xref: /llvm-project/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp (revision a0f371a106f003bb6575bc8f19ab82121d8bc1c4)
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/BitcodeWriter.h"
15 #include "ValueEnumerator.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/Bitcode/BitstreamWriter.h"
19 #include "llvm/Bitcode/LLVMBitCodes.h"
20 #include "llvm/IR/CallSite.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DebugInfoMetadata.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/UseListOrder.h"
30 #include "llvm/IR/ValueSymbolTable.h"
31 #include "llvm/MC/StringTableBuilder.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/Program.h"
35 #include "llvm/Support/SHA1.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <cctype>
38 #include <map>
39 using namespace llvm;
40 
41 namespace {
42 
43 cl::opt<unsigned>
44     IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
45                    cl::desc("Number of metadatas above which we emit an index "
46                             "to enable lazy-loading"));
47 /// These are manifest constants used by the bitcode writer. They do not need to
48 /// be kept in sync with the reader, but need to be consistent within this file.
49 enum {
50   // VALUE_SYMTAB_BLOCK abbrev id's.
51   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
52   VST_ENTRY_7_ABBREV,
53   VST_ENTRY_6_ABBREV,
54   VST_BBENTRY_6_ABBREV,
55 
56   // CONSTANTS_BLOCK abbrev id's.
57   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
58   CONSTANTS_INTEGER_ABBREV,
59   CONSTANTS_CE_CAST_Abbrev,
60   CONSTANTS_NULL_Abbrev,
61 
62   // FUNCTION_BLOCK abbrev id's.
63   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
64   FUNCTION_INST_BINOP_ABBREV,
65   FUNCTION_INST_BINOP_FLAGS_ABBREV,
66   FUNCTION_INST_CAST_ABBREV,
67   FUNCTION_INST_RET_VOID_ABBREV,
68   FUNCTION_INST_RET_VAL_ABBREV,
69   FUNCTION_INST_UNREACHABLE_ABBREV,
70   FUNCTION_INST_GEP_ABBREV,
71 };
72 
73 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
74 /// file type.
75 class BitcodeWriterBase {
76 protected:
77   /// The stream created and owned by the client.
78   BitstreamWriter &Stream;
79 
80 public:
81   /// Constructs a BitcodeWriterBase object that writes to the provided
82   /// \p Stream.
83   BitcodeWriterBase(BitstreamWriter &Stream) : Stream(Stream) {}
84 
85 protected:
86   void writeBitcodeHeader();
87   void writeModuleVersion();
88 };
89 
90 void BitcodeWriterBase::writeModuleVersion() {
91   // VERSION: [version#]
92   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
93 }
94 
95 /// Class to manage the bitcode writing for a module.
96 class ModuleBitcodeWriter : public BitcodeWriterBase {
97   /// Pointer to the buffer allocated by caller for bitcode writing.
98   const SmallVectorImpl<char> &Buffer;
99 
100   StringTableBuilder &StrtabBuilder;
101 
102   /// The Module to write to bitcode.
103   const Module &M;
104 
105   /// Enumerates ids for all values in the module.
106   ValueEnumerator VE;
107 
108   /// Optional per-module index to write for ThinLTO.
109   const ModuleSummaryIndex *Index;
110 
111   /// True if a module hash record should be written.
112   bool GenerateHash;
113 
114   /// If non-null, when GenerateHash is true, the resulting hash is written
115   /// into ModHash. When GenerateHash is false, that specified value
116   /// is used as the hash instead of computing from the generated bitcode.
117   /// Can be used to produce the same module hash for a minimized bitcode
118   /// used just for the thin link as in the regular full bitcode that will
119   /// be used in the backend.
120   ModuleHash *ModHash;
121 
122   /// The start bit of the identification block.
123   uint64_t BitcodeStartBit;
124 
125   /// Map that holds the correspondence between GUIDs in the summary index,
126   /// that came from indirect call profiles, and a value id generated by this
127   /// class to use in the VST and summary block records.
128   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
129 
130   /// Tracks the last value id recorded in the GUIDToValueMap.
131   unsigned GlobalValueId;
132 
133   /// Saves the offset of the VSTOffset record that must eventually be
134   /// backpatched with the offset of the actual VST.
135   uint64_t VSTOffsetPlaceholder = 0;
136 
137 public:
138   /// Constructs a ModuleBitcodeWriter object for the given Module,
139   /// writing to the provided \p Buffer.
140   ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer,
141                       StringTableBuilder &StrtabBuilder,
142                       BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
143                       const ModuleSummaryIndex *Index, bool GenerateHash,
144                       ModuleHash *ModHash = nullptr)
145       : BitcodeWriterBase(Stream), Buffer(Buffer), StrtabBuilder(StrtabBuilder),
146         M(*M), VE(*M, ShouldPreserveUseListOrder), Index(Index),
147         GenerateHash(GenerateHash), ModHash(ModHash),
148         BitcodeStartBit(Stream.GetCurrentBitNo()) {
149     // Assign ValueIds to any callee values in the index that came from
150     // indirect call profiles and were recorded as a GUID not a Value*
151     // (which would have been assigned an ID by the ValueEnumerator).
152     // The starting ValueId is just after the number of values in the
153     // ValueEnumerator, so that they can be emitted in the VST.
154     GlobalValueId = VE.getValues().size();
155     if (!Index)
156       return;
157     for (const auto &GUIDSummaryLists : *Index)
158       // Examine all summaries for this GUID.
159       for (auto &Summary : GUIDSummaryLists.second)
160         if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
161           // For each call in the function summary, see if the call
162           // is to a GUID (which means it is for an indirect call,
163           // otherwise we would have a Value for it). If so, synthesize
164           // a value id.
165           for (auto &CallEdge : FS->calls())
166             if (CallEdge.first.isGUID())
167               assignValueId(CallEdge.first.getGUID());
168   }
169 
170   /// Emit the current module to the bitstream.
171   void write();
172 
173 private:
174   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
175 
176   void writeAttributeGroupTable();
177   void writeAttributeTable();
178   void writeTypeTable();
179   void writeComdats();
180   void writeValueSymbolTableForwardDecl();
181   void writeModuleInfo();
182   void writeValueAsMetadata(const ValueAsMetadata *MD,
183                             SmallVectorImpl<uint64_t> &Record);
184   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
185                     unsigned Abbrev);
186   unsigned createDILocationAbbrev();
187   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
188                        unsigned &Abbrev);
189   unsigned createGenericDINodeAbbrev();
190   void writeGenericDINode(const GenericDINode *N,
191                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
192   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
193                        unsigned Abbrev);
194   void writeDIEnumerator(const DIEnumerator *N,
195                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
196   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
197                         unsigned Abbrev);
198   void writeDIDerivedType(const DIDerivedType *N,
199                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
200   void writeDICompositeType(const DICompositeType *N,
201                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
202   void writeDISubroutineType(const DISubroutineType *N,
203                              SmallVectorImpl<uint64_t> &Record,
204                              unsigned Abbrev);
205   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
206                    unsigned Abbrev);
207   void writeDICompileUnit(const DICompileUnit *N,
208                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
209   void writeDISubprogram(const DISubprogram *N,
210                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
211   void writeDILexicalBlock(const DILexicalBlock *N,
212                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
213   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
214                                SmallVectorImpl<uint64_t> &Record,
215                                unsigned Abbrev);
216   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
217                         unsigned Abbrev);
218   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
219                     unsigned Abbrev);
220   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
221                         unsigned Abbrev);
222   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
223                      unsigned Abbrev);
224   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
225                                     SmallVectorImpl<uint64_t> &Record,
226                                     unsigned Abbrev);
227   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
228                                      SmallVectorImpl<uint64_t> &Record,
229                                      unsigned Abbrev);
230   void writeDIGlobalVariable(const DIGlobalVariable *N,
231                              SmallVectorImpl<uint64_t> &Record,
232                              unsigned Abbrev);
233   void writeDILocalVariable(const DILocalVariable *N,
234                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
235   void writeDIExpression(const DIExpression *N,
236                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
237   void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
238                                        SmallVectorImpl<uint64_t> &Record,
239                                        unsigned Abbrev);
240   void writeDIObjCProperty(const DIObjCProperty *N,
241                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
242   void writeDIImportedEntity(const DIImportedEntity *N,
243                              SmallVectorImpl<uint64_t> &Record,
244                              unsigned Abbrev);
245   unsigned createNamedMetadataAbbrev();
246   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
247   unsigned createMetadataStringsAbbrev();
248   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
249                             SmallVectorImpl<uint64_t> &Record);
250   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
251                             SmallVectorImpl<uint64_t> &Record,
252                             std::vector<unsigned> *MDAbbrevs = nullptr,
253                             std::vector<uint64_t> *IndexPos = nullptr);
254   void writeModuleMetadata();
255   void writeFunctionMetadata(const Function &F);
256   void writeFunctionMetadataAttachment(const Function &F);
257   void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
258   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
259                                     const GlobalObject &GO);
260   void writeModuleMetadataKinds();
261   void writeOperandBundleTags();
262   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
263   void writeModuleConstants();
264   bool pushValueAndType(const Value *V, unsigned InstID,
265                         SmallVectorImpl<unsigned> &Vals);
266   void writeOperandBundles(ImmutableCallSite CS, unsigned InstID);
267   void pushValue(const Value *V, unsigned InstID,
268                  SmallVectorImpl<unsigned> &Vals);
269   void pushValueSigned(const Value *V, unsigned InstID,
270                        SmallVectorImpl<uint64_t> &Vals);
271   void writeInstruction(const Instruction &I, unsigned InstID,
272                         SmallVectorImpl<unsigned> &Vals);
273   void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
274   void writeGlobalValueSymbolTable(
275       DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
276   void writeUseList(UseListOrder &&Order);
277   void writeUseListBlock(const Function *F);
278   void
279   writeFunction(const Function &F,
280                 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
281   void writeBlockInfo();
282   void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
283                                            GlobalValueSummary *Summary,
284                                            unsigned ValueID,
285                                            unsigned FSCallsAbbrev,
286                                            unsigned FSCallsProfileAbbrev,
287                                            const Function &F);
288   void writeModuleLevelReferences(const GlobalVariable &V,
289                                   SmallVector<uint64_t, 64> &NameVals,
290                                   unsigned FSModRefsAbbrev);
291   void writePerModuleGlobalValueSummary();
292   void writeModuleHash(size_t BlockStartPos);
293 
294   void assignValueId(GlobalValue::GUID ValGUID) {
295     GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
296   }
297   unsigned getValueId(GlobalValue::GUID ValGUID) {
298     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
299     // Expect that any GUID value had a value Id assigned by an
300     // earlier call to assignValueId.
301     assert(VMI != GUIDToValueIdMap.end() &&
302            "GUID does not have assigned value Id");
303     return VMI->second;
304   }
305   // Helper to get the valueId for the type of value recorded in VI.
306   unsigned getValueId(ValueInfo VI) {
307     if (VI.isGUID())
308       return getValueId(VI.getGUID());
309     return VE.getValueID(VI.getValue());
310   }
311   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
312 };
313 
314 /// Class to manage the bitcode writing for a combined index.
315 class IndexBitcodeWriter : public BitcodeWriterBase {
316   /// The combined index to write to bitcode.
317   const ModuleSummaryIndex &Index;
318 
319   /// When writing a subset of the index for distributed backends, client
320   /// provides a map of modules to the corresponding GUIDs/summaries to write.
321   const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
322 
323   /// Map that holds the correspondence between the GUID used in the combined
324   /// index and a value id generated by this class to use in references.
325   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
326 
327   /// Tracks the last value id recorded in the GUIDToValueMap.
328   unsigned GlobalValueId = 0;
329 
330 public:
331   /// Constructs a IndexBitcodeWriter object for the given combined index,
332   /// writing to the provided \p Buffer. When writing a subset of the index
333   /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
334   IndexBitcodeWriter(BitstreamWriter &Stream, const ModuleSummaryIndex &Index,
335                      const std::map<std::string, GVSummaryMapTy>
336                          *ModuleToSummariesForIndex = nullptr)
337       : BitcodeWriterBase(Stream), Index(Index),
338         ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
339     // Assign unique value ids to all summaries to be written, for use
340     // in writing out the call graph edges. Save the mapping from GUID
341     // to the new global value id to use when writing those edges, which
342     // are currently saved in the index in terms of GUID.
343     for (const auto &I : *this)
344       GUIDToValueIdMap[I.first] = ++GlobalValueId;
345   }
346 
347   /// The below iterator returns the GUID and associated summary.
348   typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo;
349 
350   /// Iterator over the value GUID and summaries to be written to bitcode,
351   /// hides the details of whether they are being pulled from the entire
352   /// index or just those in a provided ModuleToSummariesForIndex map.
353   class iterator
354       : public llvm::iterator_facade_base<iterator, std::forward_iterator_tag,
355                                           GVInfo> {
356     /// Enables access to parent class.
357     const IndexBitcodeWriter &Writer;
358 
359     // Iterators used when writing only those summaries in a provided
360     // ModuleToSummariesForIndex map:
361 
362     /// Points to the last element in outer ModuleToSummariesForIndex map.
363     std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesBack;
364     /// Iterator on outer ModuleToSummariesForIndex map.
365     std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesIter;
366     /// Iterator on an inner global variable summary map.
367     GVSummaryMapTy::const_iterator ModuleGVSummariesIter;
368 
369     // Iterators used when writing all summaries in the index:
370 
371     /// Points to the last element in the Index outer GlobalValueMap.
372     const_gvsummary_iterator IndexSummariesBack;
373     /// Iterator on outer GlobalValueMap.
374     const_gvsummary_iterator IndexSummariesIter;
375     /// Iterator on an inner GlobalValueSummaryList.
376     GlobalValueSummaryList::const_iterator IndexGVSummariesIter;
377 
378   public:
379     /// Construct iterator from parent \p Writer and indicate if we are
380     /// constructing the end iterator.
381     iterator(const IndexBitcodeWriter &Writer, bool IsAtEnd) : Writer(Writer) {
382       // Set up the appropriate set of iterators given whether we are writing
383       // the full index or just a subset.
384       // Can't setup the Back or inner iterators if the corresponding map
385       // is empty. This will be handled specially in operator== as well.
386       if (Writer.ModuleToSummariesForIndex &&
387           !Writer.ModuleToSummariesForIndex->empty()) {
388         for (ModuleSummariesBack = Writer.ModuleToSummariesForIndex->begin();
389              std::next(ModuleSummariesBack) !=
390              Writer.ModuleToSummariesForIndex->end();
391              ModuleSummariesBack++)
392           ;
393         ModuleSummariesIter = !IsAtEnd
394                                   ? Writer.ModuleToSummariesForIndex->begin()
395                                   : ModuleSummariesBack;
396         ModuleGVSummariesIter = !IsAtEnd ? ModuleSummariesIter->second.begin()
397                                          : ModuleSummariesBack->second.end();
398       } else if (!Writer.ModuleToSummariesForIndex &&
399                  Writer.Index.begin() != Writer.Index.end()) {
400         for (IndexSummariesBack = Writer.Index.begin();
401              std::next(IndexSummariesBack) != Writer.Index.end();
402              IndexSummariesBack++)
403           ;
404         IndexSummariesIter =
405             !IsAtEnd ? Writer.Index.begin() : IndexSummariesBack;
406         IndexGVSummariesIter = !IsAtEnd ? IndexSummariesIter->second.begin()
407                                         : IndexSummariesBack->second.end();
408       }
409     }
410 
411     /// Increment the appropriate set of iterators.
412     iterator &operator++() {
413       // First the inner iterator is incremented, then if it is at the end
414       // and there are more outer iterations to go, the inner is reset to
415       // the start of the next inner list.
416       if (Writer.ModuleToSummariesForIndex) {
417         ++ModuleGVSummariesIter;
418         if (ModuleGVSummariesIter == ModuleSummariesIter->second.end() &&
419             ModuleSummariesIter != ModuleSummariesBack) {
420           ++ModuleSummariesIter;
421           ModuleGVSummariesIter = ModuleSummariesIter->second.begin();
422         }
423       } else {
424         ++IndexGVSummariesIter;
425         if (IndexGVSummariesIter == IndexSummariesIter->second.end() &&
426             IndexSummariesIter != IndexSummariesBack) {
427           ++IndexSummariesIter;
428           IndexGVSummariesIter = IndexSummariesIter->second.begin();
429         }
430       }
431       return *this;
432     }
433 
434     /// Access the <GUID,GlobalValueSummary*> pair corresponding to the current
435     /// outer and inner iterator positions.
436     GVInfo operator*() {
437       if (Writer.ModuleToSummariesForIndex)
438         return std::make_pair(ModuleGVSummariesIter->first,
439                               ModuleGVSummariesIter->second);
440       return std::make_pair(IndexSummariesIter->first,
441                             IndexGVSummariesIter->get());
442     }
443 
444     /// Checks if the iterators are equal, with special handling for empty
445     /// indexes.
446     bool operator==(const iterator &RHS) const {
447       if (Writer.ModuleToSummariesForIndex) {
448         // First ensure that both are writing the same subset.
449         if (Writer.ModuleToSummariesForIndex !=
450             RHS.Writer.ModuleToSummariesForIndex)
451           return false;
452         // Already determined above that maps are the same, so if one is
453         // empty, they both are.
454         if (Writer.ModuleToSummariesForIndex->empty())
455           return true;
456         // Ensure the ModuleGVSummariesIter are iterating over the same
457         // container before checking them below.
458         if (ModuleSummariesIter != RHS.ModuleSummariesIter)
459           return false;
460         return ModuleGVSummariesIter == RHS.ModuleGVSummariesIter;
461       }
462       // First ensure RHS also writing the full index, and that both are
463       // writing the same full index.
464       if (RHS.Writer.ModuleToSummariesForIndex ||
465           &Writer.Index != &RHS.Writer.Index)
466         return false;
467       // Already determined above that maps are the same, so if one is
468       // empty, they both are.
469       if (Writer.Index.begin() == Writer.Index.end())
470         return true;
471       // Ensure the IndexGVSummariesIter are iterating over the same
472       // container before checking them below.
473       if (IndexSummariesIter != RHS.IndexSummariesIter)
474         return false;
475       return IndexGVSummariesIter == RHS.IndexGVSummariesIter;
476     }
477   };
478 
479   /// Obtain the start iterator over the summaries to be written.
480   iterator begin() { return iterator(*this, /*IsAtEnd=*/false); }
481   /// Obtain the end iterator over the summaries to be written.
482   iterator end() { return iterator(*this, /*IsAtEnd=*/true); }
483 
484   /// Main entry point for writing a combined index to bitcode.
485   void write();
486 
487 private:
488   void writeModStrings();
489   void writeCombinedGlobalValueSummary();
490 
491   /// Indicates whether the provided \p ModulePath should be written into
492   /// the module string table, e.g. if full index written or if it is in
493   /// the provided subset.
494   bool doIncludeModule(StringRef ModulePath) {
495     return !ModuleToSummariesForIndex ||
496            ModuleToSummariesForIndex->count(ModulePath);
497   }
498 
499   bool hasValueId(GlobalValue::GUID ValGUID) {
500     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
501     return VMI != GUIDToValueIdMap.end();
502   }
503   void assignValueId(GlobalValue::GUID ValGUID) {
504     unsigned &ValueId = GUIDToValueIdMap[ValGUID];
505     if (ValueId == 0)
506       ValueId = ++GlobalValueId;
507   }
508   unsigned getValueId(GlobalValue::GUID ValGUID) {
509     auto VMI = GUIDToValueIdMap.find(ValGUID);
510     assert(VMI != GUIDToValueIdMap.end());
511     return VMI->second;
512   }
513   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
514 };
515 } // end anonymous namespace
516 
517 static unsigned getEncodedCastOpcode(unsigned Opcode) {
518   switch (Opcode) {
519   default: llvm_unreachable("Unknown cast instruction!");
520   case Instruction::Trunc   : return bitc::CAST_TRUNC;
521   case Instruction::ZExt    : return bitc::CAST_ZEXT;
522   case Instruction::SExt    : return bitc::CAST_SEXT;
523   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
524   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
525   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
526   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
527   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
528   case Instruction::FPExt   : return bitc::CAST_FPEXT;
529   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
530   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
531   case Instruction::BitCast : return bitc::CAST_BITCAST;
532   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
533   }
534 }
535 
536 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
537   switch (Opcode) {
538   default: llvm_unreachable("Unknown binary instruction!");
539   case Instruction::Add:
540   case Instruction::FAdd: return bitc::BINOP_ADD;
541   case Instruction::Sub:
542   case Instruction::FSub: return bitc::BINOP_SUB;
543   case Instruction::Mul:
544   case Instruction::FMul: return bitc::BINOP_MUL;
545   case Instruction::UDiv: return bitc::BINOP_UDIV;
546   case Instruction::FDiv:
547   case Instruction::SDiv: return bitc::BINOP_SDIV;
548   case Instruction::URem: return bitc::BINOP_UREM;
549   case Instruction::FRem:
550   case Instruction::SRem: return bitc::BINOP_SREM;
551   case Instruction::Shl:  return bitc::BINOP_SHL;
552   case Instruction::LShr: return bitc::BINOP_LSHR;
553   case Instruction::AShr: return bitc::BINOP_ASHR;
554   case Instruction::And:  return bitc::BINOP_AND;
555   case Instruction::Or:   return bitc::BINOP_OR;
556   case Instruction::Xor:  return bitc::BINOP_XOR;
557   }
558 }
559 
560 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
561   switch (Op) {
562   default: llvm_unreachable("Unknown RMW operation!");
563   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
564   case AtomicRMWInst::Add: return bitc::RMW_ADD;
565   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
566   case AtomicRMWInst::And: return bitc::RMW_AND;
567   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
568   case AtomicRMWInst::Or: return bitc::RMW_OR;
569   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
570   case AtomicRMWInst::Max: return bitc::RMW_MAX;
571   case AtomicRMWInst::Min: return bitc::RMW_MIN;
572   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
573   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
574   }
575 }
576 
577 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
578   switch (Ordering) {
579   case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
580   case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
581   case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
582   case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
583   case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
584   case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
585   case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
586   }
587   llvm_unreachable("Invalid ordering");
588 }
589 
590 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) {
591   switch (SynchScope) {
592   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
593   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
594   }
595   llvm_unreachable("Invalid synch scope");
596 }
597 
598 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
599                               StringRef Str, unsigned AbbrevToUse) {
600   SmallVector<unsigned, 64> Vals;
601 
602   // Code: [strchar x N]
603   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
604     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
605       AbbrevToUse = 0;
606     Vals.push_back(Str[i]);
607   }
608 
609   // Emit the finished record.
610   Stream.EmitRecord(Code, Vals, AbbrevToUse);
611 }
612 
613 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
614   switch (Kind) {
615   case Attribute::Alignment:
616     return bitc::ATTR_KIND_ALIGNMENT;
617   case Attribute::AllocSize:
618     return bitc::ATTR_KIND_ALLOC_SIZE;
619   case Attribute::AlwaysInline:
620     return bitc::ATTR_KIND_ALWAYS_INLINE;
621   case Attribute::ArgMemOnly:
622     return bitc::ATTR_KIND_ARGMEMONLY;
623   case Attribute::Builtin:
624     return bitc::ATTR_KIND_BUILTIN;
625   case Attribute::ByVal:
626     return bitc::ATTR_KIND_BY_VAL;
627   case Attribute::Convergent:
628     return bitc::ATTR_KIND_CONVERGENT;
629   case Attribute::InAlloca:
630     return bitc::ATTR_KIND_IN_ALLOCA;
631   case Attribute::Cold:
632     return bitc::ATTR_KIND_COLD;
633   case Attribute::InaccessibleMemOnly:
634     return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
635   case Attribute::InaccessibleMemOrArgMemOnly:
636     return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
637   case Attribute::InlineHint:
638     return bitc::ATTR_KIND_INLINE_HINT;
639   case Attribute::InReg:
640     return bitc::ATTR_KIND_IN_REG;
641   case Attribute::JumpTable:
642     return bitc::ATTR_KIND_JUMP_TABLE;
643   case Attribute::MinSize:
644     return bitc::ATTR_KIND_MIN_SIZE;
645   case Attribute::Naked:
646     return bitc::ATTR_KIND_NAKED;
647   case Attribute::Nest:
648     return bitc::ATTR_KIND_NEST;
649   case Attribute::NoAlias:
650     return bitc::ATTR_KIND_NO_ALIAS;
651   case Attribute::NoBuiltin:
652     return bitc::ATTR_KIND_NO_BUILTIN;
653   case Attribute::NoCapture:
654     return bitc::ATTR_KIND_NO_CAPTURE;
655   case Attribute::NoDuplicate:
656     return bitc::ATTR_KIND_NO_DUPLICATE;
657   case Attribute::NoImplicitFloat:
658     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
659   case Attribute::NoInline:
660     return bitc::ATTR_KIND_NO_INLINE;
661   case Attribute::NoRecurse:
662     return bitc::ATTR_KIND_NO_RECURSE;
663   case Attribute::NonLazyBind:
664     return bitc::ATTR_KIND_NON_LAZY_BIND;
665   case Attribute::NonNull:
666     return bitc::ATTR_KIND_NON_NULL;
667   case Attribute::Dereferenceable:
668     return bitc::ATTR_KIND_DEREFERENCEABLE;
669   case Attribute::DereferenceableOrNull:
670     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
671   case Attribute::NoRedZone:
672     return bitc::ATTR_KIND_NO_RED_ZONE;
673   case Attribute::NoReturn:
674     return bitc::ATTR_KIND_NO_RETURN;
675   case Attribute::NoUnwind:
676     return bitc::ATTR_KIND_NO_UNWIND;
677   case Attribute::OptimizeForSize:
678     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
679   case Attribute::OptimizeNone:
680     return bitc::ATTR_KIND_OPTIMIZE_NONE;
681   case Attribute::ReadNone:
682     return bitc::ATTR_KIND_READ_NONE;
683   case Attribute::ReadOnly:
684     return bitc::ATTR_KIND_READ_ONLY;
685   case Attribute::Returned:
686     return bitc::ATTR_KIND_RETURNED;
687   case Attribute::ReturnsTwice:
688     return bitc::ATTR_KIND_RETURNS_TWICE;
689   case Attribute::SExt:
690     return bitc::ATTR_KIND_S_EXT;
691   case Attribute::StackAlignment:
692     return bitc::ATTR_KIND_STACK_ALIGNMENT;
693   case Attribute::StackProtect:
694     return bitc::ATTR_KIND_STACK_PROTECT;
695   case Attribute::StackProtectReq:
696     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
697   case Attribute::StackProtectStrong:
698     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
699   case Attribute::SafeStack:
700     return bitc::ATTR_KIND_SAFESTACK;
701   case Attribute::StructRet:
702     return bitc::ATTR_KIND_STRUCT_RET;
703   case Attribute::SanitizeAddress:
704     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
705   case Attribute::SanitizeThread:
706     return bitc::ATTR_KIND_SANITIZE_THREAD;
707   case Attribute::SanitizeMemory:
708     return bitc::ATTR_KIND_SANITIZE_MEMORY;
709   case Attribute::SwiftError:
710     return bitc::ATTR_KIND_SWIFT_ERROR;
711   case Attribute::SwiftSelf:
712     return bitc::ATTR_KIND_SWIFT_SELF;
713   case Attribute::UWTable:
714     return bitc::ATTR_KIND_UW_TABLE;
715   case Attribute::WriteOnly:
716     return bitc::ATTR_KIND_WRITEONLY;
717   case Attribute::ZExt:
718     return bitc::ATTR_KIND_Z_EXT;
719   case Attribute::EndAttrKinds:
720     llvm_unreachable("Can not encode end-attribute kinds marker.");
721   case Attribute::None:
722     llvm_unreachable("Can not encode none-attribute.");
723   }
724 
725   llvm_unreachable("Trying to encode unknown attribute");
726 }
727 
728 void ModuleBitcodeWriter::writeAttributeGroupTable() {
729   const std::vector<AttributeList> &AttrGrps = VE.getAttributeGroups();
730   if (AttrGrps.empty()) return;
731 
732   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
733 
734   SmallVector<uint64_t, 64> Record;
735   for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
736     AttributeList AS = AttrGrps[i];
737     for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
738       AttributeList A = AS.getSlotAttributes(i);
739 
740       Record.push_back(VE.getAttributeGroupID(A));
741       Record.push_back(AS.getSlotIndex(i));
742 
743       for (AttributeList::iterator I = AS.begin(0), E = AS.end(0); I != E;
744            ++I) {
745         Attribute Attr = *I;
746         if (Attr.isEnumAttribute()) {
747           Record.push_back(0);
748           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
749         } else if (Attr.isIntAttribute()) {
750           Record.push_back(1);
751           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
752           Record.push_back(Attr.getValueAsInt());
753         } else {
754           StringRef Kind = Attr.getKindAsString();
755           StringRef Val = Attr.getValueAsString();
756 
757           Record.push_back(Val.empty() ? 3 : 4);
758           Record.append(Kind.begin(), Kind.end());
759           Record.push_back(0);
760           if (!Val.empty()) {
761             Record.append(Val.begin(), Val.end());
762             Record.push_back(0);
763           }
764         }
765       }
766 
767       Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
768       Record.clear();
769     }
770   }
771 
772   Stream.ExitBlock();
773 }
774 
775 void ModuleBitcodeWriter::writeAttributeTable() {
776   const std::vector<AttributeList> &Attrs = VE.getAttributes();
777   if (Attrs.empty()) return;
778 
779   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
780 
781   SmallVector<uint64_t, 64> Record;
782   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
783     const AttributeList &A = Attrs[i];
784     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
785       Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
786 
787     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
788     Record.clear();
789   }
790 
791   Stream.ExitBlock();
792 }
793 
794 /// WriteTypeTable - Write out the type table for a module.
795 void ModuleBitcodeWriter::writeTypeTable() {
796   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
797 
798   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
799   SmallVector<uint64_t, 64> TypeVals;
800 
801   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
802 
803   // Abbrev for TYPE_CODE_POINTER.
804   auto Abbv = std::make_shared<BitCodeAbbrev>();
805   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
806   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
807   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
808   unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
809 
810   // Abbrev for TYPE_CODE_FUNCTION.
811   Abbv = std::make_shared<BitCodeAbbrev>();
812   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
813   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
814   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
815   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
816 
817   unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
818 
819   // Abbrev for TYPE_CODE_STRUCT_ANON.
820   Abbv = std::make_shared<BitCodeAbbrev>();
821   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
822   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
823   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
824   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
825 
826   unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
827 
828   // Abbrev for TYPE_CODE_STRUCT_NAME.
829   Abbv = std::make_shared<BitCodeAbbrev>();
830   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
831   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
832   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
833   unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
834 
835   // Abbrev for TYPE_CODE_STRUCT_NAMED.
836   Abbv = std::make_shared<BitCodeAbbrev>();
837   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
838   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
839   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
840   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
841 
842   unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
843 
844   // Abbrev for TYPE_CODE_ARRAY.
845   Abbv = std::make_shared<BitCodeAbbrev>();
846   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
847   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
848   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
849 
850   unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
851 
852   // Emit an entry count so the reader can reserve space.
853   TypeVals.push_back(TypeList.size());
854   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
855   TypeVals.clear();
856 
857   // Loop over all of the types, emitting each in turn.
858   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
859     Type *T = TypeList[i];
860     int AbbrevToUse = 0;
861     unsigned Code = 0;
862 
863     switch (T->getTypeID()) {
864     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
865     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
866     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
867     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
868     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
869     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
870     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
871     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
872     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
873     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
874     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
875     case Type::IntegerTyID:
876       // INTEGER: [width]
877       Code = bitc::TYPE_CODE_INTEGER;
878       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
879       break;
880     case Type::PointerTyID: {
881       PointerType *PTy = cast<PointerType>(T);
882       // POINTER: [pointee type, address space]
883       Code = bitc::TYPE_CODE_POINTER;
884       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
885       unsigned AddressSpace = PTy->getAddressSpace();
886       TypeVals.push_back(AddressSpace);
887       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
888       break;
889     }
890     case Type::FunctionTyID: {
891       FunctionType *FT = cast<FunctionType>(T);
892       // FUNCTION: [isvararg, retty, paramty x N]
893       Code = bitc::TYPE_CODE_FUNCTION;
894       TypeVals.push_back(FT->isVarArg());
895       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
896       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
897         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
898       AbbrevToUse = FunctionAbbrev;
899       break;
900     }
901     case Type::StructTyID: {
902       StructType *ST = cast<StructType>(T);
903       // STRUCT: [ispacked, eltty x N]
904       TypeVals.push_back(ST->isPacked());
905       // Output all of the element types.
906       for (StructType::element_iterator I = ST->element_begin(),
907            E = ST->element_end(); I != E; ++I)
908         TypeVals.push_back(VE.getTypeID(*I));
909 
910       if (ST->isLiteral()) {
911         Code = bitc::TYPE_CODE_STRUCT_ANON;
912         AbbrevToUse = StructAnonAbbrev;
913       } else {
914         if (ST->isOpaque()) {
915           Code = bitc::TYPE_CODE_OPAQUE;
916         } else {
917           Code = bitc::TYPE_CODE_STRUCT_NAMED;
918           AbbrevToUse = StructNamedAbbrev;
919         }
920 
921         // Emit the name if it is present.
922         if (!ST->getName().empty())
923           writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
924                             StructNameAbbrev);
925       }
926       break;
927     }
928     case Type::ArrayTyID: {
929       ArrayType *AT = cast<ArrayType>(T);
930       // ARRAY: [numelts, eltty]
931       Code = bitc::TYPE_CODE_ARRAY;
932       TypeVals.push_back(AT->getNumElements());
933       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
934       AbbrevToUse = ArrayAbbrev;
935       break;
936     }
937     case Type::VectorTyID: {
938       VectorType *VT = cast<VectorType>(T);
939       // VECTOR [numelts, eltty]
940       Code = bitc::TYPE_CODE_VECTOR;
941       TypeVals.push_back(VT->getNumElements());
942       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
943       break;
944     }
945     }
946 
947     // Emit the finished record.
948     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
949     TypeVals.clear();
950   }
951 
952   Stream.ExitBlock();
953 }
954 
955 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
956   switch (Linkage) {
957   case GlobalValue::ExternalLinkage:
958     return 0;
959   case GlobalValue::WeakAnyLinkage:
960     return 16;
961   case GlobalValue::AppendingLinkage:
962     return 2;
963   case GlobalValue::InternalLinkage:
964     return 3;
965   case GlobalValue::LinkOnceAnyLinkage:
966     return 18;
967   case GlobalValue::ExternalWeakLinkage:
968     return 7;
969   case GlobalValue::CommonLinkage:
970     return 8;
971   case GlobalValue::PrivateLinkage:
972     return 9;
973   case GlobalValue::WeakODRLinkage:
974     return 17;
975   case GlobalValue::LinkOnceODRLinkage:
976     return 19;
977   case GlobalValue::AvailableExternallyLinkage:
978     return 12;
979   }
980   llvm_unreachable("Invalid linkage");
981 }
982 
983 static unsigned getEncodedLinkage(const GlobalValue &GV) {
984   return getEncodedLinkage(GV.getLinkage());
985 }
986 
987 // Decode the flags for GlobalValue in the summary
988 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
989   uint64_t RawFlags = 0;
990 
991   RawFlags |= Flags.NotEligibleToImport; // bool
992   RawFlags |= (Flags.LiveRoot << 1);
993   // Linkage don't need to be remapped at that time for the summary. Any future
994   // change to the getEncodedLinkage() function will need to be taken into
995   // account here as well.
996   RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
997 
998   return RawFlags;
999 }
1000 
1001 static unsigned getEncodedVisibility(const GlobalValue &GV) {
1002   switch (GV.getVisibility()) {
1003   case GlobalValue::DefaultVisibility:   return 0;
1004   case GlobalValue::HiddenVisibility:    return 1;
1005   case GlobalValue::ProtectedVisibility: return 2;
1006   }
1007   llvm_unreachable("Invalid visibility");
1008 }
1009 
1010 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1011   switch (GV.getDLLStorageClass()) {
1012   case GlobalValue::DefaultStorageClass:   return 0;
1013   case GlobalValue::DLLImportStorageClass: return 1;
1014   case GlobalValue::DLLExportStorageClass: return 2;
1015   }
1016   llvm_unreachable("Invalid DLL storage class");
1017 }
1018 
1019 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1020   switch (GV.getThreadLocalMode()) {
1021     case GlobalVariable::NotThreadLocal:         return 0;
1022     case GlobalVariable::GeneralDynamicTLSModel: return 1;
1023     case GlobalVariable::LocalDynamicTLSModel:   return 2;
1024     case GlobalVariable::InitialExecTLSModel:    return 3;
1025     case GlobalVariable::LocalExecTLSModel:      return 4;
1026   }
1027   llvm_unreachable("Invalid TLS model");
1028 }
1029 
1030 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1031   switch (C.getSelectionKind()) {
1032   case Comdat::Any:
1033     return bitc::COMDAT_SELECTION_KIND_ANY;
1034   case Comdat::ExactMatch:
1035     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1036   case Comdat::Largest:
1037     return bitc::COMDAT_SELECTION_KIND_LARGEST;
1038   case Comdat::NoDuplicates:
1039     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1040   case Comdat::SameSize:
1041     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1042   }
1043   llvm_unreachable("Invalid selection kind");
1044 }
1045 
1046 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1047   switch (GV.getUnnamedAddr()) {
1048   case GlobalValue::UnnamedAddr::None:   return 0;
1049   case GlobalValue::UnnamedAddr::Local:  return 2;
1050   case GlobalValue::UnnamedAddr::Global: return 1;
1051   }
1052   llvm_unreachable("Invalid unnamed_addr");
1053 }
1054 
1055 void ModuleBitcodeWriter::writeComdats() {
1056   SmallVector<unsigned, 64> Vals;
1057   for (const Comdat *C : VE.getComdats()) {
1058     // COMDAT: [strtab offset, strtab size, selection_kind]
1059     Vals.push_back(StrtabBuilder.add(C->getName()));
1060     Vals.push_back(C->getName().size());
1061     Vals.push_back(getEncodedComdatSelectionKind(*C));
1062     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1063     Vals.clear();
1064   }
1065 }
1066 
1067 /// Write a record that will eventually hold the word offset of the
1068 /// module-level VST. For now the offset is 0, which will be backpatched
1069 /// after the real VST is written. Saves the bit offset to backpatch.
1070 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1071   // Write a placeholder value in for the offset of the real VST,
1072   // which is written after the function blocks so that it can include
1073   // the offset of each function. The placeholder offset will be
1074   // updated when the real VST is written.
1075   auto Abbv = std::make_shared<BitCodeAbbrev>();
1076   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1077   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1078   // hold the real VST offset. Must use fixed instead of VBR as we don't
1079   // know how many VBR chunks to reserve ahead of time.
1080   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1081   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1082 
1083   // Emit the placeholder
1084   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1085   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1086 
1087   // Compute and save the bit offset to the placeholder, which will be
1088   // patched when the real VST is written. We can simply subtract the 32-bit
1089   // fixed size from the current bit number to get the location to backpatch.
1090   VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1091 }
1092 
1093 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1094 
1095 /// Determine the encoding to use for the given string name and length.
1096 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) {
1097   bool isChar6 = true;
1098   for (const char *C = Str, *E = C + StrLen; C != E; ++C) {
1099     if (isChar6)
1100       isChar6 = BitCodeAbbrevOp::isChar6(*C);
1101     if ((unsigned char)*C & 128)
1102       // don't bother scanning the rest.
1103       return SE_Fixed8;
1104   }
1105   if (isChar6)
1106     return SE_Char6;
1107   else
1108     return SE_Fixed7;
1109 }
1110 
1111 /// Emit top-level description of module, including target triple, inline asm,
1112 /// descriptors for global variables, and function prototype info.
1113 /// Returns the bit offset to backpatch with the location of the real VST.
1114 void ModuleBitcodeWriter::writeModuleInfo() {
1115   // Emit various pieces of data attached to a module.
1116   if (!M.getTargetTriple().empty())
1117     writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1118                       0 /*TODO*/);
1119   const std::string &DL = M.getDataLayoutStr();
1120   if (!DL.empty())
1121     writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1122   if (!M.getModuleInlineAsm().empty())
1123     writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1124                       0 /*TODO*/);
1125 
1126   // Emit information about sections and GC, computing how many there are. Also
1127   // compute the maximum alignment value.
1128   std::map<std::string, unsigned> SectionMap;
1129   std::map<std::string, unsigned> GCMap;
1130   unsigned MaxAlignment = 0;
1131   unsigned MaxGlobalType = 0;
1132   for (const GlobalValue &GV : M.globals()) {
1133     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
1134     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1135     if (GV.hasSection()) {
1136       // Give section names unique ID's.
1137       unsigned &Entry = SectionMap[GV.getSection()];
1138       if (!Entry) {
1139         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1140                           0 /*TODO*/);
1141         Entry = SectionMap.size();
1142       }
1143     }
1144   }
1145   for (const Function &F : M) {
1146     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
1147     if (F.hasSection()) {
1148       // Give section names unique ID's.
1149       unsigned &Entry = SectionMap[F.getSection()];
1150       if (!Entry) {
1151         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1152                           0 /*TODO*/);
1153         Entry = SectionMap.size();
1154       }
1155     }
1156     if (F.hasGC()) {
1157       // Same for GC names.
1158       unsigned &Entry = GCMap[F.getGC()];
1159       if (!Entry) {
1160         writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1161                           0 /*TODO*/);
1162         Entry = GCMap.size();
1163       }
1164     }
1165   }
1166 
1167   // Emit abbrev for globals, now that we know # sections and max alignment.
1168   unsigned SimpleGVarAbbrev = 0;
1169   if (!M.global_empty()) {
1170     // Add an abbrev for common globals with no visibility or thread localness.
1171     auto Abbv = std::make_shared<BitCodeAbbrev>();
1172     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1173     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1174     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1175     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1176                               Log2_32_Ceil(MaxGlobalType+1)));
1177     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1178                                                            //| explicitType << 1
1179                                                            //| constant
1180     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1181     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1182     if (MaxAlignment == 0)                                 // Alignment.
1183       Abbv->Add(BitCodeAbbrevOp(0));
1184     else {
1185       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
1186       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1187                                Log2_32_Ceil(MaxEncAlignment+1)));
1188     }
1189     if (SectionMap.empty())                                    // Section.
1190       Abbv->Add(BitCodeAbbrevOp(0));
1191     else
1192       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1193                                Log2_32_Ceil(SectionMap.size()+1)));
1194     // Don't bother emitting vis + thread local.
1195     SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1196   }
1197 
1198   SmallVector<unsigned, 64> Vals;
1199   // Emit the module's source file name.
1200   {
1201     StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(),
1202                                             M.getSourceFileName().size());
1203     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1204     if (Bits == SE_Char6)
1205       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1206     else if (Bits == SE_Fixed7)
1207       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1208 
1209     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1210     auto Abbv = std::make_shared<BitCodeAbbrev>();
1211     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1212     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1213     Abbv->Add(AbbrevOpToUse);
1214     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1215 
1216     for (const auto P : M.getSourceFileName())
1217       Vals.push_back((unsigned char)P);
1218 
1219     // Emit the finished record.
1220     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1221     Vals.clear();
1222   }
1223 
1224   // Emit the global variable information.
1225   for (const GlobalVariable &GV : M.globals()) {
1226     unsigned AbbrevToUse = 0;
1227 
1228     // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1229     //             linkage, alignment, section, visibility, threadlocal,
1230     //             unnamed_addr, externally_initialized, dllstorageclass,
1231     //             comdat]
1232     Vals.push_back(StrtabBuilder.add(GV.getName()));
1233     Vals.push_back(GV.getName().size());
1234     Vals.push_back(VE.getTypeID(GV.getValueType()));
1235     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1236     Vals.push_back(GV.isDeclaration() ? 0 :
1237                    (VE.getValueID(GV.getInitializer()) + 1));
1238     Vals.push_back(getEncodedLinkage(GV));
1239     Vals.push_back(Log2_32(GV.getAlignment())+1);
1240     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
1241     if (GV.isThreadLocal() ||
1242         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1243         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1244         GV.isExternallyInitialized() ||
1245         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1246         GV.hasComdat()) {
1247       Vals.push_back(getEncodedVisibility(GV));
1248       Vals.push_back(getEncodedThreadLocalMode(GV));
1249       Vals.push_back(getEncodedUnnamedAddr(GV));
1250       Vals.push_back(GV.isExternallyInitialized());
1251       Vals.push_back(getEncodedDLLStorageClass(GV));
1252       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1253     } else {
1254       AbbrevToUse = SimpleGVarAbbrev;
1255     }
1256 
1257     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1258     Vals.clear();
1259   }
1260 
1261   // Emit the function proto information.
1262   for (const Function &F : M) {
1263     // FUNCTION:  [strtab offset, strtab size, type, callingconv, isproto,
1264     //             linkage, paramattrs, alignment, section, visibility, gc,
1265     //             unnamed_addr, prologuedata, dllstorageclass, comdat,
1266     //             prefixdata, personalityfn]
1267     Vals.push_back(StrtabBuilder.add(F.getName()));
1268     Vals.push_back(F.getName().size());
1269     Vals.push_back(VE.getTypeID(F.getFunctionType()));
1270     Vals.push_back(F.getCallingConv());
1271     Vals.push_back(F.isDeclaration());
1272     Vals.push_back(getEncodedLinkage(F));
1273     Vals.push_back(VE.getAttributeID(F.getAttributes()));
1274     Vals.push_back(Log2_32(F.getAlignment())+1);
1275     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
1276     Vals.push_back(getEncodedVisibility(F));
1277     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1278     Vals.push_back(getEncodedUnnamedAddr(F));
1279     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1280                                        : 0);
1281     Vals.push_back(getEncodedDLLStorageClass(F));
1282     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1283     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1284                                      : 0);
1285     Vals.push_back(
1286         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1287 
1288     unsigned AbbrevToUse = 0;
1289     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1290     Vals.clear();
1291   }
1292 
1293   // Emit the alias information.
1294   for (const GlobalAlias &A : M.aliases()) {
1295     // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1296     //         visibility, dllstorageclass, threadlocal, unnamed_addr]
1297     Vals.push_back(StrtabBuilder.add(A.getName()));
1298     Vals.push_back(A.getName().size());
1299     Vals.push_back(VE.getTypeID(A.getValueType()));
1300     Vals.push_back(A.getType()->getAddressSpace());
1301     Vals.push_back(VE.getValueID(A.getAliasee()));
1302     Vals.push_back(getEncodedLinkage(A));
1303     Vals.push_back(getEncodedVisibility(A));
1304     Vals.push_back(getEncodedDLLStorageClass(A));
1305     Vals.push_back(getEncodedThreadLocalMode(A));
1306     Vals.push_back(getEncodedUnnamedAddr(A));
1307     unsigned AbbrevToUse = 0;
1308     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1309     Vals.clear();
1310   }
1311 
1312   // Emit the ifunc information.
1313   for (const GlobalIFunc &I : M.ifuncs()) {
1314     // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1315     //         val#, linkage, visibility]
1316     Vals.push_back(StrtabBuilder.add(I.getName()));
1317     Vals.push_back(I.getName().size());
1318     Vals.push_back(VE.getTypeID(I.getValueType()));
1319     Vals.push_back(I.getType()->getAddressSpace());
1320     Vals.push_back(VE.getValueID(I.getResolver()));
1321     Vals.push_back(getEncodedLinkage(I));
1322     Vals.push_back(getEncodedVisibility(I));
1323     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1324     Vals.clear();
1325   }
1326 
1327   writeValueSymbolTableForwardDecl();
1328 }
1329 
1330 static uint64_t getOptimizationFlags(const Value *V) {
1331   uint64_t Flags = 0;
1332 
1333   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1334     if (OBO->hasNoSignedWrap())
1335       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1336     if (OBO->hasNoUnsignedWrap())
1337       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1338   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1339     if (PEO->isExact())
1340       Flags |= 1 << bitc::PEO_EXACT;
1341   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1342     if (FPMO->hasUnsafeAlgebra())
1343       Flags |= FastMathFlags::UnsafeAlgebra;
1344     if (FPMO->hasNoNaNs())
1345       Flags |= FastMathFlags::NoNaNs;
1346     if (FPMO->hasNoInfs())
1347       Flags |= FastMathFlags::NoInfs;
1348     if (FPMO->hasNoSignedZeros())
1349       Flags |= FastMathFlags::NoSignedZeros;
1350     if (FPMO->hasAllowReciprocal())
1351       Flags |= FastMathFlags::AllowReciprocal;
1352     if (FPMO->hasAllowContract())
1353       Flags |= FastMathFlags::AllowContract;
1354   }
1355 
1356   return Flags;
1357 }
1358 
1359 void ModuleBitcodeWriter::writeValueAsMetadata(
1360     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1361   // Mimic an MDNode with a value as one operand.
1362   Value *V = MD->getValue();
1363   Record.push_back(VE.getTypeID(V->getType()));
1364   Record.push_back(VE.getValueID(V));
1365   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1366   Record.clear();
1367 }
1368 
1369 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1370                                        SmallVectorImpl<uint64_t> &Record,
1371                                        unsigned Abbrev) {
1372   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1373     Metadata *MD = N->getOperand(i);
1374     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1375            "Unexpected function-local metadata");
1376     Record.push_back(VE.getMetadataOrNullID(MD));
1377   }
1378   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1379                                     : bitc::METADATA_NODE,
1380                     Record, Abbrev);
1381   Record.clear();
1382 }
1383 
1384 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1385   // Assume the column is usually under 128, and always output the inlined-at
1386   // location (it's never more expensive than building an array size 1).
1387   auto Abbv = std::make_shared<BitCodeAbbrev>();
1388   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1389   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1390   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1391   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1392   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1393   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1394   return Stream.EmitAbbrev(std::move(Abbv));
1395 }
1396 
1397 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1398                                           SmallVectorImpl<uint64_t> &Record,
1399                                           unsigned &Abbrev) {
1400   if (!Abbrev)
1401     Abbrev = createDILocationAbbrev();
1402 
1403   Record.push_back(N->isDistinct());
1404   Record.push_back(N->getLine());
1405   Record.push_back(N->getColumn());
1406   Record.push_back(VE.getMetadataID(N->getScope()));
1407   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1408 
1409   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1410   Record.clear();
1411 }
1412 
1413 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1414   // Assume the column is usually under 128, and always output the inlined-at
1415   // location (it's never more expensive than building an array size 1).
1416   auto Abbv = std::make_shared<BitCodeAbbrev>();
1417   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1418   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1419   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1420   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1421   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1422   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1423   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1424   return Stream.EmitAbbrev(std::move(Abbv));
1425 }
1426 
1427 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1428                                              SmallVectorImpl<uint64_t> &Record,
1429                                              unsigned &Abbrev) {
1430   if (!Abbrev)
1431     Abbrev = createGenericDINodeAbbrev();
1432 
1433   Record.push_back(N->isDistinct());
1434   Record.push_back(N->getTag());
1435   Record.push_back(0); // Per-tag version field; unused for now.
1436 
1437   for (auto &I : N->operands())
1438     Record.push_back(VE.getMetadataOrNullID(I));
1439 
1440   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1441   Record.clear();
1442 }
1443 
1444 static uint64_t rotateSign(int64_t I) {
1445   uint64_t U = I;
1446   return I < 0 ? ~(U << 1) : U << 1;
1447 }
1448 
1449 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1450                                           SmallVectorImpl<uint64_t> &Record,
1451                                           unsigned Abbrev) {
1452   Record.push_back(N->isDistinct());
1453   Record.push_back(N->getCount());
1454   Record.push_back(rotateSign(N->getLowerBound()));
1455 
1456   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1457   Record.clear();
1458 }
1459 
1460 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1461                                             SmallVectorImpl<uint64_t> &Record,
1462                                             unsigned Abbrev) {
1463   Record.push_back(N->isDistinct());
1464   Record.push_back(rotateSign(N->getValue()));
1465   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1466 
1467   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1468   Record.clear();
1469 }
1470 
1471 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1472                                            SmallVectorImpl<uint64_t> &Record,
1473                                            unsigned Abbrev) {
1474   Record.push_back(N->isDistinct());
1475   Record.push_back(N->getTag());
1476   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1477   Record.push_back(N->getSizeInBits());
1478   Record.push_back(N->getAlignInBits());
1479   Record.push_back(N->getEncoding());
1480 
1481   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1482   Record.clear();
1483 }
1484 
1485 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1486                                              SmallVectorImpl<uint64_t> &Record,
1487                                              unsigned Abbrev) {
1488   Record.push_back(N->isDistinct());
1489   Record.push_back(N->getTag());
1490   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1491   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1492   Record.push_back(N->getLine());
1493   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1494   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1495   Record.push_back(N->getSizeInBits());
1496   Record.push_back(N->getAlignInBits());
1497   Record.push_back(N->getOffsetInBits());
1498   Record.push_back(N->getFlags());
1499   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1500 
1501   // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1502   // that there is no DWARF address space associated with DIDerivedType.
1503   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1504     Record.push_back(*DWARFAddressSpace + 1);
1505   else
1506     Record.push_back(0);
1507 
1508   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1509   Record.clear();
1510 }
1511 
1512 void ModuleBitcodeWriter::writeDICompositeType(
1513     const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1514     unsigned Abbrev) {
1515   const unsigned IsNotUsedInOldTypeRef = 0x2;
1516   Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1517   Record.push_back(N->getTag());
1518   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1519   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1520   Record.push_back(N->getLine());
1521   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1522   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1523   Record.push_back(N->getSizeInBits());
1524   Record.push_back(N->getAlignInBits());
1525   Record.push_back(N->getOffsetInBits());
1526   Record.push_back(N->getFlags());
1527   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1528   Record.push_back(N->getRuntimeLang());
1529   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1530   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1531   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1532 
1533   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1534   Record.clear();
1535 }
1536 
1537 void ModuleBitcodeWriter::writeDISubroutineType(
1538     const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1539     unsigned Abbrev) {
1540   const unsigned HasNoOldTypeRefs = 0x2;
1541   Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1542   Record.push_back(N->getFlags());
1543   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1544   Record.push_back(N->getCC());
1545 
1546   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1547   Record.clear();
1548 }
1549 
1550 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1551                                       SmallVectorImpl<uint64_t> &Record,
1552                                       unsigned Abbrev) {
1553   Record.push_back(N->isDistinct());
1554   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1555   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1556   Record.push_back(N->getChecksumKind());
1557   Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()));
1558 
1559   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1560   Record.clear();
1561 }
1562 
1563 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1564                                              SmallVectorImpl<uint64_t> &Record,
1565                                              unsigned Abbrev) {
1566   assert(N->isDistinct() && "Expected distinct compile units");
1567   Record.push_back(/* IsDistinct */ true);
1568   Record.push_back(N->getSourceLanguage());
1569   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1570   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1571   Record.push_back(N->isOptimized());
1572   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1573   Record.push_back(N->getRuntimeVersion());
1574   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1575   Record.push_back(N->getEmissionKind());
1576   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1577   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1578   Record.push_back(/* subprograms */ 0);
1579   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1580   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1581   Record.push_back(N->getDWOId());
1582   Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1583   Record.push_back(N->getSplitDebugInlining());
1584   Record.push_back(N->getDebugInfoForProfiling());
1585 
1586   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1587   Record.clear();
1588 }
1589 
1590 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1591                                             SmallVectorImpl<uint64_t> &Record,
1592                                             unsigned Abbrev) {
1593   uint64_t HasUnitFlag = 1 << 1;
1594   Record.push_back(N->isDistinct() | HasUnitFlag);
1595   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1596   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1597   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1598   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1599   Record.push_back(N->getLine());
1600   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1601   Record.push_back(N->isLocalToUnit());
1602   Record.push_back(N->isDefinition());
1603   Record.push_back(N->getScopeLine());
1604   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1605   Record.push_back(N->getVirtuality());
1606   Record.push_back(N->getVirtualIndex());
1607   Record.push_back(N->getFlags());
1608   Record.push_back(N->isOptimized());
1609   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1610   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1611   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1612   Record.push_back(VE.getMetadataOrNullID(N->getVariables().get()));
1613   Record.push_back(N->getThisAdjustment());
1614 
1615   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1616   Record.clear();
1617 }
1618 
1619 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1620                                               SmallVectorImpl<uint64_t> &Record,
1621                                               unsigned Abbrev) {
1622   Record.push_back(N->isDistinct());
1623   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1624   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1625   Record.push_back(N->getLine());
1626   Record.push_back(N->getColumn());
1627 
1628   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1629   Record.clear();
1630 }
1631 
1632 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1633     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1634     unsigned Abbrev) {
1635   Record.push_back(N->isDistinct());
1636   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1637   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1638   Record.push_back(N->getDiscriminator());
1639 
1640   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1641   Record.clear();
1642 }
1643 
1644 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1645                                            SmallVectorImpl<uint64_t> &Record,
1646                                            unsigned Abbrev) {
1647   Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1648   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1649   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1650   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1651   Record.push_back(N->getLine());
1652 
1653   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1654   Record.clear();
1655 }
1656 
1657 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1658                                        SmallVectorImpl<uint64_t> &Record,
1659                                        unsigned Abbrev) {
1660   Record.push_back(N->isDistinct());
1661   Record.push_back(N->getMacinfoType());
1662   Record.push_back(N->getLine());
1663   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1664   Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1665 
1666   Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1667   Record.clear();
1668 }
1669 
1670 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1671                                            SmallVectorImpl<uint64_t> &Record,
1672                                            unsigned Abbrev) {
1673   Record.push_back(N->isDistinct());
1674   Record.push_back(N->getMacinfoType());
1675   Record.push_back(N->getLine());
1676   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1677   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1678 
1679   Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1680   Record.clear();
1681 }
1682 
1683 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1684                                         SmallVectorImpl<uint64_t> &Record,
1685                                         unsigned Abbrev) {
1686   Record.push_back(N->isDistinct());
1687   for (auto &I : N->operands())
1688     Record.push_back(VE.getMetadataOrNullID(I));
1689 
1690   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1691   Record.clear();
1692 }
1693 
1694 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1695     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1696     unsigned Abbrev) {
1697   Record.push_back(N->isDistinct());
1698   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1699   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1700 
1701   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1702   Record.clear();
1703 }
1704 
1705 void ModuleBitcodeWriter::writeDITemplateValueParameter(
1706     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1707     unsigned Abbrev) {
1708   Record.push_back(N->isDistinct());
1709   Record.push_back(N->getTag());
1710   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1711   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1712   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1713 
1714   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1715   Record.clear();
1716 }
1717 
1718 void ModuleBitcodeWriter::writeDIGlobalVariable(
1719     const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1720     unsigned Abbrev) {
1721   const uint64_t Version = 1 << 1;
1722   Record.push_back((uint64_t)N->isDistinct() | Version);
1723   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1724   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1725   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1726   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1727   Record.push_back(N->getLine());
1728   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1729   Record.push_back(N->isLocalToUnit());
1730   Record.push_back(N->isDefinition());
1731   Record.push_back(/* expr */ 0);
1732   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1733   Record.push_back(N->getAlignInBits());
1734 
1735   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1736   Record.clear();
1737 }
1738 
1739 void ModuleBitcodeWriter::writeDILocalVariable(
1740     const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1741     unsigned Abbrev) {
1742   // In order to support all possible bitcode formats in BitcodeReader we need
1743   // to distinguish the following cases:
1744   // 1) Record has no artificial tag (Record[1]),
1745   //   has no obsolete inlinedAt field (Record[9]).
1746   //   In this case Record size will be 8, HasAlignment flag is false.
1747   // 2) Record has artificial tag (Record[1]),
1748   //   has no obsolete inlignedAt field (Record[9]).
1749   //   In this case Record size will be 9, HasAlignment flag is false.
1750   // 3) Record has both artificial tag (Record[1]) and
1751   //   obsolete inlignedAt field (Record[9]).
1752   //   In this case Record size will be 10, HasAlignment flag is false.
1753   // 4) Record has neither artificial tag, nor inlignedAt field, but
1754   //   HasAlignment flag is true and Record[8] contains alignment value.
1755   const uint64_t HasAlignmentFlag = 1 << 1;
1756   Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
1757   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1758   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1759   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1760   Record.push_back(N->getLine());
1761   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1762   Record.push_back(N->getArg());
1763   Record.push_back(N->getFlags());
1764   Record.push_back(N->getAlignInBits());
1765 
1766   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1767   Record.clear();
1768 }
1769 
1770 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
1771                                             SmallVectorImpl<uint64_t> &Record,
1772                                             unsigned Abbrev) {
1773   Record.reserve(N->getElements().size() + 1);
1774 
1775   const uint64_t HasOpFragmentFlag = 1 << 1;
1776   Record.push_back((uint64_t)N->isDistinct() | HasOpFragmentFlag);
1777   Record.append(N->elements_begin(), N->elements_end());
1778 
1779   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1780   Record.clear();
1781 }
1782 
1783 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
1784     const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
1785     unsigned Abbrev) {
1786   Record.push_back(N->isDistinct());
1787   Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
1788   Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
1789 
1790   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
1791   Record.clear();
1792 }
1793 
1794 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1795                                               SmallVectorImpl<uint64_t> &Record,
1796                                               unsigned Abbrev) {
1797   Record.push_back(N->isDistinct());
1798   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1799   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1800   Record.push_back(N->getLine());
1801   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1802   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1803   Record.push_back(N->getAttributes());
1804   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1805 
1806   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1807   Record.clear();
1808 }
1809 
1810 void ModuleBitcodeWriter::writeDIImportedEntity(
1811     const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
1812     unsigned Abbrev) {
1813   Record.push_back(N->isDistinct());
1814   Record.push_back(N->getTag());
1815   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1816   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1817   Record.push_back(N->getLine());
1818   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1819 
1820   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1821   Record.clear();
1822 }
1823 
1824 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
1825   auto Abbv = std::make_shared<BitCodeAbbrev>();
1826   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1827   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1828   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1829   return Stream.EmitAbbrev(std::move(Abbv));
1830 }
1831 
1832 void ModuleBitcodeWriter::writeNamedMetadata(
1833     SmallVectorImpl<uint64_t> &Record) {
1834   if (M.named_metadata_empty())
1835     return;
1836 
1837   unsigned Abbrev = createNamedMetadataAbbrev();
1838   for (const NamedMDNode &NMD : M.named_metadata()) {
1839     // Write name.
1840     StringRef Str = NMD.getName();
1841     Record.append(Str.bytes_begin(), Str.bytes_end());
1842     Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
1843     Record.clear();
1844 
1845     // Write named metadata operands.
1846     for (const MDNode *N : NMD.operands())
1847       Record.push_back(VE.getMetadataID(N));
1848     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1849     Record.clear();
1850   }
1851 }
1852 
1853 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
1854   auto Abbv = std::make_shared<BitCodeAbbrev>();
1855   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
1856   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
1857   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
1858   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
1859   return Stream.EmitAbbrev(std::move(Abbv));
1860 }
1861 
1862 /// Write out a record for MDString.
1863 ///
1864 /// All the metadata strings in a metadata block are emitted in a single
1865 /// record.  The sizes and strings themselves are shoved into a blob.
1866 void ModuleBitcodeWriter::writeMetadataStrings(
1867     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1868   if (Strings.empty())
1869     return;
1870 
1871   // Start the record with the number of strings.
1872   Record.push_back(bitc::METADATA_STRINGS);
1873   Record.push_back(Strings.size());
1874 
1875   // Emit the sizes of the strings in the blob.
1876   SmallString<256> Blob;
1877   {
1878     BitstreamWriter W(Blob);
1879     for (const Metadata *MD : Strings)
1880       W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
1881     W.FlushToWord();
1882   }
1883 
1884   // Add the offset to the strings to the record.
1885   Record.push_back(Blob.size());
1886 
1887   // Add the strings to the blob.
1888   for (const Metadata *MD : Strings)
1889     Blob.append(cast<MDString>(MD)->getString());
1890 
1891   // Emit the final record.
1892   Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
1893   Record.clear();
1894 }
1895 
1896 // Generates an enum to use as an index in the Abbrev array of Metadata record.
1897 enum MetadataAbbrev : unsigned {
1898 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
1899 #include "llvm/IR/Metadata.def"
1900   LastPlusOne
1901 };
1902 
1903 void ModuleBitcodeWriter::writeMetadataRecords(
1904     ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
1905     std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
1906   if (MDs.empty())
1907     return;
1908 
1909   // Initialize MDNode abbreviations.
1910 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1911 #include "llvm/IR/Metadata.def"
1912 
1913   for (const Metadata *MD : MDs) {
1914     if (IndexPos)
1915       IndexPos->push_back(Stream.GetCurrentBitNo());
1916     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1917       assert(N->isResolved() && "Expected forward references to be resolved");
1918 
1919       switch (N->getMetadataID()) {
1920       default:
1921         llvm_unreachable("Invalid MDNode subclass");
1922 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1923   case Metadata::CLASS##Kind:                                                  \
1924     if (MDAbbrevs)                                                             \
1925       write##CLASS(cast<CLASS>(N), Record,                                     \
1926                    (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
1927     else                                                                       \
1928       write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
1929     continue;
1930 #include "llvm/IR/Metadata.def"
1931       }
1932     }
1933     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
1934   }
1935 }
1936 
1937 void ModuleBitcodeWriter::writeModuleMetadata() {
1938   if (!VE.hasMDs() && M.named_metadata_empty())
1939     return;
1940 
1941   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
1942   SmallVector<uint64_t, 64> Record;
1943 
1944   // Emit all abbrevs upfront, so that the reader can jump in the middle of the
1945   // block and load any metadata.
1946   std::vector<unsigned> MDAbbrevs;
1947 
1948   MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
1949   MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
1950   MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
1951       createGenericDINodeAbbrev();
1952 
1953   auto Abbv = std::make_shared<BitCodeAbbrev>();
1954   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
1955   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1956   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1957   unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1958 
1959   Abbv = std::make_shared<BitCodeAbbrev>();
1960   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
1961   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1962   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1963   unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1964 
1965   // Emit MDStrings together upfront.
1966   writeMetadataStrings(VE.getMDStrings(), Record);
1967 
1968   // We only emit an index for the metadata record if we have more than a given
1969   // (naive) threshold of metadatas, otherwise it is not worth it.
1970   if (VE.getNonMDStrings().size() > IndexThreshold) {
1971     // Write a placeholder value in for the offset of the metadata index,
1972     // which is written after the records, so that it can include
1973     // the offset of each entry. The placeholder offset will be
1974     // updated after all records are emitted.
1975     uint64_t Vals[] = {0, 0};
1976     Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
1977   }
1978 
1979   // Compute and save the bit offset to the current position, which will be
1980   // patched when we emit the index later. We can simply subtract the 64-bit
1981   // fixed size from the current bit number to get the location to backpatch.
1982   uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
1983 
1984   // This index will contain the bitpos for each individual record.
1985   std::vector<uint64_t> IndexPos;
1986   IndexPos.reserve(VE.getNonMDStrings().size());
1987 
1988   // Write all the records
1989   writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
1990 
1991   if (VE.getNonMDStrings().size() > IndexThreshold) {
1992     // Now that we have emitted all the records we will emit the index. But
1993     // first
1994     // backpatch the forward reference so that the reader can skip the records
1995     // efficiently.
1996     Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
1997                            Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
1998 
1999     // Delta encode the index.
2000     uint64_t PreviousValue = IndexOffsetRecordBitPos;
2001     for (auto &Elt : IndexPos) {
2002       auto EltDelta = Elt - PreviousValue;
2003       PreviousValue = Elt;
2004       Elt = EltDelta;
2005     }
2006     // Emit the index record.
2007     Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2008     IndexPos.clear();
2009   }
2010 
2011   // Write the named metadata now.
2012   writeNamedMetadata(Record);
2013 
2014   auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2015     SmallVector<uint64_t, 4> Record;
2016     Record.push_back(VE.getValueID(&GO));
2017     pushGlobalMetadataAttachment(Record, GO);
2018     Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2019   };
2020   for (const Function &F : M)
2021     if (F.isDeclaration() && F.hasMetadata())
2022       AddDeclAttachedMetadata(F);
2023   // FIXME: Only store metadata for declarations here, and move data for global
2024   // variable definitions to a separate block (PR28134).
2025   for (const GlobalVariable &GV : M.globals())
2026     if (GV.hasMetadata())
2027       AddDeclAttachedMetadata(GV);
2028 
2029   Stream.ExitBlock();
2030 }
2031 
2032 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2033   if (!VE.hasMDs())
2034     return;
2035 
2036   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2037   SmallVector<uint64_t, 64> Record;
2038   writeMetadataStrings(VE.getMDStrings(), Record);
2039   writeMetadataRecords(VE.getNonMDStrings(), Record);
2040   Stream.ExitBlock();
2041 }
2042 
2043 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2044     SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2045   // [n x [id, mdnode]]
2046   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2047   GO.getAllMetadata(MDs);
2048   for (const auto &I : MDs) {
2049     Record.push_back(I.first);
2050     Record.push_back(VE.getMetadataID(I.second));
2051   }
2052 }
2053 
2054 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2055   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2056 
2057   SmallVector<uint64_t, 64> Record;
2058 
2059   if (F.hasMetadata()) {
2060     pushGlobalMetadataAttachment(Record, F);
2061     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2062     Record.clear();
2063   }
2064 
2065   // Write metadata attachments
2066   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2067   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2068   for (const BasicBlock &BB : F)
2069     for (const Instruction &I : BB) {
2070       MDs.clear();
2071       I.getAllMetadataOtherThanDebugLoc(MDs);
2072 
2073       // If no metadata, ignore instruction.
2074       if (MDs.empty()) continue;
2075 
2076       Record.push_back(VE.getInstructionID(&I));
2077 
2078       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2079         Record.push_back(MDs[i].first);
2080         Record.push_back(VE.getMetadataID(MDs[i].second));
2081       }
2082       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2083       Record.clear();
2084     }
2085 
2086   Stream.ExitBlock();
2087 }
2088 
2089 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2090   SmallVector<uint64_t, 64> Record;
2091 
2092   // Write metadata kinds
2093   // METADATA_KIND - [n x [id, name]]
2094   SmallVector<StringRef, 8> Names;
2095   M.getMDKindNames(Names);
2096 
2097   if (Names.empty()) return;
2098 
2099   Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2100 
2101   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2102     Record.push_back(MDKindID);
2103     StringRef KName = Names[MDKindID];
2104     Record.append(KName.begin(), KName.end());
2105 
2106     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2107     Record.clear();
2108   }
2109 
2110   Stream.ExitBlock();
2111 }
2112 
2113 void ModuleBitcodeWriter::writeOperandBundleTags() {
2114   // Write metadata kinds
2115   //
2116   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2117   //
2118   // OPERAND_BUNDLE_TAG - [strchr x N]
2119 
2120   SmallVector<StringRef, 8> Tags;
2121   M.getOperandBundleTags(Tags);
2122 
2123   if (Tags.empty())
2124     return;
2125 
2126   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2127 
2128   SmallVector<uint64_t, 64> Record;
2129 
2130   for (auto Tag : Tags) {
2131     Record.append(Tag.begin(), Tag.end());
2132 
2133     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2134     Record.clear();
2135   }
2136 
2137   Stream.ExitBlock();
2138 }
2139 
2140 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
2141   if ((int64_t)V >= 0)
2142     Vals.push_back(V << 1);
2143   else
2144     Vals.push_back((-V << 1) | 1);
2145 }
2146 
2147 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2148                                          bool isGlobal) {
2149   if (FirstVal == LastVal) return;
2150 
2151   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2152 
2153   unsigned AggregateAbbrev = 0;
2154   unsigned String8Abbrev = 0;
2155   unsigned CString7Abbrev = 0;
2156   unsigned CString6Abbrev = 0;
2157   // If this is a constant pool for the module, emit module-specific abbrevs.
2158   if (isGlobal) {
2159     // Abbrev for CST_CODE_AGGREGATE.
2160     auto Abbv = std::make_shared<BitCodeAbbrev>();
2161     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2162     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2163     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2164     AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2165 
2166     // Abbrev for CST_CODE_STRING.
2167     Abbv = std::make_shared<BitCodeAbbrev>();
2168     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2169     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2170     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2171     String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2172     // Abbrev for CST_CODE_CSTRING.
2173     Abbv = std::make_shared<BitCodeAbbrev>();
2174     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2175     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2176     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2177     CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2178     // Abbrev for CST_CODE_CSTRING.
2179     Abbv = std::make_shared<BitCodeAbbrev>();
2180     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2181     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2182     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2183     CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2184   }
2185 
2186   SmallVector<uint64_t, 64> Record;
2187 
2188   const ValueEnumerator::ValueList &Vals = VE.getValues();
2189   Type *LastTy = nullptr;
2190   for (unsigned i = FirstVal; i != LastVal; ++i) {
2191     const Value *V = Vals[i].first;
2192     // If we need to switch types, do so now.
2193     if (V->getType() != LastTy) {
2194       LastTy = V->getType();
2195       Record.push_back(VE.getTypeID(LastTy));
2196       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2197                         CONSTANTS_SETTYPE_ABBREV);
2198       Record.clear();
2199     }
2200 
2201     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2202       Record.push_back(unsigned(IA->hasSideEffects()) |
2203                        unsigned(IA->isAlignStack()) << 1 |
2204                        unsigned(IA->getDialect()&1) << 2);
2205 
2206       // Add the asm string.
2207       const std::string &AsmStr = IA->getAsmString();
2208       Record.push_back(AsmStr.size());
2209       Record.append(AsmStr.begin(), AsmStr.end());
2210 
2211       // Add the constraint string.
2212       const std::string &ConstraintStr = IA->getConstraintString();
2213       Record.push_back(ConstraintStr.size());
2214       Record.append(ConstraintStr.begin(), ConstraintStr.end());
2215       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2216       Record.clear();
2217       continue;
2218     }
2219     const Constant *C = cast<Constant>(V);
2220     unsigned Code = -1U;
2221     unsigned AbbrevToUse = 0;
2222     if (C->isNullValue()) {
2223       Code = bitc::CST_CODE_NULL;
2224     } else if (isa<UndefValue>(C)) {
2225       Code = bitc::CST_CODE_UNDEF;
2226     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2227       if (IV->getBitWidth() <= 64) {
2228         uint64_t V = IV->getSExtValue();
2229         emitSignedInt64(Record, V);
2230         Code = bitc::CST_CODE_INTEGER;
2231         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2232       } else {                             // Wide integers, > 64 bits in size.
2233         // We have an arbitrary precision integer value to write whose
2234         // bit width is > 64. However, in canonical unsigned integer
2235         // format it is likely that the high bits are going to be zero.
2236         // So, we only write the number of active words.
2237         unsigned NWords = IV->getValue().getActiveWords();
2238         const uint64_t *RawWords = IV->getValue().getRawData();
2239         for (unsigned i = 0; i != NWords; ++i) {
2240           emitSignedInt64(Record, RawWords[i]);
2241         }
2242         Code = bitc::CST_CODE_WIDE_INTEGER;
2243       }
2244     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2245       Code = bitc::CST_CODE_FLOAT;
2246       Type *Ty = CFP->getType();
2247       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2248         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2249       } else if (Ty->isX86_FP80Ty()) {
2250         // api needed to prevent premature destruction
2251         // bits are not in the same order as a normal i80 APInt, compensate.
2252         APInt api = CFP->getValueAPF().bitcastToAPInt();
2253         const uint64_t *p = api.getRawData();
2254         Record.push_back((p[1] << 48) | (p[0] >> 16));
2255         Record.push_back(p[0] & 0xffffLL);
2256       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2257         APInt api = CFP->getValueAPF().bitcastToAPInt();
2258         const uint64_t *p = api.getRawData();
2259         Record.push_back(p[0]);
2260         Record.push_back(p[1]);
2261       } else {
2262         assert (0 && "Unknown FP type!");
2263       }
2264     } else if (isa<ConstantDataSequential>(C) &&
2265                cast<ConstantDataSequential>(C)->isString()) {
2266       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2267       // Emit constant strings specially.
2268       unsigned NumElts = Str->getNumElements();
2269       // If this is a null-terminated string, use the denser CSTRING encoding.
2270       if (Str->isCString()) {
2271         Code = bitc::CST_CODE_CSTRING;
2272         --NumElts;  // Don't encode the null, which isn't allowed by char6.
2273       } else {
2274         Code = bitc::CST_CODE_STRING;
2275         AbbrevToUse = String8Abbrev;
2276       }
2277       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2278       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2279       for (unsigned i = 0; i != NumElts; ++i) {
2280         unsigned char V = Str->getElementAsInteger(i);
2281         Record.push_back(V);
2282         isCStr7 &= (V & 128) == 0;
2283         if (isCStrChar6)
2284           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2285       }
2286 
2287       if (isCStrChar6)
2288         AbbrevToUse = CString6Abbrev;
2289       else if (isCStr7)
2290         AbbrevToUse = CString7Abbrev;
2291     } else if (const ConstantDataSequential *CDS =
2292                   dyn_cast<ConstantDataSequential>(C)) {
2293       Code = bitc::CST_CODE_DATA;
2294       Type *EltTy = CDS->getType()->getElementType();
2295       if (isa<IntegerType>(EltTy)) {
2296         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2297           Record.push_back(CDS->getElementAsInteger(i));
2298       } else {
2299         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2300           Record.push_back(
2301               CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2302       }
2303     } else if (isa<ConstantAggregate>(C)) {
2304       Code = bitc::CST_CODE_AGGREGATE;
2305       for (const Value *Op : C->operands())
2306         Record.push_back(VE.getValueID(Op));
2307       AbbrevToUse = AggregateAbbrev;
2308     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2309       switch (CE->getOpcode()) {
2310       default:
2311         if (Instruction::isCast(CE->getOpcode())) {
2312           Code = bitc::CST_CODE_CE_CAST;
2313           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2314           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2315           Record.push_back(VE.getValueID(C->getOperand(0)));
2316           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2317         } else {
2318           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2319           Code = bitc::CST_CODE_CE_BINOP;
2320           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2321           Record.push_back(VE.getValueID(C->getOperand(0)));
2322           Record.push_back(VE.getValueID(C->getOperand(1)));
2323           uint64_t Flags = getOptimizationFlags(CE);
2324           if (Flags != 0)
2325             Record.push_back(Flags);
2326         }
2327         break;
2328       case Instruction::GetElementPtr: {
2329         Code = bitc::CST_CODE_CE_GEP;
2330         const auto *GO = cast<GEPOperator>(C);
2331         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2332         if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
2333           Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2334           Record.push_back((*Idx << 1) | GO->isInBounds());
2335         } else if (GO->isInBounds())
2336           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2337         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2338           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2339           Record.push_back(VE.getValueID(C->getOperand(i)));
2340         }
2341         break;
2342       }
2343       case Instruction::Select:
2344         Code = bitc::CST_CODE_CE_SELECT;
2345         Record.push_back(VE.getValueID(C->getOperand(0)));
2346         Record.push_back(VE.getValueID(C->getOperand(1)));
2347         Record.push_back(VE.getValueID(C->getOperand(2)));
2348         break;
2349       case Instruction::ExtractElement:
2350         Code = bitc::CST_CODE_CE_EXTRACTELT;
2351         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2352         Record.push_back(VE.getValueID(C->getOperand(0)));
2353         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2354         Record.push_back(VE.getValueID(C->getOperand(1)));
2355         break;
2356       case Instruction::InsertElement:
2357         Code = bitc::CST_CODE_CE_INSERTELT;
2358         Record.push_back(VE.getValueID(C->getOperand(0)));
2359         Record.push_back(VE.getValueID(C->getOperand(1)));
2360         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2361         Record.push_back(VE.getValueID(C->getOperand(2)));
2362         break;
2363       case Instruction::ShuffleVector:
2364         // If the return type and argument types are the same, this is a
2365         // standard shufflevector instruction.  If the types are different,
2366         // then the shuffle is widening or truncating the input vectors, and
2367         // the argument type must also be encoded.
2368         if (C->getType() == C->getOperand(0)->getType()) {
2369           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2370         } else {
2371           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2372           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2373         }
2374         Record.push_back(VE.getValueID(C->getOperand(0)));
2375         Record.push_back(VE.getValueID(C->getOperand(1)));
2376         Record.push_back(VE.getValueID(C->getOperand(2)));
2377         break;
2378       case Instruction::ICmp:
2379       case Instruction::FCmp:
2380         Code = bitc::CST_CODE_CE_CMP;
2381         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2382         Record.push_back(VE.getValueID(C->getOperand(0)));
2383         Record.push_back(VE.getValueID(C->getOperand(1)));
2384         Record.push_back(CE->getPredicate());
2385         break;
2386       }
2387     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2388       Code = bitc::CST_CODE_BLOCKADDRESS;
2389       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2390       Record.push_back(VE.getValueID(BA->getFunction()));
2391       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2392     } else {
2393 #ifndef NDEBUG
2394       C->dump();
2395 #endif
2396       llvm_unreachable("Unknown constant!");
2397     }
2398     Stream.EmitRecord(Code, Record, AbbrevToUse);
2399     Record.clear();
2400   }
2401 
2402   Stream.ExitBlock();
2403 }
2404 
2405 void ModuleBitcodeWriter::writeModuleConstants() {
2406   const ValueEnumerator::ValueList &Vals = VE.getValues();
2407 
2408   // Find the first constant to emit, which is the first non-globalvalue value.
2409   // We know globalvalues have been emitted by WriteModuleInfo.
2410   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2411     if (!isa<GlobalValue>(Vals[i].first)) {
2412       writeConstants(i, Vals.size(), true);
2413       return;
2414     }
2415   }
2416 }
2417 
2418 /// pushValueAndType - The file has to encode both the value and type id for
2419 /// many values, because we need to know what type to create for forward
2420 /// references.  However, most operands are not forward references, so this type
2421 /// field is not needed.
2422 ///
2423 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2424 /// instruction ID, then it is a forward reference, and it also includes the
2425 /// type ID.  The value ID that is written is encoded relative to the InstID.
2426 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2427                                            SmallVectorImpl<unsigned> &Vals) {
2428   unsigned ValID = VE.getValueID(V);
2429   // Make encoding relative to the InstID.
2430   Vals.push_back(InstID - ValID);
2431   if (ValID >= InstID) {
2432     Vals.push_back(VE.getTypeID(V->getType()));
2433     return true;
2434   }
2435   return false;
2436 }
2437 
2438 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS,
2439                                               unsigned InstID) {
2440   SmallVector<unsigned, 64> Record;
2441   LLVMContext &C = CS.getInstruction()->getContext();
2442 
2443   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2444     const auto &Bundle = CS.getOperandBundleAt(i);
2445     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2446 
2447     for (auto &Input : Bundle.Inputs)
2448       pushValueAndType(Input, InstID, Record);
2449 
2450     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2451     Record.clear();
2452   }
2453 }
2454 
2455 /// pushValue - Like pushValueAndType, but where the type of the value is
2456 /// omitted (perhaps it was already encoded in an earlier operand).
2457 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2458                                     SmallVectorImpl<unsigned> &Vals) {
2459   unsigned ValID = VE.getValueID(V);
2460   Vals.push_back(InstID - ValID);
2461 }
2462 
2463 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2464                                           SmallVectorImpl<uint64_t> &Vals) {
2465   unsigned ValID = VE.getValueID(V);
2466   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2467   emitSignedInt64(Vals, diff);
2468 }
2469 
2470 /// WriteInstruction - Emit an instruction to the specified stream.
2471 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2472                                            unsigned InstID,
2473                                            SmallVectorImpl<unsigned> &Vals) {
2474   unsigned Code = 0;
2475   unsigned AbbrevToUse = 0;
2476   VE.setInstructionID(&I);
2477   switch (I.getOpcode()) {
2478   default:
2479     if (Instruction::isCast(I.getOpcode())) {
2480       Code = bitc::FUNC_CODE_INST_CAST;
2481       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2482         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2483       Vals.push_back(VE.getTypeID(I.getType()));
2484       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2485     } else {
2486       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2487       Code = bitc::FUNC_CODE_INST_BINOP;
2488       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2489         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2490       pushValue(I.getOperand(1), InstID, Vals);
2491       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2492       uint64_t Flags = getOptimizationFlags(&I);
2493       if (Flags != 0) {
2494         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2495           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2496         Vals.push_back(Flags);
2497       }
2498     }
2499     break;
2500 
2501   case Instruction::GetElementPtr: {
2502     Code = bitc::FUNC_CODE_INST_GEP;
2503     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2504     auto &GEPInst = cast<GetElementPtrInst>(I);
2505     Vals.push_back(GEPInst.isInBounds());
2506     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2507     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2508       pushValueAndType(I.getOperand(i), InstID, Vals);
2509     break;
2510   }
2511   case Instruction::ExtractValue: {
2512     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2513     pushValueAndType(I.getOperand(0), InstID, Vals);
2514     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2515     Vals.append(EVI->idx_begin(), EVI->idx_end());
2516     break;
2517   }
2518   case Instruction::InsertValue: {
2519     Code = bitc::FUNC_CODE_INST_INSERTVAL;
2520     pushValueAndType(I.getOperand(0), InstID, Vals);
2521     pushValueAndType(I.getOperand(1), InstID, Vals);
2522     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2523     Vals.append(IVI->idx_begin(), IVI->idx_end());
2524     break;
2525   }
2526   case Instruction::Select:
2527     Code = bitc::FUNC_CODE_INST_VSELECT;
2528     pushValueAndType(I.getOperand(1), InstID, Vals);
2529     pushValue(I.getOperand(2), InstID, Vals);
2530     pushValueAndType(I.getOperand(0), InstID, Vals);
2531     break;
2532   case Instruction::ExtractElement:
2533     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2534     pushValueAndType(I.getOperand(0), InstID, Vals);
2535     pushValueAndType(I.getOperand(1), InstID, Vals);
2536     break;
2537   case Instruction::InsertElement:
2538     Code = bitc::FUNC_CODE_INST_INSERTELT;
2539     pushValueAndType(I.getOperand(0), InstID, Vals);
2540     pushValue(I.getOperand(1), InstID, Vals);
2541     pushValueAndType(I.getOperand(2), InstID, Vals);
2542     break;
2543   case Instruction::ShuffleVector:
2544     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2545     pushValueAndType(I.getOperand(0), InstID, Vals);
2546     pushValue(I.getOperand(1), InstID, Vals);
2547     pushValue(I.getOperand(2), InstID, Vals);
2548     break;
2549   case Instruction::ICmp:
2550   case Instruction::FCmp: {
2551     // compare returning Int1Ty or vector of Int1Ty
2552     Code = bitc::FUNC_CODE_INST_CMP2;
2553     pushValueAndType(I.getOperand(0), InstID, Vals);
2554     pushValue(I.getOperand(1), InstID, Vals);
2555     Vals.push_back(cast<CmpInst>(I).getPredicate());
2556     uint64_t Flags = getOptimizationFlags(&I);
2557     if (Flags != 0)
2558       Vals.push_back(Flags);
2559     break;
2560   }
2561 
2562   case Instruction::Ret:
2563     {
2564       Code = bitc::FUNC_CODE_INST_RET;
2565       unsigned NumOperands = I.getNumOperands();
2566       if (NumOperands == 0)
2567         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2568       else if (NumOperands == 1) {
2569         if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2570           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2571       } else {
2572         for (unsigned i = 0, e = NumOperands; i != e; ++i)
2573           pushValueAndType(I.getOperand(i), InstID, Vals);
2574       }
2575     }
2576     break;
2577   case Instruction::Br:
2578     {
2579       Code = bitc::FUNC_CODE_INST_BR;
2580       const BranchInst &II = cast<BranchInst>(I);
2581       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2582       if (II.isConditional()) {
2583         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2584         pushValue(II.getCondition(), InstID, Vals);
2585       }
2586     }
2587     break;
2588   case Instruction::Switch:
2589     {
2590       Code = bitc::FUNC_CODE_INST_SWITCH;
2591       const SwitchInst &SI = cast<SwitchInst>(I);
2592       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2593       pushValue(SI.getCondition(), InstID, Vals);
2594       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2595       for (auto Case : SI.cases()) {
2596         Vals.push_back(VE.getValueID(Case.getCaseValue()));
2597         Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2598       }
2599     }
2600     break;
2601   case Instruction::IndirectBr:
2602     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2603     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2604     // Encode the address operand as relative, but not the basic blocks.
2605     pushValue(I.getOperand(0), InstID, Vals);
2606     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2607       Vals.push_back(VE.getValueID(I.getOperand(i)));
2608     break;
2609 
2610   case Instruction::Invoke: {
2611     const InvokeInst *II = cast<InvokeInst>(&I);
2612     const Value *Callee = II->getCalledValue();
2613     FunctionType *FTy = II->getFunctionType();
2614 
2615     if (II->hasOperandBundles())
2616       writeOperandBundles(II, InstID);
2617 
2618     Code = bitc::FUNC_CODE_INST_INVOKE;
2619 
2620     Vals.push_back(VE.getAttributeID(II->getAttributes()));
2621     Vals.push_back(II->getCallingConv() | 1 << 13);
2622     Vals.push_back(VE.getValueID(II->getNormalDest()));
2623     Vals.push_back(VE.getValueID(II->getUnwindDest()));
2624     Vals.push_back(VE.getTypeID(FTy));
2625     pushValueAndType(Callee, InstID, Vals);
2626 
2627     // Emit value #'s for the fixed parameters.
2628     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2629       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2630 
2631     // Emit type/value pairs for varargs params.
2632     if (FTy->isVarArg()) {
2633       for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands();
2634            i != e; ++i)
2635         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2636     }
2637     break;
2638   }
2639   case Instruction::Resume:
2640     Code = bitc::FUNC_CODE_INST_RESUME;
2641     pushValueAndType(I.getOperand(0), InstID, Vals);
2642     break;
2643   case Instruction::CleanupRet: {
2644     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2645     const auto &CRI = cast<CleanupReturnInst>(I);
2646     pushValue(CRI.getCleanupPad(), InstID, Vals);
2647     if (CRI.hasUnwindDest())
2648       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2649     break;
2650   }
2651   case Instruction::CatchRet: {
2652     Code = bitc::FUNC_CODE_INST_CATCHRET;
2653     const auto &CRI = cast<CatchReturnInst>(I);
2654     pushValue(CRI.getCatchPad(), InstID, Vals);
2655     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2656     break;
2657   }
2658   case Instruction::CleanupPad:
2659   case Instruction::CatchPad: {
2660     const auto &FuncletPad = cast<FuncletPadInst>(I);
2661     Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2662                                          : bitc::FUNC_CODE_INST_CLEANUPPAD;
2663     pushValue(FuncletPad.getParentPad(), InstID, Vals);
2664 
2665     unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2666     Vals.push_back(NumArgOperands);
2667     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2668       pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2669     break;
2670   }
2671   case Instruction::CatchSwitch: {
2672     Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2673     const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2674 
2675     pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2676 
2677     unsigned NumHandlers = CatchSwitch.getNumHandlers();
2678     Vals.push_back(NumHandlers);
2679     for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2680       Vals.push_back(VE.getValueID(CatchPadBB));
2681 
2682     if (CatchSwitch.hasUnwindDest())
2683       Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2684     break;
2685   }
2686   case Instruction::Unreachable:
2687     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2688     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2689     break;
2690 
2691   case Instruction::PHI: {
2692     const PHINode &PN = cast<PHINode>(I);
2693     Code = bitc::FUNC_CODE_INST_PHI;
2694     // With the newer instruction encoding, forward references could give
2695     // negative valued IDs.  This is most common for PHIs, so we use
2696     // signed VBRs.
2697     SmallVector<uint64_t, 128> Vals64;
2698     Vals64.push_back(VE.getTypeID(PN.getType()));
2699     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2700       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2701       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2702     }
2703     // Emit a Vals64 vector and exit.
2704     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2705     Vals64.clear();
2706     return;
2707   }
2708 
2709   case Instruction::LandingPad: {
2710     const LandingPadInst &LP = cast<LandingPadInst>(I);
2711     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2712     Vals.push_back(VE.getTypeID(LP.getType()));
2713     Vals.push_back(LP.isCleanup());
2714     Vals.push_back(LP.getNumClauses());
2715     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2716       if (LP.isCatch(I))
2717         Vals.push_back(LandingPadInst::Catch);
2718       else
2719         Vals.push_back(LandingPadInst::Filter);
2720       pushValueAndType(LP.getClause(I), InstID, Vals);
2721     }
2722     break;
2723   }
2724 
2725   case Instruction::Alloca: {
2726     Code = bitc::FUNC_CODE_INST_ALLOCA;
2727     const AllocaInst &AI = cast<AllocaInst>(I);
2728     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2729     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2730     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2731     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
2732     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
2733            "not enough bits for maximum alignment");
2734     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2735     AlignRecord |= AI.isUsedWithInAlloca() << 5;
2736     AlignRecord |= 1 << 6;
2737     AlignRecord |= AI.isSwiftError() << 7;
2738     Vals.push_back(AlignRecord);
2739     break;
2740   }
2741 
2742   case Instruction::Load:
2743     if (cast<LoadInst>(I).isAtomic()) {
2744       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2745       pushValueAndType(I.getOperand(0), InstID, Vals);
2746     } else {
2747       Code = bitc::FUNC_CODE_INST_LOAD;
2748       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2749         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
2750     }
2751     Vals.push_back(VE.getTypeID(I.getType()));
2752     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
2753     Vals.push_back(cast<LoadInst>(I).isVolatile());
2754     if (cast<LoadInst>(I).isAtomic()) {
2755       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2756       Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
2757     }
2758     break;
2759   case Instruction::Store:
2760     if (cast<StoreInst>(I).isAtomic())
2761       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2762     else
2763       Code = bitc::FUNC_CODE_INST_STORE;
2764     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2765     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2766     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
2767     Vals.push_back(cast<StoreInst>(I).isVolatile());
2768     if (cast<StoreInst>(I).isAtomic()) {
2769       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2770       Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
2771     }
2772     break;
2773   case Instruction::AtomicCmpXchg:
2774     Code = bitc::FUNC_CODE_INST_CMPXCHG;
2775     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2776     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2777     pushValue(I.getOperand(2), InstID, Vals);        // newval.
2778     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2779     Vals.push_back(
2780         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2781     Vals.push_back(
2782         getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope()));
2783     Vals.push_back(
2784         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2785     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2786     break;
2787   case Instruction::AtomicRMW:
2788     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2789     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2790     pushValue(I.getOperand(1), InstID, Vals);        // val.
2791     Vals.push_back(
2792         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2793     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2794     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2795     Vals.push_back(
2796         getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope()));
2797     break;
2798   case Instruction::Fence:
2799     Code = bitc::FUNC_CODE_INST_FENCE;
2800     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2801     Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
2802     break;
2803   case Instruction::Call: {
2804     const CallInst &CI = cast<CallInst>(I);
2805     FunctionType *FTy = CI.getFunctionType();
2806 
2807     if (CI.hasOperandBundles())
2808       writeOperandBundles(&CI, InstID);
2809 
2810     Code = bitc::FUNC_CODE_INST_CALL;
2811 
2812     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
2813 
2814     unsigned Flags = getOptimizationFlags(&I);
2815     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
2816                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
2817                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
2818                    1 << bitc::CALL_EXPLICIT_TYPE |
2819                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
2820                    unsigned(Flags != 0) << bitc::CALL_FMF);
2821     if (Flags != 0)
2822       Vals.push_back(Flags);
2823 
2824     Vals.push_back(VE.getTypeID(FTy));
2825     pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee
2826 
2827     // Emit value #'s for the fixed parameters.
2828     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2829       // Check for labels (can happen with asm labels).
2830       if (FTy->getParamType(i)->isLabelTy())
2831         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2832       else
2833         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2834     }
2835 
2836     // Emit type/value pairs for varargs params.
2837     if (FTy->isVarArg()) {
2838       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
2839            i != e; ++i)
2840         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2841     }
2842     break;
2843   }
2844   case Instruction::VAArg:
2845     Code = bitc::FUNC_CODE_INST_VAARG;
2846     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
2847     pushValue(I.getOperand(0), InstID, Vals);                   // valist.
2848     Vals.push_back(VE.getTypeID(I.getType())); // restype.
2849     break;
2850   }
2851 
2852   Stream.EmitRecord(Code, Vals, AbbrevToUse);
2853   Vals.clear();
2854 }
2855 
2856 /// Write a GlobalValue VST to the module. The purpose of this data structure is
2857 /// to allow clients to efficiently find the function body.
2858 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
2859   DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
2860   // Get the offset of the VST we are writing, and backpatch it into
2861   // the VST forward declaration record.
2862   uint64_t VSTOffset = Stream.GetCurrentBitNo();
2863   // The BitcodeStartBit was the stream offset of the identification block.
2864   VSTOffset -= bitcodeStartBit();
2865   assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
2866   // Note that we add 1 here because the offset is relative to one word
2867   // before the start of the identification block, which was historically
2868   // always the start of the regular bitcode header.
2869   Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
2870 
2871   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2872 
2873   auto Abbv = std::make_shared<BitCodeAbbrev>();
2874   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2875   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2876   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2877   unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2878 
2879   for (const Function &F : M) {
2880     uint64_t Record[2];
2881 
2882     if (F.isDeclaration())
2883       continue;
2884 
2885     Record[0] = VE.getValueID(&F);
2886 
2887     // Save the word offset of the function (from the start of the
2888     // actual bitcode written to the stream).
2889     uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
2890     assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
2891     // Note that we add 1 here because the offset is relative to one word
2892     // before the start of the identification block, which was historically
2893     // always the start of the regular bitcode header.
2894     Record[1] = BitcodeIndex / 32 + 1;
2895 
2896     Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
2897   }
2898 
2899   Stream.ExitBlock();
2900 }
2901 
2902 /// Emit names for arguments, instructions and basic blocks in a function.
2903 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
2904     const ValueSymbolTable &VST) {
2905   if (VST.empty())
2906     return;
2907 
2908   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2909 
2910   // FIXME: Set up the abbrev, we know how many values there are!
2911   // FIXME: We know if the type names can use 7-bit ascii.
2912   SmallVector<uint64_t, 64> NameVals;
2913 
2914   for (const ValueName &Name : VST) {
2915     // Figure out the encoding to use for the name.
2916     StringEncoding Bits =
2917         getStringEncoding(Name.getKeyData(), Name.getKeyLength());
2918 
2919     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2920     NameVals.push_back(VE.getValueID(Name.getValue()));
2921 
2922     // VST_CODE_ENTRY:   [valueid, namechar x N]
2923     // VST_CODE_BBENTRY: [bbid, namechar x N]
2924     unsigned Code;
2925     if (isa<BasicBlock>(Name.getValue())) {
2926       Code = bitc::VST_CODE_BBENTRY;
2927       if (Bits == SE_Char6)
2928         AbbrevToUse = VST_BBENTRY_6_ABBREV;
2929     } else {
2930       Code = bitc::VST_CODE_ENTRY;
2931       if (Bits == SE_Char6)
2932         AbbrevToUse = VST_ENTRY_6_ABBREV;
2933       else if (Bits == SE_Fixed7)
2934         AbbrevToUse = VST_ENTRY_7_ABBREV;
2935     }
2936 
2937     for (const auto P : Name.getKey())
2938       NameVals.push_back((unsigned char)P);
2939 
2940     // Emit the finished record.
2941     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2942     NameVals.clear();
2943   }
2944 
2945   Stream.ExitBlock();
2946 }
2947 
2948 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
2949   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
2950   unsigned Code;
2951   if (isa<BasicBlock>(Order.V))
2952     Code = bitc::USELIST_CODE_BB;
2953   else
2954     Code = bitc::USELIST_CODE_DEFAULT;
2955 
2956   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
2957   Record.push_back(VE.getValueID(Order.V));
2958   Stream.EmitRecord(Code, Record);
2959 }
2960 
2961 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
2962   assert(VE.shouldPreserveUseListOrder() &&
2963          "Expected to be preserving use-list order");
2964 
2965   auto hasMore = [&]() {
2966     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
2967   };
2968   if (!hasMore())
2969     // Nothing to do.
2970     return;
2971 
2972   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
2973   while (hasMore()) {
2974     writeUseList(std::move(VE.UseListOrders.back()));
2975     VE.UseListOrders.pop_back();
2976   }
2977   Stream.ExitBlock();
2978 }
2979 
2980 /// Emit a function body to the module stream.
2981 void ModuleBitcodeWriter::writeFunction(
2982     const Function &F,
2983     DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
2984   // Save the bitcode index of the start of this function block for recording
2985   // in the VST.
2986   FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
2987 
2988   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
2989   VE.incorporateFunction(F);
2990 
2991   SmallVector<unsigned, 64> Vals;
2992 
2993   // Emit the number of basic blocks, so the reader can create them ahead of
2994   // time.
2995   Vals.push_back(VE.getBasicBlocks().size());
2996   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
2997   Vals.clear();
2998 
2999   // If there are function-local constants, emit them now.
3000   unsigned CstStart, CstEnd;
3001   VE.getFunctionConstantRange(CstStart, CstEnd);
3002   writeConstants(CstStart, CstEnd, false);
3003 
3004   // If there is function-local metadata, emit it now.
3005   writeFunctionMetadata(F);
3006 
3007   // Keep a running idea of what the instruction ID is.
3008   unsigned InstID = CstEnd;
3009 
3010   bool NeedsMetadataAttachment = F.hasMetadata();
3011 
3012   DILocation *LastDL = nullptr;
3013   // Finally, emit all the instructions, in order.
3014   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
3015     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
3016          I != E; ++I) {
3017       writeInstruction(*I, InstID, Vals);
3018 
3019       if (!I->getType()->isVoidTy())
3020         ++InstID;
3021 
3022       // If the instruction has metadata, write a metadata attachment later.
3023       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
3024 
3025       // If the instruction has a debug location, emit it.
3026       DILocation *DL = I->getDebugLoc();
3027       if (!DL)
3028         continue;
3029 
3030       if (DL == LastDL) {
3031         // Just repeat the same debug loc as last time.
3032         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3033         continue;
3034       }
3035 
3036       Vals.push_back(DL->getLine());
3037       Vals.push_back(DL->getColumn());
3038       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3039       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3040       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3041       Vals.clear();
3042 
3043       LastDL = DL;
3044     }
3045 
3046   // Emit names for all the instructions etc.
3047   if (auto *Symtab = F.getValueSymbolTable())
3048     writeFunctionLevelValueSymbolTable(*Symtab);
3049 
3050   if (NeedsMetadataAttachment)
3051     writeFunctionMetadataAttachment(F);
3052   if (VE.shouldPreserveUseListOrder())
3053     writeUseListBlock(&F);
3054   VE.purgeFunction();
3055   Stream.ExitBlock();
3056 }
3057 
3058 // Emit blockinfo, which defines the standard abbreviations etc.
3059 void ModuleBitcodeWriter::writeBlockInfo() {
3060   // We only want to emit block info records for blocks that have multiple
3061   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3062   // Other blocks can define their abbrevs inline.
3063   Stream.EnterBlockInfoBlock();
3064 
3065   { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3066     auto Abbv = std::make_shared<BitCodeAbbrev>();
3067     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3068     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3069     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3070     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3071     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3072         VST_ENTRY_8_ABBREV)
3073       llvm_unreachable("Unexpected abbrev ordering!");
3074   }
3075 
3076   { // 7-bit fixed width VST_CODE_ENTRY strings.
3077     auto Abbv = std::make_shared<BitCodeAbbrev>();
3078     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3079     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3080     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3081     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3082     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3083         VST_ENTRY_7_ABBREV)
3084       llvm_unreachable("Unexpected abbrev ordering!");
3085   }
3086   { // 6-bit char6 VST_CODE_ENTRY strings.
3087     auto Abbv = std::make_shared<BitCodeAbbrev>();
3088     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3089     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3090     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3091     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3092     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3093         VST_ENTRY_6_ABBREV)
3094       llvm_unreachable("Unexpected abbrev ordering!");
3095   }
3096   { // 6-bit char6 VST_CODE_BBENTRY strings.
3097     auto Abbv = std::make_shared<BitCodeAbbrev>();
3098     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3099     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3100     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3101     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3102     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3103         VST_BBENTRY_6_ABBREV)
3104       llvm_unreachable("Unexpected abbrev ordering!");
3105   }
3106 
3107 
3108 
3109   { // SETTYPE abbrev for CONSTANTS_BLOCK.
3110     auto Abbv = std::make_shared<BitCodeAbbrev>();
3111     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3112     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3113                               VE.computeBitsRequiredForTypeIndicies()));
3114     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3115         CONSTANTS_SETTYPE_ABBREV)
3116       llvm_unreachable("Unexpected abbrev ordering!");
3117   }
3118 
3119   { // INTEGER abbrev for CONSTANTS_BLOCK.
3120     auto Abbv = std::make_shared<BitCodeAbbrev>();
3121     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3122     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3123     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3124         CONSTANTS_INTEGER_ABBREV)
3125       llvm_unreachable("Unexpected abbrev ordering!");
3126   }
3127 
3128   { // CE_CAST abbrev for CONSTANTS_BLOCK.
3129     auto Abbv = std::make_shared<BitCodeAbbrev>();
3130     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3131     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
3132     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
3133                               VE.computeBitsRequiredForTypeIndicies()));
3134     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
3135 
3136     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3137         CONSTANTS_CE_CAST_Abbrev)
3138       llvm_unreachable("Unexpected abbrev ordering!");
3139   }
3140   { // NULL abbrev for CONSTANTS_BLOCK.
3141     auto Abbv = std::make_shared<BitCodeAbbrev>();
3142     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3143     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3144         CONSTANTS_NULL_Abbrev)
3145       llvm_unreachable("Unexpected abbrev ordering!");
3146   }
3147 
3148   // FIXME: This should only use space for first class types!
3149 
3150   { // INST_LOAD abbrev for FUNCTION_BLOCK.
3151     auto Abbv = std::make_shared<BitCodeAbbrev>();
3152     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3153     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3154     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3155                               VE.computeBitsRequiredForTypeIndicies()));
3156     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3157     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3158     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3159         FUNCTION_INST_LOAD_ABBREV)
3160       llvm_unreachable("Unexpected abbrev ordering!");
3161   }
3162   { // INST_BINOP abbrev for FUNCTION_BLOCK.
3163     auto Abbv = std::make_shared<BitCodeAbbrev>();
3164     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3165     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3166     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3167     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3168     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3169         FUNCTION_INST_BINOP_ABBREV)
3170       llvm_unreachable("Unexpected abbrev ordering!");
3171   }
3172   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3173     auto Abbv = std::make_shared<BitCodeAbbrev>();
3174     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3175     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3176     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3177     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3178     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
3179     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3180         FUNCTION_INST_BINOP_FLAGS_ABBREV)
3181       llvm_unreachable("Unexpected abbrev ordering!");
3182   }
3183   { // INST_CAST abbrev for FUNCTION_BLOCK.
3184     auto Abbv = std::make_shared<BitCodeAbbrev>();
3185     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3186     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
3187     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
3188                               VE.computeBitsRequiredForTypeIndicies()));
3189     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
3190     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3191         FUNCTION_INST_CAST_ABBREV)
3192       llvm_unreachable("Unexpected abbrev ordering!");
3193   }
3194 
3195   { // INST_RET abbrev for FUNCTION_BLOCK.
3196     auto Abbv = std::make_shared<BitCodeAbbrev>();
3197     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3198     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3199         FUNCTION_INST_RET_VOID_ABBREV)
3200       llvm_unreachable("Unexpected abbrev ordering!");
3201   }
3202   { // INST_RET abbrev for FUNCTION_BLOCK.
3203     auto Abbv = std::make_shared<BitCodeAbbrev>();
3204     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3205     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3206     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3207         FUNCTION_INST_RET_VAL_ABBREV)
3208       llvm_unreachable("Unexpected abbrev ordering!");
3209   }
3210   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3211     auto Abbv = std::make_shared<BitCodeAbbrev>();
3212     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3213     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3214         FUNCTION_INST_UNREACHABLE_ABBREV)
3215       llvm_unreachable("Unexpected abbrev ordering!");
3216   }
3217   {
3218     auto Abbv = std::make_shared<BitCodeAbbrev>();
3219     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3220     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3221     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3222                               Log2_32_Ceil(VE.getTypes().size() + 1)));
3223     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3224     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3225     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3226         FUNCTION_INST_GEP_ABBREV)
3227       llvm_unreachable("Unexpected abbrev ordering!");
3228   }
3229 
3230   Stream.ExitBlock();
3231 }
3232 
3233 /// Write the module path strings, currently only used when generating
3234 /// a combined index file.
3235 void IndexBitcodeWriter::writeModStrings() {
3236   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3237 
3238   // TODO: See which abbrev sizes we actually need to emit
3239 
3240   // 8-bit fixed-width MST_ENTRY strings.
3241   auto Abbv = std::make_shared<BitCodeAbbrev>();
3242   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3243   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3244   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3245   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3246   unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3247 
3248   // 7-bit fixed width MST_ENTRY strings.
3249   Abbv = std::make_shared<BitCodeAbbrev>();
3250   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3251   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3252   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3253   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3254   unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3255 
3256   // 6-bit char6 MST_ENTRY strings.
3257   Abbv = std::make_shared<BitCodeAbbrev>();
3258   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3259   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3260   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3261   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3262   unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3263 
3264   // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3265   Abbv = std::make_shared<BitCodeAbbrev>();
3266   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3267   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3268   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3269   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3270   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3271   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3272   unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3273 
3274   SmallVector<unsigned, 64> Vals;
3275   for (const auto &MPSE : Index.modulePaths()) {
3276     if (!doIncludeModule(MPSE.getKey()))
3277       continue;
3278     StringEncoding Bits =
3279         getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size());
3280     unsigned AbbrevToUse = Abbrev8Bit;
3281     if (Bits == SE_Char6)
3282       AbbrevToUse = Abbrev6Bit;
3283     else if (Bits == SE_Fixed7)
3284       AbbrevToUse = Abbrev7Bit;
3285 
3286     Vals.push_back(MPSE.getValue().first);
3287 
3288     for (const auto P : MPSE.getKey())
3289       Vals.push_back((unsigned char)P);
3290 
3291     // Emit the finished record.
3292     Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3293 
3294     Vals.clear();
3295     // Emit an optional hash for the module now
3296     auto &Hash = MPSE.getValue().second;
3297     bool AllZero = true; // Detect if the hash is empty, and do not generate it
3298     for (auto Val : Hash) {
3299       if (Val)
3300         AllZero = false;
3301       Vals.push_back(Val);
3302     }
3303     if (!AllZero) {
3304       // Emit the hash record.
3305       Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3306     }
3307 
3308     Vals.clear();
3309   }
3310   Stream.ExitBlock();
3311 }
3312 
3313 /// Write the function type metadata related records that need to appear before
3314 /// a function summary entry (whether per-module or combined).
3315 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
3316                                              FunctionSummary *FS) {
3317   if (!FS->type_tests().empty())
3318     Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3319 
3320   SmallVector<uint64_t, 64> Record;
3321 
3322   auto WriteVFuncIdVec = [&](uint64_t Ty,
3323                              ArrayRef<FunctionSummary::VFuncId> VFs) {
3324     if (VFs.empty())
3325       return;
3326     Record.clear();
3327     for (auto &VF : VFs) {
3328       Record.push_back(VF.GUID);
3329       Record.push_back(VF.Offset);
3330     }
3331     Stream.EmitRecord(Ty, Record);
3332   };
3333 
3334   WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3335                   FS->type_test_assume_vcalls());
3336   WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3337                   FS->type_checked_load_vcalls());
3338 
3339   auto WriteConstVCallVec = [&](uint64_t Ty,
3340                                 ArrayRef<FunctionSummary::ConstVCall> VCs) {
3341     for (auto &VC : VCs) {
3342       Record.clear();
3343       Record.push_back(VC.VFunc.GUID);
3344       Record.push_back(VC.VFunc.Offset);
3345       Record.insert(Record.end(), VC.Args.begin(), VC.Args.end());
3346       Stream.EmitRecord(Ty, Record);
3347     }
3348   };
3349 
3350   WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3351                      FS->type_test_assume_const_vcalls());
3352   WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3353                      FS->type_checked_load_const_vcalls());
3354 }
3355 
3356 // Helper to emit a single function summary record.
3357 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord(
3358     SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3359     unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3360     const Function &F) {
3361   NameVals.push_back(ValueID);
3362 
3363   FunctionSummary *FS = cast<FunctionSummary>(Summary);
3364   writeFunctionTypeMetadataRecords(Stream, FS);
3365 
3366   NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3367   NameVals.push_back(FS->instCount());
3368   NameVals.push_back(FS->refs().size());
3369 
3370   for (auto &RI : FS->refs())
3371     NameVals.push_back(VE.getValueID(RI.getValue()));
3372 
3373   bool HasProfileData = F.getEntryCount().hasValue();
3374   for (auto &ECI : FS->calls()) {
3375     NameVals.push_back(getValueId(ECI.first));
3376     if (HasProfileData)
3377       NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
3378   }
3379 
3380   unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3381   unsigned Code =
3382       (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE);
3383 
3384   // Emit the finished record.
3385   Stream.EmitRecord(Code, NameVals, FSAbbrev);
3386   NameVals.clear();
3387 }
3388 
3389 // Collect the global value references in the given variable's initializer,
3390 // and emit them in a summary record.
3391 void ModuleBitcodeWriter::writeModuleLevelReferences(
3392     const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3393     unsigned FSModRefsAbbrev) {
3394   auto Summaries =
3395       Index->findGlobalValueSummaryList(GlobalValue::getGUID(V.getName()));
3396   if (Summaries == Index->end()) {
3397     // Only declarations should not have a summary (a declaration might however
3398     // have a summary if the def was in module level asm).
3399     assert(V.isDeclaration());
3400     return;
3401   }
3402   auto *Summary = Summaries->second.front().get();
3403   NameVals.push_back(VE.getValueID(&V));
3404   GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3405   NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3406 
3407   unsigned SizeBeforeRefs = NameVals.size();
3408   for (auto &RI : VS->refs())
3409     NameVals.push_back(VE.getValueID(RI.getValue()));
3410   // Sort the refs for determinism output, the vector returned by FS->refs() has
3411   // been initialized from a DenseSet.
3412   std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3413 
3414   Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
3415                     FSModRefsAbbrev);
3416   NameVals.clear();
3417 }
3418 
3419 // Current version for the summary.
3420 // This is bumped whenever we introduce changes in the way some record are
3421 // interpreted, like flags for instance.
3422 static const uint64_t INDEX_VERSION = 3;
3423 
3424 /// Emit the per-module summary section alongside the rest of
3425 /// the module's bitcode.
3426 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() {
3427   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4);
3428 
3429   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3430 
3431   if (Index->begin() == Index->end()) {
3432     Stream.ExitBlock();
3433     return;
3434   }
3435 
3436   for (const auto &GVI : valueIds()) {
3437     Stream.EmitRecord(bitc::FS_VALUE_GUID,
3438                       ArrayRef<uint64_t>{GVI.second, GVI.first});
3439   }
3440 
3441   // Abbrev for FS_PERMODULE.
3442   auto Abbv = std::make_shared<BitCodeAbbrev>();
3443   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3444   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3445   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3446   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3447   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3448   // numrefs x valueid, n x (valueid)
3449   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3450   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3451   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3452 
3453   // Abbrev for FS_PERMODULE_PROFILE.
3454   Abbv = std::make_shared<BitCodeAbbrev>();
3455   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
3456   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3457   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3458   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3459   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3460   // numrefs x valueid, n x (valueid, hotness)
3461   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3462   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3463   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3464 
3465   // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3466   Abbv = std::make_shared<BitCodeAbbrev>();
3467   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
3468   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3469   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3470   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
3471   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3472   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3473 
3474   // Abbrev for FS_ALIAS.
3475   Abbv = std::make_shared<BitCodeAbbrev>();
3476   Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3477   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3478   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3479   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3480   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3481 
3482   SmallVector<uint64_t, 64> NameVals;
3483   // Iterate over the list of functions instead of the Index to
3484   // ensure the ordering is stable.
3485   for (const Function &F : M) {
3486     // Summary emission does not support anonymous functions, they have to
3487     // renamed using the anonymous function renaming pass.
3488     if (!F.hasName())
3489       report_fatal_error("Unexpected anonymous function when writing summary");
3490 
3491     auto Summaries =
3492         Index->findGlobalValueSummaryList(GlobalValue::getGUID(F.getName()));
3493     if (Summaries == Index->end()) {
3494       // Only declarations should not have a summary (a declaration might
3495       // however have a summary if the def was in module level asm).
3496       assert(F.isDeclaration());
3497       continue;
3498     }
3499     auto *Summary = Summaries->second.front().get();
3500     writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
3501                                         FSCallsAbbrev, FSCallsProfileAbbrev, F);
3502   }
3503 
3504   // Capture references from GlobalVariable initializers, which are outside
3505   // of a function scope.
3506   for (const GlobalVariable &G : M.globals())
3507     writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev);
3508 
3509   for (const GlobalAlias &A : M.aliases()) {
3510     auto *Aliasee = A.getBaseObject();
3511     if (!Aliasee->hasName())
3512       // Nameless function don't have an entry in the summary, skip it.
3513       continue;
3514     auto AliasId = VE.getValueID(&A);
3515     auto AliaseeId = VE.getValueID(Aliasee);
3516     NameVals.push_back(AliasId);
3517     auto *Summary = Index->getGlobalValueSummary(A);
3518     AliasSummary *AS = cast<AliasSummary>(Summary);
3519     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3520     NameVals.push_back(AliaseeId);
3521     Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
3522     NameVals.clear();
3523   }
3524 
3525   Stream.ExitBlock();
3526 }
3527 
3528 /// Emit the combined summary section into the combined index file.
3529 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
3530   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
3531   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3532 
3533   // Create value IDs for undefined references.
3534   for (const auto &I : *this) {
3535     if (auto *VS = dyn_cast<GlobalVarSummary>(I.second)) {
3536       for (auto &RI : VS->refs())
3537         assignValueId(RI.getGUID());
3538       continue;
3539     }
3540 
3541     auto *FS = dyn_cast<FunctionSummary>(I.second);
3542     if (!FS)
3543       continue;
3544     for (auto &RI : FS->refs())
3545       assignValueId(RI.getGUID());
3546 
3547     for (auto &EI : FS->calls()) {
3548       GlobalValue::GUID GUID = EI.first.getGUID();
3549       if (!hasValueId(GUID)) {
3550         // For SamplePGO, the indirect call targets for local functions will
3551         // have its original name annotated in profile. We try to find the
3552         // corresponding PGOFuncName as the GUID.
3553         GUID = Index.getGUIDFromOriginalID(GUID);
3554         if (GUID == 0 || !hasValueId(GUID))
3555           continue;
3556       }
3557       assignValueId(GUID);
3558     }
3559   }
3560 
3561   for (const auto &GVI : valueIds()) {
3562     Stream.EmitRecord(bitc::FS_VALUE_GUID,
3563                       ArrayRef<uint64_t>{GVI.second, GVI.first});
3564   }
3565 
3566   // Abbrev for FS_COMBINED.
3567   auto Abbv = std::make_shared<BitCodeAbbrev>();
3568   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
3569   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3570   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3571   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3572   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3573   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3574   // numrefs x valueid, n x (valueid)
3575   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3576   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3577   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3578 
3579   // Abbrev for FS_COMBINED_PROFILE.
3580   Abbv = std::make_shared<BitCodeAbbrev>();
3581   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
3582   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3583   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3584   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3585   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3586   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3587   // numrefs x valueid, n x (valueid, hotness)
3588   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3589   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3590   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3591 
3592   // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
3593   Abbv = std::make_shared<BitCodeAbbrev>();
3594   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
3595   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3596   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3597   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3598   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
3599   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3600   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3601 
3602   // Abbrev for FS_COMBINED_ALIAS.
3603   Abbv = std::make_shared<BitCodeAbbrev>();
3604   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
3605   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3606   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3607   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3608   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3609   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3610 
3611   // The aliases are emitted as a post-pass, and will point to the value
3612   // id of the aliasee. Save them in a vector for post-processing.
3613   SmallVector<AliasSummary *, 64> Aliases;
3614 
3615   // Save the value id for each summary for alias emission.
3616   DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
3617 
3618   SmallVector<uint64_t, 64> NameVals;
3619 
3620   // For local linkage, we also emit the original name separately
3621   // immediately after the record.
3622   auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
3623     if (!GlobalValue::isLocalLinkage(S.linkage()))
3624       return;
3625     NameVals.push_back(S.getOriginalName());
3626     Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
3627     NameVals.clear();
3628   };
3629 
3630   for (const auto &I : *this) {
3631     GlobalValueSummary *S = I.second;
3632     assert(S);
3633 
3634     assert(hasValueId(I.first));
3635     unsigned ValueId = getValueId(I.first);
3636     SummaryToValueIdMap[S] = ValueId;
3637 
3638     if (auto *AS = dyn_cast<AliasSummary>(S)) {
3639       // Will process aliases as a post-pass because the reader wants all
3640       // global to be loaded first.
3641       Aliases.push_back(AS);
3642       continue;
3643     }
3644 
3645     if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
3646       NameVals.push_back(ValueId);
3647       NameVals.push_back(Index.getModuleId(VS->modulePath()));
3648       NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3649       for (auto &RI : VS->refs()) {
3650         NameVals.push_back(getValueId(RI.getGUID()));
3651       }
3652 
3653       // Emit the finished record.
3654       Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
3655                         FSModRefsAbbrev);
3656       NameVals.clear();
3657       MaybeEmitOriginalName(*S);
3658       continue;
3659     }
3660 
3661     auto *FS = cast<FunctionSummary>(S);
3662     writeFunctionTypeMetadataRecords(Stream, FS);
3663 
3664     NameVals.push_back(ValueId);
3665     NameVals.push_back(Index.getModuleId(FS->modulePath()));
3666     NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3667     NameVals.push_back(FS->instCount());
3668     NameVals.push_back(FS->refs().size());
3669 
3670     for (auto &RI : FS->refs()) {
3671       NameVals.push_back(getValueId(RI.getGUID()));
3672     }
3673 
3674     bool HasProfileData = false;
3675     for (auto &EI : FS->calls()) {
3676       HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown;
3677       if (HasProfileData)
3678         break;
3679     }
3680 
3681     for (auto &EI : FS->calls()) {
3682       // If this GUID doesn't have a value id, it doesn't have a function
3683       // summary and we don't need to record any calls to it.
3684       GlobalValue::GUID GUID = EI.first.getGUID();
3685       if (!hasValueId(GUID)) {
3686         // For SamplePGO, the indirect call targets for local functions will
3687         // have its original name annotated in profile. We try to find the
3688         // corresponding PGOFuncName as the GUID.
3689         GUID = Index.getGUIDFromOriginalID(GUID);
3690         if (GUID == 0 || !hasValueId(GUID))
3691           continue;
3692       }
3693       NameVals.push_back(getValueId(GUID));
3694       if (HasProfileData)
3695         NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
3696     }
3697 
3698     unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3699     unsigned Code =
3700         (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
3701 
3702     // Emit the finished record.
3703     Stream.EmitRecord(Code, NameVals, FSAbbrev);
3704     NameVals.clear();
3705     MaybeEmitOriginalName(*S);
3706   }
3707 
3708   for (auto *AS : Aliases) {
3709     auto AliasValueId = SummaryToValueIdMap[AS];
3710     assert(AliasValueId);
3711     NameVals.push_back(AliasValueId);
3712     NameVals.push_back(Index.getModuleId(AS->modulePath()));
3713     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3714     auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
3715     assert(AliaseeValueId);
3716     NameVals.push_back(AliaseeValueId);
3717 
3718     // Emit the finished record.
3719     Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
3720     NameVals.clear();
3721     MaybeEmitOriginalName(*AS);
3722   }
3723 
3724   Stream.ExitBlock();
3725 }
3726 
3727 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
3728 /// current llvm version, and a record for the epoch number.
3729 static void writeIdentificationBlock(BitstreamWriter &Stream) {
3730   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
3731 
3732   // Write the "user readable" string identifying the bitcode producer
3733   auto Abbv = std::make_shared<BitCodeAbbrev>();
3734   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
3735   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3736   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3737   auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3738   writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
3739                     "LLVM" LLVM_VERSION_STRING, StringAbbrev);
3740 
3741   // Write the epoch version
3742   Abbv = std::make_shared<BitCodeAbbrev>();
3743   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
3744   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3745   auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3746   SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
3747   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
3748   Stream.ExitBlock();
3749 }
3750 
3751 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
3752   // Emit the module's hash.
3753   // MODULE_CODE_HASH: [5*i32]
3754   if (GenerateHash) {
3755     SHA1 Hasher;
3756     uint32_t Vals[5];
3757     Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
3758                                     Buffer.size() - BlockStartPos));
3759     StringRef Hash = Hasher.result();
3760     for (int Pos = 0; Pos < 20; Pos += 4) {
3761       Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
3762     }
3763 
3764     // Emit the finished record.
3765     Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
3766 
3767     if (ModHash)
3768       // Save the written hash value.
3769       std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash));
3770   } else if (ModHash)
3771     Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
3772 }
3773 
3774 void ModuleBitcodeWriter::write() {
3775   writeIdentificationBlock(Stream);
3776 
3777   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
3778   size_t BlockStartPos = Buffer.size();
3779 
3780   writeModuleVersion();
3781 
3782   // Emit blockinfo, which defines the standard abbreviations etc.
3783   writeBlockInfo();
3784 
3785   // Emit information about attribute groups.
3786   writeAttributeGroupTable();
3787 
3788   // Emit information about parameter attributes.
3789   writeAttributeTable();
3790 
3791   // Emit information describing all of the types in the module.
3792   writeTypeTable();
3793 
3794   writeComdats();
3795 
3796   // Emit top-level description of module, including target triple, inline asm,
3797   // descriptors for global variables, and function prototype info.
3798   writeModuleInfo();
3799 
3800   // Emit constants.
3801   writeModuleConstants();
3802 
3803   // Emit metadata kind names.
3804   writeModuleMetadataKinds();
3805 
3806   // Emit metadata.
3807   writeModuleMetadata();
3808 
3809   // Emit module-level use-lists.
3810   if (VE.shouldPreserveUseListOrder())
3811     writeUseListBlock(nullptr);
3812 
3813   writeOperandBundleTags();
3814 
3815   // Emit function bodies.
3816   DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
3817   for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
3818     if (!F->isDeclaration())
3819       writeFunction(*F, FunctionToBitcodeIndex);
3820 
3821   // Need to write after the above call to WriteFunction which populates
3822   // the summary information in the index.
3823   if (Index)
3824     writePerModuleGlobalValueSummary();
3825 
3826   writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
3827 
3828   writeModuleHash(BlockStartPos);
3829 
3830   Stream.ExitBlock();
3831 }
3832 
3833 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
3834                                uint32_t &Position) {
3835   support::endian::write32le(&Buffer[Position], Value);
3836   Position += 4;
3837 }
3838 
3839 /// If generating a bc file on darwin, we have to emit a
3840 /// header and trailer to make it compatible with the system archiver.  To do
3841 /// this we emit the following header, and then emit a trailer that pads the
3842 /// file out to be a multiple of 16 bytes.
3843 ///
3844 /// struct bc_header {
3845 ///   uint32_t Magic;         // 0x0B17C0DE
3846 ///   uint32_t Version;       // Version, currently always 0.
3847 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
3848 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
3849 ///   uint32_t CPUType;       // CPU specifier.
3850 ///   ... potentially more later ...
3851 /// };
3852 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
3853                                          const Triple &TT) {
3854   unsigned CPUType = ~0U;
3855 
3856   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
3857   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
3858   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
3859   // specific constants here because they are implicitly part of the Darwin ABI.
3860   enum {
3861     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
3862     DARWIN_CPU_TYPE_X86        = 7,
3863     DARWIN_CPU_TYPE_ARM        = 12,
3864     DARWIN_CPU_TYPE_POWERPC    = 18
3865   };
3866 
3867   Triple::ArchType Arch = TT.getArch();
3868   if (Arch == Triple::x86_64)
3869     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
3870   else if (Arch == Triple::x86)
3871     CPUType = DARWIN_CPU_TYPE_X86;
3872   else if (Arch == Triple::ppc)
3873     CPUType = DARWIN_CPU_TYPE_POWERPC;
3874   else if (Arch == Triple::ppc64)
3875     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
3876   else if (Arch == Triple::arm || Arch == Triple::thumb)
3877     CPUType = DARWIN_CPU_TYPE_ARM;
3878 
3879   // Traditional Bitcode starts after header.
3880   assert(Buffer.size() >= BWH_HeaderSize &&
3881          "Expected header size to be reserved");
3882   unsigned BCOffset = BWH_HeaderSize;
3883   unsigned BCSize = Buffer.size() - BWH_HeaderSize;
3884 
3885   // Write the magic and version.
3886   unsigned Position = 0;
3887   writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
3888   writeInt32ToBuffer(0, Buffer, Position); // Version.
3889   writeInt32ToBuffer(BCOffset, Buffer, Position);
3890   writeInt32ToBuffer(BCSize, Buffer, Position);
3891   writeInt32ToBuffer(CPUType, Buffer, Position);
3892 
3893   // If the file is not a multiple of 16 bytes, insert dummy padding.
3894   while (Buffer.size() & 15)
3895     Buffer.push_back(0);
3896 }
3897 
3898 /// Helper to write the header common to all bitcode files.
3899 static void writeBitcodeHeader(BitstreamWriter &Stream) {
3900   // Emit the file header.
3901   Stream.Emit((unsigned)'B', 8);
3902   Stream.Emit((unsigned)'C', 8);
3903   Stream.Emit(0x0, 4);
3904   Stream.Emit(0xC, 4);
3905   Stream.Emit(0xE, 4);
3906   Stream.Emit(0xD, 4);
3907 }
3908 
3909 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
3910     : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) {
3911   writeBitcodeHeader(*Stream);
3912 }
3913 
3914 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
3915 
3916 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
3917   Stream->EnterSubblock(Block, 3);
3918 
3919   auto Abbv = std::make_shared<BitCodeAbbrev>();
3920   Abbv->Add(BitCodeAbbrevOp(Record));
3921   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
3922   auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
3923 
3924   Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
3925 
3926   Stream->ExitBlock();
3927 }
3928 
3929 void BitcodeWriter::writeStrtab() {
3930   assert(!WroteStrtab);
3931 
3932   std::vector<char> Strtab;
3933   StrtabBuilder.finalizeInOrder();
3934   Strtab.resize(StrtabBuilder.getSize());
3935   StrtabBuilder.write((uint8_t *)Strtab.data());
3936 
3937   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
3938             {Strtab.data(), Strtab.size()});
3939 
3940   WroteStrtab = true;
3941 }
3942 
3943 void BitcodeWriter::copyStrtab(StringRef Strtab) {
3944   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
3945   WroteStrtab = true;
3946 }
3947 
3948 void BitcodeWriter::writeModule(const Module *M,
3949                                 bool ShouldPreserveUseListOrder,
3950                                 const ModuleSummaryIndex *Index,
3951                                 bool GenerateHash, ModuleHash *ModHash) {
3952   ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
3953                                    ShouldPreserveUseListOrder, Index,
3954                                    GenerateHash, ModHash);
3955   ModuleWriter.write();
3956 }
3957 
3958 /// WriteBitcodeToFile - Write the specified module to the specified output
3959 /// stream.
3960 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out,
3961                               bool ShouldPreserveUseListOrder,
3962                               const ModuleSummaryIndex *Index,
3963                               bool GenerateHash, ModuleHash *ModHash) {
3964   SmallVector<char, 0> Buffer;
3965   Buffer.reserve(256*1024);
3966 
3967   // If this is darwin or another generic macho target, reserve space for the
3968   // header.
3969   Triple TT(M->getTargetTriple());
3970   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
3971     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
3972 
3973   BitcodeWriter Writer(Buffer);
3974   Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
3975                      ModHash);
3976   Writer.writeStrtab();
3977 
3978   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
3979     emitDarwinBCHeaderAndTrailer(Buffer, TT);
3980 
3981   // Write the generated bitstream to "Out".
3982   Out.write((char*)&Buffer.front(), Buffer.size());
3983 }
3984 
3985 void IndexBitcodeWriter::write() {
3986   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
3987 
3988   writeModuleVersion();
3989 
3990   // Write the module paths in the combined index.
3991   writeModStrings();
3992 
3993   // Write the summary combined index records.
3994   writeCombinedGlobalValueSummary();
3995 
3996   Stream.ExitBlock();
3997 }
3998 
3999 // Write the specified module summary index to the given raw output stream,
4000 // where it will be written in a new bitcode block. This is used when
4001 // writing the combined index file for ThinLTO. When writing a subset of the
4002 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
4003 void llvm::WriteIndexToFile(
4004     const ModuleSummaryIndex &Index, raw_ostream &Out,
4005     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4006   SmallVector<char, 0> Buffer;
4007   Buffer.reserve(256 * 1024);
4008 
4009   BitstreamWriter Stream(Buffer);
4010   writeBitcodeHeader(Stream);
4011 
4012   IndexBitcodeWriter IndexWriter(Stream, Index, ModuleToSummariesForIndex);
4013   IndexWriter.write();
4014 
4015   Out.write((char *)&Buffer.front(), Buffer.size());
4016 }
4017