Arch == Triple::x86_64) 4492 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4493 else if (Arch == Triple::x86) 4494 CPUType = DARWIN_CPU_TYPE_X86; 4495 else if (Arch == Triple::ppc) 4496 CPUType = DARWIN_CPU_TYPE_POWERPC; 4497 else if (Arch == Triple::ppc64) 4498 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4499 else if (Arch == Triple::arm || Arch == Triple::thumb) 4500 CPUType = DARWIN_CPU_TYPE_ARM; 4501 4502 // Traditional Bitcode starts after header. 4503 assert(Buffer.size() >= BWH_HeaderSize && 4504 "Expected header size to be reserved"); 4505 unsigned BCOffset = BWH_HeaderSize; 4506 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4507 4508 // Write the magic and version. 4509 unsigned Position = 0; 4510 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4511 writeInt32ToBuffer(0, Buffer, Position); // Version. 4512 writeInt32ToBuffer(BCOffset, Buffer, Position); 4513 writeInt32ToBuffer(BCSize, Buffer, Position); 4514 writeInt32ToBuffer(CPUType, Buffer, Position); 4515 4516 // If the file is not a multiple of 16 bytes, insert dummy padding. 4517 while (Buffer.size() & 15) 4518 Buffer.push_back(0); 4519 } 4520 4521 /// Helper to write the header common to all bitcode files. 4522 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4523 // Emit the file header. 4524 Stream.Emit((unsigned)'B', 8); 4525 Stream.Emit((unsigned)'C', 8); 4526 Stream.Emit(0x0, 4); 4527 Stream.Emit(0xC, 4); 4528 Stream.Emit(0xE, 4); 4529 Stream.Emit(0xD, 4); 4530 } 4531 4532 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4533 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4534 writeBitcodeHeader(*Stream); 4535 } 4536 4537 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4538 4539 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4540 Stream->EnterSubblock(Block, 3); 4541 4542 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4543 Abbv->Add(BitCodeAbbrevOp(Record)); 4544 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4545 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4546 4547 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4548 4549 Stream->ExitBlock(); 4550 } 4551 4552 void BitcodeWriter::writeSymtab() { 4553 assert(!WroteStrtab && !WroteSymtab); 4554 4555 // If any module has module-level inline asm, we will require a registered asm 4556 // parser for the target so that we can create an accurate symbol table for 4557 // the module. 4558 for (Module *M : Mods) { 4559 if (M->getModuleInlineAsm().empty()) 4560 continue; 4561 4562 std::string Err; 4563 const Triple TT(M->getTargetTriple()); 4564 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4565 if (!T || !T->hasMCAsmParser()) 4566 return; 4567 } 4568 4569 WroteSymtab = true; 4570 SmallVector<char, 0> Symtab; 4571 // The irsymtab::build function may be unable to create a symbol table if the 4572 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4573 // table is not required for correctness, but we still want to be able to 4574 // write malformed modules to bitcode files, so swallow the error. 4575 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4576 consumeError(std::move(E)); 4577 return; 4578 } 4579 4580 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4581 {Symtab.data(), Symtab.size()}); 4582 } 4583 4584 void BitcodeWriter::writeStrtab() { 4585 assert(!WroteStrtab); 4586 4587 std::vector<char> Strtab; 4588 StrtabBuilder.finalizeInOrder(); 4589 Strtab.resize(StrtabBuilder.getSize()); 4590 StrtabBuilder.write((uint8_t *)Strtab.data()); 4591 4592 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4593 {Strtab.data(), Strtab.size()}); 4594 4595 WroteStrtab = true; 4596 } 4597 4598 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4599 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4600 WroteStrtab = true; 4601 } 4602 4603 void BitcodeWriter::writeModule(const Module &M, 4604 bool ShouldPreserveUseListOrder, 4605 const ModuleSummaryIndex *Index, 4606 bool GenerateHash, ModuleHash *ModHash) { 4607 assert(!WroteStrtab); 4608 4609 // The Mods vector is used by irsymtab::build, which requires non-const 4610 // Modules in case it needs to materialize metadata. But the bitcode writer 4611 // requires that the module is materialized, so we can cast to non-const here, 4612 // after checking that it is in fact materialized. 4613 assert(M.isMaterialized()); 4614 Mods.push_back(const_cast<Module *>(&M)); 4615 4616 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4617 ShouldPreserveUseListOrder, Index, 4618 GenerateHash, ModHash); 4619 ModuleWriter.write(); 4620 } 4621 4622 void BitcodeWriter::writeIndex( 4623 const ModuleSummaryIndex *Index, 4624 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4625 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4626 ModuleToSummariesForIndex); 4627 IndexWriter.write(); 4628 } 4629 4630 /// Write the specified module to the specified output stream. 4631 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4632 bool ShouldPreserveUseListOrder, 4633 const ModuleSummaryIndex *Index, 4634 bool GenerateHash, ModuleHash *ModHash) { 4635 SmallVector<char, 0> Buffer; 4636 Buffer.reserve(256*1024); 4637 4638 // If this is darwin or another generic macho target, reserve space for the 4639 // header. 4640 Triple TT(M.getTargetTriple()); 4641 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4642 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4643 4644 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4645 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4646 ModHash); 4647 Writer.writeSymtab(); 4648 Writer.writeStrtab(); 4649 4650 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4651 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4652 4653 // Write the generated bitstream to "Out". 4654 if (!Buffer.empty()) 4655 Out.write((char *)&Buffer.front(), Buffer.size()); 4656 } 4657 4658 void IndexBitcodeWriter::write() { 4659 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4660 4661 writeModuleVersion(); 4662 4663 // Write the module paths in the combined index. 4664 writeModStrings(); 4665 4666 // Write the summary combined index records. 4667 writeCombinedGlobalValueSummary(); 4668 4669 Stream.ExitBlock(); 4670 } 4671 4672 // Write the specified module summary index to the given raw output stream, 4673 // where it will be written in a new bitcode block. This is used when 4674 // writing the combined index file for ThinLTO. When writing a subset of the 4675 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4676 void llvm::WriteIndexToFile( 4677 const ModuleSummaryIndex &Index, raw_ostream &Out, 4678 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4679 SmallVector<char, 0> Buffer; 4680 Buffer.reserve(256 * 1024); 4681 4682 BitcodeWriter Writer(Buffer); 4683 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4684 Writer.writeStrtab(); 4685 4686 Out.write((char *)&Buffer.front(), Buffer.size()); 4687 } 4688 4689 namespace { 4690 4691 /// Class to manage the bitcode writing for a thin link bitcode file. 4692 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4693 /// ModHash is for use in ThinLTO incremental build, generated while writing 4694 /// the module bitcode file. 4695 const ModuleHash *ModHash; 4696 4697 public: 4698 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4699 BitstreamWriter &Stream, 4700 const ModuleSummaryIndex &Index, 4701 const ModuleHash &ModHash) 4702 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4703 /*ShouldPreserveUseListOrder=*/false, &Index), 4704 ModHash(&ModHash) {} 4705 4706 void write(); 4707 4708 private: 4709 void writeSimplifiedModuleInfo(); 4710 }; 4711 4712 } // end anonymous namespace 4713 4714 // This function writes a simpilified module info for thin link bitcode file. 4715 // It only contains the source file name along with the name(the offset and 4716 // size in strtab) and linkage for global values. For the global value info 4717 // entry, in order to keep linkage at offset 5, there are three zeros used 4718 // as padding. 4719 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4720 SmallVector<unsigned, 64> Vals; 4721 // Emit the module's source file name. 4722 { 4723 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4724 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4725 if (Bits == SE_Char6) 4726 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4727 else if (Bits == SE_Fixed7) 4728 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4729 4730 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4731 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4732 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4734 Abbv->Add(AbbrevOpToUse); 4735 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4736 4737 for (const auto P : M.getSourceFileName()) 4738 Vals.push_back((unsigned char)P); 4739 4740 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4741 Vals.clear(); 4742 } 4743 4744 // Emit the global variable information. 4745 for (const GlobalVariable &GV : M.globals()) { 4746 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4747 Vals.push_back(StrtabBuilder.add(GV.getName())); 4748 Vals.push_back(GV.getName().size()); 4749 Vals.push_back(0); 4750 Vals.push_back(0); 4751 Vals.push_back(0); 4752 Vals.push_back(getEncodedLinkage(GV)); 4753 4754 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4755 Vals.clear(); 4756 } 4757 4758 // Emit the function proto information. 4759 for (const Function &F : M) { 4760 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4761 Vals.push_back(StrtabBuilder.add(F.getName())); 4762 Vals.push_back(F.getName().size()); 4763 Vals.push_back(0); 4764 Vals.push_back(0); 4765 Vals.push_back(0); 4766 Vals.push_back(getEncodedLinkage(F)); 4767 4768 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4769 Vals.clear(); 4770 } 4771 4772 // Emit the alias information. 4773 for (const GlobalAlias &A : M.aliases()) { 4774 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4775 Vals.push_back(StrtabBuilder.add(A.getName())); 4776 Vals.push_back(A.getName().size()); 4777 Vals.push_back(0); 4778 Vals.push_back(0); 4779 Vals.push_back(0); 4780 Vals.push_back(getEncodedLinkage(A)); 4781 4782 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4783 Vals.clear(); 4784 } 4785 4786 // Emit the ifunc information. 4787 for (const GlobalIFunc &I : M.ifuncs()) { 4788 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4789 Vals.push_back(StrtabBuilder.add(I.getName())); 4790 Vals.push_back(I.getName().size()); 4791 Vals.push_back(0); 4792 Vals.push_back(0); 4793 Vals.push_back(0); 4794 Vals.push_back(getEncodedLinkage(I)); 4795 4796 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4797 Vals.clear(); 4798 } 4799 } 4800 4801 void ThinLinkBitcodeWriter::write() { 4802 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4803 4804 writeModuleVersion(); 4805 4806 writeSimplifiedModuleInfo(); 4807 4808 writePerModuleGlobalValueSummary(); 4809 4810 // Write module hash. 4811 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4812 4813 Stream.ExitBlock(); 4814 } 4815 4816 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4817 const ModuleSummaryIndex &Index, 4818 const ModuleHash &ModHash) { 4819 assert(!WroteStrtab); 4820 4821 // The Mods vector is used by irsymtab::build, which requires non-const 4822 // Modules in case it needs to materialize metadata. But the bitcode writer 4823 // requires that the module is materialized, so we can cast to non-const here, 4824 // after checking that it is in fact materialized. 4825 assert(M.isMaterialized()); 4826 Mods.push_back(const_cast<Module *>(&M)); 4827 4828 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4829 ModHash); 4830 ThinLinkWriter.write(); 4831 } 4832 4833 // Write the specified thin link bitcode file to the given raw output stream, 4834 // where it will be written in a new bitcode block. This is used when 4835 // writing the per-module index file for ThinLTO. 4836 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4837 const ModuleSummaryIndex &Index, 4838 const ModuleHash &ModHash) { 4839 SmallVector<char, 0> Buffer; 4840 Buffer.reserve(256 * 1024); 4841 4842 BitcodeWriter Writer(Buffer); 4843 Writer.writeThinLinkBitcode(M, Index, ModHash); 4844 Writer.writeSymtab(); 4845 Writer.writeStrtab(); 4846 4847 Out.write((char *)&Buffer.front(), Buffer.size()); 4848 } 4849 4850 static const char *getSectionNameForBitcode(const Triple &T) { 4851 switch (T.getObjectFormat()) { 4852 case Triple::MachO: 4853 return "__LLVM,__bitcode"; 4854 case Triple::COFF: 4855 case Triple::ELF: 4856 case Triple::Wasm: 4857 case Triple::UnknownObjectFormat: 4858 return ".llvmbc"; 4859 case Triple::GOFF: 4860 llvm_unreachable("GOFF is not yet implemented"); 4861 break; 4862 case Triple::XCOFF: 4863 llvm_unreachable("XCOFF is not yet implemented"); 4864 break; 4865 } 4866 llvm_unreachable("Unimplemented ObjectFormatType"); 4867 } 4868 4869 static const char *getSectionNameForCommandline(const Triple &T) { 4870 switch (T.getObjectFormat()) { 4871 case Triple::MachO: 4872 return "__LLVM,__cmdline"; 4873 case Triple::COFF: 4874 case Triple::ELF: 4875 case Triple::Wasm: 4876 case Triple::UnknownObjectFormat: 4877 return ".llvmcmd"; 4878 case Triple::GOFF: 4879 llvm_unreachable("GOFF is not yet implemented"); 4880 break; 4881 case Triple::XCOFF: 4882 llvm_unreachable("XCOFF is not yet implemented"); 4883 break; 4884 } 4885 llvm_unreachable("Unimplemented ObjectFormatType"); 4886 } 4887 4888 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4889 bool EmbedBitcode, bool EmbedCmdline, 4890 const std::vector<uint8_t> &CmdArgs) { 4891 // Save llvm.compiler.used and remove it. 4892 SmallVector<Constant *, 2> UsedArray; 4893 SmallVector<GlobalValue *, 4> UsedGlobals; 4894 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4895 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4896 for (auto *GV : UsedGlobals) { 4897 if (GV->getName() != "llvm.embedded.module" && 4898 GV->getName() != "llvm.cmdline") 4899 UsedArray.push_back( 4900 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4901 } 4902 if (Used) 4903 Used->eraseFromParent(); 4904 4905 // Embed the bitcode for the llvm module. 4906 std::string Data; 4907 ArrayRef<uint8_t> ModuleData; 4908 Triple T(M.getTargetTriple()); 4909 4910 if (EmbedBitcode) { 4911 if (Buf.getBufferSize() == 0 || 4912 !isBitcode((const unsigned char *)Buf.getBufferStart(), 4913 (const unsigned char *)Buf.getBufferEnd())) { 4914 // If the input is LLVM Assembly, bitcode is produced by serializing 4915 // the module. Use-lists order need to be preserved in this case. 4916 llvm::raw_string_ostream OS(Data); 4917 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4918 ModuleData = 4919 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4920 } else 4921 // If the input is LLVM bitcode, write the input byte stream directly. 4922 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4923 Buf.getBufferSize()); 4924 } 4925 llvm::Constant *ModuleConstant = 4926 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4927 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4928 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4929 ModuleConstant); 4930 GV->setSection(getSectionNameForBitcode(T)); 4931 // Set alignment to 1 to prevent padding between two contributions from input 4932 // sections after linking. 4933 GV->setAlignment(Align(1)); 4934 UsedArray.push_back( 4935 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4936 if (llvm::GlobalVariable *Old = 4937 M.getGlobalVariable("llvm.embedded.module", true)) { 4938 assert(Old->hasOneUse() && 4939 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4940 GV->takeName(Old); 4941 Old->eraseFromParent(); 4942 } else { 4943 GV->setName("llvm.embedded.module"); 4944 } 4945 4946 // Skip if only bitcode needs to be embedded. 4947 if (EmbedCmdline) { 4948 // Embed command-line options. 4949 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 4950 CmdArgs.size()); 4951 llvm::Constant *CmdConstant = 4952 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4953 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4954 llvm::GlobalValue::PrivateLinkage, 4955 CmdConstant); 4956 GV->setSection(getSectionNameForCommandline(T)); 4957 GV->setAlignment(Align(1)); 4958 UsedArray.push_back( 4959 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4960 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4961 assert(Old->hasOneUse() && 4962 "llvm.cmdline can only be used once in llvm.compiler.used"); 4963 GV->takeName(Old); 4964 Old->eraseFromParent(); 4965 } else { 4966 GV->setName("llvm.cmdline"); 4967 } 4968 } 4969 4970 if (UsedArray.empty()) 4971 return; 4972 4973 // Recreate llvm.compiler.used. 4974 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4975 auto *NewUsed = new GlobalVariable( 4976 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4977 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4978 NewUsed->setSection("llvm.metadata"); 4979 } 4980