1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitstreamWriter.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/UseListOrder.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/MC/StringTableBuilder.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/Program.h" 35 #include "llvm/Support/SHA1.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <cctype> 38 #include <map> 39 using namespace llvm; 40 41 namespace { 42 43 cl::opt<unsigned> 44 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 45 cl::desc("Number of metadatas above which we emit an index " 46 "to enable lazy-loading")); 47 /// These are manifest constants used by the bitcode writer. They do not need to 48 /// be kept in sync with the reader, but need to be consistent within this file. 49 enum { 50 // VALUE_SYMTAB_BLOCK abbrev id's. 51 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 VST_ENTRY_7_ABBREV, 53 VST_ENTRY_6_ABBREV, 54 VST_BBENTRY_6_ABBREV, 55 56 // CONSTANTS_BLOCK abbrev id's. 57 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 58 CONSTANTS_INTEGER_ABBREV, 59 CONSTANTS_CE_CAST_Abbrev, 60 CONSTANTS_NULL_Abbrev, 61 62 // FUNCTION_BLOCK abbrev id's. 63 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 64 FUNCTION_INST_BINOP_ABBREV, 65 FUNCTION_INST_BINOP_FLAGS_ABBREV, 66 FUNCTION_INST_CAST_ABBREV, 67 FUNCTION_INST_RET_VOID_ABBREV, 68 FUNCTION_INST_RET_VAL_ABBREV, 69 FUNCTION_INST_UNREACHABLE_ABBREV, 70 FUNCTION_INST_GEP_ABBREV, 71 }; 72 73 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 74 /// file type. 75 class BitcodeWriterBase { 76 protected: 77 /// The stream created and owned by the client. 78 BitstreamWriter &Stream; 79 80 public: 81 /// Constructs a BitcodeWriterBase object that writes to the provided 82 /// \p Stream. 83 BitcodeWriterBase(BitstreamWriter &Stream) : Stream(Stream) {} 84 85 protected: 86 void writeBitcodeHeader(); 87 void writeModuleVersion(); 88 }; 89 90 void BitcodeWriterBase::writeModuleVersion() { 91 // VERSION: [version#] 92 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 93 } 94 95 /// Class to manage the bitcode writing for a module. 96 class ModuleBitcodeWriter : public BitcodeWriterBase { 97 /// Pointer to the buffer allocated by caller for bitcode writing. 98 const SmallVectorImpl<char> &Buffer; 99 100 StringTableBuilder &StrtabBuilder; 101 102 /// The Module to write to bitcode. 103 const Module &M; 104 105 /// Enumerates ids for all values in the module. 106 ValueEnumerator VE; 107 108 /// Optional per-module index to write for ThinLTO. 109 const ModuleSummaryIndex *Index; 110 111 /// True if a module hash record should be written. 112 bool GenerateHash; 113 114 /// If non-null, when GenerateHash is true, the resulting hash is written 115 /// into ModHash. When GenerateHash is false, that specified value 116 /// is used as the hash instead of computing from the generated bitcode. 117 /// Can be used to produce the same module hash for a minimized bitcode 118 /// used just for the thin link as in the regular full bitcode that will 119 /// be used in the backend. 120 ModuleHash *ModHash; 121 122 /// The start bit of the identification block. 123 uint64_t BitcodeStartBit; 124 125 /// Map that holds the correspondence between GUIDs in the summary index, 126 /// that came from indirect call profiles, and a value id generated by this 127 /// class to use in the VST and summary block records. 128 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 129 130 /// Tracks the last value id recorded in the GUIDToValueMap. 131 unsigned GlobalValueId; 132 133 /// Saves the offset of the VSTOffset record that must eventually be 134 /// backpatched with the offset of the actual VST. 135 uint64_t VSTOffsetPlaceholder = 0; 136 137 public: 138 /// Constructs a ModuleBitcodeWriter object for the given Module, 139 /// writing to the provided \p Buffer. 140 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 141 StringTableBuilder &StrtabBuilder, 142 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 143 const ModuleSummaryIndex *Index, bool GenerateHash, 144 ModuleHash *ModHash = nullptr) 145 : BitcodeWriterBase(Stream), Buffer(Buffer), StrtabBuilder(StrtabBuilder), 146 M(*M), VE(*M, ShouldPreserveUseListOrder), Index(Index), 147 GenerateHash(GenerateHash), ModHash(ModHash), 148 BitcodeStartBit(Stream.GetCurrentBitNo()) { 149 // Assign ValueIds to any callee values in the index that came from 150 // indirect call profiles and were recorded as a GUID not a Value* 151 // (which would have been assigned an ID by the ValueEnumerator). 152 // The starting ValueId is just after the number of values in the 153 // ValueEnumerator, so that they can be emitted in the VST. 154 GlobalValueId = VE.getValues().size(); 155 if (!Index) 156 return; 157 for (const auto &GUIDSummaryLists : *Index) 158 // Examine all summaries for this GUID. 159 for (auto &Summary : GUIDSummaryLists.second) 160 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 161 // For each call in the function summary, see if the call 162 // is to a GUID (which means it is for an indirect call, 163 // otherwise we would have a Value for it). If so, synthesize 164 // a value id. 165 for (auto &CallEdge : FS->calls()) 166 if (CallEdge.first.isGUID()) 167 assignValueId(CallEdge.first.getGUID()); 168 } 169 170 /// Emit the current module to the bitstream. 171 void write(); 172 173 private: 174 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 175 176 void writeAttributeGroupTable(); 177 void writeAttributeTable(); 178 void writeTypeTable(); 179 void writeComdats(); 180 void writeValueSymbolTableForwardDecl(); 181 void writeModuleInfo(); 182 void writeValueAsMetadata(const ValueAsMetadata *MD, 183 SmallVectorImpl<uint64_t> &Record); 184 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 185 unsigned Abbrev); 186 unsigned createDILocationAbbrev(); 187 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 188 unsigned &Abbrev); 189 unsigned createGenericDINodeAbbrev(); 190 void writeGenericDINode(const GenericDINode *N, 191 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 192 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 193 unsigned Abbrev); 194 void writeDIEnumerator(const DIEnumerator *N, 195 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 196 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 197 unsigned Abbrev); 198 void writeDIDerivedType(const DIDerivedType *N, 199 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 200 void writeDICompositeType(const DICompositeType *N, 201 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 202 void writeDISubroutineType(const DISubroutineType *N, 203 SmallVectorImpl<uint64_t> &Record, 204 unsigned Abbrev); 205 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 206 unsigned Abbrev); 207 void writeDICompileUnit(const DICompileUnit *N, 208 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 209 void writeDISubprogram(const DISubprogram *N, 210 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 211 void writeDILexicalBlock(const DILexicalBlock *N, 212 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 213 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 214 SmallVectorImpl<uint64_t> &Record, 215 unsigned Abbrev); 216 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 217 unsigned Abbrev); 218 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 219 unsigned Abbrev); 220 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 221 unsigned Abbrev); 222 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 223 unsigned Abbrev); 224 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 225 SmallVectorImpl<uint64_t> &Record, 226 unsigned Abbrev); 227 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 228 SmallVectorImpl<uint64_t> &Record, 229 unsigned Abbrev); 230 void writeDIGlobalVariable(const DIGlobalVariable *N, 231 SmallVectorImpl<uint64_t> &Record, 232 unsigned Abbrev); 233 void writeDILocalVariable(const DILocalVariable *N, 234 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 235 void writeDIExpression(const DIExpression *N, 236 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 237 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 238 SmallVectorImpl<uint64_t> &Record, 239 unsigned Abbrev); 240 void writeDIObjCProperty(const DIObjCProperty *N, 241 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 242 void writeDIImportedEntity(const DIImportedEntity *N, 243 SmallVectorImpl<uint64_t> &Record, 244 unsigned Abbrev); 245 unsigned createNamedMetadataAbbrev(); 246 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 247 unsigned createMetadataStringsAbbrev(); 248 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 249 SmallVectorImpl<uint64_t> &Record); 250 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 251 SmallVectorImpl<uint64_t> &Record, 252 std::vector<unsigned> *MDAbbrevs = nullptr, 253 std::vector<uint64_t> *IndexPos = nullptr); 254 void writeModuleMetadata(); 255 void writeFunctionMetadata(const Function &F); 256 void writeFunctionMetadataAttachment(const Function &F); 257 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 258 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 259 const GlobalObject &GO); 260 void writeModuleMetadataKinds(); 261 void writeOperandBundleTags(); 262 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 263 void writeModuleConstants(); 264 bool pushValueAndType(const Value *V, unsigned InstID, 265 SmallVectorImpl<unsigned> &Vals); 266 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 267 void pushValue(const Value *V, unsigned InstID, 268 SmallVectorImpl<unsigned> &Vals); 269 void pushValueSigned(const Value *V, unsigned InstID, 270 SmallVectorImpl<uint64_t> &Vals); 271 void writeInstruction(const Instruction &I, unsigned InstID, 272 SmallVectorImpl<unsigned> &Vals); 273 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 274 void writeGlobalValueSymbolTable( 275 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 276 void writeUseList(UseListOrder &&Order); 277 void writeUseListBlock(const Function *F); 278 void 279 writeFunction(const Function &F, 280 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 281 void writeBlockInfo(); 282 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 283 GlobalValueSummary *Summary, 284 unsigned ValueID, 285 unsigned FSCallsAbbrev, 286 unsigned FSCallsProfileAbbrev, 287 const Function &F); 288 void writeModuleLevelReferences(const GlobalVariable &V, 289 SmallVector<uint64_t, 64> &NameVals, 290 unsigned FSModRefsAbbrev); 291 void writePerModuleGlobalValueSummary(); 292 void writeModuleHash(size_t BlockStartPos); 293 294 void assignValueId(GlobalValue::GUID ValGUID) { 295 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 296 } 297 unsigned getValueId(GlobalValue::GUID ValGUID) { 298 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 299 // Expect that any GUID value had a value Id assigned by an 300 // earlier call to assignValueId. 301 assert(VMI != GUIDToValueIdMap.end() && 302 "GUID does not have assigned value Id"); 303 return VMI->second; 304 } 305 // Helper to get the valueId for the type of value recorded in VI. 306 unsigned getValueId(ValueInfo VI) { 307 if (VI.isGUID()) 308 return getValueId(VI.getGUID()); 309 return VE.getValueID(VI.getValue()); 310 } 311 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 312 }; 313 314 /// Class to manage the bitcode writing for a combined index. 315 class IndexBitcodeWriter : public BitcodeWriterBase { 316 /// The combined index to write to bitcode. 317 const ModuleSummaryIndex &Index; 318 319 /// When writing a subset of the index for distributed backends, client 320 /// provides a map of modules to the corresponding GUIDs/summaries to write. 321 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 322 323 /// Map that holds the correspondence between the GUID used in the combined 324 /// index and a value id generated by this class to use in references. 325 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 326 327 /// Tracks the last value id recorded in the GUIDToValueMap. 328 unsigned GlobalValueId = 0; 329 330 public: 331 /// Constructs a IndexBitcodeWriter object for the given combined index, 332 /// writing to the provided \p Buffer. When writing a subset of the index 333 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 334 IndexBitcodeWriter(BitstreamWriter &Stream, const ModuleSummaryIndex &Index, 335 const std::map<std::string, GVSummaryMapTy> 336 *ModuleToSummariesForIndex = nullptr) 337 : BitcodeWriterBase(Stream), Index(Index), 338 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 339 // Assign unique value ids to all summaries to be written, for use 340 // in writing out the call graph edges. Save the mapping from GUID 341 // to the new global value id to use when writing those edges, which 342 // are currently saved in the index in terms of GUID. 343 for (const auto &I : *this) 344 GUIDToValueIdMap[I.first] = ++GlobalValueId; 345 } 346 347 /// The below iterator returns the GUID and associated summary. 348 typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo; 349 350 /// Iterator over the value GUID and summaries to be written to bitcode, 351 /// hides the details of whether they are being pulled from the entire 352 /// index or just those in a provided ModuleToSummariesForIndex map. 353 class iterator 354 : public llvm::iterator_facade_base<iterator, std::forward_iterator_tag, 355 GVInfo> { 356 /// Enables access to parent class. 357 const IndexBitcodeWriter &Writer; 358 359 // Iterators used when writing only those summaries in a provided 360 // ModuleToSummariesForIndex map: 361 362 /// Points to the last element in outer ModuleToSummariesForIndex map. 363 std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesBack; 364 /// Iterator on outer ModuleToSummariesForIndex map. 365 std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesIter; 366 /// Iterator on an inner global variable summary map. 367 GVSummaryMapTy::const_iterator ModuleGVSummariesIter; 368 369 // Iterators used when writing all summaries in the index: 370 371 /// Points to the last element in the Index outer GlobalValueMap. 372 const_gvsummary_iterator IndexSummariesBack; 373 /// Iterator on outer GlobalValueMap. 374 const_gvsummary_iterator IndexSummariesIter; 375 /// Iterator on an inner GlobalValueSummaryList. 376 GlobalValueSummaryList::const_iterator IndexGVSummariesIter; 377 378 public: 379 /// Construct iterator from parent \p Writer and indicate if we are 380 /// constructing the end iterator. 381 iterator(const IndexBitcodeWriter &Writer, bool IsAtEnd) : Writer(Writer) { 382 // Set up the appropriate set of iterators given whether we are writing 383 // the full index or just a subset. 384 // Can't setup the Back or inner iterators if the corresponding map 385 // is empty. This will be handled specially in operator== as well. 386 if (Writer.ModuleToSummariesForIndex && 387 !Writer.ModuleToSummariesForIndex->empty()) { 388 for (ModuleSummariesBack = Writer.ModuleToSummariesForIndex->begin(); 389 std::next(ModuleSummariesBack) != 390 Writer.ModuleToSummariesForIndex->end(); 391 ModuleSummariesBack++) 392 ; 393 ModuleSummariesIter = !IsAtEnd 394 ? Writer.ModuleToSummariesForIndex->begin() 395 : ModuleSummariesBack; 396 ModuleGVSummariesIter = !IsAtEnd ? ModuleSummariesIter->second.begin() 397 : ModuleSummariesBack->second.end(); 398 } else if (!Writer.ModuleToSummariesForIndex && 399 Writer.Index.begin() != Writer.Index.end()) { 400 for (IndexSummariesBack = Writer.Index.begin(); 401 std::next(IndexSummariesBack) != Writer.Index.end(); 402 IndexSummariesBack++) 403 ; 404 IndexSummariesIter = 405 !IsAtEnd ? Writer.Index.begin() : IndexSummariesBack; 406 IndexGVSummariesIter = !IsAtEnd ? IndexSummariesIter->second.begin() 407 : IndexSummariesBack->second.end(); 408 } 409 } 410 411 /// Increment the appropriate set of iterators. 412 iterator &operator++() { 413 // First the inner iterator is incremented, then if it is at the end 414 // and there are more outer iterations to go, the inner is reset to 415 // the start of the next inner list. 416 if (Writer.ModuleToSummariesForIndex) { 417 ++ModuleGVSummariesIter; 418 if (ModuleGVSummariesIter == ModuleSummariesIter->second.end() && 419 ModuleSummariesIter != ModuleSummariesBack) { 420 ++ModuleSummariesIter; 421 ModuleGVSummariesIter = ModuleSummariesIter->second.begin(); 422 } 423 } else { 424 ++IndexGVSummariesIter; 425 if (IndexGVSummariesIter == IndexSummariesIter->second.end() && 426 IndexSummariesIter != IndexSummariesBack) { 427 ++IndexSummariesIter; 428 IndexGVSummariesIter = IndexSummariesIter->second.begin(); 429 } 430 } 431 return *this; 432 } 433 434 /// Access the <GUID,GlobalValueSummary*> pair corresponding to the current 435 /// outer and inner iterator positions. 436 GVInfo operator*() { 437 if (Writer.ModuleToSummariesForIndex) 438 return std::make_pair(ModuleGVSummariesIter->first, 439 ModuleGVSummariesIter->second); 440 return std::make_pair(IndexSummariesIter->first, 441 IndexGVSummariesIter->get()); 442 } 443 444 /// Checks if the iterators are equal, with special handling for empty 445 /// indexes. 446 bool operator==(const iterator &RHS) const { 447 if (Writer.ModuleToSummariesForIndex) { 448 // First ensure that both are writing the same subset. 449 if (Writer.ModuleToSummariesForIndex != 450 RHS.Writer.ModuleToSummariesForIndex) 451 return false; 452 // Already determined above that maps are the same, so if one is 453 // empty, they both are. 454 if (Writer.ModuleToSummariesForIndex->empty()) 455 return true; 456 // Ensure the ModuleGVSummariesIter are iterating over the same 457 // container before checking them below. 458 if (ModuleSummariesIter != RHS.ModuleSummariesIter) 459 return false; 460 return ModuleGVSummariesIter == RHS.ModuleGVSummariesIter; 461 } 462 // First ensure RHS also writing the full index, and that both are 463 // writing the same full index. 464 if (RHS.Writer.ModuleToSummariesForIndex || 465 &Writer.Index != &RHS.Writer.Index) 466 return false; 467 // Already determined above that maps are the same, so if one is 468 // empty, they both are. 469 if (Writer.Index.begin() == Writer.Index.end()) 470 return true; 471 // Ensure the IndexGVSummariesIter are iterating over the same 472 // container before checking them below. 473 if (IndexSummariesIter != RHS.IndexSummariesIter) 474 return false; 475 return IndexGVSummariesIter == RHS.IndexGVSummariesIter; 476 } 477 }; 478 479 /// Obtain the start iterator over the summaries to be written. 480 iterator begin() { return iterator(*this, /*IsAtEnd=*/false); } 481 /// Obtain the end iterator over the summaries to be written. 482 iterator end() { return iterator(*this, /*IsAtEnd=*/true); } 483 484 /// Main entry point for writing a combined index to bitcode. 485 void write(); 486 487 private: 488 void writeModStrings(); 489 void writeCombinedGlobalValueSummary(); 490 491 /// Indicates whether the provided \p ModulePath should be written into 492 /// the module string table, e.g. if full index written or if it is in 493 /// the provided subset. 494 bool doIncludeModule(StringRef ModulePath) { 495 return !ModuleToSummariesForIndex || 496 ModuleToSummariesForIndex->count(ModulePath); 497 } 498 499 bool hasValueId(GlobalValue::GUID ValGUID) { 500 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 501 return VMI != GUIDToValueIdMap.end(); 502 } 503 void assignValueId(GlobalValue::GUID ValGUID) { 504 unsigned &ValueId = GUIDToValueIdMap[ValGUID]; 505 if (ValueId == 0) 506 ValueId = ++GlobalValueId; 507 } 508 unsigned getValueId(GlobalValue::GUID ValGUID) { 509 auto VMI = GUIDToValueIdMap.find(ValGUID); 510 assert(VMI != GUIDToValueIdMap.end()); 511 return VMI->second; 512 } 513 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 514 }; 515 } // end anonymous namespace 516 517 static unsigned getEncodedCastOpcode(unsigned Opcode) { 518 switch (Opcode) { 519 default: llvm_unreachable("Unknown cast instruction!"); 520 case Instruction::Trunc : return bitc::CAST_TRUNC; 521 case Instruction::ZExt : return bitc::CAST_ZEXT; 522 case Instruction::SExt : return bitc::CAST_SEXT; 523 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 524 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 525 case Instruction::UIToFP : return bitc::CAST_UITOFP; 526 case Instruction::SIToFP : return bitc::CAST_SITOFP; 527 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 528 case Instruction::FPExt : return bitc::CAST_FPEXT; 529 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 530 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 531 case Instruction::BitCast : return bitc::CAST_BITCAST; 532 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 533 } 534 } 535 536 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 537 switch (Opcode) { 538 default: llvm_unreachable("Unknown binary instruction!"); 539 case Instruction::Add: 540 case Instruction::FAdd: return bitc::BINOP_ADD; 541 case Instruction::Sub: 542 case Instruction::FSub: return bitc::BINOP_SUB; 543 case Instruction::Mul: 544 case Instruction::FMul: return bitc::BINOP_MUL; 545 case Instruction::UDiv: return bitc::BINOP_UDIV; 546 case Instruction::FDiv: 547 case Instruction::SDiv: return bitc::BINOP_SDIV; 548 case Instruction::URem: return bitc::BINOP_UREM; 549 case Instruction::FRem: 550 case Instruction::SRem: return bitc::BINOP_SREM; 551 case Instruction::Shl: return bitc::BINOP_SHL; 552 case Instruction::LShr: return bitc::BINOP_LSHR; 553 case Instruction::AShr: return bitc::BINOP_ASHR; 554 case Instruction::And: return bitc::BINOP_AND; 555 case Instruction::Or: return bitc::BINOP_OR; 556 case Instruction::Xor: return bitc::BINOP_XOR; 557 } 558 } 559 560 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 561 switch (Op) { 562 default: llvm_unreachable("Unknown RMW operation!"); 563 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 564 case AtomicRMWInst::Add: return bitc::RMW_ADD; 565 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 566 case AtomicRMWInst::And: return bitc::RMW_AND; 567 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 568 case AtomicRMWInst::Or: return bitc::RMW_OR; 569 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 570 case AtomicRMWInst::Max: return bitc::RMW_MAX; 571 case AtomicRMWInst::Min: return bitc::RMW_MIN; 572 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 573 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 574 } 575 } 576 577 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 578 switch (Ordering) { 579 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 580 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 581 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 582 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 583 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 584 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 585 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 586 } 587 llvm_unreachable("Invalid ordering"); 588 } 589 590 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) { 591 switch (SynchScope) { 592 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 593 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 594 } 595 llvm_unreachable("Invalid synch scope"); 596 } 597 598 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 599 StringRef Str, unsigned AbbrevToUse) { 600 SmallVector<unsigned, 64> Vals; 601 602 // Code: [strchar x N] 603 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 604 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 605 AbbrevToUse = 0; 606 Vals.push_back(Str[i]); 607 } 608 609 // Emit the finished record. 610 Stream.EmitRecord(Code, Vals, AbbrevToUse); 611 } 612 613 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 614 switch (Kind) { 615 case Attribute::Alignment: 616 return bitc::ATTR_KIND_ALIGNMENT; 617 case Attribute::AllocSize: 618 return bitc::ATTR_KIND_ALLOC_SIZE; 619 case Attribute::AlwaysInline: 620 return bitc::ATTR_KIND_ALWAYS_INLINE; 621 case Attribute::ArgMemOnly: 622 return bitc::ATTR_KIND_ARGMEMONLY; 623 case Attribute::Builtin: 624 return bitc::ATTR_KIND_BUILTIN; 625 case Attribute::ByVal: 626 return bitc::ATTR_KIND_BY_VAL; 627 case Attribute::Convergent: 628 return bitc::ATTR_KIND_CONVERGENT; 629 case Attribute::InAlloca: 630 return bitc::ATTR_KIND_IN_ALLOCA; 631 case Attribute::Cold: 632 return bitc::ATTR_KIND_COLD; 633 case Attribute::InaccessibleMemOnly: 634 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 635 case Attribute::InaccessibleMemOrArgMemOnly: 636 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 637 case Attribute::InlineHint: 638 return bitc::ATTR_KIND_INLINE_HINT; 639 case Attribute::InReg: 640 return bitc::ATTR_KIND_IN_REG; 641 case Attribute::JumpTable: 642 return bitc::ATTR_KIND_JUMP_TABLE; 643 case Attribute::MinSize: 644 return bitc::ATTR_KIND_MIN_SIZE; 645 case Attribute::Naked: 646 return bitc::ATTR_KIND_NAKED; 647 case Attribute::Nest: 648 return bitc::ATTR_KIND_NEST; 649 case Attribute::NoAlias: 650 return bitc::ATTR_KIND_NO_ALIAS; 651 case Attribute::NoBuiltin: 652 return bitc::ATTR_KIND_NO_BUILTIN; 653 case Attribute::NoCapture: 654 return bitc::ATTR_KIND_NO_CAPTURE; 655 case Attribute::NoDuplicate: 656 return bitc::ATTR_KIND_NO_DUPLICATE; 657 case Attribute::NoImplicitFloat: 658 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 659 case Attribute::NoInline: 660 return bitc::ATTR_KIND_NO_INLINE; 661 case Attribute::NoRecurse: 662 return bitc::ATTR_KIND_NO_RECURSE; 663 case Attribute::NonLazyBind: 664 return bitc::ATTR_KIND_NON_LAZY_BIND; 665 case Attribute::NonNull: 666 return bitc::ATTR_KIND_NON_NULL; 667 case Attribute::Dereferenceable: 668 return bitc::ATTR_KIND_DEREFERENCEABLE; 669 case Attribute::DereferenceableOrNull: 670 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 671 case Attribute::NoRedZone: 672 return bitc::ATTR_KIND_NO_RED_ZONE; 673 case Attribute::NoReturn: 674 return bitc::ATTR_KIND_NO_RETURN; 675 case Attribute::NoUnwind: 676 return bitc::ATTR_KIND_NO_UNWIND; 677 case Attribute::OptimizeForSize: 678 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 679 case Attribute::OptimizeNone: 680 return bitc::ATTR_KIND_OPTIMIZE_NONE; 681 case Attribute::ReadNone: 682 return bitc::ATTR_KIND_READ_NONE; 683 case Attribute::ReadOnly: 684 return bitc::ATTR_KIND_READ_ONLY; 685 case Attribute::Returned: 686 return bitc::ATTR_KIND_RETURNED; 687 case Attribute::ReturnsTwice: 688 return bitc::ATTR_KIND_RETURNS_TWICE; 689 case Attribute::SExt: 690 return bitc::ATTR_KIND_S_EXT; 691 case Attribute::StackAlignment: 692 return bitc::ATTR_KIND_STACK_ALIGNMENT; 693 case Attribute::StackProtect: 694 return bitc::ATTR_KIND_STACK_PROTECT; 695 case Attribute::StackProtectReq: 696 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 697 case Attribute::StackProtectStrong: 698 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 699 case Attribute::SafeStack: 700 return bitc::ATTR_KIND_SAFESTACK; 701 case Attribute::StructRet: 702 return bitc::ATTR_KIND_STRUCT_RET; 703 case Attribute::SanitizeAddress: 704 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 705 case Attribute::SanitizeThread: 706 return bitc::ATTR_KIND_SANITIZE_THREAD; 707 case Attribute::SanitizeMemory: 708 return bitc::ATTR_KIND_SANITIZE_MEMORY; 709 case Attribute::SwiftError: 710 return bitc::ATTR_KIND_SWIFT_ERROR; 711 case Attribute::SwiftSelf: 712 return bitc::ATTR_KIND_SWIFT_SELF; 713 case Attribute::UWTable: 714 return bitc::ATTR_KIND_UW_TABLE; 715 case Attribute::WriteOnly: 716 return bitc::ATTR_KIND_WRITEONLY; 717 case Attribute::ZExt: 718 return bitc::ATTR_KIND_Z_EXT; 719 case Attribute::EndAttrKinds: 720 llvm_unreachable("Can not encode end-attribute kinds marker."); 721 case Attribute::None: 722 llvm_unreachable("Can not encode none-attribute."); 723 } 724 725 llvm_unreachable("Trying to encode unknown attribute"); 726 } 727 728 void ModuleBitcodeWriter::writeAttributeGroupTable() { 729 const std::vector<AttributeList> &AttrGrps = VE.getAttributeGroups(); 730 if (AttrGrps.empty()) return; 731 732 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 733 734 SmallVector<uint64_t, 64> Record; 735 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 736 AttributeList AS = AttrGrps[i]; 737 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 738 AttributeList A = AS.getSlotAttributes(i); 739 740 Record.push_back(VE.getAttributeGroupID(A)); 741 Record.push_back(AS.getSlotIndex(i)); 742 743 for (AttributeList::iterator I = AS.begin(0), E = AS.end(0); I != E; 744 ++I) { 745 Attribute Attr = *I; 746 if (Attr.isEnumAttribute()) { 747 Record.push_back(0); 748 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 749 } else if (Attr.isIntAttribute()) { 750 Record.push_back(1); 751 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 752 Record.push_back(Attr.getValueAsInt()); 753 } else { 754 StringRef Kind = Attr.getKindAsString(); 755 StringRef Val = Attr.getValueAsString(); 756 757 Record.push_back(Val.empty() ? 3 : 4); 758 Record.append(Kind.begin(), Kind.end()); 759 Record.push_back(0); 760 if (!Val.empty()) { 761 Record.append(Val.begin(), Val.end()); 762 Record.push_back(0); 763 } 764 } 765 } 766 767 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 768 Record.clear(); 769 } 770 } 771 772 Stream.ExitBlock(); 773 } 774 775 void ModuleBitcodeWriter::writeAttributeTable() { 776 const std::vector<AttributeList> &Attrs = VE.getAttributes(); 777 if (Attrs.empty()) return; 778 779 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 780 781 SmallVector<uint64_t, 64> Record; 782 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 783 const AttributeList &A = Attrs[i]; 784 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 785 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 786 787 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 788 Record.clear(); 789 } 790 791 Stream.ExitBlock(); 792 } 793 794 /// WriteTypeTable - Write out the type table for a module. 795 void ModuleBitcodeWriter::writeTypeTable() { 796 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 797 798 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 799 SmallVector<uint64_t, 64> TypeVals; 800 801 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 802 803 // Abbrev for TYPE_CODE_POINTER. 804 auto Abbv = std::make_shared<BitCodeAbbrev>(); 805 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 807 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 808 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 809 810 // Abbrev for TYPE_CODE_FUNCTION. 811 Abbv = std::make_shared<BitCodeAbbrev>(); 812 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 816 817 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 818 819 // Abbrev for TYPE_CODE_STRUCT_ANON. 820 Abbv = std::make_shared<BitCodeAbbrev>(); 821 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 825 826 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 827 828 // Abbrev for TYPE_CODE_STRUCT_NAME. 829 Abbv = std::make_shared<BitCodeAbbrev>(); 830 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 833 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 834 835 // Abbrev for TYPE_CODE_STRUCT_NAMED. 836 Abbv = std::make_shared<BitCodeAbbrev>(); 837 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 841 842 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 843 844 // Abbrev for TYPE_CODE_ARRAY. 845 Abbv = std::make_shared<BitCodeAbbrev>(); 846 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 847 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 848 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 849 850 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 851 852 // Emit an entry count so the reader can reserve space. 853 TypeVals.push_back(TypeList.size()); 854 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 855 TypeVals.clear(); 856 857 // Loop over all of the types, emitting each in turn. 858 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 859 Type *T = TypeList[i]; 860 int AbbrevToUse = 0; 861 unsigned Code = 0; 862 863 switch (T->getTypeID()) { 864 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 865 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 866 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 867 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 868 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 869 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 870 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 871 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 872 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 873 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 874 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 875 case Type::IntegerTyID: 876 // INTEGER: [width] 877 Code = bitc::TYPE_CODE_INTEGER; 878 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 879 break; 880 case Type::PointerTyID: { 881 PointerType *PTy = cast<PointerType>(T); 882 // POINTER: [pointee type, address space] 883 Code = bitc::TYPE_CODE_POINTER; 884 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 885 unsigned AddressSpace = PTy->getAddressSpace(); 886 TypeVals.push_back(AddressSpace); 887 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 888 break; 889 } 890 case Type::FunctionTyID: { 891 FunctionType *FT = cast<FunctionType>(T); 892 // FUNCTION: [isvararg, retty, paramty x N] 893 Code = bitc::TYPE_CODE_FUNCTION; 894 TypeVals.push_back(FT->isVarArg()); 895 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 896 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 897 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 898 AbbrevToUse = FunctionAbbrev; 899 break; 900 } 901 case Type::StructTyID: { 902 StructType *ST = cast<StructType>(T); 903 // STRUCT: [ispacked, eltty x N] 904 TypeVals.push_back(ST->isPacked()); 905 // Output all of the element types. 906 for (StructType::element_iterator I = ST->element_begin(), 907 E = ST->element_end(); I != E; ++I) 908 TypeVals.push_back(VE.getTypeID(*I)); 909 910 if (ST->isLiteral()) { 911 Code = bitc::TYPE_CODE_STRUCT_ANON; 912 AbbrevToUse = StructAnonAbbrev; 913 } else { 914 if (ST->isOpaque()) { 915 Code = bitc::TYPE_CODE_OPAQUE; 916 } else { 917 Code = bitc::TYPE_CODE_STRUCT_NAMED; 918 AbbrevToUse = StructNamedAbbrev; 919 } 920 921 // Emit the name if it is present. 922 if (!ST->getName().empty()) 923 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 924 StructNameAbbrev); 925 } 926 break; 927 } 928 case Type::ArrayTyID: { 929 ArrayType *AT = cast<ArrayType>(T); 930 // ARRAY: [numelts, eltty] 931 Code = bitc::TYPE_CODE_ARRAY; 932 TypeVals.push_back(AT->getNumElements()); 933 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 934 AbbrevToUse = ArrayAbbrev; 935 break; 936 } 937 case Type::VectorTyID: { 938 VectorType *VT = cast<VectorType>(T); 939 // VECTOR [numelts, eltty] 940 Code = bitc::TYPE_CODE_VECTOR; 941 TypeVals.push_back(VT->getNumElements()); 942 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 943 break; 944 } 945 } 946 947 // Emit the finished record. 948 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 949 TypeVals.clear(); 950 } 951 952 Stream.ExitBlock(); 953 } 954 955 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 956 switch (Linkage) { 957 case GlobalValue::ExternalLinkage: 958 return 0; 959 case GlobalValue::WeakAnyLinkage: 960 return 16; 961 case GlobalValue::AppendingLinkage: 962 return 2; 963 case GlobalValue::InternalLinkage: 964 return 3; 965 case GlobalValue::LinkOnceAnyLinkage: 966 return 18; 967 case GlobalValue::ExternalWeakLinkage: 968 return 7; 969 case GlobalValue::CommonLinkage: 970 return 8; 971 case GlobalValue::PrivateLinkage: 972 return 9; 973 case GlobalValue::WeakODRLinkage: 974 return 17; 975 case GlobalValue::LinkOnceODRLinkage: 976 return 19; 977 case GlobalValue::AvailableExternallyLinkage: 978 return 12; 979 } 980 llvm_unreachable("Invalid linkage"); 981 } 982 983 static unsigned getEncodedLinkage(const GlobalValue &GV) { 984 return getEncodedLinkage(GV.getLinkage()); 985 } 986 987 // Decode the flags for GlobalValue in the summary 988 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 989 uint64_t RawFlags = 0; 990 991 RawFlags |= Flags.NotEligibleToImport; // bool 992 RawFlags |= (Flags.LiveRoot << 1); 993 // Linkage don't need to be remapped at that time for the summary. Any future 994 // change to the getEncodedLinkage() function will need to be taken into 995 // account here as well. 996 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 997 998 return RawFlags; 999 } 1000 1001 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1002 switch (GV.getVisibility()) { 1003 case GlobalValue::DefaultVisibility: return 0; 1004 case GlobalValue::HiddenVisibility: return 1; 1005 case GlobalValue::ProtectedVisibility: return 2; 1006 } 1007 llvm_unreachable("Invalid visibility"); 1008 } 1009 1010 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1011 switch (GV.getDLLStorageClass()) { 1012 case GlobalValue::DefaultStorageClass: return 0; 1013 case GlobalValue::DLLImportStorageClass: return 1; 1014 case GlobalValue::DLLExportStorageClass: return 2; 1015 } 1016 llvm_unreachable("Invalid DLL storage class"); 1017 } 1018 1019 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1020 switch (GV.getThreadLocalMode()) { 1021 case GlobalVariable::NotThreadLocal: return 0; 1022 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1023 case GlobalVariable::LocalDynamicTLSModel: return 2; 1024 case GlobalVariable::InitialExecTLSModel: return 3; 1025 case GlobalVariable::LocalExecTLSModel: return 4; 1026 } 1027 llvm_unreachable("Invalid TLS model"); 1028 } 1029 1030 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1031 switch (C.getSelectionKind()) { 1032 case Comdat::Any: 1033 return bitc::COMDAT_SELECTION_KIND_ANY; 1034 case Comdat::ExactMatch: 1035 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1036 case Comdat::Largest: 1037 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1038 case Comdat::NoDuplicates: 1039 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1040 case Comdat::SameSize: 1041 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1042 } 1043 llvm_unreachable("Invalid selection kind"); 1044 } 1045 1046 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1047 switch (GV.getUnnamedAddr()) { 1048 case GlobalValue::UnnamedAddr::None: return 0; 1049 case GlobalValue::UnnamedAddr::Local: return 2; 1050 case GlobalValue::UnnamedAddr::Global: return 1; 1051 } 1052 llvm_unreachable("Invalid unnamed_addr"); 1053 } 1054 1055 void ModuleBitcodeWriter::writeComdats() { 1056 SmallVector<unsigned, 64> Vals; 1057 for (const Comdat *C : VE.getComdats()) { 1058 // COMDAT: [strtab offset, strtab size, selection_kind] 1059 Vals.push_back(StrtabBuilder.add(C->getName())); 1060 Vals.push_back(C->getName().size()); 1061 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1062 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1063 Vals.clear(); 1064 } 1065 } 1066 1067 /// Write a record that will eventually hold the word offset of the 1068 /// module-level VST. For now the offset is 0, which will be backpatched 1069 /// after the real VST is written. Saves the bit offset to backpatch. 1070 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1071 // Write a placeholder value in for the offset of the real VST, 1072 // which is written after the function blocks so that it can include 1073 // the offset of each function. The placeholder offset will be 1074 // updated when the real VST is written. 1075 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1076 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1077 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1078 // hold the real VST offset. Must use fixed instead of VBR as we don't 1079 // know how many VBR chunks to reserve ahead of time. 1080 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1081 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1082 1083 // Emit the placeholder 1084 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1085 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1086 1087 // Compute and save the bit offset to the placeholder, which will be 1088 // patched when the real VST is written. We can simply subtract the 32-bit 1089 // fixed size from the current bit number to get the location to backpatch. 1090 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1091 } 1092 1093 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1094 1095 /// Determine the encoding to use for the given string name and length. 1096 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 1097 bool isChar6 = true; 1098 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 1099 if (isChar6) 1100 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1101 if ((unsigned char)*C & 128) 1102 // don't bother scanning the rest. 1103 return SE_Fixed8; 1104 } 1105 if (isChar6) 1106 return SE_Char6; 1107 else 1108 return SE_Fixed7; 1109 } 1110 1111 /// Emit top-level description of module, including target triple, inline asm, 1112 /// descriptors for global variables, and function prototype info. 1113 /// Returns the bit offset to backpatch with the location of the real VST. 1114 void ModuleBitcodeWriter::writeModuleInfo() { 1115 // Emit various pieces of data attached to a module. 1116 if (!M.getTargetTriple().empty()) 1117 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1118 0 /*TODO*/); 1119 const std::string &DL = M.getDataLayoutStr(); 1120 if (!DL.empty()) 1121 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1122 if (!M.getModuleInlineAsm().empty()) 1123 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1124 0 /*TODO*/); 1125 1126 // Emit information about sections and GC, computing how many there are. Also 1127 // compute the maximum alignment value. 1128 std::map<std::string, unsigned> SectionMap; 1129 std::map<std::string, unsigned> GCMap; 1130 unsigned MaxAlignment = 0; 1131 unsigned MaxGlobalType = 0; 1132 for (const GlobalValue &GV : M.globals()) { 1133 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1134 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1135 if (GV.hasSection()) { 1136 // Give section names unique ID's. 1137 unsigned &Entry = SectionMap[GV.getSection()]; 1138 if (!Entry) { 1139 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1140 0 /*TODO*/); 1141 Entry = SectionMap.size(); 1142 } 1143 } 1144 } 1145 for (const Function &F : M) { 1146 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1147 if (F.hasSection()) { 1148 // Give section names unique ID's. 1149 unsigned &Entry = SectionMap[F.getSection()]; 1150 if (!Entry) { 1151 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1152 0 /*TODO*/); 1153 Entry = SectionMap.size(); 1154 } 1155 } 1156 if (F.hasGC()) { 1157 // Same for GC names. 1158 unsigned &Entry = GCMap[F.getGC()]; 1159 if (!Entry) { 1160 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1161 0 /*TODO*/); 1162 Entry = GCMap.size(); 1163 } 1164 } 1165 } 1166 1167 // Emit abbrev for globals, now that we know # sections and max alignment. 1168 unsigned SimpleGVarAbbrev = 0; 1169 if (!M.global_empty()) { 1170 // Add an abbrev for common globals with no visibility or thread localness. 1171 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1172 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1176 Log2_32_Ceil(MaxGlobalType+1))); 1177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1178 //| explicitType << 1 1179 //| constant 1180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1182 if (MaxAlignment == 0) // Alignment. 1183 Abbv->Add(BitCodeAbbrevOp(0)); 1184 else { 1185 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1187 Log2_32_Ceil(MaxEncAlignment+1))); 1188 } 1189 if (SectionMap.empty()) // Section. 1190 Abbv->Add(BitCodeAbbrevOp(0)); 1191 else 1192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1193 Log2_32_Ceil(SectionMap.size()+1))); 1194 // Don't bother emitting vis + thread local. 1195 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1196 } 1197 1198 SmallVector<unsigned, 64> Vals; 1199 // Emit the module's source file name. 1200 { 1201 StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(), 1202 M.getSourceFileName().size()); 1203 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1204 if (Bits == SE_Char6) 1205 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1206 else if (Bits == SE_Fixed7) 1207 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1208 1209 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1210 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1211 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1213 Abbv->Add(AbbrevOpToUse); 1214 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1215 1216 for (const auto P : M.getSourceFileName()) 1217 Vals.push_back((unsigned char)P); 1218 1219 // Emit the finished record. 1220 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1221 Vals.clear(); 1222 } 1223 1224 // Emit the global variable information. 1225 for (const GlobalVariable &GV : M.globals()) { 1226 unsigned AbbrevToUse = 0; 1227 1228 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1229 // linkage, alignment, section, visibility, threadlocal, 1230 // unnamed_addr, externally_initialized, dllstorageclass, 1231 // comdat] 1232 Vals.push_back(StrtabBuilder.add(GV.getName())); 1233 Vals.push_back(GV.getName().size()); 1234 Vals.push_back(VE.getTypeID(GV.getValueType())); 1235 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1236 Vals.push_back(GV.isDeclaration() ? 0 : 1237 (VE.getValueID(GV.getInitializer()) + 1)); 1238 Vals.push_back(getEncodedLinkage(GV)); 1239 Vals.push_back(Log2_32(GV.getAlignment())+1); 1240 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1241 if (GV.isThreadLocal() || 1242 GV.getVisibility() != GlobalValue::DefaultVisibility || 1243 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1244 GV.isExternallyInitialized() || 1245 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1246 GV.hasComdat()) { 1247 Vals.push_back(getEncodedVisibility(GV)); 1248 Vals.push_back(getEncodedThreadLocalMode(GV)); 1249 Vals.push_back(getEncodedUnnamedAddr(GV)); 1250 Vals.push_back(GV.isExternallyInitialized()); 1251 Vals.push_back(getEncodedDLLStorageClass(GV)); 1252 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1253 } else { 1254 AbbrevToUse = SimpleGVarAbbrev; 1255 } 1256 1257 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1258 Vals.clear(); 1259 } 1260 1261 // Emit the function proto information. 1262 for (const Function &F : M) { 1263 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1264 // linkage, paramattrs, alignment, section, visibility, gc, 1265 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1266 // prefixdata, personalityfn] 1267 Vals.push_back(StrtabBuilder.add(F.getName())); 1268 Vals.push_back(F.getName().size()); 1269 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1270 Vals.push_back(F.getCallingConv()); 1271 Vals.push_back(F.isDeclaration()); 1272 Vals.push_back(getEncodedLinkage(F)); 1273 Vals.push_back(VE.getAttributeID(F.getAttributes())); 1274 Vals.push_back(Log2_32(F.getAlignment())+1); 1275 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1276 Vals.push_back(getEncodedVisibility(F)); 1277 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1278 Vals.push_back(getEncodedUnnamedAddr(F)); 1279 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1280 : 0); 1281 Vals.push_back(getEncodedDLLStorageClass(F)); 1282 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1283 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1284 : 0); 1285 Vals.push_back( 1286 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1287 1288 unsigned AbbrevToUse = 0; 1289 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1290 Vals.clear(); 1291 } 1292 1293 // Emit the alias information. 1294 for (const GlobalAlias &A : M.aliases()) { 1295 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1296 // visibility, dllstorageclass, threadlocal, unnamed_addr] 1297 Vals.push_back(StrtabBuilder.add(A.getName())); 1298 Vals.push_back(A.getName().size()); 1299 Vals.push_back(VE.getTypeID(A.getValueType())); 1300 Vals.push_back(A.getType()->getAddressSpace()); 1301 Vals.push_back(VE.getValueID(A.getAliasee())); 1302 Vals.push_back(getEncodedLinkage(A)); 1303 Vals.push_back(getEncodedVisibility(A)); 1304 Vals.push_back(getEncodedDLLStorageClass(A)); 1305 Vals.push_back(getEncodedThreadLocalMode(A)); 1306 Vals.push_back(getEncodedUnnamedAddr(A)); 1307 unsigned AbbrevToUse = 0; 1308 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1309 Vals.clear(); 1310 } 1311 1312 // Emit the ifunc information. 1313 for (const GlobalIFunc &I : M.ifuncs()) { 1314 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1315 // val#, linkage, visibility] 1316 Vals.push_back(StrtabBuilder.add(I.getName())); 1317 Vals.push_back(I.getName().size()); 1318 Vals.push_back(VE.getTypeID(I.getValueType())); 1319 Vals.push_back(I.getType()->getAddressSpace()); 1320 Vals.push_back(VE.getValueID(I.getResolver())); 1321 Vals.push_back(getEncodedLinkage(I)); 1322 Vals.push_back(getEncodedVisibility(I)); 1323 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1324 Vals.clear(); 1325 } 1326 1327 writeValueSymbolTableForwardDecl(); 1328 } 1329 1330 static uint64_t getOptimizationFlags(const Value *V) { 1331 uint64_t Flags = 0; 1332 1333 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1334 if (OBO->hasNoSignedWrap()) 1335 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1336 if (OBO->hasNoUnsignedWrap()) 1337 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1338 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1339 if (PEO->isExact()) 1340 Flags |= 1 << bitc::PEO_EXACT; 1341 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1342 if (FPMO->hasUnsafeAlgebra()) 1343 Flags |= FastMathFlags::UnsafeAlgebra; 1344 if (FPMO->hasNoNaNs()) 1345 Flags |= FastMathFlags::NoNaNs; 1346 if (FPMO->hasNoInfs()) 1347 Flags |= FastMathFlags::NoInfs; 1348 if (FPMO->hasNoSignedZeros()) 1349 Flags |= FastMathFlags::NoSignedZeros; 1350 if (FPMO->hasAllowReciprocal()) 1351 Flags |= FastMathFlags::AllowReciprocal; 1352 if (FPMO->hasAllowContract()) 1353 Flags |= FastMathFlags::AllowContract; 1354 } 1355 1356 return Flags; 1357 } 1358 1359 void ModuleBitcodeWriter::writeValueAsMetadata( 1360 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1361 // Mimic an MDNode with a value as one operand. 1362 Value *V = MD->getValue(); 1363 Record.push_back(VE.getTypeID(V->getType())); 1364 Record.push_back(VE.getValueID(V)); 1365 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1366 Record.clear(); 1367 } 1368 1369 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1370 SmallVectorImpl<uint64_t> &Record, 1371 unsigned Abbrev) { 1372 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1373 Metadata *MD = N->getOperand(i); 1374 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1375 "Unexpected function-local metadata"); 1376 Record.push_back(VE.getMetadataOrNullID(MD)); 1377 } 1378 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1379 : bitc::METADATA_NODE, 1380 Record, Abbrev); 1381 Record.clear(); 1382 } 1383 1384 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1385 // Assume the column is usually under 128, and always output the inlined-at 1386 // location (it's never more expensive than building an array size 1). 1387 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1388 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1394 return Stream.EmitAbbrev(std::move(Abbv)); 1395 } 1396 1397 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1398 SmallVectorImpl<uint64_t> &Record, 1399 unsigned &Abbrev) { 1400 if (!Abbrev) 1401 Abbrev = createDILocationAbbrev(); 1402 1403 Record.push_back(N->isDistinct()); 1404 Record.push_back(N->getLine()); 1405 Record.push_back(N->getColumn()); 1406 Record.push_back(VE.getMetadataID(N->getScope())); 1407 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1408 1409 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1410 Record.clear(); 1411 } 1412 1413 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1414 // Assume the column is usually under 128, and always output the inlined-at 1415 // location (it's never more expensive than building an array size 1). 1416 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1417 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1420 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1421 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1423 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1424 return Stream.EmitAbbrev(std::move(Abbv)); 1425 } 1426 1427 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1428 SmallVectorImpl<uint64_t> &Record, 1429 unsigned &Abbrev) { 1430 if (!Abbrev) 1431 Abbrev = createGenericDINodeAbbrev(); 1432 1433 Record.push_back(N->isDistinct()); 1434 Record.push_back(N->getTag()); 1435 Record.push_back(0); // Per-tag version field; unused for now. 1436 1437 for (auto &I : N->operands()) 1438 Record.push_back(VE.getMetadataOrNullID(I)); 1439 1440 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1441 Record.clear(); 1442 } 1443 1444 static uint64_t rotateSign(int64_t I) { 1445 uint64_t U = I; 1446 return I < 0 ? ~(U << 1) : U << 1; 1447 } 1448 1449 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1450 SmallVectorImpl<uint64_t> &Record, 1451 unsigned Abbrev) { 1452 Record.push_back(N->isDistinct()); 1453 Record.push_back(N->getCount()); 1454 Record.push_back(rotateSign(N->getLowerBound())); 1455 1456 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1457 Record.clear(); 1458 } 1459 1460 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1461 SmallVectorImpl<uint64_t> &Record, 1462 unsigned Abbrev) { 1463 Record.push_back(N->isDistinct()); 1464 Record.push_back(rotateSign(N->getValue())); 1465 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1466 1467 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1468 Record.clear(); 1469 } 1470 1471 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1472 SmallVectorImpl<uint64_t> &Record, 1473 unsigned Abbrev) { 1474 Record.push_back(N->isDistinct()); 1475 Record.push_back(N->getTag()); 1476 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1477 Record.push_back(N->getSizeInBits()); 1478 Record.push_back(N->getAlignInBits()); 1479 Record.push_back(N->getEncoding()); 1480 1481 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1482 Record.clear(); 1483 } 1484 1485 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1486 SmallVectorImpl<uint64_t> &Record, 1487 unsigned Abbrev) { 1488 Record.push_back(N->isDistinct()); 1489 Record.push_back(N->getTag()); 1490 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1491 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1492 Record.push_back(N->getLine()); 1493 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1494 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1495 Record.push_back(N->getSizeInBits()); 1496 Record.push_back(N->getAlignInBits()); 1497 Record.push_back(N->getOffsetInBits()); 1498 Record.push_back(N->getFlags()); 1499 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1500 1501 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1502 // that there is no DWARF address space associated with DIDerivedType. 1503 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1504 Record.push_back(*DWARFAddressSpace + 1); 1505 else 1506 Record.push_back(0); 1507 1508 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1509 Record.clear(); 1510 } 1511 1512 void ModuleBitcodeWriter::writeDICompositeType( 1513 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1514 unsigned Abbrev) { 1515 const unsigned IsNotUsedInOldTypeRef = 0x2; 1516 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1517 Record.push_back(N->getTag()); 1518 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1519 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1520 Record.push_back(N->getLine()); 1521 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1522 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1523 Record.push_back(N->getSizeInBits()); 1524 Record.push_back(N->getAlignInBits()); 1525 Record.push_back(N->getOffsetInBits()); 1526 Record.push_back(N->getFlags()); 1527 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1528 Record.push_back(N->getRuntimeLang()); 1529 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1530 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1531 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1532 1533 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1534 Record.clear(); 1535 } 1536 1537 void ModuleBitcodeWriter::writeDISubroutineType( 1538 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1539 unsigned Abbrev) { 1540 const unsigned HasNoOldTypeRefs = 0x2; 1541 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1542 Record.push_back(N->getFlags()); 1543 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1544 Record.push_back(N->getCC()); 1545 1546 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1547 Record.clear(); 1548 } 1549 1550 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1551 SmallVectorImpl<uint64_t> &Record, 1552 unsigned Abbrev) { 1553 Record.push_back(N->isDistinct()); 1554 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1555 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1556 Record.push_back(N->getChecksumKind()); 1557 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum())); 1558 1559 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1560 Record.clear(); 1561 } 1562 1563 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1564 SmallVectorImpl<uint64_t> &Record, 1565 unsigned Abbrev) { 1566 assert(N->isDistinct() && "Expected distinct compile units"); 1567 Record.push_back(/* IsDistinct */ true); 1568 Record.push_back(N->getSourceLanguage()); 1569 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1570 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1571 Record.push_back(N->isOptimized()); 1572 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1573 Record.push_back(N->getRuntimeVersion()); 1574 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1575 Record.push_back(N->getEmissionKind()); 1576 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1577 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1578 Record.push_back(/* subprograms */ 0); 1579 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1580 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1581 Record.push_back(N->getDWOId()); 1582 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1583 Record.push_back(N->getSplitDebugInlining()); 1584 Record.push_back(N->getDebugInfoForProfiling()); 1585 1586 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1587 Record.clear(); 1588 } 1589 1590 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1591 SmallVectorImpl<uint64_t> &Record, 1592 unsigned Abbrev) { 1593 uint64_t HasUnitFlag = 1 << 1; 1594 Record.push_back(N->isDistinct() | HasUnitFlag); 1595 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1596 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1597 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1598 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1599 Record.push_back(N->getLine()); 1600 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1601 Record.push_back(N->isLocalToUnit()); 1602 Record.push_back(N->isDefinition()); 1603 Record.push_back(N->getScopeLine()); 1604 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1605 Record.push_back(N->getVirtuality()); 1606 Record.push_back(N->getVirtualIndex()); 1607 Record.push_back(N->getFlags()); 1608 Record.push_back(N->isOptimized()); 1609 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1610 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1611 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1612 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1613 Record.push_back(N->getThisAdjustment()); 1614 1615 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1616 Record.clear(); 1617 } 1618 1619 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1620 SmallVectorImpl<uint64_t> &Record, 1621 unsigned Abbrev) { 1622 Record.push_back(N->isDistinct()); 1623 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1624 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1625 Record.push_back(N->getLine()); 1626 Record.push_back(N->getColumn()); 1627 1628 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1629 Record.clear(); 1630 } 1631 1632 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1633 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1634 unsigned Abbrev) { 1635 Record.push_back(N->isDistinct()); 1636 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1637 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1638 Record.push_back(N->getDiscriminator()); 1639 1640 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1641 Record.clear(); 1642 } 1643 1644 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1645 SmallVectorImpl<uint64_t> &Record, 1646 unsigned Abbrev) { 1647 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1648 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1649 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1650 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1651 Record.push_back(N->getLine()); 1652 1653 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1654 Record.clear(); 1655 } 1656 1657 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1658 SmallVectorImpl<uint64_t> &Record, 1659 unsigned Abbrev) { 1660 Record.push_back(N->isDistinct()); 1661 Record.push_back(N->getMacinfoType()); 1662 Record.push_back(N->getLine()); 1663 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1664 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1665 1666 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1667 Record.clear(); 1668 } 1669 1670 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1671 SmallVectorImpl<uint64_t> &Record, 1672 unsigned Abbrev) { 1673 Record.push_back(N->isDistinct()); 1674 Record.push_back(N->getMacinfoType()); 1675 Record.push_back(N->getLine()); 1676 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1677 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1678 1679 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1680 Record.clear(); 1681 } 1682 1683 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1684 SmallVectorImpl<uint64_t> &Record, 1685 unsigned Abbrev) { 1686 Record.push_back(N->isDistinct()); 1687 for (auto &I : N->operands()) 1688 Record.push_back(VE.getMetadataOrNullID(I)); 1689 1690 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1691 Record.clear(); 1692 } 1693 1694 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1695 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1696 unsigned Abbrev) { 1697 Record.push_back(N->isDistinct()); 1698 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1699 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1700 1701 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1702 Record.clear(); 1703 } 1704 1705 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1706 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1707 unsigned Abbrev) { 1708 Record.push_back(N->isDistinct()); 1709 Record.push_back(N->getTag()); 1710 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1711 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1712 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1713 1714 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1715 Record.clear(); 1716 } 1717 1718 void ModuleBitcodeWriter::writeDIGlobalVariable( 1719 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1720 unsigned Abbrev) { 1721 const uint64_t Version = 1 << 1; 1722 Record.push_back((uint64_t)N->isDistinct() | Version); 1723 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1724 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1725 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1726 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1727 Record.push_back(N->getLine()); 1728 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1729 Record.push_back(N->isLocalToUnit()); 1730 Record.push_back(N->isDefinition()); 1731 Record.push_back(/* expr */ 0); 1732 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1733 Record.push_back(N->getAlignInBits()); 1734 1735 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1736 Record.clear(); 1737 } 1738 1739 void ModuleBitcodeWriter::writeDILocalVariable( 1740 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1741 unsigned Abbrev) { 1742 // In order to support all possible bitcode formats in BitcodeReader we need 1743 // to distinguish the following cases: 1744 // 1) Record has no artificial tag (Record[1]), 1745 // has no obsolete inlinedAt field (Record[9]). 1746 // In this case Record size will be 8, HasAlignment flag is false. 1747 // 2) Record has artificial tag (Record[1]), 1748 // has no obsolete inlignedAt field (Record[9]). 1749 // In this case Record size will be 9, HasAlignment flag is false. 1750 // 3) Record has both artificial tag (Record[1]) and 1751 // obsolete inlignedAt field (Record[9]). 1752 // In this case Record size will be 10, HasAlignment flag is false. 1753 // 4) Record has neither artificial tag, nor inlignedAt field, but 1754 // HasAlignment flag is true and Record[8] contains alignment value. 1755 const uint64_t HasAlignmentFlag = 1 << 1; 1756 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1757 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1758 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1759 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1760 Record.push_back(N->getLine()); 1761 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1762 Record.push_back(N->getArg()); 1763 Record.push_back(N->getFlags()); 1764 Record.push_back(N->getAlignInBits()); 1765 1766 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1767 Record.clear(); 1768 } 1769 1770 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1771 SmallVectorImpl<uint64_t> &Record, 1772 unsigned Abbrev) { 1773 Record.reserve(N->getElements().size() + 1); 1774 1775 const uint64_t HasOpFragmentFlag = 1 << 1; 1776 Record.push_back((uint64_t)N->isDistinct() | HasOpFragmentFlag); 1777 Record.append(N->elements_begin(), N->elements_end()); 1778 1779 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1780 Record.clear(); 1781 } 1782 1783 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1784 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1785 unsigned Abbrev) { 1786 Record.push_back(N->isDistinct()); 1787 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1788 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1789 1790 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1791 Record.clear(); 1792 } 1793 1794 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1795 SmallVectorImpl<uint64_t> &Record, 1796 unsigned Abbrev) { 1797 Record.push_back(N->isDistinct()); 1798 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1799 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1800 Record.push_back(N->getLine()); 1801 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1802 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1803 Record.push_back(N->getAttributes()); 1804 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1805 1806 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1807 Record.clear(); 1808 } 1809 1810 void ModuleBitcodeWriter::writeDIImportedEntity( 1811 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1812 unsigned Abbrev) { 1813 Record.push_back(N->isDistinct()); 1814 Record.push_back(N->getTag()); 1815 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1816 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1817 Record.push_back(N->getLine()); 1818 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1819 1820 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1821 Record.clear(); 1822 } 1823 1824 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1825 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1826 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1827 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1829 return Stream.EmitAbbrev(std::move(Abbv)); 1830 } 1831 1832 void ModuleBitcodeWriter::writeNamedMetadata( 1833 SmallVectorImpl<uint64_t> &Record) { 1834 if (M.named_metadata_empty()) 1835 return; 1836 1837 unsigned Abbrev = createNamedMetadataAbbrev(); 1838 for (const NamedMDNode &NMD : M.named_metadata()) { 1839 // Write name. 1840 StringRef Str = NMD.getName(); 1841 Record.append(Str.bytes_begin(), Str.bytes_end()); 1842 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1843 Record.clear(); 1844 1845 // Write named metadata operands. 1846 for (const MDNode *N : NMD.operands()) 1847 Record.push_back(VE.getMetadataID(N)); 1848 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1849 Record.clear(); 1850 } 1851 } 1852 1853 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1854 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1855 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1856 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1857 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1858 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1859 return Stream.EmitAbbrev(std::move(Abbv)); 1860 } 1861 1862 /// Write out a record for MDString. 1863 /// 1864 /// All the metadata strings in a metadata block are emitted in a single 1865 /// record. The sizes and strings themselves are shoved into a blob. 1866 void ModuleBitcodeWriter::writeMetadataStrings( 1867 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1868 if (Strings.empty()) 1869 return; 1870 1871 // Start the record with the number of strings. 1872 Record.push_back(bitc::METADATA_STRINGS); 1873 Record.push_back(Strings.size()); 1874 1875 // Emit the sizes of the strings in the blob. 1876 SmallString<256> Blob; 1877 { 1878 BitstreamWriter W(Blob); 1879 for (const Metadata *MD : Strings) 1880 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1881 W.FlushToWord(); 1882 } 1883 1884 // Add the offset to the strings to the record. 1885 Record.push_back(Blob.size()); 1886 1887 // Add the strings to the blob. 1888 for (const Metadata *MD : Strings) 1889 Blob.append(cast<MDString>(MD)->getString()); 1890 1891 // Emit the final record. 1892 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1893 Record.clear(); 1894 } 1895 1896 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1897 enum MetadataAbbrev : unsigned { 1898 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1899 #include "llvm/IR/Metadata.def" 1900 LastPlusOne 1901 }; 1902 1903 void ModuleBitcodeWriter::writeMetadataRecords( 1904 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1905 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1906 if (MDs.empty()) 1907 return; 1908 1909 // Initialize MDNode abbreviations. 1910 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1911 #include "llvm/IR/Metadata.def" 1912 1913 for (const Metadata *MD : MDs) { 1914 if (IndexPos) 1915 IndexPos->push_back(Stream.GetCurrentBitNo()); 1916 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1917 assert(N->isResolved() && "Expected forward references to be resolved"); 1918 1919 switch (N->getMetadataID()) { 1920 default: 1921 llvm_unreachable("Invalid MDNode subclass"); 1922 #define HANDLE_MDNODE_LEAF(CLASS) \ 1923 case Metadata::CLASS##Kind: \ 1924 if (MDAbbrevs) \ 1925 write##CLASS(cast<CLASS>(N), Record, \ 1926 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1927 else \ 1928 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1929 continue; 1930 #include "llvm/IR/Metadata.def" 1931 } 1932 } 1933 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1934 } 1935 } 1936 1937 void ModuleBitcodeWriter::writeModuleMetadata() { 1938 if (!VE.hasMDs() && M.named_metadata_empty()) 1939 return; 1940 1941 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1942 SmallVector<uint64_t, 64> Record; 1943 1944 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1945 // block and load any metadata. 1946 std::vector<unsigned> MDAbbrevs; 1947 1948 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1949 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1950 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1951 createGenericDINodeAbbrev(); 1952 1953 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1954 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1957 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1958 1959 Abbv = std::make_shared<BitCodeAbbrev>(); 1960 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1963 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1964 1965 // Emit MDStrings together upfront. 1966 writeMetadataStrings(VE.getMDStrings(), Record); 1967 1968 // We only emit an index for the metadata record if we have more than a given 1969 // (naive) threshold of metadatas, otherwise it is not worth it. 1970 if (VE.getNonMDStrings().size() > IndexThreshold) { 1971 // Write a placeholder value in for the offset of the metadata index, 1972 // which is written after the records, so that it can include 1973 // the offset of each entry. The placeholder offset will be 1974 // updated after all records are emitted. 1975 uint64_t Vals[] = {0, 0}; 1976 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1977 } 1978 1979 // Compute and save the bit offset to the current position, which will be 1980 // patched when we emit the index later. We can simply subtract the 64-bit 1981 // fixed size from the current bit number to get the location to backpatch. 1982 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1983 1984 // This index will contain the bitpos for each individual record. 1985 std::vector<uint64_t> IndexPos; 1986 IndexPos.reserve(VE.getNonMDStrings().size()); 1987 1988 // Write all the records 1989 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1990 1991 if (VE.getNonMDStrings().size() > IndexThreshold) { 1992 // Now that we have emitted all the records we will emit the index. But 1993 // first 1994 // backpatch the forward reference so that the reader can skip the records 1995 // efficiently. 1996 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 1997 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 1998 1999 // Delta encode the index. 2000 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2001 for (auto &Elt : IndexPos) { 2002 auto EltDelta = Elt - PreviousValue; 2003 PreviousValue = Elt; 2004 Elt = EltDelta; 2005 } 2006 // Emit the index record. 2007 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2008 IndexPos.clear(); 2009 } 2010 2011 // Write the named metadata now. 2012 writeNamedMetadata(Record); 2013 2014 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2015 SmallVector<uint64_t, 4> Record; 2016 Record.push_back(VE.getValueID(&GO)); 2017 pushGlobalMetadataAttachment(Record, GO); 2018 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2019 }; 2020 for (const Function &F : M) 2021 if (F.isDeclaration() && F.hasMetadata()) 2022 AddDeclAttachedMetadata(F); 2023 // FIXME: Only store metadata for declarations here, and move data for global 2024 // variable definitions to a separate block (PR28134). 2025 for (const GlobalVariable &GV : M.globals()) 2026 if (GV.hasMetadata()) 2027 AddDeclAttachedMetadata(GV); 2028 2029 Stream.ExitBlock(); 2030 } 2031 2032 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2033 if (!VE.hasMDs()) 2034 return; 2035 2036 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2037 SmallVector<uint64_t, 64> Record; 2038 writeMetadataStrings(VE.getMDStrings(), Record); 2039 writeMetadataRecords(VE.getNonMDStrings(), Record); 2040 Stream.ExitBlock(); 2041 } 2042 2043 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2044 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2045 // [n x [id, mdnode]] 2046 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2047 GO.getAllMetadata(MDs); 2048 for (const auto &I : MDs) { 2049 Record.push_back(I.first); 2050 Record.push_back(VE.getMetadataID(I.second)); 2051 } 2052 } 2053 2054 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2055 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2056 2057 SmallVector<uint64_t, 64> Record; 2058 2059 if (F.hasMetadata()) { 2060 pushGlobalMetadataAttachment(Record, F); 2061 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2062 Record.clear(); 2063 } 2064 2065 // Write metadata attachments 2066 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2067 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2068 for (const BasicBlock &BB : F) 2069 for (const Instruction &I : BB) { 2070 MDs.clear(); 2071 I.getAllMetadataOtherThanDebugLoc(MDs); 2072 2073 // If no metadata, ignore instruction. 2074 if (MDs.empty()) continue; 2075 2076 Record.push_back(VE.getInstructionID(&I)); 2077 2078 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2079 Record.push_back(MDs[i].first); 2080 Record.push_back(VE.getMetadataID(MDs[i].second)); 2081 } 2082 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2083 Record.clear(); 2084 } 2085 2086 Stream.ExitBlock(); 2087 } 2088 2089 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2090 SmallVector<uint64_t, 64> Record; 2091 2092 // Write metadata kinds 2093 // METADATA_KIND - [n x [id, name]] 2094 SmallVector<StringRef, 8> Names; 2095 M.getMDKindNames(Names); 2096 2097 if (Names.empty()) return; 2098 2099 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2100 2101 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2102 Record.push_back(MDKindID); 2103 StringRef KName = Names[MDKindID]; 2104 Record.append(KName.begin(), KName.end()); 2105 2106 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2107 Record.clear(); 2108 } 2109 2110 Stream.ExitBlock(); 2111 } 2112 2113 void ModuleBitcodeWriter::writeOperandBundleTags() { 2114 // Write metadata kinds 2115 // 2116 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2117 // 2118 // OPERAND_BUNDLE_TAG - [strchr x N] 2119 2120 SmallVector<StringRef, 8> Tags; 2121 M.getOperandBundleTags(Tags); 2122 2123 if (Tags.empty()) 2124 return; 2125 2126 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2127 2128 SmallVector<uint64_t, 64> Record; 2129 2130 for (auto Tag : Tags) { 2131 Record.append(Tag.begin(), Tag.end()); 2132 2133 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2134 Record.clear(); 2135 } 2136 2137 Stream.ExitBlock(); 2138 } 2139 2140 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2141 if ((int64_t)V >= 0) 2142 Vals.push_back(V << 1); 2143 else 2144 Vals.push_back((-V << 1) | 1); 2145 } 2146 2147 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2148 bool isGlobal) { 2149 if (FirstVal == LastVal) return; 2150 2151 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2152 2153 unsigned AggregateAbbrev = 0; 2154 unsigned String8Abbrev = 0; 2155 unsigned CString7Abbrev = 0; 2156 unsigned CString6Abbrev = 0; 2157 // If this is a constant pool for the module, emit module-specific abbrevs. 2158 if (isGlobal) { 2159 // Abbrev for CST_CODE_AGGREGATE. 2160 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2161 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2164 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2165 2166 // Abbrev for CST_CODE_STRING. 2167 Abbv = std::make_shared<BitCodeAbbrev>(); 2168 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2171 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2172 // Abbrev for CST_CODE_CSTRING. 2173 Abbv = std::make_shared<BitCodeAbbrev>(); 2174 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2177 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2178 // Abbrev for CST_CODE_CSTRING. 2179 Abbv = std::make_shared<BitCodeAbbrev>(); 2180 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2183 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2184 } 2185 2186 SmallVector<uint64_t, 64> Record; 2187 2188 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2189 Type *LastTy = nullptr; 2190 for (unsigned i = FirstVal; i != LastVal; ++i) { 2191 const Value *V = Vals[i].first; 2192 // If we need to switch types, do so now. 2193 if (V->getType() != LastTy) { 2194 LastTy = V->getType(); 2195 Record.push_back(VE.getTypeID(LastTy)); 2196 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2197 CONSTANTS_SETTYPE_ABBREV); 2198 Record.clear(); 2199 } 2200 2201 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2202 Record.push_back(unsigned(IA->hasSideEffects()) | 2203 unsigned(IA->isAlignStack()) << 1 | 2204 unsigned(IA->getDialect()&1) << 2); 2205 2206 // Add the asm string. 2207 const std::string &AsmStr = IA->getAsmString(); 2208 Record.push_back(AsmStr.size()); 2209 Record.append(AsmStr.begin(), AsmStr.end()); 2210 2211 // Add the constraint string. 2212 const std::string &ConstraintStr = IA->getConstraintString(); 2213 Record.push_back(ConstraintStr.size()); 2214 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2215 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2216 Record.clear(); 2217 continue; 2218 } 2219 const Constant *C = cast<Constant>(V); 2220 unsigned Code = -1U; 2221 unsigned AbbrevToUse = 0; 2222 if (C->isNullValue()) { 2223 Code = bitc::CST_CODE_NULL; 2224 } else if (isa<UndefValue>(C)) { 2225 Code = bitc::CST_CODE_UNDEF; 2226 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2227 if (IV->getBitWidth() <= 64) { 2228 uint64_t V = IV->getSExtValue(); 2229 emitSignedInt64(Record, V); 2230 Code = bitc::CST_CODE_INTEGER; 2231 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2232 } else { // Wide integers, > 64 bits in size. 2233 // We have an arbitrary precision integer value to write whose 2234 // bit width is > 64. However, in canonical unsigned integer 2235 // format it is likely that the high bits are going to be zero. 2236 // So, we only write the number of active words. 2237 unsigned NWords = IV->getValue().getActiveWords(); 2238 const uint64_t *RawWords = IV->getValue().getRawData(); 2239 for (unsigned i = 0; i != NWords; ++i) { 2240 emitSignedInt64(Record, RawWords[i]); 2241 } 2242 Code = bitc::CST_CODE_WIDE_INTEGER; 2243 } 2244 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2245 Code = bitc::CST_CODE_FLOAT; 2246 Type *Ty = CFP->getType(); 2247 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2248 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2249 } else if (Ty->isX86_FP80Ty()) { 2250 // api needed to prevent premature destruction 2251 // bits are not in the same order as a normal i80 APInt, compensate. 2252 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2253 const uint64_t *p = api.getRawData(); 2254 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2255 Record.push_back(p[0] & 0xffffLL); 2256 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2257 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2258 const uint64_t *p = api.getRawData(); 2259 Record.push_back(p[0]); 2260 Record.push_back(p[1]); 2261 } else { 2262 assert (0 && "Unknown FP type!"); 2263 } 2264 } else if (isa<ConstantDataSequential>(C) && 2265 cast<ConstantDataSequential>(C)->isString()) { 2266 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2267 // Emit constant strings specially. 2268 unsigned NumElts = Str->getNumElements(); 2269 // If this is a null-terminated string, use the denser CSTRING encoding. 2270 if (Str->isCString()) { 2271 Code = bitc::CST_CODE_CSTRING; 2272 --NumElts; // Don't encode the null, which isn't allowed by char6. 2273 } else { 2274 Code = bitc::CST_CODE_STRING; 2275 AbbrevToUse = String8Abbrev; 2276 } 2277 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2278 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2279 for (unsigned i = 0; i != NumElts; ++i) { 2280 unsigned char V = Str->getElementAsInteger(i); 2281 Record.push_back(V); 2282 isCStr7 &= (V & 128) == 0; 2283 if (isCStrChar6) 2284 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2285 } 2286 2287 if (isCStrChar6) 2288 AbbrevToUse = CString6Abbrev; 2289 else if (isCStr7) 2290 AbbrevToUse = CString7Abbrev; 2291 } else if (const ConstantDataSequential *CDS = 2292 dyn_cast<ConstantDataSequential>(C)) { 2293 Code = bitc::CST_CODE_DATA; 2294 Type *EltTy = CDS->getType()->getElementType(); 2295 if (isa<IntegerType>(EltTy)) { 2296 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2297 Record.push_back(CDS->getElementAsInteger(i)); 2298 } else { 2299 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2300 Record.push_back( 2301 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2302 } 2303 } else if (isa<ConstantAggregate>(C)) { 2304 Code = bitc::CST_CODE_AGGREGATE; 2305 for (const Value *Op : C->operands()) 2306 Record.push_back(VE.getValueID(Op)); 2307 AbbrevToUse = AggregateAbbrev; 2308 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2309 switch (CE->getOpcode()) { 2310 default: 2311 if (Instruction::isCast(CE->getOpcode())) { 2312 Code = bitc::CST_CODE_CE_CAST; 2313 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2314 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2315 Record.push_back(VE.getValueID(C->getOperand(0))); 2316 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2317 } else { 2318 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2319 Code = bitc::CST_CODE_CE_BINOP; 2320 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2321 Record.push_back(VE.getValueID(C->getOperand(0))); 2322 Record.push_back(VE.getValueID(C->getOperand(1))); 2323 uint64_t Flags = getOptimizationFlags(CE); 2324 if (Flags != 0) 2325 Record.push_back(Flags); 2326 } 2327 break; 2328 case Instruction::GetElementPtr: { 2329 Code = bitc::CST_CODE_CE_GEP; 2330 const auto *GO = cast<GEPOperator>(C); 2331 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2332 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2333 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2334 Record.push_back((*Idx << 1) | GO->isInBounds()); 2335 } else if (GO->isInBounds()) 2336 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2337 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2338 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2339 Record.push_back(VE.getValueID(C->getOperand(i))); 2340 } 2341 break; 2342 } 2343 case Instruction::Select: 2344 Code = bitc::CST_CODE_CE_SELECT; 2345 Record.push_back(VE.getValueID(C->getOperand(0))); 2346 Record.push_back(VE.getValueID(C->getOperand(1))); 2347 Record.push_back(VE.getValueID(C->getOperand(2))); 2348 break; 2349 case Instruction::ExtractElement: 2350 Code = bitc::CST_CODE_CE_EXTRACTELT; 2351 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2352 Record.push_back(VE.getValueID(C->getOperand(0))); 2353 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2354 Record.push_back(VE.getValueID(C->getOperand(1))); 2355 break; 2356 case Instruction::InsertElement: 2357 Code = bitc::CST_CODE_CE_INSERTELT; 2358 Record.push_back(VE.getValueID(C->getOperand(0))); 2359 Record.push_back(VE.getValueID(C->getOperand(1))); 2360 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2361 Record.push_back(VE.getValueID(C->getOperand(2))); 2362 break; 2363 case Instruction::ShuffleVector: 2364 // If the return type and argument types are the same, this is a 2365 // standard shufflevector instruction. If the types are different, 2366 // then the shuffle is widening or truncating the input vectors, and 2367 // the argument type must also be encoded. 2368 if (C->getType() == C->getOperand(0)->getType()) { 2369 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2370 } else { 2371 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2372 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2373 } 2374 Record.push_back(VE.getValueID(C->getOperand(0))); 2375 Record.push_back(VE.getValueID(C->getOperand(1))); 2376 Record.push_back(VE.getValueID(C->getOperand(2))); 2377 break; 2378 case Instruction::ICmp: 2379 case Instruction::FCmp: 2380 Code = bitc::CST_CODE_CE_CMP; 2381 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2382 Record.push_back(VE.getValueID(C->getOperand(0))); 2383 Record.push_back(VE.getValueID(C->getOperand(1))); 2384 Record.push_back(CE->getPredicate()); 2385 break; 2386 } 2387 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2388 Code = bitc::CST_CODE_BLOCKADDRESS; 2389 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2390 Record.push_back(VE.getValueID(BA->getFunction())); 2391 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2392 } else { 2393 #ifndef NDEBUG 2394 C->dump(); 2395 #endif 2396 llvm_unreachable("Unknown constant!"); 2397 } 2398 Stream.EmitRecord(Code, Record, AbbrevToUse); 2399 Record.clear(); 2400 } 2401 2402 Stream.ExitBlock(); 2403 } 2404 2405 void ModuleBitcodeWriter::writeModuleConstants() { 2406 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2407 2408 // Find the first constant to emit, which is the first non-globalvalue value. 2409 // We know globalvalues have been emitted by WriteModuleInfo. 2410 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2411 if (!isa<GlobalValue>(Vals[i].first)) { 2412 writeConstants(i, Vals.size(), true); 2413 return; 2414 } 2415 } 2416 } 2417 2418 /// pushValueAndType - The file has to encode both the value and type id for 2419 /// many values, because we need to know what type to create for forward 2420 /// references. However, most operands are not forward references, so this type 2421 /// field is not needed. 2422 /// 2423 /// This function adds V's value ID to Vals. If the value ID is higher than the 2424 /// instruction ID, then it is a forward reference, and it also includes the 2425 /// type ID. The value ID that is written is encoded relative to the InstID. 2426 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2427 SmallVectorImpl<unsigned> &Vals) { 2428 unsigned ValID = VE.getValueID(V); 2429 // Make encoding relative to the InstID. 2430 Vals.push_back(InstID - ValID); 2431 if (ValID >= InstID) { 2432 Vals.push_back(VE.getTypeID(V->getType())); 2433 return true; 2434 } 2435 return false; 2436 } 2437 2438 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2439 unsigned InstID) { 2440 SmallVector<unsigned, 64> Record; 2441 LLVMContext &C = CS.getInstruction()->getContext(); 2442 2443 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2444 const auto &Bundle = CS.getOperandBundleAt(i); 2445 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2446 2447 for (auto &Input : Bundle.Inputs) 2448 pushValueAndType(Input, InstID, Record); 2449 2450 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2451 Record.clear(); 2452 } 2453 } 2454 2455 /// pushValue - Like pushValueAndType, but where the type of the value is 2456 /// omitted (perhaps it was already encoded in an earlier operand). 2457 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2458 SmallVectorImpl<unsigned> &Vals) { 2459 unsigned ValID = VE.getValueID(V); 2460 Vals.push_back(InstID - ValID); 2461 } 2462 2463 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2464 SmallVectorImpl<uint64_t> &Vals) { 2465 unsigned ValID = VE.getValueID(V); 2466 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2467 emitSignedInt64(Vals, diff); 2468 } 2469 2470 /// WriteInstruction - Emit an instruction to the specified stream. 2471 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2472 unsigned InstID, 2473 SmallVectorImpl<unsigned> &Vals) { 2474 unsigned Code = 0; 2475 unsigned AbbrevToUse = 0; 2476 VE.setInstructionID(&I); 2477 switch (I.getOpcode()) { 2478 default: 2479 if (Instruction::isCast(I.getOpcode())) { 2480 Code = bitc::FUNC_CODE_INST_CAST; 2481 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2482 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2483 Vals.push_back(VE.getTypeID(I.getType())); 2484 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2485 } else { 2486 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2487 Code = bitc::FUNC_CODE_INST_BINOP; 2488 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2489 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2490 pushValue(I.getOperand(1), InstID, Vals); 2491 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2492 uint64_t Flags = getOptimizationFlags(&I); 2493 if (Flags != 0) { 2494 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2495 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2496 Vals.push_back(Flags); 2497 } 2498 } 2499 break; 2500 2501 case Instruction::GetElementPtr: { 2502 Code = bitc::FUNC_CODE_INST_GEP; 2503 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2504 auto &GEPInst = cast<GetElementPtrInst>(I); 2505 Vals.push_back(GEPInst.isInBounds()); 2506 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2507 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2508 pushValueAndType(I.getOperand(i), InstID, Vals); 2509 break; 2510 } 2511 case Instruction::ExtractValue: { 2512 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2513 pushValueAndType(I.getOperand(0), InstID, Vals); 2514 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2515 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2516 break; 2517 } 2518 case Instruction::InsertValue: { 2519 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2520 pushValueAndType(I.getOperand(0), InstID, Vals); 2521 pushValueAndType(I.getOperand(1), InstID, Vals); 2522 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2523 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2524 break; 2525 } 2526 case Instruction::Select: 2527 Code = bitc::FUNC_CODE_INST_VSELECT; 2528 pushValueAndType(I.getOperand(1), InstID, Vals); 2529 pushValue(I.getOperand(2), InstID, Vals); 2530 pushValueAndType(I.getOperand(0), InstID, Vals); 2531 break; 2532 case Instruction::ExtractElement: 2533 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2534 pushValueAndType(I.getOperand(0), InstID, Vals); 2535 pushValueAndType(I.getOperand(1), InstID, Vals); 2536 break; 2537 case Instruction::InsertElement: 2538 Code = bitc::FUNC_CODE_INST_INSERTELT; 2539 pushValueAndType(I.getOperand(0), InstID, Vals); 2540 pushValue(I.getOperand(1), InstID, Vals); 2541 pushValueAndType(I.getOperand(2), InstID, Vals); 2542 break; 2543 case Instruction::ShuffleVector: 2544 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2545 pushValueAndType(I.getOperand(0), InstID, Vals); 2546 pushValue(I.getOperand(1), InstID, Vals); 2547 pushValue(I.getOperand(2), InstID, Vals); 2548 break; 2549 case Instruction::ICmp: 2550 case Instruction::FCmp: { 2551 // compare returning Int1Ty or vector of Int1Ty 2552 Code = bitc::FUNC_CODE_INST_CMP2; 2553 pushValueAndType(I.getOperand(0), InstID, Vals); 2554 pushValue(I.getOperand(1), InstID, Vals); 2555 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2556 uint64_t Flags = getOptimizationFlags(&I); 2557 if (Flags != 0) 2558 Vals.push_back(Flags); 2559 break; 2560 } 2561 2562 case Instruction::Ret: 2563 { 2564 Code = bitc::FUNC_CODE_INST_RET; 2565 unsigned NumOperands = I.getNumOperands(); 2566 if (NumOperands == 0) 2567 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2568 else if (NumOperands == 1) { 2569 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2570 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2571 } else { 2572 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2573 pushValueAndType(I.getOperand(i), InstID, Vals); 2574 } 2575 } 2576 break; 2577 case Instruction::Br: 2578 { 2579 Code = bitc::FUNC_CODE_INST_BR; 2580 const BranchInst &II = cast<BranchInst>(I); 2581 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2582 if (II.isConditional()) { 2583 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2584 pushValue(II.getCondition(), InstID, Vals); 2585 } 2586 } 2587 break; 2588 case Instruction::Switch: 2589 { 2590 Code = bitc::FUNC_CODE_INST_SWITCH; 2591 const SwitchInst &SI = cast<SwitchInst>(I); 2592 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2593 pushValue(SI.getCondition(), InstID, Vals); 2594 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2595 for (auto Case : SI.cases()) { 2596 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2597 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2598 } 2599 } 2600 break; 2601 case Instruction::IndirectBr: 2602 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2603 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2604 // Encode the address operand as relative, but not the basic blocks. 2605 pushValue(I.getOperand(0), InstID, Vals); 2606 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2607 Vals.push_back(VE.getValueID(I.getOperand(i))); 2608 break; 2609 2610 case Instruction::Invoke: { 2611 const InvokeInst *II = cast<InvokeInst>(&I); 2612 const Value *Callee = II->getCalledValue(); 2613 FunctionType *FTy = II->getFunctionType(); 2614 2615 if (II->hasOperandBundles()) 2616 writeOperandBundles(II, InstID); 2617 2618 Code = bitc::FUNC_CODE_INST_INVOKE; 2619 2620 Vals.push_back(VE.getAttributeID(II->getAttributes())); 2621 Vals.push_back(II->getCallingConv() | 1 << 13); 2622 Vals.push_back(VE.getValueID(II->getNormalDest())); 2623 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2624 Vals.push_back(VE.getTypeID(FTy)); 2625 pushValueAndType(Callee, InstID, Vals); 2626 2627 // Emit value #'s for the fixed parameters. 2628 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2629 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2630 2631 // Emit type/value pairs for varargs params. 2632 if (FTy->isVarArg()) { 2633 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2634 i != e; ++i) 2635 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2636 } 2637 break; 2638 } 2639 case Instruction::Resume: 2640 Code = bitc::FUNC_CODE_INST_RESUME; 2641 pushValueAndType(I.getOperand(0), InstID, Vals); 2642 break; 2643 case Instruction::CleanupRet: { 2644 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2645 const auto &CRI = cast<CleanupReturnInst>(I); 2646 pushValue(CRI.getCleanupPad(), InstID, Vals); 2647 if (CRI.hasUnwindDest()) 2648 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2649 break; 2650 } 2651 case Instruction::CatchRet: { 2652 Code = bitc::FUNC_CODE_INST_CATCHRET; 2653 const auto &CRI = cast<CatchReturnInst>(I); 2654 pushValue(CRI.getCatchPad(), InstID, Vals); 2655 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2656 break; 2657 } 2658 case Instruction::CleanupPad: 2659 case Instruction::CatchPad: { 2660 const auto &FuncletPad = cast<FuncletPadInst>(I); 2661 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2662 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2663 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2664 2665 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2666 Vals.push_back(NumArgOperands); 2667 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2668 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2669 break; 2670 } 2671 case Instruction::CatchSwitch: { 2672 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2673 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2674 2675 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2676 2677 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2678 Vals.push_back(NumHandlers); 2679 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2680 Vals.push_back(VE.getValueID(CatchPadBB)); 2681 2682 if (CatchSwitch.hasUnwindDest()) 2683 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2684 break; 2685 } 2686 case Instruction::Unreachable: 2687 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2688 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2689 break; 2690 2691 case Instruction::PHI: { 2692 const PHINode &PN = cast<PHINode>(I); 2693 Code = bitc::FUNC_CODE_INST_PHI; 2694 // With the newer instruction encoding, forward references could give 2695 // negative valued IDs. This is most common for PHIs, so we use 2696 // signed VBRs. 2697 SmallVector<uint64_t, 128> Vals64; 2698 Vals64.push_back(VE.getTypeID(PN.getType())); 2699 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2700 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2701 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2702 } 2703 // Emit a Vals64 vector and exit. 2704 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2705 Vals64.clear(); 2706 return; 2707 } 2708 2709 case Instruction::LandingPad: { 2710 const LandingPadInst &LP = cast<LandingPadInst>(I); 2711 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2712 Vals.push_back(VE.getTypeID(LP.getType())); 2713 Vals.push_back(LP.isCleanup()); 2714 Vals.push_back(LP.getNumClauses()); 2715 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2716 if (LP.isCatch(I)) 2717 Vals.push_back(LandingPadInst::Catch); 2718 else 2719 Vals.push_back(LandingPadInst::Filter); 2720 pushValueAndType(LP.getClause(I), InstID, Vals); 2721 } 2722 break; 2723 } 2724 2725 case Instruction::Alloca: { 2726 Code = bitc::FUNC_CODE_INST_ALLOCA; 2727 const AllocaInst &AI = cast<AllocaInst>(I); 2728 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2729 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2730 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2731 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2732 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2733 "not enough bits for maximum alignment"); 2734 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2735 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2736 AlignRecord |= 1 << 6; 2737 AlignRecord |= AI.isSwiftError() << 7; 2738 Vals.push_back(AlignRecord); 2739 break; 2740 } 2741 2742 case Instruction::Load: 2743 if (cast<LoadInst>(I).isAtomic()) { 2744 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2745 pushValueAndType(I.getOperand(0), InstID, Vals); 2746 } else { 2747 Code = bitc::FUNC_CODE_INST_LOAD; 2748 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2749 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2750 } 2751 Vals.push_back(VE.getTypeID(I.getType())); 2752 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2753 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2754 if (cast<LoadInst>(I).isAtomic()) { 2755 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2756 Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2757 } 2758 break; 2759 case Instruction::Store: 2760 if (cast<StoreInst>(I).isAtomic()) 2761 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2762 else 2763 Code = bitc::FUNC_CODE_INST_STORE; 2764 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2765 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2766 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2767 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2768 if (cast<StoreInst>(I).isAtomic()) { 2769 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2770 Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2771 } 2772 break; 2773 case Instruction::AtomicCmpXchg: 2774 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2775 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2776 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2777 pushValue(I.getOperand(2), InstID, Vals); // newval. 2778 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2779 Vals.push_back( 2780 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2781 Vals.push_back( 2782 getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope())); 2783 Vals.push_back( 2784 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2785 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2786 break; 2787 case Instruction::AtomicRMW: 2788 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2789 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2790 pushValue(I.getOperand(1), InstID, Vals); // val. 2791 Vals.push_back( 2792 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2793 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2794 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2795 Vals.push_back( 2796 getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope())); 2797 break; 2798 case Instruction::Fence: 2799 Code = bitc::FUNC_CODE_INST_FENCE; 2800 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2801 Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2802 break; 2803 case Instruction::Call: { 2804 const CallInst &CI = cast<CallInst>(I); 2805 FunctionType *FTy = CI.getFunctionType(); 2806 2807 if (CI.hasOperandBundles()) 2808 writeOperandBundles(&CI, InstID); 2809 2810 Code = bitc::FUNC_CODE_INST_CALL; 2811 2812 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 2813 2814 unsigned Flags = getOptimizationFlags(&I); 2815 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2816 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2817 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2818 1 << bitc::CALL_EXPLICIT_TYPE | 2819 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2820 unsigned(Flags != 0) << bitc::CALL_FMF); 2821 if (Flags != 0) 2822 Vals.push_back(Flags); 2823 2824 Vals.push_back(VE.getTypeID(FTy)); 2825 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2826 2827 // Emit value #'s for the fixed parameters. 2828 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2829 // Check for labels (can happen with asm labels). 2830 if (FTy->getParamType(i)->isLabelTy()) 2831 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2832 else 2833 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2834 } 2835 2836 // Emit type/value pairs for varargs params. 2837 if (FTy->isVarArg()) { 2838 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2839 i != e; ++i) 2840 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2841 } 2842 break; 2843 } 2844 case Instruction::VAArg: 2845 Code = bitc::FUNC_CODE_INST_VAARG; 2846 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2847 pushValue(I.getOperand(0), InstID, Vals); // valist. 2848 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2849 break; 2850 } 2851 2852 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2853 Vals.clear(); 2854 } 2855 2856 /// Write a GlobalValue VST to the module. The purpose of this data structure is 2857 /// to allow clients to efficiently find the function body. 2858 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 2859 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2860 // Get the offset of the VST we are writing, and backpatch it into 2861 // the VST forward declaration record. 2862 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2863 // The BitcodeStartBit was the stream offset of the identification block. 2864 VSTOffset -= bitcodeStartBit(); 2865 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2866 // Note that we add 1 here because the offset is relative to one word 2867 // before the start of the identification block, which was historically 2868 // always the start of the regular bitcode header. 2869 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2870 2871 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2872 2873 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2874 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2875 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2876 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2877 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2878 2879 for (const Function &F : M) { 2880 uint64_t Record[2]; 2881 2882 if (F.isDeclaration()) 2883 continue; 2884 2885 Record[0] = VE.getValueID(&F); 2886 2887 // Save the word offset of the function (from the start of the 2888 // actual bitcode written to the stream). 2889 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 2890 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2891 // Note that we add 1 here because the offset is relative to one word 2892 // before the start of the identification block, which was historically 2893 // always the start of the regular bitcode header. 2894 Record[1] = BitcodeIndex / 32 + 1; 2895 2896 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 2897 } 2898 2899 Stream.ExitBlock(); 2900 } 2901 2902 /// Emit names for arguments, instructions and basic blocks in a function. 2903 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 2904 const ValueSymbolTable &VST) { 2905 if (VST.empty()) 2906 return; 2907 2908 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2909 2910 // FIXME: Set up the abbrev, we know how many values there are! 2911 // FIXME: We know if the type names can use 7-bit ascii. 2912 SmallVector<uint64_t, 64> NameVals; 2913 2914 for (const ValueName &Name : VST) { 2915 // Figure out the encoding to use for the name. 2916 StringEncoding Bits = 2917 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2918 2919 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2920 NameVals.push_back(VE.getValueID(Name.getValue())); 2921 2922 // VST_CODE_ENTRY: [valueid, namechar x N] 2923 // VST_CODE_BBENTRY: [bbid, namechar x N] 2924 unsigned Code; 2925 if (isa<BasicBlock>(Name.getValue())) { 2926 Code = bitc::VST_CODE_BBENTRY; 2927 if (Bits == SE_Char6) 2928 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2929 } else { 2930 Code = bitc::VST_CODE_ENTRY; 2931 if (Bits == SE_Char6) 2932 AbbrevToUse = VST_ENTRY_6_ABBREV; 2933 else if (Bits == SE_Fixed7) 2934 AbbrevToUse = VST_ENTRY_7_ABBREV; 2935 } 2936 2937 for (const auto P : Name.getKey()) 2938 NameVals.push_back((unsigned char)P); 2939 2940 // Emit the finished record. 2941 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2942 NameVals.clear(); 2943 } 2944 2945 Stream.ExitBlock(); 2946 } 2947 2948 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 2949 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2950 unsigned Code; 2951 if (isa<BasicBlock>(Order.V)) 2952 Code = bitc::USELIST_CODE_BB; 2953 else 2954 Code = bitc::USELIST_CODE_DEFAULT; 2955 2956 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2957 Record.push_back(VE.getValueID(Order.V)); 2958 Stream.EmitRecord(Code, Record); 2959 } 2960 2961 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 2962 assert(VE.shouldPreserveUseListOrder() && 2963 "Expected to be preserving use-list order"); 2964 2965 auto hasMore = [&]() { 2966 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2967 }; 2968 if (!hasMore()) 2969 // Nothing to do. 2970 return; 2971 2972 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2973 while (hasMore()) { 2974 writeUseList(std::move(VE.UseListOrders.back())); 2975 VE.UseListOrders.pop_back(); 2976 } 2977 Stream.ExitBlock(); 2978 } 2979 2980 /// Emit a function body to the module stream. 2981 void ModuleBitcodeWriter::writeFunction( 2982 const Function &F, 2983 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2984 // Save the bitcode index of the start of this function block for recording 2985 // in the VST. 2986 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 2987 2988 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2989 VE.incorporateFunction(F); 2990 2991 SmallVector<unsigned, 64> Vals; 2992 2993 // Emit the number of basic blocks, so the reader can create them ahead of 2994 // time. 2995 Vals.push_back(VE.getBasicBlocks().size()); 2996 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2997 Vals.clear(); 2998 2999 // If there are function-local constants, emit them now. 3000 unsigned CstStart, CstEnd; 3001 VE.getFunctionConstantRange(CstStart, CstEnd); 3002 writeConstants(CstStart, CstEnd, false); 3003 3004 // If there is function-local metadata, emit it now. 3005 writeFunctionMetadata(F); 3006 3007 // Keep a running idea of what the instruction ID is. 3008 unsigned InstID = CstEnd; 3009 3010 bool NeedsMetadataAttachment = F.hasMetadata(); 3011 3012 DILocation *LastDL = nullptr; 3013 // Finally, emit all the instructions, in order. 3014 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3015 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3016 I != E; ++I) { 3017 writeInstruction(*I, InstID, Vals); 3018 3019 if (!I->getType()->isVoidTy()) 3020 ++InstID; 3021 3022 // If the instruction has metadata, write a metadata attachment later. 3023 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3024 3025 // If the instruction has a debug location, emit it. 3026 DILocation *DL = I->getDebugLoc(); 3027 if (!DL) 3028 continue; 3029 3030 if (DL == LastDL) { 3031 // Just repeat the same debug loc as last time. 3032 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3033 continue; 3034 } 3035 3036 Vals.push_back(DL->getLine()); 3037 Vals.push_back(DL->getColumn()); 3038 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3039 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3040 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3041 Vals.clear(); 3042 3043 LastDL = DL; 3044 } 3045 3046 // Emit names for all the instructions etc. 3047 if (auto *Symtab = F.getValueSymbolTable()) 3048 writeFunctionLevelValueSymbolTable(*Symtab); 3049 3050 if (NeedsMetadataAttachment) 3051 writeFunctionMetadataAttachment(F); 3052 if (VE.shouldPreserveUseListOrder()) 3053 writeUseListBlock(&F); 3054 VE.purgeFunction(); 3055 Stream.ExitBlock(); 3056 } 3057 3058 // Emit blockinfo, which defines the standard abbreviations etc. 3059 void ModuleBitcodeWriter::writeBlockInfo() { 3060 // We only want to emit block info records for blocks that have multiple 3061 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3062 // Other blocks can define their abbrevs inline. 3063 Stream.EnterBlockInfoBlock(); 3064 3065 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3066 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3068 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3071 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3072 VST_ENTRY_8_ABBREV) 3073 llvm_unreachable("Unexpected abbrev ordering!"); 3074 } 3075 3076 { // 7-bit fixed width VST_CODE_ENTRY strings. 3077 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3078 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3080 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3081 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3082 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3083 VST_ENTRY_7_ABBREV) 3084 llvm_unreachable("Unexpected abbrev ordering!"); 3085 } 3086 { // 6-bit char6 VST_CODE_ENTRY strings. 3087 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3088 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3089 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3092 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3093 VST_ENTRY_6_ABBREV) 3094 llvm_unreachable("Unexpected abbrev ordering!"); 3095 } 3096 { // 6-bit char6 VST_CODE_BBENTRY strings. 3097 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3098 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3099 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3102 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3103 VST_BBENTRY_6_ABBREV) 3104 llvm_unreachable("Unexpected abbrev ordering!"); 3105 } 3106 3107 3108 3109 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3110 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3111 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3113 VE.computeBitsRequiredForTypeIndicies())); 3114 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3115 CONSTANTS_SETTYPE_ABBREV) 3116 llvm_unreachable("Unexpected abbrev ordering!"); 3117 } 3118 3119 { // INTEGER abbrev for CONSTANTS_BLOCK. 3120 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3121 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3122 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3123 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3124 CONSTANTS_INTEGER_ABBREV) 3125 llvm_unreachable("Unexpected abbrev ordering!"); 3126 } 3127 3128 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3129 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3130 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3132 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3133 VE.computeBitsRequiredForTypeIndicies())); 3134 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3135 3136 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3137 CONSTANTS_CE_CAST_Abbrev) 3138 llvm_unreachable("Unexpected abbrev ordering!"); 3139 } 3140 { // NULL abbrev for CONSTANTS_BLOCK. 3141 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3142 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3143 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3144 CONSTANTS_NULL_Abbrev) 3145 llvm_unreachable("Unexpected abbrev ordering!"); 3146 } 3147 3148 // FIXME: This should only use space for first class types! 3149 3150 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3151 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3152 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3155 VE.computeBitsRequiredForTypeIndicies())); 3156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3158 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3159 FUNCTION_INST_LOAD_ABBREV) 3160 llvm_unreachable("Unexpected abbrev ordering!"); 3161 } 3162 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3163 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3164 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3168 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3169 FUNCTION_INST_BINOP_ABBREV) 3170 llvm_unreachable("Unexpected abbrev ordering!"); 3171 } 3172 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3173 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3174 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3179 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3180 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3181 llvm_unreachable("Unexpected abbrev ordering!"); 3182 } 3183 { // INST_CAST abbrev for FUNCTION_BLOCK. 3184 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3185 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3188 VE.computeBitsRequiredForTypeIndicies())); 3189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3190 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3191 FUNCTION_INST_CAST_ABBREV) 3192 llvm_unreachable("Unexpected abbrev ordering!"); 3193 } 3194 3195 { // INST_RET abbrev for FUNCTION_BLOCK. 3196 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3197 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3198 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3199 FUNCTION_INST_RET_VOID_ABBREV) 3200 llvm_unreachable("Unexpected abbrev ordering!"); 3201 } 3202 { // INST_RET abbrev for FUNCTION_BLOCK. 3203 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3204 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3205 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3206 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3207 FUNCTION_INST_RET_VAL_ABBREV) 3208 llvm_unreachable("Unexpected abbrev ordering!"); 3209 } 3210 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3211 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3212 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3213 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3214 FUNCTION_INST_UNREACHABLE_ABBREV) 3215 llvm_unreachable("Unexpected abbrev ordering!"); 3216 } 3217 { 3218 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3219 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3222 Log2_32_Ceil(VE.getTypes().size() + 1))); 3223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3224 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3225 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3226 FUNCTION_INST_GEP_ABBREV) 3227 llvm_unreachable("Unexpected abbrev ordering!"); 3228 } 3229 3230 Stream.ExitBlock(); 3231 } 3232 3233 /// Write the module path strings, currently only used when generating 3234 /// a combined index file. 3235 void IndexBitcodeWriter::writeModStrings() { 3236 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3237 3238 // TODO: See which abbrev sizes we actually need to emit 3239 3240 // 8-bit fixed-width MST_ENTRY strings. 3241 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3242 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3243 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3246 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3247 3248 // 7-bit fixed width MST_ENTRY strings. 3249 Abbv = std::make_shared<BitCodeAbbrev>(); 3250 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3251 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3252 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3253 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3254 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3255 3256 // 6-bit char6 MST_ENTRY strings. 3257 Abbv = std::make_shared<BitCodeAbbrev>(); 3258 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3259 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3260 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3261 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3262 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3263 3264 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3265 Abbv = std::make_shared<BitCodeAbbrev>(); 3266 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3267 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3268 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3270 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3271 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3272 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3273 3274 SmallVector<unsigned, 64> Vals; 3275 for (const auto &MPSE : Index.modulePaths()) { 3276 if (!doIncludeModule(MPSE.getKey())) 3277 continue; 3278 StringEncoding Bits = 3279 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 3280 unsigned AbbrevToUse = Abbrev8Bit; 3281 if (Bits == SE_Char6) 3282 AbbrevToUse = Abbrev6Bit; 3283 else if (Bits == SE_Fixed7) 3284 AbbrevToUse = Abbrev7Bit; 3285 3286 Vals.push_back(MPSE.getValue().first); 3287 3288 for (const auto P : MPSE.getKey()) 3289 Vals.push_back((unsigned char)P); 3290 3291 // Emit the finished record. 3292 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3293 3294 Vals.clear(); 3295 // Emit an optional hash for the module now 3296 auto &Hash = MPSE.getValue().second; 3297 bool AllZero = true; // Detect if the hash is empty, and do not generate it 3298 for (auto Val : Hash) { 3299 if (Val) 3300 AllZero = false; 3301 Vals.push_back(Val); 3302 } 3303 if (!AllZero) { 3304 // Emit the hash record. 3305 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3306 } 3307 3308 Vals.clear(); 3309 } 3310 Stream.ExitBlock(); 3311 } 3312 3313 /// Write the function type metadata related records that need to appear before 3314 /// a function summary entry (whether per-module or combined). 3315 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3316 FunctionSummary *FS) { 3317 if (!FS->type_tests().empty()) 3318 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3319 3320 SmallVector<uint64_t, 64> Record; 3321 3322 auto WriteVFuncIdVec = [&](uint64_t Ty, 3323 ArrayRef<FunctionSummary::VFuncId> VFs) { 3324 if (VFs.empty()) 3325 return; 3326 Record.clear(); 3327 for (auto &VF : VFs) { 3328 Record.push_back(VF.GUID); 3329 Record.push_back(VF.Offset); 3330 } 3331 Stream.EmitRecord(Ty, Record); 3332 }; 3333 3334 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3335 FS->type_test_assume_vcalls()); 3336 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3337 FS->type_checked_load_vcalls()); 3338 3339 auto WriteConstVCallVec = [&](uint64_t Ty, 3340 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3341 for (auto &VC : VCs) { 3342 Record.clear(); 3343 Record.push_back(VC.VFunc.GUID); 3344 Record.push_back(VC.VFunc.Offset); 3345 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3346 Stream.EmitRecord(Ty, Record); 3347 } 3348 }; 3349 3350 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3351 FS->type_test_assume_const_vcalls()); 3352 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3353 FS->type_checked_load_const_vcalls()); 3354 } 3355 3356 // Helper to emit a single function summary record. 3357 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord( 3358 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3359 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3360 const Function &F) { 3361 NameVals.push_back(ValueID); 3362 3363 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3364 writeFunctionTypeMetadataRecords(Stream, FS); 3365 3366 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3367 NameVals.push_back(FS->instCount()); 3368 NameVals.push_back(FS->refs().size()); 3369 3370 for (auto &RI : FS->refs()) 3371 NameVals.push_back(VE.getValueID(RI.getValue())); 3372 3373 bool HasProfileData = F.getEntryCount().hasValue(); 3374 for (auto &ECI : FS->calls()) { 3375 NameVals.push_back(getValueId(ECI.first)); 3376 if (HasProfileData) 3377 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3378 } 3379 3380 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3381 unsigned Code = 3382 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3383 3384 // Emit the finished record. 3385 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3386 NameVals.clear(); 3387 } 3388 3389 // Collect the global value references in the given variable's initializer, 3390 // and emit them in a summary record. 3391 void ModuleBitcodeWriter::writeModuleLevelReferences( 3392 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3393 unsigned FSModRefsAbbrev) { 3394 auto Summaries = 3395 Index->findGlobalValueSummaryList(GlobalValue::getGUID(V.getName())); 3396 if (Summaries == Index->end()) { 3397 // Only declarations should not have a summary (a declaration might however 3398 // have a summary if the def was in module level asm). 3399 assert(V.isDeclaration()); 3400 return; 3401 } 3402 auto *Summary = Summaries->second.front().get(); 3403 NameVals.push_back(VE.getValueID(&V)); 3404 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3405 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3406 3407 unsigned SizeBeforeRefs = NameVals.size(); 3408 for (auto &RI : VS->refs()) 3409 NameVals.push_back(VE.getValueID(RI.getValue())); 3410 // Sort the refs for determinism output, the vector returned by FS->refs() has 3411 // been initialized from a DenseSet. 3412 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3413 3414 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3415 FSModRefsAbbrev); 3416 NameVals.clear(); 3417 } 3418 3419 // Current version for the summary. 3420 // This is bumped whenever we introduce changes in the way some record are 3421 // interpreted, like flags for instance. 3422 static const uint64_t INDEX_VERSION = 3; 3423 3424 /// Emit the per-module summary section alongside the rest of 3425 /// the module's bitcode. 3426 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() { 3427 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 3428 3429 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3430 3431 if (Index->begin() == Index->end()) { 3432 Stream.ExitBlock(); 3433 return; 3434 } 3435 3436 for (const auto &GVI : valueIds()) { 3437 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3438 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3439 } 3440 3441 // Abbrev for FS_PERMODULE. 3442 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3443 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3448 // numrefs x valueid, n x (valueid) 3449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3451 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3452 3453 // Abbrev for FS_PERMODULE_PROFILE. 3454 Abbv = std::make_shared<BitCodeAbbrev>(); 3455 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3460 // numrefs x valueid, n x (valueid, hotness) 3461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3463 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3464 3465 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3466 Abbv = std::make_shared<BitCodeAbbrev>(); 3467 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3472 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3473 3474 // Abbrev for FS_ALIAS. 3475 Abbv = std::make_shared<BitCodeAbbrev>(); 3476 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3480 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3481 3482 SmallVector<uint64_t, 64> NameVals; 3483 // Iterate over the list of functions instead of the Index to 3484 // ensure the ordering is stable. 3485 for (const Function &F : M) { 3486 // Summary emission does not support anonymous functions, they have to 3487 // renamed using the anonymous function renaming pass. 3488 if (!F.hasName()) 3489 report_fatal_error("Unexpected anonymous function when writing summary"); 3490 3491 auto Summaries = 3492 Index->findGlobalValueSummaryList(GlobalValue::getGUID(F.getName())); 3493 if (Summaries == Index->end()) { 3494 // Only declarations should not have a summary (a declaration might 3495 // however have a summary if the def was in module level asm). 3496 assert(F.isDeclaration()); 3497 continue; 3498 } 3499 auto *Summary = Summaries->second.front().get(); 3500 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3501 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3502 } 3503 3504 // Capture references from GlobalVariable initializers, which are outside 3505 // of a function scope. 3506 for (const GlobalVariable &G : M.globals()) 3507 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3508 3509 for (const GlobalAlias &A : M.aliases()) { 3510 auto *Aliasee = A.getBaseObject(); 3511 if (!Aliasee->hasName()) 3512 // Nameless function don't have an entry in the summary, skip it. 3513 continue; 3514 auto AliasId = VE.getValueID(&A); 3515 auto AliaseeId = VE.getValueID(Aliasee); 3516 NameVals.push_back(AliasId); 3517 auto *Summary = Index->getGlobalValueSummary(A); 3518 AliasSummary *AS = cast<AliasSummary>(Summary); 3519 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3520 NameVals.push_back(AliaseeId); 3521 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3522 NameVals.clear(); 3523 } 3524 3525 Stream.ExitBlock(); 3526 } 3527 3528 /// Emit the combined summary section into the combined index file. 3529 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3530 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3531 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3532 3533 // Create value IDs for undefined references. 3534 for (const auto &I : *this) { 3535 if (auto *VS = dyn_cast<GlobalVarSummary>(I.second)) { 3536 for (auto &RI : VS->refs()) 3537 assignValueId(RI.getGUID()); 3538 continue; 3539 } 3540 3541 auto *FS = dyn_cast<FunctionSummary>(I.second); 3542 if (!FS) 3543 continue; 3544 for (auto &RI : FS->refs()) 3545 assignValueId(RI.getGUID()); 3546 3547 for (auto &EI : FS->calls()) { 3548 GlobalValue::GUID GUID = EI.first.getGUID(); 3549 if (!hasValueId(GUID)) { 3550 // For SamplePGO, the indirect call targets for local functions will 3551 // have its original name annotated in profile. We try to find the 3552 // corresponding PGOFuncName as the GUID. 3553 GUID = Index.getGUIDFromOriginalID(GUID); 3554 if (GUID == 0 || !hasValueId(GUID)) 3555 continue; 3556 } 3557 assignValueId(GUID); 3558 } 3559 } 3560 3561 for (const auto &GVI : valueIds()) { 3562 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3563 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3564 } 3565 3566 // Abbrev for FS_COMBINED. 3567 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3568 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3571 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3573 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3574 // numrefs x valueid, n x (valueid) 3575 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3576 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3577 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3578 3579 // Abbrev for FS_COMBINED_PROFILE. 3580 Abbv = std::make_shared<BitCodeAbbrev>(); 3581 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3587 // numrefs x valueid, n x (valueid, hotness) 3588 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3590 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3591 3592 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3593 Abbv = std::make_shared<BitCodeAbbrev>(); 3594 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3599 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3600 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3601 3602 // Abbrev for FS_COMBINED_ALIAS. 3603 Abbv = std::make_shared<BitCodeAbbrev>(); 3604 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3605 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3608 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3609 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3610 3611 // The aliases are emitted as a post-pass, and will point to the value 3612 // id of the aliasee. Save them in a vector for post-processing. 3613 SmallVector<AliasSummary *, 64> Aliases; 3614 3615 // Save the value id for each summary for alias emission. 3616 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3617 3618 SmallVector<uint64_t, 64> NameVals; 3619 3620 // For local linkage, we also emit the original name separately 3621 // immediately after the record. 3622 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3623 if (!GlobalValue::isLocalLinkage(S.linkage())) 3624 return; 3625 NameVals.push_back(S.getOriginalName()); 3626 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3627 NameVals.clear(); 3628 }; 3629 3630 for (const auto &I : *this) { 3631 GlobalValueSummary *S = I.second; 3632 assert(S); 3633 3634 assert(hasValueId(I.first)); 3635 unsigned ValueId = getValueId(I.first); 3636 SummaryToValueIdMap[S] = ValueId; 3637 3638 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3639 // Will process aliases as a post-pass because the reader wants all 3640 // global to be loaded first. 3641 Aliases.push_back(AS); 3642 continue; 3643 } 3644 3645 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3646 NameVals.push_back(ValueId); 3647 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3648 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3649 for (auto &RI : VS->refs()) { 3650 NameVals.push_back(getValueId(RI.getGUID())); 3651 } 3652 3653 // Emit the finished record. 3654 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3655 FSModRefsAbbrev); 3656 NameVals.clear(); 3657 MaybeEmitOriginalName(*S); 3658 continue; 3659 } 3660 3661 auto *FS = cast<FunctionSummary>(S); 3662 writeFunctionTypeMetadataRecords(Stream, FS); 3663 3664 NameVals.push_back(ValueId); 3665 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3666 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3667 NameVals.push_back(FS->instCount()); 3668 NameVals.push_back(FS->refs().size()); 3669 3670 for (auto &RI : FS->refs()) { 3671 NameVals.push_back(getValueId(RI.getGUID())); 3672 } 3673 3674 bool HasProfileData = false; 3675 for (auto &EI : FS->calls()) { 3676 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown; 3677 if (HasProfileData) 3678 break; 3679 } 3680 3681 for (auto &EI : FS->calls()) { 3682 // If this GUID doesn't have a value id, it doesn't have a function 3683 // summary and we don't need to record any calls to it. 3684 GlobalValue::GUID GUID = EI.first.getGUID(); 3685 if (!hasValueId(GUID)) { 3686 // For SamplePGO, the indirect call targets for local functions will 3687 // have its original name annotated in profile. We try to find the 3688 // corresponding PGOFuncName as the GUID. 3689 GUID = Index.getGUIDFromOriginalID(GUID); 3690 if (GUID == 0 || !hasValueId(GUID)) 3691 continue; 3692 } 3693 NameVals.push_back(getValueId(GUID)); 3694 if (HasProfileData) 3695 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3696 } 3697 3698 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3699 unsigned Code = 3700 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3701 3702 // Emit the finished record. 3703 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3704 NameVals.clear(); 3705 MaybeEmitOriginalName(*S); 3706 } 3707 3708 for (auto *AS : Aliases) { 3709 auto AliasValueId = SummaryToValueIdMap[AS]; 3710 assert(AliasValueId); 3711 NameVals.push_back(AliasValueId); 3712 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3713 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3714 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3715 assert(AliaseeValueId); 3716 NameVals.push_back(AliaseeValueId); 3717 3718 // Emit the finished record. 3719 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3720 NameVals.clear(); 3721 MaybeEmitOriginalName(*AS); 3722 } 3723 3724 Stream.ExitBlock(); 3725 } 3726 3727 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3728 /// current llvm version, and a record for the epoch number. 3729 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3730 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3731 3732 // Write the "user readable" string identifying the bitcode producer 3733 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3734 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3735 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3736 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3737 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3738 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3739 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3740 3741 // Write the epoch version 3742 Abbv = std::make_shared<BitCodeAbbrev>(); 3743 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3744 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3745 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3746 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3747 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3748 Stream.ExitBlock(); 3749 } 3750 3751 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3752 // Emit the module's hash. 3753 // MODULE_CODE_HASH: [5*i32] 3754 if (GenerateHash) { 3755 SHA1 Hasher; 3756 uint32_t Vals[5]; 3757 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3758 Buffer.size() - BlockStartPos)); 3759 StringRef Hash = Hasher.result(); 3760 for (int Pos = 0; Pos < 20; Pos += 4) { 3761 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3762 } 3763 3764 // Emit the finished record. 3765 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3766 3767 if (ModHash) 3768 // Save the written hash value. 3769 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash)); 3770 } else if (ModHash) 3771 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 3772 } 3773 3774 void ModuleBitcodeWriter::write() { 3775 writeIdentificationBlock(Stream); 3776 3777 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3778 size_t BlockStartPos = Buffer.size(); 3779 3780 writeModuleVersion(); 3781 3782 // Emit blockinfo, which defines the standard abbreviations etc. 3783 writeBlockInfo(); 3784 3785 // Emit information about attribute groups. 3786 writeAttributeGroupTable(); 3787 3788 // Emit information about parameter attributes. 3789 writeAttributeTable(); 3790 3791 // Emit information describing all of the types in the module. 3792 writeTypeTable(); 3793 3794 writeComdats(); 3795 3796 // Emit top-level description of module, including target triple, inline asm, 3797 // descriptors for global variables, and function prototype info. 3798 writeModuleInfo(); 3799 3800 // Emit constants. 3801 writeModuleConstants(); 3802 3803 // Emit metadata kind names. 3804 writeModuleMetadataKinds(); 3805 3806 // Emit metadata. 3807 writeModuleMetadata(); 3808 3809 // Emit module-level use-lists. 3810 if (VE.shouldPreserveUseListOrder()) 3811 writeUseListBlock(nullptr); 3812 3813 writeOperandBundleTags(); 3814 3815 // Emit function bodies. 3816 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3817 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3818 if (!F->isDeclaration()) 3819 writeFunction(*F, FunctionToBitcodeIndex); 3820 3821 // Need to write after the above call to WriteFunction which populates 3822 // the summary information in the index. 3823 if (Index) 3824 writePerModuleGlobalValueSummary(); 3825 3826 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 3827 3828 writeModuleHash(BlockStartPos); 3829 3830 Stream.ExitBlock(); 3831 } 3832 3833 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3834 uint32_t &Position) { 3835 support::endian::write32le(&Buffer[Position], Value); 3836 Position += 4; 3837 } 3838 3839 /// If generating a bc file on darwin, we have to emit a 3840 /// header and trailer to make it compatible with the system archiver. To do 3841 /// this we emit the following header, and then emit a trailer that pads the 3842 /// file out to be a multiple of 16 bytes. 3843 /// 3844 /// struct bc_header { 3845 /// uint32_t Magic; // 0x0B17C0DE 3846 /// uint32_t Version; // Version, currently always 0. 3847 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3848 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3849 /// uint32_t CPUType; // CPU specifier. 3850 /// ... potentially more later ... 3851 /// }; 3852 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3853 const Triple &TT) { 3854 unsigned CPUType = ~0U; 3855 3856 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3857 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3858 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3859 // specific constants here because they are implicitly part of the Darwin ABI. 3860 enum { 3861 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3862 DARWIN_CPU_TYPE_X86 = 7, 3863 DARWIN_CPU_TYPE_ARM = 12, 3864 DARWIN_CPU_TYPE_POWERPC = 18 3865 }; 3866 3867 Triple::ArchType Arch = TT.getArch(); 3868 if (Arch == Triple::x86_64) 3869 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3870 else if (Arch == Triple::x86) 3871 CPUType = DARWIN_CPU_TYPE_X86; 3872 else if (Arch == Triple::ppc) 3873 CPUType = DARWIN_CPU_TYPE_POWERPC; 3874 else if (Arch == Triple::ppc64) 3875 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3876 else if (Arch == Triple::arm || Arch == Triple::thumb) 3877 CPUType = DARWIN_CPU_TYPE_ARM; 3878 3879 // Traditional Bitcode starts after header. 3880 assert(Buffer.size() >= BWH_HeaderSize && 3881 "Expected header size to be reserved"); 3882 unsigned BCOffset = BWH_HeaderSize; 3883 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3884 3885 // Write the magic and version. 3886 unsigned Position = 0; 3887 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3888 writeInt32ToBuffer(0, Buffer, Position); // Version. 3889 writeInt32ToBuffer(BCOffset, Buffer, Position); 3890 writeInt32ToBuffer(BCSize, Buffer, Position); 3891 writeInt32ToBuffer(CPUType, Buffer, Position); 3892 3893 // If the file is not a multiple of 16 bytes, insert dummy padding. 3894 while (Buffer.size() & 15) 3895 Buffer.push_back(0); 3896 } 3897 3898 /// Helper to write the header common to all bitcode files. 3899 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3900 // Emit the file header. 3901 Stream.Emit((unsigned)'B', 8); 3902 Stream.Emit((unsigned)'C', 8); 3903 Stream.Emit(0x0, 4); 3904 Stream.Emit(0xC, 4); 3905 Stream.Emit(0xE, 4); 3906 Stream.Emit(0xD, 4); 3907 } 3908 3909 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3910 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3911 writeBitcodeHeader(*Stream); 3912 } 3913 3914 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 3915 3916 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 3917 Stream->EnterSubblock(Block, 3); 3918 3919 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3920 Abbv->Add(BitCodeAbbrevOp(Record)); 3921 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 3922 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 3923 3924 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 3925 3926 Stream->ExitBlock(); 3927 } 3928 3929 void BitcodeWriter::writeStrtab() { 3930 assert(!WroteStrtab); 3931 3932 std::vector<char> Strtab; 3933 StrtabBuilder.finalizeInOrder(); 3934 Strtab.resize(StrtabBuilder.getSize()); 3935 StrtabBuilder.write((uint8_t *)Strtab.data()); 3936 3937 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 3938 {Strtab.data(), Strtab.size()}); 3939 3940 WroteStrtab = true; 3941 } 3942 3943 void BitcodeWriter::copyStrtab(StringRef Strtab) { 3944 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 3945 WroteStrtab = true; 3946 } 3947 3948 void BitcodeWriter::writeModule(const Module *M, 3949 bool ShouldPreserveUseListOrder, 3950 const ModuleSummaryIndex *Index, 3951 bool GenerateHash, ModuleHash *ModHash) { 3952 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 3953 ShouldPreserveUseListOrder, Index, 3954 GenerateHash, ModHash); 3955 ModuleWriter.write(); 3956 } 3957 3958 /// WriteBitcodeToFile - Write the specified module to the specified output 3959 /// stream. 3960 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3961 bool ShouldPreserveUseListOrder, 3962 const ModuleSummaryIndex *Index, 3963 bool GenerateHash, ModuleHash *ModHash) { 3964 SmallVector<char, 0> Buffer; 3965 Buffer.reserve(256*1024); 3966 3967 // If this is darwin or another generic macho target, reserve space for the 3968 // header. 3969 Triple TT(M->getTargetTriple()); 3970 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3971 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3972 3973 BitcodeWriter Writer(Buffer); 3974 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 3975 ModHash); 3976 Writer.writeStrtab(); 3977 3978 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3979 emitDarwinBCHeaderAndTrailer(Buffer, TT); 3980 3981 // Write the generated bitstream to "Out". 3982 Out.write((char*)&Buffer.front(), Buffer.size()); 3983 } 3984 3985 void IndexBitcodeWriter::write() { 3986 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3987 3988 writeModuleVersion(); 3989 3990 // Write the module paths in the combined index. 3991 writeModStrings(); 3992 3993 // Write the summary combined index records. 3994 writeCombinedGlobalValueSummary(); 3995 3996 Stream.ExitBlock(); 3997 } 3998 3999 // Write the specified module summary index to the given raw output stream, 4000 // where it will be written in a new bitcode block. This is used when 4001 // writing the combined index file for ThinLTO. When writing a subset of the 4002 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4003 void llvm::WriteIndexToFile( 4004 const ModuleSummaryIndex &Index, raw_ostream &Out, 4005 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4006 SmallVector<char, 0> Buffer; 4007 Buffer.reserve(256 * 1024); 4008 4009 BitstreamWriter Stream(Buffer); 4010 writeBitcodeHeader(Stream); 4011 4012 IndexBitcodeWriter IndexWriter(Stream, Index, ModuleToSummariesForIndex); 4013 IndexWriter.write(); 4014 4015 Out.write((char *)&Buffer.front(), Buffer.size()); 4016 } 4017